Clarify docs on `provide_channel_parameters`
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Provides keys to LDK and defines some useful objects describing spendable on-chain outputs.
11 //!
12 //! The provided output descriptors follow a custom LDK data format and are currently not fully
13 //! compatible with Bitcoin Core output descriptors.
14
15 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, EcdsaSighashType};
16 use bitcoin::blockdata::script::{Script, Builder};
17 use bitcoin::blockdata::opcodes;
18 use bitcoin::network::constants::Network;
19 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
20 use bitcoin::util::sighash;
21
22 use bitcoin::bech32::u5;
23 use bitcoin::hashes::{Hash, HashEngine};
24 use bitcoin::hashes::sha256::HashEngine as Sha256State;
25 use bitcoin::hashes::sha256::Hash as Sha256;
26 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
27 use bitcoin::hash_types::WPubkeyHash;
28
29 use bitcoin::secp256k1::{SecretKey, PublicKey, Scalar};
30 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Signing};
31 use bitcoin::secp256k1::ecdh::SharedSecret;
32 use bitcoin::secp256k1::ecdsa::RecoverableSignature;
33 use bitcoin::{PackedLockTime, secp256k1, Sequence, Witness};
34
35 use crate::util::transaction_utils;
36 use crate::util::crypto::{hkdf_extract_expand_twice, sign};
37 use crate::util::ser::{Writeable, Writer, Readable, ReadableArgs};
38 #[cfg(anchors)]
39 use crate::util::events::HTLCDescriptor;
40 use crate::chain::transaction::OutPoint;
41 use crate::ln::channel::ANCHOR_OUTPUT_VALUE_SATOSHI;
42 use crate::ln::{chan_utils, PaymentPreimage};
43 use crate::ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
44 use crate::ln::msgs::UnsignedChannelAnnouncement;
45 use crate::ln::script::ShutdownScript;
46
47 use crate::prelude::*;
48 use core::convert::TryInto;
49 use core::sync::atomic::{AtomicUsize, Ordering};
50 use crate::io::{self, Error};
51 use crate::ln::msgs::{DecodeError, MAX_VALUE_MSAT};
52 use crate::util::invoice::construct_invoice_preimage;
53
54 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
55 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
56 ///
57 /// (C-not exported) as we just use `[u8; 32]` directly
58 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
59 pub struct KeyMaterial(pub [u8; 32]);
60
61 /// Information about a spendable output to a P2WSH script.
62 ///
63 /// See [`SpendableOutputDescriptor::DelayedPaymentOutput`] for more details on how to spend this.
64 #[derive(Clone, Debug, PartialEq, Eq)]
65 pub struct DelayedPaymentOutputDescriptor {
66         /// The outpoint which is spendable.
67         pub outpoint: OutPoint,
68         /// Per commitment point to derive the delayed payment key by key holder.
69         pub per_commitment_point: PublicKey,
70         /// The `nSequence` value which must be set in the spending input to satisfy the `OP_CSV` in
71         /// the witness_script.
72         pub to_self_delay: u16,
73         /// The output which is referenced by the given outpoint.
74         pub output: TxOut,
75         /// The revocation point specific to the commitment transaction which was broadcast. Used to
76         /// derive the witnessScript for this output.
77         pub revocation_pubkey: PublicKey,
78         /// Arbitrary identification information returned by a call to [`BaseSign::channel_keys_id`].
79         /// This may be useful in re-deriving keys used in the channel to spend the output.
80         pub channel_keys_id: [u8; 32],
81         /// The value of the channel which this output originated from, possibly indirectly.
82         pub channel_value_satoshis: u64,
83 }
84 impl DelayedPaymentOutputDescriptor {
85         /// The maximum length a well-formed witness spending one of these should have.
86         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
87         // redeemscript push length.
88         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
89 }
90
91 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
92         (0, outpoint, required),
93         (2, per_commitment_point, required),
94         (4, to_self_delay, required),
95         (6, output, required),
96         (8, revocation_pubkey, required),
97         (10, channel_keys_id, required),
98         (12, channel_value_satoshis, required),
99 });
100
101 /// Information about a spendable output to our "payment key".
102 ///
103 /// See [`SpendableOutputDescriptor::StaticPaymentOutput`] for more details on how to spend this.
104 #[derive(Clone, Debug, PartialEq, Eq)]
105 pub struct StaticPaymentOutputDescriptor {
106         /// The outpoint which is spendable.
107         pub outpoint: OutPoint,
108         /// The output which is referenced by the given outpoint.
109         pub output: TxOut,
110         /// Arbitrary identification information returned by a call to [`BaseSign::channel_keys_id`].
111         /// This may be useful in re-deriving keys used in the channel to spend the output.
112         pub channel_keys_id: [u8; 32],
113         /// The value of the channel which this transactions spends.
114         pub channel_value_satoshis: u64,
115 }
116 impl StaticPaymentOutputDescriptor {
117         /// The maximum length a well-formed witness spending one of these should have.
118         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
119         // redeemscript push length.
120         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
121 }
122 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
123         (0, outpoint, required),
124         (2, output, required),
125         (4, channel_keys_id, required),
126         (6, channel_value_satoshis, required),
127 });
128
129 /// Describes the necessary information to spend a spendable output.
130 ///
131 /// When on-chain outputs are created by LDK (which our counterparty is not able to claim at any
132 /// point in the future) a [`SpendableOutputs`] event is generated which you must track and be able
133 /// to spend on-chain. The information needed to do this is provided in this enum, including the
134 /// outpoint describing which `txid` and output `index` is available, the full output which exists
135 /// at that `txid`/`index`, and any keys or other information required to sign.
136 ///
137 /// [`SpendableOutputs`]: crate::util::events::Event::SpendableOutputs
138 #[derive(Clone, Debug, PartialEq, Eq)]
139 pub enum SpendableOutputDescriptor {
140         /// An output to a script which was provided via [`KeysInterface`] directly, either from
141         /// [`get_destination_script`] or [`get_shutdown_scriptpubkey`], thus you should already
142         /// know how to spend it. No secret keys are provided as LDK was never given any key.
143         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
144         /// on-chain using the payment preimage or after it has timed out.
145         ///
146         /// [`get_shutdown_scriptpubkey`]: KeysInterface::get_shutdown_scriptpubkey
147         /// [`get_destination_script`]: KeysInterface::get_shutdown_scriptpubkey
148         StaticOutput {
149                 /// The outpoint which is spendable.
150                 outpoint: OutPoint,
151                 /// The output which is referenced by the given outpoint.
152                 output: TxOut,
153         },
154         /// An output to a P2WSH script which can be spent with a single signature after an `OP_CSV`
155         /// delay.
156         ///
157         /// The witness in the spending input should be:
158         /// ```bitcoin
159         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
160         /// ```
161         ///
162         /// Note that the `nSequence` field in the spending input must be set to
163         /// [`DelayedPaymentOutputDescriptor::to_self_delay`] (which means the transaction is not
164         /// broadcastable until at least [`DelayedPaymentOutputDescriptor::to_self_delay`] blocks after
165         /// the outpoint confirms, see [BIP
166         /// 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki)). Also note that LDK
167         /// won't generate a [`SpendableOutputDescriptor`] until the corresponding block height
168         /// is reached.
169         ///
170         /// These are generally the result of a "revocable" output to us, spendable only by us unless
171         /// it is an output from an old state which we broadcast (which should never happen).
172         ///
173         /// To derive the delayed payment key which is used to sign this input, you must pass the
174         /// holder [`InMemorySigner::delayed_payment_base_key`] (i.e., the private key which corresponds to the
175         /// [`ChannelPublicKeys::delayed_payment_basepoint`] in [`BaseSign::pubkeys`]) and the provided
176         /// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to [`chan_utils::derive_private_key`]. The public key can be
177         /// generated without the secret key using [`chan_utils::derive_public_key`] and only the
178         /// [`ChannelPublicKeys::delayed_payment_basepoint`] which appears in [`BaseSign::pubkeys`].
179         ///
180         /// To derive the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] provided here (which is
181         /// used in the witness script generation), you must pass the counterparty
182         /// [`ChannelPublicKeys::revocation_basepoint`] (which appears in the call to
183         /// [`BaseSign::provide_channel_parameters`]) and the provided
184         /// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to
185         /// [`chan_utils::derive_public_revocation_key`].
186         ///
187         /// The witness script which is hashed and included in the output `script_pubkey` may be
188         /// regenerated by passing the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] (derived
189         /// as explained above), our delayed payment pubkey (derived as explained above), and the
190         /// [`DelayedPaymentOutputDescriptor::to_self_delay`] contained here to
191         /// [`chan_utils::get_revokeable_redeemscript`].
192         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
193         /// An output to a P2WPKH, spendable exclusively by our payment key (i.e., the private key
194         /// which corresponds to the `payment_point` in [`BaseSign::pubkeys`]). The witness
195         /// in the spending input is, thus, simply:
196         /// ```bitcoin
197         /// <BIP 143 signature> <payment key>
198         /// ```
199         ///
200         /// These are generally the result of our counterparty having broadcast the current state,
201         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
202         StaticPaymentOutput(StaticPaymentOutputDescriptor),
203 }
204
205 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
206         (0, StaticOutput) => {
207                 (0, outpoint, required),
208                 (2, output, required),
209         },
210 ;
211         (1, DelayedPaymentOutput),
212         (2, StaticPaymentOutput),
213 );
214
215 /// A trait to sign Lightning channel transactions as described in
216 /// [BOLT 3](https://github.com/lightning/bolts/blob/master/03-transactions.md).
217 ///
218 /// Signing services could be implemented on a hardware wallet and should implement signing
219 /// policies in order to be secure. Please refer to the [VLS Policy
220 /// Controls](https://gitlab.com/lightning-signer/validating-lightning-signer/-/blob/main/docs/policy-controls.md)
221 /// for an example of such policies.
222 pub trait BaseSign {
223         /// Gets the per-commitment point for a specific commitment number
224         ///
225         /// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
226         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
227         /// Gets the commitment secret for a specific commitment number as part of the revocation process
228         ///
229         /// An external signer implementation should error here if the commitment was already signed
230         /// and should refuse to sign it in the future.
231         ///
232         /// May be called more than once for the same index.
233         ///
234         /// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
235         // TODO: return a Result so we can signal a validation error
236         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
237         /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
238         ///
239         /// This is required in order for the signer to make sure that releasing a commitment
240         /// secret won't leave us without a broadcastable holder transaction.
241         /// Policy checks should be implemented in this function, including checking the amount
242         /// sent to us and checking the HTLCs.
243         ///
244         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
245         /// A validating signer should ensure that an HTLC output is removed only when the matching
246         /// preimage is provided, or when the value to holder is restored.
247         ///
248         /// Note that all the relevant preimages will be provided, but there may also be additional
249         /// irrelevant or duplicate preimages.
250         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction,
251                 preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
252         /// Returns the holder's channel public keys and basepoints.
253         fn pubkeys(&self) -> &ChannelPublicKeys;
254         /// Returns an arbitrary identifier describing the set of keys which are provided back to you in
255         /// some [`SpendableOutputDescriptor`] types. This should be sufficient to identify this
256         /// [`BaseSign`] object uniquely and lookup or re-derive its keys.
257         fn channel_keys_id(&self) -> [u8; 32];
258         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
259         ///
260         /// Note that if signing fails or is rejected, the channel will be force-closed.
261         ///
262         /// Policy checks should be implemented in this function, including checking the amount
263         /// sent to us and checking the HTLCs.
264         ///
265         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
266         /// A validating signer should ensure that an HTLC output is removed only when the matching
267         /// preimage is provided, or when the value to holder is restored.
268         ///
269         /// Note that all the relevant preimages will be provided, but there may also be additional
270         /// irrelevant or duplicate preimages.
271         //
272         // TODO: Document the things someone using this interface should enforce before signing.
273         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction,
274                 preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>
275         ) -> Result<(Signature, Vec<Signature>), ()>;
276         /// Validate the counterparty's revocation.
277         ///
278         /// This is required in order for the signer to make sure that the state has moved
279         /// forward and it is safe to sign the next counterparty commitment.
280         fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
281         /// Creates a signature for a holder's commitment transaction and its claiming HTLC transactions.
282         ///
283         /// This will be called
284         /// - with a non-revoked `commitment_tx`.
285         /// - with the latest `commitment_tx` when we initiate a force-close.
286         /// - with the previous `commitment_tx`, just to get claiming HTLC
287         ///   signatures, if we are reacting to a [`ChannelMonitor`]
288         ///   [replica](https://github.com/lightningdevkit/rust-lightning/blob/main/GLOSSARY.md#monitor-replicas)
289         ///   that decided to broadcast before it had been updated to the latest `commitment_tx`.
290         ///
291         /// This may be called multiple times for the same transaction.
292         ///
293         /// An external signer implementation should check that the commitment has not been revoked.
294         ///
295         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
296         // TODO: Document the things someone using this interface should enforce before signing.
297         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction,
298                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
299         /// Same as [`sign_holder_commitment_and_htlcs`], but exists only for tests to get access to
300         /// holder commitment transactions which will be broadcasted later, after the channel has moved
301         /// on to a newer state. Thus, needs its own method as [`sign_holder_commitment_and_htlcs`] may
302         /// enforce that we only ever get called once.
303         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
304         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction,
305                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
306         /// Create a signature for the given input in a transaction spending an HTLC transaction output
307         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
308         ///
309         /// A justice transaction may claim multiple outputs at the same time if timelocks are
310         /// similar, but only a signature for the input at index `input` should be signed for here.
311         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
312         /// to an upcoming timelock expiration.
313         ///
314         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
315         ///
316         /// `per_commitment_key` is revocation secret which was provided by our counterparty when they
317         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
318         /// not allow the spending of any funds by itself (you need our holder `revocation_secret` to do
319         /// so).
320         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64,
321                 per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>
322         ) -> Result<Signature, ()>;
323         /// Create a signature for the given input in a transaction spending a commitment transaction
324         /// HTLC output when our counterparty broadcasts an old state.
325         ///
326         /// A justice transaction may claim multiple outputs at the same time if timelocks are
327         /// similar, but only a signature for the input at index `input` should be signed for here.
328         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
329         /// to an upcoming timelock expiration.
330         ///
331         /// `amount` is the value of the output spent by this input, committed to in the BIP 143
332         /// signature.
333         ///
334         /// `per_commitment_key` is revocation secret which was provided by our counterparty when they
335         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
336         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
337         /// so).
338         ///
339         /// `htlc` holds HTLC elements (hash, timelock), thus changing the format of the witness script
340         /// (which is committed to in the BIP 143 signatures).
341         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64,
342                 per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment,
343                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
344         #[cfg(anchors)]
345         /// Computes the signature for a commitment transaction's HTLC output used as an input within
346         /// `htlc_tx`, which spends the commitment transaction at index `input`. The signature returned
347         /// must be be computed using [`EcdsaSighashType::All`]. Note that this should only be used to
348         /// sign HTLC transactions from channels supporting anchor outputs after all additional
349         /// inputs/outputs have been added to the transaction.
350         ///
351         /// [`EcdsaSighashType::All`]: bitcoin::blockdata::transaction::EcdsaSighashType::All
352         fn sign_holder_htlc_transaction(&self, htlc_tx: &Transaction, input: usize,
353                 htlc_descriptor: &HTLCDescriptor, secp_ctx: &Secp256k1<secp256k1::All>
354         ) -> Result<Signature, ()>;
355         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
356         /// transaction, either offered or received.
357         ///
358         /// Such a transaction may claim multiples offered outputs at same time if we know the
359         /// preimage for each when we create it, but only the input at index `input` should be
360         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
361         /// needed with regards to an upcoming timelock expiration.
362         ///
363         /// `witness_script` is either an offered or received script as defined in BOLT3 for HTLC
364         /// outputs.
365         ///
366         /// `amount` is value of the output spent by this input, committed to in the BIP 143 signature.
367         ///
368         /// `per_commitment_point` is the dynamic point corresponding to the channel state
369         /// detected onchain. It has been generated by our counterparty and is used to derive
370         /// channel state keys, which are then included in the witness script and committed to in the
371         /// BIP 143 signature.
372         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64,
373                 per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment,
374                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
375         /// Create a signature for a (proposed) closing transaction.
376         ///
377         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
378         /// chosen to forgo their output as dust.
379         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction,
380                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
381         /// Computes the signature for a commitment transaction's anchor output used as an
382         /// input within `anchor_tx`, which spends the commitment transaction, at index `input`.
383         fn sign_holder_anchor_input(
384                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
385         ) -> Result<Signature, ()>;
386         /// Signs a channel announcement message with our funding key and our node secret key (aka
387         /// node_id or network_key), proving it comes from one of the channel participants.
388         ///
389         /// The first returned signature should be from our node secret key, the second from our
390         /// funding key.
391         ///
392         /// Note that if this fails or is rejected, the channel will not be publicly announced and
393         /// our counterparty may (though likely will not) close the channel on us for violating the
394         /// protocol.
395         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
396                 -> Result<(Signature, Signature), ()>;
397         /// Set the counterparty static channel data, including basepoints,
398         /// `counterparty_selected`/`holder_selected_contest_delay` and funding outpoint.
399         ///
400         /// This data is static, and will never change for a channel once set. For a given [`BaseSign`]
401         /// instance, LDK will call this method exactly once - either immediately after construction
402         /// (not including if done via [`KeysInterface::read_chan_signer`]) or when the funding
403         /// information has been generated.
404         ///
405         /// channel_parameters.is_populated() MUST be true.
406         fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters);
407 }
408
409 /// A writeable signer.
410 ///
411 /// There will always be two instances of a signer per channel, one occupied by the
412 /// [`ChannelManager`] and another by the channel's [`ChannelMonitor`].
413 ///
414 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
415 /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
416 pub trait Sign: BaseSign + Writeable {}
417
418 /// Specifies the recipient of an invoice.
419 ///
420 /// This indicates to [`KeysInterface::sign_invoice`] what node secret key should be used to sign
421 /// the invoice.
422 pub enum Recipient {
423         /// The invoice should be signed with the local node secret key.
424         Node,
425         /// The invoice should be signed with the phantom node secret key. This secret key must be the
426         /// same for all nodes participating in the [phantom node payment].
427         ///
428         /// [phantom node payment]: PhantomKeysManager
429         PhantomNode,
430 }
431
432 /// A trait to describe an object which can get user secrets and key material.
433 pub trait KeysInterface {
434         /// A type which implements [`Sign`] which will be returned by [`Self::derive_channel_signer`].
435         type Signer : Sign;
436         /// Get node secret key based on the provided [`Recipient`].
437         ///
438         /// The `node_id`/`network_key` is the public key that corresponds to this secret key.
439         ///
440         /// This method must return the same value each time it is called with a given [`Recipient`]
441         /// parameter.
442         ///
443         /// Errors if the [`Recipient`] variant is not supported by the implementation.
444         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()>;
445         /// Get node id based on the provided [`Recipient`]. This public key corresponds to the secret in
446         /// [`get_node_secret`].
447         ///
448         /// This method must return the same value each time it is called with a given [`Recipient`]
449         /// parameter.
450         ///
451         /// Errors if the [`Recipient`] variant is not supported by the implementation.
452         ///
453         /// [`get_node_secret`]: Self::get_node_secret
454         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
455                 let secp_ctx = Secp256k1::signing_only();
456                 Ok(PublicKey::from_secret_key(&secp_ctx, &self.get_node_secret(recipient)?))
457         }
458         /// Gets the ECDH shared secret of our [`node secret`] and `other_key`, multiplying by `tweak` if
459         /// one is provided. Note that this tweak can be applied to `other_key` instead of our node
460         /// secret, though this is less efficient.
461         ///
462         /// Errors if the [`Recipient`] variant is not supported by the implementation.
463         ///
464         /// [`node secret`]: Self::get_node_secret
465         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()>;
466         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
467         ///
468         /// This method should return a different value each time it is called, to avoid linking
469         /// on-chain funds across channels as controlled to the same user.
470         fn get_destination_script(&self) -> Script;
471         /// Get a script pubkey which we will send funds to when closing a channel.
472         ///
473         /// This method should return a different value each time it is called, to avoid linking
474         /// on-chain funds across channels as controlled to the same user.
475         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
476         /// Get a new set of [`Sign`] for per-channel secrets. These MUST be unique even if you
477         /// restarted with some stale data!
478         ///
479         /// This method must return a different value each time it is called.
480         fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32];
481         /// Derives the private key material backing a `Signer`.
482         ///
483         /// To derive a new `Signer`, a fresh `channel_keys_id` should be obtained through
484         /// [`KeysInterface::generate_channel_keys_id`]. Otherwise, an existing `Signer` can be
485         /// re-derived from its `channel_keys_id`, which can be obtained through its trait method
486         /// [`BaseSign::channel_keys_id`].
487         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer;
488         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
489         /// onion packets and for temporary channel IDs. There is no requirement that these be
490         /// persisted anywhere, though they must be unique across restarts.
491         ///
492         /// This method must return a different value each time it is called.
493         fn get_secure_random_bytes(&self) -> [u8; 32];
494         /// Reads a [`Signer`] for this [`KeysInterface`] from the given input stream.
495         /// This is only called during deserialization of other objects which contain
496         /// [`Sign`]-implementing objects (i.e., [`ChannelMonitor`]s and [`ChannelManager`]s).
497         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
498         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
499         /// you've read all of the provided bytes to ensure no corruption occurred.
500         ///
501         /// This method is slowly being phased out -- it will only be called when reading objects
502         /// written by LDK versions prior to 0.0.113.
503         ///
504         /// [`Signer`]: Self::Signer
505         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
506         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
507         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
508         /// Sign an invoice.
509         /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
510         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
511         /// blindly signing the hash.
512         /// The `hrp` is ASCII bytes, while the invoice data is base32-encoded.
513         ///
514         /// The secret key used to sign the invoice is dependent on the [`Recipient`].
515         ///
516         /// Errors if the [`Recipient`] variant is not supported by the implementation.
517         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], receipient: Recipient) -> Result<RecoverableSignature, ()>;
518         /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
519         ///
520         /// If the implementor of this trait supports [phantom node payments], then every node that is
521         /// intended to be included in the phantom invoice route hints must return the same value from
522         /// this method.
523         // This is because LDK avoids storing inbound payment data by encrypting payment data in the
524         // payment hash and/or payment secret, therefore for a payment to be receivable by multiple
525         // nodes, they must share the key that encrypts this payment data.
526         ///
527         /// This method must return the same value each time it is called.
528         ///
529         /// [phantom node payments]: PhantomKeysManager
530         fn get_inbound_payment_key_material(&self) -> KeyMaterial;
531 }
532
533 #[derive(Clone)]
534 /// A simple implementation of [`Sign`] that just keeps the private keys in memory.
535 ///
536 /// This implementation performs no policy checks and is insufficient by itself as
537 /// a secure external signer.
538 pub struct InMemorySigner {
539         /// Holder secret key in the 2-of-2 multisig script of a channel. This key also backs the
540         /// holder's anchor output in a commitment transaction, if one is present.
541         pub funding_key: SecretKey,
542         /// Holder secret key for blinded revocation pubkey.
543         pub revocation_base_key: SecretKey,
544         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions.
545         pub payment_key: SecretKey,
546         /// Holder secret key used in an HTLC transaction.
547         pub delayed_payment_base_key: SecretKey,
548         /// Holder HTLC secret key used in commitment transaction HTLC outputs.
549         pub htlc_base_key: SecretKey,
550         /// Commitment seed.
551         pub commitment_seed: [u8; 32],
552         /// Holder public keys and basepoints.
553         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
554         /// Private key of our node secret, used for signing channel announcements.
555         node_secret: SecretKey,
556         /// Counterparty public keys and counterparty/holder `selected_contest_delay`, populated on channel acceptance.
557         channel_parameters: Option<ChannelTransactionParameters>,
558         /// The total value of this channel.
559         channel_value_satoshis: u64,
560         /// Key derivation parameters.
561         channel_keys_id: [u8; 32],
562 }
563
564 impl InMemorySigner {
565         /// Creates a new [`InMemorySigner`].
566         pub fn new<C: Signing>(
567                 secp_ctx: &Secp256k1<C>,
568                 node_secret: SecretKey,
569                 funding_key: SecretKey,
570                 revocation_base_key: SecretKey,
571                 payment_key: SecretKey,
572                 delayed_payment_base_key: SecretKey,
573                 htlc_base_key: SecretKey,
574                 commitment_seed: [u8; 32],
575                 channel_value_satoshis: u64,
576                 channel_keys_id: [u8; 32],
577         ) -> InMemorySigner {
578                 let holder_channel_pubkeys =
579                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
580                                 &payment_key, &delayed_payment_base_key,
581                                 &htlc_base_key);
582                 InMemorySigner {
583                         funding_key,
584                         revocation_base_key,
585                         payment_key,
586                         delayed_payment_base_key,
587                         htlc_base_key,
588                         commitment_seed,
589                         node_secret,
590                         channel_value_satoshis,
591                         holder_channel_pubkeys,
592                         channel_parameters: None,
593                         channel_keys_id,
594                 }
595         }
596
597         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
598                         funding_key: &SecretKey,
599                         revocation_base_key: &SecretKey,
600                         payment_key: &SecretKey,
601                         delayed_payment_base_key: &SecretKey,
602                         htlc_base_key: &SecretKey) -> ChannelPublicKeys {
603                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
604                 ChannelPublicKeys {
605                         funding_pubkey: from_secret(&funding_key),
606                         revocation_basepoint: from_secret(&revocation_base_key),
607                         payment_point: from_secret(&payment_key),
608                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
609                         htlc_basepoint: from_secret(&htlc_base_key),
610                 }
611         }
612
613         /// Returns the counterparty's pubkeys.
614         ///
615         /// Will panic if [`BaseSign::provide_channel_parameters`] has not been called before.
616         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
617         /// Returns the `contest_delay` value specified by our counterparty and applied on holder-broadcastable
618         /// transactions, i.e., the amount of time that we have to wait to recover our funds if we
619         /// broadcast a transaction.
620         ///
621         /// Will panic if [`BaseSign::provide_channel_parameters`] has not been called before.
622         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
623         /// Returns the `contest_delay` value specified by us and applied on transactions broadcastable
624         /// by our counterparty, i.e., the amount of time that they have to wait to recover their funds
625         /// if they broadcast a transaction.
626         ///
627         /// Will panic if [`BaseSign::provide_channel_parameters`] has not been called before.
628         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
629         /// Returns whether the holder is the initiator.
630         ///
631         /// Will panic if [`BaseSign::provide_channel_parameters`] has not been called before.
632         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
633         /// Funding outpoint
634         ///
635         /// Will panic if [`BaseSign::provide_channel_parameters`] has not been called before.
636         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
637         /// Returns a [`ChannelTransactionParameters`] for this channel, to be used when verifying or
638         /// building transactions.
639         ///
640         /// Will panic if [`BaseSign::provide_channel_parameters`] has not been called before.
641         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
642                 self.channel_parameters.as_ref().unwrap()
643         }
644         /// Returns whether anchors should be used.
645         ///
646         /// Will panic if [`BaseSign::provide_channel_parameters`] has not been called before.
647         pub fn opt_anchors(&self) -> bool {
648                 self.get_channel_parameters().opt_anchors.is_some()
649         }
650         /// Sign the single input of `spend_tx` at index `input_idx`, which spends the output described
651         /// by `descriptor`, returning the witness stack for the input.
652         ///
653         /// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
654         /// is not spending the outpoint described by [`descriptor.outpoint`],
655         /// or if an output descriptor `script_pubkey` does not match the one we can spend.
656         ///
657         /// [`descriptor.outpoint`]: StaticPaymentOutputDescriptor::outpoint
658         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
659                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
660                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
661                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
662                 // bindings updates to support SigHashCache objects).
663                 if spend_tx.input.len() <= input_idx { return Err(()); }
664                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
665                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
666
667                 let remotepubkey = self.pubkeys().payment_point;
668                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Testnet).script_pubkey();
669                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
670                 let remotesig = sign(secp_ctx, &sighash, &self.payment_key);
671                 let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
672
673                 if payment_script != descriptor.output.script_pubkey { return Err(()); }
674
675                 let mut witness = Vec::with_capacity(2);
676                 witness.push(remotesig.serialize_der().to_vec());
677                 witness[0].push(EcdsaSighashType::All as u8);
678                 witness.push(remotepubkey.serialize().to_vec());
679                 Ok(witness)
680         }
681
682         /// Sign the single input of `spend_tx` at index `input_idx` which spends the output
683         /// described by `descriptor`, returning the witness stack for the input.
684         ///
685         /// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
686         /// is not spending the outpoint described by [`descriptor.outpoint`], does not have a
687         /// sequence set to [`descriptor.to_self_delay`], or if an output descriptor
688         /// `script_pubkey` does not match the one we can spend.
689         ///
690         /// [`descriptor.outpoint`]: DelayedPaymentOutputDescriptor::outpoint
691         /// [`descriptor.to_self_delay`]: DelayedPaymentOutputDescriptor::to_self_delay
692         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
693                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
694                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
695                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
696                 // bindings updates to support SigHashCache objects).
697                 if spend_tx.input.len() <= input_idx { return Err(()); }
698                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
699                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
700                 if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 { return Err(()); }
701
702                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key);
703                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
704                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
705                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
706                 let local_delayedsig = sign(secp_ctx, &sighash, &delayed_payment_key);
707                 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
708
709                 if descriptor.output.script_pubkey != payment_script { return Err(()); }
710
711                 let mut witness = Vec::with_capacity(3);
712                 witness.push(local_delayedsig.serialize_der().to_vec());
713                 witness[0].push(EcdsaSighashType::All as u8);
714                 witness.push(vec!()); //MINIMALIF
715                 witness.push(witness_script.clone().into_bytes());
716                 Ok(witness)
717         }
718 }
719
720 impl BaseSign for InMemorySigner {
721         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
722                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
723                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
724         }
725
726         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
727                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
728         }
729
730         fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
731                 Ok(())
732         }
733
734         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
735
736         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
737
738         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
739                 let trusted_tx = commitment_tx.trust();
740                 let keys = trusted_tx.keys();
741
742                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
743                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
744
745                 let built_tx = trusted_tx.built_transaction();
746                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
747                 let commitment_txid = built_tx.txid;
748
749                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
750                 for htlc in commitment_tx.htlcs() {
751                         let channel_parameters = self.get_channel_parameters();
752                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), channel_parameters.opt_non_zero_fee_anchors.is_some(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
753                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
754                         let htlc_sighashtype = if self.opt_anchors() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
755                         let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
756                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key);
757                         htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
758                 }
759
760                 Ok((commitment_sig, htlc_sigs))
761         }
762
763         fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
764                 Ok(())
765         }
766
767         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
768                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
769                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
770                 let trusted_tx = commitment_tx.trust();
771                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
772                 let channel_parameters = self.get_channel_parameters();
773                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
774                 Ok((sig, htlc_sigs))
775         }
776
777         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
778         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
779                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
780                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
781                 let trusted_tx = commitment_tx.trust();
782                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
783                 let channel_parameters = self.get_channel_parameters();
784                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
785                 Ok((sig, htlc_sigs))
786         }
787
788         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
789                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
790                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
791                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
792                 let witness_script = {
793                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint);
794                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
795                 };
796                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
797                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
798                 return Ok(sign(secp_ctx, &sighash, &revocation_key))
799         }
800
801         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
802                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
803                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
804                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
805                 let witness_script = {
806                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint);
807                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint);
808                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
809                 };
810                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
811                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
812                 return Ok(sign(secp_ctx, &sighash, &revocation_key))
813         }
814
815         #[cfg(anchors)]
816         fn sign_holder_htlc_transaction(
817                 &self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor,
818                 secp_ctx: &Secp256k1<secp256k1::All>
819         ) -> Result<Signature, ()> {
820                 let per_commitment_point = self.get_per_commitment_point(
821                         htlc_descriptor.per_commitment_number, &secp_ctx
822                 );
823                 let witness_script = htlc_descriptor.witness_script(&per_commitment_point, secp_ctx);
824                 let sighash = &sighash::SighashCache::new(&*htlc_tx).segwit_signature_hash(
825                         input, &witness_script, htlc_descriptor.htlc.amount_msat / 1000, EcdsaSighashType::All
826                 ).map_err(|_| ())?;
827                 let our_htlc_private_key = chan_utils::derive_private_key(
828                         &secp_ctx, &per_commitment_point, &self.htlc_base_key
829                 );
830                 Ok(sign(&secp_ctx, &hash_to_message!(sighash), &our_htlc_private_key))
831         }
832
833         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
834                 let htlc_key = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key);
835                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
836                 let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint);
837                 let htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint);
838                 let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey);
839                 let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
840                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
841                 Ok(sign(secp_ctx, &sighash, &htlc_key))
842         }
843
844         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
845                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
846                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
847                 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
848         }
849
850         fn sign_holder_anchor_input(
851                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
852         ) -> Result<Signature, ()> {
853                 let witness_script = chan_utils::get_anchor_redeemscript(&self.holder_channel_pubkeys.funding_pubkey);
854                 let sighash = sighash::SighashCache::new(&*anchor_tx).segwit_signature_hash(
855                         input, &witness_script, ANCHOR_OUTPUT_VALUE_SATOSHI, EcdsaSighashType::All,
856                 ).unwrap();
857                 Ok(sign(secp_ctx, &hash_to_message!(&sighash[..]), &self.funding_key))
858         }
859
860         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
861         -> Result<(Signature, Signature), ()> {
862                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
863                 Ok((sign(secp_ctx, &msghash, &self.node_secret), sign(secp_ctx, &msghash, &self.funding_key)))
864         }
865
866         fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters) {
867                 assert!(self.channel_parameters.is_none() || self.channel_parameters.as_ref().unwrap() == channel_parameters);
868                 if self.channel_parameters.is_some() {
869                         // The channel parameters were already set and they match, return early.
870                         return;
871                 }
872                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
873                 self.channel_parameters = Some(channel_parameters.clone());
874         }
875 }
876
877 const SERIALIZATION_VERSION: u8 = 1;
878
879 const MIN_SERIALIZATION_VERSION: u8 = 1;
880
881 impl Sign for InMemorySigner {}
882
883 impl Writeable for InMemorySigner {
884         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
885                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
886
887                 self.funding_key.write(writer)?;
888                 self.revocation_base_key.write(writer)?;
889                 self.payment_key.write(writer)?;
890                 self.delayed_payment_base_key.write(writer)?;
891                 self.htlc_base_key.write(writer)?;
892                 self.commitment_seed.write(writer)?;
893                 self.channel_parameters.write(writer)?;
894                 self.channel_value_satoshis.write(writer)?;
895                 self.channel_keys_id.write(writer)?;
896
897                 write_tlv_fields!(writer, {});
898
899                 Ok(())
900         }
901 }
902
903 impl ReadableArgs<SecretKey> for InMemorySigner {
904         fn read<R: io::Read>(reader: &mut R, node_secret: SecretKey) -> Result<Self, DecodeError> {
905                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
906
907                 let funding_key = Readable::read(reader)?;
908                 let revocation_base_key = Readable::read(reader)?;
909                 let payment_key = Readable::read(reader)?;
910                 let delayed_payment_base_key = Readable::read(reader)?;
911                 let htlc_base_key = Readable::read(reader)?;
912                 let commitment_seed = Readable::read(reader)?;
913                 let counterparty_channel_data = Readable::read(reader)?;
914                 let channel_value_satoshis = Readable::read(reader)?;
915                 let secp_ctx = Secp256k1::signing_only();
916                 let holder_channel_pubkeys =
917                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
918                                  &payment_key, &delayed_payment_base_key, &htlc_base_key);
919                 let keys_id = Readable::read(reader)?;
920
921                 read_tlv_fields!(reader, {});
922
923                 Ok(InMemorySigner {
924                         funding_key,
925                         revocation_base_key,
926                         payment_key,
927                         delayed_payment_base_key,
928                         htlc_base_key,
929                         node_secret,
930                         commitment_seed,
931                         channel_value_satoshis,
932                         holder_channel_pubkeys,
933                         channel_parameters: counterparty_channel_data,
934                         channel_keys_id: keys_id,
935                 })
936         }
937 }
938
939 /// Simple [`KeysInterface`] implementation that takes a 32-byte seed for use as a BIP 32 extended
940 /// key and derives keys from that.
941 ///
942 /// Your `node_id` is seed/0'.
943 /// Unilateral closes may use seed/1'.
944 /// Cooperative closes may use seed/2'.
945 /// The two close keys may be needed to claim on-chain funds!
946 ///
947 /// This struct cannot be used for nodes that wish to support receiving phantom payments;
948 /// [`PhantomKeysManager`] must be used instead.
949 ///
950 /// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
951 /// previously issued invoices and attempts to pay previous invoices will fail.
952 pub struct KeysManager {
953         secp_ctx: Secp256k1<secp256k1::All>,
954         node_secret: SecretKey,
955         node_id: PublicKey,
956         inbound_payment_key: KeyMaterial,
957         destination_script: Script,
958         shutdown_pubkey: PublicKey,
959         channel_master_key: ExtendedPrivKey,
960         channel_child_index: AtomicUsize,
961
962         rand_bytes_master_key: ExtendedPrivKey,
963         rand_bytes_child_index: AtomicUsize,
964         rand_bytes_unique_start: Sha256State,
965
966         seed: [u8; 32],
967         starting_time_secs: u64,
968         starting_time_nanos: u32,
969 }
970
971 impl KeysManager {
972         /// Constructs a [`KeysManager`] from a 32-byte seed. If the seed is in some way biased (e.g.,
973         /// your CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
974         /// `starting_time` isn't strictly required to actually be a time, but it must absolutely,
975         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
976         /// `seed`, `starting_time` must be unique to each run. Thus, the easiest way to achieve this
977         /// is to simply use the current time (with very high precision).
978         ///
979         /// The `seed` MUST be backed up safely prior to use so that the keys can be re-created, however,
980         /// obviously, `starting_time` should be unique every time you reload the library - it is only
981         /// used to generate new ephemeral key data (which will be stored by the individual channel if
982         /// necessary).
983         ///
984         /// Note that the seed is required to recover certain on-chain funds independent of
985         /// [`ChannelMonitor`] data, though a current copy of [`ChannelMonitor`] data is also required
986         /// for any channel, and some on-chain during-closing funds.
987         ///
988         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
989         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
990                 let secp_ctx = Secp256k1::new();
991                 // Note that when we aren't serializing the key, network doesn't matter
992                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
993                         Ok(master_key) => {
994                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
995                                 let node_id = PublicKey::from_secret_key(&secp_ctx, &node_secret);
996                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
997                                         Ok(destination_key) => {
998                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
999                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
1000                                                         .push_slice(&wpubkey_hash.into_inner())
1001                                                         .into_script()
1002                                         },
1003                                         Err(_) => panic!("Your RNG is busted"),
1004                                 };
1005                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
1006                                         Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
1007                                         Err(_) => panic!("Your RNG is busted"),
1008                                 };
1009                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
1010                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
1011                                 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
1012                                 let mut inbound_pmt_key_bytes = [0; 32];
1013                                 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
1014
1015                                 let mut rand_bytes_unique_start = Sha256::engine();
1016                                 rand_bytes_unique_start.input(&starting_time_secs.to_be_bytes());
1017                                 rand_bytes_unique_start.input(&starting_time_nanos.to_be_bytes());
1018                                 rand_bytes_unique_start.input(seed);
1019
1020                                 let mut res = KeysManager {
1021                                         secp_ctx,
1022                                         node_secret,
1023                                         node_id,
1024                                         inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
1025
1026                                         destination_script,
1027                                         shutdown_pubkey,
1028
1029                                         channel_master_key,
1030                                         channel_child_index: AtomicUsize::new(0),
1031
1032                                         rand_bytes_master_key,
1033                                         rand_bytes_child_index: AtomicUsize::new(0),
1034                                         rand_bytes_unique_start,
1035
1036                                         seed: *seed,
1037                                         starting_time_secs,
1038                                         starting_time_nanos,
1039                                 };
1040                                 let secp_seed = res.get_secure_random_bytes();
1041                                 res.secp_ctx.seeded_randomize(&secp_seed);
1042                                 res
1043                         },
1044                         Err(_) => panic!("Your rng is busted"),
1045                 }
1046         }
1047         /// Derive an old [`Sign`] containing per-channel secrets based on a key derivation parameters.
1048         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1049                 let chan_id = u64::from_be_bytes(params[0..8].try_into().unwrap());
1050                 let mut unique_start = Sha256::engine();
1051                 unique_start.input(params);
1052                 unique_start.input(&self.seed);
1053
1054                 // We only seriously intend to rely on the channel_master_key for true secure
1055                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
1056                 // starting_time provided in the constructor) to be unique.
1057                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
1058                 unique_start.input(&child_privkey.private_key[..]);
1059
1060                 let seed = Sha256::from_engine(unique_start).into_inner();
1061
1062                 let commitment_seed = {
1063                         let mut sha = Sha256::engine();
1064                         sha.input(&seed);
1065                         sha.input(&b"commitment seed"[..]);
1066                         Sha256::from_engine(sha).into_inner()
1067                 };
1068                 macro_rules! key_step {
1069                         ($info: expr, $prev_key: expr) => {{
1070                                 let mut sha = Sha256::engine();
1071                                 sha.input(&seed);
1072                                 sha.input(&$prev_key[..]);
1073                                 sha.input(&$info[..]);
1074                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
1075                         }}
1076                 }
1077                 let funding_key = key_step!(b"funding key", commitment_seed);
1078                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
1079                 let payment_key = key_step!(b"payment key", revocation_base_key);
1080                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
1081                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
1082
1083                 InMemorySigner::new(
1084                         &self.secp_ctx,
1085                         self.node_secret,
1086                         funding_key,
1087                         revocation_base_key,
1088                         payment_key,
1089                         delayed_payment_base_key,
1090                         htlc_base_key,
1091                         commitment_seed,
1092                         channel_value_satoshis,
1093                         params.clone(),
1094                 )
1095         }
1096
1097         /// Creates a [`Transaction`] which spends the given descriptors to the given outputs, plus an
1098         /// output to the given change destination (if sufficient change value remains). The
1099         /// transaction will have a feerate, at least, of the given value.
1100         ///
1101         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
1102         /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
1103         /// does not match the one we can spend.
1104         ///
1105         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
1106         ///
1107         /// May panic if the [`SpendableOutputDescriptor`]s were not generated by channels which used
1108         /// this [`KeysManager`] or one of the [`InMemorySigner`] created by this [`KeysManager`].
1109         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1110                 let mut input = Vec::new();
1111                 let mut input_value = 0;
1112                 let mut witness_weight = 0;
1113                 let mut output_set = HashSet::with_capacity(descriptors.len());
1114                 for outp in descriptors {
1115                         match outp {
1116                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1117                                         input.push(TxIn {
1118                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1119                                                 script_sig: Script::new(),
1120                                                 sequence: Sequence::ZERO,
1121                                                 witness: Witness::new(),
1122                                         });
1123                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1124                                         input_value += descriptor.output.value;
1125                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
1126                                 },
1127                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1128                                         input.push(TxIn {
1129                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1130                                                 script_sig: Script::new(),
1131                                                 sequence: Sequence(descriptor.to_self_delay as u32),
1132                                                 witness: Witness::new(),
1133                                         });
1134                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1135                                         input_value += descriptor.output.value;
1136                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
1137                                 },
1138                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
1139                                         input.push(TxIn {
1140                                                 previous_output: outpoint.into_bitcoin_outpoint(),
1141                                                 script_sig: Script::new(),
1142                                                 sequence: Sequence::ZERO,
1143                                                 witness: Witness::new(),
1144                                         });
1145                                         witness_weight += 1 + 73 + 34;
1146                                         input_value += output.value;
1147                                         if !output_set.insert(*outpoint) { return Err(()); }
1148                                 }
1149                         }
1150                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
1151                 }
1152                 let mut spend_tx = Transaction {
1153                         version: 2,
1154                         lock_time: PackedLockTime(0),
1155                         input,
1156                         output: outputs,
1157                 };
1158                 let expected_max_weight =
1159                         transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
1160
1161                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1162                 let mut input_idx = 0;
1163                 for outp in descriptors {
1164                         match outp {
1165                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1166                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1167                                                 keys_cache = Some((
1168                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1169                                                         descriptor.channel_keys_id));
1170                                         }
1171                                         spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1172                                 },
1173                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1174                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1175                                                 keys_cache = Some((
1176                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1177                                                         descriptor.channel_keys_id));
1178                                         }
1179                                         spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1180                                 },
1181                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
1182                                         let derivation_idx = if output.script_pubkey == self.destination_script {
1183                                                 1
1184                                         } else {
1185                                                 2
1186                                         };
1187                                         let secret = {
1188                                                 // Note that when we aren't serializing the key, network doesn't matter
1189                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1190                                                         Ok(master_key) => {
1191                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1192                                                                         Ok(key) => key,
1193                                                                         Err(_) => panic!("Your RNG is busted"),
1194                                                                 }
1195                                                         }
1196                                                         Err(_) => panic!("Your rng is busted"),
1197                                                 }
1198                                         };
1199                                         let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub();
1200                                         if derivation_idx == 2 {
1201                                                 assert_eq!(pubkey.inner, self.shutdown_pubkey);
1202                                         }
1203                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1204                                         let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1205
1206                                         if payment_script != output.script_pubkey { return Err(()); };
1207
1208                                         let sighash = hash_to_message!(&sighash::SighashCache::new(&spend_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
1209                                         let sig = sign(secp_ctx, &sighash, &secret.private_key);
1210                                         let mut sig_ser = sig.serialize_der().to_vec();
1211                                         sig_ser.push(EcdsaSighashType::All as u8);
1212                                         spend_tx.input[input_idx].witness.push(sig_ser);
1213                                         spend_tx.input[input_idx].witness.push(pubkey.inner.serialize().to_vec());
1214                                 },
1215                         }
1216                         input_idx += 1;
1217                 }
1218
1219                 debug_assert!(expected_max_weight >= spend_tx.weight());
1220                 // Note that witnesses with a signature vary somewhat in size, so allow
1221                 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1222                 debug_assert!(expected_max_weight <= spend_tx.weight() + descriptors.len() * 3);
1223
1224                 Ok(spend_tx)
1225         }
1226 }
1227
1228 impl KeysInterface for KeysManager {
1229         type Signer = InMemorySigner;
1230
1231         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
1232                 match recipient {
1233                         Recipient::Node => Ok(self.node_secret.clone()),
1234                         Recipient::PhantomNode => Err(())
1235                 }
1236         }
1237
1238         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1239                 match recipient {
1240                         Recipient::Node => Ok(self.node_id.clone()),
1241                         Recipient::PhantomNode => Err(())
1242                 }
1243         }
1244
1245         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1246                 let mut node_secret = self.get_node_secret(recipient)?;
1247                 if let Some(tweak) = tweak {
1248                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1249                 }
1250                 Ok(SharedSecret::new(other_key, &node_secret))
1251         }
1252
1253         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1254                 self.inbound_payment_key.clone()
1255         }
1256
1257         fn get_destination_script(&self) -> Script {
1258                 self.destination_script.clone()
1259         }
1260
1261         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1262                 ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
1263         }
1264
1265         fn generate_channel_keys_id(&self, _inbound: bool, _channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
1266                 let child_idx = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1267                 assert!(child_idx <= core::u32::MAX as usize);
1268                 let mut id = [0; 32];
1269                 id[0..4].copy_from_slice(&(child_idx as u32).to_be_bytes());
1270                 id[4..8].copy_from_slice(&self.starting_time_nanos.to_be_bytes());
1271                 id[8..16].copy_from_slice(&self.starting_time_secs.to_be_bytes());
1272                 id[16..32].copy_from_slice(&user_channel_id.to_be_bytes());
1273                 id
1274         }
1275
1276         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
1277                 self.derive_channel_keys(channel_value_satoshis, &channel_keys_id)
1278         }
1279
1280         fn get_secure_random_bytes(&self) -> [u8; 32] {
1281                 let mut sha = self.rand_bytes_unique_start.clone();
1282
1283                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1284                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1285                 sha.input(&child_privkey.private_key[..]);
1286
1287                 sha.input(b"Unique Secure Random Bytes Salt");
1288                 Sha256::from_engine(sha).into_inner()
1289         }
1290
1291         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1292                 InMemorySigner::read(&mut io::Cursor::new(reader), self.node_secret.clone())
1293         }
1294
1295         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1296                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1297                 let secret = match recipient {
1298                         Recipient::Node => self.get_node_secret(Recipient::Node)?,
1299                         Recipient::PhantomNode => return Err(()),
1300                 };
1301                 Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
1302         }
1303 }
1304
1305 /// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
1306 /// payments.
1307 ///
1308 /// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
1309 /// paid to one of multiple nodes. This works because we encode the invoice route hints such that
1310 /// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
1311 /// itself without ever needing to forward to this fake node.
1312 ///
1313 /// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
1314 /// provide some fault tolerance, because payers will automatically retry paying other provided
1315 /// nodes in the case that one node goes down.
1316 ///
1317 /// Note that multi-path payments are not supported in phantom invoices for security reasons.
1318 // In the hypothetical case that we did support MPP phantom payments, there would be no way for
1319 // nodes to know when the full payment has been received (and the preimage can be released) without
1320 // significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
1321 // to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
1322 // is released too early.
1323 //
1324 /// Switching between this struct and [`KeysManager`] will invalidate any previously issued
1325 /// invoices and attempts to pay previous invoices will fail.
1326 pub struct PhantomKeysManager {
1327         inner: KeysManager,
1328         inbound_payment_key: KeyMaterial,
1329         phantom_secret: SecretKey,
1330         phantom_node_id: PublicKey,
1331 }
1332
1333 impl KeysInterface for PhantomKeysManager {
1334         type Signer = InMemorySigner;
1335
1336         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
1337                 match recipient {
1338                         Recipient::Node => self.inner.get_node_secret(Recipient::Node),
1339                         Recipient::PhantomNode => Ok(self.phantom_secret.clone()),
1340                 }
1341         }
1342
1343         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1344                 match recipient {
1345                         Recipient::Node => self.inner.get_node_id(Recipient::Node),
1346                         Recipient::PhantomNode => Ok(self.phantom_node_id.clone()),
1347                 }
1348         }
1349
1350         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1351                 let mut node_secret = self.get_node_secret(recipient)?;
1352                 if let Some(tweak) = tweak {
1353                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1354                 }
1355                 Ok(SharedSecret::new(other_key, &node_secret))
1356         }
1357
1358         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1359                 self.inbound_payment_key.clone()
1360         }
1361
1362         fn get_destination_script(&self) -> Script {
1363                 self.inner.get_destination_script()
1364         }
1365
1366         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1367                 self.inner.get_shutdown_scriptpubkey()
1368         }
1369
1370         fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
1371                 self.inner.generate_channel_keys_id(inbound, channel_value_satoshis, user_channel_id)
1372         }
1373
1374         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
1375                 self.inner.derive_channel_signer(channel_value_satoshis, channel_keys_id)
1376         }
1377
1378         fn get_secure_random_bytes(&self) -> [u8; 32] {
1379                 self.inner.get_secure_random_bytes()
1380         }
1381
1382         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1383                 self.inner.read_chan_signer(reader)
1384         }
1385
1386         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1387                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1388                 let secret = self.get_node_secret(recipient)?;
1389                 Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
1390         }
1391 }
1392
1393 impl PhantomKeysManager {
1394         /// Constructs a [`PhantomKeysManager`] given a 32-byte seed and an additional `cross_node_seed`
1395         /// that is shared across all nodes that intend to participate in [phantom node payments]
1396         /// together.
1397         ///
1398         /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
1399         /// `starting_time_nanos`.
1400         ///
1401         /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
1402         /// same across restarts, or else inbound payments may fail.
1403         ///
1404         /// [phantom node payments]: PhantomKeysManager
1405         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
1406                 let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
1407                 let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
1408                 let phantom_secret = SecretKey::from_slice(&phantom_key).unwrap();
1409                 let phantom_node_id = PublicKey::from_secret_key(&inner.secp_ctx, &phantom_secret);
1410                 Self {
1411                         inner,
1412                         inbound_payment_key: KeyMaterial(inbound_key),
1413                         phantom_secret,
1414                         phantom_node_id,
1415                 }
1416         }
1417
1418         /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
1419         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1420                 self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx)
1421         }
1422
1423         /// See [`KeysManager::derive_channel_keys`] for documentation on this method.
1424         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1425                 self.inner.derive_channel_keys(channel_value_satoshis, params)
1426         }
1427 }
1428
1429 // Ensure that BaseSign can have a vtable
1430 #[test]
1431 pub fn dyn_sign() {
1432         let _signer: Box<dyn BaseSign>;
1433 }