Slightly expand documentation on KeysInterface
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::hashes::{Hash, HashEngine};
22 use bitcoin::hashes::sha256::HashEngine as Sha256State;
23 use bitcoin::hashes::sha256::Hash as Sha256;
24 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
25 use bitcoin::hash_types::WPubkeyHash;
26
27 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
28 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
29 use bitcoin::secp256k1;
30
31 use util::byte_utils;
32 use util::ser::{Writeable, Writer, Readable};
33
34 use chain::transaction::OutPoint;
35 use ln::chan_utils;
36 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction};
37 use ln::msgs::UnsignedChannelAnnouncement;
38
39 use std::sync::atomic::{AtomicUsize, Ordering};
40 use std::io::Error;
41 use ln::msgs::DecodeError;
42
43 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
44 /// claim at any point in the future) an event is generated which you must track and be able to
45 /// spend on-chain. The information needed to do this is provided in this enum, including the
46 /// outpoint describing which txid and output index is available, the full output which exists at
47 /// that txid/index, and any keys or other information required to sign.
48 #[derive(Clone, Debug, PartialEq)]
49 pub enum SpendableOutputDescriptor {
50         /// An output to a script which was provided via KeysInterface directly, either from
51         /// `get_destination_script()` or `get_shutdown_pubkey()`, thus you should already know how to
52         /// spend it. No secret keys are provided as rust-lightning was never given any key.
53         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
54         /// on-chain using the payment preimage or after it has timed out.
55         StaticOutput {
56                 /// The outpoint which is spendable
57                 outpoint: OutPoint,
58                 /// The output which is referenced by the given outpoint.
59                 output: TxOut,
60         },
61         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
62         ///
63         /// The witness in the spending input should be:
64         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
65         ///
66         /// Note that the nSequence field in the spending input must be set to to_self_delay
67         /// (which means the transaction is not broadcastable until at least to_self_delay
68         /// blocks after the outpoint confirms).
69         ///
70         /// These are generally the result of a "revocable" output to us, spendable only by us unless
71         /// it is an output from an old state which we broadcast (which should never happen).
72         ///
73         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
74         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
75         /// ChannelKeys::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
76         /// chan_utils::derive_private_key. The public key can be generated without the secret key
77         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
78         /// ChannelKeys::pubkeys().
79         ///
80         /// To derive the revocation_pubkey provided here (which is used in the witness
81         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
82         /// call to ChannelKeys::ready_channel) and the provided per_commitment point
83         /// to chan_utils::derive_public_revocation_key.
84         ///
85         /// The witness script which is hashed and included in the output script_pubkey may be
86         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
87         /// (derived as above), and the to_self_delay contained here to
88         /// chan_utils::get_revokeable_redeemscript.
89         //
90         // TODO: we need to expose utility methods in KeyManager to do all the relevant derivation.
91         DynamicOutputP2WSH {
92                 /// The outpoint which is spendable
93                 outpoint: OutPoint,
94                 /// Per commitment point to derive delayed_payment_key by key holder
95                 per_commitment_point: PublicKey,
96                 /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
97                 /// the witness_script.
98                 to_self_delay: u16,
99                 /// The output which is referenced by the given outpoint
100                 output: TxOut,
101                 /// The revocation_pubkey used to derive witnessScript
102                 revocation_pubkey: PublicKey,
103                 /// Arbitrary identification information returned by a call to
104                 /// `ChannelKeys::channel_keys_id()`. This may be useful in re-deriving keys used in
105                 /// the channel to spend the output.
106                 channel_keys_id: [u8; 32],
107                 /// The value of the channel which this output originated from, possibly indirectly.
108                 channel_value_satoshis: u64,
109         },
110         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
111         /// corresponds to the public key in ChannelKeys::pubkeys().payment_point).
112         /// The witness in the spending input, is, thus, simply:
113         /// <BIP 143 signature> <payment key>
114         ///
115         /// These are generally the result of our counterparty having broadcast the current state,
116         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
117         StaticOutputCounterpartyPayment {
118                 /// The outpoint which is spendable
119                 outpoint: OutPoint,
120                 /// The output which is reference by the given outpoint
121                 output: TxOut,
122                 /// Arbitrary identification information returned by a call to
123                 /// `ChannelKeys::channel_keys_id()`. This may be useful in re-deriving keys used in
124                 /// the channel to spend the output.
125                 channel_keys_id: [u8; 32],
126                 /// The value of the channel which this transactions spends.
127                 channel_value_satoshis: u64,
128         }
129 }
130
131 impl Writeable for SpendableOutputDescriptor {
132         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
133                 match self {
134                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
135                                 0u8.write(writer)?;
136                                 outpoint.write(writer)?;
137                                 output.write(writer)?;
138                         },
139                         &SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref per_commitment_point, ref to_self_delay, ref output, ref revocation_pubkey, ref channel_keys_id, channel_value_satoshis } => {
140                                 1u8.write(writer)?;
141                                 outpoint.write(writer)?;
142                                 per_commitment_point.write(writer)?;
143                                 to_self_delay.write(writer)?;
144                                 output.write(writer)?;
145                                 revocation_pubkey.write(writer)?;
146                                 channel_keys_id.write(writer)?;
147                                 channel_value_satoshis.write(writer)?;
148                         },
149                         &SpendableOutputDescriptor::StaticOutputCounterpartyPayment { ref outpoint, ref output, ref channel_keys_id, channel_value_satoshis } => {
150                                 2u8.write(writer)?;
151                                 outpoint.write(writer)?;
152                                 output.write(writer)?;
153                                 channel_keys_id.write(writer)?;
154                                 channel_value_satoshis.write(writer)?;
155                         },
156                 }
157                 Ok(())
158         }
159 }
160
161 impl Readable for SpendableOutputDescriptor {
162         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
163                 match Readable::read(reader)? {
164                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
165                                 outpoint: Readable::read(reader)?,
166                                 output: Readable::read(reader)?,
167                         }),
168                         1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH {
169                                 outpoint: Readable::read(reader)?,
170                                 per_commitment_point: Readable::read(reader)?,
171                                 to_self_delay: Readable::read(reader)?,
172                                 output: Readable::read(reader)?,
173                                 revocation_pubkey: Readable::read(reader)?,
174                                 channel_keys_id: Readable::read(reader)?,
175                                 channel_value_satoshis: Readable::read(reader)?,
176                         }),
177                         2u8 => Ok(SpendableOutputDescriptor::StaticOutputCounterpartyPayment {
178                                 outpoint: Readable::read(reader)?,
179                                 output: Readable::read(reader)?,
180                                 channel_keys_id: Readable::read(reader)?,
181                                 channel_value_satoshis: Readable::read(reader)?,
182                         }),
183                         _ => Err(DecodeError::InvalidValue),
184                 }
185         }
186 }
187
188 /// Set of lightning keys needed to operate a channel as described in BOLT 3.
189 ///
190 /// Signing services could be implemented on a hardware wallet. In this case,
191 /// the current ChannelKeys would be a front-end on top of a communication
192 /// channel connected to your secure device and lightning key material wouldn't
193 /// reside on a hot server. Nevertheless, a this deployment would still need
194 /// to trust the ChannelManager to avoid loss of funds as this latest component
195 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
196 ///
197 /// A more secure iteration would be to use hashlock (or payment points) to pair
198 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
199 /// at the price of more state and computation on the hardware wallet side. In the future,
200 /// we are looking forward to design such interface.
201 ///
202 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
203 /// to act, as liveness and breach reply correctness are always going to be hard requirements
204 /// of LN security model, orthogonal of key management issues.
205 ///
206 /// If you're implementing a custom signer, you almost certainly want to implement
207 /// Readable/Writable to serialize out a unique reference to this set of keys so
208 /// that you can serialize the full ChannelManager object.
209 ///
210 // (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly
211 // to the possibility of reentrancy issues by calling the user's code during our deserialization
212 // routine).
213 // TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
214 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
215 pub trait ChannelKeys : Send+Clone + Writeable {
216         /// Gets the per-commitment point for a specific commitment number
217         ///
218         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
219         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey;
220         /// Gets the commitment secret for a specific commitment number as part of the revocation process
221         ///
222         /// An external signer implementation should error here if the commitment was already signed
223         /// and should refuse to sign it in the future.
224         ///
225         /// May be called more than once for the same index.
226         ///
227         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
228         /// TODO: return a Result so we can signal a validation error
229         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
230         /// Gets the holder's channel public keys and basepoints
231         fn pubkeys(&self) -> &ChannelPublicKeys;
232         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
233         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
234         /// ChannelKeys object uniquely and lookup or re-derive its keys.
235         fn channel_keys_id(&self) -> [u8; 32];
236
237         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
238         ///
239         /// Note that if signing fails or is rejected, the channel will be force-closed.
240         //
241         // TODO: Document the things someone using this interface should enforce before signing.
242         fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
243
244         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
245         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
246         /// latest commitment_tx when we initiate a force-close.
247         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
248         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
249         /// the latest.
250         /// This may be called multiple times for the same transaction.
251         ///
252         /// An external signer implementation should check that the commitment has not been revoked.
253         ///
254         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
255         //
256         // TODO: Document the things someone using this interface should enforce before signing.
257         // TODO: Key derivation failure should panic rather than Err
258         fn sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
259
260         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
261         /// transactions which will be broadcasted later, after the channel has moved on to a newer
262         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
263         /// get called once.
264         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
265         fn unsafe_sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
266
267         /// Create a signature for the given input in a transaction spending an HTLC or commitment
268         /// transaction output when our counterparty broadcasts an old state.
269         ///
270         /// A justice transaction may claim multiples outputs at the same time if timelocks are
271         /// similar, but only a signature for the input at index `input` should be signed for here.
272         /// It may be called multiples time for same output(s) if a fee-bump is needed with regards
273         /// to an upcoming timelock expiration.
274         ///
275         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
276         ///
277         /// per_commitment_key is revocation secret which was provided by our counterparty when they
278         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
279         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
280         /// so).
281         ///
282         /// htlc holds HTLC elements (hash, timelock) if the output being spent is a HTLC output, thus
283         /// changing the format of the witness script (which is committed to in the BIP 143
284         /// signatures).
285         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
286
287         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
288         /// transaction, either offered or received.
289         ///
290         /// Such a transaction may claim multiples offered outputs at same time if we know the
291         /// preimage for each when we create it, but only the input at index `input` should be
292         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
293         /// needed with regards to an upcoming timelock expiration.
294         ///
295         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
296         /// outputs.
297         ///
298         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
299         ///
300         /// Per_commitment_point is the dynamic point corresponding to the channel state
301         /// detected onchain. It has been generated by our counterparty and is used to derive
302         /// channel state keys, which are then included in the witness script and committed to in the
303         /// BIP 143 signature.
304         fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
305
306         /// Create a signature for a (proposed) closing transaction.
307         ///
308         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
309         /// chosen to forgo their output as dust.
310         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
311
312         /// Signs a channel announcement message with our funding key, proving it comes from one
313         /// of the channel participants.
314         ///
315         /// Note that if this fails or is rejected, the channel will not be publicly announced and
316         /// our counterparty may (though likely will not) close the channel on us for violating the
317         /// protocol.
318         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
319
320         /// Set the counterparty static channel data, including basepoints,
321         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
322         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
323         /// they MUST NOT be allowed to change to different values once set.
324         ///
325         /// channel_parameters.is_populated() MUST be true.
326         ///
327         /// We bind holder_selected_contest_delay late here for API convenience.
328         ///
329         /// Will be called before any signatures are applied.
330         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
331 }
332
333 /// A trait to describe an object which can get user secrets and key material.
334 pub trait KeysInterface: Send + Sync {
335         /// A type which implements ChannelKeys which will be returned by get_channel_keys.
336         type ChanKeySigner : ChannelKeys;
337
338         /// Get node secret key (aka node_id or network_key).
339         ///
340         /// This method must return the same value each time it is called.
341         fn get_node_secret(&self) -> SecretKey;
342         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
343         ///
344         /// This method should return a different value each time it is called, to avoid linking
345         /// on-chain funds across channels as controlled to the same user.
346         fn get_destination_script(&self) -> Script;
347         /// Get a public key which we will send funds to (in the form of a P2WPKH output) when closing
348         /// a channel.
349         ///
350         /// This method should return a different value each time it is called, to avoid linking
351         /// on-chain funds across channels as controlled to the same user.
352         fn get_shutdown_pubkey(&self) -> PublicKey;
353         /// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
354         /// restarted with some stale data!
355         ///
356         /// This method must return a different value each time it is called.
357         fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
358         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
359         /// onion packets and for temporary channel IDs. There is no requirement that these be
360         /// persisted anywhere, though they must be unique across restarts.
361         ///
362         /// This method must return a different value each time it is called.
363         fn get_secure_random_bytes(&self) -> [u8; 32];
364
365         /// Reads a `ChanKeySigner` for this `KeysInterface` from the given input stream.
366         /// This is only called during deserialization of other objects which contain
367         /// `ChannelKeys`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
368         /// The bytes are exactly those which `<Self::ChanKeySigner as Writeable>::write()` writes, and
369         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
370         /// you've read all of the provided bytes to ensure no corruption occurred.
371         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::ChanKeySigner, DecodeError>;
372 }
373
374 #[derive(Clone)]
375 /// A simple implementation of ChannelKeys that just keeps the private keys in memory.
376 ///
377 /// This implementation performs no policy checks and is insufficient by itself as
378 /// a secure external signer.
379 pub struct InMemoryChannelKeys {
380         /// Private key of anchor tx
381         pub funding_key: SecretKey,
382         /// Holder secret key for blinded revocation pubkey
383         pub revocation_base_key: SecretKey,
384         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
385         pub payment_key: SecretKey,
386         /// Holder secret key used in HTLC tx
387         pub delayed_payment_base_key: SecretKey,
388         /// Holder htlc secret key used in commitment tx htlc outputs
389         pub htlc_base_key: SecretKey,
390         /// Commitment seed
391         pub commitment_seed: [u8; 32],
392         /// Holder public keys and basepoints
393         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
394         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
395         channel_parameters: Option<ChannelTransactionParameters>,
396         /// The total value of this channel
397         channel_value_satoshis: u64,
398         /// Key derivation parameters
399         channel_keys_id: [u8; 32],
400 }
401
402 impl InMemoryChannelKeys {
403         /// Create a new InMemoryChannelKeys
404         pub fn new<C: Signing>(
405                 secp_ctx: &Secp256k1<C>,
406                 funding_key: SecretKey,
407                 revocation_base_key: SecretKey,
408                 payment_key: SecretKey,
409                 delayed_payment_base_key: SecretKey,
410                 htlc_base_key: SecretKey,
411                 commitment_seed: [u8; 32],
412                 channel_value_satoshis: u64,
413                 channel_keys_id: [u8; 32]) -> InMemoryChannelKeys {
414                 let holder_channel_pubkeys =
415                         InMemoryChannelKeys::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
416                                                              &payment_key, &delayed_payment_base_key,
417                                                              &htlc_base_key);
418                 InMemoryChannelKeys {
419                         funding_key,
420                         revocation_base_key,
421                         payment_key,
422                         delayed_payment_base_key,
423                         htlc_base_key,
424                         commitment_seed,
425                         channel_value_satoshis,
426                         holder_channel_pubkeys,
427                         channel_parameters: None,
428                         channel_keys_id,
429                 }
430         }
431
432         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
433                                        funding_key: &SecretKey,
434                                        revocation_base_key: &SecretKey,
435                                        payment_key: &SecretKey,
436                                        delayed_payment_base_key: &SecretKey,
437                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
438                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
439                 ChannelPublicKeys {
440                         funding_pubkey: from_secret(&funding_key),
441                         revocation_basepoint: from_secret(&revocation_base_key),
442                         payment_point: from_secret(&payment_key),
443                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
444                         htlc_basepoint: from_secret(&htlc_base_key),
445                 }
446         }
447
448         /// Counterparty pubkeys.
449         /// Will panic if ready_channel wasn't called.
450         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
451
452         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
453         /// transactions, ie the amount of time that we have to wait to recover our funds if we
454         /// broadcast a transaction.
455         /// Will panic if ready_channel wasn't called.
456         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
457
458         /// The contest_delay value specified by us and applied on transactions broadcastable
459         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
460         /// if they broadcast a transaction.
461         /// Will panic if ready_channel wasn't called.
462         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
463
464         /// Whether the holder is the initiator
465         /// Will panic if ready_channel wasn't called.
466         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
467
468         /// Funding outpoint
469         /// Will panic if ready_channel wasn't called.
470         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
471
472         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
473         /// building transactions.
474         ///
475         /// Will panic if ready_channel wasn't called.
476         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
477                 self.channel_parameters.as_ref().unwrap()
478         }
479 }
480
481 impl ChannelKeys for InMemoryChannelKeys {
482         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey {
483                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
484                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
485         }
486
487         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
488                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
489         }
490
491         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
492         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
493
494         fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
495                 let trusted_tx = commitment_tx.trust();
496                 let keys = trusted_tx.keys();
497
498                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
499                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
500
501                 let built_tx = trusted_tx.built_transaction();
502                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
503                 let commitment_txid = built_tx.txid;
504
505                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
506                 for htlc in commitment_tx.htlcs() {
507                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
508                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
509                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
510                         let holder_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
511                                 Ok(s) => s,
512                                 Err(_) => return Err(()),
513                         };
514                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
515                 }
516
517                 Ok((commitment_sig, htlc_sigs))
518         }
519
520         fn sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
521                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
522                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
523                 let trusted_tx = commitment_tx.trust();
524                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
525                 let channel_parameters = self.get_channel_parameters();
526                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
527                 Ok((sig, htlc_sigs))
528         }
529
530         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
531         fn unsafe_sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
532                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
533                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
534                 let trusted_tx = commitment_tx.trust();
535                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
536                 let channel_parameters = self.get_channel_parameters();
537                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
538                 Ok((sig, htlc_sigs))
539         }
540
541         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
542                 let revocation_key = match chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
543                         Ok(revocation_key) => revocation_key,
544                         Err(_) => return Err(())
545                 };
546                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
547                 let revocation_pubkey = match chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
548                         Ok(revocation_pubkey) => revocation_pubkey,
549                         Err(_) => return Err(())
550                 };
551                 let witness_script = if let &Some(ref htlc) = htlc {
552                         let counterparty_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
553                                 Ok(counterparty_htlcpubkey) => counterparty_htlcpubkey,
554                                 Err(_) => return Err(())
555                         };
556                         let holder_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
557                                 Ok(holder_htlcpubkey) => holder_htlcpubkey,
558                                 Err(_) => return Err(())
559                         };
560                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
561                 } else {
562                         let counterparty_delayedpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint) {
563                                 Ok(counterparty_delayedpubkey) => counterparty_delayedpubkey,
564                                 Err(_) => return Err(())
565                         };
566                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
567                 };
568                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
569                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
570                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
571         }
572
573         fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
574                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
575                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
576                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
577                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
578                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
579                                         } else { return Err(()) }
580                                 } else { return Err(()) }
581                         } else { return Err(()) };
582                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
583                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
584                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
585                 }
586                 Err(())
587         }
588
589         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
590                 if closing_tx.input.len() != 1 { return Err(()); }
591                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
592                 if closing_tx.output.len() > 2 { return Err(()); }
593
594                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
595                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
596
597                 let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
598                         .signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
599                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
600         }
601
602         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
603                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
604                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
605         }
606
607         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
608                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
609                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
610                 self.channel_parameters = Some(channel_parameters.clone());
611         }
612 }
613
614 impl Writeable for InMemoryChannelKeys {
615         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
616                 self.funding_key.write(writer)?;
617                 self.revocation_base_key.write(writer)?;
618                 self.payment_key.write(writer)?;
619                 self.delayed_payment_base_key.write(writer)?;
620                 self.htlc_base_key.write(writer)?;
621                 self.commitment_seed.write(writer)?;
622                 self.channel_parameters.write(writer)?;
623                 self.channel_value_satoshis.write(writer)?;
624                 self.channel_keys_id.write(writer)?;
625
626                 Ok(())
627         }
628 }
629
630 impl Readable for InMemoryChannelKeys {
631         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
632                 let funding_key = Readable::read(reader)?;
633                 let revocation_base_key = Readable::read(reader)?;
634                 let payment_key = Readable::read(reader)?;
635                 let delayed_payment_base_key = Readable::read(reader)?;
636                 let htlc_base_key = Readable::read(reader)?;
637                 let commitment_seed = Readable::read(reader)?;
638                 let counterparty_channel_data = Readable::read(reader)?;
639                 let channel_value_satoshis = Readable::read(reader)?;
640                 let secp_ctx = Secp256k1::signing_only();
641                 let holder_channel_pubkeys =
642                         InMemoryChannelKeys::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
643                                                              &payment_key, &delayed_payment_base_key,
644                                                              &htlc_base_key);
645                 let keys_id = Readable::read(reader)?;
646
647                 Ok(InMemoryChannelKeys {
648                         funding_key,
649                         revocation_base_key,
650                         payment_key,
651                         delayed_payment_base_key,
652                         htlc_base_key,
653                         commitment_seed,
654                         channel_value_satoshis,
655                         holder_channel_pubkeys,
656                         channel_parameters: counterparty_channel_data,
657                         channel_keys_id: keys_id,
658                 })
659         }
660 }
661
662 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
663 /// and derives keys from that.
664 ///
665 /// Your node_id is seed/0'
666 /// ChannelMonitor closes may use seed/1'
667 /// Cooperative closes may use seed/2'
668 /// The two close keys may be needed to claim on-chain funds!
669 pub struct KeysManager {
670         secp_ctx: Secp256k1<secp256k1::SignOnly>,
671         node_secret: SecretKey,
672         destination_script: Script,
673         shutdown_pubkey: PublicKey,
674         channel_master_key: ExtendedPrivKey,
675         channel_child_index: AtomicUsize,
676         rand_bytes_master_key: ExtendedPrivKey,
677         rand_bytes_child_index: AtomicUsize,
678
679         seed: [u8; 32],
680         starting_time_secs: u64,
681         starting_time_nanos: u32,
682 }
683
684 impl KeysManager {
685         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
686         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
687         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
688         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
689         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
690         /// simply use the current time (with very high precision).
691         ///
692         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
693         /// obviously, starting_time should be unique every time you reload the library - it is only
694         /// used to generate new ephemeral key data (which will be stored by the individual channel if
695         /// necessary).
696         ///
697         /// Note that the seed is required to recover certain on-chain funds independent of
698         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
699         /// channel, and some on-chain during-closing funds.
700         ///
701         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
702         /// versions. Once the library is more fully supported, the docs will be updated to include a
703         /// detailed description of the guarantee.
704         pub fn new(seed: &[u8; 32], network: Network, starting_time_secs: u64, starting_time_nanos: u32) -> Self {
705                 let secp_ctx = Secp256k1::signing_only();
706                 match ExtendedPrivKey::new_master(network.clone(), seed) {
707                         Ok(master_key) => {
708                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
709                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
710                                         Ok(destination_key) => {
711                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
712                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
713                                                               .push_slice(&wpubkey_hash.into_inner())
714                                                               .into_script()
715                                         },
716                                         Err(_) => panic!("Your RNG is busted"),
717                                 };
718                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
719                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
720                                         Err(_) => panic!("Your RNG is busted"),
721                                 };
722                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
723                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
724
725                                 KeysManager {
726                                         secp_ctx,
727                                         node_secret,
728                                         destination_script,
729                                         shutdown_pubkey,
730                                         channel_master_key,
731                                         channel_child_index: AtomicUsize::new(0),
732                                         rand_bytes_master_key,
733                                         rand_bytes_child_index: AtomicUsize::new(0),
734
735                                         seed: *seed,
736                                         starting_time_secs,
737                                         starting_time_nanos,
738                                 }
739                         },
740                         Err(_) => panic!("Your rng is busted"),
741                 }
742         }
743         fn derive_unique_start(&self) -> Sha256State {
744                 let mut unique_start = Sha256::engine();
745                 unique_start.input(&byte_utils::be64_to_array(self.starting_time_secs));
746                 unique_start.input(&byte_utils::be32_to_array(self.starting_time_nanos));
747                 unique_start.input(&self.seed);
748                 unique_start
749         }
750         /// Derive an old set of ChannelKeys for per-channel secrets based on a key derivation
751         /// parameters.
752         /// Key derivation parameters are accessible through a per-channel secrets
753         /// ChannelKeys::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
754         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
755         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemoryChannelKeys {
756                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
757                 assert!(chan_id <= std::u32::MAX as u64); // Otherwise the params field wasn't created by us
758                 let mut unique_start = Sha256::engine();
759                 unique_start.input(params);
760                 unique_start.input(&self.seed);
761
762                 // We only seriously intend to rely on the channel_master_key for true secure
763                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
764                 // starting_time provided in the constructor) to be unique.
765                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
766                 unique_start.input(&child_privkey.private_key.key[..]);
767
768                 let seed = Sha256::from_engine(unique_start).into_inner();
769
770                 let commitment_seed = {
771                         let mut sha = Sha256::engine();
772                         sha.input(&seed);
773                         sha.input(&b"commitment seed"[..]);
774                         Sha256::from_engine(sha).into_inner()
775                 };
776                 macro_rules! key_step {
777                         ($info: expr, $prev_key: expr) => {{
778                                 let mut sha = Sha256::engine();
779                                 sha.input(&seed);
780                                 sha.input(&$prev_key[..]);
781                                 sha.input(&$info[..]);
782                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
783                         }}
784                 }
785                 let funding_key = key_step!(b"funding key", commitment_seed);
786                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
787                 let payment_key = key_step!(b"payment key", revocation_base_key);
788                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
789                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
790
791                 InMemoryChannelKeys::new(
792                         &self.secp_ctx,
793                         funding_key,
794                         revocation_base_key,
795                         payment_key,
796                         delayed_payment_base_key,
797                         htlc_base_key,
798                         commitment_seed,
799                         channel_value_satoshis,
800                         params.clone()
801                 )
802         }
803 }
804
805 impl KeysInterface for KeysManager {
806         type ChanKeySigner = InMemoryChannelKeys;
807
808         fn get_node_secret(&self) -> SecretKey {
809                 self.node_secret.clone()
810         }
811
812         fn get_destination_script(&self) -> Script {
813                 self.destination_script.clone()
814         }
815
816         fn get_shutdown_pubkey(&self) -> PublicKey {
817                 self.shutdown_pubkey.clone()
818         }
819
820         fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner {
821                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
822                 assert!(child_ix <= std::u32::MAX as usize);
823                 let mut id = [0; 32];
824                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
825                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
826                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
827                 self.derive_channel_keys(channel_value_satoshis, &id)
828         }
829
830         fn get_secure_random_bytes(&self) -> [u8; 32] {
831                 let mut sha = self.derive_unique_start();
832
833                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
834                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
835                 sha.input(&child_privkey.private_key.key[..]);
836
837                 sha.input(b"Unique Secure Random Bytes Salt");
838                 Sha256::from_engine(sha).into_inner()
839         }
840
841         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::ChanKeySigner, DecodeError> {
842                 InMemoryChannelKeys::read(&mut std::io::Cursor::new(reader))
843         }
844 }