Drop stale and cleanup TODO entries in keysinterface
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::hashes::{Hash, HashEngine};
22 use bitcoin::hashes::sha256::HashEngine as Sha256State;
23 use bitcoin::hashes::sha256::Hash as Sha256;
24 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
25 use bitcoin::hash_types::WPubkeyHash;
26
27 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
28 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
29 use bitcoin::secp256k1;
30
31 use util::{byte_utils, transaction_utils};
32 use util::ser::{Writeable, Writer, Readable};
33
34 use chain::transaction::OutPoint;
35 use ln::chan_utils;
36 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction};
37 use ln::msgs::UnsignedChannelAnnouncement;
38
39 use std::collections::HashSet;
40 use std::sync::atomic::{AtomicUsize, Ordering};
41 use std::io::Error;
42 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
43
44 /// Information about a spendable output to a P2WSH script. See
45 /// SpendableOutputDescriptor::DynamicOutputP2WSH for more details on how to spend this.
46 #[derive(Clone, Debug, PartialEq)]
47 pub struct DynamicP2WSHOutputDescriptor {
48         /// The outpoint which is spendable
49         pub outpoint: OutPoint,
50         /// Per commitment point to derive delayed_payment_key by key holder
51         pub per_commitment_point: PublicKey,
52         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
53         /// the witness_script.
54         pub to_self_delay: u16,
55         /// The output which is referenced by the given outpoint
56         pub output: TxOut,
57         /// The revocation_pubkey used to derive witnessScript
58         pub revocation_pubkey: PublicKey,
59         /// Arbitrary identification information returned by a call to
60         /// `ChannelKeys::channel_keys_id()`. This may be useful in re-deriving keys used in
61         /// the channel to spend the output.
62         pub channel_keys_id: [u8; 32],
63         /// The value of the channel which this output originated from, possibly indirectly.
64         pub channel_value_satoshis: u64,
65 }
66 impl DynamicP2WSHOutputDescriptor {
67         /// The maximum length a well-formed witness spending one of these should have.
68         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
69         // redeemscript push length.
70         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
71 }
72
73 /// Information about a spendable output to our "payment key". See
74 /// SpendableOutputDescriptor::StaticOutputCounterpartyPayment for more details on how to spend this.
75 #[derive(Clone, Debug, PartialEq)]
76 pub struct StaticCounterpartyPaymentOutputDescriptor {
77         /// The outpoint which is spendable
78         pub outpoint: OutPoint,
79         /// The output which is referenced by the given outpoint
80         pub output: TxOut,
81         /// Arbitrary identification information returned by a call to
82         /// `ChannelKeys::channel_keys_id()`. This may be useful in re-deriving keys used in
83         /// the channel to spend the output.
84         pub channel_keys_id: [u8; 32],
85         /// The value of the channel which this transactions spends.
86         pub channel_value_satoshis: u64,
87 }
88 impl StaticCounterpartyPaymentOutputDescriptor {
89         /// The maximum length a well-formed witness spending one of these should have.
90         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
91         // redeemscript push length.
92         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
93 }
94
95 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
96 /// claim at any point in the future) an event is generated which you must track and be able to
97 /// spend on-chain. The information needed to do this is provided in this enum, including the
98 /// outpoint describing which txid and output index is available, the full output which exists at
99 /// that txid/index, and any keys or other information required to sign.
100 #[derive(Clone, Debug, PartialEq)]
101 pub enum SpendableOutputDescriptor {
102         /// An output to a script which was provided via KeysInterface directly, either from
103         /// `get_destination_script()` or `get_shutdown_pubkey()`, thus you should already know how to
104         /// spend it. No secret keys are provided as rust-lightning was never given any key.
105         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
106         /// on-chain using the payment preimage or after it has timed out.
107         StaticOutput {
108                 /// The outpoint which is spendable
109                 outpoint: OutPoint,
110                 /// The output which is referenced by the given outpoint.
111                 output: TxOut,
112         },
113         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
114         ///
115         /// The witness in the spending input should be:
116         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
117         ///
118         /// Note that the nSequence field in the spending input must be set to to_self_delay
119         /// (which means the transaction is not broadcastable until at least to_self_delay
120         /// blocks after the outpoint confirms).
121         ///
122         /// These are generally the result of a "revocable" output to us, spendable only by us unless
123         /// it is an output from an old state which we broadcast (which should never happen).
124         ///
125         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
126         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
127         /// ChannelKeys::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
128         /// chan_utils::derive_private_key. The public key can be generated without the secret key
129         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
130         /// ChannelKeys::pubkeys().
131         ///
132         /// To derive the revocation_pubkey provided here (which is used in the witness
133         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
134         /// call to ChannelKeys::ready_channel) and the provided per_commitment point
135         /// to chan_utils::derive_public_revocation_key.
136         ///
137         /// The witness script which is hashed and included in the output script_pubkey may be
138         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
139         /// (derived as above), and the to_self_delay contained here to
140         /// chan_utils::get_revokeable_redeemscript.
141         DynamicOutputP2WSH(DynamicP2WSHOutputDescriptor),
142         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
143         /// corresponds to the public key in ChannelKeys::pubkeys().payment_point).
144         /// The witness in the spending input, is, thus, simply:
145         /// <BIP 143 signature> <payment key>
146         ///
147         /// These are generally the result of our counterparty having broadcast the current state,
148         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
149         StaticOutputCounterpartyPayment(StaticCounterpartyPaymentOutputDescriptor),
150 }
151
152 impl Writeable for SpendableOutputDescriptor {
153         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
154                 match self {
155                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
156                                 0u8.write(writer)?;
157                                 outpoint.write(writer)?;
158                                 output.write(writer)?;
159                         },
160                         &SpendableOutputDescriptor::DynamicOutputP2WSH(ref descriptor) => {
161                                 1u8.write(writer)?;
162                                 descriptor.outpoint.write(writer)?;
163                                 descriptor.per_commitment_point.write(writer)?;
164                                 descriptor.to_self_delay.write(writer)?;
165                                 descriptor.output.write(writer)?;
166                                 descriptor.revocation_pubkey.write(writer)?;
167                                 descriptor.channel_keys_id.write(writer)?;
168                                 descriptor.channel_value_satoshis.write(writer)?;
169                         },
170                         &SpendableOutputDescriptor::StaticOutputCounterpartyPayment(ref descriptor) => {
171                                 2u8.write(writer)?;
172                                 descriptor.outpoint.write(writer)?;
173                                 descriptor.output.write(writer)?;
174                                 descriptor.channel_keys_id.write(writer)?;
175                                 descriptor.channel_value_satoshis.write(writer)?;
176                         },
177                 }
178                 Ok(())
179         }
180 }
181
182 impl Readable for SpendableOutputDescriptor {
183         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
184                 match Readable::read(reader)? {
185                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
186                                 outpoint: Readable::read(reader)?,
187                                 output: Readable::read(reader)?,
188                         }),
189                         1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH(DynamicP2WSHOutputDescriptor {
190                                 outpoint: Readable::read(reader)?,
191                                 per_commitment_point: Readable::read(reader)?,
192                                 to_self_delay: Readable::read(reader)?,
193                                 output: Readable::read(reader)?,
194                                 revocation_pubkey: Readable::read(reader)?,
195                                 channel_keys_id: Readable::read(reader)?,
196                                 channel_value_satoshis: Readable::read(reader)?,
197                         })),
198                         2u8 => Ok(SpendableOutputDescriptor::StaticOutputCounterpartyPayment(StaticCounterpartyPaymentOutputDescriptor {
199                                 outpoint: Readable::read(reader)?,
200                                 output: Readable::read(reader)?,
201                                 channel_keys_id: Readable::read(reader)?,
202                                 channel_value_satoshis: Readable::read(reader)?,
203                         })),
204                         _ => Err(DecodeError::InvalidValue),
205                 }
206         }
207 }
208
209 /// Set of lightning keys needed to operate a channel as described in BOLT 3.
210 ///
211 /// Signing services could be implemented on a hardware wallet. In this case,
212 /// the current ChannelKeys would be a front-end on top of a communication
213 /// channel connected to your secure device and lightning key material wouldn't
214 /// reside on a hot server. Nevertheless, a this deployment would still need
215 /// to trust the ChannelManager to avoid loss of funds as this latest component
216 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
217 ///
218 /// A more secure iteration would be to use hashlock (or payment points) to pair
219 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
220 /// at the price of more state and computation on the hardware wallet side. In the future,
221 /// we are looking forward to design such interface.
222 ///
223 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
224 /// to act, as liveness and breach reply correctness are always going to be hard requirements
225 /// of LN security model, orthogonal of key management issues.
226 // TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
227 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
228 pub trait ChannelKeys : Send+Clone + Writeable {
229         /// Gets the per-commitment point for a specific commitment number
230         ///
231         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
232         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey;
233         /// Gets the commitment secret for a specific commitment number as part of the revocation process
234         ///
235         /// An external signer implementation should error here if the commitment was already signed
236         /// and should refuse to sign it in the future.
237         ///
238         /// May be called more than once for the same index.
239         ///
240         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
241         // TODO: return a Result so we can signal a validation error
242         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
243         /// Gets the holder's channel public keys and basepoints
244         fn pubkeys(&self) -> &ChannelPublicKeys;
245         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
246         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
247         /// ChannelKeys object uniquely and lookup or re-derive its keys.
248         fn channel_keys_id(&self) -> [u8; 32];
249
250         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
251         ///
252         /// Note that if signing fails or is rejected, the channel will be force-closed.
253         //
254         // TODO: Document the things someone using this interface should enforce before signing.
255         fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
256
257         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
258         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
259         /// latest commitment_tx when we initiate a force-close.
260         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
261         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
262         /// the latest.
263         /// This may be called multiple times for the same transaction.
264         ///
265         /// An external signer implementation should check that the commitment has not been revoked.
266         ///
267         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
268         //
269         // TODO: Document the things someone using this interface should enforce before signing.
270         // TODO: Key derivation failure should panic rather than Err
271         fn sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
272
273         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
274         /// transactions which will be broadcasted later, after the channel has moved on to a newer
275         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
276         /// get called once.
277         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
278         fn unsafe_sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
279
280         /// Create a signature for the given input in a transaction spending an HTLC or commitment
281         /// transaction output when our counterparty broadcasts an old state.
282         ///
283         /// A justice transaction may claim multiples outputs at the same time if timelocks are
284         /// similar, but only a signature for the input at index `input` should be signed for here.
285         /// It may be called multiples time for same output(s) if a fee-bump is needed with regards
286         /// to an upcoming timelock expiration.
287         ///
288         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
289         ///
290         /// per_commitment_key is revocation secret which was provided by our counterparty when they
291         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
292         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
293         /// so).
294         ///
295         /// htlc holds HTLC elements (hash, timelock) if the output being spent is a HTLC output, thus
296         /// changing the format of the witness script (which is committed to in the BIP 143
297         /// signatures).
298         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
299
300         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
301         /// transaction, either offered or received.
302         ///
303         /// Such a transaction may claim multiples offered outputs at same time if we know the
304         /// preimage for each when we create it, but only the input at index `input` should be
305         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
306         /// needed with regards to an upcoming timelock expiration.
307         ///
308         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
309         /// outputs.
310         ///
311         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
312         ///
313         /// Per_commitment_point is the dynamic point corresponding to the channel state
314         /// detected onchain. It has been generated by our counterparty and is used to derive
315         /// channel state keys, which are then included in the witness script and committed to in the
316         /// BIP 143 signature.
317         fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
318
319         /// Create a signature for a (proposed) closing transaction.
320         ///
321         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
322         /// chosen to forgo their output as dust.
323         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
324
325         /// Signs a channel announcement message with our funding key, proving it comes from one
326         /// of the channel participants.
327         ///
328         /// Note that if this fails or is rejected, the channel will not be publicly announced and
329         /// our counterparty may (though likely will not) close the channel on us for violating the
330         /// protocol.
331         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
332
333         /// Set the counterparty static channel data, including basepoints,
334         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
335         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
336         /// they MUST NOT be allowed to change to different values once set.
337         ///
338         /// channel_parameters.is_populated() MUST be true.
339         ///
340         /// We bind holder_selected_contest_delay late here for API convenience.
341         ///
342         /// Will be called before any signatures are applied.
343         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
344 }
345
346 /// A trait to describe an object which can get user secrets and key material.
347 pub trait KeysInterface: Send + Sync {
348         /// A type which implements ChannelKeys which will be returned by get_channel_keys.
349         type ChanKeySigner : ChannelKeys;
350
351         /// Get node secret key (aka node_id or network_key).
352         ///
353         /// This method must return the same value each time it is called.
354         fn get_node_secret(&self) -> SecretKey;
355         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
356         ///
357         /// This method should return a different value each time it is called, to avoid linking
358         /// on-chain funds across channels as controlled to the same user.
359         fn get_destination_script(&self) -> Script;
360         /// Get a public key which we will send funds to (in the form of a P2WPKH output) when closing
361         /// a channel.
362         ///
363         /// This method should return a different value each time it is called, to avoid linking
364         /// on-chain funds across channels as controlled to the same user.
365         fn get_shutdown_pubkey(&self) -> PublicKey;
366         /// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
367         /// restarted with some stale data!
368         ///
369         /// This method must return a different value each time it is called.
370         fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
371         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
372         /// onion packets and for temporary channel IDs. There is no requirement that these be
373         /// persisted anywhere, though they must be unique across restarts.
374         ///
375         /// This method must return a different value each time it is called.
376         fn get_secure_random_bytes(&self) -> [u8; 32];
377
378         /// Reads a `ChanKeySigner` for this `KeysInterface` from the given input stream.
379         /// This is only called during deserialization of other objects which contain
380         /// `ChannelKeys`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
381         /// The bytes are exactly those which `<Self::ChanKeySigner as Writeable>::write()` writes, and
382         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
383         /// you've read all of the provided bytes to ensure no corruption occurred.
384         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::ChanKeySigner, DecodeError>;
385 }
386
387 #[derive(Clone)]
388 /// A simple implementation of ChannelKeys that just keeps the private keys in memory.
389 ///
390 /// This implementation performs no policy checks and is insufficient by itself as
391 /// a secure external signer.
392 pub struct InMemoryChannelKeys {
393         /// Private key of anchor tx
394         pub funding_key: SecretKey,
395         /// Holder secret key for blinded revocation pubkey
396         pub revocation_base_key: SecretKey,
397         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
398         pub payment_key: SecretKey,
399         /// Holder secret key used in HTLC tx
400         pub delayed_payment_base_key: SecretKey,
401         /// Holder htlc secret key used in commitment tx htlc outputs
402         pub htlc_base_key: SecretKey,
403         /// Commitment seed
404         pub commitment_seed: [u8; 32],
405         /// Holder public keys and basepoints
406         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
407         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
408         channel_parameters: Option<ChannelTransactionParameters>,
409         /// The total value of this channel
410         channel_value_satoshis: u64,
411         /// Key derivation parameters
412         channel_keys_id: [u8; 32],
413 }
414
415 impl InMemoryChannelKeys {
416         /// Create a new InMemoryChannelKeys
417         pub fn new<C: Signing>(
418                 secp_ctx: &Secp256k1<C>,
419                 funding_key: SecretKey,
420                 revocation_base_key: SecretKey,
421                 payment_key: SecretKey,
422                 delayed_payment_base_key: SecretKey,
423                 htlc_base_key: SecretKey,
424                 commitment_seed: [u8; 32],
425                 channel_value_satoshis: u64,
426                 channel_keys_id: [u8; 32]) -> InMemoryChannelKeys {
427                 let holder_channel_pubkeys =
428                         InMemoryChannelKeys::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
429                                                              &payment_key, &delayed_payment_base_key,
430                                                              &htlc_base_key);
431                 InMemoryChannelKeys {
432                         funding_key,
433                         revocation_base_key,
434                         payment_key,
435                         delayed_payment_base_key,
436                         htlc_base_key,
437                         commitment_seed,
438                         channel_value_satoshis,
439                         holder_channel_pubkeys,
440                         channel_parameters: None,
441                         channel_keys_id,
442                 }
443         }
444
445         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
446                                        funding_key: &SecretKey,
447                                        revocation_base_key: &SecretKey,
448                                        payment_key: &SecretKey,
449                                        delayed_payment_base_key: &SecretKey,
450                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
451                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
452                 ChannelPublicKeys {
453                         funding_pubkey: from_secret(&funding_key),
454                         revocation_basepoint: from_secret(&revocation_base_key),
455                         payment_point: from_secret(&payment_key),
456                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
457                         htlc_basepoint: from_secret(&htlc_base_key),
458                 }
459         }
460
461         /// Counterparty pubkeys.
462         /// Will panic if ready_channel wasn't called.
463         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
464
465         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
466         /// transactions, ie the amount of time that we have to wait to recover our funds if we
467         /// broadcast a transaction.
468         /// Will panic if ready_channel wasn't called.
469         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
470
471         /// The contest_delay value specified by us and applied on transactions broadcastable
472         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
473         /// if they broadcast a transaction.
474         /// Will panic if ready_channel wasn't called.
475         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
476
477         /// Whether the holder is the initiator
478         /// Will panic if ready_channel wasn't called.
479         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
480
481         /// Funding outpoint
482         /// Will panic if ready_channel wasn't called.
483         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
484
485         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
486         /// building transactions.
487         ///
488         /// Will panic if ready_channel wasn't called.
489         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
490                 self.channel_parameters.as_ref().unwrap()
491         }
492
493         /// Sign the single input of spend_tx at index `input_idx` which spends the output
494         /// described by descriptor, returning the witness stack for the input.
495         ///
496         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
497         /// or is not spending the outpoint described by `descriptor.outpoint`.
498         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticCounterpartyPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
499                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
500                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
501                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
502                 // bindings updates to support SigHashCache objects).
503                 if spend_tx.input.len() <= input_idx { return Err(()); }
504                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
505                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
506
507                 let remotepubkey = self.pubkeys().payment_point;
508                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey();
509                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
510                 let remotesig = secp_ctx.sign(&sighash, &self.payment_key);
511
512                 let mut witness = Vec::with_capacity(2);
513                 witness.push(remotesig.serialize_der().to_vec());
514                 witness[0].push(SigHashType::All as u8);
515                 witness.push(remotepubkey.serialize().to_vec());
516                 Ok(witness)
517         }
518
519         /// Sign the single input of spend_tx at index `input_idx` which spends the output
520         /// described by descriptor, returning the witness stack for the input.
521         ///
522         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
523         /// is not spending the outpoint described by `descriptor.outpoint`, or does not have a
524         /// sequence set to `descriptor.to_self_delay`.
525         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DynamicP2WSHOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
526                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
527                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
528                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
529                 // bindings updates to support SigHashCache objects).
530                 if spend_tx.input.len() <= input_idx { return Err(()); }
531                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
532                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
533                 if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); }
534
535                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
536                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
537                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
538                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
539                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
540                 let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key);
541
542                 let mut witness = Vec::with_capacity(3);
543                 witness.push(local_delayedsig.serialize_der().to_vec());
544                 witness[0].push(SigHashType::All as u8);
545                 witness.push(vec!()); //MINIMALIF
546                 witness.push(witness_script.clone().into_bytes());
547                 Ok(witness)
548         }
549 }
550
551 impl ChannelKeys for InMemoryChannelKeys {
552         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey {
553                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
554                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
555         }
556
557         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
558                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
559         }
560
561         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
562         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
563
564         fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
565                 let trusted_tx = commitment_tx.trust();
566                 let keys = trusted_tx.keys();
567
568                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
569                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
570
571                 let built_tx = trusted_tx.built_transaction();
572                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
573                 let commitment_txid = built_tx.txid;
574
575                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
576                 for htlc in commitment_tx.htlcs() {
577                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
578                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
579                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
580                         let holder_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
581                                 Ok(s) => s,
582                                 Err(_) => return Err(()),
583                         };
584                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
585                 }
586
587                 Ok((commitment_sig, htlc_sigs))
588         }
589
590         fn sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
591                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
592                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
593                 let trusted_tx = commitment_tx.trust();
594                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
595                 let channel_parameters = self.get_channel_parameters();
596                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
597                 Ok((sig, htlc_sigs))
598         }
599
600         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
601         fn unsafe_sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
602                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
603                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
604                 let trusted_tx = commitment_tx.trust();
605                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
606                 let channel_parameters = self.get_channel_parameters();
607                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
608                 Ok((sig, htlc_sigs))
609         }
610
611         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
612                 let revocation_key = match chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
613                         Ok(revocation_key) => revocation_key,
614                         Err(_) => return Err(())
615                 };
616                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
617                 let revocation_pubkey = match chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
618                         Ok(revocation_pubkey) => revocation_pubkey,
619                         Err(_) => return Err(())
620                 };
621                 let witness_script = if let &Some(ref htlc) = htlc {
622                         let counterparty_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
623                                 Ok(counterparty_htlcpubkey) => counterparty_htlcpubkey,
624                                 Err(_) => return Err(())
625                         };
626                         let holder_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
627                                 Ok(holder_htlcpubkey) => holder_htlcpubkey,
628                                 Err(_) => return Err(())
629                         };
630                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
631                 } else {
632                         let counterparty_delayedpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint) {
633                                 Ok(counterparty_delayedpubkey) => counterparty_delayedpubkey,
634                                 Err(_) => return Err(())
635                         };
636                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
637                 };
638                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
639                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
640                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
641         }
642
643         fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
644                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
645                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
646                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
647                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
648                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
649                                         } else { return Err(()) }
650                                 } else { return Err(()) }
651                         } else { return Err(()) };
652                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
653                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
654                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
655                 }
656                 Err(())
657         }
658
659         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
660                 if closing_tx.input.len() != 1 { return Err(()); }
661                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
662                 if closing_tx.output.len() > 2 { return Err(()); }
663
664                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
665                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
666
667                 let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
668                         .signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
669                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
670         }
671
672         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
673                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
674                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
675         }
676
677         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
678                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
679                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
680                 self.channel_parameters = Some(channel_parameters.clone());
681         }
682 }
683
684 impl Writeable for InMemoryChannelKeys {
685         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
686                 self.funding_key.write(writer)?;
687                 self.revocation_base_key.write(writer)?;
688                 self.payment_key.write(writer)?;
689                 self.delayed_payment_base_key.write(writer)?;
690                 self.htlc_base_key.write(writer)?;
691                 self.commitment_seed.write(writer)?;
692                 self.channel_parameters.write(writer)?;
693                 self.channel_value_satoshis.write(writer)?;
694                 self.channel_keys_id.write(writer)?;
695
696                 Ok(())
697         }
698 }
699
700 impl Readable for InMemoryChannelKeys {
701         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
702                 let funding_key = Readable::read(reader)?;
703                 let revocation_base_key = Readable::read(reader)?;
704                 let payment_key = Readable::read(reader)?;
705                 let delayed_payment_base_key = Readable::read(reader)?;
706                 let htlc_base_key = Readable::read(reader)?;
707                 let commitment_seed = Readable::read(reader)?;
708                 let counterparty_channel_data = Readable::read(reader)?;
709                 let channel_value_satoshis = Readable::read(reader)?;
710                 let secp_ctx = Secp256k1::signing_only();
711                 let holder_channel_pubkeys =
712                         InMemoryChannelKeys::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
713                                                              &payment_key, &delayed_payment_base_key,
714                                                              &htlc_base_key);
715                 let keys_id = Readable::read(reader)?;
716
717                 Ok(InMemoryChannelKeys {
718                         funding_key,
719                         revocation_base_key,
720                         payment_key,
721                         delayed_payment_base_key,
722                         htlc_base_key,
723                         commitment_seed,
724                         channel_value_satoshis,
725                         holder_channel_pubkeys,
726                         channel_parameters: counterparty_channel_data,
727                         channel_keys_id: keys_id,
728                 })
729         }
730 }
731
732 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
733 /// and derives keys from that.
734 ///
735 /// Your node_id is seed/0'
736 /// ChannelMonitor closes may use seed/1'
737 /// Cooperative closes may use seed/2'
738 /// The two close keys may be needed to claim on-chain funds!
739 pub struct KeysManager {
740         secp_ctx: Secp256k1<secp256k1::SignOnly>,
741         node_secret: SecretKey,
742         destination_script: Script,
743         shutdown_pubkey: PublicKey,
744         channel_master_key: ExtendedPrivKey,
745         channel_child_index: AtomicUsize,
746         rand_bytes_master_key: ExtendedPrivKey,
747         rand_bytes_child_index: AtomicUsize,
748
749         seed: [u8; 32],
750         starting_time_secs: u64,
751         starting_time_nanos: u32,
752 }
753
754 impl KeysManager {
755         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
756         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
757         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
758         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
759         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
760         /// simply use the current time (with very high precision).
761         ///
762         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
763         /// obviously, starting_time should be unique every time you reload the library - it is only
764         /// used to generate new ephemeral key data (which will be stored by the individual channel if
765         /// necessary).
766         ///
767         /// Note that the seed is required to recover certain on-chain funds independent of
768         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
769         /// channel, and some on-chain during-closing funds.
770         ///
771         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
772         /// versions. Once the library is more fully supported, the docs will be updated to include a
773         /// detailed description of the guarantee.
774         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
775                 let secp_ctx = Secp256k1::signing_only();
776                 // Note that when we aren't serializing the key, network doesn't matter
777                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
778                         Ok(master_key) => {
779                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
780                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
781                                         Ok(destination_key) => {
782                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
783                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
784                                                               .push_slice(&wpubkey_hash.into_inner())
785                                                               .into_script()
786                                         },
787                                         Err(_) => panic!("Your RNG is busted"),
788                                 };
789                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
790                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
791                                         Err(_) => panic!("Your RNG is busted"),
792                                 };
793                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
794                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
795
796                                 KeysManager {
797                                         secp_ctx,
798                                         node_secret,
799                                         destination_script,
800                                         shutdown_pubkey,
801                                         channel_master_key,
802                                         channel_child_index: AtomicUsize::new(0),
803                                         rand_bytes_master_key,
804                                         rand_bytes_child_index: AtomicUsize::new(0),
805
806                                         seed: *seed,
807                                         starting_time_secs,
808                                         starting_time_nanos,
809                                 }
810                         },
811                         Err(_) => panic!("Your rng is busted"),
812                 }
813         }
814         fn derive_unique_start(&self) -> Sha256State {
815                 let mut unique_start = Sha256::engine();
816                 unique_start.input(&byte_utils::be64_to_array(self.starting_time_secs));
817                 unique_start.input(&byte_utils::be32_to_array(self.starting_time_nanos));
818                 unique_start.input(&self.seed);
819                 unique_start
820         }
821         /// Derive an old set of ChannelKeys for per-channel secrets based on a key derivation
822         /// parameters.
823         /// Key derivation parameters are accessible through a per-channel secrets
824         /// ChannelKeys::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
825         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
826         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemoryChannelKeys {
827                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
828                 assert!(chan_id <= std::u32::MAX as u64); // Otherwise the params field wasn't created by us
829                 let mut unique_start = Sha256::engine();
830                 unique_start.input(params);
831                 unique_start.input(&self.seed);
832
833                 // We only seriously intend to rely on the channel_master_key for true secure
834                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
835                 // starting_time provided in the constructor) to be unique.
836                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
837                 unique_start.input(&child_privkey.private_key.key[..]);
838
839                 let seed = Sha256::from_engine(unique_start).into_inner();
840
841                 let commitment_seed = {
842                         let mut sha = Sha256::engine();
843                         sha.input(&seed);
844                         sha.input(&b"commitment seed"[..]);
845                         Sha256::from_engine(sha).into_inner()
846                 };
847                 macro_rules! key_step {
848                         ($info: expr, $prev_key: expr) => {{
849                                 let mut sha = Sha256::engine();
850                                 sha.input(&seed);
851                                 sha.input(&$prev_key[..]);
852                                 sha.input(&$info[..]);
853                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
854                         }}
855                 }
856                 let funding_key = key_step!(b"funding key", commitment_seed);
857                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
858                 let payment_key = key_step!(b"payment key", revocation_base_key);
859                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
860                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
861
862                 InMemoryChannelKeys::new(
863                         &self.secp_ctx,
864                         funding_key,
865                         revocation_base_key,
866                         payment_key,
867                         delayed_payment_base_key,
868                         htlc_base_key,
869                         commitment_seed,
870                         channel_value_satoshis,
871                         params.clone()
872                 )
873         }
874
875         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
876         /// output to the given change destination (if sufficient change value remains). The
877         /// transaction will have a feerate, at least, of the given value.
878         ///
879         /// Returns `Err(())` if the output value is greater than the input value minus required fee or
880         /// if a descriptor was duplicated.
881         ///
882         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
883         ///
884         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
885         /// this KeysManager or one of the `InMemoryChannelKeys` created by this KeysManager.
886         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
887                 let mut input = Vec::new();
888                 let mut input_value = 0;
889                 let mut witness_weight = 0;
890                 let mut output_set = HashSet::with_capacity(descriptors.len());
891                 for outp in descriptors {
892                         match outp {
893                                 SpendableOutputDescriptor::StaticOutputCounterpartyPayment(descriptor) => {
894                                         input.push(TxIn {
895                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
896                                                 script_sig: Script::new(),
897                                                 sequence: 0,
898                                                 witness: Vec::new(),
899                                         });
900                                         witness_weight += StaticCounterpartyPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
901                                         input_value += descriptor.output.value;
902                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
903                                 },
904                                 SpendableOutputDescriptor::DynamicOutputP2WSH(descriptor) => {
905                                         input.push(TxIn {
906                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
907                                                 script_sig: Script::new(),
908                                                 sequence: descriptor.to_self_delay as u32,
909                                                 witness: Vec::new(),
910                                         });
911                                         witness_weight += DynamicP2WSHOutputDescriptor::MAX_WITNESS_LENGTH;
912                                         input_value += descriptor.output.value;
913                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
914                                 },
915                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
916                                         input.push(TxIn {
917                                                 previous_output: outpoint.into_bitcoin_outpoint(),
918                                                 script_sig: Script::new(),
919                                                 sequence: 0,
920                                                 witness: Vec::new(),
921                                         });
922                                         witness_weight += 1 + 73 + 34;
923                                         input_value += output.value;
924                                         if !output_set.insert(*outpoint) { return Err(()); }
925                                 }
926                         }
927                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
928                 }
929                 let mut spend_tx = Transaction {
930                         version: 2,
931                         lock_time: 0,
932                         input,
933                         output: outputs,
934                 };
935                 transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
936
937                 let mut keys_cache: Option<(InMemoryChannelKeys, [u8; 32])> = None;
938                 let mut input_idx = 0;
939                 for outp in descriptors {
940                         match outp {
941                                 SpendableOutputDescriptor::StaticOutputCounterpartyPayment(descriptor) => {
942                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
943                                                 keys_cache = Some((
944                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
945                                                         descriptor.channel_keys_id));
946                                         }
947                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
948                                 },
949                                 SpendableOutputDescriptor::DynamicOutputP2WSH(descriptor) => {
950                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
951                                                 keys_cache = Some((
952                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
953                                                         descriptor.channel_keys_id));
954                                         }
955                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
956                                 },
957                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
958                                         let derivation_idx = if output.script_pubkey == self.destination_script {
959                                                 1
960                                         } else {
961                                                 2
962                                         };
963                                         let secret = {
964                                                 // Note that when we aren't serializing the key, network doesn't matter
965                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
966                                                         Ok(master_key) => {
967                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
968                                                                         Ok(key) => key,
969                                                                         Err(_) => panic!("Your RNG is busted"),
970                                                                 }
971                                                         }
972                                                         Err(_) => panic!("Your rng is busted"),
973                                                 }
974                                         };
975                                         let pubkey = ExtendedPubKey::from_private(&secp_ctx, &secret).public_key;
976                                         if derivation_idx == 2 {
977                                                 assert_eq!(pubkey.key, self.shutdown_pubkey);
978                                         }
979                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
980                                         let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]);
981                                         let sig = secp_ctx.sign(&sighash, &secret.private_key.key);
982                                         spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec());
983                                         spend_tx.input[input_idx].witness[0].push(SigHashType::All as u8);
984                                         spend_tx.input[input_idx].witness.push(pubkey.key.serialize().to_vec());
985                                 },
986                         }
987                         input_idx += 1;
988                 }
989                 Ok(spend_tx)
990         }
991 }
992
993 impl KeysInterface for KeysManager {
994         type ChanKeySigner = InMemoryChannelKeys;
995
996         fn get_node_secret(&self) -> SecretKey {
997                 self.node_secret.clone()
998         }
999
1000         fn get_destination_script(&self) -> Script {
1001                 self.destination_script.clone()
1002         }
1003
1004         fn get_shutdown_pubkey(&self) -> PublicKey {
1005                 self.shutdown_pubkey.clone()
1006         }
1007
1008         fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner {
1009                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1010                 assert!(child_ix <= std::u32::MAX as usize);
1011                 let mut id = [0; 32];
1012                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1013                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1014                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1015                 self.derive_channel_keys(channel_value_satoshis, &id)
1016         }
1017
1018         fn get_secure_random_bytes(&self) -> [u8; 32] {
1019                 let mut sha = self.derive_unique_start();
1020
1021                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1022                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1023                 sha.input(&child_privkey.private_key.key[..]);
1024
1025                 sha.input(b"Unique Secure Random Bytes Salt");
1026                 Sha256::from_engine(sha).into_inner()
1027         }
1028
1029         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::ChanKeySigner, DecodeError> {
1030                 InMemoryChannelKeys::read(&mut std::io::Cursor::new(reader))
1031         }
1032 }