Dry-up witnessScript in sign_remote_htlc_transaction
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
2 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
3 //! on-chain output which is theirs.
4
5 use bitcoin::blockdata::transaction::{Transaction, OutPoint, TxOut};
6 use bitcoin::blockdata::script::{Script, Builder};
7 use bitcoin::blockdata::opcodes;
8 use bitcoin::network::constants::Network;
9 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
10 use bitcoin::util::address::Address;
11 use bitcoin::util::bip143;
12
13 use bitcoin::hashes::{Hash, HashEngine};
14 use bitcoin::hashes::sha256::HashEngine as Sha256State;
15 use bitcoin::hashes::sha256::Hash as Sha256;
16 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
17 use bitcoin::hash_types::WPubkeyHash;
18
19 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
20 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
21 use bitcoin::secp256k1;
22
23 use util::byte_utils;
24 use util::logger::Logger;
25 use util::ser::{Writeable, Writer, Readable};
26
27 use ln::chan_utils;
28 use ln::chan_utils::{TxCreationKeys, HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, LocalCommitmentTransaction};
29 use ln::msgs;
30
31 use std::sync::Arc;
32 use std::sync::atomic::{AtomicUsize, Ordering};
33 use std::io::Error;
34 use ln::msgs::DecodeError;
35
36 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
37 /// claim at any point in the future) an event is generated which you must track and be able to
38 /// spend on-chain. The information needed to do this is provided in this enum, including the
39 /// outpoint describing which txid and output index is available, the full output which exists at
40 /// that txid/index, and any keys or other information required to sign.
41 #[derive(Clone, PartialEq)]
42 pub enum SpendableOutputDescriptor {
43         /// An output to a script which was provided via KeysInterface, thus you should already know
44         /// how to spend it. No keys are provided as rust-lightning was never given any keys - only the
45         /// script_pubkey as it appears in the output.
46         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
47         /// on-chain using the payment preimage or after it has timed out.
48         StaticOutput {
49                 /// The outpoint which is spendable
50                 outpoint: OutPoint,
51                 /// The output which is referenced by the given outpoint.
52                 output: TxOut,
53         },
54         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
55         ///
56         /// The witness in the spending input should be:
57         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
58         ///
59         /// Note that the nSequence field in the spending input must be set to to_self_delay
60         /// (which means the transaction not being broadcastable until at least to_self_delay
61         /// blocks after the outpoint confirms).
62         ///
63         /// These are generally the result of a "revocable" output to us, spendable only by us unless
64         /// it is an output from us having broadcast an old state (which should never happen).
65         ///
66         /// WitnessScript may be regenerated by passing the revocation_pubkey, to_self_delay and
67         /// delayed_payment_pubkey to chan_utils::get_revokeable_redeemscript.
68         ///
69         /// To derive the delayed_payment key corresponding to the channel state, you must pass the
70         /// channel's delayed_payment_key and the provided per_commitment_point to
71         /// chan_utils::derive_private_key. The resulting key should be used to sign the spending
72         /// transaction.
73         DynamicOutputP2WSH {
74                 /// The outpoint which is spendable
75                 outpoint: OutPoint,
76                 /// Per commitment point to derive delayed_payment_key by key holder
77                 per_commitment_point: PublicKey,
78                 /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
79                 /// the witness_script.
80                 to_self_delay: u16,
81                 /// The output which is referenced by the given outpoint
82                 output: TxOut,
83                 /// The channel keys state used to proceed to derivation of signing key. Must
84                 /// be pass to KeysInterface::derive_channel_keys.
85                 key_derivation_params: (u64, u64),
86                 /// The remote_revocation_pubkey used to derive witnessScript
87                 remote_revocation_pubkey: PublicKey
88         },
89         // TODO: Note that because key is now static and exactly what is provided by us, we should drop
90         // this in favor of StaticOutput:
91         /// An output to a P2WPKH, spendable exclusively by the given private key.
92         /// The witness in the spending input, is, thus, simply:
93         /// <BIP 143 signature> <payment key>
94         ///
95         /// These are generally the result of our counterparty having broadcast the current state,
96         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
97         ///
98         /// To derive the payment key corresponding to the channel state, you must pass the
99         /// channel's payment_base_key and the provided per_commitment_point to
100         /// chan_utils::derive_private_key. The resulting key should be used to sign the spending
101         /// transaction.
102         DynamicOutputP2WPKH {
103                 /// The outpoint which is spendable
104                 outpoint: OutPoint,
105                 /// The output which is reference by the given outpoint
106                 output: TxOut,
107                 /// The channel keys state used to proceed to derivation of signing key. Must
108                 /// be pass to KeysInterface::derive_channel_keys.
109                 key_derivation_params: (u64, u64),
110         }
111 }
112
113 impl Writeable for SpendableOutputDescriptor {
114         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
115                 match self {
116                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
117                                 0u8.write(writer)?;
118                                 outpoint.write(writer)?;
119                                 output.write(writer)?;
120                         },
121                         &SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref per_commitment_point, ref to_self_delay, ref output, ref key_derivation_params, ref remote_revocation_pubkey } => {
122                                 1u8.write(writer)?;
123                                 outpoint.write(writer)?;
124                                 per_commitment_point.write(writer)?;
125                                 to_self_delay.write(writer)?;
126                                 output.write(writer)?;
127                                 key_derivation_params.0.write(writer)?;
128                                 key_derivation_params.1.write(writer)?;
129                                 remote_revocation_pubkey.write(writer)?;
130                         },
131                         &SpendableOutputDescriptor::DynamicOutputP2WPKH { ref outpoint, ref output, ref key_derivation_params } => {
132                                 2u8.write(writer)?;
133                                 outpoint.write(writer)?;
134                                 output.write(writer)?;
135                                 key_derivation_params.0.write(writer)?;
136                                 key_derivation_params.1.write(writer)?;
137                         },
138                 }
139                 Ok(())
140         }
141 }
142
143 impl Readable for SpendableOutputDescriptor {
144         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
145                 match Readable::read(reader)? {
146                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
147                                 outpoint: Readable::read(reader)?,
148                                 output: Readable::read(reader)?,
149                         }),
150                         1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH {
151                                 outpoint: Readable::read(reader)?,
152                                 per_commitment_point: Readable::read(reader)?,
153                                 to_self_delay: Readable::read(reader)?,
154                                 output: Readable::read(reader)?,
155                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
156                                 remote_revocation_pubkey: Readable::read(reader)?,
157                         }),
158                         2u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WPKH {
159                                 outpoint: Readable::read(reader)?,
160                                 output: Readable::read(reader)?,
161                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
162                         }),
163                         _ => Err(DecodeError::InvalidValue),
164                 }
165         }
166 }
167
168 /// A trait to describe an object which can get user secrets and key material.
169 pub trait KeysInterface: Send + Sync {
170         /// A type which implements ChannelKeys which will be returned by get_channel_keys.
171         type ChanKeySigner : ChannelKeys;
172
173         /// Get node secret key (aka node_id or network_key)
174         fn get_node_secret(&self) -> SecretKey;
175         /// Get destination redeemScript to encumber static protocol exit points.
176         fn get_destination_script(&self) -> Script;
177         /// Get shutdown_pubkey to use as PublicKey at channel closure
178         fn get_shutdown_pubkey(&self) -> PublicKey;
179         /// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
180         /// restarted with some stale data!
181         fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
182         /// Get a secret and PRNG seed for construting an onion packet
183         fn get_onion_rand(&self) -> (SecretKey, [u8; 32]);
184         /// Get a unique temporary channel id. Channels will be referred to by this until the funding
185         /// transaction is created, at which point they will use the outpoint in the funding
186         /// transaction.
187         fn get_channel_id(&self) -> [u8; 32];
188 }
189
190 /// Set of lightning keys needed to operate a channel as described in BOLT 3.
191 ///
192 /// Signing services could be implemented on a hardware wallet. In this case,
193 /// the current ChannelKeys would be a front-end on top of a communication
194 /// channel connected to your secure device and lightning key material wouldn't
195 /// reside on a hot server. Nevertheless, a this deployment would still need
196 /// to trust the ChannelManager to avoid loss of funds as this latest component
197 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
198 ///
199 /// A more secure iteration would be to use hashlock (or payment points) to pair
200 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
201 /// at the price of more state and computation on the hardware wallet side. In the future,
202 /// we are looking forward to design such interface.
203 ///
204 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
205 /// to act, as liveness and breach reply correctness are always going to be hard requirements
206 /// of LN security model, orthogonal of key management issues.
207 ///
208 /// If you're implementing a custom signer, you almost certainly want to implement
209 /// Readable/Writable to serialize out a unique reference to this set of keys so
210 /// that you can serialize the full ChannelManager object.
211 ///
212 // (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly
213 // to the possibility of reentrancy issues by calling the user's code during our deserialization
214 // routine).
215 // TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
216 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
217 pub trait ChannelKeys : Send+Clone {
218         /// Gets the private key for the anchor tx
219         fn funding_key<'a>(&'a self) -> &'a SecretKey;
220         /// Gets the local secret key for blinded revocation pubkey
221         fn revocation_base_key<'a>(&'a self) -> &'a SecretKey;
222         /// Gets the local secret key used in the to_remote output of remote commitment tx (ie the
223         /// output to us in transactions our counterparty broadcasts).
224         /// Also as part of obscured commitment number.
225         fn payment_key<'a>(&'a self) -> &'a SecretKey;
226         /// Gets the local secret key used in HTLC-Success/HTLC-Timeout txn and to_local output
227         fn delayed_payment_base_key<'a>(&'a self) -> &'a SecretKey;
228         /// Gets the local htlc secret key used in commitment tx htlc outputs
229         fn htlc_base_key<'a>(&'a self) -> &'a SecretKey;
230         /// Gets the commitment seed
231         fn commitment_seed<'a>(&'a self) -> &'a [u8; 32];
232         /// Gets the local channel public keys and basepoints
233         fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys;
234         /// Gets the key derivation parameters in case of new derivation.
235         fn key_derivation_params(&self) -> (u64, u64);
236
237         /// Create a signature for a remote commitment transaction and associated HTLC transactions.
238         ///
239         /// Note that if signing fails or is rejected, the channel will be force-closed.
240         //
241         // TODO: Document the things someone using this interface should enforce before signing.
242         // TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
243         // making the callee generate it via some util function we expose)!
244         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
245
246         /// Create a signature for a local commitment transaction. This will only ever be called with
247         /// the same local_commitment_tx (or a copy thereof), though there are currently no guarantees
248         /// that it will not be called multiple times.
249         //
250         // TODO: Document the things someone using this interface should enforce before signing.
251         // TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
252         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
253
254         /// Same as sign_local_commitment, but exists only for tests to get access to local commitment
255         /// transactions which will be broadcasted later, after the channel has moved on to a newer
256         /// state. Thus, needs its own method as sign_local_commitment may enforce that we only ever
257         /// get called once.
258         #[cfg(test)]
259         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
260
261         /// Create a signature for each HTLC transaction spending a local commitment transaction.
262         ///
263         /// Unlike sign_local_commitment, this may be called multiple times with *different*
264         /// local_commitment_tx values. While this will never be called with a revoked
265         /// local_commitment_tx, it is possible that it is called with the second-latest
266         /// local_commitment_tx (only if we haven't yet revoked it) if some watchtower/secondary
267         /// ChannelMonitor decided to broadcast before it had been updated to the latest.
268         ///
269         /// Either an Err should be returned, or a Vec with one entry for each HTLC which exists in
270         /// local_commitment_tx. For those HTLCs which have transaction_output_index set to None
271         /// (implying they were considered dust at the time the commitment transaction was negotiated),
272         /// a corresponding None should be included in the return value. All other positions in the
273         /// return value must contain a signature.
274         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()>;
275
276         /// Create a signature for a transaction spending an HTLC or commitment transaction output
277         /// when our counterparty broadcast an old state.
278         ///
279         /// Justice transaction may claim multiples outputs at same time if timelock are similar.
280         /// It may be called multiples time for same output(s) if a fee-bump is needed with regards
281         /// to an upcoming timelock expiration.
282         ///
283         /// Input index is a pointer towards outpoint spent, commited by sigs (BIP 143).
284         ///
285         /// Amount is value of the output spent by this input, committed by sigs (BIP 143).
286         ///
287         /// Per_commitment key is revocation secret such as provided by remote party while
288         /// revocating detected onchain transaction. It's not a _local_ secret key, therefore
289         /// it may cross interfaces, a node compromise won't allow to spend revoked output without
290         /// also compromissing revocation key.
291         ///
292         /// htlc holds HTLC elements (hash, timelock) if output spent is a HTLC one, committed as
293         /// part of witnessScript by sigs (BIP 143).
294         ///
295         /// on_remote_tx_csv is the relative lock-time challenge if output spent is on remote
296         /// balance or 2nd-stage HTLC transactions, committed as part of witnessScript by sigs
297         /// (BIP 143).
298         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, on_remote_tx_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
299
300         /// Create a signature for a claiming transaction for a HTLC output on a remote commitment
301         /// transaction, either offered or received.
302         ///
303         /// HTLC transaction may claim multiples offered outputs at same time if we know preimage
304         /// for each at detection. It may be called multtiples time for same output(s) if a fee-bump
305         /// is needed with regards to an upcoming timelock expiration.
306         ///
307         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
308         /// outputs.
309         ///
310         /// Input index is a pointer towards outpoint spent, commited by sigs (BIP 143).
311         ///
312         /// Amount is value of the output spent by this input, committed by sigs (BIP 143).
313         ///
314         /// Per_commitment_point is the dynamic point corresponding to the channel state
315         /// detected onchain. It has been generated by remote party and is used to derive
316         /// channel state keys, committed as part of witnessScript by sigs (BIP 143).
317         fn sign_remote_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
318
319         /// Create a signature for a (proposed) closing transaction.
320         ///
321         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
322         /// chosen to forgo their output as dust.
323         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
324
325         /// Signs a channel announcement message with our funding key, proving it comes from one
326         /// of the channel participants.
327         ///
328         /// Note that if this fails or is rejected, the channel will not be publicly announced and
329         /// our counterparty may (though likely will not) close the channel on us for violating the
330         /// protocol.
331         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
332
333         /// Set the remote channel basepoints.  This is done immediately on incoming channels
334         /// and as soon as the channel is accepted on outgoing channels.
335         ///
336         /// Will be called before any signatures are applied.
337         fn set_remote_channel_pubkeys(&mut self, channel_points: &ChannelPublicKeys);
338 }
339
340 #[derive(Clone)]
341 /// A simple implementation of ChannelKeys that just keeps the private keys in memory.
342 pub struct InMemoryChannelKeys {
343         /// Private key of anchor tx
344         funding_key: SecretKey,
345         /// Local secret key for blinded revocation pubkey
346         revocation_base_key: SecretKey,
347         /// Local secret key used for our balance in remote-broadcasted commitment transactions
348         payment_key: SecretKey,
349         /// Local secret key used in HTLC tx
350         delayed_payment_base_key: SecretKey,
351         /// Local htlc secret key used in commitment tx htlc outputs
352         htlc_base_key: SecretKey,
353         /// Commitment seed
354         commitment_seed: [u8; 32],
355         /// Local public keys and basepoints
356         pub(crate) local_channel_pubkeys: ChannelPublicKeys,
357         /// Remote public keys and base points
358         pub(crate) remote_channel_pubkeys: Option<ChannelPublicKeys>,
359         /// The total value of this channel
360         channel_value_satoshis: u64,
361         /// Key derivation parameters
362         key_derivation_params: (u64, u64),
363 }
364
365 impl InMemoryChannelKeys {
366         /// Create a new InMemoryChannelKeys
367         pub fn new<C: Signing>(
368                 secp_ctx: &Secp256k1<C>,
369                 funding_key: SecretKey,
370                 revocation_base_key: SecretKey,
371                 payment_key: SecretKey,
372                 delayed_payment_base_key: SecretKey,
373                 htlc_base_key: SecretKey,
374                 commitment_seed: [u8; 32],
375                 channel_value_satoshis: u64,
376                 key_derivation_params: (u64, u64)) -> InMemoryChannelKeys {
377                 let local_channel_pubkeys =
378                         InMemoryChannelKeys::make_local_keys(secp_ctx, &funding_key, &revocation_base_key,
379                                                              &payment_key, &delayed_payment_base_key,
380                                                              &htlc_base_key);
381                 InMemoryChannelKeys {
382                         funding_key,
383                         revocation_base_key,
384                         payment_key,
385                         delayed_payment_base_key,
386                         htlc_base_key,
387                         commitment_seed,
388                         channel_value_satoshis,
389                         local_channel_pubkeys,
390                         remote_channel_pubkeys: None,
391                         key_derivation_params,
392                 }
393         }
394
395         fn make_local_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
396                                        funding_key: &SecretKey,
397                                        revocation_base_key: &SecretKey,
398                                        payment_key: &SecretKey,
399                                        delayed_payment_base_key: &SecretKey,
400                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
401                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
402                 ChannelPublicKeys {
403                         funding_pubkey: from_secret(&funding_key),
404                         revocation_basepoint: from_secret(&revocation_base_key),
405                         payment_point: from_secret(&payment_key),
406                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
407                         htlc_basepoint: from_secret(&htlc_base_key),
408                 }
409         }
410
411         fn remote_pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys { self.remote_channel_pubkeys.as_ref().unwrap() }
412 }
413
414 impl ChannelKeys for InMemoryChannelKeys {
415         fn funding_key(&self) -> &SecretKey { &self.funding_key }
416         fn revocation_base_key(&self) -> &SecretKey { &self.revocation_base_key }
417         fn payment_key(&self) -> &SecretKey { &self.payment_key }
418         fn delayed_payment_base_key(&self) -> &SecretKey { &self.delayed_payment_base_key }
419         fn htlc_base_key(&self) -> &SecretKey { &self.htlc_base_key }
420         fn commitment_seed(&self) -> &[u8; 32] { &self.commitment_seed }
421         fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys { &self.local_channel_pubkeys }
422         fn key_derivation_params(&self) -> (u64, u64) { self.key_derivation_params }
423
424         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
425                 if commitment_tx.input.len() != 1 { return Err(()); }
426
427                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
428                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
429                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
430
431                 let commitment_sighash = hash_to_message!(&bip143::SighashComponents::new(&commitment_tx).sighash_all(&commitment_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
432                 let commitment_sig = secp_ctx.sign(&commitment_sighash, &self.funding_key);
433
434                 let commitment_txid = commitment_tx.txid();
435
436                 let mut htlc_sigs = Vec::with_capacity(htlcs.len());
437                 for ref htlc in htlcs {
438                         if let Some(_) = htlc.transaction_output_index {
439                                 let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, feerate_per_kw, to_self_delay, htlc, &keys.a_delayed_payment_key, &keys.revocation_key);
440                                 let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
441                                 let htlc_sighash = hash_to_message!(&bip143::SighashComponents::new(&htlc_tx).sighash_all(&htlc_tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]);
442                                 let our_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
443                                         Ok(s) => s,
444                                         Err(_) => return Err(()),
445                                 };
446                                 htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &our_htlc_key));
447                         }
448                 }
449
450                 Ok((commitment_sig, htlc_sigs))
451         }
452
453         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
454                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
455                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
456                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
457
458                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
459         }
460
461         #[cfg(test)]
462         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
463                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
464                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
465                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
466
467                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
468         }
469
470         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()> {
471                 local_commitment_tx.get_htlc_sigs(&self.htlc_base_key, local_csv, secp_ctx)
472         }
473
474         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, on_remote_tx_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
475                 if let Ok(revocation_key) = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
476                         let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
477                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
478                                 if let &Some(ref htlc) = htlc {
479                                         if let Ok(remote_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.remote_pubkeys().htlc_basepoint) {
480                                                 if let Ok(local_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
481                                                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &remote_htlcpubkey, &local_htlcpubkey, &revocation_pubkey)
482                                                 } else { return Err(()) }
483                                         } else { return Err(()) }
484                                 } else {
485                                         if let Ok(remote_delayedpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.remote_pubkeys().delayed_payment_basepoint) {
486                                                 chan_utils::get_revokeable_redeemscript(&revocation_pubkey, on_remote_tx_csv, &remote_delayedpubkey)
487                                         } else { return Err(()) }
488                                 }
489                         } else { return Err(()) };
490                         let sighash_parts = bip143::SighashComponents::new(&justice_tx);
491                         let sighash = hash_to_message!(&sighash_parts.sighash_all(&justice_tx.input[input], &witness_script, amount)[..]);
492                         return Ok(secp_ctx.sign(&sighash, &revocation_key))
493                 }
494                 Err(())
495         }
496
497         fn sign_remote_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
498                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
499                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
500                                 if let Ok(remote_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.remote_pubkeys().htlc_basepoint) {
501                                         if let Ok(local_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
502                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &remote_htlcpubkey, &local_htlcpubkey, &revocation_pubkey)
503                                         } else { return Err(()) }
504                                 } else { return Err(()) }
505                         } else { return Err(()) };
506                         let sighash_parts = bip143::SighashComponents::new(&htlc_tx);
507                         let sighash = hash_to_message!(&sighash_parts.sighash_all(&htlc_tx.input[input], &witness_script, amount)[..]);
508                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
509                 }
510                 Err(())
511         }
512
513         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
514                 if closing_tx.input.len() != 1 { return Err(()); }
515                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
516                 if closing_tx.output.len() > 2 { return Err(()); }
517
518                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
519                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
520                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
521
522                 let sighash = hash_to_message!(&bip143::SighashComponents::new(closing_tx)
523                         .sighash_all(&closing_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
524                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
525         }
526
527         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
528                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
529                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
530         }
531
532         fn set_remote_channel_pubkeys(&mut self, channel_pubkeys: &ChannelPublicKeys) {
533                 assert!(self.remote_channel_pubkeys.is_none(), "Already set remote channel pubkeys");
534                 self.remote_channel_pubkeys = Some(channel_pubkeys.clone());
535         }
536 }
537
538 impl Writeable for InMemoryChannelKeys {
539         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
540                 self.funding_key.write(writer)?;
541                 self.revocation_base_key.write(writer)?;
542                 self.payment_key.write(writer)?;
543                 self.delayed_payment_base_key.write(writer)?;
544                 self.htlc_base_key.write(writer)?;
545                 self.commitment_seed.write(writer)?;
546                 self.remote_channel_pubkeys.write(writer)?;
547                 self.channel_value_satoshis.write(writer)?;
548                 self.key_derivation_params.0.write(writer)?;
549                 self.key_derivation_params.1.write(writer)?;
550
551                 Ok(())
552         }
553 }
554
555 impl Readable for InMemoryChannelKeys {
556         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
557                 let funding_key = Readable::read(reader)?;
558                 let revocation_base_key = Readable::read(reader)?;
559                 let payment_key = Readable::read(reader)?;
560                 let delayed_payment_base_key = Readable::read(reader)?;
561                 let htlc_base_key = Readable::read(reader)?;
562                 let commitment_seed = Readable::read(reader)?;
563                 let remote_channel_pubkeys = Readable::read(reader)?;
564                 let channel_value_satoshis = Readable::read(reader)?;
565                 let secp_ctx = Secp256k1::signing_only();
566                 let local_channel_pubkeys =
567                         InMemoryChannelKeys::make_local_keys(&secp_ctx, &funding_key, &revocation_base_key,
568                                                              &payment_key, &delayed_payment_base_key,
569                                                              &htlc_base_key);
570                 let user_id_1 = Readable::read(reader)?;
571                 let user_id_2 = Readable::read(reader)?;
572
573                 Ok(InMemoryChannelKeys {
574                         funding_key,
575                         revocation_base_key,
576                         payment_key,
577                         delayed_payment_base_key,
578                         htlc_base_key,
579                         commitment_seed,
580                         channel_value_satoshis,
581                         local_channel_pubkeys,
582                         remote_channel_pubkeys,
583                         key_derivation_params: (user_id_1, user_id_2),
584                 })
585         }
586 }
587
588 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
589 /// and derives keys from that.
590 ///
591 /// Your node_id is seed/0'
592 /// ChannelMonitor closes may use seed/1'
593 /// Cooperative closes may use seed/2'
594 /// The two close keys may be needed to claim on-chain funds!
595 pub struct KeysManager {
596         secp_ctx: Secp256k1<secp256k1::SignOnly>,
597         node_secret: SecretKey,
598         destination_script: Script,
599         shutdown_pubkey: PublicKey,
600         channel_master_key: ExtendedPrivKey,
601         channel_child_index: AtomicUsize,
602         session_master_key: ExtendedPrivKey,
603         session_child_index: AtomicUsize,
604         channel_id_master_key: ExtendedPrivKey,
605         channel_id_child_index: AtomicUsize,
606
607         seed: [u8; 32],
608         starting_time_secs: u64,
609         starting_time_nanos: u32,
610         logger: Arc<Logger>,
611 }
612
613 impl KeysManager {
614         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
615         /// RNG is busted) this may panic (but more importantly, you will possibly lose funds).
616         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
617         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
618         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
619         /// simply use the current time (with very high precision).
620         ///
621         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
622         /// obviously, starting_time should be unique every time you reload the library - it is only
623         /// used to generate new ephemeral key data (which will be stored by the individual channel if
624         /// necessary).
625         ///
626         /// Note that the seed is required to recover certain on-chain funds independent of
627         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
628         /// channel, and some on-chain during-closing funds.
629         ///
630         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
631         /// versions. Once the library is more fully supported, the docs will be updated to include a
632         /// detailed description of the guarantee.
633         pub fn new(seed: &[u8; 32], network: Network, logger: Arc<Logger>, starting_time_secs: u64, starting_time_nanos: u32) -> KeysManager {
634                 let secp_ctx = Secp256k1::signing_only();
635                 match ExtendedPrivKey::new_master(network.clone(), seed) {
636                         Ok(master_key) => {
637                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
638                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
639                                         Ok(destination_key) => {
640                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
641                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
642                                                               .push_slice(&wpubkey_hash.into_inner())
643                                                               .into_script()
644                                         },
645                                         Err(_) => panic!("Your RNG is busted"),
646                                 };
647                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
648                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
649                                         Err(_) => panic!("Your RNG is busted"),
650                                 };
651                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
652                                 let session_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
653                                 let channel_id_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted");
654
655                                 KeysManager {
656                                         secp_ctx,
657                                         node_secret,
658                                         destination_script,
659                                         shutdown_pubkey,
660                                         channel_master_key,
661                                         channel_child_index: AtomicUsize::new(0),
662                                         session_master_key,
663                                         session_child_index: AtomicUsize::new(0),
664                                         channel_id_master_key,
665                                         channel_id_child_index: AtomicUsize::new(0),
666
667                                         seed: *seed,
668                                         starting_time_secs,
669                                         starting_time_nanos,
670                                         logger,
671                                 }
672                         },
673                         Err(_) => panic!("Your rng is busted"),
674                 }
675         }
676         fn derive_unique_start(&self) -> Sha256State {
677                 let mut unique_start = Sha256::engine();
678                 unique_start.input(&byte_utils::be64_to_array(self.starting_time_secs));
679                 unique_start.input(&byte_utils::be32_to_array(self.starting_time_nanos));
680                 unique_start.input(&self.seed);
681                 unique_start
682         }
683         /// Derive an old set of ChannelKeys for per-channel secrets based on a key derivation
684         /// parameters.
685         /// Key derivation parameters are accessible through a per-channel secrets
686         /// ChannelKeys::key_derivation_params and is provided inside DynamicOuputP2WSH in case of
687         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
688         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, user_id_1: u64, user_id_2: u64) -> InMemoryChannelKeys {
689                 let chan_id = ((user_id_1 & 0xFFFF0000) >> 32) as u32;
690                 let mut unique_start = Sha256::engine();
691                 unique_start.input(&byte_utils::be64_to_array(user_id_2));
692                 unique_start.input(&byte_utils::be32_to_array(user_id_1 as u32));
693                 unique_start.input(&self.seed);
694
695                 // We only seriously intend to rely on the channel_master_key for true secure
696                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
697                 // starting_time provided in the constructor) to be unique.
698                 let mut sha = self.derive_unique_start();
699
700                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id).expect("key space exhausted")).expect("Your RNG is busted");
701                 sha.input(&child_privkey.private_key.key[..]);
702
703                 let seed = Sha256::from_engine(sha).into_inner();
704
705                 let commitment_seed = {
706                         let mut sha = Sha256::engine();
707                         sha.input(&seed);
708                         sha.input(&b"commitment seed"[..]);
709                         Sha256::from_engine(sha).into_inner()
710                 };
711                 macro_rules! key_step {
712                         ($info: expr, $prev_key: expr) => {{
713                                 let mut sha = Sha256::engine();
714                                 sha.input(&seed);
715                                 sha.input(&$prev_key[..]);
716                                 sha.input(&$info[..]);
717                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
718                         }}
719                 }
720                 let funding_key = key_step!(b"funding key", commitment_seed);
721                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
722                 let payment_key = key_step!(b"payment key", revocation_base_key);
723                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
724                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
725
726                 InMemoryChannelKeys::new(
727                         &self.secp_ctx,
728                         funding_key,
729                         revocation_base_key,
730                         payment_key,
731                         delayed_payment_base_key,
732                         htlc_base_key,
733                         commitment_seed,
734                         channel_value_satoshis,
735                         (user_id_1, user_id_2),
736                 )
737         }
738 }
739
740 impl KeysInterface for KeysManager {
741         type ChanKeySigner = InMemoryChannelKeys;
742
743         fn get_node_secret(&self) -> SecretKey {
744                 self.node_secret.clone()
745         }
746
747         fn get_destination_script(&self) -> Script {
748                 self.destination_script.clone()
749         }
750
751         fn get_shutdown_pubkey(&self) -> PublicKey {
752                 self.shutdown_pubkey.clone()
753         }
754
755         fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> InMemoryChannelKeys {
756                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
757                 let ix_and_nanos: u64 = (child_ix as u64) << 32 | (self.starting_time_nanos as u64);
758                 self.derive_channel_keys(channel_value_satoshis, ix_and_nanos, self.starting_time_secs)
759         }
760
761         fn get_onion_rand(&self) -> (SecretKey, [u8; 32]) {
762                 let mut sha = self.derive_unique_start();
763
764                 let child_ix = self.session_child_index.fetch_add(1, Ordering::AcqRel);
765                 let child_privkey = self.session_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
766                 sha.input(&child_privkey.private_key.key[..]);
767
768                 let mut rng_seed = sha.clone();
769                 // Not exactly the most ideal construction, but the second value will get fed into
770                 // ChaCha so it is another step harder to break.
771                 rng_seed.input(b"RNG Seed Salt");
772                 sha.input(b"Session Key Salt");
773                 (SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("Your RNG is busted"),
774                 Sha256::from_engine(rng_seed).into_inner())
775         }
776
777         fn get_channel_id(&self) -> [u8; 32] {
778                 let mut sha = self.derive_unique_start();
779
780                 let child_ix = self.channel_id_child_index.fetch_add(1, Ordering::AcqRel);
781                 let child_privkey = self.channel_id_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
782                 sha.input(&child_privkey.private_key.key[..]);
783
784                 Sha256::from_engine(sha).into_inner()
785         }
786 }