7538d0a83033c03f2f92f17a0dab8ff5c9be1ec5
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::bech32::u5;
22 use bitcoin::hashes::{Hash, HashEngine};
23 use bitcoin::hashes::sha256::HashEngine as Sha256State;
24 use bitcoin::hashes::sha256::Hash as Sha256;
25 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
26 use bitcoin::hash_types::WPubkeyHash;
27
28 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
29 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
30 use bitcoin::secp256k1::recovery::RecoverableSignature;
31 use bitcoin::secp256k1;
32
33 use util::{byte_utils, transaction_utils};
34 use util::ser::{Writeable, Writer, Readable};
35
36 use chain::transaction::OutPoint;
37 use ln::chan_utils;
38 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
39 use ln::msgs::UnsignedChannelAnnouncement;
40 use ln::script::ShutdownScript;
41
42 use prelude::*;
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use io::{self, Error};
45 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
46 use util::invoice::construct_invoice_preimage;
47
48 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
49 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
50 /// (C-not exported) as we just use [u8; 32] directly
51 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
52 pub struct KeyMaterial(pub [u8; 32]);
53
54 /// Information about a spendable output to a P2WSH script. See
55 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
56 #[derive(Clone, Debug, PartialEq)]
57 pub struct DelayedPaymentOutputDescriptor {
58         /// The outpoint which is spendable
59         pub outpoint: OutPoint,
60         /// Per commitment point to derive delayed_payment_key by key holder
61         pub per_commitment_point: PublicKey,
62         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
63         /// the witness_script.
64         pub to_self_delay: u16,
65         /// The output which is referenced by the given outpoint
66         pub output: TxOut,
67         /// The revocation point specific to the commitment transaction which was broadcast. Used to
68         /// derive the witnessScript for this output.
69         pub revocation_pubkey: PublicKey,
70         /// Arbitrary identification information returned by a call to
71         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
72         /// the channel to spend the output.
73         pub channel_keys_id: [u8; 32],
74         /// The value of the channel which this output originated from, possibly indirectly.
75         pub channel_value_satoshis: u64,
76 }
77 impl DelayedPaymentOutputDescriptor {
78         /// The maximum length a well-formed witness spending one of these should have.
79         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
80         // redeemscript push length.
81         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
82 }
83
84 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
85         (0, outpoint, required),
86         (2, per_commitment_point, required),
87         (4, to_self_delay, required),
88         (6, output, required),
89         (8, revocation_pubkey, required),
90         (10, channel_keys_id, required),
91         (12, channel_value_satoshis, required),
92 });
93
94 /// Information about a spendable output to our "payment key". See
95 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
96 #[derive(Clone, Debug, PartialEq)]
97 pub struct StaticPaymentOutputDescriptor {
98         /// The outpoint which is spendable
99         pub outpoint: OutPoint,
100         /// The output which is referenced by the given outpoint
101         pub output: TxOut,
102         /// Arbitrary identification information returned by a call to
103         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
104         /// the channel to spend the output.
105         pub channel_keys_id: [u8; 32],
106         /// The value of the channel which this transactions spends.
107         pub channel_value_satoshis: u64,
108 }
109 impl StaticPaymentOutputDescriptor {
110         /// The maximum length a well-formed witness spending one of these should have.
111         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
112         // redeemscript push length.
113         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
114 }
115 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
116         (0, outpoint, required),
117         (2, output, required),
118         (4, channel_keys_id, required),
119         (6, channel_value_satoshis, required),
120 });
121
122 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
123 /// claim at any point in the future) an event is generated which you must track and be able to
124 /// spend on-chain. The information needed to do this is provided in this enum, including the
125 /// outpoint describing which txid and output index is available, the full output which exists at
126 /// that txid/index, and any keys or other information required to sign.
127 #[derive(Clone, Debug, PartialEq)]
128 pub enum SpendableOutputDescriptor {
129         /// An output to a script which was provided via KeysInterface directly, either from
130         /// `get_destination_script()` or `get_shutdown_scriptpubkey()`, thus you should already know
131         /// how to spend it. No secret keys are provided as rust-lightning was never given any key.
132         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
133         /// on-chain using the payment preimage or after it has timed out.
134         StaticOutput {
135                 /// The outpoint which is spendable
136                 outpoint: OutPoint,
137                 /// The output which is referenced by the given outpoint.
138                 output: TxOut,
139         },
140         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
141         ///
142         /// The witness in the spending input should be:
143         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
144         ///
145         /// Note that the nSequence field in the spending input must be set to to_self_delay
146         /// (which means the transaction is not broadcastable until at least to_self_delay
147         /// blocks after the outpoint confirms).
148         ///
149         /// These are generally the result of a "revocable" output to us, spendable only by us unless
150         /// it is an output from an old state which we broadcast (which should never happen).
151         ///
152         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
153         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
154         /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
155         /// chan_utils::derive_private_key. The public key can be generated without the secret key
156         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
157         /// Sign::pubkeys().
158         ///
159         /// To derive the revocation_pubkey provided here (which is used in the witness
160         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
161         /// call to Sign::ready_channel) and the provided per_commitment point
162         /// to chan_utils::derive_public_revocation_key.
163         ///
164         /// The witness script which is hashed and included in the output script_pubkey may be
165         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
166         /// (derived as above), and the to_self_delay contained here to
167         /// chan_utils::get_revokeable_redeemscript.
168         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
169         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
170         /// corresponds to the public key in Sign::pubkeys().payment_point).
171         /// The witness in the spending input, is, thus, simply:
172         /// <BIP 143 signature> <payment key>
173         ///
174         /// These are generally the result of our counterparty having broadcast the current state,
175         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
176         StaticPaymentOutput(StaticPaymentOutputDescriptor),
177 }
178
179 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
180         (0, StaticOutput) => {
181                 (0, outpoint, required),
182                 (2, output, required),
183         },
184 ;
185         (1, DelayedPaymentOutput),
186         (2, StaticPaymentOutput),
187 );
188
189 /// A trait to sign lightning channel transactions as described in BOLT 3.
190 ///
191 /// Signing services could be implemented on a hardware wallet. In this case,
192 /// the current Sign would be a front-end on top of a communication
193 /// channel connected to your secure device and lightning key material wouldn't
194 /// reside on a hot server. Nevertheless, a this deployment would still need
195 /// to trust the ChannelManager to avoid loss of funds as this latest component
196 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
197 ///
198 /// A more secure iteration would be to use hashlock (or payment points) to pair
199 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
200 /// at the price of more state and computation on the hardware wallet side. In the future,
201 /// we are looking forward to design such interface.
202 ///
203 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
204 /// to act, as liveness and breach reply correctness are always going to be hard requirements
205 /// of LN security model, orthogonal of key management issues.
206 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
207 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
208 pub trait BaseSign {
209         /// Gets the per-commitment point for a specific commitment number
210         ///
211         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
212         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
213         /// Gets the commitment secret for a specific commitment number as part of the revocation process
214         ///
215         /// An external signer implementation should error here if the commitment was already signed
216         /// and should refuse to sign it in the future.
217         ///
218         /// May be called more than once for the same index.
219         ///
220         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
221         // TODO: return a Result so we can signal a validation error
222         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
223         /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
224         ///
225         /// This is required in order for the signer to make sure that releasing a commitment
226         /// secret won't leave us without a broadcastable holder transaction.
227         /// Policy checks should be implemented in this function, including checking the amount
228         /// sent to us and checking the HTLCs.
229         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction) -> Result<(), ()>;
230         /// Gets the holder's channel public keys and basepoints
231         fn pubkeys(&self) -> &ChannelPublicKeys;
232         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
233         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
234         /// Sign object uniquely and lookup or re-derive its keys.
235         fn channel_keys_id(&self) -> [u8; 32];
236
237         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
238         ///
239         /// Note that if signing fails or is rejected, the channel will be force-closed.
240         ///
241         /// Policy checks should be implemented in this function, including checking the amount
242         /// sent to us and checking the HTLCs.
243         //
244         // TODO: Document the things someone using this interface should enforce before signing.
245         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
246         /// Validate the counterparty's revocation.
247         ///
248         /// This is required in order for the signer to make sure that the state has moved
249         /// forward and it is safe to sign the next counterparty commitment.
250         fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
251
252         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
253         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
254         /// latest commitment_tx when we initiate a force-close.
255         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
256         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
257         /// the latest.
258         /// This may be called multiple times for the same transaction.
259         ///
260         /// An external signer implementation should check that the commitment has not been revoked.
261         ///
262         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
263         //
264         // TODO: Document the things someone using this interface should enforce before signing.
265         // TODO: Key derivation failure should panic rather than Err
266         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
267
268         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
269         /// transactions which will be broadcasted later, after the channel has moved on to a newer
270         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
271         /// get called once.
272         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
273         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
274
275         /// Create a signature for the given input in a transaction spending an HTLC transaction output
276         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
277         ///
278         /// A justice transaction may claim multiple outputs at the same time if timelocks are
279         /// similar, but only a signature for the input at index `input` should be signed for here.
280         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
281         /// to an upcoming timelock expiration.
282         ///
283         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
284         ///
285         /// per_commitment_key is revocation secret which was provided by our counterparty when they
286         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
287         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
288         /// so).
289         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
290
291         /// Create a signature for the given input in a transaction spending a commitment transaction
292         /// HTLC output when our counterparty broadcasts an old state.
293         ///
294         /// A justice transaction may claim multiple outputs at the same time if timelocks are
295         /// similar, but only a signature for the input at index `input` should be signed for here.
296         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
297         /// to an upcoming timelock expiration.
298         ///
299         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
300         ///
301         /// per_commitment_key is revocation secret which was provided by our counterparty when they
302         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
303         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
304         /// so).
305         ///
306         /// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
307         /// (which is committed to in the BIP 143 signatures).
308         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
309
310         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
311         /// transaction, either offered or received.
312         ///
313         /// Such a transaction may claim multiples offered outputs at same time if we know the
314         /// preimage for each when we create it, but only the input at index `input` should be
315         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
316         /// needed with regards to an upcoming timelock expiration.
317         ///
318         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
319         /// outputs.
320         ///
321         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
322         ///
323         /// Per_commitment_point is the dynamic point corresponding to the channel state
324         /// detected onchain. It has been generated by our counterparty and is used to derive
325         /// channel state keys, which are then included in the witness script and committed to in the
326         /// BIP 143 signature.
327         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
328
329         /// Create a signature for a (proposed) closing transaction.
330         ///
331         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
332         /// chosen to forgo their output as dust.
333         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
334
335         /// Signs a channel announcement message with our funding key, proving it comes from one
336         /// of the channel participants.
337         ///
338         /// Note that if this fails or is rejected, the channel will not be publicly announced and
339         /// our counterparty may (though likely will not) close the channel on us for violating the
340         /// protocol.
341         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
342
343         /// Set the counterparty static channel data, including basepoints,
344         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
345         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
346         /// they MUST NOT be allowed to change to different values once set.
347         ///
348         /// channel_parameters.is_populated() MUST be true.
349         ///
350         /// We bind holder_selected_contest_delay late here for API convenience.
351         ///
352         /// Will be called before any signatures are applied.
353         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
354 }
355
356 /// A cloneable signer.
357 ///
358 /// Although we require signers to be cloneable, it may be useful for developers to be able to use
359 /// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
360 /// which implies Sized, into this derived trait.
361 pub trait Sign: BaseSign + Writeable + Clone {
362 }
363
364 /// A trait to describe an object which can get user secrets and key material.
365 pub trait KeysInterface {
366         /// A type which implements Sign which will be returned by get_channel_signer.
367         type Signer : Sign;
368
369         /// Get node secret key (aka node_id or network_key).
370         ///
371         /// This method must return the same value each time it is called.
372         fn get_node_secret(&self) -> SecretKey;
373         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
374         ///
375         /// This method should return a different value each time it is called, to avoid linking
376         /// on-chain funds across channels as controlled to the same user.
377         fn get_destination_script(&self) -> Script;
378         /// Get a script pubkey which we will send funds to when closing a channel.
379         ///
380         /// This method should return a different value each time it is called, to avoid linking
381         /// on-chain funds across channels as controlled to the same user.
382         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
383         /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
384         /// restarted with some stale data!
385         ///
386         /// This method must return a different value each time it is called.
387         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
388         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
389         /// onion packets and for temporary channel IDs. There is no requirement that these be
390         /// persisted anywhere, though they must be unique across restarts.
391         ///
392         /// This method must return a different value each time it is called.
393         fn get_secure_random_bytes(&self) -> [u8; 32];
394
395         /// Reads a `Signer` for this `KeysInterface` from the given input stream.
396         /// This is only called during deserialization of other objects which contain
397         /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
398         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
399         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
400         /// you've read all of the provided bytes to ensure no corruption occurred.
401         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
402
403         /// Sign an invoice.
404         /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
405         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
406         /// blindly signing the hash.
407         /// The hrp is ascii bytes, while the invoice data is base32.
408         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5]) -> Result<RecoverableSignature, ()>;
409
410         /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
411         ///
412         /// This method must return the same value each time it is called.
413         fn get_inbound_payment_key_material(&self) -> KeyMaterial;
414 }
415
416 #[derive(Clone)]
417 /// A simple implementation of Sign that just keeps the private keys in memory.
418 ///
419 /// This implementation performs no policy checks and is insufficient by itself as
420 /// a secure external signer.
421 pub struct InMemorySigner {
422         /// Private key of anchor tx
423         pub funding_key: SecretKey,
424         /// Holder secret key for blinded revocation pubkey
425         pub revocation_base_key: SecretKey,
426         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
427         pub payment_key: SecretKey,
428         /// Holder secret key used in HTLC tx
429         pub delayed_payment_base_key: SecretKey,
430         /// Holder htlc secret key used in commitment tx htlc outputs
431         pub htlc_base_key: SecretKey,
432         /// Commitment seed
433         pub commitment_seed: [u8; 32],
434         /// Holder public keys and basepoints
435         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
436         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
437         channel_parameters: Option<ChannelTransactionParameters>,
438         /// The total value of this channel
439         channel_value_satoshis: u64,
440         /// Key derivation parameters
441         channel_keys_id: [u8; 32],
442 }
443
444 impl InMemorySigner {
445         /// Create a new InMemorySigner
446         pub fn new<C: Signing>(
447                 secp_ctx: &Secp256k1<C>,
448                 funding_key: SecretKey,
449                 revocation_base_key: SecretKey,
450                 payment_key: SecretKey,
451                 delayed_payment_base_key: SecretKey,
452                 htlc_base_key: SecretKey,
453                 commitment_seed: [u8; 32],
454                 channel_value_satoshis: u64,
455                 channel_keys_id: [u8; 32]) -> InMemorySigner {
456                 let holder_channel_pubkeys =
457                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
458                                                              &payment_key, &delayed_payment_base_key,
459                                                              &htlc_base_key);
460                 InMemorySigner {
461                         funding_key,
462                         revocation_base_key,
463                         payment_key,
464                         delayed_payment_base_key,
465                         htlc_base_key,
466                         commitment_seed,
467                         channel_value_satoshis,
468                         holder_channel_pubkeys,
469                         channel_parameters: None,
470                         channel_keys_id,
471                 }
472         }
473
474         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
475                                        funding_key: &SecretKey,
476                                        revocation_base_key: &SecretKey,
477                                        payment_key: &SecretKey,
478                                        delayed_payment_base_key: &SecretKey,
479                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
480                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
481                 ChannelPublicKeys {
482                         funding_pubkey: from_secret(&funding_key),
483                         revocation_basepoint: from_secret(&revocation_base_key),
484                         payment_point: from_secret(&payment_key),
485                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
486                         htlc_basepoint: from_secret(&htlc_base_key),
487                 }
488         }
489
490         /// Counterparty pubkeys.
491         /// Will panic if ready_channel wasn't called.
492         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
493
494         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
495         /// transactions, ie the amount of time that we have to wait to recover our funds if we
496         /// broadcast a transaction.
497         /// Will panic if ready_channel wasn't called.
498         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
499
500         /// The contest_delay value specified by us and applied on transactions broadcastable
501         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
502         /// if they broadcast a transaction.
503         /// Will panic if ready_channel wasn't called.
504         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
505
506         /// Whether the holder is the initiator
507         /// Will panic if ready_channel wasn't called.
508         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
509
510         /// Funding outpoint
511         /// Will panic if ready_channel wasn't called.
512         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
513
514         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
515         /// building transactions.
516         ///
517         /// Will panic if ready_channel wasn't called.
518         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
519                 self.channel_parameters.as_ref().unwrap()
520         }
521
522         /// Whether anchors should be used.
523         /// Will panic if ready_channel wasn't called.
524         pub fn opt_anchors(&self) -> bool {
525                 self.get_channel_parameters().opt_anchors.is_some()
526         }
527
528         /// Sign the single input of spend_tx at index `input_idx` which spends the output
529         /// described by descriptor, returning the witness stack for the input.
530         ///
531         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
532         /// is not spending the outpoint described by `descriptor.outpoint`,
533         /// or if an output descriptor script_pubkey does not match the one we can spend.
534         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
535                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
536                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
537                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
538                 // bindings updates to support SigHashCache objects).
539                 if spend_tx.input.len() <= input_idx { return Err(()); }
540                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
541                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
542
543                 let remotepubkey = self.pubkeys().payment_point;
544                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey();
545                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
546                 let remotesig = secp_ctx.sign(&sighash, &self.payment_key);
547                 let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
548
549                 if payment_script != descriptor.output.script_pubkey  { return Err(()); }
550
551                 let mut witness = Vec::with_capacity(2);
552                 witness.push(remotesig.serialize_der().to_vec());
553                 witness[0].push(SigHashType::All as u8);
554                 witness.push(remotepubkey.serialize().to_vec());
555                 Ok(witness)
556         }
557
558         /// Sign the single input of spend_tx at index `input_idx` which spends the output
559         /// described by descriptor, returning the witness stack for the input.
560         ///
561         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
562         /// is not spending the outpoint described by `descriptor.outpoint`, does not have a
563         /// sequence set to `descriptor.to_self_delay`, or if an output descriptor
564         /// script_pubkey does not match the one we can spend.
565         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
566                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
567                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
568                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
569                 // bindings updates to support SigHashCache objects).
570                 if spend_tx.input.len() <= input_idx { return Err(()); }
571                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
572                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
573                 if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); }
574
575                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
576                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
577                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
578                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
579                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
580                 let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key);
581                 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
582
583                 if descriptor.output.script_pubkey != payment_script { return Err(()); }
584
585                 let mut witness = Vec::with_capacity(3);
586                 witness.push(local_delayedsig.serialize_der().to_vec());
587                 witness[0].push(SigHashType::All as u8);
588                 witness.push(vec!()); //MINIMALIF
589                 witness.push(witness_script.clone().into_bytes());
590                 Ok(witness)
591         }
592 }
593
594 impl BaseSign for InMemorySigner {
595         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
596                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
597                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
598         }
599
600         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
601                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
602         }
603
604         fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction) -> Result<(), ()> {
605                 Ok(())
606         }
607
608         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
609         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
610
611         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
612                 let trusted_tx = commitment_tx.trust();
613                 let keys = trusted_tx.keys();
614
615                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
616                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
617
618                 let built_tx = trusted_tx.built_transaction();
619                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
620                 let commitment_txid = built_tx.txid;
621
622                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
623                 for htlc in commitment_tx.htlcs() {
624                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
625                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
626                         let htlc_sighashtype = if self.opt_anchors() { SigHashType::SinglePlusAnyoneCanPay } else { SigHashType::All };
627                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype)[..]);
628                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
629                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
630                 }
631
632                 Ok((commitment_sig, htlc_sigs))
633         }
634
635         fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
636                 Ok(())
637         }
638
639         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
640                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
641                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
642                 let trusted_tx = commitment_tx.trust();
643                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
644                 let channel_parameters = self.get_channel_parameters();
645                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
646                 Ok((sig, htlc_sigs))
647         }
648
649         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
650         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
651                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
652                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
653                 let trusted_tx = commitment_tx.trust();
654                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
655                 let channel_parameters = self.get_channel_parameters();
656                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
657                 Ok((sig, htlc_sigs))
658         }
659
660         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
661                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
662                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
663                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
664                 let witness_script = {
665                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
666                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
667                 };
668                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
669                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
670                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
671         }
672
673         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
674                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
675                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
676                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
677                 let witness_script = {
678                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
679                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
680                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
681                 };
682                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
683                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
684                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
685         }
686
687         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
688                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
689                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
690                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
691                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
692                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
693                                         } else { return Err(()) }
694                                 } else { return Err(()) }
695                         } else { return Err(()) };
696                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
697                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
698                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
699                 }
700                 Err(())
701         }
702
703         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
704                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
705                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
706                 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
707         }
708
709         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
710                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
711                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
712         }
713
714         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
715                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
716                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
717                 self.channel_parameters = Some(channel_parameters.clone());
718         }
719 }
720
721 const SERIALIZATION_VERSION: u8 = 1;
722 const MIN_SERIALIZATION_VERSION: u8 = 1;
723
724 impl Sign for InMemorySigner {}
725
726 impl Writeable for InMemorySigner {
727         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
728                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
729
730                 self.funding_key.write(writer)?;
731                 self.revocation_base_key.write(writer)?;
732                 self.payment_key.write(writer)?;
733                 self.delayed_payment_base_key.write(writer)?;
734                 self.htlc_base_key.write(writer)?;
735                 self.commitment_seed.write(writer)?;
736                 self.channel_parameters.write(writer)?;
737                 self.channel_value_satoshis.write(writer)?;
738                 self.channel_keys_id.write(writer)?;
739
740                 write_tlv_fields!(writer, {});
741
742                 Ok(())
743         }
744 }
745
746 impl Readable for InMemorySigner {
747         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
748                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
749
750                 let funding_key = Readable::read(reader)?;
751                 let revocation_base_key = Readable::read(reader)?;
752                 let payment_key = Readable::read(reader)?;
753                 let delayed_payment_base_key = Readable::read(reader)?;
754                 let htlc_base_key = Readable::read(reader)?;
755                 let commitment_seed = Readable::read(reader)?;
756                 let counterparty_channel_data = Readable::read(reader)?;
757                 let channel_value_satoshis = Readable::read(reader)?;
758                 let secp_ctx = Secp256k1::signing_only();
759                 let holder_channel_pubkeys =
760                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
761                                                              &payment_key, &delayed_payment_base_key,
762                                                              &htlc_base_key);
763                 let keys_id = Readable::read(reader)?;
764
765                 read_tlv_fields!(reader, {});
766
767                 Ok(InMemorySigner {
768                         funding_key,
769                         revocation_base_key,
770                         payment_key,
771                         delayed_payment_base_key,
772                         htlc_base_key,
773                         commitment_seed,
774                         channel_value_satoshis,
775                         holder_channel_pubkeys,
776                         channel_parameters: counterparty_channel_data,
777                         channel_keys_id: keys_id,
778                 })
779         }
780 }
781
782 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
783 /// and derives keys from that.
784 ///
785 /// Your node_id is seed/0'
786 /// ChannelMonitor closes may use seed/1'
787 /// Cooperative closes may use seed/2'
788 /// The two close keys may be needed to claim on-chain funds!
789 pub struct KeysManager {
790         secp_ctx: Secp256k1<secp256k1::All>,
791         node_secret: SecretKey,
792         inbound_payment_key: KeyMaterial,
793         destination_script: Script,
794         shutdown_pubkey: PublicKey,
795         channel_master_key: ExtendedPrivKey,
796         channel_child_index: AtomicUsize,
797
798         rand_bytes_master_key: ExtendedPrivKey,
799         rand_bytes_child_index: AtomicUsize,
800         rand_bytes_unique_start: Sha256State,
801
802         seed: [u8; 32],
803         starting_time_secs: u64,
804         starting_time_nanos: u32,
805 }
806
807 impl KeysManager {
808         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
809         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
810         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
811         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
812         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
813         /// simply use the current time (with very high precision).
814         ///
815         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
816         /// obviously, starting_time should be unique every time you reload the library - it is only
817         /// used to generate new ephemeral key data (which will be stored by the individual channel if
818         /// necessary).
819         ///
820         /// Note that the seed is required to recover certain on-chain funds independent of
821         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
822         /// channel, and some on-chain during-closing funds.
823         ///
824         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
825         /// versions. Once the library is more fully supported, the docs will be updated to include a
826         /// detailed description of the guarantee.
827         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
828                 let secp_ctx = Secp256k1::new();
829                 // Note that when we aren't serializing the key, network doesn't matter
830                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
831                         Ok(master_key) => {
832                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
833                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
834                                         Ok(destination_key) => {
835                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
836                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
837                                                               .push_slice(&wpubkey_hash.into_inner())
838                                                               .into_script()
839                                         },
840                                         Err(_) => panic!("Your RNG is busted"),
841                                 };
842                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
843                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
844                                         Err(_) => panic!("Your RNG is busted"),
845                                 };
846                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
847                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
848                                 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key.key;
849                                 let mut inbound_pmt_key_bytes = [0; 32];
850                                 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
851
852                                 let mut rand_bytes_unique_start = Sha256::engine();
853                                 rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
854                                 rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
855                                 rand_bytes_unique_start.input(seed);
856
857                                 let mut res = KeysManager {
858                                         secp_ctx,
859                                         node_secret,
860                                         inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
861
862                                         destination_script,
863                                         shutdown_pubkey,
864
865                                         channel_master_key,
866                                         channel_child_index: AtomicUsize::new(0),
867
868                                         rand_bytes_master_key,
869                                         rand_bytes_child_index: AtomicUsize::new(0),
870                                         rand_bytes_unique_start,
871
872                                         seed: *seed,
873                                         starting_time_secs,
874                                         starting_time_nanos,
875                                 };
876                                 let secp_seed = res.get_secure_random_bytes();
877                                 res.secp_ctx.seeded_randomize(&secp_seed);
878                                 res
879                         },
880                         Err(_) => panic!("Your rng is busted"),
881                 }
882         }
883         /// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
884         ///
885         /// Key derivation parameters are accessible through a per-channel secrets
886         /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
887         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
888         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
889                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
890                 assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
891                 let mut unique_start = Sha256::engine();
892                 unique_start.input(params);
893                 unique_start.input(&self.seed);
894
895                 // We only seriously intend to rely on the channel_master_key for true secure
896                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
897                 // starting_time provided in the constructor) to be unique.
898                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
899                 unique_start.input(&child_privkey.private_key.key[..]);
900
901                 let seed = Sha256::from_engine(unique_start).into_inner();
902
903                 let commitment_seed = {
904                         let mut sha = Sha256::engine();
905                         sha.input(&seed);
906                         sha.input(&b"commitment seed"[..]);
907                         Sha256::from_engine(sha).into_inner()
908                 };
909                 macro_rules! key_step {
910                         ($info: expr, $prev_key: expr) => {{
911                                 let mut sha = Sha256::engine();
912                                 sha.input(&seed);
913                                 sha.input(&$prev_key[..]);
914                                 sha.input(&$info[..]);
915                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
916                         }}
917                 }
918                 let funding_key = key_step!(b"funding key", commitment_seed);
919                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
920                 let payment_key = key_step!(b"payment key", revocation_base_key);
921                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
922                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
923
924                 InMemorySigner::new(
925                         &self.secp_ctx,
926                         funding_key,
927                         revocation_base_key,
928                         payment_key,
929                         delayed_payment_base_key,
930                         htlc_base_key,
931                         commitment_seed,
932                         channel_value_satoshis,
933                         params.clone()
934                 )
935         }
936
937         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
938         /// output to the given change destination (if sufficient change value remains). The
939         /// transaction will have a feerate, at least, of the given value.
940         ///
941         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
942         /// if a descriptor was duplicated, or if an output descriptor script_pubkey 
943         /// does not match the one we can spend.
944         ///
945         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
946         ///
947         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
948         /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
949         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
950                 let mut input = Vec::new();
951                 let mut input_value = 0;
952                 let mut witness_weight = 0;
953                 let mut output_set = HashSet::with_capacity(descriptors.len());
954                 for outp in descriptors {
955                         match outp {
956                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
957                                         input.push(TxIn {
958                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
959                                                 script_sig: Script::new(),
960                                                 sequence: 0,
961                                                 witness: Vec::new(),
962                                         });
963                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
964                                         input_value += descriptor.output.value;
965                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
966                                 },
967                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
968                                         input.push(TxIn {
969                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
970                                                 script_sig: Script::new(),
971                                                 sequence: descriptor.to_self_delay as u32,
972                                                 witness: Vec::new(),
973                                         });
974                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
975                                         input_value += descriptor.output.value;
976                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
977                                 },
978                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
979                                         input.push(TxIn {
980                                                 previous_output: outpoint.into_bitcoin_outpoint(),
981                                                 script_sig: Script::new(),
982                                                 sequence: 0,
983                                                 witness: Vec::new(),
984                                         });
985                                         witness_weight += 1 + 73 + 34;
986                                         input_value += output.value;
987                                         if !output_set.insert(*outpoint) { return Err(()); }
988                                 }
989                         }
990                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
991                 }
992                 let mut spend_tx = Transaction {
993                         version: 2,
994                         lock_time: 0,
995                         input,
996                         output: outputs,
997                 };
998                 let expected_max_weight =
999                         transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
1000
1001                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1002                 let mut input_idx = 0;
1003                 for outp in descriptors {
1004                         match outp {
1005                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1006                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1007                                                 keys_cache = Some((
1008                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1009                                                         descriptor.channel_keys_id));
1010                                         }
1011                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?;
1012                                 },
1013                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1014                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1015                                                 keys_cache = Some((
1016                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1017                                                         descriptor.channel_keys_id));
1018                                         }
1019                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?;
1020                                 },
1021                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
1022                                         let derivation_idx = if output.script_pubkey == self.destination_script {
1023                                                 1
1024                                         } else {
1025                                                 2
1026                                         };
1027                                         let secret = {
1028                                                 // Note that when we aren't serializing the key, network doesn't matter
1029                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1030                                                         Ok(master_key) => {
1031                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1032                                                                         Ok(key) => key,
1033                                                                         Err(_) => panic!("Your RNG is busted"),
1034                                                                 }
1035                                                         }
1036                                                         Err(_) => panic!("Your rng is busted"),
1037                                                 }
1038                                         };
1039                                         let pubkey = ExtendedPubKey::from_private(&secp_ctx, &secret).public_key;
1040                                         if derivation_idx == 2 {
1041                                                 assert_eq!(pubkey.key, self.shutdown_pubkey);
1042                                         }
1043                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1044                                         let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1045
1046                                         if payment_script != output.script_pubkey { return Err(()); };
1047
1048                                         let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]);
1049                                         let sig = secp_ctx.sign(&sighash, &secret.private_key.key);
1050                                         spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec());
1051                                         spend_tx.input[input_idx].witness[0].push(SigHashType::All as u8);
1052                                         spend_tx.input[input_idx].witness.push(pubkey.key.serialize().to_vec());
1053                                 },
1054                         }
1055                         input_idx += 1;
1056                 }
1057
1058                 debug_assert!(expected_max_weight >= spend_tx.get_weight());
1059                 // Note that witnesses with a signature vary somewhat in size, so allow
1060                 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1061                 debug_assert!(expected_max_weight <= spend_tx.get_weight() + descriptors.len() * 3);
1062
1063                 Ok(spend_tx)
1064         }
1065 }
1066
1067 impl KeysInterface for KeysManager {
1068         type Signer = InMemorySigner;
1069
1070         fn get_node_secret(&self) -> SecretKey {
1071                 self.node_secret.clone()
1072         }
1073
1074         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1075                 self.inbound_payment_key.clone()
1076         }
1077
1078         fn get_destination_script(&self) -> Script {
1079                 self.destination_script.clone()
1080         }
1081
1082         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1083                 ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
1084         }
1085
1086         fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1087                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1088                 assert!(child_ix <= core::u32::MAX as usize);
1089                 let mut id = [0; 32];
1090                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1091                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1092                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1093                 self.derive_channel_keys(channel_value_satoshis, &id)
1094         }
1095
1096         fn get_secure_random_bytes(&self) -> [u8; 32] {
1097                 let mut sha = self.rand_bytes_unique_start.clone();
1098
1099                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1100                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1101                 sha.input(&child_privkey.private_key.key[..]);
1102
1103                 sha.input(b"Unique Secure Random Bytes Salt");
1104                 Sha256::from_engine(sha).into_inner()
1105         }
1106
1107         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1108                 InMemorySigner::read(&mut io::Cursor::new(reader))
1109         }
1110
1111         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5]) -> Result<RecoverableSignature, ()> {
1112                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1113                 Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &self.get_node_secret()))
1114         }
1115 }
1116
1117 // Ensure that BaseSign can have a vtable
1118 #[test]
1119 pub fn dyn_sign() {
1120         let _signer: Box<dyn BaseSign>;
1121 }