1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Provides keys to LDK and defines some useful objects describing spendable on-chain outputs.
12 //! The provided output descriptors follow a custom LDK data format and are currently not fully
13 //! compatible with Bitcoin Core output descriptors.
15 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, EcdsaSighashType};
16 use bitcoin::blockdata::script::{Script, Builder};
17 use bitcoin::blockdata::opcodes;
18 use bitcoin::network::constants::Network;
19 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
20 use bitcoin::util::sighash;
22 use bitcoin::bech32::u5;
23 use bitcoin::hashes::{Hash, HashEngine};
24 use bitcoin::hashes::sha256::Hash as Sha256;
25 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
26 use bitcoin::hash_types::WPubkeyHash;
28 use bitcoin::secp256k1::{SecretKey, PublicKey, Scalar};
29 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Signing};
30 use bitcoin::secp256k1::ecdh::SharedSecret;
31 use bitcoin::secp256k1::ecdsa::RecoverableSignature;
32 use bitcoin::{PackedLockTime, secp256k1, Sequence, Witness};
34 use crate::util::transaction_utils;
35 use crate::util::crypto::{hkdf_extract_expand_twice, sign, sign_with_aux_rand};
36 use crate::util::ser::{Writeable, Writer, Readable, ReadableArgs};
37 use crate::chain::transaction::OutPoint;
39 use crate::events::bump_transaction::HTLCDescriptor;
40 use crate::ln::channel::ANCHOR_OUTPUT_VALUE_SATOSHI;
41 use crate::ln::{chan_utils, PaymentPreimage};
42 use crate::ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
43 use crate::ln::msgs::{UnsignedChannelAnnouncement, UnsignedGossipMessage};
44 use crate::ln::script::ShutdownScript;
46 use crate::prelude::*;
47 use core::convert::TryInto;
49 use core::sync::atomic::{AtomicUsize, Ordering};
50 use crate::io::{self, Error};
51 use crate::ln::msgs::{DecodeError, MAX_VALUE_MSAT};
52 use crate::util::atomic_counter::AtomicCounter;
53 use crate::util::chacha20::ChaCha20;
54 use crate::util::invoice::construct_invoice_preimage;
56 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
57 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
59 /// This is not exported to bindings users as we just use `[u8; 32]` directly
60 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
61 pub struct KeyMaterial(pub [u8; 32]);
63 /// Information about a spendable output to a P2WSH script.
65 /// See [`SpendableOutputDescriptor::DelayedPaymentOutput`] for more details on how to spend this.
66 #[derive(Clone, Debug, PartialEq, Eq)]
67 pub struct DelayedPaymentOutputDescriptor {
68 /// The outpoint which is spendable.
69 pub outpoint: OutPoint,
70 /// Per commitment point to derive the delayed payment key by key holder.
71 pub per_commitment_point: PublicKey,
72 /// The `nSequence` value which must be set in the spending input to satisfy the `OP_CSV` in
73 /// the witness_script.
74 pub to_self_delay: u16,
75 /// The output which is referenced by the given outpoint.
77 /// The revocation point specific to the commitment transaction which was broadcast. Used to
78 /// derive the witnessScript for this output.
79 pub revocation_pubkey: PublicKey,
80 /// Arbitrary identification information returned by a call to [`ChannelSigner::channel_keys_id`].
81 /// This may be useful in re-deriving keys used in the channel to spend the output.
82 pub channel_keys_id: [u8; 32],
83 /// The value of the channel which this output originated from, possibly indirectly.
84 pub channel_value_satoshis: u64,
86 impl DelayedPaymentOutputDescriptor {
87 /// The maximum length a well-formed witness spending one of these should have.
88 // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
89 // redeemscript push length.
90 pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
93 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
94 (0, outpoint, required),
95 (2, per_commitment_point, required),
96 (4, to_self_delay, required),
97 (6, output, required),
98 (8, revocation_pubkey, required),
99 (10, channel_keys_id, required),
100 (12, channel_value_satoshis, required),
103 /// Information about a spendable output to our "payment key".
105 /// See [`SpendableOutputDescriptor::StaticPaymentOutput`] for more details on how to spend this.
106 #[derive(Clone, Debug, PartialEq, Eq)]
107 pub struct StaticPaymentOutputDescriptor {
108 /// The outpoint which is spendable.
109 pub outpoint: OutPoint,
110 /// The output which is referenced by the given outpoint.
112 /// Arbitrary identification information returned by a call to [`ChannelSigner::channel_keys_id`].
113 /// This may be useful in re-deriving keys used in the channel to spend the output.
114 pub channel_keys_id: [u8; 32],
115 /// The value of the channel which this transactions spends.
116 pub channel_value_satoshis: u64,
118 impl StaticPaymentOutputDescriptor {
119 /// The maximum length a well-formed witness spending one of these should have.
120 // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
121 // redeemscript push length.
122 pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
124 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
125 (0, outpoint, required),
126 (2, output, required),
127 (4, channel_keys_id, required),
128 (6, channel_value_satoshis, required),
131 /// Describes the necessary information to spend a spendable output.
133 /// When on-chain outputs are created by LDK (which our counterparty is not able to claim at any
134 /// point in the future) a [`SpendableOutputs`] event is generated which you must track and be able
135 /// to spend on-chain. The information needed to do this is provided in this enum, including the
136 /// outpoint describing which `txid` and output `index` is available, the full output which exists
137 /// at that `txid`/`index`, and any keys or other information required to sign.
139 /// [`SpendableOutputs`]: crate::events::Event::SpendableOutputs
140 #[derive(Clone, Debug, PartialEq, Eq)]
141 pub enum SpendableOutputDescriptor {
142 /// An output to a script which was provided via [`SignerProvider`] directly, either from
143 /// [`get_destination_script`] or [`get_shutdown_scriptpubkey`], thus you should already
144 /// know how to spend it. No secret keys are provided as LDK was never given any key.
145 /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
146 /// on-chain using the payment preimage or after it has timed out.
148 /// [`get_shutdown_scriptpubkey`]: SignerProvider::get_shutdown_scriptpubkey
149 /// [`get_destination_script`]: SignerProvider::get_shutdown_scriptpubkey
151 /// The outpoint which is spendable.
153 /// The output which is referenced by the given outpoint.
156 /// An output to a P2WSH script which can be spent with a single signature after an `OP_CSV`
159 /// The witness in the spending input should be:
161 /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
164 /// Note that the `nSequence` field in the spending input must be set to
165 /// [`DelayedPaymentOutputDescriptor::to_self_delay`] (which means the transaction is not
166 /// broadcastable until at least [`DelayedPaymentOutputDescriptor::to_self_delay`] blocks after
167 /// the outpoint confirms, see [BIP
168 /// 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki)). Also note that LDK
169 /// won't generate a [`SpendableOutputDescriptor`] until the corresponding block height
172 /// These are generally the result of a "revocable" output to us, spendable only by us unless
173 /// it is an output from an old state which we broadcast (which should never happen).
175 /// To derive the delayed payment key which is used to sign this input, you must pass the
176 /// holder [`InMemorySigner::delayed_payment_base_key`] (i.e., the private key which corresponds to the
177 /// [`ChannelPublicKeys::delayed_payment_basepoint`] in [`ChannelSigner::pubkeys`]) and the provided
178 /// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to [`chan_utils::derive_private_key`]. The public key can be
179 /// generated without the secret key using [`chan_utils::derive_public_key`] and only the
180 /// [`ChannelPublicKeys::delayed_payment_basepoint`] which appears in [`ChannelSigner::pubkeys`].
182 /// To derive the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] provided here (which is
183 /// used in the witness script generation), you must pass the counterparty
184 /// [`ChannelPublicKeys::revocation_basepoint`] (which appears in the call to
185 /// [`ChannelSigner::provide_channel_parameters`]) and the provided
186 /// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to
187 /// [`chan_utils::derive_public_revocation_key`].
189 /// The witness script which is hashed and included in the output `script_pubkey` may be
190 /// regenerated by passing the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] (derived
191 /// as explained above), our delayed payment pubkey (derived as explained above), and the
192 /// [`DelayedPaymentOutputDescriptor::to_self_delay`] contained here to
193 /// [`chan_utils::get_revokeable_redeemscript`].
194 DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
195 /// An output to a P2WPKH, spendable exclusively by our payment key (i.e., the private key
196 /// which corresponds to the `payment_point` in [`ChannelSigner::pubkeys`]). The witness
197 /// in the spending input is, thus, simply:
199 /// <BIP 143 signature> <payment key>
202 /// These are generally the result of our counterparty having broadcast the current state,
203 /// allowing us to claim the non-HTLC-encumbered outputs immediately.
204 StaticPaymentOutput(StaticPaymentOutputDescriptor),
207 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
208 (0, StaticOutput) => {
209 (0, outpoint, required),
210 (2, output, required),
213 (1, DelayedPaymentOutput),
214 (2, StaticPaymentOutput),
217 /// A trait to handle Lightning channel key material without concretizing the channel type or
218 /// the signature mechanism.
219 pub trait ChannelSigner {
220 /// Gets the per-commitment point for a specific commitment number
222 /// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
223 fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
225 /// Gets the commitment secret for a specific commitment number as part of the revocation process
227 /// An external signer implementation should error here if the commitment was already signed
228 /// and should refuse to sign it in the future.
230 /// May be called more than once for the same index.
232 /// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
233 // TODO: return a Result so we can signal a validation error
234 fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
236 /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
238 /// This is required in order for the signer to make sure that releasing a commitment
239 /// secret won't leave us without a broadcastable holder transaction.
240 /// Policy checks should be implemented in this function, including checking the amount
241 /// sent to us and checking the HTLCs.
243 /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
244 /// A validating signer should ensure that an HTLC output is removed only when the matching
245 /// preimage is provided, or when the value to holder is restored.
247 /// Note that all the relevant preimages will be provided, but there may also be additional
248 /// irrelevant or duplicate preimages.
249 fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction,
250 preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
252 /// Returns the holder's channel public keys and basepoints.
253 fn pubkeys(&self) -> &ChannelPublicKeys;
255 /// Returns an arbitrary identifier describing the set of keys which are provided back to you in
256 /// some [`SpendableOutputDescriptor`] types. This should be sufficient to identify this
257 /// [`EcdsaChannelSigner`] object uniquely and lookup or re-derive its keys.
258 fn channel_keys_id(&self) -> [u8; 32];
260 /// Set the counterparty static channel data, including basepoints,
261 /// `counterparty_selected`/`holder_selected_contest_delay` and funding outpoint.
263 /// This data is static, and will never change for a channel once set. For a given [`ChannelSigner`]
264 /// instance, LDK will call this method exactly once - either immediately after construction
265 /// (not including if done via [`SignerProvider::read_chan_signer`]) or when the funding
266 /// information has been generated.
268 /// channel_parameters.is_populated() MUST be true.
269 fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters);
272 /// A trait to sign Lightning channel transactions as described in
273 /// [BOLT 3](https://github.com/lightning/bolts/blob/master/03-transactions.md).
275 /// Signing services could be implemented on a hardware wallet and should implement signing
276 /// policies in order to be secure. Please refer to the [VLS Policy
277 /// Controls](https://gitlab.com/lightning-signer/validating-lightning-signer/-/blob/main/docs/policy-controls.md)
278 /// for an example of such policies.
279 pub trait EcdsaChannelSigner: ChannelSigner {
280 /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
282 /// Note that if signing fails or is rejected, the channel will be force-closed.
284 /// Policy checks should be implemented in this function, including checking the amount
285 /// sent to us and checking the HTLCs.
287 /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
288 /// A validating signer should ensure that an HTLC output is removed only when the matching
289 /// preimage is provided, or when the value to holder is restored.
291 /// Note that all the relevant preimages will be provided, but there may also be additional
292 /// irrelevant or duplicate preimages.
294 // TODO: Document the things someone using this interface should enforce before signing.
295 fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction,
296 preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>
297 ) -> Result<(Signature, Vec<Signature>), ()>;
298 /// Validate the counterparty's revocation.
300 /// This is required in order for the signer to make sure that the state has moved
301 /// forward and it is safe to sign the next counterparty commitment.
302 fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
303 /// Creates a signature for a holder's commitment transaction and its claiming HTLC transactions.
305 /// This will be called
306 /// - with a non-revoked `commitment_tx`.
307 /// - with the latest `commitment_tx` when we initiate a force-close.
308 /// - with the previous `commitment_tx`, just to get claiming HTLC
309 /// signatures, if we are reacting to a [`ChannelMonitor`]
310 /// [replica](https://github.com/lightningdevkit/rust-lightning/blob/main/GLOSSARY.md#monitor-replicas)
311 /// that decided to broadcast before it had been updated to the latest `commitment_tx`.
313 /// This may be called multiple times for the same transaction.
315 /// An external signer implementation should check that the commitment has not been revoked.
317 /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
318 // TODO: Document the things someone using this interface should enforce before signing.
319 fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction,
320 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
321 /// Same as [`sign_holder_commitment_and_htlcs`], but exists only for tests to get access to
322 /// holder commitment transactions which will be broadcasted later, after the channel has moved
323 /// on to a newer state. Thus, needs its own method as [`sign_holder_commitment_and_htlcs`] may
324 /// enforce that we only ever get called once.
325 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
326 fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction,
327 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
328 /// Create a signature for the given input in a transaction spending an HTLC transaction output
329 /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
331 /// A justice transaction may claim multiple outputs at the same time if timelocks are
332 /// similar, but only a signature for the input at index `input` should be signed for here.
333 /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
334 /// to an upcoming timelock expiration.
336 /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
338 /// `per_commitment_key` is revocation secret which was provided by our counterparty when they
339 /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
340 /// not allow the spending of any funds by itself (you need our holder `revocation_secret` to do
342 fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64,
343 per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>
344 ) -> Result<Signature, ()>;
345 /// Create a signature for the given input in a transaction spending a commitment transaction
346 /// HTLC output when our counterparty broadcasts an old state.
348 /// A justice transaction may claim multiple outputs at the same time if timelocks are
349 /// similar, but only a signature for the input at index `input` should be signed for here.
350 /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
351 /// to an upcoming timelock expiration.
353 /// `amount` is the value of the output spent by this input, committed to in the BIP 143
356 /// `per_commitment_key` is revocation secret which was provided by our counterparty when they
357 /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
358 /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
361 /// `htlc` holds HTLC elements (hash, timelock), thus changing the format of the witness script
362 /// (which is committed to in the BIP 143 signatures).
363 fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64,
364 per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment,
365 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
367 /// Computes the signature for a commitment transaction's HTLC output used as an input within
368 /// `htlc_tx`, which spends the commitment transaction at index `input`. The signature returned
369 /// must be be computed using [`EcdsaSighashType::All`]. Note that this should only be used to
370 /// sign HTLC transactions from channels supporting anchor outputs after all additional
371 /// inputs/outputs have been added to the transaction.
373 /// [`EcdsaSighashType::All`]: bitcoin::blockdata::transaction::EcdsaSighashType::All
374 fn sign_holder_htlc_transaction(&self, htlc_tx: &Transaction, input: usize,
375 htlc_descriptor: &HTLCDescriptor, secp_ctx: &Secp256k1<secp256k1::All>
376 ) -> Result<Signature, ()>;
377 /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
378 /// transaction, either offered or received.
380 /// Such a transaction may claim multiples offered outputs at same time if we know the
381 /// preimage for each when we create it, but only the input at index `input` should be
382 /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
383 /// needed with regards to an upcoming timelock expiration.
385 /// `witness_script` is either an offered or received script as defined in BOLT3 for HTLC
388 /// `amount` is value of the output spent by this input, committed to in the BIP 143 signature.
390 /// `per_commitment_point` is the dynamic point corresponding to the channel state
391 /// detected onchain. It has been generated by our counterparty and is used to derive
392 /// channel state keys, which are then included in the witness script and committed to in the
393 /// BIP 143 signature.
394 fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64,
395 per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment,
396 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
397 /// Create a signature for a (proposed) closing transaction.
399 /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
400 /// chosen to forgo their output as dust.
401 fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction,
402 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
403 /// Computes the signature for a commitment transaction's anchor output used as an
404 /// input within `anchor_tx`, which spends the commitment transaction, at index `input`.
405 fn sign_holder_anchor_input(
406 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
407 ) -> Result<Signature, ()>;
408 /// Signs a channel announcement message with our funding key proving it comes from one of the
409 /// channel participants.
411 /// Channel announcements also require a signature from each node's network key. Our node
412 /// signature is computed through [`NodeSigner::sign_gossip_message`].
414 /// Note that if this fails or is rejected, the channel will not be publicly announced and
415 /// our counterparty may (though likely will not) close the channel on us for violating the
417 fn sign_channel_announcement_with_funding_key(
418 &self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
419 ) -> Result<Signature, ()>;
422 /// A writeable signer.
424 /// There will always be two instances of a signer per channel, one occupied by the
425 /// [`ChannelManager`] and another by the channel's [`ChannelMonitor`].
427 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
428 /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
429 pub trait WriteableEcdsaChannelSigner: EcdsaChannelSigner + Writeable {}
431 /// Specifies the recipient of an invoice.
433 /// This indicates to [`NodeSigner::sign_invoice`] what node secret key should be used to sign
436 /// The invoice should be signed with the local node secret key.
438 /// The invoice should be signed with the phantom node secret key. This secret key must be the
439 /// same for all nodes participating in the [phantom node payment].
441 /// [phantom node payment]: PhantomKeysManager
445 /// A trait that describes a source of entropy.
446 pub trait EntropySource {
447 /// Gets a unique, cryptographically-secure, random 32-byte value. This method must return a
448 /// different value each time it is called.
449 fn get_secure_random_bytes(&self) -> [u8; 32];
452 /// A trait that can handle cryptographic operations at the scope level of a node.
453 pub trait NodeSigner {
454 /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
456 /// If the implementor of this trait supports [phantom node payments], then every node that is
457 /// intended to be included in the phantom invoice route hints must return the same value from
459 // This is because LDK avoids storing inbound payment data by encrypting payment data in the
460 // payment hash and/or payment secret, therefore for a payment to be receivable by multiple
461 // nodes, they must share the key that encrypts this payment data.
463 /// This method must return the same value each time it is called.
465 /// [phantom node payments]: PhantomKeysManager
466 fn get_inbound_payment_key_material(&self) -> KeyMaterial;
468 /// Get node id based on the provided [`Recipient`].
470 /// This method must return the same value each time it is called with a given [`Recipient`]
473 /// Errors if the [`Recipient`] variant is not supported by the implementation.
474 fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()>;
476 /// Gets the ECDH shared secret of our node secret and `other_key`, multiplying by `tweak` if
477 /// one is provided. Note that this tweak can be applied to `other_key` instead of our node
478 /// secret, though this is less efficient.
480 /// Note that if this fails while attempting to forward an HTLC, LDK will panic. The error
481 /// should be resolved to allow LDK to resume forwarding HTLCs.
483 /// Errors if the [`Recipient`] variant is not supported by the implementation.
484 fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()>;
488 /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
489 /// this trait to parse the invoice and make sure they're signing what they expect, rather than
490 /// blindly signing the hash.
492 /// The `hrp_bytes` are ASCII bytes, while the `invoice_data` is base32.
494 /// The secret key used to sign the invoice is dependent on the [`Recipient`].
496 /// Errors if the [`Recipient`] variant is not supported by the implementation.
497 fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()>;
499 /// Sign a gossip message.
501 /// Note that if this fails, LDK may panic and the message will not be broadcast to the network
502 /// or a possible channel counterparty. If LDK panics, the error should be resolved to allow the
503 /// message to be broadcast, as otherwise it may prevent one from receiving funds over the
504 /// corresponding channel.
505 fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()>;
508 /// A trait that can return signer instances for individual channels.
509 pub trait SignerProvider {
510 /// A type which implements [`WriteableEcdsaChannelSigner`] which will be returned by [`Self::derive_channel_signer`].
511 type Signer : WriteableEcdsaChannelSigner;
513 /// Generates a unique `channel_keys_id` that can be used to obtain a [`Self::Signer`] through
514 /// [`SignerProvider::derive_channel_signer`]. The `user_channel_id` is provided to allow
515 /// implementations of [`SignerProvider`] to maintain a mapping between itself and the generated
516 /// `channel_keys_id`.
518 /// This method must return a different value each time it is called.
519 fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32];
521 /// Derives the private key material backing a `Signer`.
523 /// To derive a new `Signer`, a fresh `channel_keys_id` should be obtained through
524 /// [`SignerProvider::generate_channel_keys_id`]. Otherwise, an existing `Signer` can be
525 /// re-derived from its `channel_keys_id`, which can be obtained through its trait method
526 /// [`ChannelSigner::channel_keys_id`].
527 fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer;
529 /// Reads a [`Signer`] for this [`SignerProvider`] from the given input stream.
530 /// This is only called during deserialization of other objects which contain
531 /// [`WriteableEcdsaChannelSigner`]-implementing objects (i.e., [`ChannelMonitor`]s and [`ChannelManager`]s).
532 /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
533 /// contain no versioning scheme. You may wish to include your own version prefix and ensure
534 /// you've read all of the provided bytes to ensure no corruption occurred.
536 /// This method is slowly being phased out -- it will only be called when reading objects
537 /// written by LDK versions prior to 0.0.113.
539 /// [`Signer`]: Self::Signer
540 /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
541 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
542 fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
544 /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
546 /// This method should return a different value each time it is called, to avoid linking
547 /// on-chain funds across channels as controlled to the same user.
548 fn get_destination_script(&self) -> Script;
550 /// Get a script pubkey which we will send funds to when closing a channel.
552 /// This method should return a different value each time it is called, to avoid linking
553 /// on-chain funds across channels as controlled to the same user.
554 fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
557 /// A simple implementation of [`WriteableEcdsaChannelSigner`] that just keeps the private keys in memory.
559 /// This implementation performs no policy checks and is insufficient by itself as
560 /// a secure external signer.
561 pub struct InMemorySigner {
562 /// Holder secret key in the 2-of-2 multisig script of a channel. This key also backs the
563 /// holder's anchor output in a commitment transaction, if one is present.
564 pub funding_key: SecretKey,
565 /// Holder secret key for blinded revocation pubkey.
566 pub revocation_base_key: SecretKey,
567 /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions.
568 pub payment_key: SecretKey,
569 /// Holder secret key used in an HTLC transaction.
570 pub delayed_payment_base_key: SecretKey,
571 /// Holder HTLC secret key used in commitment transaction HTLC outputs.
572 pub htlc_base_key: SecretKey,
574 pub commitment_seed: [u8; 32],
575 /// Holder public keys and basepoints.
576 pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
577 /// Counterparty public keys and counterparty/holder `selected_contest_delay`, populated on channel acceptance.
578 channel_parameters: Option<ChannelTransactionParameters>,
579 /// The total value of this channel.
580 channel_value_satoshis: u64,
581 /// Key derivation parameters.
582 channel_keys_id: [u8; 32],
583 /// Seed from which all randomness produced is derived from.
584 rand_bytes_unique_start: [u8; 32],
585 /// Tracks the number of times we've produced randomness to ensure we don't return the same
587 rand_bytes_index: AtomicCounter,
590 impl Clone for InMemorySigner {
591 fn clone(&self) -> Self {
593 funding_key: self.funding_key.clone(),
594 revocation_base_key: self.revocation_base_key.clone(),
595 payment_key: self.payment_key.clone(),
596 delayed_payment_base_key: self.delayed_payment_base_key.clone(),
597 htlc_base_key: self.htlc_base_key.clone(),
598 commitment_seed: self.commitment_seed.clone(),
599 holder_channel_pubkeys: self.holder_channel_pubkeys.clone(),
600 channel_parameters: self.channel_parameters.clone(),
601 channel_value_satoshis: self.channel_value_satoshis,
602 channel_keys_id: self.channel_keys_id,
603 rand_bytes_unique_start: self.get_secure_random_bytes(),
604 rand_bytes_index: AtomicCounter::new(),
609 impl InMemorySigner {
610 /// Creates a new [`InMemorySigner`].
611 pub fn new<C: Signing>(
612 secp_ctx: &Secp256k1<C>,
613 funding_key: SecretKey,
614 revocation_base_key: SecretKey,
615 payment_key: SecretKey,
616 delayed_payment_base_key: SecretKey,
617 htlc_base_key: SecretKey,
618 commitment_seed: [u8; 32],
619 channel_value_satoshis: u64,
620 channel_keys_id: [u8; 32],
621 rand_bytes_unique_start: [u8; 32],
622 ) -> InMemorySigner {
623 let holder_channel_pubkeys =
624 InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
625 &payment_key, &delayed_payment_base_key,
631 delayed_payment_base_key,
634 channel_value_satoshis,
635 holder_channel_pubkeys,
636 channel_parameters: None,
638 rand_bytes_unique_start,
639 rand_bytes_index: AtomicCounter::new(),
643 fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
644 funding_key: &SecretKey,
645 revocation_base_key: &SecretKey,
646 payment_key: &SecretKey,
647 delayed_payment_base_key: &SecretKey,
648 htlc_base_key: &SecretKey) -> ChannelPublicKeys {
649 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
651 funding_pubkey: from_secret(&funding_key),
652 revocation_basepoint: from_secret(&revocation_base_key),
653 payment_point: from_secret(&payment_key),
654 delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
655 htlc_basepoint: from_secret(&htlc_base_key),
659 /// Returns the counterparty's pubkeys.
661 /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
662 pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
663 /// Returns the `contest_delay` value specified by our counterparty and applied on holder-broadcastable
664 /// transactions, i.e., the amount of time that we have to wait to recover our funds if we
665 /// broadcast a transaction.
667 /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
668 pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
669 /// Returns the `contest_delay` value specified by us and applied on transactions broadcastable
670 /// by our counterparty, i.e., the amount of time that they have to wait to recover their funds
671 /// if they broadcast a transaction.
673 /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
674 pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
675 /// Returns whether the holder is the initiator.
677 /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
678 pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
681 /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
682 pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
683 /// Returns a [`ChannelTransactionParameters`] for this channel, to be used when verifying or
684 /// building transactions.
686 /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
687 pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
688 self.channel_parameters.as_ref().unwrap()
690 /// Returns whether anchors should be used.
692 /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
693 pub fn opt_anchors(&self) -> bool {
694 self.get_channel_parameters().opt_anchors.is_some()
696 /// Sign the single input of `spend_tx` at index `input_idx`, which spends the output described
697 /// by `descriptor`, returning the witness stack for the input.
699 /// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
700 /// is not spending the outpoint described by [`descriptor.outpoint`],
701 /// or if an output descriptor `script_pubkey` does not match the one we can spend.
703 /// [`descriptor.outpoint`]: StaticPaymentOutputDescriptor::outpoint
704 pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
705 // TODO: We really should be taking the SigHashCache as a parameter here instead of
706 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
707 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
708 // bindings updates to support SigHashCache objects).
709 if spend_tx.input.len() <= input_idx { return Err(()); }
710 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
711 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
713 let remotepubkey = self.pubkeys().payment_point;
714 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Testnet).script_pubkey();
715 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
716 let remotesig = sign_with_aux_rand(secp_ctx, &sighash, &self.payment_key, &self);
717 let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
719 if payment_script != descriptor.output.script_pubkey { return Err(()); }
721 let mut witness = Vec::with_capacity(2);
722 witness.push(remotesig.serialize_der().to_vec());
723 witness[0].push(EcdsaSighashType::All as u8);
724 witness.push(remotepubkey.serialize().to_vec());
728 /// Sign the single input of `spend_tx` at index `input_idx` which spends the output
729 /// described by `descriptor`, returning the witness stack for the input.
731 /// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
732 /// is not spending the outpoint described by [`descriptor.outpoint`], does not have a
733 /// sequence set to [`descriptor.to_self_delay`], or if an output descriptor
734 /// `script_pubkey` does not match the one we can spend.
736 /// [`descriptor.outpoint`]: DelayedPaymentOutputDescriptor::outpoint
737 /// [`descriptor.to_self_delay`]: DelayedPaymentOutputDescriptor::to_self_delay
738 pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
739 // TODO: We really should be taking the SigHashCache as a parameter here instead of
740 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
741 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
742 // bindings updates to support SigHashCache objects).
743 if spend_tx.input.len() <= input_idx { return Err(()); }
744 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
745 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
746 if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 { return Err(()); }
748 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key);
749 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
750 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
751 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
752 let local_delayedsig = sign_with_aux_rand(secp_ctx, &sighash, &delayed_payment_key, &self);
753 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
755 if descriptor.output.script_pubkey != payment_script { return Err(()); }
757 let mut witness = Vec::with_capacity(3);
758 witness.push(local_delayedsig.serialize_der().to_vec());
759 witness[0].push(EcdsaSighashType::All as u8);
760 witness.push(vec!()); //MINIMALIF
761 witness.push(witness_script.clone().into_bytes());
766 impl EntropySource for InMemorySigner {
767 fn get_secure_random_bytes(&self) -> [u8; 32] {
768 let index = self.rand_bytes_index.get_increment();
769 let mut nonce = [0u8; 16];
770 nonce[..8].copy_from_slice(&index.to_be_bytes());
771 ChaCha20::get_single_block(&self.rand_bytes_unique_start, &nonce)
775 impl ChannelSigner for InMemorySigner {
776 fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
777 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
778 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
781 fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
782 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
785 fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
789 fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
791 fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
793 fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters) {
794 assert!(self.channel_parameters.is_none() || self.channel_parameters.as_ref().unwrap() == channel_parameters);
795 if self.channel_parameters.is_some() {
796 // The channel parameters were already set and they match, return early.
799 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
800 self.channel_parameters = Some(channel_parameters.clone());
804 impl EcdsaChannelSigner for InMemorySigner {
805 fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
806 let trusted_tx = commitment_tx.trust();
807 let keys = trusted_tx.keys();
809 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
810 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
812 let built_tx = trusted_tx.built_transaction();
813 let commitment_sig = built_tx.sign_counterparty_commitment(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
814 let commitment_txid = built_tx.txid;
816 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
817 for htlc in commitment_tx.htlcs() {
818 let channel_parameters = self.get_channel_parameters();
819 let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), channel_parameters.opt_non_zero_fee_anchors.is_some(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
820 let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
821 let htlc_sighashtype = if self.opt_anchors() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
822 let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
823 let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key);
824 htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
827 Ok((commitment_sig, htlc_sigs))
830 fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
834 fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
835 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
836 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
837 let trusted_tx = commitment_tx.trust();
838 let sig = trusted_tx.built_transaction().sign_holder_commitment(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, &self, secp_ctx);
839 let channel_parameters = self.get_channel_parameters();
840 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), &self, secp_ctx)?;
844 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
845 fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
846 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
847 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
848 let trusted_tx = commitment_tx.trust();
849 let sig = trusted_tx.built_transaction().sign_holder_commitment(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, &self, secp_ctx);
850 let channel_parameters = self.get_channel_parameters();
851 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), &self, secp_ctx)?;
855 fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
856 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
857 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
858 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
859 let witness_script = {
860 let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint);
861 chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
863 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
864 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
865 return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self))
868 fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
869 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
870 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
871 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
872 let witness_script = {
873 let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint);
874 let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint);
875 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
877 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
878 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
879 return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self))
883 fn sign_holder_htlc_transaction(
884 &self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor,
885 secp_ctx: &Secp256k1<secp256k1::All>
886 ) -> Result<Signature, ()> {
887 let per_commitment_point = self.get_per_commitment_point(
888 htlc_descriptor.per_commitment_number, &secp_ctx
890 let witness_script = htlc_descriptor.witness_script(&per_commitment_point, secp_ctx);
891 let sighash = &sighash::SighashCache::new(&*htlc_tx).segwit_signature_hash(
892 input, &witness_script, htlc_descriptor.htlc.amount_msat / 1000, EcdsaSighashType::All
894 let our_htlc_private_key = chan_utils::derive_private_key(
895 &secp_ctx, &per_commitment_point, &self.htlc_base_key
897 Ok(sign_with_aux_rand(&secp_ctx, &hash_to_message!(sighash), &our_htlc_private_key, &self))
900 fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
901 let htlc_key = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key);
902 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
903 let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint);
904 let htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint);
905 let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey);
906 let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
907 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
908 Ok(sign_with_aux_rand(secp_ctx, &sighash, &htlc_key, &self))
911 fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
912 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
913 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
914 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
917 fn sign_holder_anchor_input(
918 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
919 ) -> Result<Signature, ()> {
920 let witness_script = chan_utils::get_anchor_redeemscript(&self.holder_channel_pubkeys.funding_pubkey);
921 let sighash = sighash::SighashCache::new(&*anchor_tx).segwit_signature_hash(
922 input, &witness_script, ANCHOR_OUTPUT_VALUE_SATOSHI, EcdsaSighashType::All,
924 Ok(sign_with_aux_rand(secp_ctx, &hash_to_message!(&sighash[..]), &self.funding_key, &self))
927 fn sign_channel_announcement_with_funding_key(
928 &self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
929 ) -> Result<Signature, ()> {
930 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
931 Ok(secp_ctx.sign_ecdsa(&msghash, &self.funding_key))
935 const SERIALIZATION_VERSION: u8 = 1;
937 const MIN_SERIALIZATION_VERSION: u8 = 1;
939 impl WriteableEcdsaChannelSigner for InMemorySigner {}
941 impl Writeable for InMemorySigner {
942 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
943 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
945 self.funding_key.write(writer)?;
946 self.revocation_base_key.write(writer)?;
947 self.payment_key.write(writer)?;
948 self.delayed_payment_base_key.write(writer)?;
949 self.htlc_base_key.write(writer)?;
950 self.commitment_seed.write(writer)?;
951 self.channel_parameters.write(writer)?;
952 self.channel_value_satoshis.write(writer)?;
953 self.channel_keys_id.write(writer)?;
955 write_tlv_fields!(writer, {});
961 impl<ES: Deref> ReadableArgs<ES> for InMemorySigner where ES::Target: EntropySource {
962 fn read<R: io::Read>(reader: &mut R, entropy_source: ES) -> Result<Self, DecodeError> {
963 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
965 let funding_key = Readable::read(reader)?;
966 let revocation_base_key = Readable::read(reader)?;
967 let payment_key = Readable::read(reader)?;
968 let delayed_payment_base_key = Readable::read(reader)?;
969 let htlc_base_key = Readable::read(reader)?;
970 let commitment_seed = Readable::read(reader)?;
971 let counterparty_channel_data = Readable::read(reader)?;
972 let channel_value_satoshis = Readable::read(reader)?;
973 let secp_ctx = Secp256k1::signing_only();
974 let holder_channel_pubkeys =
975 InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
976 &payment_key, &delayed_payment_base_key, &htlc_base_key);
977 let keys_id = Readable::read(reader)?;
979 read_tlv_fields!(reader, {});
985 delayed_payment_base_key,
988 channel_value_satoshis,
989 holder_channel_pubkeys,
990 channel_parameters: counterparty_channel_data,
991 channel_keys_id: keys_id,
992 rand_bytes_unique_start: entropy_source.get_secure_random_bytes(),
993 rand_bytes_index: AtomicCounter::new(),
998 /// Simple implementation of [`EntropySource`], [`NodeSigner`], and [`SignerProvider`] that takes a
999 /// 32-byte seed for use as a BIP 32 extended key and derives keys from that.
1001 /// Your `node_id` is seed/0'.
1002 /// Unilateral closes may use seed/1'.
1003 /// Cooperative closes may use seed/2'.
1004 /// The two close keys may be needed to claim on-chain funds!
1006 /// This struct cannot be used for nodes that wish to support receiving phantom payments;
1007 /// [`PhantomKeysManager`] must be used instead.
1009 /// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
1010 /// previously issued invoices and attempts to pay previous invoices will fail.
1011 pub struct KeysManager {
1012 secp_ctx: Secp256k1<secp256k1::All>,
1013 node_secret: SecretKey,
1015 inbound_payment_key: KeyMaterial,
1016 destination_script: Script,
1017 shutdown_pubkey: PublicKey,
1018 channel_master_key: ExtendedPrivKey,
1019 channel_child_index: AtomicUsize,
1021 rand_bytes_unique_start: [u8; 32],
1022 rand_bytes_index: AtomicCounter,
1025 starting_time_secs: u64,
1026 starting_time_nanos: u32,
1030 /// Constructs a [`KeysManager`] from a 32-byte seed. If the seed is in some way biased (e.g.,
1031 /// your CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
1032 /// `starting_time` isn't strictly required to actually be a time, but it must absolutely,
1033 /// without a doubt, be unique to this instance. ie if you start multiple times with the same
1034 /// `seed`, `starting_time` must be unique to each run. Thus, the easiest way to achieve this
1035 /// is to simply use the current time (with very high precision).
1037 /// The `seed` MUST be backed up safely prior to use so that the keys can be re-created, however,
1038 /// obviously, `starting_time` should be unique every time you reload the library - it is only
1039 /// used to generate new ephemeral key data (which will be stored by the individual channel if
1042 /// Note that the seed is required to recover certain on-chain funds independent of
1043 /// [`ChannelMonitor`] data, though a current copy of [`ChannelMonitor`] data is also required
1044 /// for any channel, and some on-chain during-closing funds.
1046 /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
1047 pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
1048 let secp_ctx = Secp256k1::new();
1049 // Note that when we aren't serializing the key, network doesn't matter
1050 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
1052 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
1053 let node_id = PublicKey::from_secret_key(&secp_ctx, &node_secret);
1054 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
1055 Ok(destination_key) => {
1056 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
1057 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
1058 .push_slice(&wpubkey_hash.into_inner())
1061 Err(_) => panic!("Your RNG is busted"),
1063 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
1064 Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
1065 Err(_) => panic!("Your RNG is busted"),
1067 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
1068 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
1069 let mut inbound_pmt_key_bytes = [0; 32];
1070 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
1072 let mut rand_bytes_engine = Sha256::engine();
1073 rand_bytes_engine.input(&starting_time_secs.to_be_bytes());
1074 rand_bytes_engine.input(&starting_time_nanos.to_be_bytes());
1075 rand_bytes_engine.input(seed);
1076 rand_bytes_engine.input(b"LDK PRNG Seed");
1077 let rand_bytes_unique_start = Sha256::from_engine(rand_bytes_engine).into_inner();
1079 let mut res = KeysManager {
1083 inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
1089 channel_child_index: AtomicUsize::new(0),
1091 rand_bytes_unique_start,
1092 rand_bytes_index: AtomicCounter::new(),
1096 starting_time_nanos,
1098 let secp_seed = res.get_secure_random_bytes();
1099 res.secp_ctx.seeded_randomize(&secp_seed);
1102 Err(_) => panic!("Your rng is busted"),
1106 /// Gets the "node_id" secret key used to sign gossip announcements, decode onion data, etc.
1107 pub fn get_node_secret_key(&self) -> SecretKey {
1111 /// Derive an old [`WriteableEcdsaChannelSigner`] containing per-channel secrets based on a key derivation parameters.
1112 pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1113 let chan_id = u64::from_be_bytes(params[0..8].try_into().unwrap());
1114 let mut unique_start = Sha256::engine();
1115 unique_start.input(params);
1116 unique_start.input(&self.seed);
1118 // We only seriously intend to rely on the channel_master_key for true secure
1119 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
1120 // starting_time provided in the constructor) to be unique.
1121 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx,
1122 ChildNumber::from_hardened_idx((chan_id as u32) % (1 << 31)).expect("key space exhausted")
1123 ).expect("Your RNG is busted");
1124 unique_start.input(&child_privkey.private_key[..]);
1126 let seed = Sha256::from_engine(unique_start).into_inner();
1128 let commitment_seed = {
1129 let mut sha = Sha256::engine();
1131 sha.input(&b"commitment seed"[..]);
1132 Sha256::from_engine(sha).into_inner()
1134 macro_rules! key_step {
1135 ($info: expr, $prev_key: expr) => {{
1136 let mut sha = Sha256::engine();
1138 sha.input(&$prev_key[..]);
1139 sha.input(&$info[..]);
1140 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
1143 let funding_key = key_step!(b"funding key", commitment_seed);
1144 let revocation_base_key = key_step!(b"revocation base key", funding_key);
1145 let payment_key = key_step!(b"payment key", revocation_base_key);
1146 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
1147 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
1148 let prng_seed = self.get_secure_random_bytes();
1150 InMemorySigner::new(
1153 revocation_base_key,
1155 delayed_payment_base_key,
1158 channel_value_satoshis,
1164 /// Creates a [`Transaction`] which spends the given descriptors to the given outputs, plus an
1165 /// output to the given change destination (if sufficient change value remains). The
1166 /// transaction will have a feerate, at least, of the given value.
1168 /// Returns `Err(())` if the output value is greater than the input value minus required fee,
1169 /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
1170 /// does not match the one we can spend.
1172 /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
1174 /// May panic if the [`SpendableOutputDescriptor`]s were not generated by channels which used
1175 /// this [`KeysManager`] or one of the [`InMemorySigner`] created by this [`KeysManager`].
1176 pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1177 let mut input = Vec::new();
1178 let mut input_value = 0;
1179 let mut witness_weight = 0;
1180 let mut output_set = HashSet::with_capacity(descriptors.len());
1181 for outp in descriptors {
1183 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1185 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1186 script_sig: Script::new(),
1187 sequence: Sequence::ZERO,
1188 witness: Witness::new(),
1190 witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1191 input_value += descriptor.output.value;
1192 if !output_set.insert(descriptor.outpoint) { return Err(()); }
1194 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1196 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1197 script_sig: Script::new(),
1198 sequence: Sequence(descriptor.to_self_delay as u32),
1199 witness: Witness::new(),
1201 witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1202 input_value += descriptor.output.value;
1203 if !output_set.insert(descriptor.outpoint) { return Err(()); }
1205 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
1207 previous_output: outpoint.into_bitcoin_outpoint(),
1208 script_sig: Script::new(),
1209 sequence: Sequence::ZERO,
1210 witness: Witness::new(),
1212 witness_weight += 1 + 73 + 34;
1213 input_value += output.value;
1214 if !output_set.insert(*outpoint) { return Err(()); }
1217 if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
1219 let mut spend_tx = Transaction {
1221 lock_time: PackedLockTime(0),
1225 let expected_max_weight =
1226 transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
1228 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1229 let mut input_idx = 0;
1230 for outp in descriptors {
1232 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1233 if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1235 self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1236 descriptor.channel_keys_id));
1238 spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1240 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1241 if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1243 self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1244 descriptor.channel_keys_id));
1246 spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1248 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
1249 let derivation_idx = if output.script_pubkey == self.destination_script {
1255 // Note that when we aren't serializing the key, network doesn't matter
1256 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1258 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1260 Err(_) => panic!("Your RNG is busted"),
1263 Err(_) => panic!("Your rng is busted"),
1266 let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub();
1267 if derivation_idx == 2 {
1268 assert_eq!(pubkey.inner, self.shutdown_pubkey);
1270 let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1271 let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1273 if payment_script != output.script_pubkey { return Err(()); };
1275 let sighash = hash_to_message!(&sighash::SighashCache::new(&spend_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
1276 let sig = sign_with_aux_rand(secp_ctx, &sighash, &secret.private_key, &self);
1277 let mut sig_ser = sig.serialize_der().to_vec();
1278 sig_ser.push(EcdsaSighashType::All as u8);
1279 spend_tx.input[input_idx].witness.push(sig_ser);
1280 spend_tx.input[input_idx].witness.push(pubkey.inner.serialize().to_vec());
1286 debug_assert!(expected_max_weight >= spend_tx.weight());
1287 // Note that witnesses with a signature vary somewhat in size, so allow
1288 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1289 debug_assert!(expected_max_weight <= spend_tx.weight() + descriptors.len() * 3);
1295 impl EntropySource for KeysManager {
1296 fn get_secure_random_bytes(&self) -> [u8; 32] {
1297 let index = self.rand_bytes_index.get_increment();
1298 let mut nonce = [0u8; 16];
1299 nonce[..8].copy_from_slice(&index.to_be_bytes());
1300 ChaCha20::get_single_block(&self.rand_bytes_unique_start, &nonce)
1304 impl NodeSigner for KeysManager {
1305 fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1307 Recipient::Node => Ok(self.node_id.clone()),
1308 Recipient::PhantomNode => Err(())
1312 fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1313 let mut node_secret = match recipient {
1314 Recipient::Node => Ok(self.node_secret.clone()),
1315 Recipient::PhantomNode => Err(())
1317 if let Some(tweak) = tweak {
1318 node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1320 Ok(SharedSecret::new(other_key, &node_secret))
1323 fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1324 self.inbound_payment_key.clone()
1327 fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1328 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1329 let secret = match recipient {
1330 Recipient::Node => Ok(&self.node_secret),
1331 Recipient::PhantomNode => Err(())
1333 Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), secret))
1336 fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()> {
1337 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1338 Ok(self.secp_ctx.sign_ecdsa(&msg_hash, &self.node_secret))
1342 impl SignerProvider for KeysManager {
1343 type Signer = InMemorySigner;
1345 fn generate_channel_keys_id(&self, _inbound: bool, _channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
1346 let child_idx = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1347 // `child_idx` is the only thing guaranteed to make each channel unique without a restart
1348 // (though `user_channel_id` should help, depending on user behavior). If it manages to
1349 // roll over, we may generate duplicate keys for two different channels, which could result
1350 // in loss of funds. Because we only support 32-bit+ systems, assert that our `AtomicUsize`
1351 // doesn't reach `u32::MAX`.
1352 assert!(child_idx < core::u32::MAX as usize, "2^32 channels opened without restart");
1353 let mut id = [0; 32];
1354 id[0..4].copy_from_slice(&(child_idx as u32).to_be_bytes());
1355 id[4..8].copy_from_slice(&self.starting_time_nanos.to_be_bytes());
1356 id[8..16].copy_from_slice(&self.starting_time_secs.to_be_bytes());
1357 id[16..32].copy_from_slice(&user_channel_id.to_be_bytes());
1361 fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
1362 self.derive_channel_keys(channel_value_satoshis, &channel_keys_id)
1365 fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1366 InMemorySigner::read(&mut io::Cursor::new(reader), self)
1369 fn get_destination_script(&self) -> Script {
1370 self.destination_script.clone()
1373 fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1374 ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
1378 /// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
1381 /// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
1382 /// paid to one of multiple nodes. This works because we encode the invoice route hints such that
1383 /// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
1384 /// itself without ever needing to forward to this fake node.
1386 /// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
1387 /// provide some fault tolerance, because payers will automatically retry paying other provided
1388 /// nodes in the case that one node goes down.
1390 /// Note that multi-path payments are not supported in phantom invoices for security reasons.
1391 // In the hypothetical case that we did support MPP phantom payments, there would be no way for
1392 // nodes to know when the full payment has been received (and the preimage can be released) without
1393 // significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
1394 // to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
1395 // is released too early.
1397 /// Switching between this struct and [`KeysManager`] will invalidate any previously issued
1398 /// invoices and attempts to pay previous invoices will fail.
1399 pub struct PhantomKeysManager {
1401 inbound_payment_key: KeyMaterial,
1402 phantom_secret: SecretKey,
1403 phantom_node_id: PublicKey,
1406 impl EntropySource for PhantomKeysManager {
1407 fn get_secure_random_bytes(&self) -> [u8; 32] {
1408 self.inner.get_secure_random_bytes()
1412 impl NodeSigner for PhantomKeysManager {
1413 fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1415 Recipient::Node => self.inner.get_node_id(Recipient::Node),
1416 Recipient::PhantomNode => Ok(self.phantom_node_id.clone()),
1420 fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1421 let mut node_secret = match recipient {
1422 Recipient::Node => self.inner.node_secret.clone(),
1423 Recipient::PhantomNode => self.phantom_secret.clone(),
1425 if let Some(tweak) = tweak {
1426 node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1428 Ok(SharedSecret::new(other_key, &node_secret))
1431 fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1432 self.inbound_payment_key.clone()
1435 fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1436 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1437 let secret = match recipient {
1438 Recipient::Node => &self.inner.node_secret,
1439 Recipient::PhantomNode => &self.phantom_secret,
1441 Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), secret))
1444 fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()> {
1445 self.inner.sign_gossip_message(msg)
1449 impl SignerProvider for PhantomKeysManager {
1450 type Signer = InMemorySigner;
1452 fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
1453 self.inner.generate_channel_keys_id(inbound, channel_value_satoshis, user_channel_id)
1456 fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
1457 self.inner.derive_channel_signer(channel_value_satoshis, channel_keys_id)
1460 fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1461 self.inner.read_chan_signer(reader)
1464 fn get_destination_script(&self) -> Script {
1465 self.inner.get_destination_script()
1468 fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1469 self.inner.get_shutdown_scriptpubkey()
1473 impl PhantomKeysManager {
1474 /// Constructs a [`PhantomKeysManager`] given a 32-byte seed and an additional `cross_node_seed`
1475 /// that is shared across all nodes that intend to participate in [phantom node payments]
1478 /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
1479 /// `starting_time_nanos`.
1481 /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
1482 /// same across restarts, or else inbound payments may fail.
1484 /// [phantom node payments]: PhantomKeysManager
1485 pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
1486 let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
1487 let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
1488 let phantom_secret = SecretKey::from_slice(&phantom_key).unwrap();
1489 let phantom_node_id = PublicKey::from_secret_key(&inner.secp_ctx, &phantom_secret);
1492 inbound_payment_key: KeyMaterial(inbound_key),
1498 /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
1499 pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1500 self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx)
1503 /// See [`KeysManager::derive_channel_keys`] for documentation on this method.
1504 pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1505 self.inner.derive_channel_keys(channel_value_satoshis, params)
1508 /// Gets the "node_id" secret key used to sign gossip announcements, decode onion data, etc.
1509 pub fn get_node_secret_key(&self) -> SecretKey {
1510 self.inner.get_node_secret_key()
1513 /// Gets the "node_id" secret key of the phantom node used to sign invoices, decode the
1514 /// last-hop onion data, etc.
1515 pub fn get_phantom_node_secret_key(&self) -> SecretKey {
1520 // Ensure that EcdsaChannelSigner can have a vtable
1523 let _signer: Box<dyn EcdsaChannelSigner>;
1526 #[cfg(all(test, feature = "_bench_unstable", not(feature = "no-std")))]
1528 use std::sync::{Arc, mpsc};
1529 use std::sync::mpsc::TryRecvError;
1531 use std::time::Duration;
1532 use bitcoin::blockdata::constants::genesis_block;
1533 use bitcoin::Network;
1534 use crate::chain::keysinterface::{EntropySource, KeysManager};
1539 fn bench_get_secure_random_bytes(bench: &mut Bencher) {
1540 let seed = [0u8; 32];
1541 let now = Duration::from_secs(genesis_block(Network::Testnet).header.time as u64);
1542 let keys_manager = Arc::new(KeysManager::new(&seed, now.as_secs(), now.subsec_micros()));
1544 let mut handles = Vec::new();
1545 let mut stops = Vec::new();
1547 let keys_manager_clone = Arc::clone(&keys_manager);
1548 let (stop_sender, stop_receiver) = mpsc::channel();
1549 let handle = thread::spawn(move || {
1551 keys_manager_clone.get_secure_random_bytes();
1552 match stop_receiver.try_recv() {
1553 Ok(_) | Err(TryRecvError::Disconnected) => {
1554 println!("Terminating.");
1557 Err(TryRecvError::Empty) => {}
1561 handles.push(handle);
1562 stops.push(stop_sender);
1567 keys_manager.get_secure_random_bytes();
1572 let _ = stop.send(());
1574 for handle in handles {
1575 handle.join().unwrap();