2dd32bc100b87a03a60e062682e2e4756df40a74
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
2 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
3 //! on-chain output which is theirs.
4
5 use bitcoin::blockdata::transaction::{Transaction, OutPoint, TxOut};
6 use bitcoin::blockdata::script::{Script, Builder};
7 use bitcoin::blockdata::opcodes;
8 use bitcoin::network::constants::Network;
9 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
10 use bitcoin::util::bip143;
11
12 use bitcoin::hashes::{Hash, HashEngine};
13 use bitcoin::hashes::sha256::HashEngine as Sha256State;
14 use bitcoin::hashes::sha256::Hash as Sha256;
15 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
16 use bitcoin::hash_types::WPubkeyHash;
17
18 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
19 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
20 use bitcoin::secp256k1;
21
22 use util::byte_utils;
23 use util::logger::Logger;
24 use util::ser::{Writeable, Writer, Readable};
25
26 use ln::chan_utils;
27 use ln::chan_utils::{TxCreationKeys, HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, LocalCommitmentTransaction};
28 use ln::msgs;
29
30 use std::sync::Arc;
31 use std::sync::atomic::{AtomicUsize, Ordering};
32 use std::io::Error;
33 use ln::msgs::DecodeError;
34
35 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
36 /// claim at any point in the future) an event is generated which you must track and be able to
37 /// spend on-chain. The information needed to do this is provided in this enum, including the
38 /// outpoint describing which txid and output index is available, the full output which exists at
39 /// that txid/index, and any keys or other information required to sign.
40 #[derive(Clone, PartialEq)]
41 pub enum SpendableOutputDescriptor {
42         /// An output to a script which was provided via KeysInterface, thus you should already know
43         /// how to spend it. No keys are provided as rust-lightning was never given any keys - only the
44         /// script_pubkey as it appears in the output.
45         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
46         /// on-chain using the payment preimage or after it has timed out.
47         StaticOutput {
48                 /// The outpoint which is spendable
49                 outpoint: OutPoint,
50                 /// The output which is referenced by the given outpoint.
51                 output: TxOut,
52         },
53         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
54         ///
55         /// The witness in the spending input should be:
56         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
57         ///
58         /// Note that the nSequence field in the spending input must be set to to_self_delay
59         /// (which means the transaction not being broadcastable until at least to_self_delay
60         /// blocks after the outpoint confirms).
61         ///
62         /// These are generally the result of a "revocable" output to us, spendable only by us unless
63         /// it is an output from us having broadcast an old state (which should never happen).
64         ///
65         /// WitnessScript may be regenerated by passing the revocation_pubkey, to_self_delay and
66         /// delayed_payment_pubkey to chan_utils::get_revokeable_redeemscript.
67         ///
68         /// To derive the delayed_payment key corresponding to the channel state, you must pass the
69         /// local delayed_payment_base_key and the provided per_commitment_point to
70         /// chan_utils::derive_private_key. The resulting key should be used to sign the spending
71         /// transaction.
72         ///
73         /// To derive the revocation_pubkey corresponding to the channel state, you must pass the
74         /// remote revocation_basepoint and the provided per_commitment point to
75         /// chan_utils::derive_public_revocation_key.
76         ///
77         /// Both remote revocation_basepoint and local delayed_payment_base_key should be given
78         /// by ChannelKeys, either default implementation (InMemoryChannelKeys) or custom one.
79         DynamicOutputP2WSH {
80                 /// The outpoint which is spendable
81                 outpoint: OutPoint,
82                 /// Per commitment point to derive delayed_payment_key by key holder
83                 per_commitment_point: PublicKey,
84                 /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
85                 /// the witness_script.
86                 to_self_delay: u16,
87                 /// The output which is referenced by the given outpoint
88                 output: TxOut,
89                 /// The channel keys state used to proceed to derivation of signing key. Must
90                 /// be pass to KeysInterface::derive_channel_keys.
91                 key_derivation_params: (u64, u64),
92                 /// The remote_revocation_pubkey used to derive witnessScript
93                 remote_revocation_pubkey: PublicKey
94         },
95         /// An output to a P2WPKH, spendable exclusively by our payment key.
96         /// The witness in the spending input, is, thus, simply:
97         /// <BIP 143 signature> <payment key>
98         ///
99         /// These are generally the result of our counterparty having broadcast the current state,
100         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
101         StaticOutputRemotePayment {
102                 /// The outpoint which is spendable
103                 outpoint: OutPoint,
104                 /// The output which is reference by the given outpoint
105                 output: TxOut,
106                 /// The channel keys state used to proceed to derivation of signing key. Must
107                 /// be pass to KeysInterface::derive_channel_keys.
108                 key_derivation_params: (u64, u64),
109         }
110 }
111
112 impl Writeable for SpendableOutputDescriptor {
113         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
114                 match self {
115                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
116                                 0u8.write(writer)?;
117                                 outpoint.write(writer)?;
118                                 output.write(writer)?;
119                         },
120                         &SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref per_commitment_point, ref to_self_delay, ref output, ref key_derivation_params, ref remote_revocation_pubkey } => {
121                                 1u8.write(writer)?;
122                                 outpoint.write(writer)?;
123                                 per_commitment_point.write(writer)?;
124                                 to_self_delay.write(writer)?;
125                                 output.write(writer)?;
126                                 key_derivation_params.0.write(writer)?;
127                                 key_derivation_params.1.write(writer)?;
128                                 remote_revocation_pubkey.write(writer)?;
129                         },
130                         &SpendableOutputDescriptor::StaticOutputRemotePayment { ref outpoint, ref output, ref key_derivation_params } => {
131                                 2u8.write(writer)?;
132                                 outpoint.write(writer)?;
133                                 output.write(writer)?;
134                                 key_derivation_params.0.write(writer)?;
135                                 key_derivation_params.1.write(writer)?;
136                         },
137                 }
138                 Ok(())
139         }
140 }
141
142 impl Readable for SpendableOutputDescriptor {
143         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
144                 match Readable::read(reader)? {
145                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
146                                 outpoint: Readable::read(reader)?,
147                                 output: Readable::read(reader)?,
148                         }),
149                         1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH {
150                                 outpoint: Readable::read(reader)?,
151                                 per_commitment_point: Readable::read(reader)?,
152                                 to_self_delay: Readable::read(reader)?,
153                                 output: Readable::read(reader)?,
154                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
155                                 remote_revocation_pubkey: Readable::read(reader)?,
156                         }),
157                         2u8 => Ok(SpendableOutputDescriptor::StaticOutputRemotePayment {
158                                 outpoint: Readable::read(reader)?,
159                                 output: Readable::read(reader)?,
160                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
161                         }),
162                         _ => Err(DecodeError::InvalidValue),
163                 }
164         }
165 }
166
167 /// A trait to describe an object which can get user secrets and key material.
168 pub trait KeysInterface: Send + Sync {
169         /// A type which implements ChannelKeys which will be returned by get_channel_keys.
170         type ChanKeySigner : ChannelKeys;
171
172         /// Get node secret key (aka node_id or network_key)
173         fn get_node_secret(&self) -> SecretKey;
174         /// Get destination redeemScript to encumber static protocol exit points.
175         fn get_destination_script(&self) -> Script;
176         /// Get shutdown_pubkey to use as PublicKey at channel closure
177         fn get_shutdown_pubkey(&self) -> PublicKey;
178         /// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
179         /// restarted with some stale data!
180         fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
181         /// Get a secret and PRNG seed for construting an onion packet
182         fn get_onion_rand(&self) -> (SecretKey, [u8; 32]);
183         /// Get a unique temporary channel id. Channels will be referred to by this until the funding
184         /// transaction is created, at which point they will use the outpoint in the funding
185         /// transaction.
186         fn get_channel_id(&self) -> [u8; 32];
187 }
188
189 /// Set of lightning keys needed to operate a channel as described in BOLT 3.
190 ///
191 /// Signing services could be implemented on a hardware wallet. In this case,
192 /// the current ChannelKeys would be a front-end on top of a communication
193 /// channel connected to your secure device and lightning key material wouldn't
194 /// reside on a hot server. Nevertheless, a this deployment would still need
195 /// to trust the ChannelManager to avoid loss of funds as this latest component
196 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
197 ///
198 /// A more secure iteration would be to use hashlock (or payment points) to pair
199 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
200 /// at the price of more state and computation on the hardware wallet side. In the future,
201 /// we are looking forward to design such interface.
202 ///
203 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
204 /// to act, as liveness and breach reply correctness are always going to be hard requirements
205 /// of LN security model, orthogonal of key management issues.
206 ///
207 /// If you're implementing a custom signer, you almost certainly want to implement
208 /// Readable/Writable to serialize out a unique reference to this set of keys so
209 /// that you can serialize the full ChannelManager object.
210 ///
211 // (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly
212 // to the possibility of reentrancy issues by calling the user's code during our deserialization
213 // routine).
214 // TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
215 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
216 pub trait ChannelKeys : Send+Clone {
217         /// Gets the private key for the anchor tx
218         fn funding_key<'a>(&'a self) -> &'a SecretKey;
219         /// Gets the local secret key for blinded revocation pubkey
220         fn revocation_base_key<'a>(&'a self) -> &'a SecretKey;
221         /// Gets the local secret key used in the to_remote output of remote commitment tx (ie the
222         /// output to us in transactions our counterparty broadcasts).
223         /// Also as part of obscured commitment number.
224         fn payment_key<'a>(&'a self) -> &'a SecretKey;
225         /// Gets the local secret key used in HTLC-Success/HTLC-Timeout txn and to_local output
226         fn delayed_payment_base_key<'a>(&'a self) -> &'a SecretKey;
227         /// Gets the local htlc secret key used in commitment tx htlc outputs
228         fn htlc_base_key<'a>(&'a self) -> &'a SecretKey;
229         /// Gets the commitment seed
230         fn commitment_seed<'a>(&'a self) -> &'a [u8; 32];
231         /// Gets the local channel public keys and basepoints
232         fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys;
233         /// Gets the key derivation parameters in case of new derivation.
234         fn key_derivation_params(&self) -> (u64, u64);
235
236         /// Create a signature for a remote commitment transaction and associated HTLC transactions.
237         ///
238         /// Note that if signing fails or is rejected, the channel will be force-closed.
239         //
240         // TODO: Document the things someone using this interface should enforce before signing.
241         // TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
242         // making the callee generate it via some util function we expose)!
243         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
244
245         /// Create a signature for a local commitment transaction. This will only ever be called with
246         /// the same local_commitment_tx (or a copy thereof), though there are currently no guarantees
247         /// that it will not be called multiple times.
248         //
249         // TODO: Document the things someone using this interface should enforce before signing.
250         // TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
251         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
252
253         /// Same as sign_local_commitment, but exists only for tests to get access to local commitment
254         /// transactions which will be broadcasted later, after the channel has moved on to a newer
255         /// state. Thus, needs its own method as sign_local_commitment may enforce that we only ever
256         /// get called once.
257         #[cfg(test)]
258         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
259
260         /// Create a signature for each HTLC transaction spending a local commitment transaction.
261         ///
262         /// Unlike sign_local_commitment, this may be called multiple times with *different*
263         /// local_commitment_tx values. While this will never be called with a revoked
264         /// local_commitment_tx, it is possible that it is called with the second-latest
265         /// local_commitment_tx (only if we haven't yet revoked it) if some watchtower/secondary
266         /// ChannelMonitor decided to broadcast before it had been updated to the latest.
267         ///
268         /// Either an Err should be returned, or a Vec with one entry for each HTLC which exists in
269         /// local_commitment_tx. For those HTLCs which have transaction_output_index set to None
270         /// (implying they were considered dust at the time the commitment transaction was negotiated),
271         /// a corresponding None should be included in the return value. All other positions in the
272         /// return value must contain a signature.
273         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()>;
274
275         /// Create a signature for a transaction spending an HTLC or commitment transaction output
276         /// when our counterparty broadcast an old state.
277         ///
278         /// Justice transaction may claim multiples outputs at same time if timelock are similar.
279         /// It may be called multiples time for same output(s) if a fee-bump is needed with regards
280         /// to an upcoming timelock expiration.
281         ///
282         /// Input index is a pointer towards outpoint spent, commited by sigs (BIP 143).
283         ///
284         /// Amount is value of the output spent by this input, committed by sigs (BIP 143).
285         ///
286         /// Per_commitment key is revocation secret such as provided by remote party while
287         /// revocating detected onchain transaction. It's not a _local_ secret key, therefore
288         /// it may cross interfaces, a node compromise won't allow to spend revoked output without
289         /// also compromissing revocation key.
290         ///
291         /// htlc holds HTLC elements (hash, timelock) if output spent is a HTLC one, committed as
292         /// part of witnessScript by sigs (BIP 143).
293         ///
294         /// on_remote_tx_csv is the relative lock-time challenge if output spent is on remote
295         /// balance or 2nd-stage HTLC transactions, committed as part of witnessScript by sigs
296         /// (BIP 143).
297         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, on_remote_tx_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
298
299         /// Create a signature for a claiming transaction for a HTLC output on a remote commitment
300         /// transaction, either offered or received.
301         ///
302         /// HTLC transaction may claim multiples offered outputs at same time if we know preimage
303         /// for each at detection. It may be called multtiples time for same output(s) if a fee-bump
304         /// is needed with regards to an upcoming timelock expiration.
305         ///
306         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
307         /// outputs.
308         ///
309         /// Input index is a pointer towards outpoint spent, commited by sigs (BIP 143).
310         ///
311         /// Amount is value of the output spent by this input, committed by sigs (BIP 143).
312         ///
313         /// Per_commitment_point is the dynamic point corresponding to the channel state
314         /// detected onchain. It has been generated by remote party and is used to derive
315         /// channel state keys, committed as part of witnessScript by sigs (BIP 143).
316         fn sign_remote_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
317
318         /// Create a signature for a (proposed) closing transaction.
319         ///
320         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
321         /// chosen to forgo their output as dust.
322         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
323
324         /// Signs a channel announcement message with our funding key, proving it comes from one
325         /// of the channel participants.
326         ///
327         /// Note that if this fails or is rejected, the channel will not be publicly announced and
328         /// our counterparty may (though likely will not) close the channel on us for violating the
329         /// protocol.
330         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
331
332         /// Set the remote channel basepoints.  This is done immediately on incoming channels
333         /// and as soon as the channel is accepted on outgoing channels.
334         ///
335         /// Will be called before any signatures are applied.
336         fn set_remote_channel_pubkeys(&mut self, channel_points: &ChannelPublicKeys);
337 }
338
339 #[derive(Clone)]
340 /// A simple implementation of ChannelKeys that just keeps the private keys in memory.
341 pub struct InMemoryChannelKeys {
342         /// Private key of anchor tx
343         funding_key: SecretKey,
344         /// Local secret key for blinded revocation pubkey
345         revocation_base_key: SecretKey,
346         /// Local secret key used for our balance in remote-broadcasted commitment transactions
347         payment_key: SecretKey,
348         /// Local secret key used in HTLC tx
349         delayed_payment_base_key: SecretKey,
350         /// Local htlc secret key used in commitment tx htlc outputs
351         htlc_base_key: SecretKey,
352         /// Commitment seed
353         commitment_seed: [u8; 32],
354         /// Local public keys and basepoints
355         pub(crate) local_channel_pubkeys: ChannelPublicKeys,
356         /// Remote public keys and base points
357         pub(crate) remote_channel_pubkeys: Option<ChannelPublicKeys>,
358         /// The total value of this channel
359         channel_value_satoshis: u64,
360         /// Key derivation parameters
361         key_derivation_params: (u64, u64),
362 }
363
364 impl InMemoryChannelKeys {
365         /// Create a new InMemoryChannelKeys
366         pub fn new<C: Signing>(
367                 secp_ctx: &Secp256k1<C>,
368                 funding_key: SecretKey,
369                 revocation_base_key: SecretKey,
370                 payment_key: SecretKey,
371                 delayed_payment_base_key: SecretKey,
372                 htlc_base_key: SecretKey,
373                 commitment_seed: [u8; 32],
374                 channel_value_satoshis: u64,
375                 key_derivation_params: (u64, u64)) -> InMemoryChannelKeys {
376                 let local_channel_pubkeys =
377                         InMemoryChannelKeys::make_local_keys(secp_ctx, &funding_key, &revocation_base_key,
378                                                              &payment_key, &delayed_payment_base_key,
379                                                              &htlc_base_key);
380                 InMemoryChannelKeys {
381                         funding_key,
382                         revocation_base_key,
383                         payment_key,
384                         delayed_payment_base_key,
385                         htlc_base_key,
386                         commitment_seed,
387                         channel_value_satoshis,
388                         local_channel_pubkeys,
389                         remote_channel_pubkeys: None,
390                         key_derivation_params,
391                 }
392         }
393
394         fn make_local_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
395                                        funding_key: &SecretKey,
396                                        revocation_base_key: &SecretKey,
397                                        payment_key: &SecretKey,
398                                        delayed_payment_base_key: &SecretKey,
399                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
400                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
401                 ChannelPublicKeys {
402                         funding_pubkey: from_secret(&funding_key),
403                         revocation_basepoint: from_secret(&revocation_base_key),
404                         payment_point: from_secret(&payment_key),
405                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
406                         htlc_basepoint: from_secret(&htlc_base_key),
407                 }
408         }
409
410         fn remote_pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys { self.remote_channel_pubkeys.as_ref().unwrap() }
411 }
412
413 impl ChannelKeys for InMemoryChannelKeys {
414         fn funding_key(&self) -> &SecretKey { &self.funding_key }
415         fn revocation_base_key(&self) -> &SecretKey { &self.revocation_base_key }
416         fn payment_key(&self) -> &SecretKey { &self.payment_key }
417         fn delayed_payment_base_key(&self) -> &SecretKey { &self.delayed_payment_base_key }
418         fn htlc_base_key(&self) -> &SecretKey { &self.htlc_base_key }
419         fn commitment_seed(&self) -> &[u8; 32] { &self.commitment_seed }
420         fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys { &self.local_channel_pubkeys }
421         fn key_derivation_params(&self) -> (u64, u64) { self.key_derivation_params }
422
423         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
424                 if commitment_tx.input.len() != 1 { return Err(()); }
425
426                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
427                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
428                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
429
430                 let commitment_sighash = hash_to_message!(&bip143::SighashComponents::new(&commitment_tx).sighash_all(&commitment_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
431                 let commitment_sig = secp_ctx.sign(&commitment_sighash, &self.funding_key);
432
433                 let commitment_txid = commitment_tx.txid();
434
435                 let mut htlc_sigs = Vec::with_capacity(htlcs.len());
436                 for ref htlc in htlcs {
437                         if let Some(_) = htlc.transaction_output_index {
438                                 let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, feerate_per_kw, to_self_delay, htlc, &keys.a_delayed_payment_key, &keys.revocation_key);
439                                 let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
440                                 let htlc_sighash = hash_to_message!(&bip143::SighashComponents::new(&htlc_tx).sighash_all(&htlc_tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]);
441                                 let our_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
442                                         Ok(s) => s,
443                                         Err(_) => return Err(()),
444                                 };
445                                 htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &our_htlc_key));
446                         }
447                 }
448
449                 Ok((commitment_sig, htlc_sigs))
450         }
451
452         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
453                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
454                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
455                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
456
457                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
458         }
459
460         #[cfg(test)]
461         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
462                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
463                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
464                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
465
466                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
467         }
468
469         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()> {
470                 local_commitment_tx.get_htlc_sigs(&self.htlc_base_key, local_csv, secp_ctx)
471         }
472
473         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, on_remote_tx_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
474                 if let Ok(revocation_key) = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
475                         let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
476                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
477                                 if let &Some(ref htlc) = htlc {
478                                         if let Ok(remote_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.remote_pubkeys().htlc_basepoint) {
479                                                 if let Ok(local_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
480                                                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &remote_htlcpubkey, &local_htlcpubkey, &revocation_pubkey)
481                                                 } else { return Err(()) }
482                                         } else { return Err(()) }
483                                 } else {
484                                         if let Ok(remote_delayedpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.remote_pubkeys().delayed_payment_basepoint) {
485                                                 chan_utils::get_revokeable_redeemscript(&revocation_pubkey, on_remote_tx_csv, &remote_delayedpubkey)
486                                         } else { return Err(()) }
487                                 }
488                         } else { return Err(()) };
489                         let sighash_parts = bip143::SighashComponents::new(&justice_tx);
490                         let sighash = hash_to_message!(&sighash_parts.sighash_all(&justice_tx.input[input], &witness_script, amount)[..]);
491                         return Ok(secp_ctx.sign(&sighash, &revocation_key))
492                 }
493                 Err(())
494         }
495
496         fn sign_remote_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
497                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
498                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
499                                 if let Ok(remote_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.remote_pubkeys().htlc_basepoint) {
500                                         if let Ok(local_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
501                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &remote_htlcpubkey, &local_htlcpubkey, &revocation_pubkey)
502                                         } else { return Err(()) }
503                                 } else { return Err(()) }
504                         } else { return Err(()) };
505                         let sighash_parts = bip143::SighashComponents::new(&htlc_tx);
506                         let sighash = hash_to_message!(&sighash_parts.sighash_all(&htlc_tx.input[input], &witness_script, amount)[..]);
507                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
508                 }
509                 Err(())
510         }
511
512         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
513                 if closing_tx.input.len() != 1 { return Err(()); }
514                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
515                 if closing_tx.output.len() > 2 { return Err(()); }
516
517                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
518                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
519                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
520
521                 let sighash = hash_to_message!(&bip143::SighashComponents::new(closing_tx)
522                         .sighash_all(&closing_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
523                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
524         }
525
526         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
527                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
528                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
529         }
530
531         fn set_remote_channel_pubkeys(&mut self, channel_pubkeys: &ChannelPublicKeys) {
532                 assert!(self.remote_channel_pubkeys.is_none(), "Already set remote channel pubkeys");
533                 self.remote_channel_pubkeys = Some(channel_pubkeys.clone());
534         }
535 }
536
537 impl Writeable for InMemoryChannelKeys {
538         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
539                 self.funding_key.write(writer)?;
540                 self.revocation_base_key.write(writer)?;
541                 self.payment_key.write(writer)?;
542                 self.delayed_payment_base_key.write(writer)?;
543                 self.htlc_base_key.write(writer)?;
544                 self.commitment_seed.write(writer)?;
545                 self.remote_channel_pubkeys.write(writer)?;
546                 self.channel_value_satoshis.write(writer)?;
547                 self.key_derivation_params.0.write(writer)?;
548                 self.key_derivation_params.1.write(writer)?;
549
550                 Ok(())
551         }
552 }
553
554 impl Readable for InMemoryChannelKeys {
555         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
556                 let funding_key = Readable::read(reader)?;
557                 let revocation_base_key = Readable::read(reader)?;
558                 let payment_key = Readable::read(reader)?;
559                 let delayed_payment_base_key = Readable::read(reader)?;
560                 let htlc_base_key = Readable::read(reader)?;
561                 let commitment_seed = Readable::read(reader)?;
562                 let remote_channel_pubkeys = Readable::read(reader)?;
563                 let channel_value_satoshis = Readable::read(reader)?;
564                 let secp_ctx = Secp256k1::signing_only();
565                 let local_channel_pubkeys =
566                         InMemoryChannelKeys::make_local_keys(&secp_ctx, &funding_key, &revocation_base_key,
567                                                              &payment_key, &delayed_payment_base_key,
568                                                              &htlc_base_key);
569                 let user_id_1 = Readable::read(reader)?;
570                 let user_id_2 = Readable::read(reader)?;
571
572                 Ok(InMemoryChannelKeys {
573                         funding_key,
574                         revocation_base_key,
575                         payment_key,
576                         delayed_payment_base_key,
577                         htlc_base_key,
578                         commitment_seed,
579                         channel_value_satoshis,
580                         local_channel_pubkeys,
581                         remote_channel_pubkeys,
582                         key_derivation_params: (user_id_1, user_id_2),
583                 })
584         }
585 }
586
587 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
588 /// and derives keys from that.
589 ///
590 /// Your node_id is seed/0'
591 /// ChannelMonitor closes may use seed/1'
592 /// Cooperative closes may use seed/2'
593 /// The two close keys may be needed to claim on-chain funds!
594 pub struct KeysManager {
595         secp_ctx: Secp256k1<secp256k1::SignOnly>,
596         node_secret: SecretKey,
597         destination_script: Script,
598         shutdown_pubkey: PublicKey,
599         channel_master_key: ExtendedPrivKey,
600         channel_child_index: AtomicUsize,
601         session_master_key: ExtendedPrivKey,
602         session_child_index: AtomicUsize,
603         channel_id_master_key: ExtendedPrivKey,
604         channel_id_child_index: AtomicUsize,
605
606         seed: [u8; 32],
607         starting_time_secs: u64,
608         starting_time_nanos: u32,
609         logger: Arc<Logger>,
610 }
611
612 impl KeysManager {
613         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
614         /// RNG is busted) this may panic (but more importantly, you will possibly lose funds).
615         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
616         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
617         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
618         /// simply use the current time (with very high precision).
619         ///
620         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
621         /// obviously, starting_time should be unique every time you reload the library - it is only
622         /// used to generate new ephemeral key data (which will be stored by the individual channel if
623         /// necessary).
624         ///
625         /// Note that the seed is required to recover certain on-chain funds independent of
626         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
627         /// channel, and some on-chain during-closing funds.
628         ///
629         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
630         /// versions. Once the library is more fully supported, the docs will be updated to include a
631         /// detailed description of the guarantee.
632         pub fn new(seed: &[u8; 32], network: Network, logger: Arc<Logger>, starting_time_secs: u64, starting_time_nanos: u32) -> KeysManager {
633                 let secp_ctx = Secp256k1::signing_only();
634                 match ExtendedPrivKey::new_master(network.clone(), seed) {
635                         Ok(master_key) => {
636                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
637                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
638                                         Ok(destination_key) => {
639                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
640                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
641                                                               .push_slice(&wpubkey_hash.into_inner())
642                                                               .into_script()
643                                         },
644                                         Err(_) => panic!("Your RNG is busted"),
645                                 };
646                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
647                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
648                                         Err(_) => panic!("Your RNG is busted"),
649                                 };
650                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
651                                 let session_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
652                                 let channel_id_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted");
653
654                                 KeysManager {
655                                         secp_ctx,
656                                         node_secret,
657                                         destination_script,
658                                         shutdown_pubkey,
659                                         channel_master_key,
660                                         channel_child_index: AtomicUsize::new(0),
661                                         session_master_key,
662                                         session_child_index: AtomicUsize::new(0),
663                                         channel_id_master_key,
664                                         channel_id_child_index: AtomicUsize::new(0),
665
666                                         seed: *seed,
667                                         starting_time_secs,
668                                         starting_time_nanos,
669                                         logger,
670                                 }
671                         },
672                         Err(_) => panic!("Your rng is busted"),
673                 }
674         }
675         fn derive_unique_start(&self) -> Sha256State {
676                 let mut unique_start = Sha256::engine();
677                 unique_start.input(&byte_utils::be64_to_array(self.starting_time_secs));
678                 unique_start.input(&byte_utils::be32_to_array(self.starting_time_nanos));
679                 unique_start.input(&self.seed);
680                 unique_start
681         }
682         /// Derive an old set of ChannelKeys for per-channel secrets based on a key derivation
683         /// parameters.
684         /// Key derivation parameters are accessible through a per-channel secrets
685         /// ChannelKeys::key_derivation_params and is provided inside DynamicOuputP2WSH in case of
686         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
687         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, user_id_1: u64, user_id_2: u64) -> InMemoryChannelKeys {
688                 let chan_id = ((user_id_1 & 0xFFFF0000) >> 32) as u32;
689                 let mut unique_start = Sha256::engine();
690                 unique_start.input(&byte_utils::be64_to_array(user_id_2));
691                 unique_start.input(&byte_utils::be32_to_array(user_id_1 as u32));
692                 unique_start.input(&self.seed);
693
694                 // We only seriously intend to rely on the channel_master_key for true secure
695                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
696                 // starting_time provided in the constructor) to be unique.
697                 let mut sha = self.derive_unique_start();
698
699                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id).expect("key space exhausted")).expect("Your RNG is busted");
700                 sha.input(&child_privkey.private_key.key[..]);
701
702                 let seed = Sha256::from_engine(sha).into_inner();
703
704                 let commitment_seed = {
705                         let mut sha = Sha256::engine();
706                         sha.input(&seed);
707                         sha.input(&b"commitment seed"[..]);
708                         Sha256::from_engine(sha).into_inner()
709                 };
710                 macro_rules! key_step {
711                         ($info: expr, $prev_key: expr) => {{
712                                 let mut sha = Sha256::engine();
713                                 sha.input(&seed);
714                                 sha.input(&$prev_key[..]);
715                                 sha.input(&$info[..]);
716                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
717                         }}
718                 }
719                 let funding_key = key_step!(b"funding key", commitment_seed);
720                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
721                 let payment_key = key_step!(b"payment key", revocation_base_key);
722                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
723                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
724
725                 InMemoryChannelKeys::new(
726                         &self.secp_ctx,
727                         funding_key,
728                         revocation_base_key,
729                         payment_key,
730                         delayed_payment_base_key,
731                         htlc_base_key,
732                         commitment_seed,
733                         channel_value_satoshis,
734                         (user_id_1, user_id_2),
735                 )
736         }
737 }
738
739 impl KeysInterface for KeysManager {
740         type ChanKeySigner = InMemoryChannelKeys;
741
742         fn get_node_secret(&self) -> SecretKey {
743                 self.node_secret.clone()
744         }
745
746         fn get_destination_script(&self) -> Script {
747                 self.destination_script.clone()
748         }
749
750         fn get_shutdown_pubkey(&self) -> PublicKey {
751                 self.shutdown_pubkey.clone()
752         }
753
754         fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> InMemoryChannelKeys {
755                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
756                 let ix_and_nanos: u64 = (child_ix as u64) << 32 | (self.starting_time_nanos as u64);
757                 self.derive_channel_keys(channel_value_satoshis, ix_and_nanos, self.starting_time_secs)
758         }
759
760         fn get_onion_rand(&self) -> (SecretKey, [u8; 32]) {
761                 let mut sha = self.derive_unique_start();
762
763                 let child_ix = self.session_child_index.fetch_add(1, Ordering::AcqRel);
764                 let child_privkey = self.session_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
765                 sha.input(&child_privkey.private_key.key[..]);
766
767                 let mut rng_seed = sha.clone();
768                 // Not exactly the most ideal construction, but the second value will get fed into
769                 // ChaCha so it is another step harder to break.
770                 rng_seed.input(b"RNG Seed Salt");
771                 sha.input(b"Session Key Salt");
772                 (SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("Your RNG is busted"),
773                 Sha256::from_engine(rng_seed).into_inner())
774         }
775
776         fn get_channel_id(&self) -> [u8; 32] {
777                 let mut sha = self.derive_unique_start();
778
779                 let child_ix = self.channel_id_child_index.fetch_add(1, Ordering::AcqRel);
780                 let child_privkey = self.channel_id_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
781                 sha.input(&child_privkey.private_key.key[..]);
782
783                 Sha256::from_engine(sha).into_inner()
784         }
785 }