1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, EcdsaSighashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::sighash;
21 use bitcoin::bech32::u5;
22 use bitcoin::hashes::{Hash, HashEngine};
23 use bitcoin::hashes::sha256::HashEngine as Sha256State;
24 use bitcoin::hashes::sha256::Hash as Sha256;
25 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
26 use bitcoin::hash_types::WPubkeyHash;
28 use bitcoin::secp256k1::{SecretKey, PublicKey};
29 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Signing};
30 use bitcoin::secp256k1::ecdsa::RecoverableSignature;
31 use bitcoin::{secp256k1, Witness};
33 use util::{byte_utils, transaction_utils};
34 use util::crypto::{hkdf_extract_expand_twice, sign};
35 use util::ser::{Writeable, Writer, Readable, ReadableArgs};
37 use chain::transaction::OutPoint;
38 use ln::{chan_utils, PaymentPreimage};
39 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
40 use ln::msgs::UnsignedChannelAnnouncement;
41 use ln::script::ShutdownScript;
44 use core::sync::atomic::{AtomicUsize, Ordering};
45 use io::{self, Error};
46 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
47 use util::invoice::construct_invoice_preimage;
49 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
50 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
51 /// (C-not exported) as we just use [u8; 32] directly
52 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
53 pub struct KeyMaterial(pub [u8; 32]);
55 /// Information about a spendable output to a P2WSH script. See
56 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
57 #[derive(Clone, Debug, PartialEq)]
58 pub struct DelayedPaymentOutputDescriptor {
59 /// The outpoint which is spendable
60 pub outpoint: OutPoint,
61 /// Per commitment point to derive delayed_payment_key by key holder
62 pub per_commitment_point: PublicKey,
63 /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
64 /// the witness_script.
65 pub to_self_delay: u16,
66 /// The output which is referenced by the given outpoint
68 /// The revocation point specific to the commitment transaction which was broadcast. Used to
69 /// derive the witnessScript for this output.
70 pub revocation_pubkey: PublicKey,
71 /// Arbitrary identification information returned by a call to
72 /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
73 /// the channel to spend the output.
74 pub channel_keys_id: [u8; 32],
75 /// The value of the channel which this output originated from, possibly indirectly.
76 pub channel_value_satoshis: u64,
78 impl DelayedPaymentOutputDescriptor {
79 /// The maximum length a well-formed witness spending one of these should have.
80 // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
81 // redeemscript push length.
82 pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
85 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
86 (0, outpoint, required),
87 (2, per_commitment_point, required),
88 (4, to_self_delay, required),
89 (6, output, required),
90 (8, revocation_pubkey, required),
91 (10, channel_keys_id, required),
92 (12, channel_value_satoshis, required),
95 /// Information about a spendable output to our "payment key". See
96 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
97 #[derive(Clone, Debug, PartialEq)]
98 pub struct StaticPaymentOutputDescriptor {
99 /// The outpoint which is spendable
100 pub outpoint: OutPoint,
101 /// The output which is referenced by the given outpoint
103 /// Arbitrary identification information returned by a call to
104 /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
105 /// the channel to spend the output.
106 pub channel_keys_id: [u8; 32],
107 /// The value of the channel which this transactions spends.
108 pub channel_value_satoshis: u64,
110 impl StaticPaymentOutputDescriptor {
111 /// The maximum length a well-formed witness spending one of these should have.
112 // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
113 // redeemscript push length.
114 pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
116 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
117 (0, outpoint, required),
118 (2, output, required),
119 (4, channel_keys_id, required),
120 (6, channel_value_satoshis, required),
123 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
124 /// claim at any point in the future) an event is generated which you must track and be able to
125 /// spend on-chain. The information needed to do this is provided in this enum, including the
126 /// outpoint describing which txid and output index is available, the full output which exists at
127 /// that txid/index, and any keys or other information required to sign.
128 #[derive(Clone, Debug, PartialEq)]
129 pub enum SpendableOutputDescriptor {
130 /// An output to a script which was provided via KeysInterface directly, either from
131 /// `get_destination_script()` or `get_shutdown_scriptpubkey()`, thus you should already know
132 /// how to spend it. No secret keys are provided as rust-lightning was never given any key.
133 /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
134 /// on-chain using the payment preimage or after it has timed out.
136 /// The outpoint which is spendable
138 /// The output which is referenced by the given outpoint.
141 /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
143 /// The witness in the spending input should be:
144 /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
146 /// Note that the nSequence field in the spending input must be set to to_self_delay
147 /// (which means the transaction is not broadcastable until at least to_self_delay
148 /// blocks after the outpoint confirms).
150 /// These are generally the result of a "revocable" output to us, spendable only by us unless
151 /// it is an output from an old state which we broadcast (which should never happen).
153 /// To derive the delayed_payment key which is used to sign for this input, you must pass the
154 /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
155 /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
156 /// chan_utils::derive_private_key. The public key can be generated without the secret key
157 /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
160 /// To derive the revocation_pubkey provided here (which is used in the witness
161 /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
162 /// call to Sign::ready_channel) and the provided per_commitment point
163 /// to chan_utils::derive_public_revocation_key.
165 /// The witness script which is hashed and included in the output script_pubkey may be
166 /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
167 /// (derived as above), and the to_self_delay contained here to
168 /// chan_utils::get_revokeable_redeemscript.
169 DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
170 /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
171 /// corresponds to the public key in Sign::pubkeys().payment_point).
172 /// The witness in the spending input, is, thus, simply:
173 /// <BIP 143 signature> <payment key>
175 /// These are generally the result of our counterparty having broadcast the current state,
176 /// allowing us to claim the non-HTLC-encumbered outputs immediately.
177 StaticPaymentOutput(StaticPaymentOutputDescriptor),
180 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
181 (0, StaticOutput) => {
182 (0, outpoint, required),
183 (2, output, required),
186 (1, DelayedPaymentOutput),
187 (2, StaticPaymentOutput),
190 /// A trait to sign lightning channel transactions as described in BOLT 3.
192 /// Signing services could be implemented on a hardware wallet. In this case,
193 /// the current Sign would be a front-end on top of a communication
194 /// channel connected to your secure device and lightning key material wouldn't
195 /// reside on a hot server. Nevertheless, a this deployment would still need
196 /// to trust the ChannelManager to avoid loss of funds as this latest component
197 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
199 /// A more secure iteration would be to use hashlock (or payment points) to pair
200 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
201 /// at the price of more state and computation on the hardware wallet side. In the future,
202 /// we are looking forward to design such interface.
204 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
205 /// to act, as liveness and breach reply correctness are always going to be hard requirements
206 /// of LN security model, orthogonal of key management issues.
207 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
208 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
210 /// Gets the per-commitment point for a specific commitment number
212 /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
213 fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
214 /// Gets the commitment secret for a specific commitment number as part of the revocation process
216 /// An external signer implementation should error here if the commitment was already signed
217 /// and should refuse to sign it in the future.
219 /// May be called more than once for the same index.
221 /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
222 // TODO: return a Result so we can signal a validation error
223 fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
224 /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
226 /// This is required in order for the signer to make sure that releasing a commitment
227 /// secret won't leave us without a broadcastable holder transaction.
228 /// Policy checks should be implemented in this function, including checking the amount
229 /// sent to us and checking the HTLCs.
231 /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
232 /// A validating signer should ensure that an HTLC output is removed only when the matching
233 /// preimage is provided, or when the value to holder is restored.
235 /// NOTE: all the relevant preimages will be provided, but there may also be additional
236 /// irrelevant or duplicate preimages.
237 fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
238 /// Gets the holder's channel public keys and basepoints
239 fn pubkeys(&self) -> &ChannelPublicKeys;
240 /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
241 /// some SpendableOutputDescriptor types. This should be sufficient to identify this
242 /// Sign object uniquely and lookup or re-derive its keys.
243 fn channel_keys_id(&self) -> [u8; 32];
245 /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
247 /// Note that if signing fails or is rejected, the channel will be force-closed.
249 /// Policy checks should be implemented in this function, including checking the amount
250 /// sent to us and checking the HTLCs.
252 /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
253 /// A validating signer should ensure that an HTLC output is removed only when the matching
254 /// preimage is provided, or when the value to holder is restored.
256 /// NOTE: all the relevant preimages will be provided, but there may also be additional
257 /// irrelevant or duplicate preimages.
259 // TODO: Document the things someone using this interface should enforce before signing.
260 fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
261 /// Validate the counterparty's revocation.
263 /// This is required in order for the signer to make sure that the state has moved
264 /// forward and it is safe to sign the next counterparty commitment.
265 fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
267 /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
268 /// This will only ever be called with a non-revoked commitment_tx. This will be called with the
269 /// latest commitment_tx when we initiate a force-close.
270 /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
271 /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
273 /// This may be called multiple times for the same transaction.
275 /// An external signer implementation should check that the commitment has not been revoked.
277 /// May return Err if key derivation fails. Callers, such as ChannelMonitor, will panic in such a case.
279 // TODO: Document the things someone using this interface should enforce before signing.
280 // TODO: Key derivation failure should panic rather than Err
281 fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
283 /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
284 /// transactions which will be broadcasted later, after the channel has moved on to a newer
285 /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
287 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
288 fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
290 /// Create a signature for the given input in a transaction spending an HTLC transaction output
291 /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
293 /// A justice transaction may claim multiple outputs at the same time if timelocks are
294 /// similar, but only a signature for the input at index `input` should be signed for here.
295 /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
296 /// to an upcoming timelock expiration.
298 /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
300 /// per_commitment_key is revocation secret which was provided by our counterparty when they
301 /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
302 /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
304 fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
306 /// Create a signature for the given input in a transaction spending a commitment transaction
307 /// HTLC output when our counterparty broadcasts an old state.
309 /// A justice transaction may claim multiple outputs at the same time if timelocks are
310 /// similar, but only a signature for the input at index `input` should be signed for here.
311 /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
312 /// to an upcoming timelock expiration.
314 /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
316 /// per_commitment_key is revocation secret which was provided by our counterparty when they
317 /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
318 /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
321 /// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
322 /// (which is committed to in the BIP 143 signatures).
323 fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
325 /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
326 /// transaction, either offered or received.
328 /// Such a transaction may claim multiples offered outputs at same time if we know the
329 /// preimage for each when we create it, but only the input at index `input` should be
330 /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
331 /// needed with regards to an upcoming timelock expiration.
333 /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
336 /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
338 /// Per_commitment_point is the dynamic point corresponding to the channel state
339 /// detected onchain. It has been generated by our counterparty and is used to derive
340 /// channel state keys, which are then included in the witness script and committed to in the
341 /// BIP 143 signature.
342 fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
344 /// Create a signature for a (proposed) closing transaction.
346 /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
347 /// chosen to forgo their output as dust.
348 fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
350 /// Signs a channel announcement message with our funding key and our node secret key (aka
351 /// node_id or network_key), proving it comes from one of the channel participants.
353 /// The first returned signature should be from our node secret key, the second from our
356 /// Note that if this fails or is rejected, the channel will not be publicly announced and
357 /// our counterparty may (though likely will not) close the channel on us for violating the
359 fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
360 -> Result<(Signature, Signature), ()>;
362 /// Set the counterparty static channel data, including basepoints,
363 /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
364 /// This is done as soon as the funding outpoint is known. Since these are static channel data,
365 /// they MUST NOT be allowed to change to different values once set.
367 /// channel_parameters.is_populated() MUST be true.
369 /// We bind holder_selected_contest_delay late here for API convenience.
371 /// Will be called before any signatures are applied.
372 fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
375 /// A cloneable signer.
377 /// Although we require signers to be cloneable, it may be useful for developers to be able to use
378 /// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
379 /// which implies Sized, into this derived trait.
380 pub trait Sign: BaseSign + Writeable + Clone {
383 /// Specifies the recipient of an invoice, to indicate to [`KeysInterface::sign_invoice`] what node
384 /// secret key should be used to sign the invoice.
386 /// The invoice should be signed with the local node secret key.
388 /// The invoice should be signed with the phantom node secret key. This secret key must be the
389 /// same for all nodes participating in the [phantom node payment].
391 /// [phantom node payment]: PhantomKeysManager
395 /// A trait to describe an object which can get user secrets and key material.
396 pub trait KeysInterface {
397 /// A type which implements Sign which will be returned by get_channel_signer.
400 /// Get node secret key based on the provided [`Recipient`].
402 /// The node_id/network_key is the public key that corresponds to this secret key.
404 /// This method must return the same value each time it is called with a given `Recipient`
406 fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()>;
407 /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
409 /// This method should return a different value each time it is called, to avoid linking
410 /// on-chain funds across channels as controlled to the same user.
411 fn get_destination_script(&self) -> Script;
412 /// Get a script pubkey which we will send funds to when closing a channel.
414 /// This method should return a different value each time it is called, to avoid linking
415 /// on-chain funds across channels as controlled to the same user.
416 fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
417 /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
418 /// restarted with some stale data!
420 /// This method must return a different value each time it is called.
421 fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
422 /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
423 /// onion packets and for temporary channel IDs. There is no requirement that these be
424 /// persisted anywhere, though they must be unique across restarts.
426 /// This method must return a different value each time it is called.
427 fn get_secure_random_bytes(&self) -> [u8; 32];
429 /// Reads a `Signer` for this `KeysInterface` from the given input stream.
430 /// This is only called during deserialization of other objects which contain
431 /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
432 /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
433 /// contain no versioning scheme. You may wish to include your own version prefix and ensure
434 /// you've read all of the provided bytes to ensure no corruption occurred.
435 fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
438 /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
439 /// this trait to parse the invoice and make sure they're signing what they expect, rather than
440 /// blindly signing the hash.
441 /// The hrp is ascii bytes, while the invoice data is base32.
443 /// The secret key used to sign the invoice is dependent on the [`Recipient`].
444 fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], receipient: Recipient) -> Result<RecoverableSignature, ()>;
446 /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
448 /// If the implementor of this trait supports [phantom node payments], then every node that is
449 /// intended to be included in the phantom invoice route hints must return the same value from
451 // This is because LDK avoids storing inbound payment data by encrypting payment data in the
452 // payment hash and/or payment secret, therefore for a payment to be receivable by multiple
453 // nodes, they must share the key that encrypts this payment data.
455 /// This method must return the same value each time it is called.
457 /// [phantom node payments]: PhantomKeysManager
458 fn get_inbound_payment_key_material(&self) -> KeyMaterial;
462 /// A simple implementation of Sign that just keeps the private keys in memory.
464 /// This implementation performs no policy checks and is insufficient by itself as
465 /// a secure external signer.
466 pub struct InMemorySigner {
467 /// Private key of anchor tx
468 pub funding_key: SecretKey,
469 /// Holder secret key for blinded revocation pubkey
470 pub revocation_base_key: SecretKey,
471 /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
472 pub payment_key: SecretKey,
473 /// Holder secret key used in HTLC tx
474 pub delayed_payment_base_key: SecretKey,
475 /// Holder htlc secret key used in commitment tx htlc outputs
476 pub htlc_base_key: SecretKey,
478 pub commitment_seed: [u8; 32],
479 /// Holder public keys and basepoints
480 pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
481 /// Private key of our node secret, used for signing channel announcements
482 node_secret: SecretKey,
483 /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
484 channel_parameters: Option<ChannelTransactionParameters>,
485 /// The total value of this channel
486 channel_value_satoshis: u64,
487 /// Key derivation parameters
488 channel_keys_id: [u8; 32],
491 impl InMemorySigner {
492 /// Create a new InMemorySigner
493 pub fn new<C: Signing>(
494 secp_ctx: &Secp256k1<C>,
495 node_secret: SecretKey,
496 funding_key: SecretKey,
497 revocation_base_key: SecretKey,
498 payment_key: SecretKey,
499 delayed_payment_base_key: SecretKey,
500 htlc_base_key: SecretKey,
501 commitment_seed: [u8; 32],
502 channel_value_satoshis: u64,
503 channel_keys_id: [u8; 32]) -> InMemorySigner {
504 let holder_channel_pubkeys =
505 InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
506 &payment_key, &delayed_payment_base_key,
512 delayed_payment_base_key,
516 channel_value_satoshis,
517 holder_channel_pubkeys,
518 channel_parameters: None,
523 fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
524 funding_key: &SecretKey,
525 revocation_base_key: &SecretKey,
526 payment_key: &SecretKey,
527 delayed_payment_base_key: &SecretKey,
528 htlc_base_key: &SecretKey) -> ChannelPublicKeys {
529 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
531 funding_pubkey: from_secret(&funding_key),
532 revocation_basepoint: from_secret(&revocation_base_key),
533 payment_point: from_secret(&payment_key),
534 delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
535 htlc_basepoint: from_secret(&htlc_base_key),
539 /// Counterparty pubkeys.
540 /// Will panic if ready_channel wasn't called.
541 pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
543 /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
544 /// transactions, ie the amount of time that we have to wait to recover our funds if we
545 /// broadcast a transaction.
546 /// Will panic if ready_channel wasn't called.
547 pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
549 /// The contest_delay value specified by us and applied on transactions broadcastable
550 /// by our counterparty, ie the amount of time that they have to wait to recover their funds
551 /// if they broadcast a transaction.
552 /// Will panic if ready_channel wasn't called.
553 pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
555 /// Whether the holder is the initiator
556 /// Will panic if ready_channel wasn't called.
557 pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
560 /// Will panic if ready_channel wasn't called.
561 pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
563 /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
564 /// building transactions.
566 /// Will panic if ready_channel wasn't called.
567 pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
568 self.channel_parameters.as_ref().unwrap()
571 /// Whether anchors should be used.
572 /// Will panic if ready_channel wasn't called.
573 pub fn opt_anchors(&self) -> bool {
574 self.get_channel_parameters().opt_anchors.is_some()
577 /// Sign the single input of spend_tx at index `input_idx` which spends the output
578 /// described by descriptor, returning the witness stack for the input.
580 /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
581 /// is not spending the outpoint described by `descriptor.outpoint`,
582 /// or if an output descriptor script_pubkey does not match the one we can spend.
583 pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
584 // TODO: We really should be taking the SigHashCache as a parameter here instead of
585 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
586 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
587 // bindings updates to support SigHashCache objects).
588 if spend_tx.input.len() <= input_idx { return Err(()); }
589 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
590 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
592 let remotepubkey = self.pubkeys().payment_point;
593 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Testnet).script_pubkey();
594 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
595 let remotesig = sign(secp_ctx, &sighash, &self.payment_key);
596 let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
598 if payment_script != descriptor.output.script_pubkey { return Err(()); }
600 let mut witness = Vec::with_capacity(2);
601 witness.push(remotesig.serialize_der().to_vec());
602 witness[0].push(EcdsaSighashType::All as u8);
603 witness.push(remotepubkey.serialize().to_vec());
607 /// Sign the single input of spend_tx at index `input_idx` which spends the output
608 /// described by descriptor, returning the witness stack for the input.
610 /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
611 /// is not spending the outpoint described by `descriptor.outpoint`, does not have a
612 /// sequence set to `descriptor.to_self_delay`, or if an output descriptor
613 /// script_pubkey does not match the one we can spend.
614 pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
615 // TODO: We really should be taking the SigHashCache as a parameter here instead of
616 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
617 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
618 // bindings updates to support SigHashCache objects).
619 if spend_tx.input.len() <= input_idx { return Err(()); }
620 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
621 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
622 if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); }
624 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
625 .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
626 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
627 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
628 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
629 let local_delayedsig = sign(secp_ctx, &sighash, &delayed_payment_key);
630 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
632 if descriptor.output.script_pubkey != payment_script { return Err(()); }
634 let mut witness = Vec::with_capacity(3);
635 witness.push(local_delayedsig.serialize_der().to_vec());
636 witness[0].push(EcdsaSighashType::All as u8);
637 witness.push(vec!()); //MINIMALIF
638 witness.push(witness_script.clone().into_bytes());
643 impl BaseSign for InMemorySigner {
644 fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
645 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
646 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
649 fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
650 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
653 fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
657 fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
658 fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
660 fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
661 let trusted_tx = commitment_tx.trust();
662 let keys = trusted_tx.keys();
664 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
665 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
667 let built_tx = trusted_tx.built_transaction();
668 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
669 let commitment_txid = built_tx.txid;
671 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
672 for htlc in commitment_tx.htlcs() {
673 let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
674 let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
675 let htlc_sighashtype = if self.opt_anchors() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
676 let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
677 let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
678 htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
681 Ok((commitment_sig, htlc_sigs))
684 fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
688 fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
689 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
690 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
691 let trusted_tx = commitment_tx.trust();
692 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
693 let channel_parameters = self.get_channel_parameters();
694 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
698 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
699 fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
700 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
701 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
702 let trusted_tx = commitment_tx.trust();
703 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
704 let channel_parameters = self.get_channel_parameters();
705 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
709 fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
710 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
711 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
712 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
713 let witness_script = {
714 let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
715 chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
717 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
718 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
719 return Ok(sign(secp_ctx, &sighash, &revocation_key))
722 fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
723 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
724 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
725 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
726 let witness_script = {
727 let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
728 let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
729 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
731 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
732 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
733 return Ok(sign(secp_ctx, &sighash, &revocation_key))
736 fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
737 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
738 let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
739 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
740 if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
741 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
742 } else { return Err(()) }
743 } else { return Err(()) }
744 } else { return Err(()) };
745 let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
746 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
747 return Ok(sign(secp_ctx, &sighash, &htlc_key))
752 fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
753 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
754 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
755 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
758 fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
759 -> Result<(Signature, Signature), ()> {
760 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
761 Ok((sign(secp_ctx, &msghash, &self.node_secret), sign(secp_ctx, &msghash, &self.funding_key)))
764 fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
765 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
766 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
767 self.channel_parameters = Some(channel_parameters.clone());
771 const SERIALIZATION_VERSION: u8 = 1;
772 const MIN_SERIALIZATION_VERSION: u8 = 1;
774 impl Sign for InMemorySigner {}
776 impl Writeable for InMemorySigner {
777 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
778 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
780 self.funding_key.write(writer)?;
781 self.revocation_base_key.write(writer)?;
782 self.payment_key.write(writer)?;
783 self.delayed_payment_base_key.write(writer)?;
784 self.htlc_base_key.write(writer)?;
785 self.commitment_seed.write(writer)?;
786 self.channel_parameters.write(writer)?;
787 self.channel_value_satoshis.write(writer)?;
788 self.channel_keys_id.write(writer)?;
790 write_tlv_fields!(writer, {});
796 impl ReadableArgs<SecretKey> for InMemorySigner {
797 fn read<R: io::Read>(reader: &mut R, node_secret: SecretKey) -> Result<Self, DecodeError> {
798 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
800 let funding_key = Readable::read(reader)?;
801 let revocation_base_key = Readable::read(reader)?;
802 let payment_key = Readable::read(reader)?;
803 let delayed_payment_base_key = Readable::read(reader)?;
804 let htlc_base_key = Readable::read(reader)?;
805 let commitment_seed = Readable::read(reader)?;
806 let counterparty_channel_data = Readable::read(reader)?;
807 let channel_value_satoshis = Readable::read(reader)?;
808 let secp_ctx = Secp256k1::signing_only();
809 let holder_channel_pubkeys =
810 InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
811 &payment_key, &delayed_payment_base_key,
813 let keys_id = Readable::read(reader)?;
815 read_tlv_fields!(reader, {});
821 delayed_payment_base_key,
825 channel_value_satoshis,
826 holder_channel_pubkeys,
827 channel_parameters: counterparty_channel_data,
828 channel_keys_id: keys_id,
833 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
834 /// and derives keys from that.
836 /// Your node_id is seed/0'
837 /// ChannelMonitor closes may use seed/1'
838 /// Cooperative closes may use seed/2'
839 /// The two close keys may be needed to claim on-chain funds!
841 /// This struct cannot be used for nodes that wish to support receiving phantom payments;
842 /// [`PhantomKeysManager`] must be used instead.
844 /// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
845 /// previously issued invoices and attempts to pay previous invoices will fail.
846 pub struct KeysManager {
847 secp_ctx: Secp256k1<secp256k1::All>,
848 node_secret: SecretKey,
849 inbound_payment_key: KeyMaterial,
850 destination_script: Script,
851 shutdown_pubkey: PublicKey,
852 channel_master_key: ExtendedPrivKey,
853 channel_child_index: AtomicUsize,
855 rand_bytes_master_key: ExtendedPrivKey,
856 rand_bytes_child_index: AtomicUsize,
857 rand_bytes_unique_start: Sha256State,
860 starting_time_secs: u64,
861 starting_time_nanos: u32,
865 /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
866 /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
867 /// starting_time isn't strictly required to actually be a time, but it must absolutely,
868 /// without a doubt, be unique to this instance. ie if you start multiple times with the same
869 /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
870 /// simply use the current time (with very high precision).
872 /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
873 /// obviously, starting_time should be unique every time you reload the library - it is only
874 /// used to generate new ephemeral key data (which will be stored by the individual channel if
877 /// Note that the seed is required to recover certain on-chain funds independent of
878 /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
879 /// channel, and some on-chain during-closing funds.
881 /// Note that until the 0.1 release there is no guarantee of backward compatibility between
882 /// versions. Once the library is more fully supported, the docs will be updated to include a
883 /// detailed description of the guarantee.
884 pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
885 let secp_ctx = Secp256k1::new();
886 // Note that when we aren't serializing the key, network doesn't matter
887 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
889 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
890 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
891 Ok(destination_key) => {
892 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
893 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
894 .push_slice(&wpubkey_hash.into_inner())
897 Err(_) => panic!("Your RNG is busted"),
899 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
900 Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
901 Err(_) => panic!("Your RNG is busted"),
903 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
904 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
905 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
906 let mut inbound_pmt_key_bytes = [0; 32];
907 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
909 let mut rand_bytes_unique_start = Sha256::engine();
910 rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
911 rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
912 rand_bytes_unique_start.input(seed);
914 let mut res = KeysManager {
917 inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
923 channel_child_index: AtomicUsize::new(0),
925 rand_bytes_master_key,
926 rand_bytes_child_index: AtomicUsize::new(0),
927 rand_bytes_unique_start,
933 let secp_seed = res.get_secure_random_bytes();
934 res.secp_ctx.seeded_randomize(&secp_seed);
937 Err(_) => panic!("Your rng is busted"),
940 /// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
942 /// Key derivation parameters are accessible through a per-channel secrets
943 /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
944 /// onchain output detection for which a corresponding delayed_payment_key must be derived.
945 pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
946 let chan_id = byte_utils::slice_to_be64(¶ms[0..8]);
947 assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
948 let mut unique_start = Sha256::engine();
949 unique_start.input(params);
950 unique_start.input(&self.seed);
952 // We only seriously intend to rely on the channel_master_key for true secure
953 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
954 // starting_time provided in the constructor) to be unique.
955 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
956 unique_start.input(&child_privkey.private_key[..]);
958 let seed = Sha256::from_engine(unique_start).into_inner();
960 let commitment_seed = {
961 let mut sha = Sha256::engine();
963 sha.input(&b"commitment seed"[..]);
964 Sha256::from_engine(sha).into_inner()
966 macro_rules! key_step {
967 ($info: expr, $prev_key: expr) => {{
968 let mut sha = Sha256::engine();
970 sha.input(&$prev_key[..]);
971 sha.input(&$info[..]);
972 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
975 let funding_key = key_step!(b"funding key", commitment_seed);
976 let revocation_base_key = key_step!(b"revocation base key", funding_key);
977 let payment_key = key_step!(b"payment key", revocation_base_key);
978 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
979 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
987 delayed_payment_base_key,
990 channel_value_satoshis,
995 /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
996 /// output to the given change destination (if sufficient change value remains). The
997 /// transaction will have a feerate, at least, of the given value.
999 /// Returns `Err(())` if the output value is greater than the input value minus required fee,
1000 /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
1001 /// does not match the one we can spend.
1003 /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
1005 /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
1006 /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
1007 pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1008 let mut input = Vec::new();
1009 let mut input_value = 0;
1010 let mut witness_weight = 0;
1011 let mut output_set = HashSet::with_capacity(descriptors.len());
1012 for outp in descriptors {
1014 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1016 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1017 script_sig: Script::new(),
1019 witness: Witness::new(),
1021 witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1022 input_value += descriptor.output.value;
1023 if !output_set.insert(descriptor.outpoint) { return Err(()); }
1025 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1027 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1028 script_sig: Script::new(),
1029 sequence: descriptor.to_self_delay as u32,
1030 witness: Witness::new(),
1032 witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1033 input_value += descriptor.output.value;
1034 if !output_set.insert(descriptor.outpoint) { return Err(()); }
1036 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
1038 previous_output: outpoint.into_bitcoin_outpoint(),
1039 script_sig: Script::new(),
1041 witness: Witness::new(),
1043 witness_weight += 1 + 73 + 34;
1044 input_value += output.value;
1045 if !output_set.insert(*outpoint) { return Err(()); }
1048 if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
1050 let mut spend_tx = Transaction {
1056 let expected_max_weight =
1057 transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
1059 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1060 let mut input_idx = 0;
1061 for outp in descriptors {
1063 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1064 if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1066 self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1067 descriptor.channel_keys_id));
1069 spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1071 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1072 if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1074 self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1075 descriptor.channel_keys_id));
1077 spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1079 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
1080 let derivation_idx = if output.script_pubkey == self.destination_script {
1086 // Note that when we aren't serializing the key, network doesn't matter
1087 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1089 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1091 Err(_) => panic!("Your RNG is busted"),
1094 Err(_) => panic!("Your rng is busted"),
1097 let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub();
1098 if derivation_idx == 2 {
1099 assert_eq!(pubkey.inner, self.shutdown_pubkey);
1101 let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1102 let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1104 if payment_script != output.script_pubkey { return Err(()); };
1106 let sighash = hash_to_message!(&sighash::SighashCache::new(&spend_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
1107 let sig = sign(secp_ctx, &sighash, &secret.private_key);
1108 let mut sig_ser = sig.serialize_der().to_vec();
1109 sig_ser.push(EcdsaSighashType::All as u8);
1110 spend_tx.input[input_idx].witness.push(sig_ser);
1111 spend_tx.input[input_idx].witness.push(pubkey.inner.serialize().to_vec());
1117 debug_assert!(expected_max_weight >= spend_tx.weight());
1118 // Note that witnesses with a signature vary somewhat in size, so allow
1119 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1120 debug_assert!(expected_max_weight <= spend_tx.weight() + descriptors.len() * 3);
1126 impl KeysInterface for KeysManager {
1127 type Signer = InMemorySigner;
1129 fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
1131 Recipient::Node => Ok(self.node_secret.clone()),
1132 Recipient::PhantomNode => Err(())
1136 fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1137 self.inbound_payment_key.clone()
1140 fn get_destination_script(&self) -> Script {
1141 self.destination_script.clone()
1144 fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1145 ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
1148 fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1149 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1150 assert!(child_ix <= core::u32::MAX as usize);
1151 let mut id = [0; 32];
1152 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1153 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1154 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1155 self.derive_channel_keys(channel_value_satoshis, &id)
1158 fn get_secure_random_bytes(&self) -> [u8; 32] {
1159 let mut sha = self.rand_bytes_unique_start.clone();
1161 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1162 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1163 sha.input(&child_privkey.private_key[..]);
1165 sha.input(b"Unique Secure Random Bytes Salt");
1166 Sha256::from_engine(sha).into_inner()
1169 fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1170 InMemorySigner::read(&mut io::Cursor::new(reader), self.node_secret.clone())
1173 fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1174 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1175 let secret = match recipient {
1176 Recipient::Node => self.get_node_secret(Recipient::Node)?,
1177 Recipient::PhantomNode => return Err(()),
1179 Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
1183 /// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
1186 /// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
1187 /// paid to one of multiple nodes. This works because we encode the invoice route hints such that
1188 /// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
1189 /// itself without ever needing to forward to this fake node.
1191 /// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
1192 /// provide some fault tolerance, because payers will automatically retry paying other provided
1193 /// nodes in the case that one node goes down.
1195 /// Note that multi-path payments are not supported in phantom invoices for security reasons.
1196 // In the hypothetical case that we did support MPP phantom payments, there would be no way for
1197 // nodes to know when the full payment has been received (and the preimage can be released) without
1198 // significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
1199 // to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
1200 // is released too early.
1202 /// Switching between this struct and [`KeysManager`] will invalidate any previously issued
1203 /// invoices and attempts to pay previous invoices will fail.
1204 pub struct PhantomKeysManager {
1206 inbound_payment_key: KeyMaterial,
1207 phantom_secret: SecretKey,
1210 impl KeysInterface for PhantomKeysManager {
1211 type Signer = InMemorySigner;
1213 fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
1215 Recipient::Node => self.inner.get_node_secret(Recipient::Node),
1216 Recipient::PhantomNode => Ok(self.phantom_secret.clone()),
1220 fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1221 self.inbound_payment_key.clone()
1224 fn get_destination_script(&self) -> Script {
1225 self.inner.get_destination_script()
1228 fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1229 self.inner.get_shutdown_scriptpubkey()
1232 fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1233 self.inner.get_channel_signer(inbound, channel_value_satoshis)
1236 fn get_secure_random_bytes(&self) -> [u8; 32] {
1237 self.inner.get_secure_random_bytes()
1240 fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1241 self.inner.read_chan_signer(reader)
1244 fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1245 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1246 let secret = self.get_node_secret(recipient)?;
1247 Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
1251 impl PhantomKeysManager {
1252 /// Constructs a `PhantomKeysManager` given a 32-byte seed and an additional `cross_node_seed`
1253 /// that is shared across all nodes that intend to participate in [phantom node payments] together.
1255 /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
1256 /// `starting_time_nanos`.
1258 /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
1259 /// same across restarts, or else inbound payments may fail.
1261 /// [phantom node payments]: PhantomKeysManager
1262 pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
1263 let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
1264 let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
1267 inbound_payment_key: KeyMaterial(inbound_key),
1268 phantom_secret: SecretKey::from_slice(&phantom_key).unwrap(),
1272 /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
1273 pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1274 self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx)
1277 /// See [`KeysManager::derive_channel_keys`] for documentation on this method.
1278 pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1279 self.inner.derive_channel_keys(channel_value_satoshis, params)
1283 // Ensure that BaseSign can have a vtable
1286 let _signer: Box<dyn BaseSign>;