1c64a8bccdfbe4953b6944cb9b9bbc4115b18f4e
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, EcdsaSighashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::sighash;
20
21 use bitcoin::bech32::u5;
22 use bitcoin::hashes::{Hash, HashEngine};
23 use bitcoin::hashes::sha256::HashEngine as Sha256State;
24 use bitcoin::hashes::sha256::Hash as Sha256;
25 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
26 use bitcoin::hash_types::WPubkeyHash;
27
28 use bitcoin::secp256k1::{SecretKey, PublicKey, Scalar};
29 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Signing};
30 use bitcoin::secp256k1::ecdh::SharedSecret;
31 use bitcoin::secp256k1::ecdsa::RecoverableSignature;
32 use bitcoin::{PackedLockTime, secp256k1, Sequence, Witness};
33
34 use util::{byte_utils, transaction_utils};
35 use util::crypto::{hkdf_extract_expand_twice, sign};
36 use util::ser::{Writeable, Writer, Readable, ReadableArgs};
37
38 use chain::transaction::OutPoint;
39 use ln::channel::ANCHOR_OUTPUT_VALUE_SATOSHI;
40 use ln::{chan_utils, PaymentPreimage};
41 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
42 use ln::msgs::UnsignedChannelAnnouncement;
43 use ln::script::ShutdownScript;
44
45 use prelude::*;
46 use core::sync::atomic::{AtomicUsize, Ordering};
47 use io::{self, Error};
48 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
49 use util::invoice::construct_invoice_preimage;
50
51 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
52 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
53 /// (C-not exported) as we just use [u8; 32] directly
54 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
55 pub struct KeyMaterial(pub [u8; 32]);
56
57 /// Information about a spendable output to a P2WSH script. See
58 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
59 #[derive(Clone, Debug, PartialEq, Eq)]
60 pub struct DelayedPaymentOutputDescriptor {
61         /// The outpoint which is spendable
62         pub outpoint: OutPoint,
63         /// Per commitment point to derive delayed_payment_key by key holder
64         pub per_commitment_point: PublicKey,
65         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
66         /// the witness_script.
67         pub to_self_delay: u16,
68         /// The output which is referenced by the given outpoint
69         pub output: TxOut,
70         /// The revocation point specific to the commitment transaction which was broadcast. Used to
71         /// derive the witnessScript for this output.
72         pub revocation_pubkey: PublicKey,
73         /// Arbitrary identification information returned by a call to
74         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
75         /// the channel to spend the output.
76         pub channel_keys_id: [u8; 32],
77         /// The value of the channel which this output originated from, possibly indirectly.
78         pub channel_value_satoshis: u64,
79 }
80 impl DelayedPaymentOutputDescriptor {
81         /// The maximum length a well-formed witness spending one of these should have.
82         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
83         // redeemscript push length.
84         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
85 }
86
87 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
88         (0, outpoint, required),
89         (2, per_commitment_point, required),
90         (4, to_self_delay, required),
91         (6, output, required),
92         (8, revocation_pubkey, required),
93         (10, channel_keys_id, required),
94         (12, channel_value_satoshis, required),
95 });
96
97 /// Information about a spendable output to our "payment key". See
98 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
99 #[derive(Clone, Debug, PartialEq, Eq)]
100 pub struct StaticPaymentOutputDescriptor {
101         /// The outpoint which is spendable
102         pub outpoint: OutPoint,
103         /// The output which is referenced by the given outpoint
104         pub output: TxOut,
105         /// Arbitrary identification information returned by a call to
106         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
107         /// the channel to spend the output.
108         pub channel_keys_id: [u8; 32],
109         /// The value of the channel which this transactions spends.
110         pub channel_value_satoshis: u64,
111 }
112 impl StaticPaymentOutputDescriptor {
113         /// The maximum length a well-formed witness spending one of these should have.
114         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
115         // redeemscript push length.
116         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
117 }
118 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
119         (0, outpoint, required),
120         (2, output, required),
121         (4, channel_keys_id, required),
122         (6, channel_value_satoshis, required),
123 });
124
125 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
126 /// claim at any point in the future) an event is generated which you must track and be able to
127 /// spend on-chain. The information needed to do this is provided in this enum, including the
128 /// outpoint describing which txid and output index is available, the full output which exists at
129 /// that txid/index, and any keys or other information required to sign.
130 #[derive(Clone, Debug, PartialEq, Eq)]
131 pub enum SpendableOutputDescriptor {
132         /// An output to a script which was provided via KeysInterface directly, either from
133         /// `get_destination_script()` or `get_shutdown_scriptpubkey()`, thus you should already know
134         /// how to spend it. No secret keys are provided as rust-lightning was never given any key.
135         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
136         /// on-chain using the payment preimage or after it has timed out.
137         StaticOutput {
138                 /// The outpoint which is spendable
139                 outpoint: OutPoint,
140                 /// The output which is referenced by the given outpoint.
141                 output: TxOut,
142         },
143         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
144         ///
145         /// The witness in the spending input should be:
146         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
147         ///
148         /// Note that the nSequence field in the spending input must be set to to_self_delay
149         /// (which means the transaction is not broadcastable until at least to_self_delay
150         /// blocks after the outpoint confirms).
151         ///
152         /// These are generally the result of a "revocable" output to us, spendable only by us unless
153         /// it is an output from an old state which we broadcast (which should never happen).
154         ///
155         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
156         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
157         /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
158         /// chan_utils::derive_private_key. The public key can be generated without the secret key
159         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
160         /// Sign::pubkeys().
161         ///
162         /// To derive the revocation_pubkey provided here (which is used in the witness
163         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
164         /// call to Sign::ready_channel) and the provided per_commitment point
165         /// to chan_utils::derive_public_revocation_key.
166         ///
167         /// The witness script which is hashed and included in the output script_pubkey may be
168         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
169         /// (derived as above), and the to_self_delay contained here to
170         /// chan_utils::get_revokeable_redeemscript.
171         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
172         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
173         /// corresponds to the public key in Sign::pubkeys().payment_point).
174         /// The witness in the spending input, is, thus, simply:
175         /// <BIP 143 signature> <payment key>
176         ///
177         /// These are generally the result of our counterparty having broadcast the current state,
178         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
179         StaticPaymentOutput(StaticPaymentOutputDescriptor),
180 }
181
182 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
183         (0, StaticOutput) => {
184                 (0, outpoint, required),
185                 (2, output, required),
186         },
187 ;
188         (1, DelayedPaymentOutput),
189         (2, StaticPaymentOutput),
190 );
191
192 /// A trait to sign lightning channel transactions as described in BOLT 3.
193 ///
194 /// Signing services could be implemented on a hardware wallet. In this case,
195 /// the current Sign would be a front-end on top of a communication
196 /// channel connected to your secure device and lightning key material wouldn't
197 /// reside on a hot server. Nevertheless, a this deployment would still need
198 /// to trust the ChannelManager to avoid loss of funds as this latest component
199 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
200 ///
201 /// A more secure iteration would be to use hashlock (or payment points) to pair
202 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
203 /// at the price of more state and computation on the hardware wallet side. In the future,
204 /// we are looking forward to design such interface.
205 ///
206 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
207 /// to act, as liveness and breach reply correctness are always going to be hard requirements
208 /// of LN security model, orthogonal of key management issues.
209 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
210 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
211 pub trait BaseSign {
212         /// Gets the per-commitment point for a specific commitment number
213         ///
214         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
215         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
216         /// Gets the commitment secret for a specific commitment number as part of the revocation process
217         ///
218         /// An external signer implementation should error here if the commitment was already signed
219         /// and should refuse to sign it in the future.
220         ///
221         /// May be called more than once for the same index.
222         ///
223         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
224         // TODO: return a Result so we can signal a validation error
225         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
226         /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
227         ///
228         /// This is required in order for the signer to make sure that releasing a commitment
229         /// secret won't leave us without a broadcastable holder transaction.
230         /// Policy checks should be implemented in this function, including checking the amount
231         /// sent to us and checking the HTLCs.
232         ///
233         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
234         /// A validating signer should ensure that an HTLC output is removed only when the matching
235         /// preimage is provided, or when the value to holder is restored.
236         ///
237         /// NOTE: all the relevant preimages will be provided, but there may also be additional
238         /// irrelevant or duplicate preimages.
239         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
240         /// Gets the holder's channel public keys and basepoints
241         fn pubkeys(&self) -> &ChannelPublicKeys;
242         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
243         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
244         /// Sign object uniquely and lookup or re-derive its keys.
245         fn channel_keys_id(&self) -> [u8; 32];
246
247         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
248         ///
249         /// Note that if signing fails or is rejected, the channel will be force-closed.
250         ///
251         /// Policy checks should be implemented in this function, including checking the amount
252         /// sent to us and checking the HTLCs.
253         ///
254         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
255         /// A validating signer should ensure that an HTLC output is removed only when the matching
256         /// preimage is provided, or when the value to holder is restored.
257         ///
258         /// NOTE: all the relevant preimages will be provided, but there may also be additional
259         /// irrelevant or duplicate preimages.
260         //
261         // TODO: Document the things someone using this interface should enforce before signing.
262         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
263         /// Validate the counterparty's revocation.
264         ///
265         /// This is required in order for the signer to make sure that the state has moved
266         /// forward and it is safe to sign the next counterparty commitment.
267         fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
268
269         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
270         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
271         /// latest commitment_tx when we initiate a force-close.
272         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
273         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
274         /// the latest.
275         /// This may be called multiple times for the same transaction.
276         ///
277         /// An external signer implementation should check that the commitment has not been revoked.
278         ///
279         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
280         //
281         // TODO: Document the things someone using this interface should enforce before signing.
282         // TODO: Key derivation failure should panic rather than Err
283         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
284
285         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
286         /// transactions which will be broadcasted later, after the channel has moved on to a newer
287         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
288         /// get called once.
289         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
290         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
291
292         /// Create a signature for the given input in a transaction spending an HTLC transaction output
293         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
294         ///
295         /// A justice transaction may claim multiple outputs at the same time if timelocks are
296         /// similar, but only a signature for the input at index `input` should be signed for here.
297         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
298         /// to an upcoming timelock expiration.
299         ///
300         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
301         ///
302         /// per_commitment_key is revocation secret which was provided by our counterparty when they
303         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
304         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
305         /// so).
306         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
307
308         /// Create a signature for the given input in a transaction spending a commitment transaction
309         /// HTLC output when our counterparty broadcasts an old state.
310         ///
311         /// A justice transaction may claim multiple outputs at the same time if timelocks are
312         /// similar, but only a signature for the input at index `input` should be signed for here.
313         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
314         /// to an upcoming timelock expiration.
315         ///
316         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
317         ///
318         /// per_commitment_key is revocation secret which was provided by our counterparty when they
319         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
320         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
321         /// so).
322         ///
323         /// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
324         /// (which is committed to in the BIP 143 signatures).
325         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
326
327         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
328         /// transaction, either offered or received.
329         ///
330         /// Such a transaction may claim multiples offered outputs at same time if we know the
331         /// preimage for each when we create it, but only the input at index `input` should be
332         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
333         /// needed with regards to an upcoming timelock expiration.
334         ///
335         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
336         /// outputs.
337         ///
338         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
339         ///
340         /// Per_commitment_point is the dynamic point corresponding to the channel state
341         /// detected onchain. It has been generated by our counterparty and is used to derive
342         /// channel state keys, which are then included in the witness script and committed to in the
343         /// BIP 143 signature.
344         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
345
346         /// Create a signature for a (proposed) closing transaction.
347         ///
348         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
349         /// chosen to forgo their output as dust.
350         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
351
352         /// Computes the signature for a commitment transaction's anchor output used as an
353         /// input within `anchor_tx`, which spends the commitment transaction, at index `input`.
354         fn sign_holder_anchor_input(
355                 &self, anchor_tx: &mut Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
356         ) -> Result<Signature, ()>;
357
358         /// Signs a channel announcement message with our funding key and our node secret key (aka
359         /// node_id or network_key), proving it comes from one of the channel participants.
360         ///
361         /// The first returned signature should be from our node secret key, the second from our
362         /// funding key.
363         ///
364         /// Note that if this fails or is rejected, the channel will not be publicly announced and
365         /// our counterparty may (though likely will not) close the channel on us for violating the
366         /// protocol.
367         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
368                 -> Result<(Signature, Signature), ()>;
369
370         /// Set the counterparty static channel data, including basepoints,
371         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
372         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
373         /// they MUST NOT be allowed to change to different values once set.
374         ///
375         /// channel_parameters.is_populated() MUST be true.
376         ///
377         /// We bind holder_selected_contest_delay late here for API convenience.
378         ///
379         /// Will be called before any signatures are applied.
380         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
381 }
382
383 /// A cloneable signer.
384 ///
385 /// Although we require signers to be cloneable, it may be useful for developers to be able to use
386 /// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
387 /// which implies Sized, into this derived trait.
388 pub trait Sign: BaseSign + Writeable + Clone {
389 }
390
391 /// Specifies the recipient of an invoice, to indicate to [`KeysInterface::sign_invoice`] what node
392 /// secret key should be used to sign the invoice.
393 pub enum Recipient {
394         /// The invoice should be signed with the local node secret key.
395         Node,
396         /// The invoice should be signed with the phantom node secret key. This secret key must be the
397         /// same for all nodes participating in the [phantom node payment].
398         ///
399         /// [phantom node payment]: PhantomKeysManager
400         PhantomNode,
401 }
402
403 /// A trait to describe an object which can get user secrets and key material.
404 pub trait KeysInterface {
405         /// A type which implements Sign which will be returned by get_channel_signer.
406         type Signer : Sign;
407
408         /// Get node secret key based on the provided [`Recipient`].
409         ///
410         /// The node_id/network_key is the public key that corresponds to this secret key.
411         ///
412         /// This method must return the same value each time it is called with a given `Recipient`
413         /// parameter.
414         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()>;
415         /// Gets the ECDH shared secret of our [`node secret`] and `other_key`, multiplying by `tweak` if
416         /// one is provided. Note that this tweak can be applied to `other_key` instead of our node
417         /// secret, though this is less efficient.
418         ///
419         /// [`node secret`]: Self::get_node_secret
420         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()>;
421         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
422         ///
423         /// This method should return a different value each time it is called, to avoid linking
424         /// on-chain funds across channels as controlled to the same user.
425         fn get_destination_script(&self) -> Script;
426         /// Get a script pubkey which we will send funds to when closing a channel.
427         ///
428         /// This method should return a different value each time it is called, to avoid linking
429         /// on-chain funds across channels as controlled to the same user.
430         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
431         /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
432         /// restarted with some stale data!
433         ///
434         /// This method must return a different value each time it is called.
435         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
436         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
437         /// onion packets and for temporary channel IDs. There is no requirement that these be
438         /// persisted anywhere, though they must be unique across restarts.
439         ///
440         /// This method must return a different value each time it is called.
441         fn get_secure_random_bytes(&self) -> [u8; 32];
442
443         /// Reads a `Signer` for this `KeysInterface` from the given input stream.
444         /// This is only called during deserialization of other objects which contain
445         /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
446         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
447         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
448         /// you've read all of the provided bytes to ensure no corruption occurred.
449         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
450
451         /// Sign an invoice.
452         /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
453         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
454         /// blindly signing the hash.
455         /// The hrp is ascii bytes, while the invoice data is base32.
456         ///
457         /// The secret key used to sign the invoice is dependent on the [`Recipient`].
458         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], receipient: Recipient) -> Result<RecoverableSignature, ()>;
459
460         /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
461         ///
462         /// If the implementor of this trait supports [phantom node payments], then every node that is
463         /// intended to be included in the phantom invoice route hints must return the same value from
464         /// this method.
465         //  This is because LDK avoids storing inbound payment data by encrypting payment data in the
466         //  payment hash and/or payment secret, therefore for a payment to be receivable by multiple
467         //  nodes, they must share the key that encrypts this payment data.
468         ///
469         /// This method must return the same value each time it is called.
470         ///
471         /// [phantom node payments]: PhantomKeysManager
472         fn get_inbound_payment_key_material(&self) -> KeyMaterial;
473 }
474
475 #[derive(Clone)]
476 /// A simple implementation of Sign that just keeps the private keys in memory.
477 ///
478 /// This implementation performs no policy checks and is insufficient by itself as
479 /// a secure external signer.
480 pub struct InMemorySigner {
481         /// Private key of anchor tx
482         pub funding_key: SecretKey,
483         /// Holder secret key for blinded revocation pubkey
484         pub revocation_base_key: SecretKey,
485         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
486         pub payment_key: SecretKey,
487         /// Holder secret key used in HTLC tx
488         pub delayed_payment_base_key: SecretKey,
489         /// Holder htlc secret key used in commitment tx htlc outputs
490         pub htlc_base_key: SecretKey,
491         /// Commitment seed
492         pub commitment_seed: [u8; 32],
493         /// Holder public keys and basepoints
494         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
495         /// Private key of our node secret, used for signing channel announcements
496         node_secret: SecretKey,
497         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
498         channel_parameters: Option<ChannelTransactionParameters>,
499         /// The total value of this channel
500         channel_value_satoshis: u64,
501         /// Key derivation parameters
502         channel_keys_id: [u8; 32],
503 }
504
505 impl InMemorySigner {
506         /// Create a new InMemorySigner
507         pub fn new<C: Signing>(
508                 secp_ctx: &Secp256k1<C>,
509                 node_secret: SecretKey,
510                 funding_key: SecretKey,
511                 revocation_base_key: SecretKey,
512                 payment_key: SecretKey,
513                 delayed_payment_base_key: SecretKey,
514                 htlc_base_key: SecretKey,
515                 commitment_seed: [u8; 32],
516                 channel_value_satoshis: u64,
517                 channel_keys_id: [u8; 32]) -> InMemorySigner {
518                 let holder_channel_pubkeys =
519                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
520                                                              &payment_key, &delayed_payment_base_key,
521                                                              &htlc_base_key);
522                 InMemorySigner {
523                         funding_key,
524                         revocation_base_key,
525                         payment_key,
526                         delayed_payment_base_key,
527                         htlc_base_key,
528                         commitment_seed,
529                         node_secret,
530                         channel_value_satoshis,
531                         holder_channel_pubkeys,
532                         channel_parameters: None,
533                         channel_keys_id,
534                 }
535         }
536
537         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
538                                        funding_key: &SecretKey,
539                                        revocation_base_key: &SecretKey,
540                                        payment_key: &SecretKey,
541                                        delayed_payment_base_key: &SecretKey,
542                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
543                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
544                 ChannelPublicKeys {
545                         funding_pubkey: from_secret(&funding_key),
546                         revocation_basepoint: from_secret(&revocation_base_key),
547                         payment_point: from_secret(&payment_key),
548                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
549                         htlc_basepoint: from_secret(&htlc_base_key),
550                 }
551         }
552
553         /// Counterparty pubkeys.
554         /// Will panic if ready_channel wasn't called.
555         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
556
557         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
558         /// transactions, ie the amount of time that we have to wait to recover our funds if we
559         /// broadcast a transaction.
560         /// Will panic if ready_channel wasn't called.
561         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
562
563         /// The contest_delay value specified by us and applied on transactions broadcastable
564         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
565         /// if they broadcast a transaction.
566         /// Will panic if ready_channel wasn't called.
567         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
568
569         /// Whether the holder is the initiator
570         /// Will panic if ready_channel wasn't called.
571         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
572
573         /// Funding outpoint
574         /// Will panic if ready_channel wasn't called.
575         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
576
577         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
578         /// building transactions.
579         ///
580         /// Will panic if ready_channel wasn't called.
581         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
582                 self.channel_parameters.as_ref().unwrap()
583         }
584
585         /// Whether anchors should be used.
586         /// Will panic if ready_channel wasn't called.
587         pub fn opt_anchors(&self) -> bool {
588                 self.get_channel_parameters().opt_anchors.is_some()
589         }
590
591         /// Sign the single input of spend_tx at index `input_idx` which spends the output
592         /// described by descriptor, returning the witness stack for the input.
593         ///
594         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
595         /// is not spending the outpoint described by `descriptor.outpoint`,
596         /// or if an output descriptor script_pubkey does not match the one we can spend.
597         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
598                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
599                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
600                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
601                 // bindings updates to support SigHashCache objects).
602                 if spend_tx.input.len() <= input_idx { return Err(()); }
603                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
604                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
605
606                 let remotepubkey = self.pubkeys().payment_point;
607                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Testnet).script_pubkey();
608                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
609                 let remotesig = sign(secp_ctx, &sighash, &self.payment_key);
610                 let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
611
612                 if payment_script != descriptor.output.script_pubkey  { return Err(()); }
613
614                 let mut witness = Vec::with_capacity(2);
615                 witness.push(remotesig.serialize_der().to_vec());
616                 witness[0].push(EcdsaSighashType::All as u8);
617                 witness.push(remotepubkey.serialize().to_vec());
618                 Ok(witness)
619         }
620
621         /// Sign the single input of spend_tx at index `input_idx` which spends the output
622         /// described by descriptor, returning the witness stack for the input.
623         ///
624         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
625         /// is not spending the outpoint described by `descriptor.outpoint`, does not have a
626         /// sequence set to `descriptor.to_self_delay`, or if an output descriptor
627         /// script_pubkey does not match the one we can spend.
628         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
629                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
630                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
631                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
632                 // bindings updates to support SigHashCache objects).
633                 if spend_tx.input.len() <= input_idx { return Err(()); }
634                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
635                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
636                 if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 { return Err(()); }
637
638                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
639                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
640                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
641                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
642                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
643                 let local_delayedsig = sign(secp_ctx, &sighash, &delayed_payment_key);
644                 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
645
646                 if descriptor.output.script_pubkey != payment_script { return Err(()); }
647
648                 let mut witness = Vec::with_capacity(3);
649                 witness.push(local_delayedsig.serialize_der().to_vec());
650                 witness[0].push(EcdsaSighashType::All as u8);
651                 witness.push(vec!()); //MINIMALIF
652                 witness.push(witness_script.clone().into_bytes());
653                 Ok(witness)
654         }
655
656 }
657
658 impl BaseSign for InMemorySigner {
659         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
660                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
661                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
662         }
663
664         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
665                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
666         }
667
668         fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
669                 Ok(())
670         }
671
672         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
673         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
674
675         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
676                 let trusted_tx = commitment_tx.trust();
677                 let keys = trusted_tx.keys();
678
679                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
680                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
681
682                 let built_tx = trusted_tx.built_transaction();
683                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
684                 let commitment_txid = built_tx.txid;
685
686                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
687                 for htlc in commitment_tx.htlcs() {
688                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
689                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
690                         let htlc_sighashtype = if self.opt_anchors() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
691                         let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
692                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
693                         htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
694                 }
695
696                 Ok((commitment_sig, htlc_sigs))
697         }
698
699         fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
700                 Ok(())
701         }
702
703         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
704                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
705                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
706                 let trusted_tx = commitment_tx.trust();
707                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
708                 let channel_parameters = self.get_channel_parameters();
709                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
710                 Ok((sig, htlc_sigs))
711         }
712
713         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
714         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
715                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
716                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
717                 let trusted_tx = commitment_tx.trust();
718                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
719                 let channel_parameters = self.get_channel_parameters();
720                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
721                 Ok((sig, htlc_sigs))
722         }
723
724         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
725                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
726                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
727                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
728                 let witness_script = {
729                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
730                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
731                 };
732                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
733                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
734                 return Ok(sign(secp_ctx, &sighash, &revocation_key))
735         }
736
737         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
738                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
739                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
740                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
741                 let witness_script = {
742                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
743                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
744                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
745                 };
746                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
747                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
748                 return Ok(sign(secp_ctx, &sighash, &revocation_key))
749         }
750
751         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
752                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
753                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
754                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
755                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
756                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
757                                         } else { return Err(()) }
758                                 } else { return Err(()) }
759                         } else { return Err(()) };
760                         let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
761                         let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
762                         return Ok(sign(secp_ctx, &sighash, &htlc_key))
763                 }
764                 Err(())
765         }
766
767         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
768                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
769                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
770                 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
771         }
772
773         fn sign_holder_anchor_input(
774                 &self, anchor_tx: &mut Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
775         ) -> Result<Signature, ()> {
776                 let witness_script = chan_utils::get_anchor_redeemscript(&self.holder_channel_pubkeys.funding_pubkey);
777                 let sighash = sighash::SighashCache::new(&*anchor_tx).segwit_signature_hash(
778                         input, &witness_script, ANCHOR_OUTPUT_VALUE_SATOSHI, EcdsaSighashType::All,
779                 ).unwrap();
780                 Ok(sign(secp_ctx, &hash_to_message!(&sighash[..]), &self.funding_key))
781         }
782
783         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
784         -> Result<(Signature, Signature), ()> {
785                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
786                 Ok((sign(secp_ctx, &msghash, &self.node_secret), sign(secp_ctx, &msghash, &self.funding_key)))
787         }
788
789         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
790                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
791                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
792                 self.channel_parameters = Some(channel_parameters.clone());
793         }
794 }
795
796 const SERIALIZATION_VERSION: u8 = 1;
797 const MIN_SERIALIZATION_VERSION: u8 = 1;
798
799 impl Sign for InMemorySigner {}
800
801 impl Writeable for InMemorySigner {
802         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
803                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
804
805                 self.funding_key.write(writer)?;
806                 self.revocation_base_key.write(writer)?;
807                 self.payment_key.write(writer)?;
808                 self.delayed_payment_base_key.write(writer)?;
809                 self.htlc_base_key.write(writer)?;
810                 self.commitment_seed.write(writer)?;
811                 self.channel_parameters.write(writer)?;
812                 self.channel_value_satoshis.write(writer)?;
813                 self.channel_keys_id.write(writer)?;
814
815                 write_tlv_fields!(writer, {});
816
817                 Ok(())
818         }
819 }
820
821 impl ReadableArgs<SecretKey> for InMemorySigner {
822         fn read<R: io::Read>(reader: &mut R, node_secret: SecretKey) -> Result<Self, DecodeError> {
823                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
824
825                 let funding_key = Readable::read(reader)?;
826                 let revocation_base_key = Readable::read(reader)?;
827                 let payment_key = Readable::read(reader)?;
828                 let delayed_payment_base_key = Readable::read(reader)?;
829                 let htlc_base_key = Readable::read(reader)?;
830                 let commitment_seed = Readable::read(reader)?;
831                 let counterparty_channel_data = Readable::read(reader)?;
832                 let channel_value_satoshis = Readable::read(reader)?;
833                 let secp_ctx = Secp256k1::signing_only();
834                 let holder_channel_pubkeys =
835                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
836                                                              &payment_key, &delayed_payment_base_key,
837                                                              &htlc_base_key);
838                 let keys_id = Readable::read(reader)?;
839
840                 read_tlv_fields!(reader, {});
841
842                 Ok(InMemorySigner {
843                         funding_key,
844                         revocation_base_key,
845                         payment_key,
846                         delayed_payment_base_key,
847                         htlc_base_key,
848                         node_secret,
849                         commitment_seed,
850                         channel_value_satoshis,
851                         holder_channel_pubkeys,
852                         channel_parameters: counterparty_channel_data,
853                         channel_keys_id: keys_id,
854                 })
855         }
856 }
857
858 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
859 /// and derives keys from that.
860 ///
861 /// Your node_id is seed/0'
862 /// ChannelMonitor closes may use seed/1'
863 /// Cooperative closes may use seed/2'
864 /// The two close keys may be needed to claim on-chain funds!
865 ///
866 /// This struct cannot be used for nodes that wish to support receiving phantom payments;
867 /// [`PhantomKeysManager`] must be used instead.
868 ///
869 /// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
870 /// previously issued invoices and attempts to pay previous invoices will fail.
871 pub struct KeysManager {
872         secp_ctx: Secp256k1<secp256k1::All>,
873         node_secret: SecretKey,
874         inbound_payment_key: KeyMaterial,
875         destination_script: Script,
876         shutdown_pubkey: PublicKey,
877         channel_master_key: ExtendedPrivKey,
878         channel_child_index: AtomicUsize,
879
880         rand_bytes_master_key: ExtendedPrivKey,
881         rand_bytes_child_index: AtomicUsize,
882         rand_bytes_unique_start: Sha256State,
883
884         seed: [u8; 32],
885         starting_time_secs: u64,
886         starting_time_nanos: u32,
887 }
888
889 impl KeysManager {
890         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
891         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
892         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
893         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
894         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
895         /// simply use the current time (with very high precision).
896         ///
897         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
898         /// obviously, starting_time should be unique every time you reload the library - it is only
899         /// used to generate new ephemeral key data (which will be stored by the individual channel if
900         /// necessary).
901         ///
902         /// Note that the seed is required to recover certain on-chain funds independent of
903         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
904         /// channel, and some on-chain during-closing funds.
905         ///
906         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
907         /// versions. Once the library is more fully supported, the docs will be updated to include a
908         /// detailed description of the guarantee.
909         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
910                 let secp_ctx = Secp256k1::new();
911                 // Note that when we aren't serializing the key, network doesn't matter
912                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
913                         Ok(master_key) => {
914                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
915                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
916                                         Ok(destination_key) => {
917                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
918                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
919                                                               .push_slice(&wpubkey_hash.into_inner())
920                                                               .into_script()
921                                         },
922                                         Err(_) => panic!("Your RNG is busted"),
923                                 };
924                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
925                                         Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
926                                         Err(_) => panic!("Your RNG is busted"),
927                                 };
928                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
929                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
930                                 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
931                                 let mut inbound_pmt_key_bytes = [0; 32];
932                                 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
933
934                                 let mut rand_bytes_unique_start = Sha256::engine();
935                                 rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
936                                 rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
937                                 rand_bytes_unique_start.input(seed);
938
939                                 let mut res = KeysManager {
940                                         secp_ctx,
941                                         node_secret,
942                                         inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
943
944                                         destination_script,
945                                         shutdown_pubkey,
946
947                                         channel_master_key,
948                                         channel_child_index: AtomicUsize::new(0),
949
950                                         rand_bytes_master_key,
951                                         rand_bytes_child_index: AtomicUsize::new(0),
952                                         rand_bytes_unique_start,
953
954                                         seed: *seed,
955                                         starting_time_secs,
956                                         starting_time_nanos,
957                                 };
958                                 let secp_seed = res.get_secure_random_bytes();
959                                 res.secp_ctx.seeded_randomize(&secp_seed);
960                                 res
961                         },
962                         Err(_) => panic!("Your rng is busted"),
963                 }
964         }
965         /// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
966         ///
967         /// Key derivation parameters are accessible through a per-channel secrets
968         /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
969         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
970         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
971                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
972                 assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
973                 let mut unique_start = Sha256::engine();
974                 unique_start.input(params);
975                 unique_start.input(&self.seed);
976
977                 // We only seriously intend to rely on the channel_master_key for true secure
978                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
979                 // starting_time provided in the constructor) to be unique.
980                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
981                 unique_start.input(&child_privkey.private_key[..]);
982
983                 let seed = Sha256::from_engine(unique_start).into_inner();
984
985                 let commitment_seed = {
986                         let mut sha = Sha256::engine();
987                         sha.input(&seed);
988                         sha.input(&b"commitment seed"[..]);
989                         Sha256::from_engine(sha).into_inner()
990                 };
991                 macro_rules! key_step {
992                         ($info: expr, $prev_key: expr) => {{
993                                 let mut sha = Sha256::engine();
994                                 sha.input(&seed);
995                                 sha.input(&$prev_key[..]);
996                                 sha.input(&$info[..]);
997                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
998                         }}
999                 }
1000                 let funding_key = key_step!(b"funding key", commitment_seed);
1001                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
1002                 let payment_key = key_step!(b"payment key", revocation_base_key);
1003                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
1004                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
1005
1006                 InMemorySigner::new(
1007                         &self.secp_ctx,
1008                         self.node_secret,
1009                         funding_key,
1010                         revocation_base_key,
1011                         payment_key,
1012                         delayed_payment_base_key,
1013                         htlc_base_key,
1014                         commitment_seed,
1015                         channel_value_satoshis,
1016                         params.clone()
1017                 )
1018         }
1019
1020         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
1021         /// output to the given change destination (if sufficient change value remains). The
1022         /// transaction will have a feerate, at least, of the given value.
1023         ///
1024         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
1025         /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
1026         /// does not match the one we can spend.
1027         ///
1028         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
1029         ///
1030         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
1031         /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
1032         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1033                 let mut input = Vec::new();
1034                 let mut input_value = 0;
1035                 let mut witness_weight = 0;
1036                 let mut output_set = HashSet::with_capacity(descriptors.len());
1037                 for outp in descriptors {
1038                         match outp {
1039                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1040                                         input.push(TxIn {
1041                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1042                                                 script_sig: Script::new(),
1043                                                 sequence: Sequence::ZERO,
1044                                                 witness: Witness::new(),
1045                                         });
1046                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1047                                         input_value += descriptor.output.value;
1048                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
1049                                 },
1050                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1051                                         input.push(TxIn {
1052                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1053                                                 script_sig: Script::new(),
1054                                                 sequence: Sequence(descriptor.to_self_delay as u32),
1055                                                 witness: Witness::new(),
1056                                         });
1057                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1058                                         input_value += descriptor.output.value;
1059                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
1060                                 },
1061                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
1062                                         input.push(TxIn {
1063                                                 previous_output: outpoint.into_bitcoin_outpoint(),
1064                                                 script_sig: Script::new(),
1065                                                 sequence: Sequence::ZERO,
1066                                                 witness: Witness::new(),
1067                                         });
1068                                         witness_weight += 1 + 73 + 34;
1069                                         input_value += output.value;
1070                                         if !output_set.insert(*outpoint) { return Err(()); }
1071                                 }
1072                         }
1073                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
1074                 }
1075                 let mut spend_tx = Transaction {
1076                         version: 2,
1077                         lock_time: PackedLockTime(0),
1078                         input,
1079                         output: outputs,
1080                 };
1081                 let expected_max_weight =
1082                         transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
1083
1084                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1085                 let mut input_idx = 0;
1086                 for outp in descriptors {
1087                         match outp {
1088                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1089                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1090                                                 keys_cache = Some((
1091                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1092                                                         descriptor.channel_keys_id));
1093                                         }
1094                                         spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1095                                 },
1096                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1097                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1098                                                 keys_cache = Some((
1099                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1100                                                         descriptor.channel_keys_id));
1101                                         }
1102                                         spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1103                                 },
1104                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
1105                                         let derivation_idx = if output.script_pubkey == self.destination_script {
1106                                                 1
1107                                         } else {
1108                                                 2
1109                                         };
1110                                         let secret = {
1111                                                 // Note that when we aren't serializing the key, network doesn't matter
1112                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1113                                                         Ok(master_key) => {
1114                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1115                                                                         Ok(key) => key,
1116                                                                         Err(_) => panic!("Your RNG is busted"),
1117                                                                 }
1118                                                         }
1119                                                         Err(_) => panic!("Your rng is busted"),
1120                                                 }
1121                                         };
1122                                         let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub();
1123                                         if derivation_idx == 2 {
1124                                                 assert_eq!(pubkey.inner, self.shutdown_pubkey);
1125                                         }
1126                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1127                                         let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1128
1129                                         if payment_script != output.script_pubkey { return Err(()); };
1130
1131                                         let sighash = hash_to_message!(&sighash::SighashCache::new(&spend_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
1132                                         let sig = sign(secp_ctx, &sighash, &secret.private_key);
1133                                         let mut sig_ser = sig.serialize_der().to_vec();
1134                                         sig_ser.push(EcdsaSighashType::All as u8);
1135                                         spend_tx.input[input_idx].witness.push(sig_ser);
1136                                         spend_tx.input[input_idx].witness.push(pubkey.inner.serialize().to_vec());
1137                                 },
1138                         }
1139                         input_idx += 1;
1140                 }
1141
1142                 debug_assert!(expected_max_weight >= spend_tx.weight());
1143                 // Note that witnesses with a signature vary somewhat in size, so allow
1144                 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1145                 debug_assert!(expected_max_weight <= spend_tx.weight() + descriptors.len() * 3);
1146
1147                 Ok(spend_tx)
1148         }
1149 }
1150
1151 impl KeysInterface for KeysManager {
1152         type Signer = InMemorySigner;
1153
1154         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
1155                 match recipient {
1156                         Recipient::Node => Ok(self.node_secret.clone()),
1157                         Recipient::PhantomNode => Err(())
1158                 }
1159         }
1160
1161         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1162                 let mut node_secret = self.get_node_secret(recipient)?;
1163                 if let Some(tweak) = tweak {
1164                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1165                 }
1166                 Ok(SharedSecret::new(other_key, &node_secret))
1167         }
1168
1169         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1170                 self.inbound_payment_key.clone()
1171         }
1172
1173         fn get_destination_script(&self) -> Script {
1174                 self.destination_script.clone()
1175         }
1176
1177         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1178                 ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
1179         }
1180
1181         fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1182                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1183                 assert!(child_ix <= core::u32::MAX as usize);
1184                 let mut id = [0; 32];
1185                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1186                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1187                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1188                 self.derive_channel_keys(channel_value_satoshis, &id)
1189         }
1190
1191         fn get_secure_random_bytes(&self) -> [u8; 32] {
1192                 let mut sha = self.rand_bytes_unique_start.clone();
1193
1194                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1195                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1196                 sha.input(&child_privkey.private_key[..]);
1197
1198                 sha.input(b"Unique Secure Random Bytes Salt");
1199                 Sha256::from_engine(sha).into_inner()
1200         }
1201
1202         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1203                 InMemorySigner::read(&mut io::Cursor::new(reader), self.node_secret.clone())
1204         }
1205
1206         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1207                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1208                 let secret = match recipient {
1209                         Recipient::Node => self.get_node_secret(Recipient::Node)?,
1210                         Recipient::PhantomNode => return Err(()),
1211                 };
1212                 Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
1213         }
1214 }
1215
1216 /// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
1217 /// payments.
1218 ///
1219 /// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
1220 /// paid to one of multiple nodes. This works because we encode the invoice route hints such that
1221 /// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
1222 /// itself without ever needing to forward to this fake node.
1223 ///
1224 /// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
1225 /// provide some fault tolerance, because payers will automatically retry paying other provided
1226 /// nodes in the case that one node goes down.
1227 ///
1228 /// Note that multi-path payments are not supported in phantom invoices for security reasons.
1229 //  In the hypothetical case that we did support MPP phantom payments, there would be no way for
1230 //  nodes to know when the full payment has been received (and the preimage can be released) without
1231 //  significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
1232 //  to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
1233 //  is released too early.
1234 //
1235 /// Switching between this struct and [`KeysManager`] will invalidate any previously issued
1236 /// invoices and attempts to pay previous invoices will fail.
1237 pub struct PhantomKeysManager {
1238         inner: KeysManager,
1239         inbound_payment_key: KeyMaterial,
1240         phantom_secret: SecretKey,
1241 }
1242
1243 impl KeysInterface for PhantomKeysManager {
1244         type Signer = InMemorySigner;
1245
1246         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
1247                 match recipient {
1248                         Recipient::Node => self.inner.get_node_secret(Recipient::Node),
1249                         Recipient::PhantomNode => Ok(self.phantom_secret.clone()),
1250                 }
1251         }
1252
1253         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1254                 let mut node_secret = self.get_node_secret(recipient)?;
1255                 if let Some(tweak) = tweak {
1256                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1257                 }
1258                 Ok(SharedSecret::new(other_key, &node_secret))
1259         }
1260
1261         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1262                 self.inbound_payment_key.clone()
1263         }
1264
1265         fn get_destination_script(&self) -> Script {
1266                 self.inner.get_destination_script()
1267         }
1268
1269         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1270                 self.inner.get_shutdown_scriptpubkey()
1271         }
1272
1273         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1274                 self.inner.get_channel_signer(inbound, channel_value_satoshis)
1275         }
1276
1277         fn get_secure_random_bytes(&self) -> [u8; 32] {
1278                 self.inner.get_secure_random_bytes()
1279         }
1280
1281         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1282                 self.inner.read_chan_signer(reader)
1283         }
1284
1285         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1286                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1287                 let secret = self.get_node_secret(recipient)?;
1288                 Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
1289         }
1290 }
1291
1292 impl PhantomKeysManager {
1293         /// Constructs a `PhantomKeysManager` given a 32-byte seed and an additional `cross_node_seed`
1294         /// that is shared across all nodes that intend to participate in [phantom node payments] together.
1295         ///
1296         /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
1297         /// `starting_time_nanos`.
1298         ///
1299         /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
1300         /// same across restarts, or else inbound payments may fail.
1301         ///
1302         /// [phantom node payments]: PhantomKeysManager
1303         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
1304                 let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
1305                 let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
1306                 Self {
1307                         inner,
1308                         inbound_payment_key: KeyMaterial(inbound_key),
1309                         phantom_secret: SecretKey::from_slice(&phantom_key).unwrap(),
1310                 }
1311         }
1312
1313         /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
1314         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1315                 self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx)
1316         }
1317
1318         /// See [`KeysManager::derive_channel_keys`] for documentation on this method.
1319         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1320                 self.inner.derive_channel_keys(channel_value_satoshis, params)
1321         }
1322 }
1323
1324 // Ensure that BaseSign can have a vtable
1325 #[test]
1326 pub fn dyn_sign() {
1327         let _signer: Box<dyn BaseSign>;
1328 }