dffe060d91bb71a5f33e8c023de6cac94fb9826d
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::bech32::u5;
22 use bitcoin::hashes::{Hash, HashEngine};
23 use bitcoin::hashes::sha256::HashEngine as Sha256State;
24 use bitcoin::hashes::sha256::Hash as Sha256;
25 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
26 use bitcoin::hash_types::WPubkeyHash;
27
28 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
29 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
30 use bitcoin::secp256k1::recovery::RecoverableSignature;
31 use bitcoin::secp256k1;
32
33 use util::{byte_utils, transaction_utils};
34 use util::ser::{Writeable, Writer, Readable, ReadableArgs};
35
36 use chain::transaction::OutPoint;
37 use ln::{chan_utils, PaymentPreimage};
38 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
39 use ln::msgs::UnsignedChannelAnnouncement;
40 use ln::script::ShutdownScript;
41
42 use prelude::*;
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use io::{self, Error};
45 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
46 use util::invoice::construct_invoice_preimage;
47
48 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
49 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
50 /// (C-not exported) as we just use [u8; 32] directly
51 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
52 pub struct KeyMaterial(pub [u8; 32]);
53
54 /// Information about a spendable output to a P2WSH script. See
55 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
56 #[derive(Clone, Debug, PartialEq)]
57 pub struct DelayedPaymentOutputDescriptor {
58         /// The outpoint which is spendable
59         pub outpoint: OutPoint,
60         /// Per commitment point to derive delayed_payment_key by key holder
61         pub per_commitment_point: PublicKey,
62         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
63         /// the witness_script.
64         pub to_self_delay: u16,
65         /// The output which is referenced by the given outpoint
66         pub output: TxOut,
67         /// The revocation point specific to the commitment transaction which was broadcast. Used to
68         /// derive the witnessScript for this output.
69         pub revocation_pubkey: PublicKey,
70         /// Arbitrary identification information returned by a call to
71         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
72         /// the channel to spend the output.
73         pub channel_keys_id: [u8; 32],
74         /// The value of the channel which this output originated from, possibly indirectly.
75         pub channel_value_satoshis: u64,
76 }
77 impl DelayedPaymentOutputDescriptor {
78         /// The maximum length a well-formed witness spending one of these should have.
79         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
80         // redeemscript push length.
81         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
82 }
83
84 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
85         (0, outpoint, required),
86         (2, per_commitment_point, required),
87         (4, to_self_delay, required),
88         (6, output, required),
89         (8, revocation_pubkey, required),
90         (10, channel_keys_id, required),
91         (12, channel_value_satoshis, required),
92 });
93
94 /// Information about a spendable output to our "payment key". See
95 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
96 #[derive(Clone, Debug, PartialEq)]
97 pub struct StaticPaymentOutputDescriptor {
98         /// The outpoint which is spendable
99         pub outpoint: OutPoint,
100         /// The output which is referenced by the given outpoint
101         pub output: TxOut,
102         /// Arbitrary identification information returned by a call to
103         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
104         /// the channel to spend the output.
105         pub channel_keys_id: [u8; 32],
106         /// The value of the channel which this transactions spends.
107         pub channel_value_satoshis: u64,
108 }
109 impl StaticPaymentOutputDescriptor {
110         /// The maximum length a well-formed witness spending one of these should have.
111         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
112         // redeemscript push length.
113         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
114 }
115 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
116         (0, outpoint, required),
117         (2, output, required),
118         (4, channel_keys_id, required),
119         (6, channel_value_satoshis, required),
120 });
121
122 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
123 /// claim at any point in the future) an event is generated which you must track and be able to
124 /// spend on-chain. The information needed to do this is provided in this enum, including the
125 /// outpoint describing which txid and output index is available, the full output which exists at
126 /// that txid/index, and any keys or other information required to sign.
127 #[derive(Clone, Debug, PartialEq)]
128 pub enum SpendableOutputDescriptor {
129         /// An output to a script which was provided via KeysInterface directly, either from
130         /// `get_destination_script()` or `get_shutdown_scriptpubkey()`, thus you should already know
131         /// how to spend it. No secret keys are provided as rust-lightning was never given any key.
132         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
133         /// on-chain using the payment preimage or after it has timed out.
134         StaticOutput {
135                 /// The outpoint which is spendable
136                 outpoint: OutPoint,
137                 /// The output which is referenced by the given outpoint.
138                 output: TxOut,
139         },
140         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
141         ///
142         /// The witness in the spending input should be:
143         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
144         ///
145         /// Note that the nSequence field in the spending input must be set to to_self_delay
146         /// (which means the transaction is not broadcastable until at least to_self_delay
147         /// blocks after the outpoint confirms).
148         ///
149         /// These are generally the result of a "revocable" output to us, spendable only by us unless
150         /// it is an output from an old state which we broadcast (which should never happen).
151         ///
152         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
153         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
154         /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
155         /// chan_utils::derive_private_key. The public key can be generated without the secret key
156         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
157         /// Sign::pubkeys().
158         ///
159         /// To derive the revocation_pubkey provided here (which is used in the witness
160         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
161         /// call to Sign::ready_channel) and the provided per_commitment point
162         /// to chan_utils::derive_public_revocation_key.
163         ///
164         /// The witness script which is hashed and included in the output script_pubkey may be
165         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
166         /// (derived as above), and the to_self_delay contained here to
167         /// chan_utils::get_revokeable_redeemscript.
168         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
169         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
170         /// corresponds to the public key in Sign::pubkeys().payment_point).
171         /// The witness in the spending input, is, thus, simply:
172         /// <BIP 143 signature> <payment key>
173         ///
174         /// These are generally the result of our counterparty having broadcast the current state,
175         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
176         StaticPaymentOutput(StaticPaymentOutputDescriptor),
177 }
178
179 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
180         (0, StaticOutput) => {
181                 (0, outpoint, required),
182                 (2, output, required),
183         },
184 ;
185         (1, DelayedPaymentOutput),
186         (2, StaticPaymentOutput),
187 );
188
189 /// A trait to sign lightning channel transactions as described in BOLT 3.
190 ///
191 /// Signing services could be implemented on a hardware wallet. In this case,
192 /// the current Sign would be a front-end on top of a communication
193 /// channel connected to your secure device and lightning key material wouldn't
194 /// reside on a hot server. Nevertheless, a this deployment would still need
195 /// to trust the ChannelManager to avoid loss of funds as this latest component
196 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
197 ///
198 /// A more secure iteration would be to use hashlock (or payment points) to pair
199 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
200 /// at the price of more state and computation on the hardware wallet side. In the future,
201 /// we are looking forward to design such interface.
202 ///
203 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
204 /// to act, as liveness and breach reply correctness are always going to be hard requirements
205 /// of LN security model, orthogonal of key management issues.
206 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
207 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
208 pub trait BaseSign {
209         /// Gets the per-commitment point for a specific commitment number
210         ///
211         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
212         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
213         /// Gets the commitment secret for a specific commitment number as part of the revocation process
214         ///
215         /// An external signer implementation should error here if the commitment was already signed
216         /// and should refuse to sign it in the future.
217         ///
218         /// May be called more than once for the same index.
219         ///
220         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
221         // TODO: return a Result so we can signal a validation error
222         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
223         /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
224         ///
225         /// This is required in order for the signer to make sure that releasing a commitment
226         /// secret won't leave us without a broadcastable holder transaction.
227         /// Policy checks should be implemented in this function, including checking the amount
228         /// sent to us and checking the HTLCs.
229         ///
230         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
231         /// A validating signer should ensure that an HTLC output is removed only when the matching
232         /// preimage is provided, or when the value to holder is restored.
233         ///
234         /// NOTE: all the relevant preimages will be provided, but there may also be additional
235         /// irrelevant or duplicate preimages.
236         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
237         /// Gets the holder's channel public keys and basepoints
238         fn pubkeys(&self) -> &ChannelPublicKeys;
239         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
240         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
241         /// Sign object uniquely and lookup or re-derive its keys.
242         fn channel_keys_id(&self) -> [u8; 32];
243
244         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
245         ///
246         /// Note that if signing fails or is rejected, the channel will be force-closed.
247         ///
248         /// Policy checks should be implemented in this function, including checking the amount
249         /// sent to us and checking the HTLCs.
250         ///
251         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
252         /// A validating signer should ensure that an HTLC output is removed only when the matching
253         /// preimage is provided, or when the value to holder is restored.
254         ///
255         /// NOTE: all the relevant preimages will be provided, but there may also be additional
256         /// irrelevant or duplicate preimages.
257         //
258         // TODO: Document the things someone using this interface should enforce before signing.
259         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
260         /// Validate the counterparty's revocation.
261         ///
262         /// This is required in order for the signer to make sure that the state has moved
263         /// forward and it is safe to sign the next counterparty commitment.
264         fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
265
266         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
267         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
268         /// latest commitment_tx when we initiate a force-close.
269         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
270         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
271         /// the latest.
272         /// This may be called multiple times for the same transaction.
273         ///
274         /// An external signer implementation should check that the commitment has not been revoked.
275         ///
276         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
277         //
278         // TODO: Document the things someone using this interface should enforce before signing.
279         // TODO: Key derivation failure should panic rather than Err
280         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
281
282         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
283         /// transactions which will be broadcasted later, after the channel has moved on to a newer
284         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
285         /// get called once.
286         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
287         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
288
289         /// Create a signature for the given input in a transaction spending an HTLC transaction output
290         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
291         ///
292         /// A justice transaction may claim multiple outputs at the same time if timelocks are
293         /// similar, but only a signature for the input at index `input` should be signed for here.
294         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
295         /// to an upcoming timelock expiration.
296         ///
297         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
298         ///
299         /// per_commitment_key is revocation secret which was provided by our counterparty when they
300         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
301         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
302         /// so).
303         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
304
305         /// Create a signature for the given input in a transaction spending a commitment transaction
306         /// HTLC output when our counterparty broadcasts an old state.
307         ///
308         /// A justice transaction may claim multiple outputs at the same time if timelocks are
309         /// similar, but only a signature for the input at index `input` should be signed for here.
310         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
311         /// to an upcoming timelock expiration.
312         ///
313         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
314         ///
315         /// per_commitment_key is revocation secret which was provided by our counterparty when they
316         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
317         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
318         /// so).
319         ///
320         /// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
321         /// (which is committed to in the BIP 143 signatures).
322         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
323
324         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
325         /// transaction, either offered or received.
326         ///
327         /// Such a transaction may claim multiples offered outputs at same time if we know the
328         /// preimage for each when we create it, but only the input at index `input` should be
329         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
330         /// needed with regards to an upcoming timelock expiration.
331         ///
332         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
333         /// outputs.
334         ///
335         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
336         ///
337         /// Per_commitment_point is the dynamic point corresponding to the channel state
338         /// detected onchain. It has been generated by our counterparty and is used to derive
339         /// channel state keys, which are then included in the witness script and committed to in the
340         /// BIP 143 signature.
341         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
342
343         /// Create a signature for a (proposed) closing transaction.
344         ///
345         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
346         /// chosen to forgo their output as dust.
347         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
348
349         /// Signs a channel announcement message with our funding key and our node secret key (aka
350         /// node_id or network_key), proving it comes from one of the channel participants.
351         ///
352         /// The first returned signature should be from our node secret key, the second from our
353         /// funding key.
354         ///
355         /// Note that if this fails or is rejected, the channel will not be publicly announced and
356         /// our counterparty may (though likely will not) close the channel on us for violating the
357         /// protocol.
358         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
359                 -> Result<(Signature, Signature), ()>;
360
361         /// Set the counterparty static channel data, including basepoints,
362         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
363         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
364         /// they MUST NOT be allowed to change to different values once set.
365         ///
366         /// channel_parameters.is_populated() MUST be true.
367         ///
368         /// We bind holder_selected_contest_delay late here for API convenience.
369         ///
370         /// Will be called before any signatures are applied.
371         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
372 }
373
374 /// A cloneable signer.
375 ///
376 /// Although we require signers to be cloneable, it may be useful for developers to be able to use
377 /// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
378 /// which implies Sized, into this derived trait.
379 pub trait Sign: BaseSign + Writeable + Clone {
380 }
381
382 /// A trait to describe an object which can get user secrets and key material.
383 pub trait KeysInterface {
384         /// A type which implements Sign which will be returned by get_channel_signer.
385         type Signer : Sign;
386
387         /// Get node secret key (aka node_id or network_key).
388         ///
389         /// This method must return the same value each time it is called.
390         fn get_node_secret(&self) -> SecretKey;
391         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
392         ///
393         /// This method should return a different value each time it is called, to avoid linking
394         /// on-chain funds across channels as controlled to the same user.
395         fn get_destination_script(&self) -> Script;
396         /// Get a script pubkey which we will send funds to when closing a channel.
397         ///
398         /// This method should return a different value each time it is called, to avoid linking
399         /// on-chain funds across channels as controlled to the same user.
400         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
401         /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
402         /// restarted with some stale data!
403         ///
404         /// This method must return a different value each time it is called.
405         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
406         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
407         /// onion packets and for temporary channel IDs. There is no requirement that these be
408         /// persisted anywhere, though they must be unique across restarts.
409         ///
410         /// This method must return a different value each time it is called.
411         fn get_secure_random_bytes(&self) -> [u8; 32];
412
413         /// Reads a `Signer` for this `KeysInterface` from the given input stream.
414         /// This is only called during deserialization of other objects which contain
415         /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
416         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
417         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
418         /// you've read all of the provided bytes to ensure no corruption occurred.
419         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
420
421         /// Sign an invoice.
422         /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
423         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
424         /// blindly signing the hash.
425         /// The hrp is ascii bytes, while the invoice data is base32.
426         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5]) -> Result<RecoverableSignature, ()>;
427
428         /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
429         ///
430         /// This method must return the same value each time it is called.
431         fn get_inbound_payment_key_material(&self) -> KeyMaterial;
432 }
433
434 #[derive(Clone)]
435 /// A simple implementation of Sign that just keeps the private keys in memory.
436 ///
437 /// This implementation performs no policy checks and is insufficient by itself as
438 /// a secure external signer.
439 pub struct InMemorySigner {
440         /// Private key of anchor tx
441         pub funding_key: SecretKey,
442         /// Holder secret key for blinded revocation pubkey
443         pub revocation_base_key: SecretKey,
444         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
445         pub payment_key: SecretKey,
446         /// Holder secret key used in HTLC tx
447         pub delayed_payment_base_key: SecretKey,
448         /// Holder htlc secret key used in commitment tx htlc outputs
449         pub htlc_base_key: SecretKey,
450         /// Commitment seed
451         pub commitment_seed: [u8; 32],
452         /// Holder public keys and basepoints
453         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
454         /// Private key of our node secret, used for signing channel announcements
455         node_secret: SecretKey,
456         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
457         channel_parameters: Option<ChannelTransactionParameters>,
458         /// The total value of this channel
459         channel_value_satoshis: u64,
460         /// Key derivation parameters
461         channel_keys_id: [u8; 32],
462 }
463
464 impl InMemorySigner {
465         /// Create a new InMemorySigner
466         pub fn new<C: Signing>(
467                 secp_ctx: &Secp256k1<C>,
468                 node_secret: SecretKey,
469                 funding_key: SecretKey,
470                 revocation_base_key: SecretKey,
471                 payment_key: SecretKey,
472                 delayed_payment_base_key: SecretKey,
473                 htlc_base_key: SecretKey,
474                 commitment_seed: [u8; 32],
475                 channel_value_satoshis: u64,
476                 channel_keys_id: [u8; 32]) -> InMemorySigner {
477                 let holder_channel_pubkeys =
478                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
479                                                              &payment_key, &delayed_payment_base_key,
480                                                              &htlc_base_key);
481                 InMemorySigner {
482                         funding_key,
483                         revocation_base_key,
484                         payment_key,
485                         delayed_payment_base_key,
486                         htlc_base_key,
487                         commitment_seed,
488                         node_secret,
489                         channel_value_satoshis,
490                         holder_channel_pubkeys,
491                         channel_parameters: None,
492                         channel_keys_id,
493                 }
494         }
495
496         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
497                                        funding_key: &SecretKey,
498                                        revocation_base_key: &SecretKey,
499                                        payment_key: &SecretKey,
500                                        delayed_payment_base_key: &SecretKey,
501                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
502                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
503                 ChannelPublicKeys {
504                         funding_pubkey: from_secret(&funding_key),
505                         revocation_basepoint: from_secret(&revocation_base_key),
506                         payment_point: from_secret(&payment_key),
507                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
508                         htlc_basepoint: from_secret(&htlc_base_key),
509                 }
510         }
511
512         /// Counterparty pubkeys.
513         /// Will panic if ready_channel wasn't called.
514         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
515
516         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
517         /// transactions, ie the amount of time that we have to wait to recover our funds if we
518         /// broadcast a transaction.
519         /// Will panic if ready_channel wasn't called.
520         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
521
522         /// The contest_delay value specified by us and applied on transactions broadcastable
523         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
524         /// if they broadcast a transaction.
525         /// Will panic if ready_channel wasn't called.
526         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
527
528         /// Whether the holder is the initiator
529         /// Will panic if ready_channel wasn't called.
530         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
531
532         /// Funding outpoint
533         /// Will panic if ready_channel wasn't called.
534         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
535
536         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
537         /// building transactions.
538         ///
539         /// Will panic if ready_channel wasn't called.
540         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
541                 self.channel_parameters.as_ref().unwrap()
542         }
543
544         /// Whether anchors should be used.
545         /// Will panic if ready_channel wasn't called.
546         pub fn opt_anchors(&self) -> bool {
547                 self.get_channel_parameters().opt_anchors.is_some()
548         }
549
550         /// Sign the single input of spend_tx at index `input_idx` which spends the output
551         /// described by descriptor, returning the witness stack for the input.
552         ///
553         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
554         /// is not spending the outpoint described by `descriptor.outpoint`,
555         /// or if an output descriptor script_pubkey does not match the one we can spend.
556         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
557                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
558                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
559                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
560                 // bindings updates to support SigHashCache objects).
561                 if spend_tx.input.len() <= input_idx { return Err(()); }
562                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
563                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
564
565                 let remotepubkey = self.pubkeys().payment_point;
566                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey();
567                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
568                 let remotesig = secp_ctx.sign(&sighash, &self.payment_key);
569                 let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
570
571                 if payment_script != descriptor.output.script_pubkey  { return Err(()); }
572
573                 let mut witness = Vec::with_capacity(2);
574                 witness.push(remotesig.serialize_der().to_vec());
575                 witness[0].push(SigHashType::All as u8);
576                 witness.push(remotepubkey.serialize().to_vec());
577                 Ok(witness)
578         }
579
580         /// Sign the single input of spend_tx at index `input_idx` which spends the output
581         /// described by descriptor, returning the witness stack for the input.
582         ///
583         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
584         /// is not spending the outpoint described by `descriptor.outpoint`, does not have a
585         /// sequence set to `descriptor.to_self_delay`, or if an output descriptor
586         /// script_pubkey does not match the one we can spend.
587         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
588                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
589                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
590                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
591                 // bindings updates to support SigHashCache objects).
592                 if spend_tx.input.len() <= input_idx { return Err(()); }
593                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
594                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
595                 if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); }
596
597                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
598                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
599                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
600                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
601                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
602                 let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key);
603                 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
604
605                 if descriptor.output.script_pubkey != payment_script { return Err(()); }
606
607                 let mut witness = Vec::with_capacity(3);
608                 witness.push(local_delayedsig.serialize_der().to_vec());
609                 witness[0].push(SigHashType::All as u8);
610                 witness.push(vec!()); //MINIMALIF
611                 witness.push(witness_script.clone().into_bytes());
612                 Ok(witness)
613         }
614 }
615
616 impl BaseSign for InMemorySigner {
617         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
618                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
619                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
620         }
621
622         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
623                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
624         }
625
626         fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
627                 Ok(())
628         }
629
630         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
631         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
632
633         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
634                 let trusted_tx = commitment_tx.trust();
635                 let keys = trusted_tx.keys();
636
637                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
638                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
639
640                 let built_tx = trusted_tx.built_transaction();
641                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
642                 let commitment_txid = built_tx.txid;
643
644                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
645                 for htlc in commitment_tx.htlcs() {
646                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
647                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
648                         let htlc_sighashtype = if self.opt_anchors() { SigHashType::SinglePlusAnyoneCanPay } else { SigHashType::All };
649                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype)[..]);
650                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
651                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
652                 }
653
654                 Ok((commitment_sig, htlc_sigs))
655         }
656
657         fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
658                 Ok(())
659         }
660
661         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
662                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
663                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
664                 let trusted_tx = commitment_tx.trust();
665                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
666                 let channel_parameters = self.get_channel_parameters();
667                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
668                 Ok((sig, htlc_sigs))
669         }
670
671         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
672         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
673                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
674                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
675                 let trusted_tx = commitment_tx.trust();
676                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
677                 let channel_parameters = self.get_channel_parameters();
678                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
679                 Ok((sig, htlc_sigs))
680         }
681
682         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
683                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
684                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
685                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
686                 let witness_script = {
687                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
688                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
689                 };
690                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
691                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
692                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
693         }
694
695         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
696                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
697                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
698                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
699                 let witness_script = {
700                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
701                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
702                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
703                 };
704                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
705                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
706                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
707         }
708
709         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
710                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
711                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
712                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
713                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
714                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
715                                         } else { return Err(()) }
716                                 } else { return Err(()) }
717                         } else { return Err(()) };
718                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
719                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
720                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
721                 }
722                 Err(())
723         }
724
725         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
726                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
727                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
728                 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
729         }
730
731         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
732         -> Result<(Signature, Signature), ()> {
733                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
734                 Ok((secp_ctx.sign(&msghash, &self.node_secret), secp_ctx.sign(&msghash, &self.funding_key)))
735         }
736
737         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
738                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
739                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
740                 self.channel_parameters = Some(channel_parameters.clone());
741         }
742 }
743
744 const SERIALIZATION_VERSION: u8 = 1;
745 const MIN_SERIALIZATION_VERSION: u8 = 1;
746
747 impl Sign for InMemorySigner {}
748
749 impl Writeable for InMemorySigner {
750         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
751                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
752
753                 self.funding_key.write(writer)?;
754                 self.revocation_base_key.write(writer)?;
755                 self.payment_key.write(writer)?;
756                 self.delayed_payment_base_key.write(writer)?;
757                 self.htlc_base_key.write(writer)?;
758                 self.commitment_seed.write(writer)?;
759                 self.channel_parameters.write(writer)?;
760                 self.channel_value_satoshis.write(writer)?;
761                 self.channel_keys_id.write(writer)?;
762
763                 write_tlv_fields!(writer, {});
764
765                 Ok(())
766         }
767 }
768
769 impl ReadableArgs<SecretKey> for InMemorySigner {
770         fn read<R: io::Read>(reader: &mut R, node_secret: SecretKey) -> Result<Self, DecodeError> {
771                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
772
773                 let funding_key = Readable::read(reader)?;
774                 let revocation_base_key = Readable::read(reader)?;
775                 let payment_key = Readable::read(reader)?;
776                 let delayed_payment_base_key = Readable::read(reader)?;
777                 let htlc_base_key = Readable::read(reader)?;
778                 let commitment_seed = Readable::read(reader)?;
779                 let counterparty_channel_data = Readable::read(reader)?;
780                 let channel_value_satoshis = Readable::read(reader)?;
781                 let secp_ctx = Secp256k1::signing_only();
782                 let holder_channel_pubkeys =
783                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
784                                                              &payment_key, &delayed_payment_base_key,
785                                                              &htlc_base_key);
786                 let keys_id = Readable::read(reader)?;
787
788                 read_tlv_fields!(reader, {});
789
790                 Ok(InMemorySigner {
791                         funding_key,
792                         revocation_base_key,
793                         payment_key,
794                         delayed_payment_base_key,
795                         htlc_base_key,
796                         node_secret,
797                         commitment_seed,
798                         channel_value_satoshis,
799                         holder_channel_pubkeys,
800                         channel_parameters: counterparty_channel_data,
801                         channel_keys_id: keys_id,
802                 })
803         }
804 }
805
806 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
807 /// and derives keys from that.
808 ///
809 /// Your node_id is seed/0'
810 /// ChannelMonitor closes may use seed/1'
811 /// Cooperative closes may use seed/2'
812 /// The two close keys may be needed to claim on-chain funds!
813 pub struct KeysManager {
814         secp_ctx: Secp256k1<secp256k1::All>,
815         node_secret: SecretKey,
816         inbound_payment_key: KeyMaterial,
817         destination_script: Script,
818         shutdown_pubkey: PublicKey,
819         channel_master_key: ExtendedPrivKey,
820         channel_child_index: AtomicUsize,
821
822         rand_bytes_master_key: ExtendedPrivKey,
823         rand_bytes_child_index: AtomicUsize,
824         rand_bytes_unique_start: Sha256State,
825
826         seed: [u8; 32],
827         starting_time_secs: u64,
828         starting_time_nanos: u32,
829 }
830
831 impl KeysManager {
832         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
833         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
834         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
835         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
836         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
837         /// simply use the current time (with very high precision).
838         ///
839         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
840         /// obviously, starting_time should be unique every time you reload the library - it is only
841         /// used to generate new ephemeral key data (which will be stored by the individual channel if
842         /// necessary).
843         ///
844         /// Note that the seed is required to recover certain on-chain funds independent of
845         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
846         /// channel, and some on-chain during-closing funds.
847         ///
848         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
849         /// versions. Once the library is more fully supported, the docs will be updated to include a
850         /// detailed description of the guarantee.
851         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
852                 let secp_ctx = Secp256k1::new();
853                 // Note that when we aren't serializing the key, network doesn't matter
854                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
855                         Ok(master_key) => {
856                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
857                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
858                                         Ok(destination_key) => {
859                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
860                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
861                                                               .push_slice(&wpubkey_hash.into_inner())
862                                                               .into_script()
863                                         },
864                                         Err(_) => panic!("Your RNG is busted"),
865                                 };
866                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
867                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
868                                         Err(_) => panic!("Your RNG is busted"),
869                                 };
870                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
871                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
872                                 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key.key;
873                                 let mut inbound_pmt_key_bytes = [0; 32];
874                                 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
875
876                                 let mut rand_bytes_unique_start = Sha256::engine();
877                                 rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
878                                 rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
879                                 rand_bytes_unique_start.input(seed);
880
881                                 let mut res = KeysManager {
882                                         secp_ctx,
883                                         node_secret,
884                                         inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
885
886                                         destination_script,
887                                         shutdown_pubkey,
888
889                                         channel_master_key,
890                                         channel_child_index: AtomicUsize::new(0),
891
892                                         rand_bytes_master_key,
893                                         rand_bytes_child_index: AtomicUsize::new(0),
894                                         rand_bytes_unique_start,
895
896                                         seed: *seed,
897                                         starting_time_secs,
898                                         starting_time_nanos,
899                                 };
900                                 let secp_seed = res.get_secure_random_bytes();
901                                 res.secp_ctx.seeded_randomize(&secp_seed);
902                                 res
903                         },
904                         Err(_) => panic!("Your rng is busted"),
905                 }
906         }
907         /// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
908         ///
909         /// Key derivation parameters are accessible through a per-channel secrets
910         /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
911         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
912         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
913                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
914                 assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
915                 let mut unique_start = Sha256::engine();
916                 unique_start.input(params);
917                 unique_start.input(&self.seed);
918
919                 // We only seriously intend to rely on the channel_master_key for true secure
920                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
921                 // starting_time provided in the constructor) to be unique.
922                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
923                 unique_start.input(&child_privkey.private_key.key[..]);
924
925                 let seed = Sha256::from_engine(unique_start).into_inner();
926
927                 let commitment_seed = {
928                         let mut sha = Sha256::engine();
929                         sha.input(&seed);
930                         sha.input(&b"commitment seed"[..]);
931                         Sha256::from_engine(sha).into_inner()
932                 };
933                 macro_rules! key_step {
934                         ($info: expr, $prev_key: expr) => {{
935                                 let mut sha = Sha256::engine();
936                                 sha.input(&seed);
937                                 sha.input(&$prev_key[..]);
938                                 sha.input(&$info[..]);
939                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
940                         }}
941                 }
942                 let funding_key = key_step!(b"funding key", commitment_seed);
943                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
944                 let payment_key = key_step!(b"payment key", revocation_base_key);
945                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
946                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
947
948                 InMemorySigner::new(
949                         &self.secp_ctx,
950                         self.node_secret,
951                         funding_key,
952                         revocation_base_key,
953                         payment_key,
954                         delayed_payment_base_key,
955                         htlc_base_key,
956                         commitment_seed,
957                         channel_value_satoshis,
958                         params.clone()
959                 )
960         }
961
962         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
963         /// output to the given change destination (if sufficient change value remains). The
964         /// transaction will have a feerate, at least, of the given value.
965         ///
966         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
967         /// if a descriptor was duplicated, or if an output descriptor script_pubkey 
968         /// does not match the one we can spend.
969         ///
970         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
971         ///
972         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
973         /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
974         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
975                 let mut input = Vec::new();
976                 let mut input_value = 0;
977                 let mut witness_weight = 0;
978                 let mut output_set = HashSet::with_capacity(descriptors.len());
979                 for outp in descriptors {
980                         match outp {
981                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
982                                         input.push(TxIn {
983                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
984                                                 script_sig: Script::new(),
985                                                 sequence: 0,
986                                                 witness: Vec::new(),
987                                         });
988                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
989                                         input_value += descriptor.output.value;
990                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
991                                 },
992                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
993                                         input.push(TxIn {
994                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
995                                                 script_sig: Script::new(),
996                                                 sequence: descriptor.to_self_delay as u32,
997                                                 witness: Vec::new(),
998                                         });
999                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1000                                         input_value += descriptor.output.value;
1001                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
1002                                 },
1003                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
1004                                         input.push(TxIn {
1005                                                 previous_output: outpoint.into_bitcoin_outpoint(),
1006                                                 script_sig: Script::new(),
1007                                                 sequence: 0,
1008                                                 witness: Vec::new(),
1009                                         });
1010                                         witness_weight += 1 + 73 + 34;
1011                                         input_value += output.value;
1012                                         if !output_set.insert(*outpoint) { return Err(()); }
1013                                 }
1014                         }
1015                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
1016                 }
1017                 let mut spend_tx = Transaction {
1018                         version: 2,
1019                         lock_time: 0,
1020                         input,
1021                         output: outputs,
1022                 };
1023                 let expected_max_weight =
1024                         transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
1025
1026                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1027                 let mut input_idx = 0;
1028                 for outp in descriptors {
1029                         match outp {
1030                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1031                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1032                                                 keys_cache = Some((
1033                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1034                                                         descriptor.channel_keys_id));
1035                                         }
1036                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?;
1037                                 },
1038                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1039                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1040                                                 keys_cache = Some((
1041                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1042                                                         descriptor.channel_keys_id));
1043                                         }
1044                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?;
1045                                 },
1046                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
1047                                         let derivation_idx = if output.script_pubkey == self.destination_script {
1048                                                 1
1049                                         } else {
1050                                                 2
1051                                         };
1052                                         let secret = {
1053                                                 // Note that when we aren't serializing the key, network doesn't matter
1054                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1055                                                         Ok(master_key) => {
1056                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1057                                                                         Ok(key) => key,
1058                                                                         Err(_) => panic!("Your RNG is busted"),
1059                                                                 }
1060                                                         }
1061                                                         Err(_) => panic!("Your rng is busted"),
1062                                                 }
1063                                         };
1064                                         let pubkey = ExtendedPubKey::from_private(&secp_ctx, &secret).public_key;
1065                                         if derivation_idx == 2 {
1066                                                 assert_eq!(pubkey.key, self.shutdown_pubkey);
1067                                         }
1068                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1069                                         let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1070
1071                                         if payment_script != output.script_pubkey { return Err(()); };
1072
1073                                         let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]);
1074                                         let sig = secp_ctx.sign(&sighash, &secret.private_key.key);
1075                                         spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec());
1076                                         spend_tx.input[input_idx].witness[0].push(SigHashType::All as u8);
1077                                         spend_tx.input[input_idx].witness.push(pubkey.key.serialize().to_vec());
1078                                 },
1079                         }
1080                         input_idx += 1;
1081                 }
1082
1083                 debug_assert!(expected_max_weight >= spend_tx.get_weight());
1084                 // Note that witnesses with a signature vary somewhat in size, so allow
1085                 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1086                 debug_assert!(expected_max_weight <= spend_tx.get_weight() + descriptors.len() * 3);
1087
1088                 Ok(spend_tx)
1089         }
1090 }
1091
1092 impl KeysInterface for KeysManager {
1093         type Signer = InMemorySigner;
1094
1095         fn get_node_secret(&self) -> SecretKey {
1096                 self.node_secret.clone()
1097         }
1098
1099         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1100                 self.inbound_payment_key.clone()
1101         }
1102
1103         fn get_destination_script(&self) -> Script {
1104                 self.destination_script.clone()
1105         }
1106
1107         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1108                 ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
1109         }
1110
1111         fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1112                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1113                 assert!(child_ix <= core::u32::MAX as usize);
1114                 let mut id = [0; 32];
1115                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1116                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1117                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1118                 self.derive_channel_keys(channel_value_satoshis, &id)
1119         }
1120
1121         fn get_secure_random_bytes(&self) -> [u8; 32] {
1122                 let mut sha = self.rand_bytes_unique_start.clone();
1123
1124                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1125                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1126                 sha.input(&child_privkey.private_key.key[..]);
1127
1128                 sha.input(b"Unique Secure Random Bytes Salt");
1129                 Sha256::from_engine(sha).into_inner()
1130         }
1131
1132         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1133                 InMemorySigner::read(&mut io::Cursor::new(reader), self.get_node_secret())
1134         }
1135
1136         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5]) -> Result<RecoverableSignature, ()> {
1137                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1138                 Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &self.get_node_secret()))
1139         }
1140 }
1141
1142 // Ensure that BaseSign can have a vtable
1143 #[test]
1144 pub fn dyn_sign() {
1145         let _signer: Box<dyn BaseSign>;
1146 }