1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Various utilities to assemble claimable outpoints in package of one or more transactions. Those
11 //! packages are attached metadata, guiding their aggregable or fee-bumping re-schedule. This file
12 //! also includes witness weight computation and fee computation methods.
14 use bitcoin::blockdata::constants::WITNESS_SCALE_FACTOR;
15 use bitcoin::blockdata::transaction::{TxOut,TxIn, Transaction, EcdsaSighashType};
16 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
17 use bitcoin::blockdata::script::Script;
19 use bitcoin::hash_types::Txid;
21 use bitcoin::secp256k1::{SecretKey,PublicKey};
23 use crate::ln::PaymentPreimage;
24 use crate::ln::chan_utils::{TxCreationKeys, HTLCOutputInCommitment};
25 use crate::ln::chan_utils;
26 use crate::ln::msgs::DecodeError;
27 use crate::chain::chaininterface::{FeeEstimator, ConfirmationTarget, MIN_RELAY_FEE_SAT_PER_1000_WEIGHT};
28 use crate::chain::keysinterface::WriteableEcdsaChannelSigner;
30 use crate::chain::onchaintx::ExternalHTLCClaim;
31 use crate::chain::onchaintx::OnchainTxHandler;
32 use crate::util::logger::Logger;
33 use crate::util::ser::{Readable, Writer, Writeable};
36 use crate::prelude::*;
39 use core::convert::TryInto;
42 use bitcoin::{PackedLockTime, Sequence, Witness};
44 use super::chaininterface::LowerBoundedFeeEstimator;
46 const MAX_ALLOC_SIZE: usize = 64*1024;
49 pub(crate) fn weight_revoked_offered_htlc(opt_anchors: bool) -> u64 {
50 // number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
51 const WEIGHT_REVOKED_OFFERED_HTLC: u64 = 1 + 1 + 73 + 1 + 33 + 1 + 133;
52 const WEIGHT_REVOKED_OFFERED_HTLC_ANCHORS: u64 = WEIGHT_REVOKED_OFFERED_HTLC + 3; // + OP_1 + OP_CSV + OP_DROP
53 if opt_anchors { WEIGHT_REVOKED_OFFERED_HTLC_ANCHORS } else { WEIGHT_REVOKED_OFFERED_HTLC }
56 pub(crate) fn weight_revoked_received_htlc(opt_anchors: bool) -> u64 {
57 // number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
58 const WEIGHT_REVOKED_RECEIVED_HTLC: u64 = 1 + 1 + 73 + 1 + 33 + 1 + 139;
59 const WEIGHT_REVOKED_RECEIVED_HTLC_ANCHORS: u64 = WEIGHT_REVOKED_RECEIVED_HTLC + 3; // + OP_1 + OP_CSV + OP_DROP
60 if opt_anchors { WEIGHT_REVOKED_RECEIVED_HTLC_ANCHORS } else { WEIGHT_REVOKED_RECEIVED_HTLC }
63 pub(crate) fn weight_offered_htlc(opt_anchors: bool) -> u64 {
64 // number_of_witness_elements + sig_length + counterpartyhtlc_sig + preimage_length + preimage + witness_script_length + witness_script
65 const WEIGHT_OFFERED_HTLC: u64 = 1 + 1 + 73 + 1 + 32 + 1 + 133;
66 const WEIGHT_OFFERED_HTLC_ANCHORS: u64 = WEIGHT_OFFERED_HTLC + 3; // + OP_1 + OP_CSV + OP_DROP
67 if opt_anchors { WEIGHT_OFFERED_HTLC_ANCHORS } else { WEIGHT_OFFERED_HTLC }
70 pub(crate) fn weight_received_htlc(opt_anchors: bool) -> u64 {
71 // number_of_witness_elements + sig_length + counterpartyhtlc_sig + empty_vec_length + empty_vec + witness_script_length + witness_script
72 const WEIGHT_RECEIVED_HTLC: u64 = 1 + 1 + 73 + 1 + 1 + 1 + 139;
73 const WEIGHT_RECEIVED_HTLC_ANCHORS: u64 = WEIGHT_RECEIVED_HTLC + 3; // + OP_1 + OP_CSV + OP_DROP
74 if opt_anchors { WEIGHT_RECEIVED_HTLC_ANCHORS } else { WEIGHT_RECEIVED_HTLC }
77 // number_of_witness_elements + sig_length + revocation_sig + true_length + op_true + witness_script_length + witness_script
78 pub(crate) const WEIGHT_REVOKED_OUTPUT: u64 = 1 + 1 + 73 + 1 + 1 + 1 + 77;
80 /// Height delay at which transactions are fee-bumped/rebroadcasted with a low priority.
81 const LOW_FREQUENCY_BUMP_INTERVAL: u32 = 15;
82 /// Height delay at which transactions are fee-bumped/rebroadcasted with a middle priority.
83 const MIDDLE_FREQUENCY_BUMP_INTERVAL: u32 = 3;
84 /// Height delay at which transactions are fee-bumped/rebroadcasted with a high priority.
85 const HIGH_FREQUENCY_BUMP_INTERVAL: u32 = 1;
87 /// A struct to describe a revoked output and corresponding information to generate a solving
88 /// witness spending a commitment `to_local` output or a second-stage HTLC transaction output.
90 /// CSV and pubkeys are used as part of a witnessScript redeeming a balance output, amount is used
91 /// as part of the signature hash and revocation secret to generate a satisfying witness.
92 #[derive(Clone, PartialEq, Eq)]
93 pub(crate) struct RevokedOutput {
94 per_commitment_point: PublicKey,
95 counterparty_delayed_payment_base_key: PublicKey,
96 counterparty_htlc_base_key: PublicKey,
97 per_commitment_key: SecretKey,
100 on_counterparty_tx_csv: u16,
104 pub(crate) fn build(per_commitment_point: PublicKey, counterparty_delayed_payment_base_key: PublicKey, counterparty_htlc_base_key: PublicKey, per_commitment_key: SecretKey, amount: u64, on_counterparty_tx_csv: u16) -> Self {
106 per_commitment_point,
107 counterparty_delayed_payment_base_key,
108 counterparty_htlc_base_key,
110 weight: WEIGHT_REVOKED_OUTPUT,
112 on_counterparty_tx_csv
117 impl_writeable_tlv_based!(RevokedOutput, {
118 (0, per_commitment_point, required),
119 (2, counterparty_delayed_payment_base_key, required),
120 (4, counterparty_htlc_base_key, required),
121 (6, per_commitment_key, required),
122 (8, weight, required),
123 (10, amount, required),
124 (12, on_counterparty_tx_csv, required),
127 /// A struct to describe a revoked offered output and corresponding information to generate a
130 /// HTLCOuputInCommitment (hash timelock, direction) and pubkeys are used to generate a suitable
133 /// CSV is used as part of a witnessScript redeeming a balance output, amount is used as part
134 /// of the signature hash and revocation secret to generate a satisfying witness.
135 #[derive(Clone, PartialEq, Eq)]
136 pub(crate) struct RevokedHTLCOutput {
137 per_commitment_point: PublicKey,
138 counterparty_delayed_payment_base_key: PublicKey,
139 counterparty_htlc_base_key: PublicKey,
140 per_commitment_key: SecretKey,
143 htlc: HTLCOutputInCommitment,
146 impl RevokedHTLCOutput {
147 pub(crate) fn build(per_commitment_point: PublicKey, counterparty_delayed_payment_base_key: PublicKey, counterparty_htlc_base_key: PublicKey, per_commitment_key: SecretKey, amount: u64, htlc: HTLCOutputInCommitment, opt_anchors: bool) -> Self {
148 let weight = if htlc.offered { weight_revoked_offered_htlc(opt_anchors) } else { weight_revoked_received_htlc(opt_anchors) };
150 per_commitment_point,
151 counterparty_delayed_payment_base_key,
152 counterparty_htlc_base_key,
161 impl_writeable_tlv_based!(RevokedHTLCOutput, {
162 (0, per_commitment_point, required),
163 (2, counterparty_delayed_payment_base_key, required),
164 (4, counterparty_htlc_base_key, required),
165 (6, per_commitment_key, required),
166 (8, weight, required),
167 (10, amount, required),
168 (12, htlc, required),
171 /// A struct to describe a HTLC output on a counterparty commitment transaction.
173 /// HTLCOutputInCommitment (hash, timelock, directon) and pubkeys are used to generate a suitable
176 /// The preimage is used as part of the witness.
177 #[derive(Clone, PartialEq, Eq)]
178 pub(crate) struct CounterpartyOfferedHTLCOutput {
179 per_commitment_point: PublicKey,
180 counterparty_delayed_payment_base_key: PublicKey,
181 counterparty_htlc_base_key: PublicKey,
182 preimage: PaymentPreimage,
183 htlc: HTLCOutputInCommitment,
184 opt_anchors: Option<()>,
187 impl CounterpartyOfferedHTLCOutput {
188 pub(crate) fn build(per_commitment_point: PublicKey, counterparty_delayed_payment_base_key: PublicKey, counterparty_htlc_base_key: PublicKey, preimage: PaymentPreimage, htlc: HTLCOutputInCommitment, opt_anchors: bool) -> Self {
189 CounterpartyOfferedHTLCOutput {
190 per_commitment_point,
191 counterparty_delayed_payment_base_key,
192 counterparty_htlc_base_key,
195 opt_anchors: if opt_anchors { Some(()) } else { None },
199 fn opt_anchors(&self) -> bool {
200 self.opt_anchors.is_some()
204 impl_writeable_tlv_based!(CounterpartyOfferedHTLCOutput, {
205 (0, per_commitment_point, required),
206 (2, counterparty_delayed_payment_base_key, required),
207 (4, counterparty_htlc_base_key, required),
208 (6, preimage, required),
210 (10, opt_anchors, option),
213 /// A struct to describe a HTLC output on a counterparty commitment transaction.
215 /// HTLCOutputInCommitment (hash, timelock, directon) and pubkeys are used to generate a suitable
217 #[derive(Clone, PartialEq, Eq)]
218 pub(crate) struct CounterpartyReceivedHTLCOutput {
219 per_commitment_point: PublicKey,
220 counterparty_delayed_payment_base_key: PublicKey,
221 counterparty_htlc_base_key: PublicKey,
222 htlc: HTLCOutputInCommitment,
223 opt_anchors: Option<()>,
226 impl CounterpartyReceivedHTLCOutput {
227 pub(crate) fn build(per_commitment_point: PublicKey, counterparty_delayed_payment_base_key: PublicKey, counterparty_htlc_base_key: PublicKey, htlc: HTLCOutputInCommitment, opt_anchors: bool) -> Self {
228 CounterpartyReceivedHTLCOutput {
229 per_commitment_point,
230 counterparty_delayed_payment_base_key,
231 counterparty_htlc_base_key,
233 opt_anchors: if opt_anchors { Some(()) } else { None },
237 fn opt_anchors(&self) -> bool {
238 self.opt_anchors.is_some()
242 impl_writeable_tlv_based!(CounterpartyReceivedHTLCOutput, {
243 (0, per_commitment_point, required),
244 (2, counterparty_delayed_payment_base_key, required),
245 (4, counterparty_htlc_base_key, required),
247 (8, opt_anchors, option),
250 /// A struct to describe a HTLC output on holder commitment transaction.
252 /// Either offered or received, the amount is always used as part of the bip143 sighash.
253 /// Preimage is only included as part of the witness in former case.
254 #[derive(Clone, PartialEq, Eq)]
255 pub(crate) struct HolderHTLCOutput {
256 preimage: Option<PaymentPreimage>,
258 /// Defaults to 0 for HTLC-Success transactions, which have no expiry
260 opt_anchors: Option<()>,
263 impl HolderHTLCOutput {
264 pub(crate) fn build_offered(amount_msat: u64, cltv_expiry: u32, opt_anchors: bool) -> Self {
269 opt_anchors: if opt_anchors { Some(()) } else { None } ,
273 pub(crate) fn build_accepted(preimage: PaymentPreimage, amount_msat: u64, opt_anchors: bool) -> Self {
275 preimage: Some(preimage),
278 opt_anchors: if opt_anchors { Some(()) } else { None } ,
282 fn opt_anchors(&self) -> bool {
283 self.opt_anchors.is_some()
287 impl_writeable_tlv_based!(HolderHTLCOutput, {
288 (0, amount_msat, required),
289 (2, cltv_expiry, required),
290 (4, preimage, option),
291 (6, opt_anchors, option)
294 /// A struct to describe the channel output on the funding transaction.
296 /// witnessScript is used as part of the witness redeeming the funding utxo.
297 #[derive(Clone, PartialEq, Eq)]
298 pub(crate) struct HolderFundingOutput {
299 funding_redeemscript: Script,
300 funding_amount: Option<u64>,
301 opt_anchors: Option<()>,
305 impl HolderFundingOutput {
306 pub(crate) fn build(funding_redeemscript: Script, funding_amount: u64, opt_anchors: bool) -> Self {
307 HolderFundingOutput {
308 funding_redeemscript,
309 funding_amount: Some(funding_amount),
310 opt_anchors: if opt_anchors { Some(()) } else { None },
314 fn opt_anchors(&self) -> bool {
315 self.opt_anchors.is_some()
319 impl_writeable_tlv_based!(HolderFundingOutput, {
320 (0, funding_redeemscript, required),
321 (2, opt_anchors, option),
322 (3, funding_amount, option),
325 /// A wrapper encapsulating all in-protocol differing outputs types.
327 /// The generic API offers access to an outputs common attributes or allow transformation such as
328 /// finalizing an input claiming the output.
329 #[derive(Clone, PartialEq, Eq)]
330 pub(crate) enum PackageSolvingData {
331 RevokedOutput(RevokedOutput),
332 RevokedHTLCOutput(RevokedHTLCOutput),
333 CounterpartyOfferedHTLCOutput(CounterpartyOfferedHTLCOutput),
334 CounterpartyReceivedHTLCOutput(CounterpartyReceivedHTLCOutput),
335 HolderHTLCOutput(HolderHTLCOutput),
336 HolderFundingOutput(HolderFundingOutput),
339 impl PackageSolvingData {
340 fn amount(&self) -> u64 {
341 let amt = match self {
342 PackageSolvingData::RevokedOutput(ref outp) => outp.amount,
343 PackageSolvingData::RevokedHTLCOutput(ref outp) => outp.amount,
344 PackageSolvingData::CounterpartyOfferedHTLCOutput(ref outp) => outp.htlc.amount_msat / 1000,
345 PackageSolvingData::CounterpartyReceivedHTLCOutput(ref outp) => outp.htlc.amount_msat / 1000,
346 PackageSolvingData::HolderHTLCOutput(ref outp) => {
347 debug_assert!(outp.opt_anchors());
348 outp.amount_msat / 1000
350 PackageSolvingData::HolderFundingOutput(ref outp) => {
351 debug_assert!(outp.opt_anchors());
352 outp.funding_amount.unwrap()
357 fn weight(&self) -> usize {
359 PackageSolvingData::RevokedOutput(ref outp) => outp.weight as usize,
360 PackageSolvingData::RevokedHTLCOutput(ref outp) => outp.weight as usize,
361 PackageSolvingData::CounterpartyOfferedHTLCOutput(ref outp) => weight_offered_htlc(outp.opt_anchors()) as usize,
362 PackageSolvingData::CounterpartyReceivedHTLCOutput(ref outp) => weight_received_htlc(outp.opt_anchors()) as usize,
363 PackageSolvingData::HolderHTLCOutput(ref outp) => {
364 debug_assert!(outp.opt_anchors());
365 if outp.preimage.is_none() {
366 weight_offered_htlc(true) as usize
368 weight_received_htlc(true) as usize
371 // Since HolderFundingOutput maps to an untractable package that is already signed, its
372 // weight can be determined from the transaction itself.
373 PackageSolvingData::HolderFundingOutput(..) => unreachable!(),
376 fn is_compatible(&self, input: &PackageSolvingData) -> bool {
378 PackageSolvingData::RevokedOutput(..) => {
380 PackageSolvingData::RevokedHTLCOutput(..) => { true },
381 PackageSolvingData::RevokedOutput(..) => { true },
385 PackageSolvingData::RevokedHTLCOutput(..) => {
387 PackageSolvingData::RevokedOutput(..) => { true },
388 PackageSolvingData::RevokedHTLCOutput(..) => { true },
392 _ => { mem::discriminant(self) == mem::discriminant(&input) }
395 fn finalize_input<Signer: WriteableEcdsaChannelSigner>(&self, bumped_tx: &mut Transaction, i: usize, onchain_handler: &mut OnchainTxHandler<Signer>) -> bool {
397 PackageSolvingData::RevokedOutput(ref outp) => {
398 let chan_keys = TxCreationKeys::derive_new(&onchain_handler.secp_ctx, &outp.per_commitment_point, &outp.counterparty_delayed_payment_base_key, &outp.counterparty_htlc_base_key, &onchain_handler.signer.pubkeys().revocation_basepoint, &onchain_handler.signer.pubkeys().htlc_basepoint);
399 let witness_script = chan_utils::get_revokeable_redeemscript(&chan_keys.revocation_key, outp.on_counterparty_tx_csv, &chan_keys.broadcaster_delayed_payment_key);
400 //TODO: should we panic on signer failure ?
401 if let Ok(sig) = onchain_handler.signer.sign_justice_revoked_output(&bumped_tx, i, outp.amount, &outp.per_commitment_key, &onchain_handler.secp_ctx) {
402 let mut ser_sig = sig.serialize_der().to_vec();
403 ser_sig.push(EcdsaSighashType::All as u8);
404 bumped_tx.input[i].witness.push(ser_sig);
405 bumped_tx.input[i].witness.push(vec!(1));
406 bumped_tx.input[i].witness.push(witness_script.clone().into_bytes());
407 } else { return false; }
409 PackageSolvingData::RevokedHTLCOutput(ref outp) => {
410 let chan_keys = TxCreationKeys::derive_new(&onchain_handler.secp_ctx, &outp.per_commitment_point, &outp.counterparty_delayed_payment_base_key, &outp.counterparty_htlc_base_key, &onchain_handler.signer.pubkeys().revocation_basepoint, &onchain_handler.signer.pubkeys().htlc_basepoint);
411 let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&outp.htlc, onchain_handler.opt_anchors(), &chan_keys.broadcaster_htlc_key, &chan_keys.countersignatory_htlc_key, &chan_keys.revocation_key);
412 //TODO: should we panic on signer failure ?
413 if let Ok(sig) = onchain_handler.signer.sign_justice_revoked_htlc(&bumped_tx, i, outp.amount, &outp.per_commitment_key, &outp.htlc, &onchain_handler.secp_ctx) {
414 let mut ser_sig = sig.serialize_der().to_vec();
415 ser_sig.push(EcdsaSighashType::All as u8);
416 bumped_tx.input[i].witness.push(ser_sig);
417 bumped_tx.input[i].witness.push(chan_keys.revocation_key.clone().serialize().to_vec());
418 bumped_tx.input[i].witness.push(witness_script.clone().into_bytes());
419 } else { return false; }
421 PackageSolvingData::CounterpartyOfferedHTLCOutput(ref outp) => {
422 let chan_keys = TxCreationKeys::derive_new(&onchain_handler.secp_ctx, &outp.per_commitment_point, &outp.counterparty_delayed_payment_base_key, &outp.counterparty_htlc_base_key, &onchain_handler.signer.pubkeys().revocation_basepoint, &onchain_handler.signer.pubkeys().htlc_basepoint);
423 let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&outp.htlc, onchain_handler.opt_anchors(), &chan_keys.broadcaster_htlc_key, &chan_keys.countersignatory_htlc_key, &chan_keys.revocation_key);
425 if let Ok(sig) = onchain_handler.signer.sign_counterparty_htlc_transaction(&bumped_tx, i, &outp.htlc.amount_msat / 1000, &outp.per_commitment_point, &outp.htlc, &onchain_handler.secp_ctx) {
426 let mut ser_sig = sig.serialize_der().to_vec();
427 ser_sig.push(EcdsaSighashType::All as u8);
428 bumped_tx.input[i].witness.push(ser_sig);
429 bumped_tx.input[i].witness.push(outp.preimage.0.to_vec());
430 bumped_tx.input[i].witness.push(witness_script.clone().into_bytes());
433 PackageSolvingData::CounterpartyReceivedHTLCOutput(ref outp) => {
434 let chan_keys = TxCreationKeys::derive_new(&onchain_handler.secp_ctx, &outp.per_commitment_point, &outp.counterparty_delayed_payment_base_key, &outp.counterparty_htlc_base_key, &onchain_handler.signer.pubkeys().revocation_basepoint, &onchain_handler.signer.pubkeys().htlc_basepoint);
435 let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&outp.htlc, onchain_handler.opt_anchors(), &chan_keys.broadcaster_htlc_key, &chan_keys.countersignatory_htlc_key, &chan_keys.revocation_key);
437 if let Ok(sig) = onchain_handler.signer.sign_counterparty_htlc_transaction(&bumped_tx, i, &outp.htlc.amount_msat / 1000, &outp.per_commitment_point, &outp.htlc, &onchain_handler.secp_ctx) {
438 let mut ser_sig = sig.serialize_der().to_vec();
439 ser_sig.push(EcdsaSighashType::All as u8);
440 bumped_tx.input[i].witness.push(ser_sig);
441 // Due to BIP146 (MINIMALIF) this must be a zero-length element to relay.
442 bumped_tx.input[i].witness.push(vec![]);
443 bumped_tx.input[i].witness.push(witness_script.clone().into_bytes());
446 _ => { panic!("API Error!"); }
450 fn get_finalized_tx<Signer: WriteableEcdsaChannelSigner>(&self, outpoint: &BitcoinOutPoint, onchain_handler: &mut OnchainTxHandler<Signer>) -> Option<Transaction> {
452 PackageSolvingData::HolderHTLCOutput(ref outp) => {
453 debug_assert!(!outp.opt_anchors());
454 return onchain_handler.get_fully_signed_htlc_tx(outpoint, &outp.preimage);
456 PackageSolvingData::HolderFundingOutput(ref outp) => {
457 return Some(onchain_handler.get_fully_signed_holder_tx(&outp.funding_redeemscript));
459 _ => { panic!("API Error!"); }
462 fn absolute_tx_timelock(&self, current_height: u32) -> u32 {
463 // We use `current_height + 1` as our default locktime to discourage fee sniping and because
464 // transactions with it always propagate.
465 let absolute_timelock = match self {
466 PackageSolvingData::RevokedOutput(_) => current_height + 1,
467 PackageSolvingData::RevokedHTLCOutput(_) => current_height + 1,
468 PackageSolvingData::CounterpartyOfferedHTLCOutput(_) => current_height + 1,
469 PackageSolvingData::CounterpartyReceivedHTLCOutput(ref outp) => cmp::max(outp.htlc.cltv_expiry, current_height + 1),
470 // HTLC timeout/success transactions rely on a fixed timelock due to the counterparty's
472 PackageSolvingData::HolderHTLCOutput(ref outp) => {
473 if outp.preimage.is_some() {
474 debug_assert_eq!(outp.cltv_expiry, 0);
478 PackageSolvingData::HolderFundingOutput(_) => current_height + 1,
484 impl_writeable_tlv_based_enum!(PackageSolvingData, ;
486 (1, RevokedHTLCOutput),
487 (2, CounterpartyOfferedHTLCOutput),
488 (3, CounterpartyReceivedHTLCOutput),
489 (4, HolderHTLCOutput),
490 (5, HolderFundingOutput),
493 /// A malleable package might be aggregated with other packages to save on fees.
494 /// A untractable package has been counter-signed and aggregable will break cached counterparty
496 #[derive(Clone, PartialEq, Eq)]
497 pub(crate) enum PackageMalleability {
502 /// A structure to describe a package content that is generated by ChannelMonitor and
503 /// used by OnchainTxHandler to generate and broadcast transactions settling onchain claims.
505 /// A package is defined as one or more transactions claiming onchain outputs in reaction
506 /// to confirmation of a channel transaction. Those packages might be aggregated to save on
507 /// fees, if satisfaction of outputs's witnessScript let's us do so.
509 /// As packages are time-sensitive, we fee-bump and rebroadcast them at scheduled intervals.
510 /// Failing to confirm a package translate as a loss of funds for the user.
511 #[derive(Clone, PartialEq, Eq)]
512 pub struct PackageTemplate {
513 // List of onchain outputs and solving data to generate satisfying witnesses.
514 inputs: Vec<(BitcoinOutPoint, PackageSolvingData)>,
515 // Packages are deemed as malleable if we have local knwoledge of at least one set of
516 // private keys yielding a satisfying witnesses. Malleability implies that we can aggregate
517 // packages among them to save on fees or rely on RBF to bump their feerates.
518 // Untractable packages have been counter-signed and thus imply that we can't aggregate
519 // them without breaking signatures. Fee-bumping strategy will also rely on CPFP.
520 malleability: PackageMalleability,
521 // Block height after which the earlier-output belonging to this package is mature for a
522 // competing claim by the counterparty. As our chain tip becomes nearer from the timelock,
523 // the fee-bumping frequency will increase. See `OnchainTxHandler::get_height_timer`.
524 soonest_conf_deadline: u32,
525 // Determines if this package can be aggregated.
526 // Timelocked outputs belonging to the same transaction might have differing
527 // satisfying heights. Picking up the later height among the output set would be a valid
528 // aggregable strategy but it comes with at least 2 trade-offs :
529 // * earlier-output fund are going to take longer to come back
530 // * CLTV delta backing up a corresponding HTLC on an upstream channel could be swallowed
531 // by the requirement of the later-output part of the set
532 // For now, we mark such timelocked outputs as non-aggregable, though we might introduce
533 // smarter aggregable strategy in the future.
535 // Cache of package feerate committed at previous (re)broadcast. If bumping resources
536 // (either claimed output value or external utxo), it will keep increasing until holder
537 // or counterparty successful claim.
538 feerate_previous: u64,
539 // Cache of next height at which fee-bumping and rebroadcast will be attempted. In
540 // the future, we might abstract it to an observed mempool fluctuation.
542 // Confirmation height of the claimed outputs set transaction. In case of reorg reaching
543 // it, we wipe out and forget the package.
544 height_original: u32,
547 impl PackageTemplate {
548 pub(crate) fn is_malleable(&self) -> bool {
549 self.malleability == PackageMalleability::Malleable
551 pub(crate) fn timelock(&self) -> u32 {
552 self.soonest_conf_deadline
554 pub(crate) fn aggregable(&self) -> bool {
557 pub(crate) fn previous_feerate(&self) -> u64 {
558 self.feerate_previous
560 pub(crate) fn set_feerate(&mut self, new_feerate: u64) {
561 self.feerate_previous = new_feerate;
563 pub(crate) fn timer(&self) -> u32 {
566 pub(crate) fn set_timer(&mut self, new_timer: u32) {
567 self.height_timer = new_timer;
569 pub(crate) fn outpoints(&self) -> Vec<&BitcoinOutPoint> {
570 self.inputs.iter().map(|(o, _)| o).collect()
572 pub(crate) fn inputs(&self) -> impl ExactSizeIterator<Item = &PackageSolvingData> {
573 self.inputs.iter().map(|(_, i)| i)
575 pub(crate) fn split_package(&mut self, split_outp: &BitcoinOutPoint) -> Option<PackageTemplate> {
576 match self.malleability {
577 PackageMalleability::Malleable => {
578 let mut split_package = None;
579 let timelock = self.soonest_conf_deadline;
580 let aggregable = self.aggregable;
581 let feerate_previous = self.feerate_previous;
582 let height_timer = self.height_timer;
583 let height_original = self.height_original;
584 self.inputs.retain(|outp| {
585 if *split_outp == outp.0 {
586 split_package = Some(PackageTemplate {
587 inputs: vec![(outp.0, outp.1.clone())],
588 malleability: PackageMalleability::Malleable,
589 soonest_conf_deadline: timelock,
599 return split_package;
602 // Note, we may try to split on remote transaction for
603 // which we don't have a competing one (HTLC-Success before
604 // timelock expiration). This explain we don't panic!
605 // We should refactor OnchainTxHandler::block_connected to
606 // only test equality on competing claims.
611 pub(crate) fn merge_package(&mut self, mut merge_from: PackageTemplate) {
612 assert_eq!(self.height_original, merge_from.height_original);
613 if self.malleability == PackageMalleability::Untractable || merge_from.malleability == PackageMalleability::Untractable {
614 panic!("Merging template on untractable packages");
616 if !self.aggregable || !merge_from.aggregable {
617 panic!("Merging non aggregatable packages");
619 if let Some((_, lead_input)) = self.inputs.first() {
620 for (_, v) in merge_from.inputs.iter() {
621 if !lead_input.is_compatible(v) { panic!("Merging outputs from differing types !"); }
623 } else { panic!("Merging template on an empty package"); }
624 for (k, v) in merge_from.inputs.drain(..) {
625 self.inputs.push((k, v));
627 //TODO: verify coverage and sanity?
628 if self.soonest_conf_deadline > merge_from.soonest_conf_deadline {
629 self.soonest_conf_deadline = merge_from.soonest_conf_deadline;
631 if self.feerate_previous > merge_from.feerate_previous {
632 self.feerate_previous = merge_from.feerate_previous;
634 self.height_timer = cmp::min(self.height_timer, merge_from.height_timer);
636 /// Gets the amount of all outptus being spent by this package, only valid for malleable
638 pub(crate) fn package_amount(&self) -> u64 {
640 for (_, outp) in self.inputs.iter() {
641 amounts += outp.amount();
645 pub(crate) fn package_locktime(&self, current_height: u32) -> u32 {
646 let locktime = self.inputs.iter().map(|(_, outp)| outp.absolute_tx_timelock(current_height))
647 .max().expect("There must always be at least one output to spend in a PackageTemplate");
649 // If we ever try to aggregate a `HolderHTLCOutput`s with another output type, we'll likely
650 // end up with an incorrect transaction locktime since the counterparty has included it in
651 // its HTLC signature. This should never happen unless we decide to aggregate outputs across
652 // different channel commitments.
653 #[cfg(debug_assertions)] {
654 if self.inputs.iter().any(|(_, outp)|
655 if let PackageSolvingData::HolderHTLCOutput(outp) = outp {
656 outp.preimage.is_some()
661 debug_assert_eq!(locktime, 0);
663 for timeout_htlc_expiry in self.inputs.iter().filter_map(|(_, outp)|
664 if let PackageSolvingData::HolderHTLCOutput(outp) = outp {
665 if outp.preimage.is_none() {
666 Some(outp.cltv_expiry)
670 debug_assert_eq!(locktime, timeout_htlc_expiry);
676 pub(crate) fn package_weight(&self, destination_script: &Script) -> usize {
677 let mut inputs_weight = 0;
678 let mut witnesses_weight = 2; // count segwit flags
679 for (_, outp) in self.inputs.iter() {
680 // previous_out_point: 36 bytes ; var_int: 1 byte ; sequence: 4 bytes
681 inputs_weight += 41 * WITNESS_SCALE_FACTOR;
682 witnesses_weight += outp.weight();
684 // version: 4 bytes ; count_tx_in: 1 byte ; count_tx_out: 1 byte ; lock_time: 4 bytes
685 let transaction_weight = 10 * WITNESS_SCALE_FACTOR;
686 // value: 8 bytes ; var_int: 1 byte ; pk_script: `destination_script.len()`
687 let output_weight = (8 + 1 + destination_script.len()) * WITNESS_SCALE_FACTOR;
688 inputs_weight + witnesses_weight + transaction_weight + output_weight
691 pub(crate) fn construct_malleable_package_with_external_funding<Signer: WriteableEcdsaChannelSigner>(
692 &self, onchain_handler: &mut OnchainTxHandler<Signer>,
693 ) -> Option<Vec<ExternalHTLCClaim>> {
694 debug_assert!(self.requires_external_funding());
695 let mut htlcs: Option<Vec<ExternalHTLCClaim>> = None;
696 for (previous_output, input) in &self.inputs {
698 PackageSolvingData::HolderHTLCOutput(ref outp) => {
699 debug_assert!(outp.opt_anchors());
700 onchain_handler.generate_external_htlc_claim(&previous_output, &outp.preimage).map(|htlc| {
701 htlcs.get_or_insert_with(|| Vec::with_capacity(self.inputs.len())).push(htlc);
704 _ => debug_assert!(false, "Expected HolderHTLCOutputs to not be aggregated with other input types"),
709 pub(crate) fn finalize_malleable_package<L: Deref, Signer: WriteableEcdsaChannelSigner>(
710 &self, current_height: u32, onchain_handler: &mut OnchainTxHandler<Signer>, value: u64,
711 destination_script: Script, logger: &L
712 ) -> Option<Transaction> where L::Target: Logger {
713 debug_assert!(self.is_malleable());
714 let mut bumped_tx = Transaction {
716 lock_time: PackedLockTime(self.package_locktime(current_height)),
719 script_pubkey: destination_script,
723 for (outpoint, _) in self.inputs.iter() {
724 bumped_tx.input.push(TxIn {
725 previous_output: *outpoint,
726 script_sig: Script::new(),
727 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
728 witness: Witness::new(),
731 for (i, (outpoint, out)) in self.inputs.iter().enumerate() {
732 log_debug!(logger, "Adding claiming input for outpoint {}:{}", outpoint.txid, outpoint.vout);
733 if !out.finalize_input(&mut bumped_tx, i, onchain_handler) { return None; }
735 log_debug!(logger, "Finalized transaction {} ready to broadcast", bumped_tx.txid());
738 pub(crate) fn finalize_untractable_package<L: Deref, Signer: WriteableEcdsaChannelSigner>(
739 &self, onchain_handler: &mut OnchainTxHandler<Signer>, logger: &L,
740 ) -> Option<Transaction> where L::Target: Logger {
741 debug_assert!(!self.is_malleable());
742 if let Some((outpoint, outp)) = self.inputs.first() {
743 if let Some(final_tx) = outp.get_finalized_tx(outpoint, onchain_handler) {
744 log_debug!(logger, "Adding claiming input for outpoint {}:{}", outpoint.txid, outpoint.vout);
745 log_debug!(logger, "Finalized transaction {} ready to broadcast", final_tx.txid());
746 return Some(final_tx);
749 } else { panic!("API Error: Package must not be inputs empty"); }
751 /// In LN, output claimed are time-sensitive, which means we have to spend them before reaching some timelock expiration. At in-channel
752 /// output detection, we generate a first version of a claim tx and associate to it a height timer. A height timer is an absolute block
753 /// height that once reached we should generate a new bumped "version" of the claim tx to be sure that we safely claim outputs before
754 /// that our counterparty can do so. If timelock expires soon, height timer is going to be scaled down in consequence to increase
755 /// frequency of the bump and so increase our bets of success.
756 pub(crate) fn get_height_timer(&self, current_height: u32) -> u32 {
757 if self.soonest_conf_deadline <= current_height + MIDDLE_FREQUENCY_BUMP_INTERVAL {
758 return current_height + HIGH_FREQUENCY_BUMP_INTERVAL
759 } else if self.soonest_conf_deadline - current_height <= LOW_FREQUENCY_BUMP_INTERVAL {
760 return current_height + MIDDLE_FREQUENCY_BUMP_INTERVAL
762 current_height + LOW_FREQUENCY_BUMP_INTERVAL
765 /// Returns value in satoshis to be included as package outgoing output amount and feerate
766 /// which was used to generate the value. Will not return less than `dust_limit_sats` for the
768 pub(crate) fn compute_package_output<F: Deref, L: Deref>(
769 &self, predicted_weight: usize, dust_limit_sats: u64, force_feerate_bump: bool,
770 fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L,
771 ) -> Option<(u64, u64)>
773 F::Target: FeeEstimator,
776 debug_assert!(self.malleability == PackageMalleability::Malleable, "The package output is fixed for non-malleable packages");
777 let input_amounts = self.package_amount();
778 assert!(dust_limit_sats as i64 > 0, "Output script must be broadcastable/have a 'real' dust limit.");
779 // If old feerate is 0, first iteration of this claim, use normal fee calculation
780 if self.feerate_previous != 0 {
781 if let Some((new_fee, feerate)) = feerate_bump(
782 predicted_weight, input_amounts, self.feerate_previous, force_feerate_bump,
783 fee_estimator, logger,
785 return Some((cmp::max(input_amounts as i64 - new_fee as i64, dust_limit_sats as i64) as u64, feerate));
788 if let Some((new_fee, feerate)) = compute_fee_from_spent_amounts(input_amounts, predicted_weight, fee_estimator, logger) {
789 return Some((cmp::max(input_amounts as i64 - new_fee as i64, dust_limit_sats as i64) as u64, feerate));
796 /// Computes a feerate based on the given confirmation target. If a previous feerate was used,
797 /// the new feerate is below it, and `force_feerate_bump` is set, we'll use a 25% increase of
798 /// the previous feerate instead of the new feerate.
799 pub(crate) fn compute_package_feerate<F: Deref>(
800 &self, fee_estimator: &LowerBoundedFeeEstimator<F>, conf_target: ConfirmationTarget,
801 force_feerate_bump: bool,
802 ) -> u32 where F::Target: FeeEstimator {
803 let feerate_estimate = fee_estimator.bounded_sat_per_1000_weight(conf_target);
804 if self.feerate_previous != 0 {
805 // If old feerate inferior to actual one given back by Fee Estimator, use it to compute new fee...
806 if feerate_estimate as u64 > self.feerate_previous {
808 } else if !force_feerate_bump {
809 self.feerate_previous.try_into().unwrap_or(u32::max_value())
811 // ...else just increase the previous feerate by 25% (because that's a nice number)
812 (self.feerate_previous + (self.feerate_previous / 4)).try_into().unwrap_or(u32::max_value())
819 /// Determines whether a package contains an input which must have additional external inputs
820 /// attached to help the spending transaction reach confirmation.
821 pub(crate) fn requires_external_funding(&self) -> bool {
822 self.inputs.iter().find(|input| match input.1 {
823 PackageSolvingData::HolderFundingOutput(ref outp) => outp.opt_anchors(),
824 PackageSolvingData::HolderHTLCOutput(ref outp) => outp.opt_anchors(),
829 pub (crate) fn build_package(txid: Txid, vout: u32, input_solving_data: PackageSolvingData, soonest_conf_deadline: u32, aggregable: bool, height_original: u32) -> Self {
830 let malleability = match input_solving_data {
831 PackageSolvingData::RevokedOutput(..) => PackageMalleability::Malleable,
832 PackageSolvingData::RevokedHTLCOutput(..) => PackageMalleability::Malleable,
833 PackageSolvingData::CounterpartyOfferedHTLCOutput(..) => PackageMalleability::Malleable,
834 PackageSolvingData::CounterpartyReceivedHTLCOutput(..) => PackageMalleability::Malleable,
835 PackageSolvingData::HolderHTLCOutput(ref outp) => if outp.opt_anchors() {
836 PackageMalleability::Malleable
838 PackageMalleability::Untractable
840 PackageSolvingData::HolderFundingOutput(..) => PackageMalleability::Untractable,
842 let mut inputs = Vec::with_capacity(1);
843 inputs.push((BitcoinOutPoint { txid, vout }, input_solving_data));
847 soonest_conf_deadline,
850 height_timer: height_original,
856 impl Writeable for PackageTemplate {
857 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
858 writer.write_all(&(self.inputs.len() as u64).to_be_bytes())?;
859 for (ref outpoint, ref rev_outp) in self.inputs.iter() {
860 outpoint.write(writer)?;
861 rev_outp.write(writer)?;
863 write_tlv_fields!(writer, {
864 (0, self.soonest_conf_deadline, required),
865 (2, self.feerate_previous, required),
866 (4, self.height_original, required),
867 (6, self.height_timer, required)
873 impl Readable for PackageTemplate {
874 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
875 let inputs_count = <u64 as Readable>::read(reader)?;
876 let mut inputs: Vec<(BitcoinOutPoint, PackageSolvingData)> = Vec::with_capacity(cmp::min(inputs_count as usize, MAX_ALLOC_SIZE / 128));
877 for _ in 0..inputs_count {
878 let outpoint = Readable::read(reader)?;
879 let rev_outp = Readable::read(reader)?;
880 inputs.push((outpoint, rev_outp));
882 let (malleability, aggregable) = if let Some((_, lead_input)) = inputs.first() {
884 PackageSolvingData::RevokedOutput(..) => { (PackageMalleability::Malleable, true) },
885 PackageSolvingData::RevokedHTLCOutput(..) => { (PackageMalleability::Malleable, true) },
886 PackageSolvingData::CounterpartyOfferedHTLCOutput(..) => { (PackageMalleability::Malleable, true) },
887 PackageSolvingData::CounterpartyReceivedHTLCOutput(..) => { (PackageMalleability::Malleable, false) },
888 PackageSolvingData::HolderHTLCOutput(ref outp) => if outp.opt_anchors() {
889 (PackageMalleability::Malleable, outp.preimage.is_some())
891 (PackageMalleability::Untractable, false)
893 PackageSolvingData::HolderFundingOutput(..) => { (PackageMalleability::Untractable, false) },
895 } else { return Err(DecodeError::InvalidValue); };
896 let mut soonest_conf_deadline = 0;
897 let mut feerate_previous = 0;
898 let mut height_timer = None;
899 let mut height_original = 0;
900 read_tlv_fields!(reader, {
901 (0, soonest_conf_deadline, required),
902 (2, feerate_previous, required),
903 (4, height_original, required),
904 (6, height_timer, option),
906 if height_timer.is_none() {
907 height_timer = Some(height_original);
912 soonest_conf_deadline,
915 height_timer: height_timer.unwrap(),
921 /// Attempt to propose a bumping fee for a transaction from its spent output's values and predicted
922 /// weight. We start with the highest priority feerate returned by the node's fee estimator then
923 /// fall-back to lower priorities until we have enough value available to suck from.
925 /// If the proposed fee is less than the available spent output's values, we return the proposed
926 /// fee and the corresponding updated feerate. If the proposed fee is equal or more than the
927 /// available spent output's values, we return nothing
928 fn compute_fee_from_spent_amounts<F: Deref, L: Deref>(input_amounts: u64, predicted_weight: usize, fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L) -> Option<(u64, u64)>
929 where F::Target: FeeEstimator,
932 let mut updated_feerate = fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::HighPriority) as u64;
933 let mut fee = updated_feerate * (predicted_weight as u64) / 1000;
934 if input_amounts <= fee {
935 updated_feerate = fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal) as u64;
936 fee = updated_feerate * (predicted_weight as u64) / 1000;
937 if input_amounts <= fee {
938 updated_feerate = fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Background) as u64;
939 fee = updated_feerate * (predicted_weight as u64) / 1000;
940 if input_amounts <= fee {
941 log_error!(logger, "Failed to generate an on-chain punishment tx as even low priority fee ({} sat) was more than the entire claim balance ({} sat)",
945 log_warn!(logger, "Used low priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat)",
947 Some((fee, updated_feerate))
950 log_warn!(logger, "Used medium priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat)",
952 Some((fee, updated_feerate))
955 Some((fee, updated_feerate))
959 /// Attempt to propose a bumping fee for a transaction from its spent output's values and predicted
960 /// weight. If feerates proposed by the fee-estimator have been increasing since last fee-bumping
961 /// attempt, use them. If `force_feerate_bump` is set, we bump the feerate by 25% of the previous
962 /// feerate, or just use the previous feerate otherwise. If a feerate bump did happen, we also
963 /// verify that those bumping heuristics respect BIP125 rules 3) and 4) and if required adjust the
964 /// new fee to meet the RBF policy requirement.
965 fn feerate_bump<F: Deref, L: Deref>(
966 predicted_weight: usize, input_amounts: u64, previous_feerate: u64, force_feerate_bump: bool,
967 fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L,
968 ) -> Option<(u64, u64)>
970 F::Target: FeeEstimator,
973 // If old feerate inferior to actual one given back by Fee Estimator, use it to compute new fee...
974 let (new_fee, new_feerate) = if let Some((new_fee, new_feerate)) = compute_fee_from_spent_amounts(input_amounts, predicted_weight, fee_estimator, logger) {
975 if new_feerate > previous_feerate {
976 (new_fee, new_feerate)
977 } else if !force_feerate_bump {
978 let previous_fee = previous_feerate * (predicted_weight as u64) / 1000;
979 (previous_fee, previous_feerate)
981 // ...else just increase the previous feerate by 25% (because that's a nice number)
982 let bumped_feerate = previous_feerate + (previous_feerate / 4);
983 let bumped_fee = bumped_feerate * (predicted_weight as u64) / 1000;
984 if input_amounts <= bumped_fee {
985 log_warn!(logger, "Can't 25% bump new claiming tx, amount {} is too small", input_amounts);
988 (bumped_fee, bumped_feerate)
991 log_warn!(logger, "Can't new-estimation bump new claiming tx, amount {} is too small", input_amounts);
995 // Our feerates should never decrease. If it hasn't changed though, we just need to
996 // rebroadcast/re-sign the previous claim.
997 debug_assert!(new_feerate >= previous_feerate);
998 if new_feerate == previous_feerate {
999 return Some((new_fee, new_feerate));
1002 let previous_fee = previous_feerate * (predicted_weight as u64) / 1000;
1003 let min_relay_fee = MIN_RELAY_FEE_SAT_PER_1000_WEIGHT * (predicted_weight as u64) / 1000;
1004 // BIP 125 Opt-in Full Replace-by-Fee Signaling
1005 // * 3. The replacement transaction pays an absolute fee of at least the sum paid by the original transactions.
1006 // * 4. The replacement transaction must also pay for its own bandwidth at or above the rate set by the node's minimum relay fee setting.
1007 let new_fee = if new_fee < previous_fee + min_relay_fee {
1008 new_fee + previous_fee + min_relay_fee - new_fee
1012 Some((new_fee, new_fee * 1000 / (predicted_weight as u64)))
1017 use crate::chain::package::{CounterpartyOfferedHTLCOutput, CounterpartyReceivedHTLCOutput, HolderHTLCOutput, PackageTemplate, PackageSolvingData, RevokedOutput, WEIGHT_REVOKED_OUTPUT, weight_offered_htlc, weight_received_htlc};
1018 use crate::chain::Txid;
1019 use crate::ln::chan_utils::HTLCOutputInCommitment;
1020 use crate::ln::{PaymentPreimage, PaymentHash};
1022 use bitcoin::blockdata::constants::WITNESS_SCALE_FACTOR;
1023 use bitcoin::blockdata::script::Script;
1024 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
1026 use bitcoin::hashes::hex::FromHex;
1028 use bitcoin::secp256k1::{PublicKey,SecretKey};
1029 use bitcoin::secp256k1::Secp256k1;
1031 macro_rules! dumb_revk_output {
1032 ($secp_ctx: expr) => {
1034 let dumb_scalar = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
1035 let dumb_point = PublicKey::from_secret_key(&$secp_ctx, &dumb_scalar);
1036 PackageSolvingData::RevokedOutput(RevokedOutput::build(dumb_point, dumb_point, dumb_point, dumb_scalar, 0, 0))
1041 macro_rules! dumb_counterparty_output {
1042 ($secp_ctx: expr, $amt: expr, $opt_anchors: expr) => {
1044 let dumb_scalar = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
1045 let dumb_point = PublicKey::from_secret_key(&$secp_ctx, &dumb_scalar);
1046 let hash = PaymentHash([1; 32]);
1047 let htlc = HTLCOutputInCommitment { offered: true, amount_msat: $amt, cltv_expiry: 0, payment_hash: hash, transaction_output_index: None };
1048 PackageSolvingData::CounterpartyReceivedHTLCOutput(CounterpartyReceivedHTLCOutput::build(dumb_point, dumb_point, dumb_point, htlc, $opt_anchors))
1053 macro_rules! dumb_counterparty_offered_output {
1054 ($secp_ctx: expr, $amt: expr, $opt_anchors: expr) => {
1056 let dumb_scalar = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
1057 let dumb_point = PublicKey::from_secret_key(&$secp_ctx, &dumb_scalar);
1058 let hash = PaymentHash([1; 32]);
1059 let preimage = PaymentPreimage([2;32]);
1060 let htlc = HTLCOutputInCommitment { offered: false, amount_msat: $amt, cltv_expiry: 1000, payment_hash: hash, transaction_output_index: None };
1061 PackageSolvingData::CounterpartyOfferedHTLCOutput(CounterpartyOfferedHTLCOutput::build(dumb_point, dumb_point, dumb_point, preimage, htlc, $opt_anchors))
1066 macro_rules! dumb_htlc_output {
1069 let preimage = PaymentPreimage([2;32]);
1070 PackageSolvingData::HolderHTLCOutput(HolderHTLCOutput::build_accepted(preimage, 0, false))
1077 fn test_package_differing_heights() {
1078 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1079 let secp_ctx = Secp256k1::new();
1080 let revk_outp = dumb_revk_output!(secp_ctx);
1082 let mut package_one_hundred = PackageTemplate::build_package(txid, 0, revk_outp.clone(), 1000, true, 100);
1083 let package_two_hundred = PackageTemplate::build_package(txid, 1, revk_outp.clone(), 1000, true, 200);
1084 package_one_hundred.merge_package(package_two_hundred);
1089 fn test_package_untractable_merge_to() {
1090 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1091 let secp_ctx = Secp256k1::new();
1092 let revk_outp = dumb_revk_output!(secp_ctx);
1093 let htlc_outp = dumb_htlc_output!();
1095 let mut untractable_package = PackageTemplate::build_package(txid, 0, revk_outp.clone(), 1000, true, 100);
1096 let malleable_package = PackageTemplate::build_package(txid, 1, htlc_outp.clone(), 1000, true, 100);
1097 untractable_package.merge_package(malleable_package);
1102 fn test_package_untractable_merge_from() {
1103 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1104 let secp_ctx = Secp256k1::new();
1105 let htlc_outp = dumb_htlc_output!();
1106 let revk_outp = dumb_revk_output!(secp_ctx);
1108 let mut malleable_package = PackageTemplate::build_package(txid, 0, htlc_outp.clone(), 1000, true, 100);
1109 let untractable_package = PackageTemplate::build_package(txid, 1, revk_outp.clone(), 1000, true, 100);
1110 malleable_package.merge_package(untractable_package);
1115 fn test_package_noaggregation_to() {
1116 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1117 let secp_ctx = Secp256k1::new();
1118 let revk_outp = dumb_revk_output!(secp_ctx);
1120 let mut noaggregation_package = PackageTemplate::build_package(txid, 0, revk_outp.clone(), 1000, false, 100);
1121 let aggregation_package = PackageTemplate::build_package(txid, 1, revk_outp.clone(), 1000, true, 100);
1122 noaggregation_package.merge_package(aggregation_package);
1127 fn test_package_noaggregation_from() {
1128 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1129 let secp_ctx = Secp256k1::new();
1130 let revk_outp = dumb_revk_output!(secp_ctx);
1132 let mut aggregation_package = PackageTemplate::build_package(txid, 0, revk_outp.clone(), 1000, true, 100);
1133 let noaggregation_package = PackageTemplate::build_package(txid, 1, revk_outp.clone(), 1000, false, 100);
1134 aggregation_package.merge_package(noaggregation_package);
1139 fn test_package_empty() {
1140 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1141 let secp_ctx = Secp256k1::new();
1142 let revk_outp = dumb_revk_output!(secp_ctx);
1144 let mut empty_package = PackageTemplate::build_package(txid, 0, revk_outp.clone(), 1000, true, 100);
1145 empty_package.inputs = vec![];
1146 let package = PackageTemplate::build_package(txid, 1, revk_outp.clone(), 1000, true, 100);
1147 empty_package.merge_package(package);
1152 fn test_package_differing_categories() {
1153 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1154 let secp_ctx = Secp256k1::new();
1155 let revk_outp = dumb_revk_output!(secp_ctx);
1156 let counterparty_outp = dumb_counterparty_output!(secp_ctx, 0, false);
1158 let mut revoked_package = PackageTemplate::build_package(txid, 0, revk_outp, 1000, true, 100);
1159 let counterparty_package = PackageTemplate::build_package(txid, 1, counterparty_outp, 1000, true, 100);
1160 revoked_package.merge_package(counterparty_package);
1164 fn test_package_split_malleable() {
1165 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1166 let secp_ctx = Secp256k1::new();
1167 let revk_outp_one = dumb_revk_output!(secp_ctx);
1168 let revk_outp_two = dumb_revk_output!(secp_ctx);
1169 let revk_outp_three = dumb_revk_output!(secp_ctx);
1171 let mut package_one = PackageTemplate::build_package(txid, 0, revk_outp_one, 1000, true, 100);
1172 let package_two = PackageTemplate::build_package(txid, 1, revk_outp_two, 1000, true, 100);
1173 let package_three = PackageTemplate::build_package(txid, 2, revk_outp_three, 1000, true, 100);
1175 package_one.merge_package(package_two);
1176 package_one.merge_package(package_three);
1177 assert_eq!(package_one.outpoints().len(), 3);
1179 if let Some(split_package) = package_one.split_package(&BitcoinOutPoint { txid, vout: 1 }) {
1180 // Packages attributes should be identical
1181 assert!(split_package.is_malleable());
1182 assert_eq!(split_package.soonest_conf_deadline, package_one.soonest_conf_deadline);
1183 assert_eq!(split_package.aggregable, package_one.aggregable);
1184 assert_eq!(split_package.feerate_previous, package_one.feerate_previous);
1185 assert_eq!(split_package.height_timer, package_one.height_timer);
1186 assert_eq!(split_package.height_original, package_one.height_original);
1187 } else { panic!(); }
1188 assert_eq!(package_one.outpoints().len(), 2);
1192 fn test_package_split_untractable() {
1193 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1194 let htlc_outp_one = dumb_htlc_output!();
1196 let mut package_one = PackageTemplate::build_package(txid, 0, htlc_outp_one, 1000, true, 100);
1197 let ret_split = package_one.split_package(&BitcoinOutPoint { txid, vout: 0});
1198 assert!(ret_split.is_none());
1202 fn test_package_timer() {
1203 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1204 let secp_ctx = Secp256k1::new();
1205 let revk_outp = dumb_revk_output!(secp_ctx);
1207 let mut package = PackageTemplate::build_package(txid, 0, revk_outp, 1000, true, 100);
1208 assert_eq!(package.timer(), 100);
1209 package.set_timer(101);
1210 assert_eq!(package.timer(), 101);
1214 fn test_package_amounts() {
1215 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1216 let secp_ctx = Secp256k1::new();
1217 let counterparty_outp = dumb_counterparty_output!(secp_ctx, 1_000_000, false);
1219 let package = PackageTemplate::build_package(txid, 0, counterparty_outp, 1000, true, 100);
1220 assert_eq!(package.package_amount(), 1000);
1224 fn test_package_weight() {
1225 let txid = Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap();
1226 let secp_ctx = Secp256k1::new();
1228 // (nVersion (4) + nLocktime (4) + count_tx_in (1) + prevout (36) + sequence (4) + script_length (1) + count_tx_out (1) + value (8) + var_int (1)) * WITNESS_SCALE_FACTOR + witness marker (2)
1229 let weight_sans_output = (4 + 4 + 1 + 36 + 4 + 1 + 1 + 8 + 1) * WITNESS_SCALE_FACTOR + 2;
1232 let revk_outp = dumb_revk_output!(secp_ctx);
1233 let package = PackageTemplate::build_package(txid, 0, revk_outp, 0, true, 100);
1234 assert_eq!(package.package_weight(&Script::new()), weight_sans_output + WEIGHT_REVOKED_OUTPUT as usize);
1238 for &opt_anchors in [false, true].iter() {
1239 let counterparty_outp = dumb_counterparty_output!(secp_ctx, 1_000_000, opt_anchors);
1240 let package = PackageTemplate::build_package(txid, 0, counterparty_outp, 1000, true, 100);
1241 assert_eq!(package.package_weight(&Script::new()), weight_sans_output + weight_received_htlc(opt_anchors) as usize);
1246 for &opt_anchors in [false, true].iter() {
1247 let counterparty_outp = dumb_counterparty_offered_output!(secp_ctx, 1_000_000, opt_anchors);
1248 let package = PackageTemplate::build_package(txid, 0, counterparty_outp, 1000, true, 100);
1249 assert_eq!(package.package_weight(&Script::new()), weight_sans_output + weight_offered_htlc(opt_anchors) as usize);