Move justice transaction signature behind ChanSigner
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
2 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
3 //! on-chain output which is theirs.
4
5 use bitcoin::blockdata::transaction::{Transaction, OutPoint, TxOut};
6 use bitcoin::blockdata::script::{Script, Builder};
7 use bitcoin::blockdata::opcodes;
8 use bitcoin::network::constants::Network;
9 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
10 use bitcoin::util::bip143;
11
12 use bitcoin::hashes::{Hash, HashEngine};
13 use bitcoin::hashes::sha256::HashEngine as Sha256State;
14 use bitcoin::hashes::sha256::Hash as Sha256;
15 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
16 use bitcoin::hash_types::WPubkeyHash;
17
18 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
19 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
20 use bitcoin::secp256k1;
21
22 use util::byte_utils;
23 use util::ser::{Writeable, Writer, Readable};
24
25 use ln::chan_utils;
26 use ln::chan_utils::{TxCreationKeys, HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, LocalCommitmentTransaction};
27 use ln::msgs;
28
29 use std::sync::atomic::{AtomicUsize, Ordering};
30 use std::io::Error;
31 use ln::msgs::DecodeError;
32
33 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
34 /// claim at any point in the future) an event is generated which you must track and be able to
35 /// spend on-chain. The information needed to do this is provided in this enum, including the
36 /// outpoint describing which txid and output index is available, the full output which exists at
37 /// that txid/index, and any keys or other information required to sign.
38 #[derive(Clone, PartialEq)]
39 pub enum SpendableOutputDescriptor {
40         /// An output to a script which was provided via KeysInterface, thus you should already know
41         /// how to spend it. No keys are provided as rust-lightning was never given any keys - only the
42         /// script_pubkey as it appears in the output.
43         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
44         /// on-chain using the payment preimage or after it has timed out.
45         StaticOutput {
46                 /// The outpoint which is spendable
47                 outpoint: OutPoint,
48                 /// The output which is referenced by the given outpoint.
49                 output: TxOut,
50         },
51         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
52         /// The private key which should be used to sign the transaction is provided, as well as the
53         /// full witness redeemScript which is hashed in the output script_pubkey.
54         /// The witness in the spending input should be:
55         /// <BIP 143 signature generated with the given key> <empty vector> (MINIMALIF standard rule)
56         /// <witness_script as provided>
57         /// Note that the nSequence field in the input must be set to_self_delay (which corresponds to
58         /// the transaction not being broadcastable until at least to_self_delay blocks after the input
59         /// confirms).
60         /// These are generally the result of a "revocable" output to us, spendable only by us unless
61         /// it is an output from us having broadcast an old state (which should never happen).
62         DynamicOutputP2WSH {
63                 /// The outpoint which is spendable
64                 outpoint: OutPoint,
65                 /// The secret key which must be used to sign the spending transaction
66                 key: SecretKey,
67                 /// The witness redeemScript which is hashed to create the script_pubkey in the given output
68                 witness_script: Script,
69                 /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
70                 /// the witness_script.
71                 to_self_delay: u16,
72                 /// The output which is referenced by the given outpoint
73                 output: TxOut,
74         },
75         // TODO: Note that because key is now static and exactly what is provided by us, we should drop
76         // this in favor of StaticOutput:
77         /// An output to a P2WPKH, spendable exclusively by the given private key.
78         /// The witness in the spending input, is, thus, simply:
79         /// <BIP 143 signature generated with the given key> <public key derived from the given key>
80         /// These are generally the result of our counterparty having broadcast the current state,
81         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
82         DynamicOutputP2WPKH {
83                 /// The outpoint which is spendable
84                 outpoint: OutPoint,
85                 /// The secret key which must be used to sign the spending transaction
86                 key: SecretKey,
87                 /// The output which is reference by the given outpoint
88                 output: TxOut,
89         }
90 }
91
92 impl Writeable for SpendableOutputDescriptor {
93         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
94                 match self {
95                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
96                                 0u8.write(writer)?;
97                                 outpoint.write(writer)?;
98                                 output.write(writer)?;
99                         },
100                         &SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref key, ref witness_script, ref to_self_delay, ref output } => {
101                                 1u8.write(writer)?;
102                                 outpoint.write(writer)?;
103                                 key.write(writer)?;
104                                 witness_script.write(writer)?;
105                                 to_self_delay.write(writer)?;
106                                 output.write(writer)?;
107                         },
108                         &SpendableOutputDescriptor::DynamicOutputP2WPKH { ref outpoint, ref key, ref output } => {
109                                 2u8.write(writer)?;
110                                 outpoint.write(writer)?;
111                                 key.write(writer)?;
112                                 output.write(writer)?;
113                         },
114                 }
115                 Ok(())
116         }
117 }
118
119 impl Readable for SpendableOutputDescriptor {
120         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
121                 match Readable::read(reader)? {
122                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
123                                 outpoint: Readable::read(reader)?,
124                                 output: Readable::read(reader)?,
125                         }),
126                         1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH {
127                                 outpoint: Readable::read(reader)?,
128                                 key: Readable::read(reader)?,
129                                 witness_script: Readable::read(reader)?,
130                                 to_self_delay: Readable::read(reader)?,
131                                 output: Readable::read(reader)?,
132                         }),
133                         2u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WPKH {
134                                 outpoint: Readable::read(reader)?,
135                                 key: Readable::read(reader)?,
136                                 output: Readable::read(reader)?,
137                         }),
138                         _ => Err(DecodeError::InvalidValue),
139                 }
140         }
141 }
142
143 /// A trait to describe an object which can get user secrets and key material.
144 pub trait KeysInterface: Send + Sync {
145         /// A type which implements ChannelKeys which will be returned by get_channel_keys.
146         type ChanKeySigner : ChannelKeys;
147
148         /// Get node secret key (aka node_id or network_key)
149         fn get_node_secret(&self) -> SecretKey;
150         /// Get destination redeemScript to encumber static protocol exit points.
151         fn get_destination_script(&self) -> Script;
152         /// Get shutdown_pubkey to use as PublicKey at channel closure
153         fn get_shutdown_pubkey(&self) -> PublicKey;
154         /// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
155         /// restarted with some stale data!
156         fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
157         /// Get a secret and PRNG seed for construting an onion packet
158         fn get_onion_rand(&self) -> (SecretKey, [u8; 32]);
159         /// Get a unique temporary channel id. Channels will be referred to by this until the funding
160         /// transaction is created, at which point they will use the outpoint in the funding
161         /// transaction.
162         fn get_channel_id(&self) -> [u8; 32];
163 }
164
165 /// Set of lightning keys needed to operate a channel as described in BOLT 3.
166 ///
167 /// Signing services could be implemented on a hardware wallet. In this case,
168 /// the current ChannelKeys would be a front-end on top of a communication
169 /// channel connected to your secure device and lightning key material wouldn't
170 /// reside on a hot server. Nevertheless, a this deployment would still need
171 /// to trust the ChannelManager to avoid loss of funds as this latest component
172 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
173 ///
174 /// A more secure iteration would be to use hashlock (or payment points) to pair
175 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
176 /// at the price of more state and computation on the hardware wallet side. In the future,
177 /// we are looking forward to design such interface.
178 ///
179 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
180 /// to act, as liveness and breach reply correctness are always going to be hard requirements
181 /// of LN security model, orthogonal of key management issues.
182 ///
183 /// If you're implementing a custom signer, you almost certainly want to implement
184 /// Readable/Writable to serialize out a unique reference to this set of keys so
185 /// that you can serialize the full ChannelManager object.
186 ///
187 // (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly
188 // to the possibility of reentrancy issues by calling the user's code during our deserialization
189 // routine).
190 // TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
191 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
192 pub trait ChannelKeys : Send+Clone {
193         /// Gets the private key for the anchor tx
194         fn funding_key<'a>(&'a self) -> &'a SecretKey;
195         /// Gets the local secret key for blinded revocation pubkey
196         fn revocation_base_key<'a>(&'a self) -> &'a SecretKey;
197         /// Gets the local secret key used in the to_remote output of remote commitment tx (ie the
198         /// output to us in transactions our counterparty broadcasts).
199         /// Also as part of obscured commitment number.
200         fn payment_key<'a>(&'a self) -> &'a SecretKey;
201         /// Gets the local secret key used in HTLC-Success/HTLC-Timeout txn and to_local output
202         fn delayed_payment_base_key<'a>(&'a self) -> &'a SecretKey;
203         /// Gets the local htlc secret key used in commitment tx htlc outputs
204         fn htlc_base_key<'a>(&'a self) -> &'a SecretKey;
205         /// Gets the commitment seed
206         fn commitment_seed<'a>(&'a self) -> &'a [u8; 32];
207         /// Gets the local channel public keys and basepoints
208         fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys;
209
210         /// Create a signature for a remote commitment transaction and associated HTLC transactions.
211         ///
212         /// Note that if signing fails or is rejected, the channel will be force-closed.
213         //
214         // TODO: Document the things someone using this interface should enforce before signing.
215         // TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
216         // making the callee generate it via some util function we expose)!
217         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
218
219         /// Create a signature for a local commitment transaction. This will only ever be called with
220         /// the same local_commitment_tx (or a copy thereof), though there are currently no guarantees
221         /// that it will not be called multiple times.
222         //
223         // TODO: Document the things someone using this interface should enforce before signing.
224         // TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
225         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
226
227         /// Same as sign_local_commitment, but exists only for tests to get access to local commitment
228         /// transactions which will be broadcasted later, after the channel has moved on to a newer
229         /// state. Thus, needs its own method as sign_local_commitment may enforce that we only ever
230         /// get called once.
231         #[cfg(test)]
232         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
233
234         /// Create a signature for each HTLC transaction spending a local commitment transaction.
235         ///
236         /// Unlike sign_local_commitment, this may be called multiple times with *different*
237         /// local_commitment_tx values. While this will never be called with a revoked
238         /// local_commitment_tx, it is possible that it is called with the second-latest
239         /// local_commitment_tx (only if we haven't yet revoked it) if some watchtower/secondary
240         /// ChannelMonitor decided to broadcast before it had been updated to the latest.
241         ///
242         /// Either an Err should be returned, or a Vec with one entry for each HTLC which exists in
243         /// local_commitment_tx. For those HTLCs which have transaction_output_index set to None
244         /// (implying they were considered dust at the time the commitment transaction was negotiated),
245         /// a corresponding None should be included in the return value. All other positions in the
246         /// return value must contain a signature.
247         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()>;
248
249         /// Create a signature for a transaction spending an HTLC or commitment transaction output
250         /// when our counterparty broadcast an old state.
251         ///
252         /// Justice transaction may claim multiples outputs at same time if timelock are similar.
253         /// It may be called multiples time for same output(s) if a fee-bump is needed with regards
254         /// to an upcoming timelock expiration.
255         ///
256         /// Witness_script is a revokable witness script as defined in BOLT3 for `to_local`/HTLC
257         /// outputs.
258         ///
259         /// Input index is a pointer towards outpoint spent, commited by sigs (BIP 143).
260         ///
261         /// Amount is value of the output spent by this input, committed by sigs (BIP 143).
262         ///
263         /// Per_commitment key is revocation secret such as provided by remote party while
264         /// revocating detected onchain transaction. It's not a _local_ secret key, therefore
265         /// it may cross interfaces, a node compromise won't allow to spend revoked output without
266         /// also compromissing revocation key.
267         //TODO: dry-up witness_script and pass pubkeys
268         fn sign_justice_transaction<T: secp256k1::Signing>(&self, justice_tx: &Transaction, input: usize, witness_script: &Script, amount: u64, per_commitment_key: &SecretKey, revocation_pubkey: &PublicKey, is_htlc: bool, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
269
270         /// Create a signature for a (proposed) closing transaction.
271         ///
272         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
273         /// chosen to forgo their output as dust.
274         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
275
276         /// Signs a channel announcement message with our funding key, proving it comes from one
277         /// of the channel participants.
278         ///
279         /// Note that if this fails or is rejected, the channel will not be publicly announced and
280         /// our counterparty may (though likely will not) close the channel on us for violating the
281         /// protocol.
282         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
283
284         /// Set the remote channel basepoints.  This is done immediately on incoming channels
285         /// and as soon as the channel is accepted on outgoing channels.
286         ///
287         /// Will be called before any signatures are applied.
288         fn set_remote_channel_pubkeys(&mut self, channel_points: &ChannelPublicKeys);
289 }
290
291 #[derive(Clone)]
292 /// A simple implementation of ChannelKeys that just keeps the private keys in memory.
293 pub struct InMemoryChannelKeys {
294         /// Private key of anchor tx
295         funding_key: SecretKey,
296         /// Local secret key for blinded revocation pubkey
297         revocation_base_key: SecretKey,
298         /// Local secret key used for our balance in remote-broadcasted commitment transactions
299         payment_key: SecretKey,
300         /// Local secret key used in HTLC tx
301         delayed_payment_base_key: SecretKey,
302         /// Local htlc secret key used in commitment tx htlc outputs
303         htlc_base_key: SecretKey,
304         /// Commitment seed
305         commitment_seed: [u8; 32],
306         /// Local public keys and basepoints
307         pub(crate) local_channel_pubkeys: ChannelPublicKeys,
308         /// Remote public keys and base points
309         pub(crate) remote_channel_pubkeys: Option<ChannelPublicKeys>,
310         /// The total value of this channel
311         channel_value_satoshis: u64,
312 }
313
314 impl InMemoryChannelKeys {
315         /// Create a new InMemoryChannelKeys
316         pub fn new<C: Signing>(
317                 secp_ctx: &Secp256k1<C>,
318                 funding_key: SecretKey,
319                 revocation_base_key: SecretKey,
320                 payment_key: SecretKey,
321                 delayed_payment_base_key: SecretKey,
322                 htlc_base_key: SecretKey,
323                 commitment_seed: [u8; 32],
324                 channel_value_satoshis: u64) -> InMemoryChannelKeys {
325                 let local_channel_pubkeys =
326                         InMemoryChannelKeys::make_local_keys(secp_ctx, &funding_key, &revocation_base_key,
327                                                              &payment_key, &delayed_payment_base_key,
328                                                              &htlc_base_key);
329                 InMemoryChannelKeys {
330                         funding_key,
331                         revocation_base_key,
332                         payment_key,
333                         delayed_payment_base_key,
334                         htlc_base_key,
335                         commitment_seed,
336                         channel_value_satoshis,
337                         local_channel_pubkeys,
338                         remote_channel_pubkeys: None,
339                 }
340         }
341
342         fn make_local_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
343                                        funding_key: &SecretKey,
344                                        revocation_base_key: &SecretKey,
345                                        payment_key: &SecretKey,
346                                        delayed_payment_base_key: &SecretKey,
347                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
348                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
349                 ChannelPublicKeys {
350                         funding_pubkey: from_secret(&funding_key),
351                         revocation_basepoint: from_secret(&revocation_base_key),
352                         payment_point: from_secret(&payment_key),
353                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
354                         htlc_basepoint: from_secret(&htlc_base_key),
355                 }
356         }
357 }
358
359 impl ChannelKeys for InMemoryChannelKeys {
360         fn funding_key(&self) -> &SecretKey { &self.funding_key }
361         fn revocation_base_key(&self) -> &SecretKey { &self.revocation_base_key }
362         fn payment_key(&self) -> &SecretKey { &self.payment_key }
363         fn delayed_payment_base_key(&self) -> &SecretKey { &self.delayed_payment_base_key }
364         fn htlc_base_key(&self) -> &SecretKey { &self.htlc_base_key }
365         fn commitment_seed(&self) -> &[u8; 32] { &self.commitment_seed }
366         fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys { &self.local_channel_pubkeys }
367
368         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
369                 if commitment_tx.input.len() != 1 { return Err(()); }
370
371                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
372                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
373                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
374
375                 let commitment_sighash = hash_to_message!(&bip143::SighashComponents::new(&commitment_tx).sighash_all(&commitment_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
376                 let commitment_sig = secp_ctx.sign(&commitment_sighash, &self.funding_key);
377
378                 let commitment_txid = commitment_tx.txid();
379
380                 let mut htlc_sigs = Vec::with_capacity(htlcs.len());
381                 for ref htlc in htlcs {
382                         if let Some(_) = htlc.transaction_output_index {
383                                 let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, feerate_per_kw, to_self_delay, htlc, &keys.a_delayed_payment_key, &keys.revocation_key);
384                                 let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
385                                 let htlc_sighash = hash_to_message!(&bip143::SighashComponents::new(&htlc_tx).sighash_all(&htlc_tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]);
386                                 let our_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
387                                         Ok(s) => s,
388                                         Err(_) => return Err(()),
389                                 };
390                                 htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &our_htlc_key));
391                         }
392                 }
393
394                 Ok((commitment_sig, htlc_sigs))
395         }
396
397         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
398                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
399                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
400                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
401
402                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
403         }
404
405         #[cfg(test)]
406         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
407                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
408                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
409                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
410
411                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
412         }
413
414         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()> {
415                 local_commitment_tx.get_htlc_sigs(&self.htlc_base_key, local_csv, secp_ctx)
416         }
417
418         fn sign_justice_transaction<T: secp256k1::Signing>(&self, justice_tx: &Transaction, input: usize, witness_script: &Script, amount: u64, per_commitment_key: &SecretKey, revocation_pubkey: &PublicKey, is_htlc: bool, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
419                 if let Ok(revocation_key) = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
420                         let sighash_parts = bip143::SighashComponents::new(&justice_tx);
421                         let sighash = hash_to_message!(&sighash_parts.sighash_all(&justice_tx.input[input], &witness_script, amount)[..]);
422                         return Ok(secp_ctx.sign(&sighash, &revocation_key))
423                 }
424                 Err(())
425         }
426
427         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
428                 if closing_tx.input.len() != 1 { return Err(()); }
429                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
430                 if closing_tx.output.len() > 2 { return Err(()); }
431
432                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
433                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
434                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
435
436                 let sighash = hash_to_message!(&bip143::SighashComponents::new(closing_tx)
437                         .sighash_all(&closing_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
438                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
439         }
440
441         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
442                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
443                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
444         }
445
446         fn set_remote_channel_pubkeys(&mut self, channel_pubkeys: &ChannelPublicKeys) {
447                 assert!(self.remote_channel_pubkeys.is_none(), "Already set remote channel pubkeys");
448                 self.remote_channel_pubkeys = Some(channel_pubkeys.clone());
449         }
450 }
451
452 impl Writeable for InMemoryChannelKeys {
453         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
454                 self.funding_key.write(writer)?;
455                 self.revocation_base_key.write(writer)?;
456                 self.payment_key.write(writer)?;
457                 self.delayed_payment_base_key.write(writer)?;
458                 self.htlc_base_key.write(writer)?;
459                 self.commitment_seed.write(writer)?;
460                 self.remote_channel_pubkeys.write(writer)?;
461                 self.channel_value_satoshis.write(writer)?;
462
463                 Ok(())
464         }
465 }
466
467 impl Readable for InMemoryChannelKeys {
468         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
469                 let funding_key = Readable::read(reader)?;
470                 let revocation_base_key = Readable::read(reader)?;
471                 let payment_key = Readable::read(reader)?;
472                 let delayed_payment_base_key = Readable::read(reader)?;
473                 let htlc_base_key = Readable::read(reader)?;
474                 let commitment_seed = Readable::read(reader)?;
475                 let remote_channel_pubkeys = Readable::read(reader)?;
476                 let channel_value_satoshis = Readable::read(reader)?;
477                 let secp_ctx = Secp256k1::signing_only();
478                 let local_channel_pubkeys =
479                         InMemoryChannelKeys::make_local_keys(&secp_ctx, &funding_key, &revocation_base_key,
480                                                              &payment_key, &delayed_payment_base_key,
481                                                              &htlc_base_key);
482
483                 Ok(InMemoryChannelKeys {
484                         funding_key,
485                         revocation_base_key,
486                         payment_key,
487                         delayed_payment_base_key,
488                         htlc_base_key,
489                         commitment_seed,
490                         channel_value_satoshis,
491                         local_channel_pubkeys,
492                         remote_channel_pubkeys
493                 })
494         }
495 }
496
497 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
498 /// and derives keys from that.
499 ///
500 /// Your node_id is seed/0'
501 /// ChannelMonitor closes may use seed/1'
502 /// Cooperative closes may use seed/2'
503 /// The two close keys may be needed to claim on-chain funds!
504 pub struct KeysManager {
505         secp_ctx: Secp256k1<secp256k1::SignOnly>,
506         node_secret: SecretKey,
507         destination_script: Script,
508         shutdown_pubkey: PublicKey,
509         channel_master_key: ExtendedPrivKey,
510         channel_child_index: AtomicUsize,
511         session_master_key: ExtendedPrivKey,
512         session_child_index: AtomicUsize,
513         channel_id_master_key: ExtendedPrivKey,
514         channel_id_child_index: AtomicUsize,
515
516         unique_start: Sha256State,
517 }
518
519 impl KeysManager {
520         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
521         /// RNG is busted) this may panic (but more importantly, you will possibly lose funds).
522         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
523         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
524         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
525         /// simply use the current time (with very high precision).
526         ///
527         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
528         /// obviously, starting_time should be unique every time you reload the library - it is only
529         /// used to generate new ephemeral key data (which will be stored by the individual channel if
530         /// necessary).
531         ///
532         /// Note that the seed is required to recover certain on-chain funds independent of
533         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
534         /// channel, and some on-chain during-closing funds.
535         ///
536         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
537         /// versions. Once the library is more fully supported, the docs will be updated to include a
538         /// detailed description of the guarantee.
539         pub fn new(seed: &[u8; 32], network: Network, starting_time_secs: u64, starting_time_nanos: u32) -> KeysManager {
540                 let secp_ctx = Secp256k1::signing_only();
541                 match ExtendedPrivKey::new_master(network.clone(), seed) {
542                         Ok(master_key) => {
543                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
544                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
545                                         Ok(destination_key) => {
546                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
547                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
548                                                               .push_slice(&wpubkey_hash.into_inner())
549                                                               .into_script()
550                                         },
551                                         Err(_) => panic!("Your RNG is busted"),
552                                 };
553                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
554                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
555                                         Err(_) => panic!("Your RNG is busted"),
556                                 };
557                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
558                                 let session_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
559                                 let channel_id_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted");
560
561                                 let mut unique_start = Sha256::engine();
562                                 unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
563                                 unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
564                                 unique_start.input(seed);
565
566                                 KeysManager {
567                                         secp_ctx,
568                                         node_secret,
569                                         destination_script,
570                                         shutdown_pubkey,
571                                         channel_master_key,
572                                         channel_child_index: AtomicUsize::new(0),
573                                         session_master_key,
574                                         session_child_index: AtomicUsize::new(0),
575                                         channel_id_master_key,
576                                         channel_id_child_index: AtomicUsize::new(0),
577
578                                         unique_start,
579                                 }
580                         },
581                         Err(_) => panic!("Your rng is busted"),
582                 }
583         }
584 }
585
586 impl KeysInterface for KeysManager {
587         type ChanKeySigner = InMemoryChannelKeys;
588
589         fn get_node_secret(&self) -> SecretKey {
590                 self.node_secret.clone()
591         }
592
593         fn get_destination_script(&self) -> Script {
594                 self.destination_script.clone()
595         }
596
597         fn get_shutdown_pubkey(&self) -> PublicKey {
598                 self.shutdown_pubkey.clone()
599         }
600
601         fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> InMemoryChannelKeys {
602                 // We only seriously intend to rely on the channel_master_key for true secure
603                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
604                 // starting_time provided in the constructor) to be unique.
605                 let mut sha = self.unique_start.clone();
606
607                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
608                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
609                 sha.input(&child_privkey.private_key.key[..]);
610
611                 let seed = Sha256::from_engine(sha).into_inner();
612
613                 let commitment_seed = {
614                         let mut sha = Sha256::engine();
615                         sha.input(&seed);
616                         sha.input(&b"commitment seed"[..]);
617                         Sha256::from_engine(sha).into_inner()
618                 };
619                 macro_rules! key_step {
620                         ($info: expr, $prev_key: expr) => {{
621                                 let mut sha = Sha256::engine();
622                                 sha.input(&seed);
623                                 sha.input(&$prev_key[..]);
624                                 sha.input(&$info[..]);
625                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
626                         }}
627                 }
628                 let funding_key = key_step!(b"funding key", commitment_seed);
629                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
630                 let payment_key = key_step!(b"payment key", revocation_base_key);
631                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
632                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
633
634                 InMemoryChannelKeys::new(
635                         &self.secp_ctx,
636                         funding_key,
637                         revocation_base_key,
638                         payment_key,
639                         delayed_payment_base_key,
640                         htlc_base_key,
641                         commitment_seed,
642                         channel_value_satoshis
643                 )
644         }
645
646         fn get_onion_rand(&self) -> (SecretKey, [u8; 32]) {
647                 let mut sha = self.unique_start.clone();
648
649                 let child_ix = self.session_child_index.fetch_add(1, Ordering::AcqRel);
650                 let child_privkey = self.session_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
651                 sha.input(&child_privkey.private_key.key[..]);
652
653                 let mut rng_seed = sha.clone();
654                 // Not exactly the most ideal construction, but the second value will get fed into
655                 // ChaCha so it is another step harder to break.
656                 rng_seed.input(b"RNG Seed Salt");
657                 sha.input(b"Session Key Salt");
658                 (SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("Your RNG is busted"),
659                 Sha256::from_engine(rng_seed).into_inner())
660         }
661
662         fn get_channel_id(&self) -> [u8; 32] {
663                 let mut sha = self.unique_start.clone();
664
665                 let child_ix = self.channel_id_child_index.fetch_add(1, Ordering::AcqRel);
666                 let child_privkey = self.channel_id_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
667                 sha.input(&child_privkey.private_key.key[..]);
668
669                 Sha256::from_engine(sha).into_inner()
670         }
671 }