Move invoice signing behind KeysInterface
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::hashes::{Hash, HashEngine};
22 use bitcoin::hashes::sha256::HashEngine as Sha256State;
23 use bitcoin::hashes::sha256::Hash as Sha256;
24 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
25 use bitcoin::hash_types::WPubkeyHash;
26
27 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
28 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
29 use bitcoin::secp256k1::recovery::RecoverableSignature;
30 use bitcoin::secp256k1;
31
32 use util::{byte_utils, transaction_utils};
33 use util::ser::{Writeable, Writer, Readable};
34
35 use chain::transaction::OutPoint;
36 use ln::chan_utils;
37 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction};
38 use ln::msgs::UnsignedChannelAnnouncement;
39
40 use std::collections::HashSet;
41 use std::sync::atomic::{AtomicUsize, Ordering};
42 use std::io::Error;
43 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
44
45 /// Information about a spendable output to a P2WSH script. See
46 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
47 #[derive(Clone, Debug, PartialEq)]
48 pub struct DelayedPaymentOutputDescriptor {
49         /// The outpoint which is spendable
50         pub outpoint: OutPoint,
51         /// Per commitment point to derive delayed_payment_key by key holder
52         pub per_commitment_point: PublicKey,
53         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
54         /// the witness_script.
55         pub to_self_delay: u16,
56         /// The output which is referenced by the given outpoint
57         pub output: TxOut,
58         /// The revocation point specific to the commitment transaction which was broadcast. Used to
59         /// derive the witnessScript for this output.
60         pub revocation_pubkey: PublicKey,
61         /// Arbitrary identification information returned by a call to
62         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
63         /// the channel to spend the output.
64         pub channel_keys_id: [u8; 32],
65         /// The value of the channel which this output originated from, possibly indirectly.
66         pub channel_value_satoshis: u64,
67 }
68 impl DelayedPaymentOutputDescriptor {
69         /// The maximum length a well-formed witness spending one of these should have.
70         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
71         // redeemscript push length.
72         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
73 }
74
75 /// Information about a spendable output to our "payment key". See
76 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
77 #[derive(Clone, Debug, PartialEq)]
78 pub struct StaticPaymentOutputDescriptor {
79         /// The outpoint which is spendable
80         pub outpoint: OutPoint,
81         /// The output which is referenced by the given outpoint
82         pub output: TxOut,
83         /// Arbitrary identification information returned by a call to
84         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
85         /// the channel to spend the output.
86         pub channel_keys_id: [u8; 32],
87         /// The value of the channel which this transactions spends.
88         pub channel_value_satoshis: u64,
89 }
90 impl StaticPaymentOutputDescriptor {
91         /// The maximum length a well-formed witness spending one of these should have.
92         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
93         // redeemscript push length.
94         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
95 }
96
97 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
98 /// claim at any point in the future) an event is generated which you must track and be able to
99 /// spend on-chain. The information needed to do this is provided in this enum, including the
100 /// outpoint describing which txid and output index is available, the full output which exists at
101 /// that txid/index, and any keys or other information required to sign.
102 #[derive(Clone, Debug, PartialEq)]
103 pub enum SpendableOutputDescriptor {
104         /// An output to a script which was provided via KeysInterface directly, either from
105         /// `get_destination_script()` or `get_shutdown_pubkey()`, thus you should already know how to
106         /// spend it. No secret keys are provided as rust-lightning was never given any key.
107         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
108         /// on-chain using the payment preimage or after it has timed out.
109         StaticOutput {
110                 /// The outpoint which is spendable
111                 outpoint: OutPoint,
112                 /// The output which is referenced by the given outpoint.
113                 output: TxOut,
114         },
115         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
116         ///
117         /// The witness in the spending input should be:
118         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
119         ///
120         /// Note that the nSequence field in the spending input must be set to to_self_delay
121         /// (which means the transaction is not broadcastable until at least to_self_delay
122         /// blocks after the outpoint confirms).
123         ///
124         /// These are generally the result of a "revocable" output to us, spendable only by us unless
125         /// it is an output from an old state which we broadcast (which should never happen).
126         ///
127         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
128         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
129         /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
130         /// chan_utils::derive_private_key. The public key can be generated without the secret key
131         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
132         /// Sign::pubkeys().
133         ///
134         /// To derive the revocation_pubkey provided here (which is used in the witness
135         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
136         /// call to Sign::ready_channel) and the provided per_commitment point
137         /// to chan_utils::derive_public_revocation_key.
138         ///
139         /// The witness script which is hashed and included in the output script_pubkey may be
140         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
141         /// (derived as above), and the to_self_delay contained here to
142         /// chan_utils::get_revokeable_redeemscript.
143         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
144         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
145         /// corresponds to the public key in Sign::pubkeys().payment_point).
146         /// The witness in the spending input, is, thus, simply:
147         /// <BIP 143 signature> <payment key>
148         ///
149         /// These are generally the result of our counterparty having broadcast the current state,
150         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
151         StaticPaymentOutput(StaticPaymentOutputDescriptor),
152 }
153
154 impl Writeable for SpendableOutputDescriptor {
155         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
156                 match self {
157                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
158                                 0u8.write(writer)?;
159                                 outpoint.write(writer)?;
160                                 output.write(writer)?;
161                         },
162                         &SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor) => {
163                                 1u8.write(writer)?;
164                                 descriptor.outpoint.write(writer)?;
165                                 descriptor.per_commitment_point.write(writer)?;
166                                 descriptor.to_self_delay.write(writer)?;
167                                 descriptor.output.write(writer)?;
168                                 descriptor.revocation_pubkey.write(writer)?;
169                                 descriptor.channel_keys_id.write(writer)?;
170                                 descriptor.channel_value_satoshis.write(writer)?;
171                         },
172                         &SpendableOutputDescriptor::StaticPaymentOutput(ref descriptor) => {
173                                 2u8.write(writer)?;
174                                 descriptor.outpoint.write(writer)?;
175                                 descriptor.output.write(writer)?;
176                                 descriptor.channel_keys_id.write(writer)?;
177                                 descriptor.channel_value_satoshis.write(writer)?;
178                         },
179                 }
180                 Ok(())
181         }
182 }
183
184 impl Readable for SpendableOutputDescriptor {
185         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
186                 match Readable::read(reader)? {
187                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
188                                 outpoint: Readable::read(reader)?,
189                                 output: Readable::read(reader)?,
190                         }),
191                         1u8 => Ok(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
192                                 outpoint: Readable::read(reader)?,
193                                 per_commitment_point: Readable::read(reader)?,
194                                 to_self_delay: Readable::read(reader)?,
195                                 output: Readable::read(reader)?,
196                                 revocation_pubkey: Readable::read(reader)?,
197                                 channel_keys_id: Readable::read(reader)?,
198                                 channel_value_satoshis: Readable::read(reader)?,
199                         })),
200                         2u8 => Ok(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
201                                 outpoint: Readable::read(reader)?,
202                                 output: Readable::read(reader)?,
203                                 channel_keys_id: Readable::read(reader)?,
204                                 channel_value_satoshis: Readable::read(reader)?,
205                         })),
206                         _ => Err(DecodeError::InvalidValue),
207                 }
208         }
209 }
210
211 /// A trait to sign lightning channel transactions as described in BOLT 3.
212 ///
213 /// Signing services could be implemented on a hardware wallet. In this case,
214 /// the current Sign would be a front-end on top of a communication
215 /// channel connected to your secure device and lightning key material wouldn't
216 /// reside on a hot server. Nevertheless, a this deployment would still need
217 /// to trust the ChannelManager to avoid loss of funds as this latest component
218 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
219 ///
220 /// A more secure iteration would be to use hashlock (or payment points) to pair
221 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
222 /// at the price of more state and computation on the hardware wallet side. In the future,
223 /// we are looking forward to design such interface.
224 ///
225 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
226 /// to act, as liveness and breach reply correctness are always going to be hard requirements
227 /// of LN security model, orthogonal of key management issues.
228 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
229 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
230 pub trait BaseSign {
231         /// Gets the per-commitment point for a specific commitment number
232         ///
233         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
234         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
235         /// Gets the commitment secret for a specific commitment number as part of the revocation process
236         ///
237         /// An external signer implementation should error here if the commitment was already signed
238         /// and should refuse to sign it in the future.
239         ///
240         /// May be called more than once for the same index.
241         ///
242         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
243         // TODO: return a Result so we can signal a validation error
244         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
245         /// Gets the holder's channel public keys and basepoints
246         fn pubkeys(&self) -> &ChannelPublicKeys;
247         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
248         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
249         /// Sign object uniquely and lookup or re-derive its keys.
250         fn channel_keys_id(&self) -> [u8; 32];
251
252         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
253         ///
254         /// Note that if signing fails or is rejected, the channel will be force-closed.
255         //
256         // TODO: Document the things someone using this interface should enforce before signing.
257         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
258
259         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
260         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
261         /// latest commitment_tx when we initiate a force-close.
262         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
263         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
264         /// the latest.
265         /// This may be called multiple times for the same transaction.
266         ///
267         /// An external signer implementation should check that the commitment has not been revoked.
268         ///
269         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
270         //
271         // TODO: Document the things someone using this interface should enforce before signing.
272         // TODO: Key derivation failure should panic rather than Err
273         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
274
275         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
276         /// transactions which will be broadcasted later, after the channel has moved on to a newer
277         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
278         /// get called once.
279         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
280         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
281
282         /// Create a signature for the given input in a transaction spending an HTLC or commitment
283         /// transaction output when our counterparty broadcasts an old state.
284         ///
285         /// A justice transaction may claim multiples outputs at the same time if timelocks are
286         /// similar, but only a signature for the input at index `input` should be signed for here.
287         /// It may be called multiples time for same output(s) if a fee-bump is needed with regards
288         /// to an upcoming timelock expiration.
289         ///
290         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
291         ///
292         /// per_commitment_key is revocation secret which was provided by our counterparty when they
293         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
294         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
295         /// so).
296         ///
297         /// htlc holds HTLC elements (hash, timelock) if the output being spent is a HTLC output, thus
298         /// changing the format of the witness script (which is committed to in the BIP 143
299         /// signatures).
300         fn sign_justice_transaction(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
301
302         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
303         /// transaction, either offered or received.
304         ///
305         /// Such a transaction may claim multiples offered outputs at same time if we know the
306         /// preimage for each when we create it, but only the input at index `input` should be
307         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
308         /// needed with regards to an upcoming timelock expiration.
309         ///
310         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
311         /// outputs.
312         ///
313         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
314         ///
315         /// Per_commitment_point is the dynamic point corresponding to the channel state
316         /// detected onchain. It has been generated by our counterparty and is used to derive
317         /// channel state keys, which are then included in the witness script and committed to in the
318         /// BIP 143 signature.
319         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
320
321         /// Create a signature for a (proposed) closing transaction.
322         ///
323         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
324         /// chosen to forgo their output as dust.
325         fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
326
327         /// Signs a channel announcement message with our funding key, proving it comes from one
328         /// of the channel participants.
329         ///
330         /// Note that if this fails or is rejected, the channel will not be publicly announced and
331         /// our counterparty may (though likely will not) close the channel on us for violating the
332         /// protocol.
333         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
334
335         /// Set the counterparty static channel data, including basepoints,
336         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
337         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
338         /// they MUST NOT be allowed to change to different values once set.
339         ///
340         /// channel_parameters.is_populated() MUST be true.
341         ///
342         /// We bind holder_selected_contest_delay late here for API convenience.
343         ///
344         /// Will be called before any signatures are applied.
345         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
346 }
347
348 /// A cloneable signer.
349 ///
350 /// Although we require signers to be cloneable, it may be useful for developers to be able to use
351 /// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
352 /// which implies Sized, into this derived trait.
353 pub trait Sign: BaseSign + Writeable + Clone {
354 }
355
356 /// A trait to describe an object which can get user secrets and key material.
357 pub trait KeysInterface {
358         /// A type which implements Sign which will be returned by get_channel_signer.
359         type Signer : Sign;
360
361         /// Get node secret key (aka node_id or network_key).
362         ///
363         /// This method must return the same value each time it is called.
364         fn get_node_secret(&self) -> SecretKey;
365         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
366         ///
367         /// This method should return a different value each time it is called, to avoid linking
368         /// on-chain funds across channels as controlled to the same user.
369         fn get_destination_script(&self) -> Script;
370         /// Get a public key which we will send funds to (in the form of a P2WPKH output) when closing
371         /// a channel.
372         ///
373         /// This method should return a different value each time it is called, to avoid linking
374         /// on-chain funds across channels as controlled to the same user.
375         fn get_shutdown_pubkey(&self) -> PublicKey;
376         /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
377         /// restarted with some stale data!
378         ///
379         /// This method must return a different value each time it is called.
380         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
381         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
382         /// onion packets and for temporary channel IDs. There is no requirement that these be
383         /// persisted anywhere, though they must be unique across restarts.
384         ///
385         /// This method must return a different value each time it is called.
386         fn get_secure_random_bytes(&self) -> [u8; 32];
387
388         /// Reads a `Signer` for this `KeysInterface` from the given input stream.
389         /// This is only called during deserialization of other objects which contain
390         /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
391         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
392         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
393         /// you've read all of the provided bytes to ensure no corruption occurred.
394         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
395
396         /// Sign an invoice's preimage (note that this is the preimage of the invoice, not the HTLC's
397         /// preimage). By parameterizing by the preimage instead of the hash, we allow implementors of
398         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
399         /// blindly signing the hash.
400         fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()>;
401 }
402
403 #[derive(Clone)]
404 /// A simple implementation of Sign that just keeps the private keys in memory.
405 ///
406 /// This implementation performs no policy checks and is insufficient by itself as
407 /// a secure external signer.
408 pub struct InMemorySigner {
409         /// Private key of anchor tx
410         pub funding_key: SecretKey,
411         /// Holder secret key for blinded revocation pubkey
412         pub revocation_base_key: SecretKey,
413         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
414         pub payment_key: SecretKey,
415         /// Holder secret key used in HTLC tx
416         pub delayed_payment_base_key: SecretKey,
417         /// Holder htlc secret key used in commitment tx htlc outputs
418         pub htlc_base_key: SecretKey,
419         /// Commitment seed
420         pub commitment_seed: [u8; 32],
421         /// Holder public keys and basepoints
422         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
423         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
424         channel_parameters: Option<ChannelTransactionParameters>,
425         /// The total value of this channel
426         channel_value_satoshis: u64,
427         /// Key derivation parameters
428         channel_keys_id: [u8; 32],
429 }
430
431 impl InMemorySigner {
432         /// Create a new InMemorySigner
433         pub fn new<C: Signing>(
434                 secp_ctx: &Secp256k1<C>,
435                 funding_key: SecretKey,
436                 revocation_base_key: SecretKey,
437                 payment_key: SecretKey,
438                 delayed_payment_base_key: SecretKey,
439                 htlc_base_key: SecretKey,
440                 commitment_seed: [u8; 32],
441                 channel_value_satoshis: u64,
442                 channel_keys_id: [u8; 32]) -> InMemorySigner {
443                 let holder_channel_pubkeys =
444                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
445                                                              &payment_key, &delayed_payment_base_key,
446                                                              &htlc_base_key);
447                 InMemorySigner {
448                         funding_key,
449                         revocation_base_key,
450                         payment_key,
451                         delayed_payment_base_key,
452                         htlc_base_key,
453                         commitment_seed,
454                         channel_value_satoshis,
455                         holder_channel_pubkeys,
456                         channel_parameters: None,
457                         channel_keys_id,
458                 }
459         }
460
461         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
462                                        funding_key: &SecretKey,
463                                        revocation_base_key: &SecretKey,
464                                        payment_key: &SecretKey,
465                                        delayed_payment_base_key: &SecretKey,
466                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
467                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
468                 ChannelPublicKeys {
469                         funding_pubkey: from_secret(&funding_key),
470                         revocation_basepoint: from_secret(&revocation_base_key),
471                         payment_point: from_secret(&payment_key),
472                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
473                         htlc_basepoint: from_secret(&htlc_base_key),
474                 }
475         }
476
477         /// Counterparty pubkeys.
478         /// Will panic if ready_channel wasn't called.
479         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
480
481         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
482         /// transactions, ie the amount of time that we have to wait to recover our funds if we
483         /// broadcast a transaction.
484         /// Will panic if ready_channel wasn't called.
485         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
486
487         /// The contest_delay value specified by us and applied on transactions broadcastable
488         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
489         /// if they broadcast a transaction.
490         /// Will panic if ready_channel wasn't called.
491         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
492
493         /// Whether the holder is the initiator
494         /// Will panic if ready_channel wasn't called.
495         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
496
497         /// Funding outpoint
498         /// Will panic if ready_channel wasn't called.
499         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
500
501         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
502         /// building transactions.
503         ///
504         /// Will panic if ready_channel wasn't called.
505         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
506                 self.channel_parameters.as_ref().unwrap()
507         }
508
509         /// Sign the single input of spend_tx at index `input_idx` which spends the output
510         /// described by descriptor, returning the witness stack for the input.
511         ///
512         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
513         /// or is not spending the outpoint described by `descriptor.outpoint`.
514         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
515                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
516                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
517                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
518                 // bindings updates to support SigHashCache objects).
519                 if spend_tx.input.len() <= input_idx { return Err(()); }
520                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
521                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
522
523                 let remotepubkey = self.pubkeys().payment_point;
524                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey();
525                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
526                 let remotesig = secp_ctx.sign(&sighash, &self.payment_key);
527
528                 let mut witness = Vec::with_capacity(2);
529                 witness.push(remotesig.serialize_der().to_vec());
530                 witness[0].push(SigHashType::All as u8);
531                 witness.push(remotepubkey.serialize().to_vec());
532                 Ok(witness)
533         }
534
535         /// Sign the single input of spend_tx at index `input_idx` which spends the output
536         /// described by descriptor, returning the witness stack for the input.
537         ///
538         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
539         /// is not spending the outpoint described by `descriptor.outpoint`, or does not have a
540         /// sequence set to `descriptor.to_self_delay`.
541         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
542                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
543                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
544                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
545                 // bindings updates to support SigHashCache objects).
546                 if spend_tx.input.len() <= input_idx { return Err(()); }
547                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
548                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
549                 if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); }
550
551                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
552                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
553                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
554                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
555                 let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]);
556                 let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key);
557
558                 let mut witness = Vec::with_capacity(3);
559                 witness.push(local_delayedsig.serialize_der().to_vec());
560                 witness[0].push(SigHashType::All as u8);
561                 witness.push(vec!()); //MINIMALIF
562                 witness.push(witness_script.clone().into_bytes());
563                 Ok(witness)
564         }
565 }
566
567 impl BaseSign for InMemorySigner {
568         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
569                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
570                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
571         }
572
573         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
574                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
575         }
576
577         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
578         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
579
580         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
581                 let trusted_tx = commitment_tx.trust();
582                 let keys = trusted_tx.keys();
583
584                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
585                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
586
587                 let built_tx = trusted_tx.built_transaction();
588                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
589                 let commitment_txid = built_tx.txid;
590
591                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
592                 for htlc in commitment_tx.htlcs() {
593                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
594                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
595                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
596                         let holder_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
597                                 Ok(s) => s,
598                                 Err(_) => return Err(()),
599                         };
600                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
601                 }
602
603                 Ok((commitment_sig, htlc_sigs))
604         }
605
606         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
607                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
608                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
609                 let trusted_tx = commitment_tx.trust();
610                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
611                 let channel_parameters = self.get_channel_parameters();
612                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
613                 Ok((sig, htlc_sigs))
614         }
615
616         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
617         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
618                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
619                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
620                 let trusted_tx = commitment_tx.trust();
621                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
622                 let channel_parameters = self.get_channel_parameters();
623                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
624                 Ok((sig, htlc_sigs))
625         }
626
627         fn sign_justice_transaction(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
628                 let revocation_key = match chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
629                         Ok(revocation_key) => revocation_key,
630                         Err(_) => return Err(())
631                 };
632                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
633                 let revocation_pubkey = match chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
634                         Ok(revocation_pubkey) => revocation_pubkey,
635                         Err(_) => return Err(())
636                 };
637                 let witness_script = if let &Some(ref htlc) = htlc {
638                         let counterparty_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
639                                 Ok(counterparty_htlcpubkey) => counterparty_htlcpubkey,
640                                 Err(_) => return Err(())
641                         };
642                         let holder_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
643                                 Ok(holder_htlcpubkey) => holder_htlcpubkey,
644                                 Err(_) => return Err(())
645                         };
646                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
647                 } else {
648                         let counterparty_delayedpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint) {
649                                 Ok(counterparty_delayedpubkey) => counterparty_delayedpubkey,
650                                 Err(_) => return Err(())
651                         };
652                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
653                 };
654                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
655                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
656                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
657         }
658
659         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
660                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
661                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
662                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
663                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
664                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
665                                         } else { return Err(()) }
666                                 } else { return Err(()) }
667                         } else { return Err(()) };
668                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
669                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
670                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
671                 }
672                 Err(())
673         }
674
675         fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
676                 if closing_tx.input.len() != 1 { return Err(()); }
677                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
678                 if closing_tx.output.len() > 2 { return Err(()); }
679
680                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
681                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
682
683                 let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
684                         .signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
685                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
686         }
687
688         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
689                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
690                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
691         }
692
693         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
694                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
695                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
696                 self.channel_parameters = Some(channel_parameters.clone());
697         }
698 }
699
700 impl Sign for InMemorySigner {}
701
702 impl Writeable for InMemorySigner {
703         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
704                 self.funding_key.write(writer)?;
705                 self.revocation_base_key.write(writer)?;
706                 self.payment_key.write(writer)?;
707                 self.delayed_payment_base_key.write(writer)?;
708                 self.htlc_base_key.write(writer)?;
709                 self.commitment_seed.write(writer)?;
710                 self.channel_parameters.write(writer)?;
711                 self.channel_value_satoshis.write(writer)?;
712                 self.channel_keys_id.write(writer)?;
713
714                 Ok(())
715         }
716 }
717
718 impl Readable for InMemorySigner {
719         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
720                 let funding_key = Readable::read(reader)?;
721                 let revocation_base_key = Readable::read(reader)?;
722                 let payment_key = Readable::read(reader)?;
723                 let delayed_payment_base_key = Readable::read(reader)?;
724                 let htlc_base_key = Readable::read(reader)?;
725                 let commitment_seed = Readable::read(reader)?;
726                 let counterparty_channel_data = Readable::read(reader)?;
727                 let channel_value_satoshis = Readable::read(reader)?;
728                 let secp_ctx = Secp256k1::signing_only();
729                 let holder_channel_pubkeys =
730                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
731                                                              &payment_key, &delayed_payment_base_key,
732                                                              &htlc_base_key);
733                 let keys_id = Readable::read(reader)?;
734
735                 Ok(InMemorySigner {
736                         funding_key,
737                         revocation_base_key,
738                         payment_key,
739                         delayed_payment_base_key,
740                         htlc_base_key,
741                         commitment_seed,
742                         channel_value_satoshis,
743                         holder_channel_pubkeys,
744                         channel_parameters: counterparty_channel_data,
745                         channel_keys_id: keys_id,
746                 })
747         }
748 }
749
750 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
751 /// and derives keys from that.
752 ///
753 /// Your node_id is seed/0'
754 /// ChannelMonitor closes may use seed/1'
755 /// Cooperative closes may use seed/2'
756 /// The two close keys may be needed to claim on-chain funds!
757 pub struct KeysManager {
758         secp_ctx: Secp256k1<secp256k1::All>,
759         node_secret: SecretKey,
760         destination_script: Script,
761         shutdown_pubkey: PublicKey,
762         channel_master_key: ExtendedPrivKey,
763         channel_child_index: AtomicUsize,
764
765         rand_bytes_master_key: ExtendedPrivKey,
766         rand_bytes_child_index: AtomicUsize,
767         rand_bytes_unique_start: Sha256State,
768
769         seed: [u8; 32],
770         starting_time_secs: u64,
771         starting_time_nanos: u32,
772 }
773
774 impl KeysManager {
775         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
776         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
777         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
778         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
779         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
780         /// simply use the current time (with very high precision).
781         ///
782         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
783         /// obviously, starting_time should be unique every time you reload the library - it is only
784         /// used to generate new ephemeral key data (which will be stored by the individual channel if
785         /// necessary).
786         ///
787         /// Note that the seed is required to recover certain on-chain funds independent of
788         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
789         /// channel, and some on-chain during-closing funds.
790         ///
791         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
792         /// versions. Once the library is more fully supported, the docs will be updated to include a
793         /// detailed description of the guarantee.
794         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
795                 let secp_ctx = Secp256k1::new();
796                 // Note that when we aren't serializing the key, network doesn't matter
797                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
798                         Ok(master_key) => {
799                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
800                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
801                                         Ok(destination_key) => {
802                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
803                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
804                                                               .push_slice(&wpubkey_hash.into_inner())
805                                                               .into_script()
806                                         },
807                                         Err(_) => panic!("Your RNG is busted"),
808                                 };
809                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
810                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
811                                         Err(_) => panic!("Your RNG is busted"),
812                                 };
813                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
814                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
815
816                                 let mut rand_bytes_unique_start = Sha256::engine();
817                                 rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
818                                 rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
819                                 rand_bytes_unique_start.input(seed);
820
821                                 let mut res = KeysManager {
822                                         secp_ctx,
823                                         node_secret,
824
825                                         destination_script,
826                                         shutdown_pubkey,
827
828                                         channel_master_key,
829                                         channel_child_index: AtomicUsize::new(0),
830
831                                         rand_bytes_master_key,
832                                         rand_bytes_child_index: AtomicUsize::new(0),
833                                         rand_bytes_unique_start,
834
835                                         seed: *seed,
836                                         starting_time_secs,
837                                         starting_time_nanos,
838                                 };
839                                 let secp_seed = res.get_secure_random_bytes();
840                                 res.secp_ctx.seeded_randomize(&secp_seed);
841                                 res
842                         },
843                         Err(_) => panic!("Your rng is busted"),
844                 }
845         }
846         /// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
847         ///
848         /// Key derivation parameters are accessible through a per-channel secrets
849         /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
850         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
851         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
852                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
853                 assert!(chan_id <= std::u32::MAX as u64); // Otherwise the params field wasn't created by us
854                 let mut unique_start = Sha256::engine();
855                 unique_start.input(params);
856                 unique_start.input(&self.seed);
857
858                 // We only seriously intend to rely on the channel_master_key for true secure
859                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
860                 // starting_time provided in the constructor) to be unique.
861                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
862                 unique_start.input(&child_privkey.private_key.key[..]);
863
864                 let seed = Sha256::from_engine(unique_start).into_inner();
865
866                 let commitment_seed = {
867                         let mut sha = Sha256::engine();
868                         sha.input(&seed);
869                         sha.input(&b"commitment seed"[..]);
870                         Sha256::from_engine(sha).into_inner()
871                 };
872                 macro_rules! key_step {
873                         ($info: expr, $prev_key: expr) => {{
874                                 let mut sha = Sha256::engine();
875                                 sha.input(&seed);
876                                 sha.input(&$prev_key[..]);
877                                 sha.input(&$info[..]);
878                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
879                         }}
880                 }
881                 let funding_key = key_step!(b"funding key", commitment_seed);
882                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
883                 let payment_key = key_step!(b"payment key", revocation_base_key);
884                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
885                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
886
887                 InMemorySigner::new(
888                         &self.secp_ctx,
889                         funding_key,
890                         revocation_base_key,
891                         payment_key,
892                         delayed_payment_base_key,
893                         htlc_base_key,
894                         commitment_seed,
895                         channel_value_satoshis,
896                         params.clone()
897                 )
898         }
899
900         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
901         /// output to the given change destination (if sufficient change value remains). The
902         /// transaction will have a feerate, at least, of the given value.
903         ///
904         /// Returns `Err(())` if the output value is greater than the input value minus required fee or
905         /// if a descriptor was duplicated.
906         ///
907         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
908         ///
909         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
910         /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
911         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
912                 let mut input = Vec::new();
913                 let mut input_value = 0;
914                 let mut witness_weight = 0;
915                 let mut output_set = HashSet::with_capacity(descriptors.len());
916                 for outp in descriptors {
917                         match outp {
918                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
919                                         input.push(TxIn {
920                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
921                                                 script_sig: Script::new(),
922                                                 sequence: 0,
923                                                 witness: Vec::new(),
924                                         });
925                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
926                                         input_value += descriptor.output.value;
927                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
928                                 },
929                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
930                                         input.push(TxIn {
931                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
932                                                 script_sig: Script::new(),
933                                                 sequence: descriptor.to_self_delay as u32,
934                                                 witness: Vec::new(),
935                                         });
936                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
937                                         input_value += descriptor.output.value;
938                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
939                                 },
940                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
941                                         input.push(TxIn {
942                                                 previous_output: outpoint.into_bitcoin_outpoint(),
943                                                 script_sig: Script::new(),
944                                                 sequence: 0,
945                                                 witness: Vec::new(),
946                                         });
947                                         witness_weight += 1 + 73 + 34;
948                                         input_value += output.value;
949                                         if !output_set.insert(*outpoint) { return Err(()); }
950                                 }
951                         }
952                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
953                 }
954                 let mut spend_tx = Transaction {
955                         version: 2,
956                         lock_time: 0,
957                         input,
958                         output: outputs,
959                 };
960                 transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
961
962                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
963                 let mut input_idx = 0;
964                 for outp in descriptors {
965                         match outp {
966                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
967                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
968                                                 keys_cache = Some((
969                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
970                                                         descriptor.channel_keys_id));
971                                         }
972                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
973                                 },
974                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
975                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
976                                                 keys_cache = Some((
977                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
978                                                         descriptor.channel_keys_id));
979                                         }
980                                         spend_tx.input[input_idx].witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx).unwrap();
981                                 },
982                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
983                                         let derivation_idx = if output.script_pubkey == self.destination_script {
984                                                 1
985                                         } else {
986                                                 2
987                                         };
988                                         let secret = {
989                                                 // Note that when we aren't serializing the key, network doesn't matter
990                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
991                                                         Ok(master_key) => {
992                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
993                                                                         Ok(key) => key,
994                                                                         Err(_) => panic!("Your RNG is busted"),
995                                                                 }
996                                                         }
997                                                         Err(_) => panic!("Your rng is busted"),
998                                                 }
999                                         };
1000                                         let pubkey = ExtendedPubKey::from_private(&secp_ctx, &secret).public_key;
1001                                         if derivation_idx == 2 {
1002                                                 assert_eq!(pubkey.key, self.shutdown_pubkey);
1003                                         }
1004                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1005                                         let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]);
1006                                         let sig = secp_ctx.sign(&sighash, &secret.private_key.key);
1007                                         spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec());
1008                                         spend_tx.input[input_idx].witness[0].push(SigHashType::All as u8);
1009                                         spend_tx.input[input_idx].witness.push(pubkey.key.serialize().to_vec());
1010                                 },
1011                         }
1012                         input_idx += 1;
1013                 }
1014                 Ok(spend_tx)
1015         }
1016 }
1017
1018 impl KeysInterface for KeysManager {
1019         type Signer = InMemorySigner;
1020
1021         fn get_node_secret(&self) -> SecretKey {
1022                 self.node_secret.clone()
1023         }
1024
1025         fn get_destination_script(&self) -> Script {
1026                 self.destination_script.clone()
1027         }
1028
1029         fn get_shutdown_pubkey(&self) -> PublicKey {
1030                 self.shutdown_pubkey.clone()
1031         }
1032
1033         fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1034                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1035                 assert!(child_ix <= std::u32::MAX as usize);
1036                 let mut id = [0; 32];
1037                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1038                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1039                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1040                 self.derive_channel_keys(channel_value_satoshis, &id)
1041         }
1042
1043         fn get_secure_random_bytes(&self) -> [u8; 32] {
1044                 let mut sha = self.rand_bytes_unique_start.clone();
1045
1046                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1047                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1048                 sha.input(&child_privkey.private_key.key[..]);
1049
1050                 sha.input(b"Unique Secure Random Bytes Salt");
1051                 Sha256::from_engine(sha).into_inner()
1052         }
1053
1054         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1055                 InMemorySigner::read(&mut std::io::Cursor::new(reader))
1056         }
1057
1058         fn sign_invoice(&self, invoice_preimage: Vec<u8>) -> Result<RecoverableSignature, ()> {
1059                 Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&invoice_preimage)), &self.get_node_secret()))
1060         }
1061 }
1062
1063 // Ensure that BaseSign can have a vtable
1064 #[test]
1065 pub fn dyn_sign() {
1066         let _signer: Box<dyn BaseSign>;
1067 }