Merge pull request #1799 from TheBlueMatt/2022-10-heap-nerdsnipe
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Provides keys to LDK and defines some useful objects describing spendable on-chain outputs.
11 //!
12 //! The provided output descriptors follow a custom LDK data format and are currently not fully
13 //! compatible with Bitcoin Core output descriptors.
14
15 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, EcdsaSighashType};
16 use bitcoin::blockdata::script::{Script, Builder};
17 use bitcoin::blockdata::opcodes;
18 use bitcoin::network::constants::Network;
19 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
20 use bitcoin::util::sighash;
21
22 use bitcoin::bech32::u5;
23 use bitcoin::hashes::{Hash, HashEngine};
24 use bitcoin::hashes::sha256::HashEngine as Sha256State;
25 use bitcoin::hashes::sha256::Hash as Sha256;
26 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
27 use bitcoin::hash_types::WPubkeyHash;
28
29 use bitcoin::secp256k1::{SecretKey, PublicKey, Scalar};
30 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Signing};
31 use bitcoin::secp256k1::ecdh::SharedSecret;
32 use bitcoin::secp256k1::ecdsa::RecoverableSignature;
33 use bitcoin::{PackedLockTime, secp256k1, Sequence, Witness};
34
35 use crate::util::transaction_utils;
36 use crate::util::crypto::{hkdf_extract_expand_twice, sign};
37 use crate::util::ser::{Writeable, Writer, Readable};
38 #[cfg(anchors)]
39 use crate::util::events::HTLCDescriptor;
40 use crate::chain::transaction::OutPoint;
41 use crate::ln::channel::ANCHOR_OUTPUT_VALUE_SATOSHI;
42 use crate::ln::{chan_utils, PaymentPreimage};
43 use crate::ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
44 use crate::ln::msgs::{UnsignedChannelAnnouncement, UnsignedGossipMessage};
45 use crate::ln::script::ShutdownScript;
46
47 use crate::prelude::*;
48 use core::convert::TryInto;
49 use core::sync::atomic::{AtomicUsize, Ordering};
50 use crate::io::{self, Error};
51 use crate::ln::msgs::{DecodeError, MAX_VALUE_MSAT};
52 use crate::util::invoice::construct_invoice_preimage;
53
54 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
55 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
56 ///
57 /// (C-not exported) as we just use `[u8; 32]` directly
58 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
59 pub struct KeyMaterial(pub [u8; 32]);
60
61 /// Information about a spendable output to a P2WSH script.
62 ///
63 /// See [`SpendableOutputDescriptor::DelayedPaymentOutput`] for more details on how to spend this.
64 #[derive(Clone, Debug, PartialEq, Eq)]
65 pub struct DelayedPaymentOutputDescriptor {
66         /// The outpoint which is spendable.
67         pub outpoint: OutPoint,
68         /// Per commitment point to derive the delayed payment key by key holder.
69         pub per_commitment_point: PublicKey,
70         /// The `nSequence` value which must be set in the spending input to satisfy the `OP_CSV` in
71         /// the witness_script.
72         pub to_self_delay: u16,
73         /// The output which is referenced by the given outpoint.
74         pub output: TxOut,
75         /// The revocation point specific to the commitment transaction which was broadcast. Used to
76         /// derive the witnessScript for this output.
77         pub revocation_pubkey: PublicKey,
78         /// Arbitrary identification information returned by a call to [`ChannelSigner::channel_keys_id`].
79         /// This may be useful in re-deriving keys used in the channel to spend the output.
80         pub channel_keys_id: [u8; 32],
81         /// The value of the channel which this output originated from, possibly indirectly.
82         pub channel_value_satoshis: u64,
83 }
84 impl DelayedPaymentOutputDescriptor {
85         /// The maximum length a well-formed witness spending one of these should have.
86         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
87         // redeemscript push length.
88         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
89 }
90
91 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
92         (0, outpoint, required),
93         (2, per_commitment_point, required),
94         (4, to_self_delay, required),
95         (6, output, required),
96         (8, revocation_pubkey, required),
97         (10, channel_keys_id, required),
98         (12, channel_value_satoshis, required),
99 });
100
101 /// Information about a spendable output to our "payment key".
102 ///
103 /// See [`SpendableOutputDescriptor::StaticPaymentOutput`] for more details on how to spend this.
104 #[derive(Clone, Debug, PartialEq, Eq)]
105 pub struct StaticPaymentOutputDescriptor {
106         /// The outpoint which is spendable.
107         pub outpoint: OutPoint,
108         /// The output which is referenced by the given outpoint.
109         pub output: TxOut,
110         /// Arbitrary identification information returned by a call to [`ChannelSigner::channel_keys_id`].
111         /// This may be useful in re-deriving keys used in the channel to spend the output.
112         pub channel_keys_id: [u8; 32],
113         /// The value of the channel which this transactions spends.
114         pub channel_value_satoshis: u64,
115 }
116 impl StaticPaymentOutputDescriptor {
117         /// The maximum length a well-formed witness spending one of these should have.
118         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
119         // redeemscript push length.
120         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
121 }
122 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
123         (0, outpoint, required),
124         (2, output, required),
125         (4, channel_keys_id, required),
126         (6, channel_value_satoshis, required),
127 });
128
129 /// Describes the necessary information to spend a spendable output.
130 ///
131 /// When on-chain outputs are created by LDK (which our counterparty is not able to claim at any
132 /// point in the future) a [`SpendableOutputs`] event is generated which you must track and be able
133 /// to spend on-chain. The information needed to do this is provided in this enum, including the
134 /// outpoint describing which `txid` and output `index` is available, the full output which exists
135 /// at that `txid`/`index`, and any keys or other information required to sign.
136 ///
137 /// [`SpendableOutputs`]: crate::util::events::Event::SpendableOutputs
138 #[derive(Clone, Debug, PartialEq, Eq)]
139 pub enum SpendableOutputDescriptor {
140         /// An output to a script which was provided via [`SignerProvider`] directly, either from
141         /// [`get_destination_script`] or [`get_shutdown_scriptpubkey`], thus you should already
142         /// know how to spend it. No secret keys are provided as LDK was never given any key.
143         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
144         /// on-chain using the payment preimage or after it has timed out.
145         ///
146         /// [`get_shutdown_scriptpubkey`]: SignerProvider::get_shutdown_scriptpubkey
147         /// [`get_destination_script`]: SignerProvider::get_shutdown_scriptpubkey
148         StaticOutput {
149                 /// The outpoint which is spendable.
150                 outpoint: OutPoint,
151                 /// The output which is referenced by the given outpoint.
152                 output: TxOut,
153         },
154         /// An output to a P2WSH script which can be spent with a single signature after an `OP_CSV`
155         /// delay.
156         ///
157         /// The witness in the spending input should be:
158         /// ```bitcoin
159         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
160         /// ```
161         ///
162         /// Note that the `nSequence` field in the spending input must be set to
163         /// [`DelayedPaymentOutputDescriptor::to_self_delay`] (which means the transaction is not
164         /// broadcastable until at least [`DelayedPaymentOutputDescriptor::to_self_delay`] blocks after
165         /// the outpoint confirms, see [BIP
166         /// 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki)). Also note that LDK
167         /// won't generate a [`SpendableOutputDescriptor`] until the corresponding block height
168         /// is reached.
169         ///
170         /// These are generally the result of a "revocable" output to us, spendable only by us unless
171         /// it is an output from an old state which we broadcast (which should never happen).
172         ///
173         /// To derive the delayed payment key which is used to sign this input, you must pass the
174         /// holder [`InMemorySigner::delayed_payment_base_key`] (i.e., the private key which corresponds to the
175         /// [`ChannelPublicKeys::delayed_payment_basepoint`] in [`ChannelSigner::pubkeys`]) and the provided
176         /// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to [`chan_utils::derive_private_key`]. The public key can be
177         /// generated without the secret key using [`chan_utils::derive_public_key`] and only the
178         /// [`ChannelPublicKeys::delayed_payment_basepoint`] which appears in [`ChannelSigner::pubkeys`].
179         ///
180         /// To derive the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] provided here (which is
181         /// used in the witness script generation), you must pass the counterparty
182         /// [`ChannelPublicKeys::revocation_basepoint`] (which appears in the call to
183         /// [`ChannelSigner::provide_channel_parameters`]) and the provided
184         /// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to
185         /// [`chan_utils::derive_public_revocation_key`].
186         ///
187         /// The witness script which is hashed and included in the output `script_pubkey` may be
188         /// regenerated by passing the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] (derived
189         /// as explained above), our delayed payment pubkey (derived as explained above), and the
190         /// [`DelayedPaymentOutputDescriptor::to_self_delay`] contained here to
191         /// [`chan_utils::get_revokeable_redeemscript`].
192         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
193         /// An output to a P2WPKH, spendable exclusively by our payment key (i.e., the private key
194         /// which corresponds to the `payment_point` in [`ChannelSigner::pubkeys`]). The witness
195         /// in the spending input is, thus, simply:
196         /// ```bitcoin
197         /// <BIP 143 signature> <payment key>
198         /// ```
199         ///
200         /// These are generally the result of our counterparty having broadcast the current state,
201         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
202         StaticPaymentOutput(StaticPaymentOutputDescriptor),
203 }
204
205 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
206         (0, StaticOutput) => {
207                 (0, outpoint, required),
208                 (2, output, required),
209         },
210 ;
211         (1, DelayedPaymentOutput),
212         (2, StaticPaymentOutput),
213 );
214
215 /// A trait to handle Lightning channel key material without concretizing the channel type or
216 /// the signature mechanism.
217 pub trait ChannelSigner {
218         /// Gets the per-commitment point for a specific commitment number
219         ///
220         /// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
221         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
222
223         /// Gets the commitment secret for a specific commitment number as part of the revocation process
224         ///
225         /// An external signer implementation should error here if the commitment was already signed
226         /// and should refuse to sign it in the future.
227         ///
228         /// May be called more than once for the same index.
229         ///
230         /// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
231         // TODO: return a Result so we can signal a validation error
232         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
233
234         /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
235         ///
236         /// This is required in order for the signer to make sure that releasing a commitment
237         /// secret won't leave us without a broadcastable holder transaction.
238         /// Policy checks should be implemented in this function, including checking the amount
239         /// sent to us and checking the HTLCs.
240         ///
241         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
242         /// A validating signer should ensure that an HTLC output is removed only when the matching
243         /// preimage is provided, or when the value to holder is restored.
244         ///
245         /// Note that all the relevant preimages will be provided, but there may also be additional
246         /// irrelevant or duplicate preimages.
247         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction,
248                 preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
249
250         /// Returns the holder's channel public keys and basepoints.
251         fn pubkeys(&self) -> &ChannelPublicKeys;
252
253         /// Returns an arbitrary identifier describing the set of keys which are provided back to you in
254         /// some [`SpendableOutputDescriptor`] types. This should be sufficient to identify this
255         /// [`EcdsaChannelSigner`] object uniquely and lookup or re-derive its keys.
256         fn channel_keys_id(&self) -> [u8; 32];
257
258         /// Set the counterparty static channel data, including basepoints,
259         /// `counterparty_selected`/`holder_selected_contest_delay` and funding outpoint.
260         ///
261         /// This data is static, and will never change for a channel once set. For a given [`ChannelSigner`]
262         /// instance, LDK will call this method exactly once - either immediately after construction
263         /// (not including if done via [`SignerProvider::read_chan_signer`]) or when the funding
264         /// information has been generated.
265         ///
266         /// channel_parameters.is_populated() MUST be true.
267         fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters);
268 }
269
270 /// A trait to sign Lightning channel transactions as described in
271 /// [BOLT 3](https://github.com/lightning/bolts/blob/master/03-transactions.md).
272 ///
273 /// Signing services could be implemented on a hardware wallet and should implement signing
274 /// policies in order to be secure. Please refer to the [VLS Policy
275 /// Controls](https://gitlab.com/lightning-signer/validating-lightning-signer/-/blob/main/docs/policy-controls.md)
276 /// for an example of such policies.
277 pub trait EcdsaChannelSigner: ChannelSigner {
278         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
279         ///
280         /// Note that if signing fails or is rejected, the channel will be force-closed.
281         ///
282         /// Policy checks should be implemented in this function, including checking the amount
283         /// sent to us and checking the HTLCs.
284         ///
285         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
286         /// A validating signer should ensure that an HTLC output is removed only when the matching
287         /// preimage is provided, or when the value to holder is restored.
288         ///
289         /// Note that all the relevant preimages will be provided, but there may also be additional
290         /// irrelevant or duplicate preimages.
291         //
292         // TODO: Document the things someone using this interface should enforce before signing.
293         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction,
294                 preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>
295         ) -> Result<(Signature, Vec<Signature>), ()>;
296         /// Validate the counterparty's revocation.
297         ///
298         /// This is required in order for the signer to make sure that the state has moved
299         /// forward and it is safe to sign the next counterparty commitment.
300         fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
301         /// Creates a signature for a holder's commitment transaction and its claiming HTLC transactions.
302         ///
303         /// This will be called
304         /// - with a non-revoked `commitment_tx`.
305         /// - with the latest `commitment_tx` when we initiate a force-close.
306         /// - with the previous `commitment_tx`, just to get claiming HTLC
307         ///   signatures, if we are reacting to a [`ChannelMonitor`]
308         ///   [replica](https://github.com/lightningdevkit/rust-lightning/blob/main/GLOSSARY.md#monitor-replicas)
309         ///   that decided to broadcast before it had been updated to the latest `commitment_tx`.
310         ///
311         /// This may be called multiple times for the same transaction.
312         ///
313         /// An external signer implementation should check that the commitment has not been revoked.
314         ///
315         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
316         // TODO: Document the things someone using this interface should enforce before signing.
317         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction,
318                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
319         /// Same as [`sign_holder_commitment_and_htlcs`], but exists only for tests to get access to
320         /// holder commitment transactions which will be broadcasted later, after the channel has moved
321         /// on to a newer state. Thus, needs its own method as [`sign_holder_commitment_and_htlcs`] may
322         /// enforce that we only ever get called once.
323         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
324         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction,
325                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
326         /// Create a signature for the given input in a transaction spending an HTLC transaction output
327         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
328         ///
329         /// A justice transaction may claim multiple outputs at the same time if timelocks are
330         /// similar, but only a signature for the input at index `input` should be signed for here.
331         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
332         /// to an upcoming timelock expiration.
333         ///
334         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
335         ///
336         /// `per_commitment_key` is revocation secret which was provided by our counterparty when they
337         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
338         /// not allow the spending of any funds by itself (you need our holder `revocation_secret` to do
339         /// so).
340         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64,
341                 per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>
342         ) -> Result<Signature, ()>;
343         /// Create a signature for the given input in a transaction spending a commitment transaction
344         /// HTLC output when our counterparty broadcasts an old state.
345         ///
346         /// A justice transaction may claim multiple outputs at the same time if timelocks are
347         /// similar, but only a signature for the input at index `input` should be signed for here.
348         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
349         /// to an upcoming timelock expiration.
350         ///
351         /// `amount` is the value of the output spent by this input, committed to in the BIP 143
352         /// signature.
353         ///
354         /// `per_commitment_key` is revocation secret which was provided by our counterparty when they
355         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
356         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
357         /// so).
358         ///
359         /// `htlc` holds HTLC elements (hash, timelock), thus changing the format of the witness script
360         /// (which is committed to in the BIP 143 signatures).
361         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64,
362                 per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment,
363                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
364         #[cfg(anchors)]
365         /// Computes the signature for a commitment transaction's HTLC output used as an input within
366         /// `htlc_tx`, which spends the commitment transaction at index `input`. The signature returned
367         /// must be be computed using [`EcdsaSighashType::All`]. Note that this should only be used to
368         /// sign HTLC transactions from channels supporting anchor outputs after all additional
369         /// inputs/outputs have been added to the transaction.
370         ///
371         /// [`EcdsaSighashType::All`]: bitcoin::blockdata::transaction::EcdsaSighashType::All
372         fn sign_holder_htlc_transaction(&self, htlc_tx: &Transaction, input: usize,
373                 htlc_descriptor: &HTLCDescriptor, secp_ctx: &Secp256k1<secp256k1::All>
374         ) -> Result<Signature, ()>;
375         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
376         /// transaction, either offered or received.
377         ///
378         /// Such a transaction may claim multiples offered outputs at same time if we know the
379         /// preimage for each when we create it, but only the input at index `input` should be
380         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
381         /// needed with regards to an upcoming timelock expiration.
382         ///
383         /// `witness_script` is either an offered or received script as defined in BOLT3 for HTLC
384         /// outputs.
385         ///
386         /// `amount` is value of the output spent by this input, committed to in the BIP 143 signature.
387         ///
388         /// `per_commitment_point` is the dynamic point corresponding to the channel state
389         /// detected onchain. It has been generated by our counterparty and is used to derive
390         /// channel state keys, which are then included in the witness script and committed to in the
391         /// BIP 143 signature.
392         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64,
393                 per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment,
394                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
395         /// Create a signature for a (proposed) closing transaction.
396         ///
397         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
398         /// chosen to forgo their output as dust.
399         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction,
400                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
401         /// Computes the signature for a commitment transaction's anchor output used as an
402         /// input within `anchor_tx`, which spends the commitment transaction, at index `input`.
403         fn sign_holder_anchor_input(
404                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
405         ) -> Result<Signature, ()>;
406         /// Signs a channel announcement message with our funding key proving it comes from one of the
407         /// channel participants.
408         ///
409         /// Channel announcements also require a signature from each node's network key. Our node
410         /// signature is computed through [`NodeSigner::sign_gossip_message`].
411         ///
412         /// Note that if this fails or is rejected, the channel will not be publicly announced and
413         /// our counterparty may (though likely will not) close the channel on us for violating the
414         /// protocol.
415         fn sign_channel_announcement_with_funding_key(
416                 &self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
417         ) -> Result<Signature, ()>;
418 }
419
420 /// A writeable signer.
421 ///
422 /// There will always be two instances of a signer per channel, one occupied by the
423 /// [`ChannelManager`] and another by the channel's [`ChannelMonitor`].
424 ///
425 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
426 /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
427 pub trait WriteableEcdsaChannelSigner: EcdsaChannelSigner + Writeable {}
428
429 /// Specifies the recipient of an invoice.
430 ///
431 /// This indicates to [`NodeSigner::sign_invoice`] what node secret key should be used to sign
432 /// the invoice.
433 pub enum Recipient {
434         /// The invoice should be signed with the local node secret key.
435         Node,
436         /// The invoice should be signed with the phantom node secret key. This secret key must be the
437         /// same for all nodes participating in the [phantom node payment].
438         ///
439         /// [phantom node payment]: PhantomKeysManager
440         PhantomNode,
441 }
442
443 /// A trait that describes a source of entropy.
444 pub trait EntropySource {
445         /// Gets a unique, cryptographically-secure, random 32-byte value. This method must return a
446         /// different value each time it is called.
447         fn get_secure_random_bytes(&self) -> [u8; 32];
448 }
449
450 /// A trait that can handle cryptographic operations at the scope level of a node.
451 pub trait NodeSigner {
452         /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
453         ///
454         /// If the implementor of this trait supports [phantom node payments], then every node that is
455         /// intended to be included in the phantom invoice route hints must return the same value from
456         /// this method.
457         // This is because LDK avoids storing inbound payment data by encrypting payment data in the
458         // payment hash and/or payment secret, therefore for a payment to be receivable by multiple
459         // nodes, they must share the key that encrypts this payment data.
460         ///
461         /// This method must return the same value each time it is called.
462         ///
463         /// [phantom node payments]: PhantomKeysManager
464         fn get_inbound_payment_key_material(&self) -> KeyMaterial;
465
466         /// Get node id based on the provided [`Recipient`].
467         ///
468         /// This method must return the same value each time it is called with a given [`Recipient`]
469         /// parameter.
470         ///
471         /// Errors if the [`Recipient`] variant is not supported by the implementation.
472         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()>;
473
474         /// Gets the ECDH shared secret of our node secret and `other_key`, multiplying by `tweak` if
475         /// one is provided. Note that this tweak can be applied to `other_key` instead of our node
476         /// secret, though this is less efficient.
477         ///
478         /// Note that if this fails while attempting to forward an HTLC, LDK will panic. The error
479         /// should be resolved to allow LDK to resume forwarding HTLCs.
480         ///
481         /// Errors if the [`Recipient`] variant is not supported by the implementation.
482         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()>;
483
484         /// Sign an invoice.
485         ///
486         /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
487         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
488         /// blindly signing the hash.
489         ///
490         /// The `hrp_bytes` are ASCII bytes, while the `invoice_data` is base32.
491         ///
492         /// The secret key used to sign the invoice is dependent on the [`Recipient`].
493         ///
494         /// Errors if the [`Recipient`] variant is not supported by the implementation.
495         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()>;
496
497         /// Sign a gossip message.
498         ///
499         /// Note that if this fails, LDK may panic and the message will not be broadcast to the network
500         /// or a possible channel counterparty. If LDK panics, the error should be resolved to allow the
501         /// message to be broadcast, as otherwise it may prevent one from receiving funds over the
502         /// corresponding channel.
503         fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()>;
504 }
505
506 /// A trait that can return signer instances for individual channels.
507 pub trait SignerProvider {
508         /// A type which implements [`WriteableEcdsaChannelSigner`] which will be returned by [`Self::derive_channel_signer`].
509         type Signer : WriteableEcdsaChannelSigner;
510
511         /// Generates a unique `channel_keys_id` that can be used to obtain a [`Self::Signer`] through
512         /// [`SignerProvider::derive_channel_signer`]. The `user_channel_id` is provided to allow
513         /// implementations of [`SignerProvider`] to maintain a mapping between itself and the generated
514         /// `channel_keys_id`.
515         ///
516         /// This method must return a different value each time it is called.
517         fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32];
518
519         /// Derives the private key material backing a `Signer`.
520         ///
521         /// To derive a new `Signer`, a fresh `channel_keys_id` should be obtained through
522         /// [`SignerProvider::generate_channel_keys_id`]. Otherwise, an existing `Signer` can be
523         /// re-derived from its `channel_keys_id`, which can be obtained through its trait method
524         /// [`ChannelSigner::channel_keys_id`].
525         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer;
526
527         /// Reads a [`Signer`] for this [`SignerProvider`] from the given input stream.
528         /// This is only called during deserialization of other objects which contain
529         /// [`WriteableEcdsaChannelSigner`]-implementing objects (i.e., [`ChannelMonitor`]s and [`ChannelManager`]s).
530         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
531         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
532         /// you've read all of the provided bytes to ensure no corruption occurred.
533         ///
534         /// This method is slowly being phased out -- it will only be called when reading objects
535         /// written by LDK versions prior to 0.0.113.
536         ///
537         /// [`Signer`]: Self::Signer
538         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
539         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
540         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
541
542         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
543         ///
544         /// This method should return a different value each time it is called, to avoid linking
545         /// on-chain funds across channels as controlled to the same user.
546         fn get_destination_script(&self) -> Script;
547
548         /// Get a script pubkey which we will send funds to when closing a channel.
549         ///
550         /// This method should return a different value each time it is called, to avoid linking
551         /// on-chain funds across channels as controlled to the same user.
552         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
553 }
554
555 #[derive(Clone)]
556 /// A simple implementation of [`WriteableEcdsaChannelSigner`] that just keeps the private keys in memory.
557 ///
558 /// This implementation performs no policy checks and is insufficient by itself as
559 /// a secure external signer.
560 pub struct InMemorySigner {
561         /// Holder secret key in the 2-of-2 multisig script of a channel. This key also backs the
562         /// holder's anchor output in a commitment transaction, if one is present.
563         pub funding_key: SecretKey,
564         /// Holder secret key for blinded revocation pubkey.
565         pub revocation_base_key: SecretKey,
566         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions.
567         pub payment_key: SecretKey,
568         /// Holder secret key used in an HTLC transaction.
569         pub delayed_payment_base_key: SecretKey,
570         /// Holder HTLC secret key used in commitment transaction HTLC outputs.
571         pub htlc_base_key: SecretKey,
572         /// Commitment seed.
573         pub commitment_seed: [u8; 32],
574         /// Holder public keys and basepoints.
575         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
576         /// Counterparty public keys and counterparty/holder `selected_contest_delay`, populated on channel acceptance.
577         channel_parameters: Option<ChannelTransactionParameters>,
578         /// The total value of this channel.
579         channel_value_satoshis: u64,
580         /// Key derivation parameters.
581         channel_keys_id: [u8; 32],
582 }
583
584 impl InMemorySigner {
585         /// Creates a new [`InMemorySigner`].
586         pub fn new<C: Signing>(
587                 secp_ctx: &Secp256k1<C>,
588                 funding_key: SecretKey,
589                 revocation_base_key: SecretKey,
590                 payment_key: SecretKey,
591                 delayed_payment_base_key: SecretKey,
592                 htlc_base_key: SecretKey,
593                 commitment_seed: [u8; 32],
594                 channel_value_satoshis: u64,
595                 channel_keys_id: [u8; 32],
596         ) -> InMemorySigner {
597                 let holder_channel_pubkeys =
598                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
599                                 &payment_key, &delayed_payment_base_key,
600                                 &htlc_base_key);
601                 InMemorySigner {
602                         funding_key,
603                         revocation_base_key,
604                         payment_key,
605                         delayed_payment_base_key,
606                         htlc_base_key,
607                         commitment_seed,
608                         channel_value_satoshis,
609                         holder_channel_pubkeys,
610                         channel_parameters: None,
611                         channel_keys_id,
612                 }
613         }
614
615         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
616                         funding_key: &SecretKey,
617                         revocation_base_key: &SecretKey,
618                         payment_key: &SecretKey,
619                         delayed_payment_base_key: &SecretKey,
620                         htlc_base_key: &SecretKey) -> ChannelPublicKeys {
621                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
622                 ChannelPublicKeys {
623                         funding_pubkey: from_secret(&funding_key),
624                         revocation_basepoint: from_secret(&revocation_base_key),
625                         payment_point: from_secret(&payment_key),
626                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
627                         htlc_basepoint: from_secret(&htlc_base_key),
628                 }
629         }
630
631         /// Returns the counterparty's pubkeys.
632         ///
633         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
634         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
635         /// Returns the `contest_delay` value specified by our counterparty and applied on holder-broadcastable
636         /// transactions, i.e., the amount of time that we have to wait to recover our funds if we
637         /// broadcast a transaction.
638         ///
639         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
640         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
641         /// Returns the `contest_delay` value specified by us and applied on transactions broadcastable
642         /// by our counterparty, i.e., the amount of time that they have to wait to recover their funds
643         /// if they broadcast a transaction.
644         ///
645         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
646         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
647         /// Returns whether the holder is the initiator.
648         ///
649         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
650         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
651         /// Funding outpoint
652         ///
653         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
654         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
655         /// Returns a [`ChannelTransactionParameters`] for this channel, to be used when verifying or
656         /// building transactions.
657         ///
658         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
659         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
660                 self.channel_parameters.as_ref().unwrap()
661         }
662         /// Returns whether anchors should be used.
663         ///
664         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
665         pub fn opt_anchors(&self) -> bool {
666                 self.get_channel_parameters().opt_anchors.is_some()
667         }
668         /// Sign the single input of `spend_tx` at index `input_idx`, which spends the output described
669         /// by `descriptor`, returning the witness stack for the input.
670         ///
671         /// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
672         /// is not spending the outpoint described by [`descriptor.outpoint`],
673         /// or if an output descriptor `script_pubkey` does not match the one we can spend.
674         ///
675         /// [`descriptor.outpoint`]: StaticPaymentOutputDescriptor::outpoint
676         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
677                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
678                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
679                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
680                 // bindings updates to support SigHashCache objects).
681                 if spend_tx.input.len() <= input_idx { return Err(()); }
682                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
683                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
684
685                 let remotepubkey = self.pubkeys().payment_point;
686                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Testnet).script_pubkey();
687                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
688                 let remotesig = sign(secp_ctx, &sighash, &self.payment_key);
689                 let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
690
691                 if payment_script != descriptor.output.script_pubkey { return Err(()); }
692
693                 let mut witness = Vec::with_capacity(2);
694                 witness.push(remotesig.serialize_der().to_vec());
695                 witness[0].push(EcdsaSighashType::All as u8);
696                 witness.push(remotepubkey.serialize().to_vec());
697                 Ok(witness)
698         }
699
700         /// Sign the single input of `spend_tx` at index `input_idx` which spends the output
701         /// described by `descriptor`, returning the witness stack for the input.
702         ///
703         /// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
704         /// is not spending the outpoint described by [`descriptor.outpoint`], does not have a
705         /// sequence set to [`descriptor.to_self_delay`], or if an output descriptor
706         /// `script_pubkey` does not match the one we can spend.
707         ///
708         /// [`descriptor.outpoint`]: DelayedPaymentOutputDescriptor::outpoint
709         /// [`descriptor.to_self_delay`]: DelayedPaymentOutputDescriptor::to_self_delay
710         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
711                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
712                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
713                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
714                 // bindings updates to support SigHashCache objects).
715                 if spend_tx.input.len() <= input_idx { return Err(()); }
716                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
717                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
718                 if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 { return Err(()); }
719
720                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key);
721                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
722                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
723                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
724                 let local_delayedsig = sign(secp_ctx, &sighash, &delayed_payment_key);
725                 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
726
727                 if descriptor.output.script_pubkey != payment_script { return Err(()); }
728
729                 let mut witness = Vec::with_capacity(3);
730                 witness.push(local_delayedsig.serialize_der().to_vec());
731                 witness[0].push(EcdsaSighashType::All as u8);
732                 witness.push(vec!()); //MINIMALIF
733                 witness.push(witness_script.clone().into_bytes());
734                 Ok(witness)
735         }
736 }
737
738 impl ChannelSigner for InMemorySigner {
739         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
740                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
741                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
742         }
743
744         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
745                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
746         }
747
748         fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
749                 Ok(())
750         }
751
752         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
753
754         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
755
756         fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters) {
757                 assert!(self.channel_parameters.is_none() || self.channel_parameters.as_ref().unwrap() == channel_parameters);
758                 if self.channel_parameters.is_some() {
759                         // The channel parameters were already set and they match, return early.
760                         return;
761                 }
762                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
763                 self.channel_parameters = Some(channel_parameters.clone());
764         }
765 }
766
767 impl EcdsaChannelSigner for InMemorySigner {
768         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
769                 let trusted_tx = commitment_tx.trust();
770                 let keys = trusted_tx.keys();
771
772                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
773                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
774
775                 let built_tx = trusted_tx.built_transaction();
776                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
777                 let commitment_txid = built_tx.txid;
778
779                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
780                 for htlc in commitment_tx.htlcs() {
781                         let channel_parameters = self.get_channel_parameters();
782                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), channel_parameters.opt_non_zero_fee_anchors.is_some(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
783                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
784                         let htlc_sighashtype = if self.opt_anchors() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
785                         let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
786                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key);
787                         htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
788                 }
789
790                 Ok((commitment_sig, htlc_sigs))
791         }
792
793         fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
794                 Ok(())
795         }
796
797         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
798                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
799                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
800                 let trusted_tx = commitment_tx.trust();
801                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
802                 let channel_parameters = self.get_channel_parameters();
803                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
804                 Ok((sig, htlc_sigs))
805         }
806
807         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
808         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
809                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
810                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
811                 let trusted_tx = commitment_tx.trust();
812                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
813                 let channel_parameters = self.get_channel_parameters();
814                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
815                 Ok((sig, htlc_sigs))
816         }
817
818         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
819                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
820                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
821                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
822                 let witness_script = {
823                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint);
824                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
825                 };
826                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
827                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
828                 return Ok(sign(secp_ctx, &sighash, &revocation_key))
829         }
830
831         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
832                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
833                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
834                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
835                 let witness_script = {
836                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint);
837                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint);
838                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
839                 };
840                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
841                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
842                 return Ok(sign(secp_ctx, &sighash, &revocation_key))
843         }
844
845         #[cfg(anchors)]
846         fn sign_holder_htlc_transaction(
847                 &self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor,
848                 secp_ctx: &Secp256k1<secp256k1::All>
849         ) -> Result<Signature, ()> {
850                 let per_commitment_point = self.get_per_commitment_point(
851                         htlc_descriptor.per_commitment_number, &secp_ctx
852                 );
853                 let witness_script = htlc_descriptor.witness_script(&per_commitment_point, secp_ctx);
854                 let sighash = &sighash::SighashCache::new(&*htlc_tx).segwit_signature_hash(
855                         input, &witness_script, htlc_descriptor.htlc.amount_msat / 1000, EcdsaSighashType::All
856                 ).map_err(|_| ())?;
857                 let our_htlc_private_key = chan_utils::derive_private_key(
858                         &secp_ctx, &per_commitment_point, &self.htlc_base_key
859                 );
860                 Ok(sign(&secp_ctx, &hash_to_message!(sighash), &our_htlc_private_key))
861         }
862
863         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
864                 let htlc_key = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key);
865                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
866                 let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint);
867                 let htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint);
868                 let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey);
869                 let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
870                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
871                 Ok(sign(secp_ctx, &sighash, &htlc_key))
872         }
873
874         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
875                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
876                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
877                 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
878         }
879
880         fn sign_holder_anchor_input(
881                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
882         ) -> Result<Signature, ()> {
883                 let witness_script = chan_utils::get_anchor_redeemscript(&self.holder_channel_pubkeys.funding_pubkey);
884                 let sighash = sighash::SighashCache::new(&*anchor_tx).segwit_signature_hash(
885                         input, &witness_script, ANCHOR_OUTPUT_VALUE_SATOSHI, EcdsaSighashType::All,
886                 ).unwrap();
887                 Ok(sign(secp_ctx, &hash_to_message!(&sighash[..]), &self.funding_key))
888         }
889
890         fn sign_channel_announcement_with_funding_key(
891                 &self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
892         ) -> Result<Signature, ()> {
893                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
894                 Ok(sign(secp_ctx, &msghash, &self.funding_key))
895         }
896 }
897
898 const SERIALIZATION_VERSION: u8 = 1;
899
900 const MIN_SERIALIZATION_VERSION: u8 = 1;
901
902 impl WriteableEcdsaChannelSigner for InMemorySigner {}
903
904 impl Writeable for InMemorySigner {
905         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
906                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
907
908                 self.funding_key.write(writer)?;
909                 self.revocation_base_key.write(writer)?;
910                 self.payment_key.write(writer)?;
911                 self.delayed_payment_base_key.write(writer)?;
912                 self.htlc_base_key.write(writer)?;
913                 self.commitment_seed.write(writer)?;
914                 self.channel_parameters.write(writer)?;
915                 self.channel_value_satoshis.write(writer)?;
916                 self.channel_keys_id.write(writer)?;
917
918                 write_tlv_fields!(writer, {});
919
920                 Ok(())
921         }
922 }
923
924 impl Readable for InMemorySigner {
925         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
926                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
927
928                 let funding_key = Readable::read(reader)?;
929                 let revocation_base_key = Readable::read(reader)?;
930                 let payment_key = Readable::read(reader)?;
931                 let delayed_payment_base_key = Readable::read(reader)?;
932                 let htlc_base_key = Readable::read(reader)?;
933                 let commitment_seed = Readable::read(reader)?;
934                 let counterparty_channel_data = Readable::read(reader)?;
935                 let channel_value_satoshis = Readable::read(reader)?;
936                 let secp_ctx = Secp256k1::signing_only();
937                 let holder_channel_pubkeys =
938                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
939                                  &payment_key, &delayed_payment_base_key, &htlc_base_key);
940                 let keys_id = Readable::read(reader)?;
941
942                 read_tlv_fields!(reader, {});
943
944                 Ok(InMemorySigner {
945                         funding_key,
946                         revocation_base_key,
947                         payment_key,
948                         delayed_payment_base_key,
949                         htlc_base_key,
950                         commitment_seed,
951                         channel_value_satoshis,
952                         holder_channel_pubkeys,
953                         channel_parameters: counterparty_channel_data,
954                         channel_keys_id: keys_id,
955                 })
956         }
957 }
958
959 /// Simple implementation of [`EntropySource`], [`NodeSigner`], and [`SignerProvider`] that takes a
960 /// 32-byte seed for use as a BIP 32 extended key and derives keys from that.
961 ///
962 /// Your `node_id` is seed/0'.
963 /// Unilateral closes may use seed/1'.
964 /// Cooperative closes may use seed/2'.
965 /// The two close keys may be needed to claim on-chain funds!
966 ///
967 /// This struct cannot be used for nodes that wish to support receiving phantom payments;
968 /// [`PhantomKeysManager`] must be used instead.
969 ///
970 /// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
971 /// previously issued invoices and attempts to pay previous invoices will fail.
972 pub struct KeysManager {
973         secp_ctx: Secp256k1<secp256k1::All>,
974         node_secret: SecretKey,
975         node_id: PublicKey,
976         inbound_payment_key: KeyMaterial,
977         destination_script: Script,
978         shutdown_pubkey: PublicKey,
979         channel_master_key: ExtendedPrivKey,
980         channel_child_index: AtomicUsize,
981
982         rand_bytes_master_key: ExtendedPrivKey,
983         rand_bytes_child_index: AtomicUsize,
984         rand_bytes_unique_start: Sha256State,
985
986         seed: [u8; 32],
987         starting_time_secs: u64,
988         starting_time_nanos: u32,
989 }
990
991 impl KeysManager {
992         /// Constructs a [`KeysManager`] from a 32-byte seed. If the seed is in some way biased (e.g.,
993         /// your CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
994         /// `starting_time` isn't strictly required to actually be a time, but it must absolutely,
995         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
996         /// `seed`, `starting_time` must be unique to each run. Thus, the easiest way to achieve this
997         /// is to simply use the current time (with very high precision).
998         ///
999         /// The `seed` MUST be backed up safely prior to use so that the keys can be re-created, however,
1000         /// obviously, `starting_time` should be unique every time you reload the library - it is only
1001         /// used to generate new ephemeral key data (which will be stored by the individual channel if
1002         /// necessary).
1003         ///
1004         /// Note that the seed is required to recover certain on-chain funds independent of
1005         /// [`ChannelMonitor`] data, though a current copy of [`ChannelMonitor`] data is also required
1006         /// for any channel, and some on-chain during-closing funds.
1007         ///
1008         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
1009         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
1010                 let secp_ctx = Secp256k1::new();
1011                 // Note that when we aren't serializing the key, network doesn't matter
1012                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
1013                         Ok(master_key) => {
1014                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
1015                                 let node_id = PublicKey::from_secret_key(&secp_ctx, &node_secret);
1016                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
1017                                         Ok(destination_key) => {
1018                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
1019                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
1020                                                         .push_slice(&wpubkey_hash.into_inner())
1021                                                         .into_script()
1022                                         },
1023                                         Err(_) => panic!("Your RNG is busted"),
1024                                 };
1025                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
1026                                         Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
1027                                         Err(_) => panic!("Your RNG is busted"),
1028                                 };
1029                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
1030                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
1031                                 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
1032                                 let mut inbound_pmt_key_bytes = [0; 32];
1033                                 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
1034
1035                                 let mut rand_bytes_unique_start = Sha256::engine();
1036                                 rand_bytes_unique_start.input(&starting_time_secs.to_be_bytes());
1037                                 rand_bytes_unique_start.input(&starting_time_nanos.to_be_bytes());
1038                                 rand_bytes_unique_start.input(seed);
1039
1040                                 let mut res = KeysManager {
1041                                         secp_ctx,
1042                                         node_secret,
1043                                         node_id,
1044                                         inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
1045
1046                                         destination_script,
1047                                         shutdown_pubkey,
1048
1049                                         channel_master_key,
1050                                         channel_child_index: AtomicUsize::new(0),
1051
1052                                         rand_bytes_master_key,
1053                                         rand_bytes_child_index: AtomicUsize::new(0),
1054                                         rand_bytes_unique_start,
1055
1056                                         seed: *seed,
1057                                         starting_time_secs,
1058                                         starting_time_nanos,
1059                                 };
1060                                 let secp_seed = res.get_secure_random_bytes();
1061                                 res.secp_ctx.seeded_randomize(&secp_seed);
1062                                 res
1063                         },
1064                         Err(_) => panic!("Your rng is busted"),
1065                 }
1066         }
1067         /// Derive an old [`WriteableEcdsaChannelSigner`] containing per-channel secrets based on a key derivation parameters.
1068         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1069                 let chan_id = u64::from_be_bytes(params[0..8].try_into().unwrap());
1070                 let mut unique_start = Sha256::engine();
1071                 unique_start.input(params);
1072                 unique_start.input(&self.seed);
1073
1074                 // We only seriously intend to rely on the channel_master_key for true secure
1075                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
1076                 // starting_time provided in the constructor) to be unique.
1077                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx,
1078                                 ChildNumber::from_hardened_idx((chan_id as u32) % (1 << 31)).expect("key space exhausted")
1079                         ).expect("Your RNG is busted");
1080                 unique_start.input(&child_privkey.private_key[..]);
1081
1082                 let seed = Sha256::from_engine(unique_start).into_inner();
1083
1084                 let commitment_seed = {
1085                         let mut sha = Sha256::engine();
1086                         sha.input(&seed);
1087                         sha.input(&b"commitment seed"[..]);
1088                         Sha256::from_engine(sha).into_inner()
1089                 };
1090                 macro_rules! key_step {
1091                         ($info: expr, $prev_key: expr) => {{
1092                                 let mut sha = Sha256::engine();
1093                                 sha.input(&seed);
1094                                 sha.input(&$prev_key[..]);
1095                                 sha.input(&$info[..]);
1096                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
1097                         }}
1098                 }
1099                 let funding_key = key_step!(b"funding key", commitment_seed);
1100                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
1101                 let payment_key = key_step!(b"payment key", revocation_base_key);
1102                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
1103                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
1104
1105                 InMemorySigner::new(
1106                         &self.secp_ctx,
1107                         funding_key,
1108                         revocation_base_key,
1109                         payment_key,
1110                         delayed_payment_base_key,
1111                         htlc_base_key,
1112                         commitment_seed,
1113                         channel_value_satoshis,
1114                         params.clone(),
1115                 )
1116         }
1117
1118         /// Creates a [`Transaction`] which spends the given descriptors to the given outputs, plus an
1119         /// output to the given change destination (if sufficient change value remains). The
1120         /// transaction will have a feerate, at least, of the given value.
1121         ///
1122         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
1123         /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
1124         /// does not match the one we can spend.
1125         ///
1126         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
1127         ///
1128         /// May panic if the [`SpendableOutputDescriptor`]s were not generated by channels which used
1129         /// this [`KeysManager`] or one of the [`InMemorySigner`] created by this [`KeysManager`].
1130         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1131                 let mut input = Vec::new();
1132                 let mut input_value = 0;
1133                 let mut witness_weight = 0;
1134                 let mut output_set = HashSet::with_capacity(descriptors.len());
1135                 for outp in descriptors {
1136                         match outp {
1137                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1138                                         input.push(TxIn {
1139                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1140                                                 script_sig: Script::new(),
1141                                                 sequence: Sequence::ZERO,
1142                                                 witness: Witness::new(),
1143                                         });
1144                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1145                                         input_value += descriptor.output.value;
1146                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
1147                                 },
1148                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1149                                         input.push(TxIn {
1150                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1151                                                 script_sig: Script::new(),
1152                                                 sequence: Sequence(descriptor.to_self_delay as u32),
1153                                                 witness: Witness::new(),
1154                                         });
1155                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1156                                         input_value += descriptor.output.value;
1157                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
1158                                 },
1159                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
1160                                         input.push(TxIn {
1161                                                 previous_output: outpoint.into_bitcoin_outpoint(),
1162                                                 script_sig: Script::new(),
1163                                                 sequence: Sequence::ZERO,
1164                                                 witness: Witness::new(),
1165                                         });
1166                                         witness_weight += 1 + 73 + 34;
1167                                         input_value += output.value;
1168                                         if !output_set.insert(*outpoint) { return Err(()); }
1169                                 }
1170                         }
1171                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
1172                 }
1173                 let mut spend_tx = Transaction {
1174                         version: 2,
1175                         lock_time: PackedLockTime(0),
1176                         input,
1177                         output: outputs,
1178                 };
1179                 let expected_max_weight =
1180                         transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
1181
1182                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1183                 let mut input_idx = 0;
1184                 for outp in descriptors {
1185                         match outp {
1186                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1187                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1188                                                 keys_cache = Some((
1189                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1190                                                         descriptor.channel_keys_id));
1191                                         }
1192                                         spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1193                                 },
1194                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1195                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1196                                                 keys_cache = Some((
1197                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1198                                                         descriptor.channel_keys_id));
1199                                         }
1200                                         spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1201                                 },
1202                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
1203                                         let derivation_idx = if output.script_pubkey == self.destination_script {
1204                                                 1
1205                                         } else {
1206                                                 2
1207                                         };
1208                                         let secret = {
1209                                                 // Note that when we aren't serializing the key, network doesn't matter
1210                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1211                                                         Ok(master_key) => {
1212                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1213                                                                         Ok(key) => key,
1214                                                                         Err(_) => panic!("Your RNG is busted"),
1215                                                                 }
1216                                                         }
1217                                                         Err(_) => panic!("Your rng is busted"),
1218                                                 }
1219                                         };
1220                                         let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub();
1221                                         if derivation_idx == 2 {
1222                                                 assert_eq!(pubkey.inner, self.shutdown_pubkey);
1223                                         }
1224                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1225                                         let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1226
1227                                         if payment_script != output.script_pubkey { return Err(()); };
1228
1229                                         let sighash = hash_to_message!(&sighash::SighashCache::new(&spend_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
1230                                         let sig = sign(secp_ctx, &sighash, &secret.private_key);
1231                                         let mut sig_ser = sig.serialize_der().to_vec();
1232                                         sig_ser.push(EcdsaSighashType::All as u8);
1233                                         spend_tx.input[input_idx].witness.push(sig_ser);
1234                                         spend_tx.input[input_idx].witness.push(pubkey.inner.serialize().to_vec());
1235                                 },
1236                         }
1237                         input_idx += 1;
1238                 }
1239
1240                 debug_assert!(expected_max_weight >= spend_tx.weight());
1241                 // Note that witnesses with a signature vary somewhat in size, so allow
1242                 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1243                 debug_assert!(expected_max_weight <= spend_tx.weight() + descriptors.len() * 3);
1244
1245                 Ok(spend_tx)
1246         }
1247 }
1248
1249 impl EntropySource for KeysManager {
1250         fn get_secure_random_bytes(&self) -> [u8; 32] {
1251                 let mut sha = self.rand_bytes_unique_start.clone();
1252
1253                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1254                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1255                 sha.input(&child_privkey.private_key[..]);
1256
1257                 sha.input(b"Unique Secure Random Bytes Salt");
1258                 Sha256::from_engine(sha).into_inner()
1259         }
1260 }
1261
1262 impl NodeSigner for KeysManager {
1263         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1264                 match recipient {
1265                         Recipient::Node => Ok(self.node_id.clone()),
1266                         Recipient::PhantomNode => Err(())
1267                 }
1268         }
1269
1270         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1271                 let mut node_secret = match recipient {
1272                         Recipient::Node => Ok(self.node_secret.clone()),
1273                         Recipient::PhantomNode => Err(())
1274                 }?;
1275                 if let Some(tweak) = tweak {
1276                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1277                 }
1278                 Ok(SharedSecret::new(other_key, &node_secret))
1279         }
1280
1281         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1282                 self.inbound_payment_key.clone()
1283         }
1284
1285         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1286                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1287                 let secret = match recipient {
1288                         Recipient::Node => Ok(&self.node_secret),
1289                         Recipient::PhantomNode => Err(())
1290                 }?;
1291                 Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), secret))
1292         }
1293
1294         fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()> {
1295                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1296                 Ok(sign(&self.secp_ctx, &msg_hash, &self.node_secret))
1297         }
1298 }
1299
1300 impl SignerProvider for KeysManager {
1301         type Signer = InMemorySigner;
1302
1303         fn generate_channel_keys_id(&self, _inbound: bool, _channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
1304                 let child_idx = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1305                 // `child_idx` is the only thing guaranteed to make each channel unique without a restart
1306                 // (though `user_channel_id` should help, depending on user behavior). If it manages to
1307                 // roll over, we may generate duplicate keys for two different channels, which could result
1308                 // in loss of funds. Because we only support 32-bit+ systems, assert that our `AtomicUsize`
1309                 // doesn't reach `u32::MAX`.
1310                 assert!(child_idx < core::u32::MAX as usize, "2^32 channels opened without restart");
1311                 let mut id = [0; 32];
1312                 id[0..4].copy_from_slice(&(child_idx as u32).to_be_bytes());
1313                 id[4..8].copy_from_slice(&self.starting_time_nanos.to_be_bytes());
1314                 id[8..16].copy_from_slice(&self.starting_time_secs.to_be_bytes());
1315                 id[16..32].copy_from_slice(&user_channel_id.to_be_bytes());
1316                 id
1317         }
1318
1319         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
1320                 self.derive_channel_keys(channel_value_satoshis, &channel_keys_id)
1321         }
1322
1323         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1324                 InMemorySigner::read(&mut io::Cursor::new(reader))
1325         }
1326
1327         fn get_destination_script(&self) -> Script {
1328                 self.destination_script.clone()
1329         }
1330
1331         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1332                 ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
1333         }
1334 }
1335
1336 /// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
1337 /// payments.
1338 ///
1339 /// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
1340 /// paid to one of multiple nodes. This works because we encode the invoice route hints such that
1341 /// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
1342 /// itself without ever needing to forward to this fake node.
1343 ///
1344 /// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
1345 /// provide some fault tolerance, because payers will automatically retry paying other provided
1346 /// nodes in the case that one node goes down.
1347 ///
1348 /// Note that multi-path payments are not supported in phantom invoices for security reasons.
1349 // In the hypothetical case that we did support MPP phantom payments, there would be no way for
1350 // nodes to know when the full payment has been received (and the preimage can be released) without
1351 // significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
1352 // to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
1353 // is released too early.
1354 //
1355 /// Switching between this struct and [`KeysManager`] will invalidate any previously issued
1356 /// invoices and attempts to pay previous invoices will fail.
1357 pub struct PhantomKeysManager {
1358         inner: KeysManager,
1359         inbound_payment_key: KeyMaterial,
1360         phantom_secret: SecretKey,
1361         phantom_node_id: PublicKey,
1362 }
1363
1364 impl EntropySource for PhantomKeysManager {
1365         fn get_secure_random_bytes(&self) -> [u8; 32] {
1366                 self.inner.get_secure_random_bytes()
1367         }
1368 }
1369
1370 impl NodeSigner for PhantomKeysManager {
1371         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1372                 match recipient {
1373                         Recipient::Node => self.inner.get_node_id(Recipient::Node),
1374                         Recipient::PhantomNode => Ok(self.phantom_node_id.clone()),
1375                 }
1376         }
1377
1378         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1379                 let mut node_secret = match recipient {
1380                         Recipient::Node => self.inner.node_secret.clone(),
1381                         Recipient::PhantomNode => self.phantom_secret.clone(),
1382                 };
1383                 if let Some(tweak) = tweak {
1384                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1385                 }
1386                 Ok(SharedSecret::new(other_key, &node_secret))
1387         }
1388
1389         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1390                 self.inbound_payment_key.clone()
1391         }
1392
1393         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1394                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1395                 let secret = match recipient {
1396                         Recipient::Node => &self.inner.node_secret,
1397                         Recipient::PhantomNode => &self.phantom_secret,
1398                 };
1399                 Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), secret))
1400         }
1401
1402         fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()> {
1403                 self.inner.sign_gossip_message(msg)
1404         }
1405 }
1406
1407 impl SignerProvider for PhantomKeysManager {
1408         type Signer = InMemorySigner;
1409
1410         fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
1411                 self.inner.generate_channel_keys_id(inbound, channel_value_satoshis, user_channel_id)
1412         }
1413
1414         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
1415                 self.inner.derive_channel_signer(channel_value_satoshis, channel_keys_id)
1416         }
1417
1418         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1419                 self.inner.read_chan_signer(reader)
1420         }
1421
1422         fn get_destination_script(&self) -> Script {
1423                 self.inner.get_destination_script()
1424         }
1425
1426         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1427                 self.inner.get_shutdown_scriptpubkey()
1428         }
1429 }
1430
1431 impl PhantomKeysManager {
1432         /// Constructs a [`PhantomKeysManager`] given a 32-byte seed and an additional `cross_node_seed`
1433         /// that is shared across all nodes that intend to participate in [phantom node payments]
1434         /// together.
1435         ///
1436         /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
1437         /// `starting_time_nanos`.
1438         ///
1439         /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
1440         /// same across restarts, or else inbound payments may fail.
1441         ///
1442         /// [phantom node payments]: PhantomKeysManager
1443         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
1444                 let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
1445                 let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
1446                 let phantom_secret = SecretKey::from_slice(&phantom_key).unwrap();
1447                 let phantom_node_id = PublicKey::from_secret_key(&inner.secp_ctx, &phantom_secret);
1448                 Self {
1449                         inner,
1450                         inbound_payment_key: KeyMaterial(inbound_key),
1451                         phantom_secret,
1452                         phantom_node_id,
1453                 }
1454         }
1455
1456         /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
1457         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1458                 self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx)
1459         }
1460
1461         /// See [`KeysManager::derive_channel_keys`] for documentation on this method.
1462         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1463                 self.inner.derive_channel_keys(channel_value_satoshis, params)
1464         }
1465 }
1466
1467 // Ensure that EcdsaChannelSigner can have a vtable
1468 #[test]
1469 pub fn dyn_sign() {
1470         let _signer: Box<dyn EcdsaChannelSigner>;
1471 }