e1cc90674c0d44865555ee00dcd348ebcd1681c6
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::bech32::u5;
22 use bitcoin::hashes::{Hash, HashEngine};
23 use bitcoin::hashes::sha256::HashEngine as Sha256State;
24 use bitcoin::hashes::sha256::Hash as Sha256;
25 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
26 use bitcoin::hash_types::WPubkeyHash;
27
28 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
29 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
30 use bitcoin::secp256k1::recovery::RecoverableSignature;
31 use bitcoin::secp256k1;
32
33 use util::{byte_utils, transaction_utils};
34 use util::ser::{Writeable, Writer, Readable};
35
36 use chain::transaction::OutPoint;
37 use ln::{chan_utils, PaymentPreimage};
38 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
39 use ln::msgs::UnsignedChannelAnnouncement;
40 use ln::script::ShutdownScript;
41
42 use prelude::*;
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use io::{self, Error};
45 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
46 use util::invoice::construct_invoice_preimage;
47
48 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
49 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
50 /// (C-not exported) as we just use [u8; 32] directly
51 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
52 pub struct KeyMaterial(pub [u8; 32]);
53
54 /// Information about a spendable output to a P2WSH script. See
55 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
56 #[derive(Clone, Debug, PartialEq)]
57 pub struct DelayedPaymentOutputDescriptor {
58         /// The outpoint which is spendable
59         pub outpoint: OutPoint,
60         /// Per commitment point to derive delayed_payment_key by key holder
61         pub per_commitment_point: PublicKey,
62         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
63         /// the witness_script.
64         pub to_self_delay: u16,
65         /// The output which is referenced by the given outpoint
66         pub output: TxOut,
67         /// The revocation point specific to the commitment transaction which was broadcast. Used to
68         /// derive the witnessScript for this output.
69         pub revocation_pubkey: PublicKey,
70         /// Arbitrary identification information returned by a call to
71         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
72         /// the channel to spend the output.
73         pub channel_keys_id: [u8; 32],
74         /// The value of the channel which this output originated from, possibly indirectly.
75         pub channel_value_satoshis: u64,
76 }
77 impl DelayedPaymentOutputDescriptor {
78         /// The maximum length a well-formed witness spending one of these should have.
79         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
80         // redeemscript push length.
81         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
82 }
83
84 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
85         (0, outpoint, required),
86         (2, per_commitment_point, required),
87         (4, to_self_delay, required),
88         (6, output, required),
89         (8, revocation_pubkey, required),
90         (10, channel_keys_id, required),
91         (12, channel_value_satoshis, required),
92 });
93
94 /// Information about a spendable output to our "payment key". See
95 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
96 #[derive(Clone, Debug, PartialEq)]
97 pub struct StaticPaymentOutputDescriptor {
98         /// The outpoint which is spendable
99         pub outpoint: OutPoint,
100         /// The output which is referenced by the given outpoint
101         pub output: TxOut,
102         /// Arbitrary identification information returned by a call to
103         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
104         /// the channel to spend the output.
105         pub channel_keys_id: [u8; 32],
106         /// The value of the channel which this transactions spends.
107         pub channel_value_satoshis: u64,
108 }
109 impl StaticPaymentOutputDescriptor {
110         /// The maximum length a well-formed witness spending one of these should have.
111         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
112         // redeemscript push length.
113         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
114 }
115 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
116         (0, outpoint, required),
117         (2, output, required),
118         (4, channel_keys_id, required),
119         (6, channel_value_satoshis, required),
120 });
121
122 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
123 /// claim at any point in the future) an event is generated which you must track and be able to
124 /// spend on-chain. The information needed to do this is provided in this enum, including the
125 /// outpoint describing which txid and output index is available, the full output which exists at
126 /// that txid/index, and any keys or other information required to sign.
127 #[derive(Clone, Debug, PartialEq)]
128 pub enum SpendableOutputDescriptor {
129         /// An output to a script which was provided via KeysInterface directly, either from
130         /// `get_destination_script()` or `get_shutdown_scriptpubkey()`, thus you should already know
131         /// how to spend it. No secret keys are provided as rust-lightning was never given any key.
132         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
133         /// on-chain using the payment preimage or after it has timed out.
134         StaticOutput {
135                 /// The outpoint which is spendable
136                 outpoint: OutPoint,
137                 /// The output which is referenced by the given outpoint.
138                 output: TxOut,
139         },
140         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
141         ///
142         /// The witness in the spending input should be:
143         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
144         ///
145         /// Note that the nSequence field in the spending input must be set to to_self_delay
146         /// (which means the transaction is not broadcastable until at least to_self_delay
147         /// blocks after the outpoint confirms).
148         ///
149         /// These are generally the result of a "revocable" output to us, spendable only by us unless
150         /// it is an output from an old state which we broadcast (which should never happen).
151         ///
152         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
153         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
154         /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
155         /// chan_utils::derive_private_key. The public key can be generated without the secret key
156         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
157         /// Sign::pubkeys().
158         ///
159         /// To derive the revocation_pubkey provided here (which is used in the witness
160         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
161         /// call to Sign::ready_channel) and the provided per_commitment point
162         /// to chan_utils::derive_public_revocation_key.
163         ///
164         /// The witness script which is hashed and included in the output script_pubkey may be
165         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
166         /// (derived as above), and the to_self_delay contained here to
167         /// chan_utils::get_revokeable_redeemscript.
168         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
169         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
170         /// corresponds to the public key in Sign::pubkeys().payment_point).
171         /// The witness in the spending input, is, thus, simply:
172         /// <BIP 143 signature> <payment key>
173         ///
174         /// These are generally the result of our counterparty having broadcast the current state,
175         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
176         StaticPaymentOutput(StaticPaymentOutputDescriptor),
177 }
178
179 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
180         (0, StaticOutput) => {
181                 (0, outpoint, required),
182                 (2, output, required),
183         },
184 ;
185         (1, DelayedPaymentOutput),
186         (2, StaticPaymentOutput),
187 );
188
189 /// A trait to sign lightning channel transactions as described in BOLT 3.
190 ///
191 /// Signing services could be implemented on a hardware wallet. In this case,
192 /// the current Sign would be a front-end on top of a communication
193 /// channel connected to your secure device and lightning key material wouldn't
194 /// reside on a hot server. Nevertheless, a this deployment would still need
195 /// to trust the ChannelManager to avoid loss of funds as this latest component
196 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
197 ///
198 /// A more secure iteration would be to use hashlock (or payment points) to pair
199 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
200 /// at the price of more state and computation on the hardware wallet side. In the future,
201 /// we are looking forward to design such interface.
202 ///
203 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
204 /// to act, as liveness and breach reply correctness are always going to be hard requirements
205 /// of LN security model, orthogonal of key management issues.
206 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
207 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
208 pub trait BaseSign {
209         /// Gets the per-commitment point for a specific commitment number
210         ///
211         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
212         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
213         /// Gets the commitment secret for a specific commitment number as part of the revocation process
214         ///
215         /// An external signer implementation should error here if the commitment was already signed
216         /// and should refuse to sign it in the future.
217         ///
218         /// May be called more than once for the same index.
219         ///
220         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
221         // TODO: return a Result so we can signal a validation error
222         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
223         /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
224         ///
225         /// This is required in order for the signer to make sure that releasing a commitment
226         /// secret won't leave us without a broadcastable holder transaction.
227         /// Policy checks should be implemented in this function, including checking the amount
228         /// sent to us and checking the HTLCs.
229         ///
230         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
231         /// A validating signer should ensure that an HTLC output is removed only when the matching
232         /// preimage is provided, or when the value to holder is restored.
233         ///
234         /// NOTE: all the relevant preimages will be provided, but there may also be additional
235         /// irrelevant or duplicate preimages.
236         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
237         /// Gets the holder's channel public keys and basepoints
238         fn pubkeys(&self) -> &ChannelPublicKeys;
239         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
240         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
241         /// Sign object uniquely and lookup or re-derive its keys.
242         fn channel_keys_id(&self) -> [u8; 32];
243
244         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
245         ///
246         /// Note that if signing fails or is rejected, the channel will be force-closed.
247         ///
248         /// Policy checks should be implemented in this function, including checking the amount
249         /// sent to us and checking the HTLCs.
250         ///
251         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
252         /// A validating signer should ensure that an HTLC output is removed only when the matching
253         /// preimage is provided, or when the value to holder is restored.
254         ///
255         /// NOTE: all the relevant preimages will be provided, but there may also be additional
256         /// irrelevant or duplicate preimages.
257         //
258         // TODO: Document the things someone using this interface should enforce before signing.
259         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
260         /// Validate the counterparty's revocation.
261         ///
262         /// This is required in order for the signer to make sure that the state has moved
263         /// forward and it is safe to sign the next counterparty commitment.
264         fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
265
266         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
267         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
268         /// latest commitment_tx when we initiate a force-close.
269         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
270         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
271         /// the latest.
272         /// This may be called multiple times for the same transaction.
273         ///
274         /// An external signer implementation should check that the commitment has not been revoked.
275         ///
276         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
277         //
278         // TODO: Document the things someone using this interface should enforce before signing.
279         // TODO: Key derivation failure should panic rather than Err
280         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
281
282         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
283         /// transactions which will be broadcasted later, after the channel has moved on to a newer
284         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
285         /// get called once.
286         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
287         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
288
289         /// Create a signature for the given input in a transaction spending an HTLC transaction output
290         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
291         ///
292         /// A justice transaction may claim multiple outputs at the same time if timelocks are
293         /// similar, but only a signature for the input at index `input` should be signed for here.
294         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
295         /// to an upcoming timelock expiration.
296         ///
297         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
298         ///
299         /// per_commitment_key is revocation secret which was provided by our counterparty when they
300         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
301         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
302         /// so).
303         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
304
305         /// Create a signature for the given input in a transaction spending a commitment transaction
306         /// HTLC output when our counterparty broadcasts an old state.
307         ///
308         /// A justice transaction may claim multiple outputs at the same time if timelocks are
309         /// similar, but only a signature for the input at index `input` should be signed for here.
310         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
311         /// to an upcoming timelock expiration.
312         ///
313         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
314         ///
315         /// per_commitment_key is revocation secret which was provided by our counterparty when they
316         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
317         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
318         /// so).
319         ///
320         /// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
321         /// (which is committed to in the BIP 143 signatures).
322         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
323
324         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
325         /// transaction, either offered or received.
326         ///
327         /// Such a transaction may claim multiples offered outputs at same time if we know the
328         /// preimage for each when we create it, but only the input at index `input` should be
329         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
330         /// needed with regards to an upcoming timelock expiration.
331         ///
332         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
333         /// outputs.
334         ///
335         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
336         ///
337         /// Per_commitment_point is the dynamic point corresponding to the channel state
338         /// detected onchain. It has been generated by our counterparty and is used to derive
339         /// channel state keys, which are then included in the witness script and committed to in the
340         /// BIP 143 signature.
341         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
342
343         /// Create a signature for a (proposed) closing transaction.
344         ///
345         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
346         /// chosen to forgo their output as dust.
347         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
348
349         /// Signs a channel announcement message with our funding key, proving it comes from one
350         /// of the channel participants.
351         ///
352         /// Note that if this fails or is rejected, the channel will not be publicly announced and
353         /// our counterparty may (though likely will not) close the channel on us for violating the
354         /// protocol.
355         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
356
357         /// Set the counterparty static channel data, including basepoints,
358         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
359         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
360         /// they MUST NOT be allowed to change to different values once set.
361         ///
362         /// channel_parameters.is_populated() MUST be true.
363         ///
364         /// We bind holder_selected_contest_delay late here for API convenience.
365         ///
366         /// Will be called before any signatures are applied.
367         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
368 }
369
370 /// A cloneable signer.
371 ///
372 /// Although we require signers to be cloneable, it may be useful for developers to be able to use
373 /// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
374 /// which implies Sized, into this derived trait.
375 pub trait Sign: BaseSign + Writeable + Clone {
376 }
377
378 /// A trait to describe an object which can get user secrets and key material.
379 pub trait KeysInterface {
380         /// A type which implements Sign which will be returned by get_channel_signer.
381         type Signer : Sign;
382
383         /// Get node secret key (aka node_id or network_key).
384         ///
385         /// This method must return the same value each time it is called.
386         fn get_node_secret(&self) -> SecretKey;
387         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
388         ///
389         /// This method should return a different value each time it is called, to avoid linking
390         /// on-chain funds across channels as controlled to the same user.
391         fn get_destination_script(&self) -> Script;
392         /// Get a script pubkey which we will send funds to when closing a channel.
393         ///
394         /// This method should return a different value each time it is called, to avoid linking
395         /// on-chain funds across channels as controlled to the same user.
396         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
397         /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
398         /// restarted with some stale data!
399         ///
400         /// This method must return a different value each time it is called.
401         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
402         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
403         /// onion packets and for temporary channel IDs. There is no requirement that these be
404         /// persisted anywhere, though they must be unique across restarts.
405         ///
406         /// This method must return a different value each time it is called.
407         fn get_secure_random_bytes(&self) -> [u8; 32];
408
409         /// Reads a `Signer` for this `KeysInterface` from the given input stream.
410         /// This is only called during deserialization of other objects which contain
411         /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
412         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
413         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
414         /// you've read all of the provided bytes to ensure no corruption occurred.
415         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
416
417         /// Sign an invoice.
418         /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
419         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
420         /// blindly signing the hash.
421         /// The hrp is ascii bytes, while the invoice data is base32.
422         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5]) -> Result<RecoverableSignature, ()>;
423
424         /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
425         ///
426         /// This method must return the same value each time it is called.
427         fn get_inbound_payment_key_material(&self) -> KeyMaterial;
428 }
429
430 #[derive(Clone)]
431 /// A simple implementation of Sign that just keeps the private keys in memory.
432 ///
433 /// This implementation performs no policy checks and is insufficient by itself as
434 /// a secure external signer.
435 pub struct InMemorySigner {
436         /// Private key of anchor tx
437         pub funding_key: SecretKey,
438         /// Holder secret key for blinded revocation pubkey
439         pub revocation_base_key: SecretKey,
440         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
441         pub payment_key: SecretKey,
442         /// Holder secret key used in HTLC tx
443         pub delayed_payment_base_key: SecretKey,
444         /// Holder htlc secret key used in commitment tx htlc outputs
445         pub htlc_base_key: SecretKey,
446         /// Commitment seed
447         pub commitment_seed: [u8; 32],
448         /// Holder public keys and basepoints
449         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
450         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
451         channel_parameters: Option<ChannelTransactionParameters>,
452         /// The total value of this channel
453         channel_value_satoshis: u64,
454         /// Key derivation parameters
455         channel_keys_id: [u8; 32],
456 }
457
458 impl InMemorySigner {
459         /// Create a new InMemorySigner
460         pub fn new<C: Signing>(
461                 secp_ctx: &Secp256k1<C>,
462                 funding_key: SecretKey,
463                 revocation_base_key: SecretKey,
464                 payment_key: SecretKey,
465                 delayed_payment_base_key: SecretKey,
466                 htlc_base_key: SecretKey,
467                 commitment_seed: [u8; 32],
468                 channel_value_satoshis: u64,
469                 channel_keys_id: [u8; 32]) -> InMemorySigner {
470                 let holder_channel_pubkeys =
471                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
472                                                              &payment_key, &delayed_payment_base_key,
473                                                              &htlc_base_key);
474                 InMemorySigner {
475                         funding_key,
476                         revocation_base_key,
477                         payment_key,
478                         delayed_payment_base_key,
479                         htlc_base_key,
480                         commitment_seed,
481                         channel_value_satoshis,
482                         holder_channel_pubkeys,
483                         channel_parameters: None,
484                         channel_keys_id,
485                 }
486         }
487
488         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
489                                        funding_key: &SecretKey,
490                                        revocation_base_key: &SecretKey,
491                                        payment_key: &SecretKey,
492                                        delayed_payment_base_key: &SecretKey,
493                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
494                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
495                 ChannelPublicKeys {
496                         funding_pubkey: from_secret(&funding_key),
497                         revocation_basepoint: from_secret(&revocation_base_key),
498                         payment_point: from_secret(&payment_key),
499                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
500                         htlc_basepoint: from_secret(&htlc_base_key),
501                 }
502         }
503
504         /// Counterparty pubkeys.
505         /// Will panic if ready_channel wasn't called.
506         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
507
508         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
509         /// transactions, ie the amount of time that we have to wait to recover our funds if we
510         /// broadcast a transaction.
511         /// Will panic if ready_channel wasn't called.
512         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
513
514         /// The contest_delay value specified by us and applied on transactions broadcastable
515         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
516         /// if they broadcast a transaction.
517         /// Will panic if ready_channel wasn't called.
518         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
519
520         /// Whether the holder is the initiator
521         /// Will panic if ready_channel wasn't called.
522         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
523
524         /// Funding outpoint
525         /// Will panic if ready_channel wasn't called.
526         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
527
528         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
529         /// building transactions.
530         ///
531         /// Will panic if ready_channel wasn't called.
532         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
533                 self.channel_parameters.as_ref().unwrap()
534         }
535
536         /// Whether anchors should be used.
537         /// Will panic if ready_channel wasn't called.
538         pub fn opt_anchors(&self) -> bool {
539                 self.get_channel_parameters().opt_anchors.is_some()
540         }
541
542         /// Sign the single input of spend_tx at index `input_idx` which spends the output
543         /// described by descriptor, returning the witness stack for the input.
544         ///
545         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
546         /// is not spending the outpoint described by `descriptor.outpoint`,
547         /// or if an output descriptor script_pubkey does not match the one we can spend.
548         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
549                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
550                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
551                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
552                 // bindings updates to support SigHashCache objects).
553                 if spend_tx.input.len() <= input_idx { return Err(()); }
554                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
555                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
556
557                 let remotepubkey = self.pubkeys().payment_point;
558                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey();
559                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
560                 let remotesig = secp_ctx.sign(&sighash, &self.payment_key);
561                 let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
562
563                 if payment_script != descriptor.output.script_pubkey  { return Err(()); }
564
565                 let mut witness = Vec::with_capacity(2);
566                 witness.push(remotesig.serialize_der().to_vec());
567                 witness[0].push(SigHashType::All as u8);
568                 witness.push(remotepubkey.serialize().to_vec());
569                 Ok(witness)
570         }
571
572         /// Sign the single input of spend_tx at index `input_idx` which spends the output
573         /// described by descriptor, returning the witness stack for the input.
574         ///
575         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
576         /// is not spending the outpoint described by `descriptor.outpoint`, does not have a
577         /// sequence set to `descriptor.to_self_delay`, or if an output descriptor
578         /// script_pubkey does not match the one we can spend.
579         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
580                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
581                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
582                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
583                 // bindings updates to support SigHashCache objects).
584                 if spend_tx.input.len() <= input_idx { return Err(()); }
585                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
586                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
587                 if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); }
588
589                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
590                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
591                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
592                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
593                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
594                 let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key);
595                 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
596
597                 if descriptor.output.script_pubkey != payment_script { return Err(()); }
598
599                 let mut witness = Vec::with_capacity(3);
600                 witness.push(local_delayedsig.serialize_der().to_vec());
601                 witness[0].push(SigHashType::All as u8);
602                 witness.push(vec!()); //MINIMALIF
603                 witness.push(witness_script.clone().into_bytes());
604                 Ok(witness)
605         }
606 }
607
608 impl BaseSign for InMemorySigner {
609         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
610                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
611                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
612         }
613
614         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
615                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
616         }
617
618         fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
619                 Ok(())
620         }
621
622         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
623         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
624
625         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
626                 let trusted_tx = commitment_tx.trust();
627                 let keys = trusted_tx.keys();
628
629                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
630                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
631
632                 let built_tx = trusted_tx.built_transaction();
633                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
634                 let commitment_txid = built_tx.txid;
635
636                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
637                 for htlc in commitment_tx.htlcs() {
638                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
639                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
640                         let htlc_sighashtype = if self.opt_anchors() { SigHashType::SinglePlusAnyoneCanPay } else { SigHashType::All };
641                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype)[..]);
642                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
643                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
644                 }
645
646                 Ok((commitment_sig, htlc_sigs))
647         }
648
649         fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
650                 Ok(())
651         }
652
653         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
654                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
655                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
656                 let trusted_tx = commitment_tx.trust();
657                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
658                 let channel_parameters = self.get_channel_parameters();
659                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
660                 Ok((sig, htlc_sigs))
661         }
662
663         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
664         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
665                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
666                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
667                 let trusted_tx = commitment_tx.trust();
668                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
669                 let channel_parameters = self.get_channel_parameters();
670                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
671                 Ok((sig, htlc_sigs))
672         }
673
674         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
675                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
676                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
677                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
678                 let witness_script = {
679                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
680                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
681                 };
682                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
683                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
684                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
685         }
686
687         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
688                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
689                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
690                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
691                 let witness_script = {
692                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
693                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
694                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
695                 };
696                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
697                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
698                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
699         }
700
701         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
702                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
703                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
704                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
705                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
706                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
707                                         } else { return Err(()) }
708                                 } else { return Err(()) }
709                         } else { return Err(()) };
710                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
711                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
712                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
713                 }
714                 Err(())
715         }
716
717         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
718                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
719                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
720                 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
721         }
722
723         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
724                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
725                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
726         }
727
728         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
729                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
730                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
731                 self.channel_parameters = Some(channel_parameters.clone());
732         }
733 }
734
735 const SERIALIZATION_VERSION: u8 = 1;
736 const MIN_SERIALIZATION_VERSION: u8 = 1;
737
738 impl Sign for InMemorySigner {}
739
740 impl Writeable for InMemorySigner {
741         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
742                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
743
744                 self.funding_key.write(writer)?;
745                 self.revocation_base_key.write(writer)?;
746                 self.payment_key.write(writer)?;
747                 self.delayed_payment_base_key.write(writer)?;
748                 self.htlc_base_key.write(writer)?;
749                 self.commitment_seed.write(writer)?;
750                 self.channel_parameters.write(writer)?;
751                 self.channel_value_satoshis.write(writer)?;
752                 self.channel_keys_id.write(writer)?;
753
754                 write_tlv_fields!(writer, {});
755
756                 Ok(())
757         }
758 }
759
760 impl Readable for InMemorySigner {
761         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
762                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
763
764                 let funding_key = Readable::read(reader)?;
765                 let revocation_base_key = Readable::read(reader)?;
766                 let payment_key = Readable::read(reader)?;
767                 let delayed_payment_base_key = Readable::read(reader)?;
768                 let htlc_base_key = Readable::read(reader)?;
769                 let commitment_seed = Readable::read(reader)?;
770                 let counterparty_channel_data = Readable::read(reader)?;
771                 let channel_value_satoshis = Readable::read(reader)?;
772                 let secp_ctx = Secp256k1::signing_only();
773                 let holder_channel_pubkeys =
774                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
775                                                              &payment_key, &delayed_payment_base_key,
776                                                              &htlc_base_key);
777                 let keys_id = Readable::read(reader)?;
778
779                 read_tlv_fields!(reader, {});
780
781                 Ok(InMemorySigner {
782                         funding_key,
783                         revocation_base_key,
784                         payment_key,
785                         delayed_payment_base_key,
786                         htlc_base_key,
787                         commitment_seed,
788                         channel_value_satoshis,
789                         holder_channel_pubkeys,
790                         channel_parameters: counterparty_channel_data,
791                         channel_keys_id: keys_id,
792                 })
793         }
794 }
795
796 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
797 /// and derives keys from that.
798 ///
799 /// Your node_id is seed/0'
800 /// ChannelMonitor closes may use seed/1'
801 /// Cooperative closes may use seed/2'
802 /// The two close keys may be needed to claim on-chain funds!
803 pub struct KeysManager {
804         secp_ctx: Secp256k1<secp256k1::All>,
805         node_secret: SecretKey,
806         inbound_payment_key: KeyMaterial,
807         destination_script: Script,
808         shutdown_pubkey: PublicKey,
809         channel_master_key: ExtendedPrivKey,
810         channel_child_index: AtomicUsize,
811
812         rand_bytes_master_key: ExtendedPrivKey,
813         rand_bytes_child_index: AtomicUsize,
814         rand_bytes_unique_start: Sha256State,
815
816         seed: [u8; 32],
817         starting_time_secs: u64,
818         starting_time_nanos: u32,
819 }
820
821 impl KeysManager {
822         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
823         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
824         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
825         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
826         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
827         /// simply use the current time (with very high precision).
828         ///
829         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
830         /// obviously, starting_time should be unique every time you reload the library - it is only
831         /// used to generate new ephemeral key data (which will be stored by the individual channel if
832         /// necessary).
833         ///
834         /// Note that the seed is required to recover certain on-chain funds independent of
835         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
836         /// channel, and some on-chain during-closing funds.
837         ///
838         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
839         /// versions. Once the library is more fully supported, the docs will be updated to include a
840         /// detailed description of the guarantee.
841         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
842                 let secp_ctx = Secp256k1::new();
843                 // Note that when we aren't serializing the key, network doesn't matter
844                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
845                         Ok(master_key) => {
846                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
847                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
848                                         Ok(destination_key) => {
849                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
850                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
851                                                               .push_slice(&wpubkey_hash.into_inner())
852                                                               .into_script()
853                                         },
854                                         Err(_) => panic!("Your RNG is busted"),
855                                 };
856                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
857                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
858                                         Err(_) => panic!("Your RNG is busted"),
859                                 };
860                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
861                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
862                                 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key.key;
863                                 let mut inbound_pmt_key_bytes = [0; 32];
864                                 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
865
866                                 let mut rand_bytes_unique_start = Sha256::engine();
867                                 rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
868                                 rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
869                                 rand_bytes_unique_start.input(seed);
870
871                                 let mut res = KeysManager {
872                                         secp_ctx,
873                                         node_secret,
874                                         inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
875
876                                         destination_script,
877                                         shutdown_pubkey,
878
879                                         channel_master_key,
880                                         channel_child_index: AtomicUsize::new(0),
881
882                                         rand_bytes_master_key,
883                                         rand_bytes_child_index: AtomicUsize::new(0),
884                                         rand_bytes_unique_start,
885
886                                         seed: *seed,
887                                         starting_time_secs,
888                                         starting_time_nanos,
889                                 };
890                                 let secp_seed = res.get_secure_random_bytes();
891                                 res.secp_ctx.seeded_randomize(&secp_seed);
892                                 res
893                         },
894                         Err(_) => panic!("Your rng is busted"),
895                 }
896         }
897         /// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
898         ///
899         /// Key derivation parameters are accessible through a per-channel secrets
900         /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
901         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
902         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
903                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
904                 assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
905                 let mut unique_start = Sha256::engine();
906                 unique_start.input(params);
907                 unique_start.input(&self.seed);
908
909                 // We only seriously intend to rely on the channel_master_key for true secure
910                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
911                 // starting_time provided in the constructor) to be unique.
912                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
913                 unique_start.input(&child_privkey.private_key.key[..]);
914
915                 let seed = Sha256::from_engine(unique_start).into_inner();
916
917                 let commitment_seed = {
918                         let mut sha = Sha256::engine();
919                         sha.input(&seed);
920                         sha.input(&b"commitment seed"[..]);
921                         Sha256::from_engine(sha).into_inner()
922                 };
923                 macro_rules! key_step {
924                         ($info: expr, $prev_key: expr) => {{
925                                 let mut sha = Sha256::engine();
926                                 sha.input(&seed);
927                                 sha.input(&$prev_key[..]);
928                                 sha.input(&$info[..]);
929                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
930                         }}
931                 }
932                 let funding_key = key_step!(b"funding key", commitment_seed);
933                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
934                 let payment_key = key_step!(b"payment key", revocation_base_key);
935                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
936                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
937
938                 InMemorySigner::new(
939                         &self.secp_ctx,
940                         funding_key,
941                         revocation_base_key,
942                         payment_key,
943                         delayed_payment_base_key,
944                         htlc_base_key,
945                         commitment_seed,
946                         channel_value_satoshis,
947                         params.clone()
948                 )
949         }
950
951         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
952         /// output to the given change destination (if sufficient change value remains). The
953         /// transaction will have a feerate, at least, of the given value.
954         ///
955         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
956         /// if a descriptor was duplicated, or if an output descriptor script_pubkey 
957         /// does not match the one we can spend.
958         ///
959         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
960         ///
961         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
962         /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
963         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
964                 let mut input = Vec::new();
965                 let mut input_value = 0;
966                 let mut witness_weight = 0;
967                 let mut output_set = HashSet::with_capacity(descriptors.len());
968                 for outp in descriptors {
969                         match outp {
970                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
971                                         input.push(TxIn {
972                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
973                                                 script_sig: Script::new(),
974                                                 sequence: 0,
975                                                 witness: Vec::new(),
976                                         });
977                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
978                                         input_value += descriptor.output.value;
979                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
980                                 },
981                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
982                                         input.push(TxIn {
983                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
984                                                 script_sig: Script::new(),
985                                                 sequence: descriptor.to_self_delay as u32,
986                                                 witness: Vec::new(),
987                                         });
988                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
989                                         input_value += descriptor.output.value;
990                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
991                                 },
992                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
993                                         input.push(TxIn {
994                                                 previous_output: outpoint.into_bitcoin_outpoint(),
995                                                 script_sig: Script::new(),
996                                                 sequence: 0,
997                                                 witness: Vec::new(),
998                                         });
999                                         witness_weight += 1 + 73 + 34;
1000                                         input_value += output.value;
1001                                         if !output_set.insert(*outpoint) { return Err(()); }
1002                                 }
1003                         }
1004                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
1005                 }
1006                 let mut spend_tx = Transaction {
1007                         version: 2,
1008                         lock_time: 0,
1009                         input,
1010                         output: outputs,
1011                 };
1012                 let expected_max_weight =
1013                         transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
1014
1015                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1016                 let mut input_idx = 0;
1017                 for outp in descriptors {
1018                         match outp {
1019                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1020                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1021                                                 keys_cache = Some((
1022                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1023                                                         descriptor.channel_keys_id));
1024                                         }
1025                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?;
1026                                 },
1027                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1028                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1029                                                 keys_cache = Some((
1030                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1031                                                         descriptor.channel_keys_id));
1032                                         }
1033                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?;
1034                                 },
1035                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
1036                                         let derivation_idx = if output.script_pubkey == self.destination_script {
1037                                                 1
1038                                         } else {
1039                                                 2
1040                                         };
1041                                         let secret = {
1042                                                 // Note that when we aren't serializing the key, network doesn't matter
1043                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1044                                                         Ok(master_key) => {
1045                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1046                                                                         Ok(key) => key,
1047                                                                         Err(_) => panic!("Your RNG is busted"),
1048                                                                 }
1049                                                         }
1050                                                         Err(_) => panic!("Your rng is busted"),
1051                                                 }
1052                                         };
1053                                         let pubkey = ExtendedPubKey::from_private(&secp_ctx, &secret).public_key;
1054                                         if derivation_idx == 2 {
1055                                                 assert_eq!(pubkey.key, self.shutdown_pubkey);
1056                                         }
1057                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1058                                         let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1059
1060                                         if payment_script != output.script_pubkey { return Err(()); };
1061
1062                                         let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]);
1063                                         let sig = secp_ctx.sign(&sighash, &secret.private_key.key);
1064                                         spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec());
1065                                         spend_tx.input[input_idx].witness[0].push(SigHashType::All as u8);
1066                                         spend_tx.input[input_idx].witness.push(pubkey.key.serialize().to_vec());
1067                                 },
1068                         }
1069                         input_idx += 1;
1070                 }
1071
1072                 debug_assert!(expected_max_weight >= spend_tx.get_weight());
1073                 // Note that witnesses with a signature vary somewhat in size, so allow
1074                 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1075                 debug_assert!(expected_max_weight <= spend_tx.get_weight() + descriptors.len() * 3);
1076
1077                 Ok(spend_tx)
1078         }
1079 }
1080
1081 impl KeysInterface for KeysManager {
1082         type Signer = InMemorySigner;
1083
1084         fn get_node_secret(&self) -> SecretKey {
1085                 self.node_secret.clone()
1086         }
1087
1088         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1089                 self.inbound_payment_key.clone()
1090         }
1091
1092         fn get_destination_script(&self) -> Script {
1093                 self.destination_script.clone()
1094         }
1095
1096         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1097                 ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
1098         }
1099
1100         fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1101                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1102                 assert!(child_ix <= core::u32::MAX as usize);
1103                 let mut id = [0; 32];
1104                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1105                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1106                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1107                 self.derive_channel_keys(channel_value_satoshis, &id)
1108         }
1109
1110         fn get_secure_random_bytes(&self) -> [u8; 32] {
1111                 let mut sha = self.rand_bytes_unique_start.clone();
1112
1113                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1114                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1115                 sha.input(&child_privkey.private_key.key[..]);
1116
1117                 sha.input(b"Unique Secure Random Bytes Salt");
1118                 Sha256::from_engine(sha).into_inner()
1119         }
1120
1121         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1122                 InMemorySigner::read(&mut io::Cursor::new(reader))
1123         }
1124
1125         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5]) -> Result<RecoverableSignature, ()> {
1126                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1127                 Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &self.get_node_secret()))
1128         }
1129 }
1130
1131 // Ensure that BaseSign can have a vtable
1132 #[test]
1133 pub fn dyn_sign() {
1134         let _signer: Box<dyn BaseSign>;
1135 }