Re-add support for non-zero-fee-anchors to chan_utils and InMemorySigner
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, EcdsaSighashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::sighash;
20
21 use bitcoin::bech32::u5;
22 use bitcoin::hashes::{Hash, HashEngine};
23 use bitcoin::hashes::sha256::HashEngine as Sha256State;
24 use bitcoin::hashes::sha256::Hash as Sha256;
25 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
26 use bitcoin::hash_types::WPubkeyHash;
27
28 use bitcoin::secp256k1::{SecretKey, PublicKey, Scalar};
29 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Signing};
30 use bitcoin::secp256k1::ecdh::SharedSecret;
31 use bitcoin::secp256k1::ecdsa::RecoverableSignature;
32 use bitcoin::{PackedLockTime, secp256k1, Sequence, Witness};
33
34 use crate::util::{byte_utils, transaction_utils};
35 use crate::util::crypto::{hkdf_extract_expand_twice, sign};
36 use crate::util::ser::{Writeable, Writer, Readable, ReadableArgs};
37
38 use crate::chain::transaction::OutPoint;
39 use crate::ln::channel::ANCHOR_OUTPUT_VALUE_SATOSHI;
40 use crate::ln::{chan_utils, PaymentPreimage};
41 use crate::ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
42 use crate::ln::msgs::UnsignedChannelAnnouncement;
43 use crate::ln::script::ShutdownScript;
44
45 use crate::prelude::*;
46 use core::sync::atomic::{AtomicUsize, Ordering};
47 use crate::io::{self, Error};
48 use crate::ln::msgs::{DecodeError, MAX_VALUE_MSAT};
49 use crate::util::invoice::construct_invoice_preimage;
50
51 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
52 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
53 /// (C-not exported) as we just use [u8; 32] directly
54 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
55 pub struct KeyMaterial(pub [u8; 32]);
56
57 /// Information about a spendable output to a P2WSH script. See
58 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
59 #[derive(Clone, Debug, PartialEq, Eq)]
60 pub struct DelayedPaymentOutputDescriptor {
61         /// The outpoint which is spendable
62         pub outpoint: OutPoint,
63         /// Per commitment point to derive delayed_payment_key by key holder
64         pub per_commitment_point: PublicKey,
65         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
66         /// the witness_script.
67         pub to_self_delay: u16,
68         /// The output which is referenced by the given outpoint
69         pub output: TxOut,
70         /// The revocation point specific to the commitment transaction which was broadcast. Used to
71         /// derive the witnessScript for this output.
72         pub revocation_pubkey: PublicKey,
73         /// Arbitrary identification information returned by a call to
74         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
75         /// the channel to spend the output.
76         pub channel_keys_id: [u8; 32],
77         /// The value of the channel which this output originated from, possibly indirectly.
78         pub channel_value_satoshis: u64,
79 }
80 impl DelayedPaymentOutputDescriptor {
81         /// The maximum length a well-formed witness spending one of these should have.
82         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
83         // redeemscript push length.
84         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
85 }
86
87 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
88         (0, outpoint, required),
89         (2, per_commitment_point, required),
90         (4, to_self_delay, required),
91         (6, output, required),
92         (8, revocation_pubkey, required),
93         (10, channel_keys_id, required),
94         (12, channel_value_satoshis, required),
95 });
96
97 /// Information about a spendable output to our "payment key". See
98 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
99 #[derive(Clone, Debug, PartialEq, Eq)]
100 pub struct StaticPaymentOutputDescriptor {
101         /// The outpoint which is spendable
102         pub outpoint: OutPoint,
103         /// The output which is referenced by the given outpoint
104         pub output: TxOut,
105         /// Arbitrary identification information returned by a call to
106         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
107         /// the channel to spend the output.
108         pub channel_keys_id: [u8; 32],
109         /// The value of the channel which this transactions spends.
110         pub channel_value_satoshis: u64,
111 }
112 impl StaticPaymentOutputDescriptor {
113         /// The maximum length a well-formed witness spending one of these should have.
114         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
115         // redeemscript push length.
116         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
117 }
118 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
119         (0, outpoint, required),
120         (2, output, required),
121         (4, channel_keys_id, required),
122         (6, channel_value_satoshis, required),
123 });
124
125 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
126 /// claim at any point in the future) an event is generated which you must track and be able to
127 /// spend on-chain. The information needed to do this is provided in this enum, including the
128 /// outpoint describing which txid and output index is available, the full output which exists at
129 /// that txid/index, and any keys or other information required to sign.
130 #[derive(Clone, Debug, PartialEq, Eq)]
131 pub enum SpendableOutputDescriptor {
132         /// An output to a script which was provided via KeysInterface directly, either from
133         /// `get_destination_script()` or `get_shutdown_scriptpubkey()`, thus you should already know
134         /// how to spend it. No secret keys are provided as rust-lightning was never given any key.
135         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
136         /// on-chain using the payment preimage or after it has timed out.
137         StaticOutput {
138                 /// The outpoint which is spendable
139                 outpoint: OutPoint,
140                 /// The output which is referenced by the given outpoint.
141                 output: TxOut,
142         },
143         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
144         ///
145         /// The witness in the spending input should be:
146         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
147         ///
148         /// Note that the nSequence field in the spending input must be set to to_self_delay
149         /// (which means the transaction is not broadcastable until at least to_self_delay
150         /// blocks after the outpoint confirms).
151         ///
152         /// These are generally the result of a "revocable" output to us, spendable only by us unless
153         /// it is an output from an old state which we broadcast (which should never happen).
154         ///
155         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
156         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
157         /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
158         /// chan_utils::derive_private_key. The public key can be generated without the secret key
159         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
160         /// Sign::pubkeys().
161         ///
162         /// To derive the revocation_pubkey provided here (which is used in the witness
163         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
164         /// call to Sign::ready_channel) and the provided per_commitment point
165         /// to chan_utils::derive_public_revocation_key.
166         ///
167         /// The witness script which is hashed and included in the output script_pubkey may be
168         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
169         /// (derived as above), and the to_self_delay contained here to
170         /// chan_utils::get_revokeable_redeemscript.
171         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
172         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
173         /// corresponds to the public key in Sign::pubkeys().payment_point).
174         /// The witness in the spending input, is, thus, simply:
175         /// <BIP 143 signature> <payment key>
176         ///
177         /// These are generally the result of our counterparty having broadcast the current state,
178         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
179         StaticPaymentOutput(StaticPaymentOutputDescriptor),
180 }
181
182 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
183         (0, StaticOutput) => {
184                 (0, outpoint, required),
185                 (2, output, required),
186         },
187 ;
188         (1, DelayedPaymentOutput),
189         (2, StaticPaymentOutput),
190 );
191
192 /// A trait to sign lightning channel transactions as described in BOLT 3.
193 ///
194 /// Signing services could be implemented on a hardware wallet. In this case,
195 /// the current Sign would be a front-end on top of a communication
196 /// channel connected to your secure device and lightning key material wouldn't
197 /// reside on a hot server. Nevertheless, a this deployment would still need
198 /// to trust the ChannelManager to avoid loss of funds as this latest component
199 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
200 ///
201 /// A more secure iteration would be to use hashlock (or payment points) to pair
202 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
203 /// at the price of more state and computation on the hardware wallet side. In the future,
204 /// we are looking forward to design such interface.
205 ///
206 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
207 /// to act, as liveness and breach reply correctness are always going to be hard requirements
208 /// of LN security model, orthogonal of key management issues.
209 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
210 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
211 pub trait BaseSign {
212         /// Gets the per-commitment point for a specific commitment number
213         ///
214         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
215         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
216         /// Gets the commitment secret for a specific commitment number as part of the revocation process
217         ///
218         /// An external signer implementation should error here if the commitment was already signed
219         /// and should refuse to sign it in the future.
220         ///
221         /// May be called more than once for the same index.
222         ///
223         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
224         // TODO: return a Result so we can signal a validation error
225         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
226         /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
227         ///
228         /// This is required in order for the signer to make sure that releasing a commitment
229         /// secret won't leave us without a broadcastable holder transaction.
230         /// Policy checks should be implemented in this function, including checking the amount
231         /// sent to us and checking the HTLCs.
232         ///
233         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
234         /// A validating signer should ensure that an HTLC output is removed only when the matching
235         /// preimage is provided, or when the value to holder is restored.
236         ///
237         /// NOTE: all the relevant preimages will be provided, but there may also be additional
238         /// irrelevant or duplicate preimages.
239         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
240         /// Gets the holder's channel public keys and basepoints
241         fn pubkeys(&self) -> &ChannelPublicKeys;
242         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
243         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
244         /// Sign object uniquely and lookup or re-derive its keys.
245         fn channel_keys_id(&self) -> [u8; 32];
246
247         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
248         ///
249         /// Note that if signing fails or is rejected, the channel will be force-closed.
250         ///
251         /// Policy checks should be implemented in this function, including checking the amount
252         /// sent to us and checking the HTLCs.
253         ///
254         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
255         /// A validating signer should ensure that an HTLC output is removed only when the matching
256         /// preimage is provided, or when the value to holder is restored.
257         ///
258         /// NOTE: all the relevant preimages will be provided, but there may also be additional
259         /// irrelevant or duplicate preimages.
260         //
261         // TODO: Document the things someone using this interface should enforce before signing.
262         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
263         /// Validate the counterparty's revocation.
264         ///
265         /// This is required in order for the signer to make sure that the state has moved
266         /// forward and it is safe to sign the next counterparty commitment.
267         fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
268
269         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
270         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
271         /// latest commitment_tx when we initiate a force-close.
272         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
273         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
274         /// the latest.
275         /// This may be called multiple times for the same transaction.
276         ///
277         /// An external signer implementation should check that the commitment has not been revoked.
278         ///
279         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
280         //
281         // TODO: Document the things someone using this interface should enforce before signing.
282         // TODO: Key derivation failure should panic rather than Err
283         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
284
285         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
286         /// transactions which will be broadcasted later, after the channel has moved on to a newer
287         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
288         /// get called once.
289         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
290         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
291
292         /// Create a signature for the given input in a transaction spending an HTLC transaction output
293         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
294         ///
295         /// A justice transaction may claim multiple outputs at the same time if timelocks are
296         /// similar, but only a signature for the input at index `input` should be signed for here.
297         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
298         /// to an upcoming timelock expiration.
299         ///
300         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
301         ///
302         /// per_commitment_key is revocation secret which was provided by our counterparty when they
303         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
304         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
305         /// so).
306         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
307
308         /// Create a signature for the given input in a transaction spending a commitment transaction
309         /// HTLC output when our counterparty broadcasts an old state.
310         ///
311         /// A justice transaction may claim multiple outputs at the same time if timelocks are
312         /// similar, but only a signature for the input at index `input` should be signed for here.
313         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
314         /// to an upcoming timelock expiration.
315         ///
316         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
317         ///
318         /// per_commitment_key is revocation secret which was provided by our counterparty when they
319         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
320         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
321         /// so).
322         ///
323         /// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
324         /// (which is committed to in the BIP 143 signatures).
325         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
326
327         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
328         /// transaction, either offered or received.
329         ///
330         /// Such a transaction may claim multiples offered outputs at same time if we know the
331         /// preimage for each when we create it, but only the input at index `input` should be
332         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
333         /// needed with regards to an upcoming timelock expiration.
334         ///
335         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
336         /// outputs.
337         ///
338         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
339         ///
340         /// Per_commitment_point is the dynamic point corresponding to the channel state
341         /// detected onchain. It has been generated by our counterparty and is used to derive
342         /// channel state keys, which are then included in the witness script and committed to in the
343         /// BIP 143 signature.
344         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
345
346         /// Create a signature for a (proposed) closing transaction.
347         ///
348         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
349         /// chosen to forgo their output as dust.
350         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
351
352         /// Computes the signature for a commitment transaction's anchor output used as an
353         /// input within `anchor_tx`, which spends the commitment transaction, at index `input`.
354         fn sign_holder_anchor_input(
355                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
356         ) -> Result<Signature, ()>;
357
358         /// Signs a channel announcement message with our funding key and our node secret key (aka
359         /// node_id or network_key), proving it comes from one of the channel participants.
360         ///
361         /// The first returned signature should be from our node secret key, the second from our
362         /// funding key.
363         ///
364         /// Note that if this fails or is rejected, the channel will not be publicly announced and
365         /// our counterparty may (though likely will not) close the channel on us for violating the
366         /// protocol.
367         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
368                 -> Result<(Signature, Signature), ()>;
369
370         /// Set the counterparty static channel data, including basepoints,
371         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
372         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
373         /// they MUST NOT be allowed to change to different values once set.
374         ///
375         /// channel_parameters.is_populated() MUST be true.
376         ///
377         /// We bind holder_selected_contest_delay late here for API convenience.
378         ///
379         /// Will be called before any signatures are applied.
380         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
381 }
382
383 /// A cloneable signer.
384 ///
385 /// Although we require signers to be cloneable, it may be useful for developers to be able to use
386 /// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
387 /// which implies Sized, into this derived trait.
388 pub trait Sign: BaseSign + Writeable + Clone {
389 }
390
391 /// Specifies the recipient of an invoice, to indicate to [`KeysInterface::sign_invoice`] what node
392 /// secret key should be used to sign the invoice.
393 pub enum Recipient {
394         /// The invoice should be signed with the local node secret key.
395         Node,
396         /// The invoice should be signed with the phantom node secret key. This secret key must be the
397         /// same for all nodes participating in the [phantom node payment].
398         ///
399         /// [phantom node payment]: PhantomKeysManager
400         PhantomNode,
401 }
402
403 /// A trait to describe an object which can get user secrets and key material.
404 pub trait KeysInterface {
405         /// A type which implements Sign which will be returned by get_channel_signer.
406         type Signer : Sign;
407
408         /// Get node secret key based on the provided [`Recipient`].
409         ///
410         /// The node_id/network_key is the public key that corresponds to this secret key.
411         ///
412         /// This method must return the same value each time it is called with a given `Recipient`
413         /// parameter.
414         ///
415         /// Errors if the `Recipient` variant is not supported by the implementation.
416         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()>;
417         /// Get node id based on the provided [`Recipient`]. This public key corresponds to the secret in
418         /// [`get_node_secret`].
419         ///
420         /// This method must return the same value each time it is called with a given `Recipient`
421         /// parameter.
422         ///
423         /// Errors if the `Recipient` variant is not supported by the implementation.
424         ///
425         /// [`get_node_secret`]: KeysInterface::get_node_secret
426         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
427                 let secp_ctx = Secp256k1::signing_only();
428                 Ok(PublicKey::from_secret_key(&secp_ctx, &self.get_node_secret(recipient)?))
429         }
430         /// Gets the ECDH shared secret of our [`node secret`] and `other_key`, multiplying by `tweak` if
431         /// one is provided. Note that this tweak can be applied to `other_key` instead of our node
432         /// secret, though this is less efficient.
433         ///
434         /// Errors if the `Recipient` variant is not supported by the implementation.
435         ///
436         /// [`node secret`]: Self::get_node_secret
437         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()>;
438         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
439         ///
440         /// This method should return a different value each time it is called, to avoid linking
441         /// on-chain funds across channels as controlled to the same user.
442         fn get_destination_script(&self) -> Script;
443         /// Get a script pubkey which we will send funds to when closing a channel.
444         ///
445         /// This method should return a different value each time it is called, to avoid linking
446         /// on-chain funds across channels as controlled to the same user.
447         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
448         /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
449         /// restarted with some stale data!
450         ///
451         /// This method must return a different value each time it is called.
452         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
453         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
454         /// onion packets and for temporary channel IDs. There is no requirement that these be
455         /// persisted anywhere, though they must be unique across restarts.
456         ///
457         /// This method must return a different value each time it is called.
458         fn get_secure_random_bytes(&self) -> [u8; 32];
459
460         /// Reads a `Signer` for this `KeysInterface` from the given input stream.
461         /// This is only called during deserialization of other objects which contain
462         /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
463         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
464         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
465         /// you've read all of the provided bytes to ensure no corruption occurred.
466         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
467
468         /// Sign an invoice.
469         /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
470         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
471         /// blindly signing the hash.
472         /// The hrp is ascii bytes, while the invoice data is base32.
473         ///
474         /// The secret key used to sign the invoice is dependent on the [`Recipient`].
475         ///
476         /// Errors if the `Recipient` variant is not supported by the implementation.
477         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], receipient: Recipient) -> Result<RecoverableSignature, ()>;
478
479         /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
480         ///
481         /// If the implementor of this trait supports [phantom node payments], then every node that is
482         /// intended to be included in the phantom invoice route hints must return the same value from
483         /// this method.
484         //  This is because LDK avoids storing inbound payment data by encrypting payment data in the
485         //  payment hash and/or payment secret, therefore for a payment to be receivable by multiple
486         //  nodes, they must share the key that encrypts this payment data.
487         ///
488         /// This method must return the same value each time it is called.
489         ///
490         /// [phantom node payments]: PhantomKeysManager
491         fn get_inbound_payment_key_material(&self) -> KeyMaterial;
492 }
493
494 #[derive(Clone)]
495 /// A simple implementation of Sign that just keeps the private keys in memory.
496 ///
497 /// This implementation performs no policy checks and is insufficient by itself as
498 /// a secure external signer.
499 pub struct InMemorySigner {
500         /// Private key of anchor tx
501         pub funding_key: SecretKey,
502         /// Holder secret key for blinded revocation pubkey
503         pub revocation_base_key: SecretKey,
504         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
505         pub payment_key: SecretKey,
506         /// Holder secret key used in HTLC tx
507         pub delayed_payment_base_key: SecretKey,
508         /// Holder htlc secret key used in commitment tx htlc outputs
509         pub htlc_base_key: SecretKey,
510         /// Commitment seed
511         pub commitment_seed: [u8; 32],
512         /// Holder public keys and basepoints
513         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
514         /// Private key of our node secret, used for signing channel announcements
515         node_secret: SecretKey,
516         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
517         channel_parameters: Option<ChannelTransactionParameters>,
518         /// The total value of this channel
519         channel_value_satoshis: u64,
520         /// Key derivation parameters
521         channel_keys_id: [u8; 32],
522 }
523
524 impl InMemorySigner {
525         /// Create a new InMemorySigner
526         pub fn new<C: Signing>(
527                 secp_ctx: &Secp256k1<C>,
528                 node_secret: SecretKey,
529                 funding_key: SecretKey,
530                 revocation_base_key: SecretKey,
531                 payment_key: SecretKey,
532                 delayed_payment_base_key: SecretKey,
533                 htlc_base_key: SecretKey,
534                 commitment_seed: [u8; 32],
535                 channel_value_satoshis: u64,
536                 channel_keys_id: [u8; 32],
537         ) -> InMemorySigner {
538                 let holder_channel_pubkeys =
539                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
540                                                              &payment_key, &delayed_payment_base_key,
541                                                              &htlc_base_key);
542                 InMemorySigner {
543                         funding_key,
544                         revocation_base_key,
545                         payment_key,
546                         delayed_payment_base_key,
547                         htlc_base_key,
548                         commitment_seed,
549                         node_secret,
550                         channel_value_satoshis,
551                         holder_channel_pubkeys,
552                         channel_parameters: None,
553                         channel_keys_id,
554                 }
555         }
556
557         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
558                                        funding_key: &SecretKey,
559                                        revocation_base_key: &SecretKey,
560                                        payment_key: &SecretKey,
561                                        delayed_payment_base_key: &SecretKey,
562                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
563                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
564                 ChannelPublicKeys {
565                         funding_pubkey: from_secret(&funding_key),
566                         revocation_basepoint: from_secret(&revocation_base_key),
567                         payment_point: from_secret(&payment_key),
568                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
569                         htlc_basepoint: from_secret(&htlc_base_key),
570                 }
571         }
572
573         /// Counterparty pubkeys.
574         /// Will panic if ready_channel wasn't called.
575         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
576
577         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
578         /// transactions, ie the amount of time that we have to wait to recover our funds if we
579         /// broadcast a transaction.
580         /// Will panic if ready_channel wasn't called.
581         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
582
583         /// The contest_delay value specified by us and applied on transactions broadcastable
584         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
585         /// if they broadcast a transaction.
586         /// Will panic if ready_channel wasn't called.
587         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
588
589         /// Whether the holder is the initiator
590         /// Will panic if ready_channel wasn't called.
591         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
592
593         /// Funding outpoint
594         /// Will panic if ready_channel wasn't called.
595         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
596
597         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
598         /// building transactions.
599         ///
600         /// Will panic if ready_channel wasn't called.
601         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
602                 self.channel_parameters.as_ref().unwrap()
603         }
604
605         /// Whether anchors should be used.
606         /// Will panic if ready_channel wasn't called.
607         pub fn opt_anchors(&self) -> bool {
608                 self.get_channel_parameters().opt_anchors.is_some()
609         }
610
611         /// Sign the single input of spend_tx at index `input_idx` which spends the output
612         /// described by descriptor, returning the witness stack for the input.
613         ///
614         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
615         /// is not spending the outpoint described by `descriptor.outpoint`,
616         /// or if an output descriptor script_pubkey does not match the one we can spend.
617         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
618                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
619                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
620                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
621                 // bindings updates to support SigHashCache objects).
622                 if spend_tx.input.len() <= input_idx { return Err(()); }
623                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
624                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
625
626                 let remotepubkey = self.pubkeys().payment_point;
627                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Testnet).script_pubkey();
628                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
629                 let remotesig = sign(secp_ctx, &sighash, &self.payment_key);
630                 let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
631
632                 if payment_script != descriptor.output.script_pubkey  { return Err(()); }
633
634                 let mut witness = Vec::with_capacity(2);
635                 witness.push(remotesig.serialize_der().to_vec());
636                 witness[0].push(EcdsaSighashType::All as u8);
637                 witness.push(remotepubkey.serialize().to_vec());
638                 Ok(witness)
639         }
640
641         /// Sign the single input of spend_tx at index `input_idx` which spends the output
642         /// described by descriptor, returning the witness stack for the input.
643         ///
644         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
645         /// is not spending the outpoint described by `descriptor.outpoint`, does not have a
646         /// sequence set to `descriptor.to_self_delay`, or if an output descriptor
647         /// script_pubkey does not match the one we can spend.
648         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
649                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
650                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
651                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
652                 // bindings updates to support SigHashCache objects).
653                 if spend_tx.input.len() <= input_idx { return Err(()); }
654                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
655                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
656                 if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 { return Err(()); }
657
658                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
659                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
660                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
661                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
662                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
663                 let local_delayedsig = sign(secp_ctx, &sighash, &delayed_payment_key);
664                 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
665
666                 if descriptor.output.script_pubkey != payment_script { return Err(()); }
667
668                 let mut witness = Vec::with_capacity(3);
669                 witness.push(local_delayedsig.serialize_der().to_vec());
670                 witness[0].push(EcdsaSighashType::All as u8);
671                 witness.push(vec!()); //MINIMALIF
672                 witness.push(witness_script.clone().into_bytes());
673                 Ok(witness)
674         }
675
676 }
677
678 impl BaseSign for InMemorySigner {
679         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
680                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
681                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
682         }
683
684         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
685                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
686         }
687
688         fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
689                 Ok(())
690         }
691
692         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
693         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
694
695         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
696                 let trusted_tx = commitment_tx.trust();
697                 let keys = trusted_tx.keys();
698
699                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
700                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
701
702                 let built_tx = trusted_tx.built_transaction();
703                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
704                 let commitment_txid = built_tx.txid;
705
706                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
707                 for htlc in commitment_tx.htlcs() {
708                         let channel_parameters = self.get_channel_parameters();
709                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), channel_parameters.opt_non_zero_fee_anchors.is_some(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
710                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
711                         let htlc_sighashtype = if self.opt_anchors() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
712                         let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
713                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
714                         htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
715                 }
716
717                 Ok((commitment_sig, htlc_sigs))
718         }
719
720         fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
721                 Ok(())
722         }
723
724         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
725                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
726                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
727                 let trusted_tx = commitment_tx.trust();
728                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
729                 let channel_parameters = self.get_channel_parameters();
730                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
731                 Ok((sig, htlc_sigs))
732         }
733
734         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
735         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
736                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
737                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
738                 let trusted_tx = commitment_tx.trust();
739                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
740                 let channel_parameters = self.get_channel_parameters();
741                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
742                 Ok((sig, htlc_sigs))
743         }
744
745         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
746                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
747                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
748                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
749                 let witness_script = {
750                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
751                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
752                 };
753                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
754                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
755                 return Ok(sign(secp_ctx, &sighash, &revocation_key))
756         }
757
758         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
759                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
760                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
761                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
762                 let witness_script = {
763                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
764                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
765                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
766                 };
767                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
768                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
769                 return Ok(sign(secp_ctx, &sighash, &revocation_key))
770         }
771
772         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
773                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
774                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
775                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
776                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
777                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
778                                         } else { return Err(()) }
779                                 } else { return Err(()) }
780                         } else { return Err(()) };
781                         let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
782                         let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
783                         return Ok(sign(secp_ctx, &sighash, &htlc_key))
784                 }
785                 Err(())
786         }
787
788         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
789                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
790                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
791                 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
792         }
793
794         fn sign_holder_anchor_input(
795                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
796         ) -> Result<Signature, ()> {
797                 let witness_script = chan_utils::get_anchor_redeemscript(&self.holder_channel_pubkeys.funding_pubkey);
798                 let sighash = sighash::SighashCache::new(&*anchor_tx).segwit_signature_hash(
799                         input, &witness_script, ANCHOR_OUTPUT_VALUE_SATOSHI, EcdsaSighashType::All,
800                 ).unwrap();
801                 Ok(sign(secp_ctx, &hash_to_message!(&sighash[..]), &self.funding_key))
802         }
803
804         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
805         -> Result<(Signature, Signature), ()> {
806                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
807                 Ok((sign(secp_ctx, &msghash, &self.node_secret), sign(secp_ctx, &msghash, &self.funding_key)))
808         }
809
810         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
811                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
812                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
813                 self.channel_parameters = Some(channel_parameters.clone());
814         }
815 }
816
817 const SERIALIZATION_VERSION: u8 = 1;
818 const MIN_SERIALIZATION_VERSION: u8 = 1;
819
820 impl Sign for InMemorySigner {}
821
822 impl Writeable for InMemorySigner {
823         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
824                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
825
826                 self.funding_key.write(writer)?;
827                 self.revocation_base_key.write(writer)?;
828                 self.payment_key.write(writer)?;
829                 self.delayed_payment_base_key.write(writer)?;
830                 self.htlc_base_key.write(writer)?;
831                 self.commitment_seed.write(writer)?;
832                 self.channel_parameters.write(writer)?;
833                 self.channel_value_satoshis.write(writer)?;
834                 self.channel_keys_id.write(writer)?;
835
836                 write_tlv_fields!(writer, {});
837
838                 Ok(())
839         }
840 }
841
842 impl ReadableArgs<SecretKey> for InMemorySigner {
843         fn read<R: io::Read>(reader: &mut R, node_secret: SecretKey) -> Result<Self, DecodeError> {
844                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
845
846                 let funding_key = Readable::read(reader)?;
847                 let revocation_base_key = Readable::read(reader)?;
848                 let payment_key = Readable::read(reader)?;
849                 let delayed_payment_base_key = Readable::read(reader)?;
850                 let htlc_base_key = Readable::read(reader)?;
851                 let commitment_seed = Readable::read(reader)?;
852                 let counterparty_channel_data = Readable::read(reader)?;
853                 let channel_value_satoshis = Readable::read(reader)?;
854                 let secp_ctx = Secp256k1::signing_only();
855                 let holder_channel_pubkeys =
856                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
857                                                              &payment_key, &delayed_payment_base_key,
858                                                              &htlc_base_key);
859                 let keys_id = Readable::read(reader)?;
860
861                 read_tlv_fields!(reader, {});
862
863                 Ok(InMemorySigner {
864                         funding_key,
865                         revocation_base_key,
866                         payment_key,
867                         delayed_payment_base_key,
868                         htlc_base_key,
869                         node_secret,
870                         commitment_seed,
871                         channel_value_satoshis,
872                         holder_channel_pubkeys,
873                         channel_parameters: counterparty_channel_data,
874                         channel_keys_id: keys_id,
875                 })
876         }
877 }
878
879 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
880 /// and derives keys from that.
881 ///
882 /// Your node_id is seed/0'
883 /// ChannelMonitor closes may use seed/1'
884 /// Cooperative closes may use seed/2'
885 /// The two close keys may be needed to claim on-chain funds!
886 ///
887 /// This struct cannot be used for nodes that wish to support receiving phantom payments;
888 /// [`PhantomKeysManager`] must be used instead.
889 ///
890 /// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
891 /// previously issued invoices and attempts to pay previous invoices will fail.
892 pub struct KeysManager {
893         secp_ctx: Secp256k1<secp256k1::All>,
894         node_secret: SecretKey,
895         node_id: PublicKey,
896         inbound_payment_key: KeyMaterial,
897         destination_script: Script,
898         shutdown_pubkey: PublicKey,
899         channel_master_key: ExtendedPrivKey,
900         channel_child_index: AtomicUsize,
901
902         rand_bytes_master_key: ExtendedPrivKey,
903         rand_bytes_child_index: AtomicUsize,
904         rand_bytes_unique_start: Sha256State,
905
906         seed: [u8; 32],
907         starting_time_secs: u64,
908         starting_time_nanos: u32,
909 }
910
911 impl KeysManager {
912         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
913         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
914         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
915         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
916         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
917         /// simply use the current time (with very high precision).
918         ///
919         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
920         /// obviously, starting_time should be unique every time you reload the library - it is only
921         /// used to generate new ephemeral key data (which will be stored by the individual channel if
922         /// necessary).
923         ///
924         /// Note that the seed is required to recover certain on-chain funds independent of
925         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
926         /// channel, and some on-chain during-closing funds.
927         ///
928         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
929         /// versions. Once the library is more fully supported, the docs will be updated to include a
930         /// detailed description of the guarantee.
931         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
932                 let secp_ctx = Secp256k1::new();
933                 // Note that when we aren't serializing the key, network doesn't matter
934                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
935                         Ok(master_key) => {
936                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
937                                 let node_id = PublicKey::from_secret_key(&secp_ctx, &node_secret);
938                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
939                                         Ok(destination_key) => {
940                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
941                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
942                                                               .push_slice(&wpubkey_hash.into_inner())
943                                                               .into_script()
944                                         },
945                                         Err(_) => panic!("Your RNG is busted"),
946                                 };
947                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
948                                         Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
949                                         Err(_) => panic!("Your RNG is busted"),
950                                 };
951                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
952                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
953                                 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
954                                 let mut inbound_pmt_key_bytes = [0; 32];
955                                 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
956
957                                 let mut rand_bytes_unique_start = Sha256::engine();
958                                 rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
959                                 rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
960                                 rand_bytes_unique_start.input(seed);
961
962                                 let mut res = KeysManager {
963                                         secp_ctx,
964                                         node_secret,
965                                         node_id,
966                                         inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
967
968                                         destination_script,
969                                         shutdown_pubkey,
970
971                                         channel_master_key,
972                                         channel_child_index: AtomicUsize::new(0),
973
974                                         rand_bytes_master_key,
975                                         rand_bytes_child_index: AtomicUsize::new(0),
976                                         rand_bytes_unique_start,
977
978                                         seed: *seed,
979                                         starting_time_secs,
980                                         starting_time_nanos,
981                                 };
982                                 let secp_seed = res.get_secure_random_bytes();
983                                 res.secp_ctx.seeded_randomize(&secp_seed);
984                                 res
985                         },
986                         Err(_) => panic!("Your rng is busted"),
987                 }
988         }
989         /// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
990         ///
991         /// Key derivation parameters are accessible through a per-channel secrets
992         /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
993         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
994         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
995                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
996                 assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
997                 let mut unique_start = Sha256::engine();
998                 unique_start.input(params);
999                 unique_start.input(&self.seed);
1000
1001                 // We only seriously intend to rely on the channel_master_key for true secure
1002                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
1003                 // starting_time provided in the constructor) to be unique.
1004                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
1005                 unique_start.input(&child_privkey.private_key[..]);
1006
1007                 let seed = Sha256::from_engine(unique_start).into_inner();
1008
1009                 let commitment_seed = {
1010                         let mut sha = Sha256::engine();
1011                         sha.input(&seed);
1012                         sha.input(&b"commitment seed"[..]);
1013                         Sha256::from_engine(sha).into_inner()
1014                 };
1015                 macro_rules! key_step {
1016                         ($info: expr, $prev_key: expr) => {{
1017                                 let mut sha = Sha256::engine();
1018                                 sha.input(&seed);
1019                                 sha.input(&$prev_key[..]);
1020                                 sha.input(&$info[..]);
1021                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
1022                         }}
1023                 }
1024                 let funding_key = key_step!(b"funding key", commitment_seed);
1025                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
1026                 let payment_key = key_step!(b"payment key", revocation_base_key);
1027                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
1028                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
1029
1030                 InMemorySigner::new(
1031                         &self.secp_ctx,
1032                         self.node_secret,
1033                         funding_key,
1034                         revocation_base_key,
1035                         payment_key,
1036                         delayed_payment_base_key,
1037                         htlc_base_key,
1038                         commitment_seed,
1039                         channel_value_satoshis,
1040                         params.clone(),
1041                 )
1042         }
1043
1044         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
1045         /// output to the given change destination (if sufficient change value remains). The
1046         /// transaction will have a feerate, at least, of the given value.
1047         ///
1048         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
1049         /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
1050         /// does not match the one we can spend.
1051         ///
1052         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
1053         ///
1054         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
1055         /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
1056         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1057                 let mut input = Vec::new();
1058                 let mut input_value = 0;
1059                 let mut witness_weight = 0;
1060                 let mut output_set = HashSet::with_capacity(descriptors.len());
1061                 for outp in descriptors {
1062                         match outp {
1063                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1064                                         input.push(TxIn {
1065                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1066                                                 script_sig: Script::new(),
1067                                                 sequence: Sequence::ZERO,
1068                                                 witness: Witness::new(),
1069                                         });
1070                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1071                                         input_value += descriptor.output.value;
1072                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
1073                                 },
1074                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1075                                         input.push(TxIn {
1076                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1077                                                 script_sig: Script::new(),
1078                                                 sequence: Sequence(descriptor.to_self_delay as u32),
1079                                                 witness: Witness::new(),
1080                                         });
1081                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1082                                         input_value += descriptor.output.value;
1083                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
1084                                 },
1085                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
1086                                         input.push(TxIn {
1087                                                 previous_output: outpoint.into_bitcoin_outpoint(),
1088                                                 script_sig: Script::new(),
1089                                                 sequence: Sequence::ZERO,
1090                                                 witness: Witness::new(),
1091                                         });
1092                                         witness_weight += 1 + 73 + 34;
1093                                         input_value += output.value;
1094                                         if !output_set.insert(*outpoint) { return Err(()); }
1095                                 }
1096                         }
1097                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
1098                 }
1099                 let mut spend_tx = Transaction {
1100                         version: 2,
1101                         lock_time: PackedLockTime(0),
1102                         input,
1103                         output: outputs,
1104                 };
1105                 let expected_max_weight =
1106                         transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
1107
1108                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1109                 let mut input_idx = 0;
1110                 for outp in descriptors {
1111                         match outp {
1112                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1113                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1114                                                 keys_cache = Some((
1115                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1116                                                         descriptor.channel_keys_id));
1117                                         }
1118                                         spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1119                                 },
1120                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1121                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1122                                                 keys_cache = Some((
1123                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1124                                                         descriptor.channel_keys_id));
1125                                         }
1126                                         spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1127                                 },
1128                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
1129                                         let derivation_idx = if output.script_pubkey == self.destination_script {
1130                                                 1
1131                                         } else {
1132                                                 2
1133                                         };
1134                                         let secret = {
1135                                                 // Note that when we aren't serializing the key, network doesn't matter
1136                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1137                                                         Ok(master_key) => {
1138                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1139                                                                         Ok(key) => key,
1140                                                                         Err(_) => panic!("Your RNG is busted"),
1141                                                                 }
1142                                                         }
1143                                                         Err(_) => panic!("Your rng is busted"),
1144                                                 }
1145                                         };
1146                                         let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub();
1147                                         if derivation_idx == 2 {
1148                                                 assert_eq!(pubkey.inner, self.shutdown_pubkey);
1149                                         }
1150                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1151                                         let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1152
1153                                         if payment_script != output.script_pubkey { return Err(()); };
1154
1155                                         let sighash = hash_to_message!(&sighash::SighashCache::new(&spend_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
1156                                         let sig = sign(secp_ctx, &sighash, &secret.private_key);
1157                                         let mut sig_ser = sig.serialize_der().to_vec();
1158                                         sig_ser.push(EcdsaSighashType::All as u8);
1159                                         spend_tx.input[input_idx].witness.push(sig_ser);
1160                                         spend_tx.input[input_idx].witness.push(pubkey.inner.serialize().to_vec());
1161                                 },
1162                         }
1163                         input_idx += 1;
1164                 }
1165
1166                 debug_assert!(expected_max_weight >= spend_tx.weight());
1167                 // Note that witnesses with a signature vary somewhat in size, so allow
1168                 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1169                 debug_assert!(expected_max_weight <= spend_tx.weight() + descriptors.len() * 3);
1170
1171                 Ok(spend_tx)
1172         }
1173 }
1174
1175 impl KeysInterface for KeysManager {
1176         type Signer = InMemorySigner;
1177
1178         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
1179                 match recipient {
1180                         Recipient::Node => Ok(self.node_secret.clone()),
1181                         Recipient::PhantomNode => Err(())
1182                 }
1183         }
1184
1185         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1186                 match recipient {
1187                         Recipient::Node => Ok(self.node_id.clone()),
1188                         Recipient::PhantomNode => Err(())
1189                 }
1190         }
1191
1192         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1193                 let mut node_secret = self.get_node_secret(recipient)?;
1194                 if let Some(tweak) = tweak {
1195                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1196                 }
1197                 Ok(SharedSecret::new(other_key, &node_secret))
1198         }
1199
1200         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1201                 self.inbound_payment_key.clone()
1202         }
1203
1204         fn get_destination_script(&self) -> Script {
1205                 self.destination_script.clone()
1206         }
1207
1208         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1209                 ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
1210         }
1211
1212         fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1213                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1214                 assert!(child_ix <= core::u32::MAX as usize);
1215                 let mut id = [0; 32];
1216                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1217                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1218                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1219                 self.derive_channel_keys(channel_value_satoshis, &id)
1220         }
1221
1222         fn get_secure_random_bytes(&self) -> [u8; 32] {
1223                 let mut sha = self.rand_bytes_unique_start.clone();
1224
1225                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1226                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1227                 sha.input(&child_privkey.private_key[..]);
1228
1229                 sha.input(b"Unique Secure Random Bytes Salt");
1230                 Sha256::from_engine(sha).into_inner()
1231         }
1232
1233         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1234                 InMemorySigner::read(&mut io::Cursor::new(reader), self.node_secret.clone())
1235         }
1236
1237         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1238                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1239                 let secret = match recipient {
1240                         Recipient::Node => self.get_node_secret(Recipient::Node)?,
1241                         Recipient::PhantomNode => return Err(()),
1242                 };
1243                 Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
1244         }
1245 }
1246
1247 /// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
1248 /// payments.
1249 ///
1250 /// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
1251 /// paid to one of multiple nodes. This works because we encode the invoice route hints such that
1252 /// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
1253 /// itself without ever needing to forward to this fake node.
1254 ///
1255 /// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
1256 /// provide some fault tolerance, because payers will automatically retry paying other provided
1257 /// nodes in the case that one node goes down.
1258 ///
1259 /// Note that multi-path payments are not supported in phantom invoices for security reasons.
1260 //  In the hypothetical case that we did support MPP phantom payments, there would be no way for
1261 //  nodes to know when the full payment has been received (and the preimage can be released) without
1262 //  significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
1263 //  to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
1264 //  is released too early.
1265 //
1266 /// Switching between this struct and [`KeysManager`] will invalidate any previously issued
1267 /// invoices and attempts to pay previous invoices will fail.
1268 pub struct PhantomKeysManager {
1269         inner: KeysManager,
1270         inbound_payment_key: KeyMaterial,
1271         phantom_secret: SecretKey,
1272         phantom_node_id: PublicKey,
1273 }
1274
1275 impl KeysInterface for PhantomKeysManager {
1276         type Signer = InMemorySigner;
1277
1278         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
1279                 match recipient {
1280                         Recipient::Node => self.inner.get_node_secret(Recipient::Node),
1281                         Recipient::PhantomNode => Ok(self.phantom_secret.clone()),
1282                 }
1283         }
1284
1285         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1286                 match recipient {
1287                         Recipient::Node => self.inner.get_node_id(Recipient::Node),
1288                         Recipient::PhantomNode => Ok(self.phantom_node_id.clone()),
1289                 }
1290         }
1291
1292         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1293                 let mut node_secret = self.get_node_secret(recipient)?;
1294                 if let Some(tweak) = tweak {
1295                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1296                 }
1297                 Ok(SharedSecret::new(other_key, &node_secret))
1298         }
1299
1300         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1301                 self.inbound_payment_key.clone()
1302         }
1303
1304         fn get_destination_script(&self) -> Script {
1305                 self.inner.get_destination_script()
1306         }
1307
1308         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1309                 self.inner.get_shutdown_scriptpubkey()
1310         }
1311
1312         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1313                 self.inner.get_channel_signer(inbound, channel_value_satoshis)
1314         }
1315
1316         fn get_secure_random_bytes(&self) -> [u8; 32] {
1317                 self.inner.get_secure_random_bytes()
1318         }
1319
1320         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1321                 self.inner.read_chan_signer(reader)
1322         }
1323
1324         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1325                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1326                 let secret = self.get_node_secret(recipient)?;
1327                 Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
1328         }
1329 }
1330
1331 impl PhantomKeysManager {
1332         /// Constructs a `PhantomKeysManager` given a 32-byte seed and an additional `cross_node_seed`
1333         /// that is shared across all nodes that intend to participate in [phantom node payments] together.
1334         ///
1335         /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
1336         /// `starting_time_nanos`.
1337         ///
1338         /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
1339         /// same across restarts, or else inbound payments may fail.
1340         ///
1341         /// [phantom node payments]: PhantomKeysManager
1342         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
1343                 let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
1344                 let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
1345                 let phantom_secret = SecretKey::from_slice(&phantom_key).unwrap();
1346                 let phantom_node_id = PublicKey::from_secret_key(&inner.secp_ctx, &phantom_secret);
1347                 Self {
1348                         inner,
1349                         inbound_payment_key: KeyMaterial(inbound_key),
1350                         phantom_secret,
1351                         phantom_node_id,
1352                 }
1353         }
1354
1355         /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
1356         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1357                 self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx)
1358         }
1359
1360         /// See [`KeysManager::derive_channel_keys`] for documentation on this method.
1361         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1362                 self.inner.derive_channel_keys(channel_value_satoshis, params)
1363         }
1364 }
1365
1366 // Ensure that BaseSign can have a vtable
1367 #[test]
1368 pub fn dyn_sign() {
1369         let _signer: Box<dyn BaseSign>;
1370 }