1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
33 use crate::blinded_path::BlindedPath;
34 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
36 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
37 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
38 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
39 use crate::chain::transaction::{OutPoint, TransactionData};
41 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
42 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
43 // construct one themselves.
44 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
45 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
46 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
47 #[cfg(any(feature = "_test_utils", test))]
48 use crate::ln::features::Bolt11InvoiceFeatures;
49 use crate::routing::gossip::NetworkGraph;
50 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
51 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
53 use crate::ln::onion_utils;
54 use crate::ln::onion_utils::HTLCFailReason;
55 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
57 use crate::ln::outbound_payment;
58 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
59 use crate::ln::wire::Encode;
60 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
61 use crate::offers::invoice_error::InvoiceError;
62 use crate::offers::merkle::SignError;
63 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
64 use crate::offers::parse::Bolt12SemanticError;
65 use crate::offers::refund::{Refund, RefundBuilder};
66 use crate::onion_message::{Destination, OffersMessage, OffersMessageHandler, PendingOnionMessage, new_pending_onion_message};
67 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, WriteableEcdsaChannelSigner};
68 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
69 use crate::util::wakers::{Future, Notifier};
70 use crate::util::scid_utils::fake_scid;
71 use crate::util::string::UntrustedString;
72 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
73 use crate::util::logger::{Level, Logger};
74 use crate::util::errors::APIError;
76 use alloc::collections::{btree_map, BTreeMap};
79 use crate::prelude::*;
81 use core::cell::RefCell;
83 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
84 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
85 use core::time::Duration;
88 // Re-export this for use in the public API.
89 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
90 use crate::ln::script::ShutdownScript;
92 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
94 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
95 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
96 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
98 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
99 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
100 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
101 // before we forward it.
103 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
104 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
105 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
106 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
107 // our payment, which we can use to decode errors or inform the user that the payment was sent.
109 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
110 pub(super) enum PendingHTLCRouting {
112 onion_packet: msgs::OnionPacket,
113 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
114 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
115 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
118 payment_data: msgs::FinalOnionHopData,
119 payment_metadata: Option<Vec<u8>>,
120 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
121 phantom_shared_secret: Option<[u8; 32]>,
122 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
123 custom_tlvs: Vec<(u64, Vec<u8>)>,
126 /// This was added in 0.0.116 and will break deserialization on downgrades.
127 payment_data: Option<msgs::FinalOnionHopData>,
128 payment_preimage: PaymentPreimage,
129 payment_metadata: Option<Vec<u8>>,
130 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
131 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
132 custom_tlvs: Vec<(u64, Vec<u8>)>,
136 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
137 pub(super) struct PendingHTLCInfo {
138 pub(super) routing: PendingHTLCRouting,
139 pub(super) incoming_shared_secret: [u8; 32],
140 payment_hash: PaymentHash,
142 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
143 /// Sender intended amount to forward or receive (actual amount received
144 /// may overshoot this in either case)
145 pub(super) outgoing_amt_msat: u64,
146 pub(super) outgoing_cltv_value: u32,
147 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
148 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
149 pub(super) skimmed_fee_msat: Option<u64>,
152 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
153 pub(super) enum HTLCFailureMsg {
154 Relay(msgs::UpdateFailHTLC),
155 Malformed(msgs::UpdateFailMalformedHTLC),
158 /// Stores whether we can't forward an HTLC or relevant forwarding info
159 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
160 pub(super) enum PendingHTLCStatus {
161 Forward(PendingHTLCInfo),
162 Fail(HTLCFailureMsg),
165 pub(super) struct PendingAddHTLCInfo {
166 pub(super) forward_info: PendingHTLCInfo,
168 // These fields are produced in `forward_htlcs()` and consumed in
169 // `process_pending_htlc_forwards()` for constructing the
170 // `HTLCSource::PreviousHopData` for failed and forwarded
173 // Note that this may be an outbound SCID alias for the associated channel.
174 prev_short_channel_id: u64,
176 prev_funding_outpoint: OutPoint,
177 prev_user_channel_id: u128,
180 pub(super) enum HTLCForwardInfo {
181 AddHTLC(PendingAddHTLCInfo),
184 err_packet: msgs::OnionErrorPacket,
188 /// Tracks the inbound corresponding to an outbound HTLC
189 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
190 pub(crate) struct HTLCPreviousHopData {
191 // Note that this may be an outbound SCID alias for the associated channel.
192 short_channel_id: u64,
193 user_channel_id: Option<u128>,
195 incoming_packet_shared_secret: [u8; 32],
196 phantom_shared_secret: Option<[u8; 32]>,
198 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
199 // channel with a preimage provided by the forward channel.
204 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
206 /// This is only here for backwards-compatibility in serialization, in the future it can be
207 /// removed, breaking clients running 0.0.106 and earlier.
208 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
210 /// Contains the payer-provided preimage.
211 Spontaneous(PaymentPreimage),
214 /// HTLCs that are to us and can be failed/claimed by the user
215 struct ClaimableHTLC {
216 prev_hop: HTLCPreviousHopData,
218 /// The amount (in msats) of this MPP part
220 /// The amount (in msats) that the sender intended to be sent in this MPP
221 /// part (used for validating total MPP amount)
222 sender_intended_value: u64,
223 onion_payload: OnionPayload,
225 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
226 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
227 total_value_received: Option<u64>,
228 /// The sender intended sum total of all MPP parts specified in the onion
230 /// The extra fee our counterparty skimmed off the top of this HTLC.
231 counterparty_skimmed_fee_msat: Option<u64>,
234 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
235 fn from(val: &ClaimableHTLC) -> Self {
236 events::ClaimedHTLC {
237 channel_id: val.prev_hop.outpoint.to_channel_id(),
238 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
239 cltv_expiry: val.cltv_expiry,
240 value_msat: val.value,
241 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
246 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
247 /// a payment and ensure idempotency in LDK.
249 /// This is not exported to bindings users as we just use [u8; 32] directly
250 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
251 pub struct PaymentId(pub [u8; Self::LENGTH]);
254 /// Number of bytes in the id.
255 pub const LENGTH: usize = 32;
258 impl Writeable for PaymentId {
259 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
264 impl Readable for PaymentId {
265 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
266 let buf: [u8; 32] = Readable::read(r)?;
271 impl core::fmt::Display for PaymentId {
272 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
273 crate::util::logger::DebugBytes(&self.0).fmt(f)
277 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
279 /// This is not exported to bindings users as we just use [u8; 32] directly
280 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
281 pub struct InterceptId(pub [u8; 32]);
283 impl Writeable for InterceptId {
284 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
289 impl Readable for InterceptId {
290 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
291 let buf: [u8; 32] = Readable::read(r)?;
296 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
297 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
298 pub(crate) enum SentHTLCId {
299 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
300 OutboundRoute { session_priv: SecretKey },
303 pub(crate) fn from_source(source: &HTLCSource) -> Self {
305 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
306 short_channel_id: hop_data.short_channel_id,
307 htlc_id: hop_data.htlc_id,
309 HTLCSource::OutboundRoute { session_priv, .. } =>
310 Self::OutboundRoute { session_priv: *session_priv },
314 impl_writeable_tlv_based_enum!(SentHTLCId,
315 (0, PreviousHopData) => {
316 (0, short_channel_id, required),
317 (2, htlc_id, required),
319 (2, OutboundRoute) => {
320 (0, session_priv, required),
325 /// Tracks the inbound corresponding to an outbound HTLC
326 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
327 #[derive(Clone, Debug, PartialEq, Eq)]
328 pub(crate) enum HTLCSource {
329 PreviousHopData(HTLCPreviousHopData),
332 session_priv: SecretKey,
333 /// Technically we can recalculate this from the route, but we cache it here to avoid
334 /// doing a double-pass on route when we get a failure back
335 first_hop_htlc_msat: u64,
336 payment_id: PaymentId,
339 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
340 impl core::hash::Hash for HTLCSource {
341 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
343 HTLCSource::PreviousHopData(prev_hop_data) => {
345 prev_hop_data.hash(hasher);
347 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
350 session_priv[..].hash(hasher);
351 payment_id.hash(hasher);
352 first_hop_htlc_msat.hash(hasher);
358 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
360 pub fn dummy() -> Self {
361 HTLCSource::OutboundRoute {
362 path: Path { hops: Vec::new(), blinded_tail: None },
363 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
364 first_hop_htlc_msat: 0,
365 payment_id: PaymentId([2; 32]),
369 #[cfg(debug_assertions)]
370 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
371 /// transaction. Useful to ensure different datastructures match up.
372 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
373 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
374 *first_hop_htlc_msat == htlc.amount_msat
376 // There's nothing we can check for forwarded HTLCs
382 struct InboundOnionErr {
388 /// This enum is used to specify which error data to send to peers when failing back an HTLC
389 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
391 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
392 #[derive(Clone, Copy)]
393 pub enum FailureCode {
394 /// We had a temporary error processing the payment. Useful if no other error codes fit
395 /// and you want to indicate that the payer may want to retry.
396 TemporaryNodeFailure,
397 /// We have a required feature which was not in this onion. For example, you may require
398 /// some additional metadata that was not provided with this payment.
399 RequiredNodeFeatureMissing,
400 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
401 /// the HTLC is too close to the current block height for safe handling.
402 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
403 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
404 IncorrectOrUnknownPaymentDetails,
405 /// We failed to process the payload after the onion was decrypted. You may wish to
406 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
408 /// If available, the tuple data may include the type number and byte offset in the
409 /// decrypted byte stream where the failure occurred.
410 InvalidOnionPayload(Option<(u64, u16)>),
413 impl Into<u16> for FailureCode {
414 fn into(self) -> u16 {
416 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
417 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
418 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
419 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
424 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
425 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
426 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
427 /// peer_state lock. We then return the set of things that need to be done outside the lock in
428 /// this struct and call handle_error!() on it.
430 struct MsgHandleErrInternal {
431 err: msgs::LightningError,
432 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
433 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
434 channel_capacity: Option<u64>,
436 impl MsgHandleErrInternal {
438 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
440 err: LightningError {
442 action: msgs::ErrorAction::SendErrorMessage {
443 msg: msgs::ErrorMessage {
450 shutdown_finish: None,
451 channel_capacity: None,
455 fn from_no_close(err: msgs::LightningError) -> Self {
456 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
459 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
460 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
461 let action = if shutdown_res.monitor_update.is_some() {
462 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
463 // should disconnect our peer such that we force them to broadcast their latest
464 // commitment upon reconnecting.
465 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
467 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
470 err: LightningError { err, action },
471 chan_id: Some((channel_id, user_channel_id)),
472 shutdown_finish: Some((shutdown_res, channel_update)),
473 channel_capacity: Some(channel_capacity)
477 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
480 ChannelError::Warn(msg) => LightningError {
482 action: msgs::ErrorAction::SendWarningMessage {
483 msg: msgs::WarningMessage {
487 log_level: Level::Warn,
490 ChannelError::Ignore(msg) => LightningError {
492 action: msgs::ErrorAction::IgnoreError,
494 ChannelError::Close(msg) => LightningError {
496 action: msgs::ErrorAction::SendErrorMessage {
497 msg: msgs::ErrorMessage {
505 shutdown_finish: None,
506 channel_capacity: None,
510 fn closes_channel(&self) -> bool {
511 self.chan_id.is_some()
515 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
516 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
517 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
518 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
519 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
521 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
522 /// be sent in the order they appear in the return value, however sometimes the order needs to be
523 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
524 /// they were originally sent). In those cases, this enum is also returned.
525 #[derive(Clone, PartialEq)]
526 pub(super) enum RAACommitmentOrder {
527 /// Send the CommitmentUpdate messages first
529 /// Send the RevokeAndACK message first
533 /// Information about a payment which is currently being claimed.
534 struct ClaimingPayment {
536 payment_purpose: events::PaymentPurpose,
537 receiver_node_id: PublicKey,
538 htlcs: Vec<events::ClaimedHTLC>,
539 sender_intended_value: Option<u64>,
541 impl_writeable_tlv_based!(ClaimingPayment, {
542 (0, amount_msat, required),
543 (2, payment_purpose, required),
544 (4, receiver_node_id, required),
545 (5, htlcs, optional_vec),
546 (7, sender_intended_value, option),
549 struct ClaimablePayment {
550 purpose: events::PaymentPurpose,
551 onion_fields: Option<RecipientOnionFields>,
552 htlcs: Vec<ClaimableHTLC>,
555 /// Information about claimable or being-claimed payments
556 struct ClaimablePayments {
557 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
558 /// failed/claimed by the user.
560 /// Note that, no consistency guarantees are made about the channels given here actually
561 /// existing anymore by the time you go to read them!
563 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
564 /// we don't get a duplicate payment.
565 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
567 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
568 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
569 /// as an [`events::Event::PaymentClaimed`].
570 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
573 /// Events which we process internally but cannot be processed immediately at the generation site
574 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
575 /// running normally, and specifically must be processed before any other non-background
576 /// [`ChannelMonitorUpdate`]s are applied.
578 enum BackgroundEvent {
579 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
580 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
581 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
582 /// channel has been force-closed we do not need the counterparty node_id.
584 /// Note that any such events are lost on shutdown, so in general they must be updates which
585 /// are regenerated on startup.
586 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
587 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
588 /// channel to continue normal operation.
590 /// In general this should be used rather than
591 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
592 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
593 /// error the other variant is acceptable.
595 /// Note that any such events are lost on shutdown, so in general they must be updates which
596 /// are regenerated on startup.
597 MonitorUpdateRegeneratedOnStartup {
598 counterparty_node_id: PublicKey,
599 funding_txo: OutPoint,
600 update: ChannelMonitorUpdate
602 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
603 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
605 MonitorUpdatesComplete {
606 counterparty_node_id: PublicKey,
607 channel_id: ChannelId,
612 pub(crate) enum MonitorUpdateCompletionAction {
613 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
614 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
615 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
616 /// event can be generated.
617 PaymentClaimed { payment_hash: PaymentHash },
618 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
619 /// operation of another channel.
621 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
622 /// from completing a monitor update which removes the payment preimage until the inbound edge
623 /// completes a monitor update containing the payment preimage. In that case, after the inbound
624 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
626 EmitEventAndFreeOtherChannel {
627 event: events::Event,
628 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
630 /// Indicates we should immediately resume the operation of another channel, unless there is
631 /// some other reason why the channel is blocked. In practice this simply means immediately
632 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
634 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
635 /// from completing a monitor update which removes the payment preimage until the inbound edge
636 /// completes a monitor update containing the payment preimage. However, we use this variant
637 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
638 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
640 /// This variant should thus never be written to disk, as it is processed inline rather than
641 /// stored for later processing.
642 FreeOtherChannelImmediately {
643 downstream_counterparty_node_id: PublicKey,
644 downstream_funding_outpoint: OutPoint,
645 blocking_action: RAAMonitorUpdateBlockingAction,
649 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
650 (0, PaymentClaimed) => { (0, payment_hash, required) },
651 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
652 // *immediately*. However, for simplicity we implement read/write here.
653 (1, FreeOtherChannelImmediately) => {
654 (0, downstream_counterparty_node_id, required),
655 (2, downstream_funding_outpoint, required),
656 (4, blocking_action, required),
658 (2, EmitEventAndFreeOtherChannel) => {
659 (0, event, upgradable_required),
660 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
661 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
662 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
663 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
664 // downgrades to prior versions.
665 (1, downstream_counterparty_and_funding_outpoint, option),
669 #[derive(Clone, Debug, PartialEq, Eq)]
670 pub(crate) enum EventCompletionAction {
671 ReleaseRAAChannelMonitorUpdate {
672 counterparty_node_id: PublicKey,
673 channel_funding_outpoint: OutPoint,
676 impl_writeable_tlv_based_enum!(EventCompletionAction,
677 (0, ReleaseRAAChannelMonitorUpdate) => {
678 (0, channel_funding_outpoint, required),
679 (2, counterparty_node_id, required),
683 #[derive(Clone, PartialEq, Eq, Debug)]
684 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
685 /// the blocked action here. See enum variants for more info.
686 pub(crate) enum RAAMonitorUpdateBlockingAction {
687 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
688 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
690 ForwardedPaymentInboundClaim {
691 /// The upstream channel ID (i.e. the inbound edge).
692 channel_id: ChannelId,
693 /// The HTLC ID on the inbound edge.
698 impl RAAMonitorUpdateBlockingAction {
699 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
700 Self::ForwardedPaymentInboundClaim {
701 channel_id: prev_hop.outpoint.to_channel_id(),
702 htlc_id: prev_hop.htlc_id,
707 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
708 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
712 /// State we hold per-peer.
713 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
714 /// `channel_id` -> `ChannelPhase`
716 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
717 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
718 /// `temporary_channel_id` -> `InboundChannelRequest`.
720 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
721 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
722 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
723 /// the channel is rejected, then the entry is simply removed.
724 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
725 /// The latest `InitFeatures` we heard from the peer.
726 latest_features: InitFeatures,
727 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
728 /// for broadcast messages, where ordering isn't as strict).
729 pub(super) pending_msg_events: Vec<MessageSendEvent>,
730 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
731 /// user but which have not yet completed.
733 /// Note that the channel may no longer exist. For example if the channel was closed but we
734 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
735 /// for a missing channel.
736 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
737 /// Map from a specific channel to some action(s) that should be taken when all pending
738 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
740 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
741 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
742 /// channels with a peer this will just be one allocation and will amount to a linear list of
743 /// channels to walk, avoiding the whole hashing rigmarole.
745 /// Note that the channel may no longer exist. For example, if a channel was closed but we
746 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
747 /// for a missing channel. While a malicious peer could construct a second channel with the
748 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
749 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
750 /// duplicates do not occur, so such channels should fail without a monitor update completing.
751 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
752 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
753 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
754 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
755 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
756 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
757 /// The peer is currently connected (i.e. we've seen a
758 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
759 /// [`ChannelMessageHandler::peer_disconnected`].
763 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
764 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
765 /// If true is passed for `require_disconnected`, the function will return false if we haven't
766 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
767 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
768 if require_disconnected && self.is_connected {
771 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
772 && self.monitor_update_blocked_actions.is_empty()
773 && self.in_flight_monitor_updates.is_empty()
776 // Returns a count of all channels we have with this peer, including unfunded channels.
777 fn total_channel_count(&self) -> usize {
778 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
781 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
782 fn has_channel(&self, channel_id: &ChannelId) -> bool {
783 self.channel_by_id.contains_key(channel_id) ||
784 self.inbound_channel_request_by_id.contains_key(channel_id)
788 /// A not-yet-accepted inbound (from counterparty) channel. Once
789 /// accepted, the parameters will be used to construct a channel.
790 pub(super) struct InboundChannelRequest {
791 /// The original OpenChannel message.
792 pub open_channel_msg: msgs::OpenChannel,
793 /// The number of ticks remaining before the request expires.
794 pub ticks_remaining: i32,
797 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
798 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
799 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
801 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
802 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
804 /// For users who don't want to bother doing their own payment preimage storage, we also store that
807 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
808 /// and instead encoding it in the payment secret.
809 struct PendingInboundPayment {
810 /// The payment secret that the sender must use for us to accept this payment
811 payment_secret: PaymentSecret,
812 /// Time at which this HTLC expires - blocks with a header time above this value will result in
813 /// this payment being removed.
815 /// Arbitrary identifier the user specifies (or not)
816 user_payment_id: u64,
817 // Other required attributes of the payment, optionally enforced:
818 payment_preimage: Option<PaymentPreimage>,
819 min_value_msat: Option<u64>,
822 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
823 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
824 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
825 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
826 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
827 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
828 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
829 /// of [`KeysManager`] and [`DefaultRouter`].
831 /// This is not exported to bindings users as type aliases aren't supported in most languages.
832 #[cfg(not(c_bindings))]
833 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
841 Arc<NetworkGraph<Arc<L>>>,
843 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
844 ProbabilisticScoringFeeParameters,
845 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
850 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
851 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
852 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
853 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
854 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
855 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
856 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
857 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
858 /// of [`KeysManager`] and [`DefaultRouter`].
860 /// This is not exported to bindings users as type aliases aren't supported in most languages.
861 #[cfg(not(c_bindings))]
862 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
871 &'f NetworkGraph<&'g L>,
873 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
874 ProbabilisticScoringFeeParameters,
875 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
880 /// A trivial trait which describes any [`ChannelManager`].
882 /// This is not exported to bindings users as general cover traits aren't useful in other
884 pub trait AChannelManager {
885 /// A type implementing [`chain::Watch`].
886 type Watch: chain::Watch<Self::Signer> + ?Sized;
887 /// A type that may be dereferenced to [`Self::Watch`].
888 type M: Deref<Target = Self::Watch>;
889 /// A type implementing [`BroadcasterInterface`].
890 type Broadcaster: BroadcasterInterface + ?Sized;
891 /// A type that may be dereferenced to [`Self::Broadcaster`].
892 type T: Deref<Target = Self::Broadcaster>;
893 /// A type implementing [`EntropySource`].
894 type EntropySource: EntropySource + ?Sized;
895 /// A type that may be dereferenced to [`Self::EntropySource`].
896 type ES: Deref<Target = Self::EntropySource>;
897 /// A type implementing [`NodeSigner`].
898 type NodeSigner: NodeSigner + ?Sized;
899 /// A type that may be dereferenced to [`Self::NodeSigner`].
900 type NS: Deref<Target = Self::NodeSigner>;
901 /// A type implementing [`WriteableEcdsaChannelSigner`].
902 type Signer: WriteableEcdsaChannelSigner + Sized;
903 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
904 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
905 /// A type that may be dereferenced to [`Self::SignerProvider`].
906 type SP: Deref<Target = Self::SignerProvider>;
907 /// A type implementing [`FeeEstimator`].
908 type FeeEstimator: FeeEstimator + ?Sized;
909 /// A type that may be dereferenced to [`Self::FeeEstimator`].
910 type F: Deref<Target = Self::FeeEstimator>;
911 /// A type implementing [`Router`].
912 type Router: Router + ?Sized;
913 /// A type that may be dereferenced to [`Self::Router`].
914 type R: Deref<Target = Self::Router>;
915 /// A type implementing [`Logger`].
916 type Logger: Logger + ?Sized;
917 /// A type that may be dereferenced to [`Self::Logger`].
918 type L: Deref<Target = Self::Logger>;
919 /// Returns a reference to the actual [`ChannelManager`] object.
920 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
923 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
924 for ChannelManager<M, T, ES, NS, SP, F, R, L>
926 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
927 T::Target: BroadcasterInterface,
928 ES::Target: EntropySource,
929 NS::Target: NodeSigner,
930 SP::Target: SignerProvider,
931 F::Target: FeeEstimator,
935 type Watch = M::Target;
937 type Broadcaster = T::Target;
939 type EntropySource = ES::Target;
941 type NodeSigner = NS::Target;
943 type Signer = <SP::Target as SignerProvider>::Signer;
944 type SignerProvider = SP::Target;
946 type FeeEstimator = F::Target;
948 type Router = R::Target;
950 type Logger = L::Target;
952 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
955 /// Manager which keeps track of a number of channels and sends messages to the appropriate
956 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
958 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
959 /// to individual Channels.
961 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
962 /// all peers during write/read (though does not modify this instance, only the instance being
963 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
964 /// called [`funding_transaction_generated`] for outbound channels) being closed.
966 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
967 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
968 /// [`ChannelMonitorUpdate`] before returning from
969 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
970 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
971 /// `ChannelManager` operations from occurring during the serialization process). If the
972 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
973 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
974 /// will be lost (modulo on-chain transaction fees).
976 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
977 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
978 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
980 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
981 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
982 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
983 /// offline for a full minute. In order to track this, you must call
984 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
986 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
987 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
988 /// not have a channel with being unable to connect to us or open new channels with us if we have
989 /// many peers with unfunded channels.
991 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
992 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
993 /// never limited. Please ensure you limit the count of such channels yourself.
995 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
996 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
997 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
998 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
999 /// you're using lightning-net-tokio.
1001 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1002 /// [`funding_created`]: msgs::FundingCreated
1003 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1004 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1005 /// [`update_channel`]: chain::Watch::update_channel
1006 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1007 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1008 /// [`read`]: ReadableArgs::read
1011 // The tree structure below illustrates the lock order requirements for the different locks of the
1012 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1013 // and should then be taken in the order of the lowest to the highest level in the tree.
1014 // Note that locks on different branches shall not be taken at the same time, as doing so will
1015 // create a new lock order for those specific locks in the order they were taken.
1019 // `pending_offers_messages`
1021 // `total_consistency_lock`
1023 // |__`forward_htlcs`
1025 // | |__`pending_intercepted_htlcs`
1027 // |__`per_peer_state`
1029 // |__`pending_inbound_payments`
1031 // |__`claimable_payments`
1033 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1039 // |__`short_to_chan_info`
1041 // |__`outbound_scid_aliases`
1045 // |__`pending_events`
1047 // |__`pending_background_events`
1049 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1051 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1052 T::Target: BroadcasterInterface,
1053 ES::Target: EntropySource,
1054 NS::Target: NodeSigner,
1055 SP::Target: SignerProvider,
1056 F::Target: FeeEstimator,
1060 default_configuration: UserConfig,
1061 chain_hash: ChainHash,
1062 fee_estimator: LowerBoundedFeeEstimator<F>,
1068 /// See `ChannelManager` struct-level documentation for lock order requirements.
1070 pub(super) best_block: RwLock<BestBlock>,
1072 best_block: RwLock<BestBlock>,
1073 secp_ctx: Secp256k1<secp256k1::All>,
1075 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1076 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1077 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1078 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1080 /// See `ChannelManager` struct-level documentation for lock order requirements.
1081 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1083 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1084 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1085 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1086 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1087 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1088 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1089 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1090 /// after reloading from disk while replaying blocks against ChannelMonitors.
1092 /// See `PendingOutboundPayment` documentation for more info.
1094 /// See `ChannelManager` struct-level documentation for lock order requirements.
1095 pending_outbound_payments: OutboundPayments,
1097 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1099 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1100 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1101 /// and via the classic SCID.
1103 /// Note that no consistency guarantees are made about the existence of a channel with the
1104 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1106 /// See `ChannelManager` struct-level documentation for lock order requirements.
1108 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1110 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1111 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1112 /// until the user tells us what we should do with them.
1114 /// See `ChannelManager` struct-level documentation for lock order requirements.
1115 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1117 /// The sets of payments which are claimable or currently being claimed. See
1118 /// [`ClaimablePayments`]' individual field docs for more info.
1120 /// See `ChannelManager` struct-level documentation for lock order requirements.
1121 claimable_payments: Mutex<ClaimablePayments>,
1123 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1124 /// and some closed channels which reached a usable state prior to being closed. This is used
1125 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1126 /// active channel list on load.
1128 /// See `ChannelManager` struct-level documentation for lock order requirements.
1129 outbound_scid_aliases: Mutex<HashSet<u64>>,
1131 /// `channel_id` -> `counterparty_node_id`.
1133 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1134 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1135 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1137 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1138 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1139 /// the handling of the events.
1141 /// Note that no consistency guarantees are made about the existence of a peer with the
1142 /// `counterparty_node_id` in our other maps.
1145 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1146 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1147 /// would break backwards compatability.
1148 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1149 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1150 /// required to access the channel with the `counterparty_node_id`.
1152 /// See `ChannelManager` struct-level documentation for lock order requirements.
1153 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1155 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1157 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1158 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1159 /// confirmation depth.
1161 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1162 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1163 /// channel with the `channel_id` in our other maps.
1165 /// See `ChannelManager` struct-level documentation for lock order requirements.
1167 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1169 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1171 our_network_pubkey: PublicKey,
1173 inbound_payment_key: inbound_payment::ExpandedKey,
1175 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1176 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1177 /// we encrypt the namespace identifier using these bytes.
1179 /// [fake scids]: crate::util::scid_utils::fake_scid
1180 fake_scid_rand_bytes: [u8; 32],
1182 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1183 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1184 /// keeping additional state.
1185 probing_cookie_secret: [u8; 32],
1187 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1188 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1189 /// very far in the past, and can only ever be up to two hours in the future.
1190 highest_seen_timestamp: AtomicUsize,
1192 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1193 /// basis, as well as the peer's latest features.
1195 /// If we are connected to a peer we always at least have an entry here, even if no channels
1196 /// are currently open with that peer.
1198 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1199 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1202 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1204 /// See `ChannelManager` struct-level documentation for lock order requirements.
1205 #[cfg(not(any(test, feature = "_test_utils")))]
1206 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1207 #[cfg(any(test, feature = "_test_utils"))]
1208 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1210 /// The set of events which we need to give to the user to handle. In some cases an event may
1211 /// require some further action after the user handles it (currently only blocking a monitor
1212 /// update from being handed to the user to ensure the included changes to the channel state
1213 /// are handled by the user before they're persisted durably to disk). In that case, the second
1214 /// element in the tuple is set to `Some` with further details of the action.
1216 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1217 /// could be in the middle of being processed without the direct mutex held.
1219 /// See `ChannelManager` struct-level documentation for lock order requirements.
1220 #[cfg(not(any(test, feature = "_test_utils")))]
1221 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1222 #[cfg(any(test, feature = "_test_utils"))]
1223 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1225 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1226 pending_events_processor: AtomicBool,
1228 /// If we are running during init (either directly during the deserialization method or in
1229 /// block connection methods which run after deserialization but before normal operation) we
1230 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1231 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1232 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1234 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1236 /// See `ChannelManager` struct-level documentation for lock order requirements.
1238 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1239 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1240 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1241 /// Essentially just when we're serializing ourselves out.
1242 /// Taken first everywhere where we are making changes before any other locks.
1243 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1244 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1245 /// Notifier the lock contains sends out a notification when the lock is released.
1246 total_consistency_lock: RwLock<()>,
1247 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1248 /// received and the monitor has been persisted.
1250 /// This information does not need to be persisted as funding nodes can forget
1251 /// unfunded channels upon disconnection.
1252 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1254 background_events_processed_since_startup: AtomicBool,
1256 event_persist_notifier: Notifier,
1257 needs_persist_flag: AtomicBool,
1259 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1263 signer_provider: SP,
1268 /// Chain-related parameters used to construct a new `ChannelManager`.
1270 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1271 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1272 /// are not needed when deserializing a previously constructed `ChannelManager`.
1273 #[derive(Clone, Copy, PartialEq)]
1274 pub struct ChainParameters {
1275 /// The network for determining the `chain_hash` in Lightning messages.
1276 pub network: Network,
1278 /// The hash and height of the latest block successfully connected.
1280 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1281 pub best_block: BestBlock,
1284 #[derive(Copy, Clone, PartialEq)]
1288 SkipPersistHandleEvents,
1289 SkipPersistNoEvents,
1292 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1293 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1294 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1295 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1296 /// sending the aforementioned notification (since the lock being released indicates that the
1297 /// updates are ready for persistence).
1299 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1300 /// notify or not based on whether relevant changes have been made, providing a closure to
1301 /// `optionally_notify` which returns a `NotifyOption`.
1302 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1303 event_persist_notifier: &'a Notifier,
1304 needs_persist_flag: &'a AtomicBool,
1306 // We hold onto this result so the lock doesn't get released immediately.
1307 _read_guard: RwLockReadGuard<'a, ()>,
1310 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1311 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1312 /// events to handle.
1314 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1315 /// other cases where losing the changes on restart may result in a force-close or otherwise
1317 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1318 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1321 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1322 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1323 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1324 let force_notify = cm.get_cm().process_background_events();
1326 PersistenceNotifierGuard {
1327 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1328 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1329 should_persist: move || {
1330 // Pick the "most" action between `persist_check` and the background events
1331 // processing and return that.
1332 let notify = persist_check();
1333 match (notify, force_notify) {
1334 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1335 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1336 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1337 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1338 _ => NotifyOption::SkipPersistNoEvents,
1341 _read_guard: read_guard,
1345 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1346 /// [`ChannelManager::process_background_events`] MUST be called first (or
1347 /// [`Self::optionally_notify`] used).
1348 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1349 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1350 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1352 PersistenceNotifierGuard {
1353 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1354 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1355 should_persist: persist_check,
1356 _read_guard: read_guard,
1361 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1362 fn drop(&mut self) {
1363 match (self.should_persist)() {
1364 NotifyOption::DoPersist => {
1365 self.needs_persist_flag.store(true, Ordering::Release);
1366 self.event_persist_notifier.notify()
1368 NotifyOption::SkipPersistHandleEvents =>
1369 self.event_persist_notifier.notify(),
1370 NotifyOption::SkipPersistNoEvents => {},
1375 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1376 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1378 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1380 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1381 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1382 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1383 /// the maximum required amount in lnd as of March 2021.
1384 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1386 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1387 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1389 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1391 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1392 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1393 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1394 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1395 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1396 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1397 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1398 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1399 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1400 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1401 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1402 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1403 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1405 /// Minimum CLTV difference between the current block height and received inbound payments.
1406 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1408 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1409 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1410 // a payment was being routed, so we add an extra block to be safe.
1411 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1413 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1414 // ie that if the next-hop peer fails the HTLC within
1415 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1416 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1417 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1418 // LATENCY_GRACE_PERIOD_BLOCKS.
1421 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1423 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1424 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1427 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1429 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1430 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1432 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1433 /// until we mark the channel disabled and gossip the update.
1434 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1436 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1437 /// we mark the channel enabled and gossip the update.
1438 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1440 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1441 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1442 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1443 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1445 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1446 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1447 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1449 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1450 /// many peers we reject new (inbound) connections.
1451 const MAX_NO_CHANNEL_PEERS: usize = 250;
1453 /// Information needed for constructing an invoice route hint for this channel.
1454 #[derive(Clone, Debug, PartialEq)]
1455 pub struct CounterpartyForwardingInfo {
1456 /// Base routing fee in millisatoshis.
1457 pub fee_base_msat: u32,
1458 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1459 pub fee_proportional_millionths: u32,
1460 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1461 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1462 /// `cltv_expiry_delta` for more details.
1463 pub cltv_expiry_delta: u16,
1466 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1467 /// to better separate parameters.
1468 #[derive(Clone, Debug, PartialEq)]
1469 pub struct ChannelCounterparty {
1470 /// The node_id of our counterparty
1471 pub node_id: PublicKey,
1472 /// The Features the channel counterparty provided upon last connection.
1473 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1474 /// many routing-relevant features are present in the init context.
1475 pub features: InitFeatures,
1476 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1477 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1478 /// claiming at least this value on chain.
1480 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1482 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1483 pub unspendable_punishment_reserve: u64,
1484 /// Information on the fees and requirements that the counterparty requires when forwarding
1485 /// payments to us through this channel.
1486 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1487 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1488 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1489 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1490 pub outbound_htlc_minimum_msat: Option<u64>,
1491 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1492 pub outbound_htlc_maximum_msat: Option<u64>,
1495 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1496 #[derive(Clone, Debug, PartialEq)]
1497 pub struct ChannelDetails {
1498 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1499 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1500 /// Note that this means this value is *not* persistent - it can change once during the
1501 /// lifetime of the channel.
1502 pub channel_id: ChannelId,
1503 /// Parameters which apply to our counterparty. See individual fields for more information.
1504 pub counterparty: ChannelCounterparty,
1505 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1506 /// our counterparty already.
1508 /// Note that, if this has been set, `channel_id` will be equivalent to
1509 /// `funding_txo.unwrap().to_channel_id()`.
1510 pub funding_txo: Option<OutPoint>,
1511 /// The features which this channel operates with. See individual features for more info.
1513 /// `None` until negotiation completes and the channel type is finalized.
1514 pub channel_type: Option<ChannelTypeFeatures>,
1515 /// The position of the funding transaction in the chain. None if the funding transaction has
1516 /// not yet been confirmed and the channel fully opened.
1518 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1519 /// payments instead of this. See [`get_inbound_payment_scid`].
1521 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1522 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1524 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1525 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1526 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1527 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1528 /// [`confirmations_required`]: Self::confirmations_required
1529 pub short_channel_id: Option<u64>,
1530 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1531 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1532 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1535 /// This will be `None` as long as the channel is not available for routing outbound payments.
1537 /// [`short_channel_id`]: Self::short_channel_id
1538 /// [`confirmations_required`]: Self::confirmations_required
1539 pub outbound_scid_alias: Option<u64>,
1540 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1541 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1542 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1543 /// when they see a payment to be routed to us.
1545 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1546 /// previous values for inbound payment forwarding.
1548 /// [`short_channel_id`]: Self::short_channel_id
1549 pub inbound_scid_alias: Option<u64>,
1550 /// The value, in satoshis, of this channel as appears in the funding output
1551 pub channel_value_satoshis: u64,
1552 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1553 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1554 /// this value on chain.
1556 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1558 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1560 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1561 pub unspendable_punishment_reserve: Option<u64>,
1562 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1563 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1564 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1565 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1566 /// serialized with LDK versions prior to 0.0.113.
1568 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1569 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1570 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1571 pub user_channel_id: u128,
1572 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1573 /// which is applied to commitment and HTLC transactions.
1575 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1576 pub feerate_sat_per_1000_weight: Option<u32>,
1577 /// Our total balance. This is the amount we would get if we close the channel.
1578 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1579 /// amount is not likely to be recoverable on close.
1581 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1582 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1583 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1584 /// This does not consider any on-chain fees.
1586 /// See also [`ChannelDetails::outbound_capacity_msat`]
1587 pub balance_msat: u64,
1588 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1589 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1590 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1591 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1593 /// See also [`ChannelDetails::balance_msat`]
1595 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1596 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1597 /// should be able to spend nearly this amount.
1598 pub outbound_capacity_msat: u64,
1599 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1600 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1601 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1602 /// to use a limit as close as possible to the HTLC limit we can currently send.
1604 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1605 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1606 pub next_outbound_htlc_limit_msat: u64,
1607 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1608 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1609 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1610 /// route which is valid.
1611 pub next_outbound_htlc_minimum_msat: u64,
1612 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1613 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1614 /// available for inclusion in new inbound HTLCs).
1615 /// Note that there are some corner cases not fully handled here, so the actual available
1616 /// inbound capacity may be slightly higher than this.
1618 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1619 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1620 /// However, our counterparty should be able to spend nearly this amount.
1621 pub inbound_capacity_msat: u64,
1622 /// The number of required confirmations on the funding transaction before the funding will be
1623 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1624 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1625 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1626 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1628 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1630 /// [`is_outbound`]: ChannelDetails::is_outbound
1631 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1632 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1633 pub confirmations_required: Option<u32>,
1634 /// The current number of confirmations on the funding transaction.
1636 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1637 pub confirmations: Option<u32>,
1638 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1639 /// until we can claim our funds after we force-close the channel. During this time our
1640 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1641 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1642 /// time to claim our non-HTLC-encumbered funds.
1644 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1645 pub force_close_spend_delay: Option<u16>,
1646 /// True if the channel was initiated (and thus funded) by us.
1647 pub is_outbound: bool,
1648 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1649 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1650 /// required confirmation count has been reached (and we were connected to the peer at some
1651 /// point after the funding transaction received enough confirmations). The required
1652 /// confirmation count is provided in [`confirmations_required`].
1654 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1655 pub is_channel_ready: bool,
1656 /// The stage of the channel's shutdown.
1657 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1658 pub channel_shutdown_state: Option<ChannelShutdownState>,
1659 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1660 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1662 /// This is a strict superset of `is_channel_ready`.
1663 pub is_usable: bool,
1664 /// True if this channel is (or will be) publicly-announced.
1665 pub is_public: bool,
1666 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1667 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1668 pub inbound_htlc_minimum_msat: Option<u64>,
1669 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1670 pub inbound_htlc_maximum_msat: Option<u64>,
1671 /// Set of configurable parameters that affect channel operation.
1673 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1674 pub config: Option<ChannelConfig>,
1677 impl ChannelDetails {
1678 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1679 /// This should be used for providing invoice hints or in any other context where our
1680 /// counterparty will forward a payment to us.
1682 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1683 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1684 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1685 self.inbound_scid_alias.or(self.short_channel_id)
1688 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1689 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1690 /// we're sending or forwarding a payment outbound over this channel.
1692 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1693 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1694 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1695 self.short_channel_id.or(self.outbound_scid_alias)
1698 fn from_channel_context<SP: Deref, F: Deref>(
1699 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1700 fee_estimator: &LowerBoundedFeeEstimator<F>
1703 SP::Target: SignerProvider,
1704 F::Target: FeeEstimator
1706 let balance = context.get_available_balances(fee_estimator);
1707 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1708 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1710 channel_id: context.channel_id(),
1711 counterparty: ChannelCounterparty {
1712 node_id: context.get_counterparty_node_id(),
1713 features: latest_features,
1714 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1715 forwarding_info: context.counterparty_forwarding_info(),
1716 // Ensures that we have actually received the `htlc_minimum_msat` value
1717 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1718 // message (as they are always the first message from the counterparty).
1719 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1720 // default `0` value set by `Channel::new_outbound`.
1721 outbound_htlc_minimum_msat: if context.have_received_message() {
1722 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1723 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1725 funding_txo: context.get_funding_txo(),
1726 // Note that accept_channel (or open_channel) is always the first message, so
1727 // `have_received_message` indicates that type negotiation has completed.
1728 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1729 short_channel_id: context.get_short_channel_id(),
1730 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1731 inbound_scid_alias: context.latest_inbound_scid_alias(),
1732 channel_value_satoshis: context.get_value_satoshis(),
1733 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1734 unspendable_punishment_reserve: to_self_reserve_satoshis,
1735 balance_msat: balance.balance_msat,
1736 inbound_capacity_msat: balance.inbound_capacity_msat,
1737 outbound_capacity_msat: balance.outbound_capacity_msat,
1738 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1739 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1740 user_channel_id: context.get_user_id(),
1741 confirmations_required: context.minimum_depth(),
1742 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1743 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1744 is_outbound: context.is_outbound(),
1745 is_channel_ready: context.is_usable(),
1746 is_usable: context.is_live(),
1747 is_public: context.should_announce(),
1748 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1749 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1750 config: Some(context.config()),
1751 channel_shutdown_state: Some(context.shutdown_state()),
1756 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1757 /// Further information on the details of the channel shutdown.
1758 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1759 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1760 /// the channel will be removed shortly.
1761 /// Also note, that in normal operation, peers could disconnect at any of these states
1762 /// and require peer re-connection before making progress onto other states
1763 pub enum ChannelShutdownState {
1764 /// Channel has not sent or received a shutdown message.
1766 /// Local node has sent a shutdown message for this channel.
1768 /// Shutdown message exchanges have concluded and the channels are in the midst of
1769 /// resolving all existing open HTLCs before closing can continue.
1771 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1772 NegotiatingClosingFee,
1773 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1774 /// to drop the channel.
1778 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1779 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1780 #[derive(Debug, PartialEq)]
1781 pub enum RecentPaymentDetails {
1782 /// When an invoice was requested and thus a payment has not yet been sent.
1784 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1785 /// a payment and ensure idempotency in LDK.
1786 payment_id: PaymentId,
1788 /// When a payment is still being sent and awaiting successful delivery.
1790 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1791 /// a payment and ensure idempotency in LDK.
1792 payment_id: PaymentId,
1793 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1795 payment_hash: PaymentHash,
1796 /// Total amount (in msat, excluding fees) across all paths for this payment,
1797 /// not just the amount currently inflight.
1800 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1801 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1802 /// payment is removed from tracking.
1804 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1805 /// a payment and ensure idempotency in LDK.
1806 payment_id: PaymentId,
1807 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1808 /// made before LDK version 0.0.104.
1809 payment_hash: Option<PaymentHash>,
1811 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1812 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1813 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1815 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1816 /// a payment and ensure idempotency in LDK.
1817 payment_id: PaymentId,
1818 /// Hash of the payment that we have given up trying to send.
1819 payment_hash: PaymentHash,
1823 /// Route hints used in constructing invoices for [phantom node payents].
1825 /// [phantom node payments]: crate::sign::PhantomKeysManager
1827 pub struct PhantomRouteHints {
1828 /// The list of channels to be included in the invoice route hints.
1829 pub channels: Vec<ChannelDetails>,
1830 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1832 pub phantom_scid: u64,
1833 /// The pubkey of the real backing node that would ultimately receive the payment.
1834 pub real_node_pubkey: PublicKey,
1837 macro_rules! handle_error {
1838 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1839 // In testing, ensure there are no deadlocks where the lock is already held upon
1840 // entering the macro.
1841 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1842 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1846 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1847 let mut msg_events = Vec::with_capacity(2);
1849 if let Some((shutdown_res, update_option)) = shutdown_finish {
1850 $self.finish_close_channel(shutdown_res);
1851 if let Some(update) = update_option {
1852 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1856 if let Some((channel_id, user_channel_id)) = chan_id {
1857 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1858 channel_id, user_channel_id,
1859 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1860 counterparty_node_id: Some($counterparty_node_id),
1861 channel_capacity_sats: channel_capacity,
1866 log_error!($self.logger, "{}", err.err);
1867 if let msgs::ErrorAction::IgnoreError = err.action {
1869 msg_events.push(events::MessageSendEvent::HandleError {
1870 node_id: $counterparty_node_id,
1871 action: err.action.clone()
1875 if !msg_events.is_empty() {
1876 let per_peer_state = $self.per_peer_state.read().unwrap();
1877 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1878 let mut peer_state = peer_state_mutex.lock().unwrap();
1879 peer_state.pending_msg_events.append(&mut msg_events);
1883 // Return error in case higher-API need one
1888 ($self: ident, $internal: expr) => {
1891 Err((chan, msg_handle_err)) => {
1892 let counterparty_node_id = chan.get_counterparty_node_id();
1893 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1899 macro_rules! update_maps_on_chan_removal {
1900 ($self: expr, $channel_context: expr) => {{
1901 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1902 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1903 if let Some(short_id) = $channel_context.get_short_channel_id() {
1904 short_to_chan_info.remove(&short_id);
1906 // If the channel was never confirmed on-chain prior to its closure, remove the
1907 // outbound SCID alias we used for it from the collision-prevention set. While we
1908 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1909 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1910 // opening a million channels with us which are closed before we ever reach the funding
1912 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1913 debug_assert!(alias_removed);
1915 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1919 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1920 macro_rules! convert_chan_phase_err {
1921 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1923 ChannelError::Warn(msg) => {
1924 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1926 ChannelError::Ignore(msg) => {
1927 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1929 ChannelError::Close(msg) => {
1930 log_error!($self.logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1931 update_maps_on_chan_removal!($self, $channel.context);
1932 let shutdown_res = $channel.context.force_shutdown(true);
1933 let user_id = $channel.context.get_user_id();
1934 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1936 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1937 shutdown_res, $channel_update, channel_capacity_satoshis))
1941 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1942 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1944 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1945 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1947 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1948 match $channel_phase {
1949 ChannelPhase::Funded(channel) => {
1950 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
1952 ChannelPhase::UnfundedOutboundV1(channel) => {
1953 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1955 ChannelPhase::UnfundedInboundV1(channel) => {
1956 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1962 macro_rules! break_chan_phase_entry {
1963 ($self: ident, $res: expr, $entry: expr) => {
1967 let key = *$entry.key();
1968 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1970 $entry.remove_entry();
1978 macro_rules! try_chan_phase_entry {
1979 ($self: ident, $res: expr, $entry: expr) => {
1983 let key = *$entry.key();
1984 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1986 $entry.remove_entry();
1994 macro_rules! remove_channel_phase {
1995 ($self: expr, $entry: expr) => {
1997 let channel = $entry.remove_entry().1;
1998 update_maps_on_chan_removal!($self, &channel.context());
2004 macro_rules! send_channel_ready {
2005 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2006 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2007 node_id: $channel.context.get_counterparty_node_id(),
2008 msg: $channel_ready_msg,
2010 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2011 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2012 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2013 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2014 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2015 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2016 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2017 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2018 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2019 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2024 macro_rules! emit_channel_pending_event {
2025 ($locked_events: expr, $channel: expr) => {
2026 if $channel.context.should_emit_channel_pending_event() {
2027 $locked_events.push_back((events::Event::ChannelPending {
2028 channel_id: $channel.context.channel_id(),
2029 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2030 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2031 user_channel_id: $channel.context.get_user_id(),
2032 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2034 $channel.context.set_channel_pending_event_emitted();
2039 macro_rules! emit_channel_ready_event {
2040 ($locked_events: expr, $channel: expr) => {
2041 if $channel.context.should_emit_channel_ready_event() {
2042 debug_assert!($channel.context.channel_pending_event_emitted());
2043 $locked_events.push_back((events::Event::ChannelReady {
2044 channel_id: $channel.context.channel_id(),
2045 user_channel_id: $channel.context.get_user_id(),
2046 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2047 channel_type: $channel.context.get_channel_type().clone(),
2049 $channel.context.set_channel_ready_event_emitted();
2054 macro_rules! handle_monitor_update_completion {
2055 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2056 let mut updates = $chan.monitor_updating_restored(&$self.logger,
2057 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2058 $self.best_block.read().unwrap().height());
2059 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2060 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2061 // We only send a channel_update in the case where we are just now sending a
2062 // channel_ready and the channel is in a usable state. We may re-send a
2063 // channel_update later through the announcement_signatures process for public
2064 // channels, but there's no reason not to just inform our counterparty of our fees
2066 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2067 Some(events::MessageSendEvent::SendChannelUpdate {
2068 node_id: counterparty_node_id,
2074 let update_actions = $peer_state.monitor_update_blocked_actions
2075 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2077 let htlc_forwards = $self.handle_channel_resumption(
2078 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2079 updates.commitment_update, updates.order, updates.accepted_htlcs,
2080 updates.funding_broadcastable, updates.channel_ready,
2081 updates.announcement_sigs);
2082 if let Some(upd) = channel_update {
2083 $peer_state.pending_msg_events.push(upd);
2086 let channel_id = $chan.context.channel_id();
2087 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2088 core::mem::drop($peer_state_lock);
2089 core::mem::drop($per_peer_state_lock);
2091 // If the channel belongs to a batch funding transaction, the progress of the batch
2092 // should be updated as we have received funding_signed and persisted the monitor.
2093 if let Some(txid) = unbroadcasted_batch_funding_txid {
2094 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2095 let mut batch_completed = false;
2096 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2097 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2098 *chan_id == channel_id &&
2099 *pubkey == counterparty_node_id
2101 if let Some(channel_state) = channel_state {
2102 channel_state.2 = true;
2104 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2106 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2108 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2111 // When all channels in a batched funding transaction have become ready, it is not necessary
2112 // to track the progress of the batch anymore and the state of the channels can be updated.
2113 if batch_completed {
2114 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2115 let per_peer_state = $self.per_peer_state.read().unwrap();
2116 let mut batch_funding_tx = None;
2117 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2118 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2119 let mut peer_state = peer_state_mutex.lock().unwrap();
2120 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2121 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2122 chan.set_batch_ready();
2123 let mut pending_events = $self.pending_events.lock().unwrap();
2124 emit_channel_pending_event!(pending_events, chan);
2128 if let Some(tx) = batch_funding_tx {
2129 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2130 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2135 $self.handle_monitor_update_completion_actions(update_actions);
2137 if let Some(forwards) = htlc_forwards {
2138 $self.forward_htlcs(&mut [forwards][..]);
2140 $self.finalize_claims(updates.finalized_claimed_htlcs);
2141 for failure in updates.failed_htlcs.drain(..) {
2142 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2143 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2148 macro_rules! handle_new_monitor_update {
2149 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2150 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2152 ChannelMonitorUpdateStatus::UnrecoverableError => {
2153 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2154 log_error!($self.logger, "{}", err_str);
2155 panic!("{}", err_str);
2157 ChannelMonitorUpdateStatus::InProgress => {
2158 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2159 &$chan.context.channel_id());
2162 ChannelMonitorUpdateStatus::Completed => {
2168 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2169 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2170 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2172 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2173 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2174 .or_insert_with(Vec::new);
2175 // During startup, we push monitor updates as background events through to here in
2176 // order to replay updates that were in-flight when we shut down. Thus, we have to
2177 // filter for uniqueness here.
2178 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2179 .unwrap_or_else(|| {
2180 in_flight_updates.push($update);
2181 in_flight_updates.len() - 1
2183 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2184 handle_new_monitor_update!($self, update_res, $chan, _internal,
2186 let _ = in_flight_updates.remove(idx);
2187 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2188 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2194 macro_rules! process_events_body {
2195 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2196 let mut processed_all_events = false;
2197 while !processed_all_events {
2198 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2205 // We'll acquire our total consistency lock so that we can be sure no other
2206 // persists happen while processing monitor events.
2207 let _read_guard = $self.total_consistency_lock.read().unwrap();
2209 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2210 // ensure any startup-generated background events are handled first.
2211 result = $self.process_background_events();
2213 // TODO: This behavior should be documented. It's unintuitive that we query
2214 // ChannelMonitors when clearing other events.
2215 if $self.process_pending_monitor_events() {
2216 result = NotifyOption::DoPersist;
2220 let pending_events = $self.pending_events.lock().unwrap().clone();
2221 let num_events = pending_events.len();
2222 if !pending_events.is_empty() {
2223 result = NotifyOption::DoPersist;
2226 let mut post_event_actions = Vec::new();
2228 for (event, action_opt) in pending_events {
2229 $event_to_handle = event;
2231 if let Some(action) = action_opt {
2232 post_event_actions.push(action);
2237 let mut pending_events = $self.pending_events.lock().unwrap();
2238 pending_events.drain(..num_events);
2239 processed_all_events = pending_events.is_empty();
2240 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2241 // updated here with the `pending_events` lock acquired.
2242 $self.pending_events_processor.store(false, Ordering::Release);
2245 if !post_event_actions.is_empty() {
2246 $self.handle_post_event_actions(post_event_actions);
2247 // If we had some actions, go around again as we may have more events now
2248 processed_all_events = false;
2252 NotifyOption::DoPersist => {
2253 $self.needs_persist_flag.store(true, Ordering::Release);
2254 $self.event_persist_notifier.notify();
2256 NotifyOption::SkipPersistHandleEvents =>
2257 $self.event_persist_notifier.notify(),
2258 NotifyOption::SkipPersistNoEvents => {},
2264 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2266 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2267 T::Target: BroadcasterInterface,
2268 ES::Target: EntropySource,
2269 NS::Target: NodeSigner,
2270 SP::Target: SignerProvider,
2271 F::Target: FeeEstimator,
2275 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2277 /// The current time or latest block header time can be provided as the `current_timestamp`.
2279 /// This is the main "logic hub" for all channel-related actions, and implements
2280 /// [`ChannelMessageHandler`].
2282 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2284 /// Users need to notify the new `ChannelManager` when a new block is connected or
2285 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2286 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2289 /// [`block_connected`]: chain::Listen::block_connected
2290 /// [`block_disconnected`]: chain::Listen::block_disconnected
2291 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2293 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2294 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2295 current_timestamp: u32,
2297 let mut secp_ctx = Secp256k1::new();
2298 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2299 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2300 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2302 default_configuration: config.clone(),
2303 chain_hash: ChainHash::using_genesis_block(params.network),
2304 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2309 best_block: RwLock::new(params.best_block),
2311 outbound_scid_aliases: Mutex::new(HashSet::new()),
2312 pending_inbound_payments: Mutex::new(HashMap::new()),
2313 pending_outbound_payments: OutboundPayments::new(),
2314 forward_htlcs: Mutex::new(HashMap::new()),
2315 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2316 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2317 id_to_peer: Mutex::new(HashMap::new()),
2318 short_to_chan_info: FairRwLock::new(HashMap::new()),
2320 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2323 inbound_payment_key: expanded_inbound_key,
2324 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2326 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2328 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2330 per_peer_state: FairRwLock::new(HashMap::new()),
2332 pending_events: Mutex::new(VecDeque::new()),
2333 pending_events_processor: AtomicBool::new(false),
2334 pending_background_events: Mutex::new(Vec::new()),
2335 total_consistency_lock: RwLock::new(()),
2336 background_events_processed_since_startup: AtomicBool::new(false),
2337 event_persist_notifier: Notifier::new(),
2338 needs_persist_flag: AtomicBool::new(false),
2339 funding_batch_states: Mutex::new(BTreeMap::new()),
2341 pending_offers_messages: Mutex::new(Vec::new()),
2351 /// Gets the current configuration applied to all new channels.
2352 pub fn get_current_default_configuration(&self) -> &UserConfig {
2353 &self.default_configuration
2356 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2357 let height = self.best_block.read().unwrap().height();
2358 let mut outbound_scid_alias = 0;
2361 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2362 outbound_scid_alias += 1;
2364 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2366 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2370 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2375 /// Creates a new outbound channel to the given remote node and with the given value.
2377 /// `user_channel_id` will be provided back as in
2378 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2379 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2380 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2381 /// is simply copied to events and otherwise ignored.
2383 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2384 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2386 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2387 /// generate a shutdown scriptpubkey or destination script set by
2388 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2390 /// Note that we do not check if you are currently connected to the given peer. If no
2391 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2392 /// the channel eventually being silently forgotten (dropped on reload).
2394 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2395 /// channel. Otherwise, a random one will be generated for you.
2397 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2398 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2399 /// [`ChannelDetails::channel_id`] until after
2400 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2401 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2402 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2404 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2405 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2406 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2407 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2408 if channel_value_satoshis < 1000 {
2409 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2412 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2413 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2414 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2416 let per_peer_state = self.per_peer_state.read().unwrap();
2418 let peer_state_mutex = per_peer_state.get(&their_network_key)
2419 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2421 let mut peer_state = peer_state_mutex.lock().unwrap();
2423 if let Some(temporary_channel_id) = temporary_channel_id {
2424 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2425 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2430 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2431 let their_features = &peer_state.latest_features;
2432 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2433 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2434 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2435 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2439 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2444 let res = channel.get_open_channel(self.chain_hash);
2446 let temporary_channel_id = channel.context.channel_id();
2447 match peer_state.channel_by_id.entry(temporary_channel_id) {
2448 hash_map::Entry::Occupied(_) => {
2450 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2452 panic!("RNG is bad???");
2455 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2458 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2459 node_id: their_network_key,
2462 Ok(temporary_channel_id)
2465 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2466 // Allocate our best estimate of the number of channels we have in the `res`
2467 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2468 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2469 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2470 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2471 // the same channel.
2472 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2474 let best_block_height = self.best_block.read().unwrap().height();
2475 let per_peer_state = self.per_peer_state.read().unwrap();
2476 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2477 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2478 let peer_state = &mut *peer_state_lock;
2479 res.extend(peer_state.channel_by_id.iter()
2480 .filter_map(|(chan_id, phase)| match phase {
2481 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2482 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2486 .map(|(_channel_id, channel)| {
2487 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2488 peer_state.latest_features.clone(), &self.fee_estimator)
2496 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2497 /// more information.
2498 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2499 // Allocate our best estimate of the number of channels we have in the `res`
2500 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2501 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2502 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2503 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2504 // the same channel.
2505 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2507 let best_block_height = self.best_block.read().unwrap().height();
2508 let per_peer_state = self.per_peer_state.read().unwrap();
2509 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2510 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2511 let peer_state = &mut *peer_state_lock;
2512 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2513 let details = ChannelDetails::from_channel_context(context, best_block_height,
2514 peer_state.latest_features.clone(), &self.fee_estimator);
2522 /// Gets the list of usable channels, in random order. Useful as an argument to
2523 /// [`Router::find_route`] to ensure non-announced channels are used.
2525 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2526 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2528 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2529 // Note we use is_live here instead of usable which leads to somewhat confused
2530 // internal/external nomenclature, but that's ok cause that's probably what the user
2531 // really wanted anyway.
2532 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2535 /// Gets the list of channels we have with a given counterparty, in random order.
2536 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2537 let best_block_height = self.best_block.read().unwrap().height();
2538 let per_peer_state = self.per_peer_state.read().unwrap();
2540 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2541 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2542 let peer_state = &mut *peer_state_lock;
2543 let features = &peer_state.latest_features;
2544 let context_to_details = |context| {
2545 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2547 return peer_state.channel_by_id
2549 .map(|(_, phase)| phase.context())
2550 .map(context_to_details)
2556 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2557 /// successful path, or have unresolved HTLCs.
2559 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2560 /// result of a crash. If such a payment exists, is not listed here, and an
2561 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2563 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2564 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2565 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2566 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2567 PendingOutboundPayment::AwaitingInvoice { .. } => {
2568 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2570 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2571 PendingOutboundPayment::InvoiceReceived { .. } => {
2572 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2574 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2575 Some(RecentPaymentDetails::Pending {
2576 payment_id: *payment_id,
2577 payment_hash: *payment_hash,
2578 total_msat: *total_msat,
2581 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2582 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2584 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2585 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2587 PendingOutboundPayment::Legacy { .. } => None
2592 /// Helper function that issues the channel close events
2593 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2594 let mut pending_events_lock = self.pending_events.lock().unwrap();
2595 match context.unbroadcasted_funding() {
2596 Some(transaction) => {
2597 pending_events_lock.push_back((events::Event::DiscardFunding {
2598 channel_id: context.channel_id(), transaction
2603 pending_events_lock.push_back((events::Event::ChannelClosed {
2604 channel_id: context.channel_id(),
2605 user_channel_id: context.get_user_id(),
2606 reason: closure_reason,
2607 counterparty_node_id: Some(context.get_counterparty_node_id()),
2608 channel_capacity_sats: Some(context.get_value_satoshis()),
2612 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2613 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2615 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2616 let shutdown_result;
2618 let per_peer_state = self.per_peer_state.read().unwrap();
2620 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2621 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2623 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2624 let peer_state = &mut *peer_state_lock;
2626 match peer_state.channel_by_id.entry(channel_id.clone()) {
2627 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2628 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2629 let funding_txo_opt = chan.context.get_funding_txo();
2630 let their_features = &peer_state.latest_features;
2631 let (shutdown_msg, mut monitor_update_opt, htlcs, local_shutdown_result) =
2632 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2633 failed_htlcs = htlcs;
2634 shutdown_result = local_shutdown_result;
2635 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
2637 // We can send the `shutdown` message before updating the `ChannelMonitor`
2638 // here as we don't need the monitor update to complete until we send a
2639 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2640 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2641 node_id: *counterparty_node_id,
2645 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2646 "We can't both complete shutdown and generate a monitor update");
2648 // Update the monitor with the shutdown script if necessary.
2649 if let Some(monitor_update) = monitor_update_opt.take() {
2650 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2651 peer_state_lock, peer_state, per_peer_state, chan);
2655 if chan.is_shutdown() {
2656 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2657 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2658 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2662 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2668 hash_map::Entry::Vacant(_) => {
2669 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2670 // it does not exist for this peer. Either way, we can attempt to force-close it.
2672 // An appropriate error will be returned for non-existence of the channel if that's the case.
2673 mem::drop(peer_state_lock);
2674 mem::drop(per_peer_state);
2675 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2680 for htlc_source in failed_htlcs.drain(..) {
2681 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2682 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2683 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2686 if let Some(shutdown_result) = shutdown_result {
2687 self.finish_close_channel(shutdown_result);
2693 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2694 /// will be accepted on the given channel, and after additional timeout/the closing of all
2695 /// pending HTLCs, the channel will be closed on chain.
2697 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2698 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2700 /// * If our counterparty is the channel initiator, we will require a channel closing
2701 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2702 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2703 /// counterparty to pay as much fee as they'd like, however.
2705 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2707 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2708 /// generate a shutdown scriptpubkey or destination script set by
2709 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2712 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2713 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2714 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2715 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2716 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2717 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2720 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2721 /// will be accepted on the given channel, and after additional timeout/the closing of all
2722 /// pending HTLCs, the channel will be closed on chain.
2724 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2725 /// the channel being closed or not:
2726 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2727 /// transaction. The upper-bound is set by
2728 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2729 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2730 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2731 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2732 /// will appear on a force-closure transaction, whichever is lower).
2734 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2735 /// Will fail if a shutdown script has already been set for this channel by
2736 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2737 /// also be compatible with our and the counterparty's features.
2739 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2741 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2742 /// generate a shutdown scriptpubkey or destination script set by
2743 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2746 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2747 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2748 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2749 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2750 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2753 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2754 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2755 #[cfg(debug_assertions)]
2756 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2757 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2760 log_debug!(self.logger, "Finishing closure of channel with {} HTLCs to fail", shutdown_res.dropped_outbound_htlcs.len());
2761 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2762 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2763 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2764 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2765 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2767 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2768 // There isn't anything we can do if we get an update failure - we're already
2769 // force-closing. The monitor update on the required in-memory copy should broadcast
2770 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2771 // ignore the result here.
2772 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2774 let mut shutdown_results = Vec::new();
2775 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2776 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2777 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2778 let per_peer_state = self.per_peer_state.read().unwrap();
2779 let mut has_uncompleted_channel = None;
2780 for (channel_id, counterparty_node_id, state) in affected_channels {
2781 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2782 let mut peer_state = peer_state_mutex.lock().unwrap();
2783 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2784 update_maps_on_chan_removal!(self, &chan.context());
2785 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2786 shutdown_results.push(chan.context_mut().force_shutdown(false));
2789 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2792 has_uncompleted_channel.unwrap_or(true),
2793 "Closing a batch where all channels have completed initial monitor update",
2796 for shutdown_result in shutdown_results.drain(..) {
2797 self.finish_close_channel(shutdown_result);
2801 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2802 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2803 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2804 -> Result<PublicKey, APIError> {
2805 let per_peer_state = self.per_peer_state.read().unwrap();
2806 let peer_state_mutex = per_peer_state.get(peer_node_id)
2807 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2808 let (update_opt, counterparty_node_id) = {
2809 let mut peer_state = peer_state_mutex.lock().unwrap();
2810 let closure_reason = if let Some(peer_msg) = peer_msg {
2811 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2813 ClosureReason::HolderForceClosed
2815 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2816 log_error!(self.logger, "Force-closing channel {}", channel_id);
2817 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2818 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2819 mem::drop(peer_state);
2820 mem::drop(per_peer_state);
2822 ChannelPhase::Funded(mut chan) => {
2823 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2824 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2826 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2827 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2828 // Unfunded channel has no update
2829 (None, chan_phase.context().get_counterparty_node_id())
2832 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2833 log_error!(self.logger, "Force-closing channel {}", &channel_id);
2834 // N.B. that we don't send any channel close event here: we
2835 // don't have a user_channel_id, and we never sent any opening
2837 (None, *peer_node_id)
2839 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2842 if let Some(update) = update_opt {
2843 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2844 // not try to broadcast it via whatever peer we have.
2845 let per_peer_state = self.per_peer_state.read().unwrap();
2846 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2847 .ok_or(per_peer_state.values().next());
2848 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2849 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2850 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2856 Ok(counterparty_node_id)
2859 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2860 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2861 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2862 Ok(counterparty_node_id) => {
2863 let per_peer_state = self.per_peer_state.read().unwrap();
2864 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2865 let mut peer_state = peer_state_mutex.lock().unwrap();
2866 peer_state.pending_msg_events.push(
2867 events::MessageSendEvent::HandleError {
2868 node_id: counterparty_node_id,
2869 action: msgs::ErrorAction::DisconnectPeer {
2870 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2881 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2882 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2883 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2885 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2886 -> Result<(), APIError> {
2887 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2890 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2891 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2892 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2894 /// You can always get the latest local transaction(s) to broadcast from
2895 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2896 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2897 -> Result<(), APIError> {
2898 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2901 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2902 /// for each to the chain and rejecting new HTLCs on each.
2903 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2904 for chan in self.list_channels() {
2905 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2909 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2910 /// local transaction(s).
2911 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2912 for chan in self.list_channels() {
2913 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2917 fn construct_fwd_pending_htlc_info(
2918 &self, msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
2919 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
2920 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
2921 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2922 debug_assert!(next_packet_pubkey_opt.is_some());
2923 let outgoing_packet = msgs::OnionPacket {
2925 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
2926 hop_data: new_packet_bytes,
2930 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
2931 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
2932 (short_channel_id, amt_to_forward, outgoing_cltv_value),
2933 msgs::InboundOnionPayload::Receive { .. } | msgs::InboundOnionPayload::BlindedReceive { .. } =>
2934 return Err(InboundOnionErr {
2935 msg: "Final Node OnionHopData provided for us as an intermediary node",
2936 err_code: 0x4000 | 22,
2937 err_data: Vec::new(),
2941 Ok(PendingHTLCInfo {
2942 routing: PendingHTLCRouting::Forward {
2943 onion_packet: outgoing_packet,
2946 payment_hash: msg.payment_hash,
2947 incoming_shared_secret: shared_secret,
2948 incoming_amt_msat: Some(msg.amount_msat),
2949 outgoing_amt_msat: amt_to_forward,
2950 outgoing_cltv_value,
2951 skimmed_fee_msat: None,
2955 fn construct_recv_pending_htlc_info(
2956 &self, hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
2957 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
2958 counterparty_skimmed_fee_msat: Option<u64>,
2959 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2960 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
2961 msgs::InboundOnionPayload::Receive {
2962 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
2964 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
2965 msgs::InboundOnionPayload::BlindedReceive {
2966 amt_msat, total_msat, outgoing_cltv_value, payment_secret, ..
2968 let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat };
2969 (Some(payment_data), None, Vec::new(), amt_msat, outgoing_cltv_value, None)
2971 msgs::InboundOnionPayload::Forward { .. } => {
2972 return Err(InboundOnionErr {
2973 err_code: 0x4000|22,
2974 err_data: Vec::new(),
2975 msg: "Got non final data with an HMAC of 0",
2979 // final_incorrect_cltv_expiry
2980 if outgoing_cltv_value > cltv_expiry {
2981 return Err(InboundOnionErr {
2982 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2984 err_data: cltv_expiry.to_be_bytes().to_vec()
2987 // final_expiry_too_soon
2988 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2989 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2991 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2992 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2993 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2994 let current_height: u32 = self.best_block.read().unwrap().height();
2995 if cltv_expiry <= current_height + HTLC_FAIL_BACK_BUFFER + 1 {
2996 let mut err_data = Vec::with_capacity(12);
2997 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2998 err_data.extend_from_slice(¤t_height.to_be_bytes());
2999 return Err(InboundOnionErr {
3000 err_code: 0x4000 | 15, err_data,
3001 msg: "The final CLTV expiry is too soon to handle",
3004 if (!allow_underpay && onion_amt_msat > amt_msat) ||
3005 (allow_underpay && onion_amt_msat >
3006 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
3008 return Err(InboundOnionErr {
3010 err_data: amt_msat.to_be_bytes().to_vec(),
3011 msg: "Upstream node sent less than we were supposed to receive in payment",
3015 let routing = if let Some(payment_preimage) = keysend_preimage {
3016 // We need to check that the sender knows the keysend preimage before processing this
3017 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
3018 // could discover the final destination of X, by probing the adjacent nodes on the route
3019 // with a keysend payment of identical payment hash to X and observing the processing
3020 // time discrepancies due to a hash collision with X.
3021 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3022 if hashed_preimage != payment_hash {
3023 return Err(InboundOnionErr {
3024 err_code: 0x4000|22,
3025 err_data: Vec::new(),
3026 msg: "Payment preimage didn't match payment hash",
3029 if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() {
3030 return Err(InboundOnionErr {
3031 err_code: 0x4000|22,
3032 err_data: Vec::new(),
3033 msg: "We don't support MPP keysend payments",
3036 PendingHTLCRouting::ReceiveKeysend {
3040 incoming_cltv_expiry: outgoing_cltv_value,
3043 } else if let Some(data) = payment_data {
3044 PendingHTLCRouting::Receive {
3047 incoming_cltv_expiry: outgoing_cltv_value,
3048 phantom_shared_secret,
3052 return Err(InboundOnionErr {
3053 err_code: 0x4000|0x2000|3,
3054 err_data: Vec::new(),
3055 msg: "We require payment_secrets",
3058 Ok(PendingHTLCInfo {
3061 incoming_shared_secret: shared_secret,
3062 incoming_amt_msat: Some(amt_msat),
3063 outgoing_amt_msat: onion_amt_msat,
3064 outgoing_cltv_value,
3065 skimmed_fee_msat: counterparty_skimmed_fee_msat,
3069 fn decode_update_add_htlc_onion(
3070 &self, msg: &msgs::UpdateAddHTLC
3071 ) -> Result<(onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg> {
3072 macro_rules! return_malformed_err {
3073 ($msg: expr, $err_code: expr) => {
3075 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3076 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3077 channel_id: msg.channel_id,
3078 htlc_id: msg.htlc_id,
3079 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
3080 failure_code: $err_code,
3086 if let Err(_) = msg.onion_routing_packet.public_key {
3087 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
3090 let shared_secret = self.node_signer.ecdh(
3091 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
3092 ).unwrap().secret_bytes();
3094 if msg.onion_routing_packet.version != 0 {
3095 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
3096 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
3097 //the hash doesn't really serve any purpose - in the case of hashing all data, the
3098 //receiving node would have to brute force to figure out which version was put in the
3099 //packet by the node that send us the message, in the case of hashing the hop_data, the
3100 //node knows the HMAC matched, so they already know what is there...
3101 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
3103 macro_rules! return_err {
3104 ($msg: expr, $err_code: expr, $data: expr) => {
3106 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3107 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3108 channel_id: msg.channel_id,
3109 htlc_id: msg.htlc_id,
3110 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3111 .get_encrypted_failure_packet(&shared_secret, &None),
3117 let next_hop = match onion_utils::decode_next_payment_hop(
3118 shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac,
3119 msg.payment_hash, &self.node_signer
3122 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3123 return_malformed_err!(err_msg, err_code);
3125 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3126 return_err!(err_msg, err_code, &[0; 0]);
3129 let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop {
3130 onion_utils::Hop::Forward {
3131 next_hop_data: msgs::InboundOnionPayload::Forward {
3132 short_channel_id, amt_to_forward, outgoing_cltv_value
3135 let next_packet_pk = onion_utils::next_hop_pubkey(&self.secp_ctx,
3136 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
3137 (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_packet_pk))
3139 // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the
3140 // inbound channel's state.
3141 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
3142 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } |
3143 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::BlindedReceive { .. }, .. } =>
3145 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
3149 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3150 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3151 if let Some((err, mut code, chan_update)) = loop {
3152 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3153 let forwarding_chan_info_opt = match id_option {
3154 None => { // unknown_next_peer
3155 // Note that this is likely a timing oracle for detecting whether an scid is a
3156 // phantom or an intercept.
3157 if (self.default_configuration.accept_intercept_htlcs &&
3158 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
3159 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
3163 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3166 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3168 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3169 let per_peer_state = self.per_peer_state.read().unwrap();
3170 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3171 if peer_state_mutex_opt.is_none() {
3172 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3174 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3175 let peer_state = &mut *peer_state_lock;
3176 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3177 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3180 // Channel was removed. The short_to_chan_info and channel_by_id maps
3181 // have no consistency guarantees.
3182 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3186 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3187 // Note that the behavior here should be identical to the above block - we
3188 // should NOT reveal the existence or non-existence of a private channel if
3189 // we don't allow forwards outbound over them.
3190 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3192 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3193 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3194 // "refuse to forward unless the SCID alias was used", so we pretend
3195 // we don't have the channel here.
3196 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3198 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3200 // Note that we could technically not return an error yet here and just hope
3201 // that the connection is reestablished or monitor updated by the time we get
3202 // around to doing the actual forward, but better to fail early if we can and
3203 // hopefully an attacker trying to path-trace payments cannot make this occur
3204 // on a small/per-node/per-channel scale.
3205 if !chan.context.is_live() { // channel_disabled
3206 // If the channel_update we're going to return is disabled (i.e. the
3207 // peer has been disabled for some time), return `channel_disabled`,
3208 // otherwise return `temporary_channel_failure`.
3209 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3210 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3212 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3215 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3216 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3218 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3219 break Some((err, code, chan_update_opt));
3223 if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
3224 // We really should set `incorrect_cltv_expiry` here but as we're not
3225 // forwarding over a real channel we can't generate a channel_update
3226 // for it. Instead we just return a generic temporary_node_failure.
3228 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
3235 let cur_height = self.best_block.read().unwrap().height() + 1;
3236 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
3237 // but we want to be robust wrt to counterparty packet sanitization (see
3238 // HTLC_FAIL_BACK_BUFFER rationale).
3239 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
3240 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
3242 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
3243 break Some(("CLTV expiry is too far in the future", 21, None));
3245 // If the HTLC expires ~now, don't bother trying to forward it to our
3246 // counterparty. They should fail it anyway, but we don't want to bother with
3247 // the round-trips or risk them deciding they definitely want the HTLC and
3248 // force-closing to ensure they get it if we're offline.
3249 // We previously had a much more aggressive check here which tried to ensure
3250 // our counterparty receives an HTLC which has *our* risk threshold met on it,
3251 // but there is no need to do that, and since we're a bit conservative with our
3252 // risk threshold it just results in failing to forward payments.
3253 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
3254 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
3260 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3261 if let Some(chan_update) = chan_update {
3262 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3263 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3265 else if code == 0x1000 | 13 {
3266 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3268 else if code == 0x1000 | 20 {
3269 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3270 0u16.write(&mut res).expect("Writes cannot fail");
3272 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3273 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3274 chan_update.write(&mut res).expect("Writes cannot fail");
3275 } else if code & 0x1000 == 0x1000 {
3276 // If we're trying to return an error that requires a `channel_update` but
3277 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3278 // generate an update), just use the generic "temporary_node_failure"
3282 return_err!(err, code, &res.0[..]);
3284 Ok((next_hop, shared_secret, next_packet_pk_opt))
3287 fn construct_pending_htlc_status<'a>(
3288 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3289 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3290 ) -> PendingHTLCStatus {
3291 macro_rules! return_err {
3292 ($msg: expr, $err_code: expr, $data: expr) => {
3294 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3295 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3296 channel_id: msg.channel_id,
3297 htlc_id: msg.htlc_id,
3298 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3299 .get_encrypted_failure_packet(&shared_secret, &None),
3305 onion_utils::Hop::Receive(next_hop_data) => {
3307 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3308 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat)
3311 // Note that we could obviously respond immediately with an update_fulfill_htlc
3312 // message, however that would leak that we are the recipient of this payment, so
3313 // instead we stay symmetric with the forwarding case, only responding (after a
3314 // delay) once they've send us a commitment_signed!
3315 PendingHTLCStatus::Forward(info)
3317 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3320 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3321 match self.construct_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3322 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3323 Ok(info) => PendingHTLCStatus::Forward(info),
3324 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3330 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3331 /// public, and thus should be called whenever the result is going to be passed out in a
3332 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3334 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3335 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3336 /// storage and the `peer_state` lock has been dropped.
3338 /// [`channel_update`]: msgs::ChannelUpdate
3339 /// [`internal_closing_signed`]: Self::internal_closing_signed
3340 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3341 if !chan.context.should_announce() {
3342 return Err(LightningError {
3343 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3344 action: msgs::ErrorAction::IgnoreError
3347 if chan.context.get_short_channel_id().is_none() {
3348 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3350 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3351 self.get_channel_update_for_unicast(chan)
3354 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3355 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3356 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3357 /// provided evidence that they know about the existence of the channel.
3359 /// Note that through [`internal_closing_signed`], this function is called without the
3360 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3361 /// removed from the storage and the `peer_state` lock has been dropped.
3363 /// [`channel_update`]: msgs::ChannelUpdate
3364 /// [`internal_closing_signed`]: Self::internal_closing_signed
3365 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3366 log_trace!(self.logger, "Attempting to generate channel update for channel {}", &chan.context.channel_id());
3367 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3368 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3372 self.get_channel_update_for_onion(short_channel_id, chan)
3375 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3376 log_trace!(self.logger, "Generating channel update for channel {}", &chan.context.channel_id());
3377 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3379 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3380 ChannelUpdateStatus::Enabled => true,
3381 ChannelUpdateStatus::DisabledStaged(_) => true,
3382 ChannelUpdateStatus::Disabled => false,
3383 ChannelUpdateStatus::EnabledStaged(_) => false,
3386 let unsigned = msgs::UnsignedChannelUpdate {
3387 chain_hash: self.chain_hash,
3389 timestamp: chan.context.get_update_time_counter(),
3390 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3391 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3392 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3393 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3394 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3395 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3396 excess_data: Vec::new(),
3398 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3399 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3400 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3402 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3404 Ok(msgs::ChannelUpdate {
3411 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3412 let _lck = self.total_consistency_lock.read().unwrap();
3413 self.send_payment_along_path(SendAlongPathArgs {
3414 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3419 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3420 let SendAlongPathArgs {
3421 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3424 // The top-level caller should hold the total_consistency_lock read lock.
3425 debug_assert!(self.total_consistency_lock.try_write().is_err());
3427 log_trace!(self.logger,
3428 "Attempting to send payment with payment hash {} along path with next hop {}",
3429 payment_hash, path.hops.first().unwrap().short_channel_id);
3430 let prng_seed = self.entropy_source.get_secure_random_bytes();
3431 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3433 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
3434 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
3435 payment_hash, keysend_preimage, prng_seed
3438 let err: Result<(), _> = loop {
3439 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3440 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3441 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3444 let per_peer_state = self.per_peer_state.read().unwrap();
3445 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3446 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3447 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3448 let peer_state = &mut *peer_state_lock;
3449 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3450 match chan_phase_entry.get_mut() {
3451 ChannelPhase::Funded(chan) => {
3452 if !chan.context.is_live() {
3453 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3455 let funding_txo = chan.context.get_funding_txo().unwrap();
3456 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3457 htlc_cltv, HTLCSource::OutboundRoute {
3459 session_priv: session_priv.clone(),
3460 first_hop_htlc_msat: htlc_msat,
3462 }, onion_packet, None, &self.fee_estimator, &self.logger);
3463 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3464 Some(monitor_update) => {
3465 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3467 // Note that MonitorUpdateInProgress here indicates (per function
3468 // docs) that we will resend the commitment update once monitor
3469 // updating completes. Therefore, we must return an error
3470 // indicating that it is unsafe to retry the payment wholesale,
3471 // which we do in the send_payment check for
3472 // MonitorUpdateInProgress, below.
3473 return Err(APIError::MonitorUpdateInProgress);
3481 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3484 // The channel was likely removed after we fetched the id from the
3485 // `short_to_chan_info` map, but before we successfully locked the
3486 // `channel_by_id` map.
3487 // This can occur as no consistency guarantees exists between the two maps.
3488 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3493 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3494 Ok(_) => unreachable!(),
3496 Err(APIError::ChannelUnavailable { err: e.err })
3501 /// Sends a payment along a given route.
3503 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3504 /// fields for more info.
3506 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3507 /// [`PeerManager::process_events`]).
3509 /// # Avoiding Duplicate Payments
3511 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3512 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3513 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3514 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3515 /// second payment with the same [`PaymentId`].
3517 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3518 /// tracking of payments, including state to indicate once a payment has completed. Because you
3519 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3520 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3521 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3523 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3524 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3525 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3526 /// [`ChannelManager::list_recent_payments`] for more information.
3528 /// # Possible Error States on [`PaymentSendFailure`]
3530 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3531 /// each entry matching the corresponding-index entry in the route paths, see
3532 /// [`PaymentSendFailure`] for more info.
3534 /// In general, a path may raise:
3535 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3536 /// node public key) is specified.
3537 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3538 /// closed, doesn't exist, or the peer is currently disconnected.
3539 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3540 /// relevant updates.
3542 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3543 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3544 /// different route unless you intend to pay twice!
3546 /// [`RouteHop`]: crate::routing::router::RouteHop
3547 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3548 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3549 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3550 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3551 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3552 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3553 let best_block_height = self.best_block.read().unwrap().height();
3554 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3555 self.pending_outbound_payments
3556 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3557 &self.entropy_source, &self.node_signer, best_block_height,
3558 |args| self.send_payment_along_path(args))
3561 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3562 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3563 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3564 let best_block_height = self.best_block.read().unwrap().height();
3565 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3566 self.pending_outbound_payments
3567 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3568 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3569 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3570 &self.pending_events, |args| self.send_payment_along_path(args))
3574 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3575 let best_block_height = self.best_block.read().unwrap().height();
3576 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3577 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3578 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3579 best_block_height, |args| self.send_payment_along_path(args))
3583 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3584 let best_block_height = self.best_block.read().unwrap().height();
3585 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3589 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3590 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3593 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3594 let best_block_height = self.best_block.read().unwrap().height();
3595 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3596 self.pending_outbound_payments
3597 .send_payment_for_bolt12_invoice(
3598 invoice, payment_id, &self.router, self.list_usable_channels(),
3599 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3600 best_block_height, &self.logger, &self.pending_events,
3601 |args| self.send_payment_along_path(args)
3605 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3606 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3607 /// retries are exhausted.
3609 /// # Event Generation
3611 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3612 /// as there are no remaining pending HTLCs for this payment.
3614 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3615 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3616 /// determine the ultimate status of a payment.
3618 /// # Requested Invoices
3620 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3621 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3622 /// and prevent any attempts at paying it once received. The other events may only be generated
3623 /// once the invoice has been received.
3625 /// # Restart Behavior
3627 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3628 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3629 /// [`Event::InvoiceRequestFailed`].
3631 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3632 pub fn abandon_payment(&self, payment_id: PaymentId) {
3633 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3634 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3637 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3638 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3639 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3640 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3641 /// never reach the recipient.
3643 /// See [`send_payment`] documentation for more details on the return value of this function
3644 /// and idempotency guarantees provided by the [`PaymentId`] key.
3646 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3647 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3649 /// [`send_payment`]: Self::send_payment
3650 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3651 let best_block_height = self.best_block.read().unwrap().height();
3652 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3653 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3654 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3655 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3658 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3659 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3661 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3664 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3665 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3666 let best_block_height = self.best_block.read().unwrap().height();
3667 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3668 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3669 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3670 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3671 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3674 /// Send a payment that is probing the given route for liquidity. We calculate the
3675 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3676 /// us to easily discern them from real payments.
3677 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3678 let best_block_height = self.best_block.read().unwrap().height();
3679 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3680 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3681 &self.entropy_source, &self.node_signer, best_block_height,
3682 |args| self.send_payment_along_path(args))
3685 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3688 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3689 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3692 /// Sends payment probes over all paths of a route that would be used to pay the given
3693 /// amount to the given `node_id`.
3695 /// See [`ChannelManager::send_preflight_probes`] for more information.
3696 pub fn send_spontaneous_preflight_probes(
3697 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3698 liquidity_limit_multiplier: Option<u64>,
3699 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3700 let payment_params =
3701 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3703 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3705 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3708 /// Sends payment probes over all paths of a route that would be used to pay a route found
3709 /// according to the given [`RouteParameters`].
3711 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3712 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3713 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3714 /// confirmation in a wallet UI.
3716 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3717 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3718 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3719 /// payment. To mitigate this issue, channels with available liquidity less than the required
3720 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3721 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3722 pub fn send_preflight_probes(
3723 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3724 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3725 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3727 let payer = self.get_our_node_id();
3728 let usable_channels = self.list_usable_channels();
3729 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3730 let inflight_htlcs = self.compute_inflight_htlcs();
3734 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3736 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3737 ProbeSendFailure::RouteNotFound
3740 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3742 let mut res = Vec::new();
3744 for mut path in route.paths {
3745 // If the last hop is probably an unannounced channel we refrain from probing all the
3746 // way through to the end and instead probe up to the second-to-last channel.
3747 while let Some(last_path_hop) = path.hops.last() {
3748 if last_path_hop.maybe_announced_channel {
3749 // We found a potentially announced last hop.
3752 // Drop the last hop, as it's likely unannounced.
3755 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3756 last_path_hop.short_channel_id
3758 let final_value_msat = path.final_value_msat();
3760 if let Some(new_last) = path.hops.last_mut() {
3761 new_last.fee_msat += final_value_msat;
3766 if path.hops.len() < 2 {
3769 "Skipped sending payment probe over path with less than two hops."
3774 if let Some(first_path_hop) = path.hops.first() {
3775 if let Some(first_hop) = first_hops.iter().find(|h| {
3776 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3778 let path_value = path.final_value_msat() + path.fee_msat();
3779 let used_liquidity =
3780 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3782 if first_hop.next_outbound_htlc_limit_msat
3783 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3785 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3788 *used_liquidity += path_value;
3793 res.push(self.send_probe(path).map_err(|e| {
3794 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3795 ProbeSendFailure::SendingFailed(e)
3802 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3803 /// which checks the correctness of the funding transaction given the associated channel.
3804 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3805 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3806 mut find_funding_output: FundingOutput,
3807 ) -> Result<(), APIError> {
3808 let per_peer_state = self.per_peer_state.read().unwrap();
3809 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3810 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3812 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3813 let peer_state = &mut *peer_state_lock;
3814 let (chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3815 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3816 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3818 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &self.logger)
3819 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3820 let channel_id = chan.context.channel_id();
3821 let user_id = chan.context.get_user_id();
3822 let shutdown_res = chan.context.force_shutdown(false);
3823 let channel_capacity = chan.context.get_value_satoshis();
3824 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3825 } else { unreachable!(); });
3827 Ok((chan, funding_msg)) => (chan, funding_msg),
3828 Err((chan, err)) => {
3829 mem::drop(peer_state_lock);
3830 mem::drop(per_peer_state);
3832 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3833 return Err(APIError::ChannelUnavailable {
3834 err: "Signer refused to sign the initial commitment transaction".to_owned()
3840 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3841 return Err(APIError::APIMisuseError {
3843 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3844 temporary_channel_id, counterparty_node_id),
3847 None => return Err(APIError::ChannelUnavailable {err: format!(
3848 "Channel with id {} not found for the passed counterparty node_id {}",
3849 temporary_channel_id, counterparty_node_id),
3853 if let Some(msg) = msg_opt {
3854 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3855 node_id: chan.context.get_counterparty_node_id(),
3859 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3860 hash_map::Entry::Occupied(_) => {
3861 panic!("Generated duplicate funding txid?");
3863 hash_map::Entry::Vacant(e) => {
3864 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3865 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3866 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3868 e.insert(ChannelPhase::Funded(chan));
3875 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3876 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3877 Ok(OutPoint { txid: tx.txid(), index: output_index })
3881 /// Call this upon creation of a funding transaction for the given channel.
3883 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3884 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3886 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3887 /// across the p2p network.
3889 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3890 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3892 /// May panic if the output found in the funding transaction is duplicative with some other
3893 /// channel (note that this should be trivially prevented by using unique funding transaction
3894 /// keys per-channel).
3896 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3897 /// counterparty's signature the funding transaction will automatically be broadcast via the
3898 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3900 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3901 /// not currently support replacing a funding transaction on an existing channel. Instead,
3902 /// create a new channel with a conflicting funding transaction.
3904 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3905 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3906 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3907 /// for more details.
3909 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3910 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3911 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3912 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3915 /// Call this upon creation of a batch funding transaction for the given channels.
3917 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3918 /// each individual channel and transaction output.
3920 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3921 /// will only be broadcast when we have safely received and persisted the counterparty's
3922 /// signature for each channel.
3924 /// If there is an error, all channels in the batch are to be considered closed.
3925 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3926 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3927 let mut result = Ok(());
3929 if !funding_transaction.is_coin_base() {
3930 for inp in funding_transaction.input.iter() {
3931 if inp.witness.is_empty() {
3932 result = result.and(Err(APIError::APIMisuseError {
3933 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3938 if funding_transaction.output.len() > u16::max_value() as usize {
3939 result = result.and(Err(APIError::APIMisuseError {
3940 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3944 let height = self.best_block.read().unwrap().height();
3945 // Transactions are evaluated as final by network mempools if their locktime is strictly
3946 // lower than the next block height. However, the modules constituting our Lightning
3947 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3948 // module is ahead of LDK, only allow one more block of headroom.
3949 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3950 result = result.and(Err(APIError::APIMisuseError {
3951 err: "Funding transaction absolute timelock is non-final".to_owned()
3956 let txid = funding_transaction.txid();
3957 let is_batch_funding = temporary_channels.len() > 1;
3958 let mut funding_batch_states = if is_batch_funding {
3959 Some(self.funding_batch_states.lock().unwrap())
3963 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3964 match states.entry(txid) {
3965 btree_map::Entry::Occupied(_) => {
3966 result = result.clone().and(Err(APIError::APIMisuseError {
3967 err: "Batch funding transaction with the same txid already exists".to_owned()
3971 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3974 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3975 result = result.and_then(|_| self.funding_transaction_generated_intern(
3976 temporary_channel_id,
3977 counterparty_node_id,
3978 funding_transaction.clone(),
3981 let mut output_index = None;
3982 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3983 for (idx, outp) in tx.output.iter().enumerate() {
3984 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3985 if output_index.is_some() {
3986 return Err(APIError::APIMisuseError {
3987 err: "Multiple outputs matched the expected script and value".to_owned()
3990 output_index = Some(idx as u16);
3993 if output_index.is_none() {
3994 return Err(APIError::APIMisuseError {
3995 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3998 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3999 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4000 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
4006 if let Err(ref e) = result {
4007 // Remaining channels need to be removed on any error.
4008 let e = format!("Error in transaction funding: {:?}", e);
4009 let mut channels_to_remove = Vec::new();
4010 channels_to_remove.extend(funding_batch_states.as_mut()
4011 .and_then(|states| states.remove(&txid))
4012 .into_iter().flatten()
4013 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4015 channels_to_remove.extend(temporary_channels.iter()
4016 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4018 let mut shutdown_results = Vec::new();
4020 let per_peer_state = self.per_peer_state.read().unwrap();
4021 for (channel_id, counterparty_node_id) in channels_to_remove {
4022 per_peer_state.get(&counterparty_node_id)
4023 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4024 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
4026 update_maps_on_chan_removal!(self, &chan.context());
4027 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
4028 shutdown_results.push(chan.context_mut().force_shutdown(false));
4032 for shutdown_result in shutdown_results.drain(..) {
4033 self.finish_close_channel(shutdown_result);
4039 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4041 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4042 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4043 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4044 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4046 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4047 /// `counterparty_node_id` is provided.
4049 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4050 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4052 /// If an error is returned, none of the updates should be considered applied.
4054 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4055 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4056 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4057 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4058 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4059 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4060 /// [`APIMisuseError`]: APIError::APIMisuseError
4061 pub fn update_partial_channel_config(
4062 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4063 ) -> Result<(), APIError> {
4064 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4065 return Err(APIError::APIMisuseError {
4066 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4070 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4071 let per_peer_state = self.per_peer_state.read().unwrap();
4072 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4073 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4074 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4075 let peer_state = &mut *peer_state_lock;
4076 for channel_id in channel_ids {
4077 if !peer_state.has_channel(channel_id) {
4078 return Err(APIError::ChannelUnavailable {
4079 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4083 for channel_id in channel_ids {
4084 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4085 let mut config = channel_phase.context().config();
4086 config.apply(config_update);
4087 if !channel_phase.context_mut().update_config(&config) {
4090 if let ChannelPhase::Funded(channel) = channel_phase {
4091 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4092 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4093 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4094 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4095 node_id: channel.context.get_counterparty_node_id(),
4102 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4103 debug_assert!(false);
4104 return Err(APIError::ChannelUnavailable {
4106 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4107 channel_id, counterparty_node_id),
4114 /// Atomically updates the [`ChannelConfig`] for the given channels.
4116 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4117 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4118 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4119 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4121 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4122 /// `counterparty_node_id` is provided.
4124 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4125 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4127 /// If an error is returned, none of the updates should be considered applied.
4129 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4130 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4131 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4132 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4133 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4134 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4135 /// [`APIMisuseError`]: APIError::APIMisuseError
4136 pub fn update_channel_config(
4137 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4138 ) -> Result<(), APIError> {
4139 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4142 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4143 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4145 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4146 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4148 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4149 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4150 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4151 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4152 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4154 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4155 /// you from forwarding more than you received. See
4156 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4159 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4162 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4163 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4164 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4165 // TODO: when we move to deciding the best outbound channel at forward time, only take
4166 // `next_node_id` and not `next_hop_channel_id`
4167 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4168 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4170 let next_hop_scid = {
4171 let peer_state_lock = self.per_peer_state.read().unwrap();
4172 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4173 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4174 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4175 let peer_state = &mut *peer_state_lock;
4176 match peer_state.channel_by_id.get(next_hop_channel_id) {
4177 Some(ChannelPhase::Funded(chan)) => {
4178 if !chan.context.is_usable() {
4179 return Err(APIError::ChannelUnavailable {
4180 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4183 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4185 Some(_) => return Err(APIError::ChannelUnavailable {
4186 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4187 next_hop_channel_id, next_node_id)
4189 None => return Err(APIError::ChannelUnavailable {
4190 err: format!("Channel with id {} not found for the passed counterparty node_id {}",
4191 next_hop_channel_id, next_node_id)
4196 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4197 .ok_or_else(|| APIError::APIMisuseError {
4198 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4201 let routing = match payment.forward_info.routing {
4202 PendingHTLCRouting::Forward { onion_packet, .. } => {
4203 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
4205 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4207 let skimmed_fee_msat =
4208 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4209 let pending_htlc_info = PendingHTLCInfo {
4210 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4211 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4214 let mut per_source_pending_forward = [(
4215 payment.prev_short_channel_id,
4216 payment.prev_funding_outpoint,
4217 payment.prev_user_channel_id,
4218 vec![(pending_htlc_info, payment.prev_htlc_id)]
4220 self.forward_htlcs(&mut per_source_pending_forward);
4224 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4225 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4227 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4230 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4231 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4232 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4234 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4235 .ok_or_else(|| APIError::APIMisuseError {
4236 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4239 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4240 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4241 short_channel_id: payment.prev_short_channel_id,
4242 user_channel_id: Some(payment.prev_user_channel_id),
4243 outpoint: payment.prev_funding_outpoint,
4244 htlc_id: payment.prev_htlc_id,
4245 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4246 phantom_shared_secret: None,
4249 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4250 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4251 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4252 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4257 /// Processes HTLCs which are pending waiting on random forward delay.
4259 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4260 /// Will likely generate further events.
4261 pub fn process_pending_htlc_forwards(&self) {
4262 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4264 let mut new_events = VecDeque::new();
4265 let mut failed_forwards = Vec::new();
4266 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4268 let mut forward_htlcs = HashMap::new();
4269 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4271 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4272 if short_chan_id != 0 {
4273 macro_rules! forwarding_channel_not_found {
4275 for forward_info in pending_forwards.drain(..) {
4276 match forward_info {
4277 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4278 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4279 forward_info: PendingHTLCInfo {
4280 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4281 outgoing_cltv_value, ..
4284 macro_rules! failure_handler {
4285 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4286 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4288 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4289 short_channel_id: prev_short_channel_id,
4290 user_channel_id: Some(prev_user_channel_id),
4291 outpoint: prev_funding_outpoint,
4292 htlc_id: prev_htlc_id,
4293 incoming_packet_shared_secret: incoming_shared_secret,
4294 phantom_shared_secret: $phantom_ss,
4297 let reason = if $next_hop_unknown {
4298 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4300 HTLCDestination::FailedPayment{ payment_hash }
4303 failed_forwards.push((htlc_source, payment_hash,
4304 HTLCFailReason::reason($err_code, $err_data),
4310 macro_rules! fail_forward {
4311 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4313 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4317 macro_rules! failed_payment {
4318 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4320 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4324 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
4325 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4326 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4327 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4328 let next_hop = match onion_utils::decode_next_payment_hop(
4329 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4330 payment_hash, &self.node_signer
4333 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4334 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
4335 // In this scenario, the phantom would have sent us an
4336 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4337 // if it came from us (the second-to-last hop) but contains the sha256
4339 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4341 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4342 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4346 onion_utils::Hop::Receive(hop_data) => {
4347 match self.construct_recv_pending_htlc_info(hop_data,
4348 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4349 outgoing_cltv_value, Some(phantom_shared_secret), false, None)
4351 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4352 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4358 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4361 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4364 HTLCForwardInfo::FailHTLC { .. } => {
4365 // Channel went away before we could fail it. This implies
4366 // the channel is now on chain and our counterparty is
4367 // trying to broadcast the HTLC-Timeout, but that's their
4368 // problem, not ours.
4374 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4375 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4376 Some((cp_id, chan_id)) => (cp_id, chan_id),
4378 forwarding_channel_not_found!();
4382 let per_peer_state = self.per_peer_state.read().unwrap();
4383 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4384 if peer_state_mutex_opt.is_none() {
4385 forwarding_channel_not_found!();
4388 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4389 let peer_state = &mut *peer_state_lock;
4390 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4391 for forward_info in pending_forwards.drain(..) {
4392 match forward_info {
4393 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4394 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4395 forward_info: PendingHTLCInfo {
4396 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4397 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
4400 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4401 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4402 short_channel_id: prev_short_channel_id,
4403 user_channel_id: Some(prev_user_channel_id),
4404 outpoint: prev_funding_outpoint,
4405 htlc_id: prev_htlc_id,
4406 incoming_packet_shared_secret: incoming_shared_secret,
4407 // Phantom payments are only PendingHTLCRouting::Receive.
4408 phantom_shared_secret: None,
4410 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4411 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4412 onion_packet, skimmed_fee_msat, &self.fee_estimator,
4415 if let ChannelError::Ignore(msg) = e {
4416 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4418 panic!("Stated return value requirements in send_htlc() were not met");
4420 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4421 failed_forwards.push((htlc_source, payment_hash,
4422 HTLCFailReason::reason(failure_code, data),
4423 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4428 HTLCForwardInfo::AddHTLC { .. } => {
4429 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4431 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4432 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4433 if let Err(e) = chan.queue_fail_htlc(
4434 htlc_id, err_packet, &self.logger
4436 if let ChannelError::Ignore(msg) = e {
4437 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4439 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4441 // fail-backs are best-effort, we probably already have one
4442 // pending, and if not that's OK, if not, the channel is on
4443 // the chain and sending the HTLC-Timeout is their problem.
4450 forwarding_channel_not_found!();
4454 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4455 match forward_info {
4456 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4457 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4458 forward_info: PendingHTLCInfo {
4459 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4460 skimmed_fee_msat, ..
4463 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4464 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4465 let _legacy_hop_data = Some(payment_data.clone());
4466 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4467 payment_metadata, custom_tlvs };
4468 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4469 Some(payment_data), phantom_shared_secret, onion_fields)
4471 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4472 let onion_fields = RecipientOnionFields {
4473 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4477 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4478 payment_data, None, onion_fields)
4481 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4484 let claimable_htlc = ClaimableHTLC {
4485 prev_hop: HTLCPreviousHopData {
4486 short_channel_id: prev_short_channel_id,
4487 user_channel_id: Some(prev_user_channel_id),
4488 outpoint: prev_funding_outpoint,
4489 htlc_id: prev_htlc_id,
4490 incoming_packet_shared_secret: incoming_shared_secret,
4491 phantom_shared_secret,
4493 // We differentiate the received value from the sender intended value
4494 // if possible so that we don't prematurely mark MPP payments complete
4495 // if routing nodes overpay
4496 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4497 sender_intended_value: outgoing_amt_msat,
4499 total_value_received: None,
4500 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4503 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4506 let mut committed_to_claimable = false;
4508 macro_rules! fail_htlc {
4509 ($htlc: expr, $payment_hash: expr) => {
4510 debug_assert!(!committed_to_claimable);
4511 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4512 htlc_msat_height_data.extend_from_slice(
4513 &self.best_block.read().unwrap().height().to_be_bytes(),
4515 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4516 short_channel_id: $htlc.prev_hop.short_channel_id,
4517 user_channel_id: $htlc.prev_hop.user_channel_id,
4518 outpoint: prev_funding_outpoint,
4519 htlc_id: $htlc.prev_hop.htlc_id,
4520 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4521 phantom_shared_secret,
4523 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4524 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4526 continue 'next_forwardable_htlc;
4529 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4530 let mut receiver_node_id = self.our_network_pubkey;
4531 if phantom_shared_secret.is_some() {
4532 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4533 .expect("Failed to get node_id for phantom node recipient");
4536 macro_rules! check_total_value {
4537 ($purpose: expr) => {{
4538 let mut payment_claimable_generated = false;
4539 let is_keysend = match $purpose {
4540 events::PaymentPurpose::SpontaneousPayment(_) => true,
4541 events::PaymentPurpose::InvoicePayment { .. } => false,
4543 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4544 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4545 fail_htlc!(claimable_htlc, payment_hash);
4547 let ref mut claimable_payment = claimable_payments.claimable_payments
4548 .entry(payment_hash)
4549 // Note that if we insert here we MUST NOT fail_htlc!()
4550 .or_insert_with(|| {
4551 committed_to_claimable = true;
4553 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4556 if $purpose != claimable_payment.purpose {
4557 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4558 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4559 fail_htlc!(claimable_htlc, payment_hash);
4561 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4562 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4563 fail_htlc!(claimable_htlc, payment_hash);
4565 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4566 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4567 fail_htlc!(claimable_htlc, payment_hash);
4570 claimable_payment.onion_fields = Some(onion_fields);
4572 let ref mut htlcs = &mut claimable_payment.htlcs;
4573 let mut total_value = claimable_htlc.sender_intended_value;
4574 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4575 for htlc in htlcs.iter() {
4576 total_value += htlc.sender_intended_value;
4577 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4578 if htlc.total_msat != claimable_htlc.total_msat {
4579 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4580 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4581 total_value = msgs::MAX_VALUE_MSAT;
4583 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4585 // The condition determining whether an MPP is complete must
4586 // match exactly the condition used in `timer_tick_occurred`
4587 if total_value >= msgs::MAX_VALUE_MSAT {
4588 fail_htlc!(claimable_htlc, payment_hash);
4589 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4590 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4592 fail_htlc!(claimable_htlc, payment_hash);
4593 } else if total_value >= claimable_htlc.total_msat {
4594 #[allow(unused_assignments)] {
4595 committed_to_claimable = true;
4597 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4598 htlcs.push(claimable_htlc);
4599 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4600 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4601 let counterparty_skimmed_fee_msat = htlcs.iter()
4602 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4603 debug_assert!(total_value.saturating_sub(amount_msat) <=
4604 counterparty_skimmed_fee_msat);
4605 new_events.push_back((events::Event::PaymentClaimable {
4606 receiver_node_id: Some(receiver_node_id),
4610 counterparty_skimmed_fee_msat,
4611 via_channel_id: Some(prev_channel_id),
4612 via_user_channel_id: Some(prev_user_channel_id),
4613 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4614 onion_fields: claimable_payment.onion_fields.clone(),
4616 payment_claimable_generated = true;
4618 // Nothing to do - we haven't reached the total
4619 // payment value yet, wait until we receive more
4621 htlcs.push(claimable_htlc);
4622 #[allow(unused_assignments)] {
4623 committed_to_claimable = true;
4626 payment_claimable_generated
4630 // Check that the payment hash and secret are known. Note that we
4631 // MUST take care to handle the "unknown payment hash" and
4632 // "incorrect payment secret" cases here identically or we'd expose
4633 // that we are the ultimate recipient of the given payment hash.
4634 // Further, we must not expose whether we have any other HTLCs
4635 // associated with the same payment_hash pending or not.
4636 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4637 match payment_secrets.entry(payment_hash) {
4638 hash_map::Entry::Vacant(_) => {
4639 match claimable_htlc.onion_payload {
4640 OnionPayload::Invoice { .. } => {
4641 let payment_data = payment_data.unwrap();
4642 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4643 Ok(result) => result,
4645 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4646 fail_htlc!(claimable_htlc, payment_hash);
4649 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4650 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4651 if (cltv_expiry as u64) < expected_min_expiry_height {
4652 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4653 &payment_hash, cltv_expiry, expected_min_expiry_height);
4654 fail_htlc!(claimable_htlc, payment_hash);
4657 let purpose = events::PaymentPurpose::InvoicePayment {
4658 payment_preimage: payment_preimage.clone(),
4659 payment_secret: payment_data.payment_secret,
4661 check_total_value!(purpose);
4663 OnionPayload::Spontaneous(preimage) => {
4664 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4665 check_total_value!(purpose);
4669 hash_map::Entry::Occupied(inbound_payment) => {
4670 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4671 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4672 fail_htlc!(claimable_htlc, payment_hash);
4674 let payment_data = payment_data.unwrap();
4675 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4676 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4677 fail_htlc!(claimable_htlc, payment_hash);
4678 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4679 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4680 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4681 fail_htlc!(claimable_htlc, payment_hash);
4683 let purpose = events::PaymentPurpose::InvoicePayment {
4684 payment_preimage: inbound_payment.get().payment_preimage,
4685 payment_secret: payment_data.payment_secret,
4687 let payment_claimable_generated = check_total_value!(purpose);
4688 if payment_claimable_generated {
4689 inbound_payment.remove_entry();
4695 HTLCForwardInfo::FailHTLC { .. } => {
4696 panic!("Got pending fail of our own HTLC");
4704 let best_block_height = self.best_block.read().unwrap().height();
4705 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4706 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4707 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4709 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4710 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4712 self.forward_htlcs(&mut phantom_receives);
4714 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4715 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4716 // nice to do the work now if we can rather than while we're trying to get messages in the
4718 self.check_free_holding_cells();
4720 if new_events.is_empty() { return }
4721 let mut events = self.pending_events.lock().unwrap();
4722 events.append(&mut new_events);
4725 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4727 /// Expects the caller to have a total_consistency_lock read lock.
4728 fn process_background_events(&self) -> NotifyOption {
4729 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4731 self.background_events_processed_since_startup.store(true, Ordering::Release);
4733 let mut background_events = Vec::new();
4734 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4735 if background_events.is_empty() {
4736 return NotifyOption::SkipPersistNoEvents;
4739 for event in background_events.drain(..) {
4741 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4742 // The channel has already been closed, so no use bothering to care about the
4743 // monitor updating completing.
4744 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4746 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4747 let mut updated_chan = false;
4749 let per_peer_state = self.per_peer_state.read().unwrap();
4750 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4751 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4752 let peer_state = &mut *peer_state_lock;
4753 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4754 hash_map::Entry::Occupied(mut chan_phase) => {
4755 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4756 updated_chan = true;
4757 handle_new_monitor_update!(self, funding_txo, update.clone(),
4758 peer_state_lock, peer_state, per_peer_state, chan);
4760 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4763 hash_map::Entry::Vacant(_) => {},
4768 // TODO: Track this as in-flight even though the channel is closed.
4769 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4772 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4773 let per_peer_state = self.per_peer_state.read().unwrap();
4774 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4775 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4776 let peer_state = &mut *peer_state_lock;
4777 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4778 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4780 let update_actions = peer_state.monitor_update_blocked_actions
4781 .remove(&channel_id).unwrap_or(Vec::new());
4782 mem::drop(peer_state_lock);
4783 mem::drop(per_peer_state);
4784 self.handle_monitor_update_completion_actions(update_actions);
4790 NotifyOption::DoPersist
4793 #[cfg(any(test, feature = "_test_utils"))]
4794 /// Process background events, for functional testing
4795 pub fn test_process_background_events(&self) {
4796 let _lck = self.total_consistency_lock.read().unwrap();
4797 let _ = self.process_background_events();
4800 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4801 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4802 // If the feerate has decreased by less than half, don't bother
4803 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4804 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4805 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4806 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4808 return NotifyOption::SkipPersistNoEvents;
4810 if !chan.context.is_live() {
4811 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4812 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4813 return NotifyOption::SkipPersistNoEvents;
4815 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4816 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4818 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4819 NotifyOption::DoPersist
4823 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4824 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4825 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4826 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4827 pub fn maybe_update_chan_fees(&self) {
4828 PersistenceNotifierGuard::optionally_notify(self, || {
4829 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4831 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4832 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4834 let per_peer_state = self.per_peer_state.read().unwrap();
4835 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4836 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4837 let peer_state = &mut *peer_state_lock;
4838 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4839 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4841 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4846 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4847 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4855 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4857 /// This currently includes:
4858 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4859 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4860 /// than a minute, informing the network that they should no longer attempt to route over
4862 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4863 /// with the current [`ChannelConfig`].
4864 /// * Removing peers which have disconnected but and no longer have any channels.
4865 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4866 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4867 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4868 /// The latter is determined using the system clock in `std` and the highest seen block time
4869 /// minus two hours in `no-std`.
4871 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4872 /// estimate fetches.
4874 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4875 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4876 pub fn timer_tick_occurred(&self) {
4877 PersistenceNotifierGuard::optionally_notify(self, || {
4878 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4880 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4881 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4883 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4884 let mut timed_out_mpp_htlcs = Vec::new();
4885 let mut pending_peers_awaiting_removal = Vec::new();
4886 let mut shutdown_channels = Vec::new();
4888 let mut process_unfunded_channel_tick = |
4889 chan_id: &ChannelId,
4890 context: &mut ChannelContext<SP>,
4891 unfunded_context: &mut UnfundedChannelContext,
4892 pending_msg_events: &mut Vec<MessageSendEvent>,
4893 counterparty_node_id: PublicKey,
4895 context.maybe_expire_prev_config();
4896 if unfunded_context.should_expire_unfunded_channel() {
4897 log_error!(self.logger,
4898 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4899 update_maps_on_chan_removal!(self, &context);
4900 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4901 shutdown_channels.push(context.force_shutdown(false));
4902 pending_msg_events.push(MessageSendEvent::HandleError {
4903 node_id: counterparty_node_id,
4904 action: msgs::ErrorAction::SendErrorMessage {
4905 msg: msgs::ErrorMessage {
4906 channel_id: *chan_id,
4907 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4918 let per_peer_state = self.per_peer_state.read().unwrap();
4919 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4920 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4921 let peer_state = &mut *peer_state_lock;
4922 let pending_msg_events = &mut peer_state.pending_msg_events;
4923 let counterparty_node_id = *counterparty_node_id;
4924 peer_state.channel_by_id.retain(|chan_id, phase| {
4926 ChannelPhase::Funded(chan) => {
4927 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4932 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4933 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4935 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4936 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4937 handle_errors.push((Err(err), counterparty_node_id));
4938 if needs_close { return false; }
4941 match chan.channel_update_status() {
4942 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4943 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4944 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4945 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4946 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4947 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4948 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4950 if n >= DISABLE_GOSSIP_TICKS {
4951 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4952 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4953 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4957 should_persist = NotifyOption::DoPersist;
4959 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4962 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4964 if n >= ENABLE_GOSSIP_TICKS {
4965 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4966 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4967 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4971 should_persist = NotifyOption::DoPersist;
4973 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4979 chan.context.maybe_expire_prev_config();
4981 if chan.should_disconnect_peer_awaiting_response() {
4982 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4983 counterparty_node_id, chan_id);
4984 pending_msg_events.push(MessageSendEvent::HandleError {
4985 node_id: counterparty_node_id,
4986 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4987 msg: msgs::WarningMessage {
4988 channel_id: *chan_id,
4989 data: "Disconnecting due to timeout awaiting response".to_owned(),
4997 ChannelPhase::UnfundedInboundV1(chan) => {
4998 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4999 pending_msg_events, counterparty_node_id)
5001 ChannelPhase::UnfundedOutboundV1(chan) => {
5002 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5003 pending_msg_events, counterparty_node_id)
5008 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5009 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5010 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5011 peer_state.pending_msg_events.push(
5012 events::MessageSendEvent::HandleError {
5013 node_id: counterparty_node_id,
5014 action: msgs::ErrorAction::SendErrorMessage {
5015 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5021 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5023 if peer_state.ok_to_remove(true) {
5024 pending_peers_awaiting_removal.push(counterparty_node_id);
5029 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5030 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5031 // of to that peer is later closed while still being disconnected (i.e. force closed),
5032 // we therefore need to remove the peer from `peer_state` separately.
5033 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5034 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5035 // negative effects on parallelism as much as possible.
5036 if pending_peers_awaiting_removal.len() > 0 {
5037 let mut per_peer_state = self.per_peer_state.write().unwrap();
5038 for counterparty_node_id in pending_peers_awaiting_removal {
5039 match per_peer_state.entry(counterparty_node_id) {
5040 hash_map::Entry::Occupied(entry) => {
5041 // Remove the entry if the peer is still disconnected and we still
5042 // have no channels to the peer.
5043 let remove_entry = {
5044 let peer_state = entry.get().lock().unwrap();
5045 peer_state.ok_to_remove(true)
5048 entry.remove_entry();
5051 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5056 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5057 if payment.htlcs.is_empty() {
5058 // This should be unreachable
5059 debug_assert!(false);
5062 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5063 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5064 // In this case we're not going to handle any timeouts of the parts here.
5065 // This condition determining whether the MPP is complete here must match
5066 // exactly the condition used in `process_pending_htlc_forwards`.
5067 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5068 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5071 } else if payment.htlcs.iter_mut().any(|htlc| {
5072 htlc.timer_ticks += 1;
5073 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5075 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5076 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5083 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5084 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5085 let reason = HTLCFailReason::from_failure_code(23);
5086 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5087 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5090 for (err, counterparty_node_id) in handle_errors.drain(..) {
5091 let _ = handle_error!(self, err, counterparty_node_id);
5094 for shutdown_res in shutdown_channels {
5095 self.finish_close_channel(shutdown_res);
5098 #[cfg(feature = "std")]
5099 let duration_since_epoch = std::time::SystemTime::now()
5100 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5101 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5102 #[cfg(not(feature = "std"))]
5103 let duration_since_epoch = Duration::from_secs(
5104 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5107 self.pending_outbound_payments.remove_stale_payments(
5108 duration_since_epoch, &self.pending_events
5111 // Technically we don't need to do this here, but if we have holding cell entries in a
5112 // channel that need freeing, it's better to do that here and block a background task
5113 // than block the message queueing pipeline.
5114 if self.check_free_holding_cells() {
5115 should_persist = NotifyOption::DoPersist;
5122 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5123 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5124 /// along the path (including in our own channel on which we received it).
5126 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5127 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5128 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5129 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5131 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5132 /// [`ChannelManager::claim_funds`]), you should still monitor for
5133 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5134 /// startup during which time claims that were in-progress at shutdown may be replayed.
5135 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5136 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5139 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5140 /// reason for the failure.
5142 /// See [`FailureCode`] for valid failure codes.
5143 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5144 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5146 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5147 if let Some(payment) = removed_source {
5148 for htlc in payment.htlcs {
5149 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5150 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5151 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5152 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5157 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5158 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5159 match failure_code {
5160 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5161 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5162 FailureCode::IncorrectOrUnknownPaymentDetails => {
5163 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5164 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5165 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5167 FailureCode::InvalidOnionPayload(data) => {
5168 let fail_data = match data {
5169 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5172 HTLCFailReason::reason(failure_code.into(), fail_data)
5177 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5178 /// that we want to return and a channel.
5180 /// This is for failures on the channel on which the HTLC was *received*, not failures
5182 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5183 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5184 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5185 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5186 // an inbound SCID alias before the real SCID.
5187 let scid_pref = if chan.context.should_announce() {
5188 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5190 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5192 if let Some(scid) = scid_pref {
5193 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5195 (0x4000|10, Vec::new())
5200 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5201 /// that we want to return and a channel.
5202 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5203 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5204 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5205 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5206 if desired_err_code == 0x1000 | 20 {
5207 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5208 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5209 0u16.write(&mut enc).expect("Writes cannot fail");
5211 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5212 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5213 upd.write(&mut enc).expect("Writes cannot fail");
5214 (desired_err_code, enc.0)
5216 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5217 // which means we really shouldn't have gotten a payment to be forwarded over this
5218 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5219 // PERM|no_such_channel should be fine.
5220 (0x4000|10, Vec::new())
5224 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5225 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5226 // be surfaced to the user.
5227 fn fail_holding_cell_htlcs(
5228 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5229 counterparty_node_id: &PublicKey
5231 let (failure_code, onion_failure_data) = {
5232 let per_peer_state = self.per_peer_state.read().unwrap();
5233 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5234 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5235 let peer_state = &mut *peer_state_lock;
5236 match peer_state.channel_by_id.entry(channel_id) {
5237 hash_map::Entry::Occupied(chan_phase_entry) => {
5238 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5239 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5241 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5242 debug_assert!(false);
5243 (0x4000|10, Vec::new())
5246 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5248 } else { (0x4000|10, Vec::new()) }
5251 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5252 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5253 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5254 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5258 /// Fails an HTLC backwards to the sender of it to us.
5259 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5260 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5261 // Ensure that no peer state channel storage lock is held when calling this function.
5262 // This ensures that future code doesn't introduce a lock-order requirement for
5263 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5264 // this function with any `per_peer_state` peer lock acquired would.
5265 #[cfg(debug_assertions)]
5266 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5267 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5270 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5271 //identify whether we sent it or not based on the (I presume) very different runtime
5272 //between the branches here. We should make this async and move it into the forward HTLCs
5275 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5276 // from block_connected which may run during initialization prior to the chain_monitor
5277 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5279 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5280 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5281 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5282 &self.pending_events, &self.logger)
5283 { self.push_pending_forwards_ev(); }
5285 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
5286 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
5287 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
5289 let mut push_forward_ev = false;
5290 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5291 if forward_htlcs.is_empty() {
5292 push_forward_ev = true;
5294 match forward_htlcs.entry(*short_channel_id) {
5295 hash_map::Entry::Occupied(mut entry) => {
5296 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5298 hash_map::Entry::Vacant(entry) => {
5299 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5302 mem::drop(forward_htlcs);
5303 if push_forward_ev { self.push_pending_forwards_ev(); }
5304 let mut pending_events = self.pending_events.lock().unwrap();
5305 pending_events.push_back((events::Event::HTLCHandlingFailed {
5306 prev_channel_id: outpoint.to_channel_id(),
5307 failed_next_destination: destination,
5313 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5314 /// [`MessageSendEvent`]s needed to claim the payment.
5316 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5317 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5318 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5319 /// successful. It will generally be available in the next [`process_pending_events`] call.
5321 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5322 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5323 /// event matches your expectation. If you fail to do so and call this method, you may provide
5324 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5326 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5327 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5328 /// [`claim_funds_with_known_custom_tlvs`].
5330 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5331 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5332 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5333 /// [`process_pending_events`]: EventsProvider::process_pending_events
5334 /// [`create_inbound_payment`]: Self::create_inbound_payment
5335 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5336 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5337 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5338 self.claim_payment_internal(payment_preimage, false);
5341 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5342 /// even type numbers.
5346 /// You MUST check you've understood all even TLVs before using this to
5347 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5349 /// [`claim_funds`]: Self::claim_funds
5350 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5351 self.claim_payment_internal(payment_preimage, true);
5354 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5355 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5357 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5360 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5361 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5362 let mut receiver_node_id = self.our_network_pubkey;
5363 for htlc in payment.htlcs.iter() {
5364 if htlc.prev_hop.phantom_shared_secret.is_some() {
5365 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5366 .expect("Failed to get node_id for phantom node recipient");
5367 receiver_node_id = phantom_pubkey;
5372 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5373 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5374 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5375 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5376 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5378 if dup_purpose.is_some() {
5379 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5380 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5384 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5385 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5386 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5387 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5388 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5389 mem::drop(claimable_payments);
5390 for htlc in payment.htlcs {
5391 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5392 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5393 let receiver = HTLCDestination::FailedPayment { payment_hash };
5394 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5403 debug_assert!(!sources.is_empty());
5405 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5406 // and when we got here we need to check that the amount we're about to claim matches the
5407 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5408 // the MPP parts all have the same `total_msat`.
5409 let mut claimable_amt_msat = 0;
5410 let mut prev_total_msat = None;
5411 let mut expected_amt_msat = None;
5412 let mut valid_mpp = true;
5413 let mut errs = Vec::new();
5414 let per_peer_state = self.per_peer_state.read().unwrap();
5415 for htlc in sources.iter() {
5416 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5417 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5418 debug_assert!(false);
5422 prev_total_msat = Some(htlc.total_msat);
5424 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5425 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5426 debug_assert!(false);
5430 expected_amt_msat = htlc.total_value_received;
5431 claimable_amt_msat += htlc.value;
5433 mem::drop(per_peer_state);
5434 if sources.is_empty() || expected_amt_msat.is_none() {
5435 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5436 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5439 if claimable_amt_msat != expected_amt_msat.unwrap() {
5440 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5441 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5442 expected_amt_msat.unwrap(), claimable_amt_msat);
5446 for htlc in sources.drain(..) {
5447 if let Err((pk, err)) = self.claim_funds_from_hop(
5448 htlc.prev_hop, payment_preimage,
5449 |_, definitely_duplicate| {
5450 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5451 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5454 if let msgs::ErrorAction::IgnoreError = err.err.action {
5455 // We got a temporary failure updating monitor, but will claim the
5456 // HTLC when the monitor updating is restored (or on chain).
5457 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5458 } else { errs.push((pk, err)); }
5463 for htlc in sources.drain(..) {
5464 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5465 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5466 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5467 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5468 let receiver = HTLCDestination::FailedPayment { payment_hash };
5469 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5471 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5474 // Now we can handle any errors which were generated.
5475 for (counterparty_node_id, err) in errs.drain(..) {
5476 let res: Result<(), _> = Err(err);
5477 let _ = handle_error!(self, res, counterparty_node_id);
5481 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5482 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5483 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5484 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5486 // If we haven't yet run background events assume we're still deserializing and shouldn't
5487 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5488 // `BackgroundEvent`s.
5489 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5491 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5492 // the required mutexes are not held before we start.
5493 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5494 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5497 let per_peer_state = self.per_peer_state.read().unwrap();
5498 let chan_id = prev_hop.outpoint.to_channel_id();
5499 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5500 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5504 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5505 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5506 .map(|peer_mutex| peer_mutex.lock().unwrap())
5509 if peer_state_opt.is_some() {
5510 let mut peer_state_lock = peer_state_opt.unwrap();
5511 let peer_state = &mut *peer_state_lock;
5512 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5513 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5514 let counterparty_node_id = chan.context.get_counterparty_node_id();
5515 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5518 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5519 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5520 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5522 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5525 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5526 peer_state, per_peer_state, chan);
5528 // If we're running during init we cannot update a monitor directly -
5529 // they probably haven't actually been loaded yet. Instead, push the
5530 // monitor update as a background event.
5531 self.pending_background_events.lock().unwrap().push(
5532 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5533 counterparty_node_id,
5534 funding_txo: prev_hop.outpoint,
5535 update: monitor_update.clone(),
5539 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5540 let action = if let Some(action) = completion_action(None, true) {
5545 mem::drop(peer_state_lock);
5547 log_trace!(self.logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5549 let (node_id, funding_outpoint, blocker) =
5550 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5551 downstream_counterparty_node_id: node_id,
5552 downstream_funding_outpoint: funding_outpoint,
5553 blocking_action: blocker,
5555 (node_id, funding_outpoint, blocker)
5557 debug_assert!(false,
5558 "Duplicate claims should always free another channel immediately");
5561 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5562 let mut peer_state = peer_state_mtx.lock().unwrap();
5563 if let Some(blockers) = peer_state
5564 .actions_blocking_raa_monitor_updates
5565 .get_mut(&funding_outpoint.to_channel_id())
5567 let mut found_blocker = false;
5568 blockers.retain(|iter| {
5569 // Note that we could actually be blocked, in
5570 // which case we need to only remove the one
5571 // blocker which was added duplicatively.
5572 let first_blocker = !found_blocker;
5573 if *iter == blocker { found_blocker = true; }
5574 *iter != blocker || !first_blocker
5576 debug_assert!(found_blocker);
5579 debug_assert!(false);
5588 let preimage_update = ChannelMonitorUpdate {
5589 update_id: CLOSED_CHANNEL_UPDATE_ID,
5590 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5596 // We update the ChannelMonitor on the backward link, after
5597 // receiving an `update_fulfill_htlc` from the forward link.
5598 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5599 if update_res != ChannelMonitorUpdateStatus::Completed {
5600 // TODO: This needs to be handled somehow - if we receive a monitor update
5601 // with a preimage we *must* somehow manage to propagate it to the upstream
5602 // channel, or we must have an ability to receive the same event and try
5603 // again on restart.
5604 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5605 payment_preimage, update_res);
5608 // If we're running during init we cannot update a monitor directly - they probably
5609 // haven't actually been loaded yet. Instead, push the monitor update as a background
5611 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5612 // channel is already closed) we need to ultimately handle the monitor update
5613 // completion action only after we've completed the monitor update. This is the only
5614 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5615 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5616 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5617 // complete the monitor update completion action from `completion_action`.
5618 self.pending_background_events.lock().unwrap().push(
5619 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5620 prev_hop.outpoint, preimage_update,
5623 // Note that we do process the completion action here. This totally could be a
5624 // duplicate claim, but we have no way of knowing without interrogating the
5625 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5626 // generally always allowed to be duplicative (and it's specifically noted in
5627 // `PaymentForwarded`).
5628 self.handle_monitor_update_completion_actions(completion_action(None, false));
5632 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5633 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5636 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5637 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5638 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5641 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5642 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5643 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5644 if let Some(pubkey) = next_channel_counterparty_node_id {
5645 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5647 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5648 channel_funding_outpoint: next_channel_outpoint,
5649 counterparty_node_id: path.hops[0].pubkey,
5651 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5652 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5655 HTLCSource::PreviousHopData(hop_data) => {
5656 let prev_outpoint = hop_data.outpoint;
5657 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5658 #[cfg(debug_assertions)]
5659 let claiming_chan_funding_outpoint = hop_data.outpoint;
5660 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5661 |htlc_claim_value_msat, definitely_duplicate| {
5662 let chan_to_release =
5663 if let Some(node_id) = next_channel_counterparty_node_id {
5664 Some((node_id, next_channel_outpoint, completed_blocker))
5666 // We can only get `None` here if we are processing a
5667 // `ChannelMonitor`-originated event, in which case we
5668 // don't care about ensuring we wake the downstream
5669 // channel's monitor updating - the channel is already
5674 if definitely_duplicate && startup_replay {
5675 // On startup we may get redundant claims which are related to
5676 // monitor updates still in flight. In that case, we shouldn't
5677 // immediately free, but instead let that monitor update complete
5678 // in the background.
5679 #[cfg(debug_assertions)] {
5680 let background_events = self.pending_background_events.lock().unwrap();
5681 // There should be a `BackgroundEvent` pending...
5682 assert!(background_events.iter().any(|ev| {
5684 // to apply a monitor update that blocked the claiming channel,
5685 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5686 funding_txo, update, ..
5688 if *funding_txo == claiming_chan_funding_outpoint {
5689 assert!(update.updates.iter().any(|upd|
5690 if let ChannelMonitorUpdateStep::PaymentPreimage {
5691 payment_preimage: update_preimage
5693 payment_preimage == *update_preimage
5699 // or the channel we'd unblock is already closed,
5700 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5701 (funding_txo, monitor_update)
5703 if *funding_txo == next_channel_outpoint {
5704 assert_eq!(monitor_update.updates.len(), 1);
5706 monitor_update.updates[0],
5707 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5712 // or the monitor update has completed and will unblock
5713 // immediately once we get going.
5714 BackgroundEvent::MonitorUpdatesComplete {
5717 *channel_id == claiming_chan_funding_outpoint.to_channel_id(),
5719 }), "{:?}", *background_events);
5722 } else if definitely_duplicate {
5723 if let Some(other_chan) = chan_to_release {
5724 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5725 downstream_counterparty_node_id: other_chan.0,
5726 downstream_funding_outpoint: other_chan.1,
5727 blocking_action: other_chan.2,
5731 let fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5732 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5733 Some(claimed_htlc_value - forwarded_htlc_value)
5736 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5737 event: events::Event::PaymentForwarded {
5739 claim_from_onchain_tx: from_onchain,
5740 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5741 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5742 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5744 downstream_counterparty_and_funding_outpoint: chan_to_release,
5748 if let Err((pk, err)) = res {
5749 let result: Result<(), _> = Err(err);
5750 let _ = handle_error!(self, result, pk);
5756 /// Gets the node_id held by this ChannelManager
5757 pub fn get_our_node_id(&self) -> PublicKey {
5758 self.our_network_pubkey.clone()
5761 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5762 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5763 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5764 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5766 for action in actions.into_iter() {
5768 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5769 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5770 if let Some(ClaimingPayment {
5772 payment_purpose: purpose,
5775 sender_intended_value: sender_intended_total_msat,
5777 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5781 receiver_node_id: Some(receiver_node_id),
5783 sender_intended_total_msat,
5787 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5788 event, downstream_counterparty_and_funding_outpoint
5790 self.pending_events.lock().unwrap().push_back((event, None));
5791 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5792 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5795 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5796 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5798 self.handle_monitor_update_release(
5799 downstream_counterparty_node_id,
5800 downstream_funding_outpoint,
5801 Some(blocking_action),
5808 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5809 /// update completion.
5810 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5811 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5812 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5813 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5814 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5815 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5816 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5817 &channel.context.channel_id(),
5818 if raa.is_some() { "an" } else { "no" },
5819 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5820 if funding_broadcastable.is_some() { "" } else { "not " },
5821 if channel_ready.is_some() { "sending" } else { "without" },
5822 if announcement_sigs.is_some() { "sending" } else { "without" });
5824 let mut htlc_forwards = None;
5826 let counterparty_node_id = channel.context.get_counterparty_node_id();
5827 if !pending_forwards.is_empty() {
5828 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5829 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5832 if let Some(msg) = channel_ready {
5833 send_channel_ready!(self, pending_msg_events, channel, msg);
5835 if let Some(msg) = announcement_sigs {
5836 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5837 node_id: counterparty_node_id,
5842 macro_rules! handle_cs { () => {
5843 if let Some(update) = commitment_update {
5844 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5845 node_id: counterparty_node_id,
5850 macro_rules! handle_raa { () => {
5851 if let Some(revoke_and_ack) = raa {
5852 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5853 node_id: counterparty_node_id,
5854 msg: revoke_and_ack,
5859 RAACommitmentOrder::CommitmentFirst => {
5863 RAACommitmentOrder::RevokeAndACKFirst => {
5869 if let Some(tx) = funding_broadcastable {
5870 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5871 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5875 let mut pending_events = self.pending_events.lock().unwrap();
5876 emit_channel_pending_event!(pending_events, channel);
5877 emit_channel_ready_event!(pending_events, channel);
5883 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5884 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5886 let counterparty_node_id = match counterparty_node_id {
5887 Some(cp_id) => cp_id.clone(),
5889 // TODO: Once we can rely on the counterparty_node_id from the
5890 // monitor event, this and the id_to_peer map should be removed.
5891 let id_to_peer = self.id_to_peer.lock().unwrap();
5892 match id_to_peer.get(&funding_txo.to_channel_id()) {
5893 Some(cp_id) => cp_id.clone(),
5898 let per_peer_state = self.per_peer_state.read().unwrap();
5899 let mut peer_state_lock;
5900 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5901 if peer_state_mutex_opt.is_none() { return }
5902 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5903 let peer_state = &mut *peer_state_lock;
5905 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5908 let update_actions = peer_state.monitor_update_blocked_actions
5909 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5910 mem::drop(peer_state_lock);
5911 mem::drop(per_peer_state);
5912 self.handle_monitor_update_completion_actions(update_actions);
5915 let remaining_in_flight =
5916 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5917 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5920 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5921 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5922 remaining_in_flight);
5923 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5926 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5929 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5931 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5932 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5935 /// The `user_channel_id` parameter will be provided back in
5936 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5937 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5939 /// Note that this method will return an error and reject the channel, if it requires support
5940 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5941 /// used to accept such channels.
5943 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5944 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5945 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5946 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5949 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5950 /// it as confirmed immediately.
5952 /// The `user_channel_id` parameter will be provided back in
5953 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5954 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5956 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5957 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5959 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5960 /// transaction and blindly assumes that it will eventually confirm.
5962 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5963 /// does not pay to the correct script the correct amount, *you will lose funds*.
5965 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5966 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5967 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5968 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5971 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5972 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5974 let peers_without_funded_channels =
5975 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5976 let per_peer_state = self.per_peer_state.read().unwrap();
5977 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5978 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5979 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5980 let peer_state = &mut *peer_state_lock;
5981 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5983 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5984 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5985 // that we can delay allocating the SCID until after we're sure that the checks below will
5987 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5988 Some(unaccepted_channel) => {
5989 let best_block_height = self.best_block.read().unwrap().height();
5990 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5991 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5992 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5993 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5995 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5999 // This should have been correctly configured by the call to InboundV1Channel::new.
6000 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6001 } else if channel.context.get_channel_type().requires_zero_conf() {
6002 let send_msg_err_event = events::MessageSendEvent::HandleError {
6003 node_id: channel.context.get_counterparty_node_id(),
6004 action: msgs::ErrorAction::SendErrorMessage{
6005 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
6008 peer_state.pending_msg_events.push(send_msg_err_event);
6009 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
6011 // If this peer already has some channels, a new channel won't increase our number of peers
6012 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6013 // channels per-peer we can accept channels from a peer with existing ones.
6014 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
6015 let send_msg_err_event = events::MessageSendEvent::HandleError {
6016 node_id: channel.context.get_counterparty_node_id(),
6017 action: msgs::ErrorAction::SendErrorMessage{
6018 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
6021 peer_state.pending_msg_events.push(send_msg_err_event);
6022 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
6026 // Now that we know we have a channel, assign an outbound SCID alias.
6027 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6028 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6030 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6031 node_id: channel.context.get_counterparty_node_id(),
6032 msg: channel.accept_inbound_channel(),
6035 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
6040 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
6041 /// or 0-conf channels.
6043 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
6044 /// non-0-conf channels we have with the peer.
6045 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
6046 where Filter: Fn(&PeerState<SP>) -> bool {
6047 let mut peers_without_funded_channels = 0;
6048 let best_block_height = self.best_block.read().unwrap().height();
6050 let peer_state_lock = self.per_peer_state.read().unwrap();
6051 for (_, peer_mtx) in peer_state_lock.iter() {
6052 let peer = peer_mtx.lock().unwrap();
6053 if !maybe_count_peer(&*peer) { continue; }
6054 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
6055 if num_unfunded_channels == peer.total_channel_count() {
6056 peers_without_funded_channels += 1;
6060 return peers_without_funded_channels;
6063 fn unfunded_channel_count(
6064 peer: &PeerState<SP>, best_block_height: u32
6066 let mut num_unfunded_channels = 0;
6067 for (_, phase) in peer.channel_by_id.iter() {
6069 ChannelPhase::Funded(chan) => {
6070 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
6071 // which have not yet had any confirmations on-chain.
6072 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
6073 chan.context.get_funding_tx_confirmations(best_block_height) == 0
6075 num_unfunded_channels += 1;
6078 ChannelPhase::UnfundedInboundV1(chan) => {
6079 if chan.context.minimum_depth().unwrap_or(1) != 0 {
6080 num_unfunded_channels += 1;
6083 ChannelPhase::UnfundedOutboundV1(_) => {
6084 // Outbound channels don't contribute to the unfunded count in the DoS context.
6089 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
6092 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
6093 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6094 // likely to be lost on restart!
6095 if msg.chain_hash != self.chain_hash {
6096 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
6099 if !self.default_configuration.accept_inbound_channels {
6100 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6103 // Get the number of peers with channels, but without funded ones. We don't care too much
6104 // about peers that never open a channel, so we filter by peers that have at least one
6105 // channel, and then limit the number of those with unfunded channels.
6106 let channeled_peers_without_funding =
6107 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
6109 let per_peer_state = self.per_peer_state.read().unwrap();
6110 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6112 debug_assert!(false);
6113 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
6115 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6116 let peer_state = &mut *peer_state_lock;
6118 // If this peer already has some channels, a new channel won't increase our number of peers
6119 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6120 // channels per-peer we can accept channels from a peer with existing ones.
6121 if peer_state.total_channel_count() == 0 &&
6122 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
6123 !self.default_configuration.manually_accept_inbound_channels
6125 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6126 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
6127 msg.temporary_channel_id.clone()));
6130 let best_block_height = self.best_block.read().unwrap().height();
6131 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
6132 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6133 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
6134 msg.temporary_channel_id.clone()));
6137 let channel_id = msg.temporary_channel_id;
6138 let channel_exists = peer_state.has_channel(&channel_id);
6140 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
6143 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
6144 if self.default_configuration.manually_accept_inbound_channels {
6145 let mut pending_events = self.pending_events.lock().unwrap();
6146 pending_events.push_back((events::Event::OpenChannelRequest {
6147 temporary_channel_id: msg.temporary_channel_id.clone(),
6148 counterparty_node_id: counterparty_node_id.clone(),
6149 funding_satoshis: msg.funding_satoshis,
6150 push_msat: msg.push_msat,
6151 channel_type: msg.channel_type.clone().unwrap(),
6153 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
6154 open_channel_msg: msg.clone(),
6155 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
6160 // Otherwise create the channel right now.
6161 let mut random_bytes = [0u8; 16];
6162 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
6163 let user_channel_id = u128::from_be_bytes(random_bytes);
6164 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6165 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
6166 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
6169 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
6174 let channel_type = channel.context.get_channel_type();
6175 if channel_type.requires_zero_conf() {
6176 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6178 if channel_type.requires_anchors_zero_fee_htlc_tx() {
6179 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
6182 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6183 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6185 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6186 node_id: counterparty_node_id.clone(),
6187 msg: channel.accept_inbound_channel(),
6189 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6193 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6194 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6195 // likely to be lost on restart!
6196 let (value, output_script, user_id) = {
6197 let per_peer_state = self.per_peer_state.read().unwrap();
6198 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6200 debug_assert!(false);
6201 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6203 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6204 let peer_state = &mut *peer_state_lock;
6205 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6206 hash_map::Entry::Occupied(mut phase) => {
6207 match phase.get_mut() {
6208 ChannelPhase::UnfundedOutboundV1(chan) => {
6209 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6210 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6213 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6217 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6220 let mut pending_events = self.pending_events.lock().unwrap();
6221 pending_events.push_back((events::Event::FundingGenerationReady {
6222 temporary_channel_id: msg.temporary_channel_id,
6223 counterparty_node_id: *counterparty_node_id,
6224 channel_value_satoshis: value,
6226 user_channel_id: user_id,
6231 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6232 let best_block = *self.best_block.read().unwrap();
6234 let per_peer_state = self.per_peer_state.read().unwrap();
6235 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6237 debug_assert!(false);
6238 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6241 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6242 let peer_state = &mut *peer_state_lock;
6243 let (chan, funding_msg_opt, monitor) =
6244 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6245 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6246 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
6248 Err((mut inbound_chan, err)) => {
6249 // We've already removed this inbound channel from the map in `PeerState`
6250 // above so at this point we just need to clean up any lingering entries
6251 // concerning this channel as it is safe to do so.
6252 update_maps_on_chan_removal!(self, &inbound_chan.context);
6253 let user_id = inbound_chan.context.get_user_id();
6254 let shutdown_res = inbound_chan.context.force_shutdown(false);
6255 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6256 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6260 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6261 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6263 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6266 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
6267 hash_map::Entry::Occupied(_) => {
6268 Err(MsgHandleErrInternal::send_err_msg_no_close(
6269 "Already had channel with the new channel_id".to_owned(),
6270 chan.context.channel_id()
6273 hash_map::Entry::Vacant(e) => {
6274 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6275 match id_to_peer_lock.entry(chan.context.channel_id()) {
6276 hash_map::Entry::Occupied(_) => {
6277 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6278 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6279 chan.context.channel_id()))
6281 hash_map::Entry::Vacant(i_e) => {
6282 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6283 if let Ok(persist_state) = monitor_res {
6284 i_e.insert(chan.context.get_counterparty_node_id());
6285 mem::drop(id_to_peer_lock);
6287 // There's no problem signing a counterparty's funding transaction if our monitor
6288 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6289 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6290 // until we have persisted our monitor.
6291 if let Some(msg) = funding_msg_opt {
6292 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6293 node_id: counterparty_node_id.clone(),
6298 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6299 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6300 per_peer_state, chan, INITIAL_MONITOR);
6302 unreachable!("This must be a funded channel as we just inserted it.");
6306 log_error!(self.logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6307 let channel_id = match funding_msg_opt {
6308 Some(msg) => msg.channel_id,
6309 None => chan.context.channel_id(),
6311 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6312 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6321 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6322 let best_block = *self.best_block.read().unwrap();
6323 let per_peer_state = self.per_peer_state.read().unwrap();
6324 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6326 debug_assert!(false);
6327 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6330 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6331 let peer_state = &mut *peer_state_lock;
6332 match peer_state.channel_by_id.entry(msg.channel_id) {
6333 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6334 match chan_phase_entry.get_mut() {
6335 ChannelPhase::Funded(ref mut chan) => {
6336 let monitor = try_chan_phase_entry!(self,
6337 chan.funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan_phase_entry);
6338 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6339 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6342 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
6346 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6350 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6354 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6355 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6356 // closing a channel), so any changes are likely to be lost on restart!
6357 let per_peer_state = self.per_peer_state.read().unwrap();
6358 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6360 debug_assert!(false);
6361 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6363 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6364 let peer_state = &mut *peer_state_lock;
6365 match peer_state.channel_by_id.entry(msg.channel_id) {
6366 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6367 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6368 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6369 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan_phase_entry);
6370 if let Some(announcement_sigs) = announcement_sigs_opt {
6371 log_trace!(self.logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6372 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6373 node_id: counterparty_node_id.clone(),
6374 msg: announcement_sigs,
6376 } else if chan.context.is_usable() {
6377 // If we're sending an announcement_signatures, we'll send the (public)
6378 // channel_update after sending a channel_announcement when we receive our
6379 // counterparty's announcement_signatures. Thus, we only bother to send a
6380 // channel_update here if the channel is not public, i.e. we're not sending an
6381 // announcement_signatures.
6382 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6383 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6384 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6385 node_id: counterparty_node_id.clone(),
6392 let mut pending_events = self.pending_events.lock().unwrap();
6393 emit_channel_ready_event!(pending_events, chan);
6398 try_chan_phase_entry!(self, Err(ChannelError::Close(
6399 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6402 hash_map::Entry::Vacant(_) => {
6403 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6408 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6409 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6410 let mut finish_shutdown = None;
6412 let per_peer_state = self.per_peer_state.read().unwrap();
6413 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6415 debug_assert!(false);
6416 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6418 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6419 let peer_state = &mut *peer_state_lock;
6420 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6421 let phase = chan_phase_entry.get_mut();
6423 ChannelPhase::Funded(chan) => {
6424 if !chan.received_shutdown() {
6425 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
6427 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6430 let funding_txo_opt = chan.context.get_funding_txo();
6431 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6432 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6433 dropped_htlcs = htlcs;
6435 if let Some(msg) = shutdown {
6436 // We can send the `shutdown` message before updating the `ChannelMonitor`
6437 // here as we don't need the monitor update to complete until we send a
6438 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6439 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6440 node_id: *counterparty_node_id,
6444 // Update the monitor with the shutdown script if necessary.
6445 if let Some(monitor_update) = monitor_update_opt {
6446 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6447 peer_state_lock, peer_state, per_peer_state, chan);
6450 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6451 let context = phase.context_mut();
6452 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6453 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6454 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6455 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6459 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6462 for htlc_source in dropped_htlcs.drain(..) {
6463 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6464 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6465 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6467 if let Some(shutdown_res) = finish_shutdown {
6468 self.finish_close_channel(shutdown_res);
6474 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6475 let per_peer_state = self.per_peer_state.read().unwrap();
6476 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6478 debug_assert!(false);
6479 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6481 let (tx, chan_option, shutdown_result) = {
6482 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6483 let peer_state = &mut *peer_state_lock;
6484 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6485 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6486 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6487 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6488 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6489 if let Some(msg) = closing_signed {
6490 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6491 node_id: counterparty_node_id.clone(),
6496 // We're done with this channel, we've got a signed closing transaction and
6497 // will send the closing_signed back to the remote peer upon return. This
6498 // also implies there are no pending HTLCs left on the channel, so we can
6499 // fully delete it from tracking (the channel monitor is still around to
6500 // watch for old state broadcasts)!
6501 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6502 } else { (tx, None, shutdown_result) }
6504 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6505 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6508 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6511 if let Some(broadcast_tx) = tx {
6512 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
6513 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6515 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6516 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6517 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6518 let peer_state = &mut *peer_state_lock;
6519 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6523 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6525 mem::drop(per_peer_state);
6526 if let Some(shutdown_result) = shutdown_result {
6527 self.finish_close_channel(shutdown_result);
6532 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6533 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6534 //determine the state of the payment based on our response/if we forward anything/the time
6535 //we take to respond. We should take care to avoid allowing such an attack.
6537 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6538 //us repeatedly garbled in different ways, and compare our error messages, which are
6539 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6540 //but we should prevent it anyway.
6542 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6543 // closing a channel), so any changes are likely to be lost on restart!
6545 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
6546 let per_peer_state = self.per_peer_state.read().unwrap();
6547 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6549 debug_assert!(false);
6550 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6552 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6553 let peer_state = &mut *peer_state_lock;
6554 match peer_state.channel_by_id.entry(msg.channel_id) {
6555 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6556 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6557 let pending_forward_info = match decoded_hop_res {
6558 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6559 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
6560 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt),
6561 Err(e) => PendingHTLCStatus::Fail(e)
6563 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6564 // If the update_add is completely bogus, the call will Err and we will close,
6565 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6566 // want to reject the new HTLC and fail it backwards instead of forwarding.
6567 match pending_forward_info {
6568 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
6569 let reason = if (error_code & 0x1000) != 0 {
6570 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6571 HTLCFailReason::reason(real_code, error_data)
6573 HTLCFailReason::from_failure_code(error_code)
6574 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6575 let msg = msgs::UpdateFailHTLC {
6576 channel_id: msg.channel_id,
6577 htlc_id: msg.htlc_id,
6580 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6582 _ => pending_forward_info
6585 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan_phase_entry);
6587 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6588 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6591 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6596 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6598 let (htlc_source, forwarded_htlc_value) = {
6599 let per_peer_state = self.per_peer_state.read().unwrap();
6600 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6602 debug_assert!(false);
6603 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6605 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6606 let peer_state = &mut *peer_state_lock;
6607 match peer_state.channel_by_id.entry(msg.channel_id) {
6608 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6609 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6610 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6611 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6612 log_trace!(self.logger,
6613 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6615 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6616 .or_insert_with(Vec::new)
6617 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6619 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6620 // entry here, even though we *do* need to block the next RAA monitor update.
6621 // We do this instead in the `claim_funds_internal` by attaching a
6622 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6623 // outbound HTLC is claimed. This is guaranteed to all complete before we
6624 // process the RAA as messages are processed from single peers serially.
6625 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6628 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6629 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6632 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6635 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6639 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6640 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6641 // closing a channel), so any changes are likely to be lost on restart!
6642 let per_peer_state = self.per_peer_state.read().unwrap();
6643 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6645 debug_assert!(false);
6646 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6648 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6649 let peer_state = &mut *peer_state_lock;
6650 match peer_state.channel_by_id.entry(msg.channel_id) {
6651 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6652 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6653 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6655 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6656 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6659 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6664 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6665 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6666 // closing a channel), so any changes are likely to be lost on restart!
6667 let per_peer_state = self.per_peer_state.read().unwrap();
6668 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6670 debug_assert!(false);
6671 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6673 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6674 let peer_state = &mut *peer_state_lock;
6675 match peer_state.channel_by_id.entry(msg.channel_id) {
6676 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6677 if (msg.failure_code & 0x8000) == 0 {
6678 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6679 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6681 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6682 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6684 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6685 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6689 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6693 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6694 let per_peer_state = self.per_peer_state.read().unwrap();
6695 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6697 debug_assert!(false);
6698 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6700 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6701 let peer_state = &mut *peer_state_lock;
6702 match peer_state.channel_by_id.entry(msg.channel_id) {
6703 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6704 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6705 let funding_txo = chan.context.get_funding_txo();
6706 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &self.logger), chan_phase_entry);
6707 if let Some(monitor_update) = monitor_update_opt {
6708 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6709 peer_state, per_peer_state, chan);
6713 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6714 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6717 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6722 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6723 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6724 let mut push_forward_event = false;
6725 let mut new_intercept_events = VecDeque::new();
6726 let mut failed_intercept_forwards = Vec::new();
6727 if !pending_forwards.is_empty() {
6728 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6729 let scid = match forward_info.routing {
6730 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6731 PendingHTLCRouting::Receive { .. } => 0,
6732 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6734 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6735 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6737 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6738 let forward_htlcs_empty = forward_htlcs.is_empty();
6739 match forward_htlcs.entry(scid) {
6740 hash_map::Entry::Occupied(mut entry) => {
6741 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6742 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6744 hash_map::Entry::Vacant(entry) => {
6745 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6746 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6748 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
6749 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6750 match pending_intercepts.entry(intercept_id) {
6751 hash_map::Entry::Vacant(entry) => {
6752 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6753 requested_next_hop_scid: scid,
6754 payment_hash: forward_info.payment_hash,
6755 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6756 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6759 entry.insert(PendingAddHTLCInfo {
6760 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6762 hash_map::Entry::Occupied(_) => {
6763 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6764 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6765 short_channel_id: prev_short_channel_id,
6766 user_channel_id: Some(prev_user_channel_id),
6767 outpoint: prev_funding_outpoint,
6768 htlc_id: prev_htlc_id,
6769 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6770 phantom_shared_secret: None,
6773 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6774 HTLCFailReason::from_failure_code(0x4000 | 10),
6775 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6780 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6781 // payments are being processed.
6782 if forward_htlcs_empty {
6783 push_forward_event = true;
6785 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6786 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6793 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6794 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6797 if !new_intercept_events.is_empty() {
6798 let mut events = self.pending_events.lock().unwrap();
6799 events.append(&mut new_intercept_events);
6801 if push_forward_event { self.push_pending_forwards_ev() }
6805 fn push_pending_forwards_ev(&self) {
6806 let mut pending_events = self.pending_events.lock().unwrap();
6807 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6808 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6809 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6811 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6812 // events is done in batches and they are not removed until we're done processing each
6813 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6814 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6815 // payments will need an additional forwarding event before being claimed to make them look
6816 // real by taking more time.
6817 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6818 pending_events.push_back((Event::PendingHTLCsForwardable {
6819 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6824 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6825 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6826 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6827 /// the [`ChannelMonitorUpdate`] in question.
6828 fn raa_monitor_updates_held(&self,
6829 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6830 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6832 actions_blocking_raa_monitor_updates
6833 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6834 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6835 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6836 channel_funding_outpoint,
6837 counterparty_node_id,
6842 #[cfg(any(test, feature = "_test_utils"))]
6843 pub(crate) fn test_raa_monitor_updates_held(&self,
6844 counterparty_node_id: PublicKey, channel_id: ChannelId
6846 let per_peer_state = self.per_peer_state.read().unwrap();
6847 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6848 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6849 let peer_state = &mut *peer_state_lck;
6851 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6852 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6853 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6859 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6860 let htlcs_to_fail = {
6861 let per_peer_state = self.per_peer_state.read().unwrap();
6862 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6864 debug_assert!(false);
6865 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6866 }).map(|mtx| mtx.lock().unwrap())?;
6867 let peer_state = &mut *peer_state_lock;
6868 match peer_state.channel_by_id.entry(msg.channel_id) {
6869 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6870 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6871 let funding_txo_opt = chan.context.get_funding_txo();
6872 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6873 self.raa_monitor_updates_held(
6874 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6875 *counterparty_node_id)
6877 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6878 chan.revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan_phase_entry);
6879 if let Some(monitor_update) = monitor_update_opt {
6880 let funding_txo = funding_txo_opt
6881 .expect("Funding outpoint must have been set for RAA handling to succeed");
6882 handle_new_monitor_update!(self, funding_txo, monitor_update,
6883 peer_state_lock, peer_state, per_peer_state, chan);
6887 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6888 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6891 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6894 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6898 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6899 let per_peer_state = self.per_peer_state.read().unwrap();
6900 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6902 debug_assert!(false);
6903 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6905 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6906 let peer_state = &mut *peer_state_lock;
6907 match peer_state.channel_by_id.entry(msg.channel_id) {
6908 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6909 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6910 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &self.logger), chan_phase_entry);
6912 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6913 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6916 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6921 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6922 let per_peer_state = self.per_peer_state.read().unwrap();
6923 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6925 debug_assert!(false);
6926 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6928 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6929 let peer_state = &mut *peer_state_lock;
6930 match peer_state.channel_by_id.entry(msg.channel_id) {
6931 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6932 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6933 if !chan.context.is_usable() {
6934 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6937 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6938 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6939 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
6940 msg, &self.default_configuration
6941 ), chan_phase_entry),
6942 // Note that announcement_signatures fails if the channel cannot be announced,
6943 // so get_channel_update_for_broadcast will never fail by the time we get here.
6944 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6947 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6948 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6951 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6956 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6957 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6958 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6959 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6961 // It's not a local channel
6962 return Ok(NotifyOption::SkipPersistNoEvents)
6965 let per_peer_state = self.per_peer_state.read().unwrap();
6966 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6967 if peer_state_mutex_opt.is_none() {
6968 return Ok(NotifyOption::SkipPersistNoEvents)
6970 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6971 let peer_state = &mut *peer_state_lock;
6972 match peer_state.channel_by_id.entry(chan_id) {
6973 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6974 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6975 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6976 if chan.context.should_announce() {
6977 // If the announcement is about a channel of ours which is public, some
6978 // other peer may simply be forwarding all its gossip to us. Don't provide
6979 // a scary-looking error message and return Ok instead.
6980 return Ok(NotifyOption::SkipPersistNoEvents);
6982 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6984 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6985 let msg_from_node_one = msg.contents.flags & 1 == 0;
6986 if were_node_one == msg_from_node_one {
6987 return Ok(NotifyOption::SkipPersistNoEvents);
6989 log_debug!(self.logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
6990 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6991 // If nothing changed after applying their update, we don't need to bother
6994 return Ok(NotifyOption::SkipPersistNoEvents);
6998 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6999 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
7002 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
7004 Ok(NotifyOption::DoPersist)
7007 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
7009 let need_lnd_workaround = {
7010 let per_peer_state = self.per_peer_state.read().unwrap();
7012 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7014 debug_assert!(false);
7015 MsgHandleErrInternal::send_err_msg_no_close(
7016 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7020 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7021 let peer_state = &mut *peer_state_lock;
7022 match peer_state.channel_by_id.entry(msg.channel_id) {
7023 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7024 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7025 // Currently, we expect all holding cell update_adds to be dropped on peer
7026 // disconnect, so Channel's reestablish will never hand us any holding cell
7027 // freed HTLCs to fail backwards. If in the future we no longer drop pending
7028 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
7029 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
7030 msg, &self.logger, &self.node_signer, self.chain_hash,
7031 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
7032 let mut channel_update = None;
7033 if let Some(msg) = responses.shutdown_msg {
7034 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7035 node_id: counterparty_node_id.clone(),
7038 } else if chan.context.is_usable() {
7039 // If the channel is in a usable state (ie the channel is not being shut
7040 // down), send a unicast channel_update to our counterparty to make sure
7041 // they have the latest channel parameters.
7042 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7043 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
7044 node_id: chan.context.get_counterparty_node_id(),
7049 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
7050 htlc_forwards = self.handle_channel_resumption(
7051 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
7052 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
7053 if let Some(upd) = channel_update {
7054 peer_state.pending_msg_events.push(upd);
7058 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7059 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
7062 hash_map::Entry::Vacant(_) => {
7063 log_debug!(self.logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
7064 log_bytes!(msg.channel_id.0));
7065 // Unfortunately, lnd doesn't force close on errors
7066 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
7067 // One of the few ways to get an lnd counterparty to force close is by
7068 // replicating what they do when restoring static channel backups (SCBs). They
7069 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
7070 // invalid `your_last_per_commitment_secret`.
7072 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
7073 // can assume it's likely the channel closed from our point of view, but it
7074 // remains open on the counterparty's side. By sending this bogus
7075 // `ChannelReestablish` message now as a response to theirs, we trigger them to
7076 // force close broadcasting their latest state. If the closing transaction from
7077 // our point of view remains unconfirmed, it'll enter a race with the
7078 // counterparty's to-be-broadcast latest commitment transaction.
7079 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
7080 node_id: *counterparty_node_id,
7081 msg: msgs::ChannelReestablish {
7082 channel_id: msg.channel_id,
7083 next_local_commitment_number: 0,
7084 next_remote_commitment_number: 0,
7085 your_last_per_commitment_secret: [1u8; 32],
7086 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
7087 next_funding_txid: None,
7090 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7091 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
7092 counterparty_node_id), msg.channel_id)
7098 let mut persist = NotifyOption::SkipPersistHandleEvents;
7099 if let Some(forwards) = htlc_forwards {
7100 self.forward_htlcs(&mut [forwards][..]);
7101 persist = NotifyOption::DoPersist;
7104 if let Some(channel_ready_msg) = need_lnd_workaround {
7105 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
7110 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
7111 fn process_pending_monitor_events(&self) -> bool {
7112 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
7114 let mut failed_channels = Vec::new();
7115 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
7116 let has_pending_monitor_events = !pending_monitor_events.is_empty();
7117 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
7118 for monitor_event in monitor_events.drain(..) {
7119 match monitor_event {
7120 MonitorEvent::HTLCEvent(htlc_update) => {
7121 if let Some(preimage) = htlc_update.payment_preimage {
7122 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", preimage);
7123 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
7125 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
7126 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
7127 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7128 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
7131 MonitorEvent::HolderForceClosed(funding_outpoint) => {
7132 let counterparty_node_id_opt = match counterparty_node_id {
7133 Some(cp_id) => Some(cp_id),
7135 // TODO: Once we can rely on the counterparty_node_id from the
7136 // monitor event, this and the id_to_peer map should be removed.
7137 let id_to_peer = self.id_to_peer.lock().unwrap();
7138 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
7141 if let Some(counterparty_node_id) = counterparty_node_id_opt {
7142 let per_peer_state = self.per_peer_state.read().unwrap();
7143 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7144 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7145 let peer_state = &mut *peer_state_lock;
7146 let pending_msg_events = &mut peer_state.pending_msg_events;
7147 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
7148 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
7149 failed_channels.push(chan.context.force_shutdown(false));
7150 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7151 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7155 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
7156 pending_msg_events.push(events::MessageSendEvent::HandleError {
7157 node_id: chan.context.get_counterparty_node_id(),
7158 action: msgs::ErrorAction::DisconnectPeer {
7159 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
7167 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
7168 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
7174 for failure in failed_channels.drain(..) {
7175 self.finish_close_channel(failure);
7178 has_pending_monitor_events
7181 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
7182 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
7183 /// update events as a separate process method here.
7185 pub fn process_monitor_events(&self) {
7186 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7187 self.process_pending_monitor_events();
7190 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7191 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7192 /// update was applied.
7193 fn check_free_holding_cells(&self) -> bool {
7194 let mut has_monitor_update = false;
7195 let mut failed_htlcs = Vec::new();
7197 // Walk our list of channels and find any that need to update. Note that when we do find an
7198 // update, if it includes actions that must be taken afterwards, we have to drop the
7199 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7200 // manage to go through all our peers without finding a single channel to update.
7202 let per_peer_state = self.per_peer_state.read().unwrap();
7203 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7205 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7206 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7207 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7208 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7210 let counterparty_node_id = chan.context.get_counterparty_node_id();
7211 let funding_txo = chan.context.get_funding_txo();
7212 let (monitor_opt, holding_cell_failed_htlcs) =
7213 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
7214 if !holding_cell_failed_htlcs.is_empty() {
7215 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7217 if let Some(monitor_update) = monitor_opt {
7218 has_monitor_update = true;
7220 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7221 peer_state_lock, peer_state, per_peer_state, chan);
7222 continue 'peer_loop;
7231 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7232 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7233 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7239 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7240 /// is (temporarily) unavailable, and the operation should be retried later.
7242 /// This method allows for that retry - either checking for any signer-pending messages to be
7243 /// attempted in every channel, or in the specifically provided channel.
7245 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7246 #[cfg(test)] // This is only implemented for one signer method, and should be private until we
7247 // actually finish implementing it fully.
7248 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7249 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7251 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7252 let node_id = phase.context().get_counterparty_node_id();
7253 if let ChannelPhase::Funded(chan) = phase {
7254 let msgs = chan.signer_maybe_unblocked(&self.logger);
7255 if let Some(updates) = msgs.commitment_update {
7256 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7261 if let Some(msg) = msgs.funding_signed {
7262 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7267 if let Some(msg) = msgs.funding_created {
7268 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7273 if let Some(msg) = msgs.channel_ready {
7274 send_channel_ready!(self, pending_msg_events, chan, msg);
7279 let per_peer_state = self.per_peer_state.read().unwrap();
7280 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7281 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7282 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7283 let peer_state = &mut *peer_state_lock;
7284 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7285 unblock_chan(chan, &mut peer_state.pending_msg_events);
7289 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7290 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7291 let peer_state = &mut *peer_state_lock;
7292 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7293 unblock_chan(chan, &mut peer_state.pending_msg_events);
7299 /// Check whether any channels have finished removing all pending updates after a shutdown
7300 /// exchange and can now send a closing_signed.
7301 /// Returns whether any closing_signed messages were generated.
7302 fn maybe_generate_initial_closing_signed(&self) -> bool {
7303 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7304 let mut has_update = false;
7305 let mut shutdown_results = Vec::new();
7307 let per_peer_state = self.per_peer_state.read().unwrap();
7309 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7310 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7311 let peer_state = &mut *peer_state_lock;
7312 let pending_msg_events = &mut peer_state.pending_msg_events;
7313 peer_state.channel_by_id.retain(|channel_id, phase| {
7315 ChannelPhase::Funded(chan) => {
7316 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
7317 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7318 if let Some(msg) = msg_opt {
7320 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7321 node_id: chan.context.get_counterparty_node_id(), msg,
7324 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7325 if let Some(shutdown_result) = shutdown_result_opt {
7326 shutdown_results.push(shutdown_result);
7328 if let Some(tx) = tx_opt {
7329 // We're done with this channel. We got a closing_signed and sent back
7330 // a closing_signed with a closing transaction to broadcast.
7331 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7332 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7337 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7339 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
7340 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7341 update_maps_on_chan_removal!(self, &chan.context);
7347 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7348 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7353 _ => true, // Retain unfunded channels if present.
7359 for (counterparty_node_id, err) in handle_errors.drain(..) {
7360 let _ = handle_error!(self, err, counterparty_node_id);
7363 for shutdown_result in shutdown_results.drain(..) {
7364 self.finish_close_channel(shutdown_result);
7370 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7371 /// pushing the channel monitor update (if any) to the background events queue and removing the
7373 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7374 for mut failure in failed_channels.drain(..) {
7375 // Either a commitment transactions has been confirmed on-chain or
7376 // Channel::block_disconnected detected that the funding transaction has been
7377 // reorganized out of the main chain.
7378 // We cannot broadcast our latest local state via monitor update (as
7379 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7380 // so we track the update internally and handle it when the user next calls
7381 // timer_tick_occurred, guaranteeing we're running normally.
7382 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7383 assert_eq!(update.updates.len(), 1);
7384 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7385 assert!(should_broadcast);
7386 } else { unreachable!(); }
7387 self.pending_background_events.lock().unwrap().push(
7388 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7389 counterparty_node_id, funding_txo, update
7392 self.finish_close_channel(failure);
7396 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7397 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7398 /// not have an expiration unless otherwise set on the builder.
7402 /// Uses a one-hop [`BlindedPath`] for the offer with [`ChannelManager::get_our_node_id`] as the
7403 /// introduction node and a derived signing pubkey for recipient privacy. As such, currently,
7404 /// the node must be announced. Otherwise, there is no way to find a path to the introduction
7405 /// node in order to send the [`InvoiceRequest`].
7409 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7412 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7414 /// [`Offer`]: crate::offers::offer::Offer
7415 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7416 pub fn create_offer_builder(
7417 &self, description: String
7418 ) -> OfferBuilder<DerivedMetadata, secp256k1::All> {
7419 let node_id = self.get_our_node_id();
7420 let expanded_key = &self.inbound_payment_key;
7421 let entropy = &*self.entropy_source;
7422 let secp_ctx = &self.secp_ctx;
7423 let path = self.create_one_hop_blinded_path();
7425 OfferBuilder::deriving_signing_pubkey(description, node_id, expanded_key, entropy, secp_ctx)
7426 .chain_hash(self.chain_hash)
7430 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7431 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7435 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7436 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7438 /// The builder will have the provided expiration set. Any changes to the expiration on the
7439 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7440 /// block time minus two hours is used for the current time when determining if the refund has
7443 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7444 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7445 /// with an [`Event::InvoiceRequestFailed`].
7447 /// If `max_total_routing_fee_msat` is not specified, The default from
7448 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7452 /// Uses a one-hop [`BlindedPath`] for the refund with [`ChannelManager::get_our_node_id`] as
7453 /// the introduction node and a derived payer id for payer privacy. As such, currently, the
7454 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7455 /// in order to send the [`Bolt12Invoice`].
7459 /// Requires a direct connection to an introduction node in the responding
7460 /// [`Bolt12Invoice::payment_paths`].
7464 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7465 /// or if `amount_msats` is invalid.
7467 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7469 /// [`Refund`]: crate::offers::refund::Refund
7470 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7471 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7472 pub fn create_refund_builder(
7473 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7474 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7475 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7476 let node_id = self.get_our_node_id();
7477 let expanded_key = &self.inbound_payment_key;
7478 let entropy = &*self.entropy_source;
7479 let secp_ctx = &self.secp_ctx;
7480 let path = self.create_one_hop_blinded_path();
7482 let builder = RefundBuilder::deriving_payer_id(
7483 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7485 .chain_hash(self.chain_hash)
7486 .absolute_expiry(absolute_expiry)
7489 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7490 self.pending_outbound_payments
7491 .add_new_awaiting_invoice(
7492 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7494 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7499 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7500 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7501 /// [`Bolt12Invoice`] once it is received.
7503 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7504 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7505 /// The optional parameters are used in the builder, if `Some`:
7506 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7507 /// [`Offer::expects_quantity`] is `true`.
7508 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7509 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7511 /// If `max_total_routing_fee_msat` is not specified, The default from
7512 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7516 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7517 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7520 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7521 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7522 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7526 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7527 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7528 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7529 /// in order to send the [`Bolt12Invoice`].
7533 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7534 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7535 /// [`Bolt12Invoice::payment_paths`].
7539 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7540 /// or if the provided parameters are invalid for the offer.
7542 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7543 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7544 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7545 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7546 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7547 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7548 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7549 pub fn pay_for_offer(
7550 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7551 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7552 max_total_routing_fee_msat: Option<u64>
7553 ) -> Result<(), Bolt12SemanticError> {
7554 let expanded_key = &self.inbound_payment_key;
7555 let entropy = &*self.entropy_source;
7556 let secp_ctx = &self.secp_ctx;
7559 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7560 .chain_hash(self.chain_hash)?;
7561 let builder = match quantity {
7563 Some(quantity) => builder.quantity(quantity)?,
7565 let builder = match amount_msats {
7567 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7569 let builder = match payer_note {
7571 Some(payer_note) => builder.payer_note(payer_note),
7574 let invoice_request = builder.build_and_sign()?;
7575 let reply_path = self.create_one_hop_blinded_path();
7577 let expiration = StaleExpiration::TimerTicks(1);
7578 self.pending_outbound_payments
7579 .add_new_awaiting_invoice(
7580 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7582 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7584 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7585 if offer.paths().is_empty() {
7586 let message = new_pending_onion_message(
7587 OffersMessage::InvoiceRequest(invoice_request),
7588 Destination::Node(offer.signing_pubkey()),
7591 pending_offers_messages.push(message);
7593 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7594 // Using only one path could result in a failure if the path no longer exists. But only
7595 // one invoice for a given payment id will be paid, even if more than one is received.
7596 const REQUEST_LIMIT: usize = 10;
7597 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7598 let message = new_pending_onion_message(
7599 OffersMessage::InvoiceRequest(invoice_request.clone()),
7600 Destination::BlindedPath(path.clone()),
7601 Some(reply_path.clone()),
7603 pending_offers_messages.push(message);
7610 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7613 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7614 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7615 /// [`PaymentPreimage`].
7619 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7620 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7621 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7622 /// received and no retries will be made.
7624 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7625 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7626 let expanded_key = &self.inbound_payment_key;
7627 let entropy = &*self.entropy_source;
7628 let secp_ctx = &self.secp_ctx;
7630 let amount_msats = refund.amount_msats();
7631 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7633 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7634 Ok((payment_hash, payment_secret)) => {
7635 let payment_paths = vec![
7636 self.create_one_hop_blinded_payment_path(payment_secret),
7638 #[cfg(not(feature = "no-std"))]
7639 let builder = refund.respond_using_derived_keys(
7640 payment_paths, payment_hash, expanded_key, entropy
7642 #[cfg(feature = "no-std")]
7643 let created_at = Duration::from_secs(
7644 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7646 #[cfg(feature = "no-std")]
7647 let builder = refund.respond_using_derived_keys_no_std(
7648 payment_paths, payment_hash, created_at, expanded_key, entropy
7650 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7651 let reply_path = self.create_one_hop_blinded_path();
7653 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7654 if refund.paths().is_empty() {
7655 let message = new_pending_onion_message(
7656 OffersMessage::Invoice(invoice),
7657 Destination::Node(refund.payer_id()),
7660 pending_offers_messages.push(message);
7662 for path in refund.paths() {
7663 let message = new_pending_onion_message(
7664 OffersMessage::Invoice(invoice.clone()),
7665 Destination::BlindedPath(path.clone()),
7666 Some(reply_path.clone()),
7668 pending_offers_messages.push(message);
7674 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7678 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7681 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7682 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7684 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7685 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7686 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7687 /// passed directly to [`claim_funds`].
7689 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7691 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7692 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7696 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7697 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7699 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7701 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7702 /// on versions of LDK prior to 0.0.114.
7704 /// [`claim_funds`]: Self::claim_funds
7705 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7706 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7707 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7708 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7709 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7710 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7711 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7712 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7713 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7714 min_final_cltv_expiry_delta)
7717 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7718 /// stored external to LDK.
7720 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7721 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7722 /// the `min_value_msat` provided here, if one is provided.
7724 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7725 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7728 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7729 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7730 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7731 /// sender "proof-of-payment" unless they have paid the required amount.
7733 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7734 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7735 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7736 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7737 /// invoices when no timeout is set.
7739 /// Note that we use block header time to time-out pending inbound payments (with some margin
7740 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7741 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7742 /// If you need exact expiry semantics, you should enforce them upon receipt of
7743 /// [`PaymentClaimable`].
7745 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7746 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7748 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7749 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7753 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7754 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7756 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7758 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7759 /// on versions of LDK prior to 0.0.114.
7761 /// [`create_inbound_payment`]: Self::create_inbound_payment
7762 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7763 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7764 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7765 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7766 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7767 min_final_cltv_expiry)
7770 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7771 /// previously returned from [`create_inbound_payment`].
7773 /// [`create_inbound_payment`]: Self::create_inbound_payment
7774 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7775 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7778 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7780 fn create_one_hop_blinded_path(&self) -> BlindedPath {
7781 let entropy_source = self.entropy_source.deref();
7782 let secp_ctx = &self.secp_ctx;
7783 BlindedPath::one_hop_for_message(self.get_our_node_id(), entropy_source, secp_ctx).unwrap()
7786 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7788 fn create_one_hop_blinded_payment_path(
7789 &self, payment_secret: PaymentSecret
7790 ) -> (BlindedPayInfo, BlindedPath) {
7791 let entropy_source = self.entropy_source.deref();
7792 let secp_ctx = &self.secp_ctx;
7794 let payee_node_id = self.get_our_node_id();
7795 let max_cltv_expiry = self.best_block.read().unwrap().height() + LATENCY_GRACE_PERIOD_BLOCKS;
7796 let payee_tlvs = ReceiveTlvs {
7798 payment_constraints: PaymentConstraints {
7800 htlc_minimum_msat: 1,
7803 // TODO: Err for overflow?
7804 BlindedPath::one_hop_for_payment(
7805 payee_node_id, payee_tlvs, entropy_source, secp_ctx
7809 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7810 /// are used when constructing the phantom invoice's route hints.
7812 /// [phantom node payments]: crate::sign::PhantomKeysManager
7813 pub fn get_phantom_scid(&self) -> u64 {
7814 let best_block_height = self.best_block.read().unwrap().height();
7815 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7817 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7818 // Ensure the generated scid doesn't conflict with a real channel.
7819 match short_to_chan_info.get(&scid_candidate) {
7820 Some(_) => continue,
7821 None => return scid_candidate
7826 /// Gets route hints for use in receiving [phantom node payments].
7828 /// [phantom node payments]: crate::sign::PhantomKeysManager
7829 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7831 channels: self.list_usable_channels(),
7832 phantom_scid: self.get_phantom_scid(),
7833 real_node_pubkey: self.get_our_node_id(),
7837 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7838 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7839 /// [`ChannelManager::forward_intercepted_htlc`].
7841 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7842 /// times to get a unique scid.
7843 pub fn get_intercept_scid(&self) -> u64 {
7844 let best_block_height = self.best_block.read().unwrap().height();
7845 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7847 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7848 // Ensure the generated scid doesn't conflict with a real channel.
7849 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7850 return scid_candidate
7854 /// Gets inflight HTLC information by processing pending outbound payments that are in
7855 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7856 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7857 let mut inflight_htlcs = InFlightHtlcs::new();
7859 let per_peer_state = self.per_peer_state.read().unwrap();
7860 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7861 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7862 let peer_state = &mut *peer_state_lock;
7863 for chan in peer_state.channel_by_id.values().filter_map(
7864 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7866 for (htlc_source, _) in chan.inflight_htlc_sources() {
7867 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7868 inflight_htlcs.process_path(path, self.get_our_node_id());
7877 #[cfg(any(test, feature = "_test_utils"))]
7878 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7879 let events = core::cell::RefCell::new(Vec::new());
7880 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7881 self.process_pending_events(&event_handler);
7885 #[cfg(feature = "_test_utils")]
7886 pub fn push_pending_event(&self, event: events::Event) {
7887 let mut events = self.pending_events.lock().unwrap();
7888 events.push_back((event, None));
7892 pub fn pop_pending_event(&self) -> Option<events::Event> {
7893 let mut events = self.pending_events.lock().unwrap();
7894 events.pop_front().map(|(e, _)| e)
7898 pub fn has_pending_payments(&self) -> bool {
7899 self.pending_outbound_payments.has_pending_payments()
7903 pub fn clear_pending_payments(&self) {
7904 self.pending_outbound_payments.clear_pending_payments()
7907 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7908 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7909 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7910 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7911 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7913 let per_peer_state = self.per_peer_state.read().unwrap();
7914 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7915 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7916 let peer_state = &mut *peer_state_lck;
7918 if let Some(blocker) = completed_blocker.take() {
7919 // Only do this on the first iteration of the loop.
7920 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7921 .get_mut(&channel_funding_outpoint.to_channel_id())
7923 blockers.retain(|iter| iter != &blocker);
7927 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7928 channel_funding_outpoint, counterparty_node_id) {
7929 // Check that, while holding the peer lock, we don't have anything else
7930 // blocking monitor updates for this channel. If we do, release the monitor
7931 // update(s) when those blockers complete.
7932 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7933 &channel_funding_outpoint.to_channel_id());
7937 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7938 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7939 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7940 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7941 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
7942 channel_funding_outpoint.to_channel_id());
7943 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7944 peer_state_lck, peer_state, per_peer_state, chan);
7945 if further_update_exists {
7946 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7951 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
7952 channel_funding_outpoint.to_channel_id());
7957 log_debug!(self.logger,
7958 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7959 log_pubkey!(counterparty_node_id));
7965 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7966 for action in actions {
7968 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7969 channel_funding_outpoint, counterparty_node_id
7971 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7977 /// Processes any events asynchronously in the order they were generated since the last call
7978 /// using the given event handler.
7980 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7981 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7985 process_events_body!(self, ev, { handler(ev).await });
7989 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7991 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7992 T::Target: BroadcasterInterface,
7993 ES::Target: EntropySource,
7994 NS::Target: NodeSigner,
7995 SP::Target: SignerProvider,
7996 F::Target: FeeEstimator,
8000 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
8001 /// The returned array will contain `MessageSendEvent`s for different peers if
8002 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
8003 /// is always placed next to each other.
8005 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
8006 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
8007 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
8008 /// will randomly be placed first or last in the returned array.
8010 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
8011 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
8012 /// the `MessageSendEvent`s to the specific peer they were generated under.
8013 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
8014 let events = RefCell::new(Vec::new());
8015 PersistenceNotifierGuard::optionally_notify(self, || {
8016 let mut result = NotifyOption::SkipPersistNoEvents;
8018 // TODO: This behavior should be documented. It's unintuitive that we query
8019 // ChannelMonitors when clearing other events.
8020 if self.process_pending_monitor_events() {
8021 result = NotifyOption::DoPersist;
8024 if self.check_free_holding_cells() {
8025 result = NotifyOption::DoPersist;
8027 if self.maybe_generate_initial_closing_signed() {
8028 result = NotifyOption::DoPersist;
8031 let mut pending_events = Vec::new();
8032 let per_peer_state = self.per_peer_state.read().unwrap();
8033 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8034 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8035 let peer_state = &mut *peer_state_lock;
8036 if peer_state.pending_msg_events.len() > 0 {
8037 pending_events.append(&mut peer_state.pending_msg_events);
8041 if !pending_events.is_empty() {
8042 events.replace(pending_events);
8051 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8053 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8054 T::Target: BroadcasterInterface,
8055 ES::Target: EntropySource,
8056 NS::Target: NodeSigner,
8057 SP::Target: SignerProvider,
8058 F::Target: FeeEstimator,
8062 /// Processes events that must be periodically handled.
8064 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8065 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8066 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8068 process_events_body!(self, ev, handler.handle_event(ev));
8072 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8074 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8075 T::Target: BroadcasterInterface,
8076 ES::Target: EntropySource,
8077 NS::Target: NodeSigner,
8078 SP::Target: SignerProvider,
8079 F::Target: FeeEstimator,
8083 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
8085 let best_block = self.best_block.read().unwrap();
8086 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8087 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8088 assert_eq!(best_block.height(), height - 1,
8089 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8092 self.transactions_confirmed(header, txdata, height);
8093 self.best_block_updated(header, height);
8096 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
8097 let _persistence_guard =
8098 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8099 self, || -> NotifyOption { NotifyOption::DoPersist });
8100 let new_height = height - 1;
8102 let mut best_block = self.best_block.write().unwrap();
8103 assert_eq!(best_block.block_hash(), header.block_hash(),
8104 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8105 assert_eq!(best_block.height(), height,
8106 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8107 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8110 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8114 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8116 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8117 T::Target: BroadcasterInterface,
8118 ES::Target: EntropySource,
8119 NS::Target: NodeSigner,
8120 SP::Target: SignerProvider,
8121 F::Target: FeeEstimator,
8125 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
8126 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8127 // during initialization prior to the chain_monitor being fully configured in some cases.
8128 // See the docs for `ChannelManagerReadArgs` for more.
8130 let block_hash = header.block_hash();
8131 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8133 let _persistence_guard =
8134 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8135 self, || -> NotifyOption { NotifyOption::DoPersist });
8136 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger)
8137 .map(|(a, b)| (a, Vec::new(), b)));
8139 let last_best_block_height = self.best_block.read().unwrap().height();
8140 if height < last_best_block_height {
8141 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8142 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8146 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
8147 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8148 // during initialization prior to the chain_monitor being fully configured in some cases.
8149 // See the docs for `ChannelManagerReadArgs` for more.
8151 let block_hash = header.block_hash();
8152 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8154 let _persistence_guard =
8155 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8156 self, || -> NotifyOption { NotifyOption::DoPersist });
8157 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8159 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8161 macro_rules! max_time {
8162 ($timestamp: expr) => {
8164 // Update $timestamp to be the max of its current value and the block
8165 // timestamp. This should keep us close to the current time without relying on
8166 // having an explicit local time source.
8167 // Just in case we end up in a race, we loop until we either successfully
8168 // update $timestamp or decide we don't need to.
8169 let old_serial = $timestamp.load(Ordering::Acquire);
8170 if old_serial >= header.time as usize { break; }
8171 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8177 max_time!(self.highest_seen_timestamp);
8178 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8179 payment_secrets.retain(|_, inbound_payment| {
8180 inbound_payment.expiry_time > header.time as u64
8184 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
8185 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8186 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8187 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8188 let peer_state = &mut *peer_state_lock;
8189 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8190 if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) {
8191 res.push((funding_txo.txid, Some(block_hash)));
8198 fn transaction_unconfirmed(&self, txid: &Txid) {
8199 let _persistence_guard =
8200 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8201 self, || -> NotifyOption { NotifyOption::DoPersist });
8202 self.do_chain_event(None, |channel| {
8203 if let Some(funding_txo) = channel.context.get_funding_txo() {
8204 if funding_txo.txid == *txid {
8205 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
8206 } else { Ok((None, Vec::new(), None)) }
8207 } else { Ok((None, Vec::new(), None)) }
8212 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8214 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8215 T::Target: BroadcasterInterface,
8216 ES::Target: EntropySource,
8217 NS::Target: NodeSigner,
8218 SP::Target: SignerProvider,
8219 F::Target: FeeEstimator,
8223 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8224 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8226 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8227 (&self, height_opt: Option<u32>, f: FN) {
8228 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8229 // during initialization prior to the chain_monitor being fully configured in some cases.
8230 // See the docs for `ChannelManagerReadArgs` for more.
8232 let mut failed_channels = Vec::new();
8233 let mut timed_out_htlcs = Vec::new();
8235 let per_peer_state = self.per_peer_state.read().unwrap();
8236 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8237 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8238 let peer_state = &mut *peer_state_lock;
8239 let pending_msg_events = &mut peer_state.pending_msg_events;
8240 peer_state.channel_by_id.retain(|_, phase| {
8242 // Retain unfunded channels.
8243 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8244 ChannelPhase::Funded(channel) => {
8245 let res = f(channel);
8246 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8247 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8248 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8249 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8250 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8252 if let Some(channel_ready) = channel_ready_opt {
8253 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8254 if channel.context.is_usable() {
8255 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8256 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8257 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8258 node_id: channel.context.get_counterparty_node_id(),
8263 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8268 let mut pending_events = self.pending_events.lock().unwrap();
8269 emit_channel_ready_event!(pending_events, channel);
8272 if let Some(announcement_sigs) = announcement_sigs {
8273 log_trace!(self.logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8274 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8275 node_id: channel.context.get_counterparty_node_id(),
8276 msg: announcement_sigs,
8278 if let Some(height) = height_opt {
8279 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8280 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8282 // Note that announcement_signatures fails if the channel cannot be announced,
8283 // so get_channel_update_for_broadcast will never fail by the time we get here.
8284 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8289 if channel.is_our_channel_ready() {
8290 if let Some(real_scid) = channel.context.get_short_channel_id() {
8291 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8292 // to the short_to_chan_info map here. Note that we check whether we
8293 // can relay using the real SCID at relay-time (i.e.
8294 // enforce option_scid_alias then), and if the funding tx is ever
8295 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8296 // is always consistent.
8297 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8298 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8299 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8300 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8301 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8304 } else if let Err(reason) = res {
8305 update_maps_on_chan_removal!(self, &channel.context);
8306 // It looks like our counterparty went on-chain or funding transaction was
8307 // reorged out of the main chain. Close the channel.
8308 failed_channels.push(channel.context.force_shutdown(true));
8309 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8310 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8314 let reason_message = format!("{}", reason);
8315 self.issue_channel_close_events(&channel.context, reason);
8316 pending_msg_events.push(events::MessageSendEvent::HandleError {
8317 node_id: channel.context.get_counterparty_node_id(),
8318 action: msgs::ErrorAction::DisconnectPeer {
8319 msg: Some(msgs::ErrorMessage {
8320 channel_id: channel.context.channel_id(),
8321 data: reason_message,
8334 if let Some(height) = height_opt {
8335 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8336 payment.htlcs.retain(|htlc| {
8337 // If height is approaching the number of blocks we think it takes us to get
8338 // our commitment transaction confirmed before the HTLC expires, plus the
8339 // number of blocks we generally consider it to take to do a commitment update,
8340 // just give up on it and fail the HTLC.
8341 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8342 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8343 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8345 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8346 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8347 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8351 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8354 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8355 intercepted_htlcs.retain(|_, htlc| {
8356 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8357 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8358 short_channel_id: htlc.prev_short_channel_id,
8359 user_channel_id: Some(htlc.prev_user_channel_id),
8360 htlc_id: htlc.prev_htlc_id,
8361 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8362 phantom_shared_secret: None,
8363 outpoint: htlc.prev_funding_outpoint,
8366 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8367 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8368 _ => unreachable!(),
8370 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8371 HTLCFailReason::from_failure_code(0x2000 | 2),
8372 HTLCDestination::InvalidForward { requested_forward_scid }));
8373 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8379 self.handle_init_event_channel_failures(failed_channels);
8381 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8382 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8386 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8387 /// may have events that need processing.
8389 /// In order to check if this [`ChannelManager`] needs persisting, call
8390 /// [`Self::get_and_clear_needs_persistence`].
8392 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8393 /// [`ChannelManager`] and should instead register actions to be taken later.
8394 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8395 self.event_persist_notifier.get_future()
8398 /// Returns true if this [`ChannelManager`] needs to be persisted.
8399 pub fn get_and_clear_needs_persistence(&self) -> bool {
8400 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8403 #[cfg(any(test, feature = "_test_utils"))]
8404 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8405 self.event_persist_notifier.notify_pending()
8408 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8409 /// [`chain::Confirm`] interfaces.
8410 pub fn current_best_block(&self) -> BestBlock {
8411 self.best_block.read().unwrap().clone()
8414 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8415 /// [`ChannelManager`].
8416 pub fn node_features(&self) -> NodeFeatures {
8417 provided_node_features(&self.default_configuration)
8420 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8421 /// [`ChannelManager`].
8423 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8424 /// or not. Thus, this method is not public.
8425 #[cfg(any(feature = "_test_utils", test))]
8426 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8427 provided_bolt11_invoice_features(&self.default_configuration)
8430 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8431 /// [`ChannelManager`].
8432 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8433 provided_bolt12_invoice_features(&self.default_configuration)
8436 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8437 /// [`ChannelManager`].
8438 pub fn channel_features(&self) -> ChannelFeatures {
8439 provided_channel_features(&self.default_configuration)
8442 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8443 /// [`ChannelManager`].
8444 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8445 provided_channel_type_features(&self.default_configuration)
8448 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8449 /// [`ChannelManager`].
8450 pub fn init_features(&self) -> InitFeatures {
8451 provided_init_features(&self.default_configuration)
8455 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8456 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8458 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8459 T::Target: BroadcasterInterface,
8460 ES::Target: EntropySource,
8461 NS::Target: NodeSigner,
8462 SP::Target: SignerProvider,
8463 F::Target: FeeEstimator,
8467 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8468 // Note that we never need to persist the updated ChannelManager for an inbound
8469 // open_channel message - pre-funded channels are never written so there should be no
8470 // change to the contents.
8471 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8472 let res = self.internal_open_channel(counterparty_node_id, msg);
8473 let persist = match &res {
8474 Err(e) if e.closes_channel() => {
8475 debug_assert!(false, "We shouldn't close a new channel");
8476 NotifyOption::DoPersist
8478 _ => NotifyOption::SkipPersistHandleEvents,
8480 let _ = handle_error!(self, res, *counterparty_node_id);
8485 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8486 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8487 "Dual-funded channels not supported".to_owned(),
8488 msg.temporary_channel_id.clone())), *counterparty_node_id);
8491 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8492 // Note that we never need to persist the updated ChannelManager for an inbound
8493 // accept_channel message - pre-funded channels are never written so there should be no
8494 // change to the contents.
8495 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8496 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8497 NotifyOption::SkipPersistHandleEvents
8501 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8502 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8503 "Dual-funded channels not supported".to_owned(),
8504 msg.temporary_channel_id.clone())), *counterparty_node_id);
8507 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8508 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8509 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8512 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8513 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8514 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8517 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8518 // Note that we never need to persist the updated ChannelManager for an inbound
8519 // channel_ready message - while the channel's state will change, any channel_ready message
8520 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8521 // will not force-close the channel on startup.
8522 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8523 let res = self.internal_channel_ready(counterparty_node_id, msg);
8524 let persist = match &res {
8525 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8526 _ => NotifyOption::SkipPersistHandleEvents,
8528 let _ = handle_error!(self, res, *counterparty_node_id);
8533 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
8534 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8535 "Quiescence not supported".to_owned(),
8536 msg.channel_id.clone())), *counterparty_node_id);
8539 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
8540 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8541 "Splicing not supported".to_owned(),
8542 msg.channel_id.clone())), *counterparty_node_id);
8545 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
8546 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8547 "Splicing not supported (splice_ack)".to_owned(),
8548 msg.channel_id.clone())), *counterparty_node_id);
8551 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
8552 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8553 "Splicing not supported (splice_locked)".to_owned(),
8554 msg.channel_id.clone())), *counterparty_node_id);
8557 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8558 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8559 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8562 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8563 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8564 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8567 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8568 // Note that we never need to persist the updated ChannelManager for an inbound
8569 // update_add_htlc message - the message itself doesn't change our channel state only the
8570 // `commitment_signed` message afterwards will.
8571 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8572 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8573 let persist = match &res {
8574 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8575 Err(_) => NotifyOption::SkipPersistHandleEvents,
8576 Ok(()) => NotifyOption::SkipPersistNoEvents,
8578 let _ = handle_error!(self, res, *counterparty_node_id);
8583 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8584 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8585 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8588 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8589 // Note that we never need to persist the updated ChannelManager for an inbound
8590 // update_fail_htlc message - the message itself doesn't change our channel state only the
8591 // `commitment_signed` message afterwards will.
8592 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8593 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8594 let persist = match &res {
8595 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8596 Err(_) => NotifyOption::SkipPersistHandleEvents,
8597 Ok(()) => NotifyOption::SkipPersistNoEvents,
8599 let _ = handle_error!(self, res, *counterparty_node_id);
8604 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8605 // Note that we never need to persist the updated ChannelManager for an inbound
8606 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8607 // only the `commitment_signed` message afterwards will.
8608 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8609 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8610 let persist = match &res {
8611 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8612 Err(_) => NotifyOption::SkipPersistHandleEvents,
8613 Ok(()) => NotifyOption::SkipPersistNoEvents,
8615 let _ = handle_error!(self, res, *counterparty_node_id);
8620 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8621 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8622 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8625 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8626 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8627 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8630 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8631 // Note that we never need to persist the updated ChannelManager for an inbound
8632 // update_fee message - the message itself doesn't change our channel state only the
8633 // `commitment_signed` message afterwards will.
8634 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8635 let res = self.internal_update_fee(counterparty_node_id, msg);
8636 let persist = match &res {
8637 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8638 Err(_) => NotifyOption::SkipPersistHandleEvents,
8639 Ok(()) => NotifyOption::SkipPersistNoEvents,
8641 let _ = handle_error!(self, res, *counterparty_node_id);
8646 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8647 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8648 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8651 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8652 PersistenceNotifierGuard::optionally_notify(self, || {
8653 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8656 NotifyOption::DoPersist
8661 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8662 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8663 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8664 let persist = match &res {
8665 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8666 Err(_) => NotifyOption::SkipPersistHandleEvents,
8667 Ok(persist) => *persist,
8669 let _ = handle_error!(self, res, *counterparty_node_id);
8674 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8675 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8676 self, || NotifyOption::SkipPersistHandleEvents);
8677 let mut failed_channels = Vec::new();
8678 let mut per_peer_state = self.per_peer_state.write().unwrap();
8680 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
8681 log_pubkey!(counterparty_node_id));
8682 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8683 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8684 let peer_state = &mut *peer_state_lock;
8685 let pending_msg_events = &mut peer_state.pending_msg_events;
8686 peer_state.channel_by_id.retain(|_, phase| {
8687 let context = match phase {
8688 ChannelPhase::Funded(chan) => {
8689 if chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger).is_ok() {
8690 // We only retain funded channels that are not shutdown.
8695 // Unfunded channels will always be removed.
8696 ChannelPhase::UnfundedOutboundV1(chan) => {
8699 ChannelPhase::UnfundedInboundV1(chan) => {
8703 // Clean up for removal.
8704 update_maps_on_chan_removal!(self, &context);
8705 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8706 failed_channels.push(context.force_shutdown(false));
8709 // Note that we don't bother generating any events for pre-accept channels -
8710 // they're not considered "channels" yet from the PoV of our events interface.
8711 peer_state.inbound_channel_request_by_id.clear();
8712 pending_msg_events.retain(|msg| {
8714 // V1 Channel Establishment
8715 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8716 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8717 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8718 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8719 // V2 Channel Establishment
8720 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8721 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8722 // Common Channel Establishment
8723 &events::MessageSendEvent::SendChannelReady { .. } => false,
8724 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8726 &events::MessageSendEvent::SendStfu { .. } => false,
8728 &events::MessageSendEvent::SendSplice { .. } => false,
8729 &events::MessageSendEvent::SendSpliceAck { .. } => false,
8730 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
8731 // Interactive Transaction Construction
8732 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8733 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8734 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8735 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8736 &events::MessageSendEvent::SendTxComplete { .. } => false,
8737 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8738 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8739 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8740 &events::MessageSendEvent::SendTxAbort { .. } => false,
8741 // Channel Operations
8742 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8743 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8744 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8745 &events::MessageSendEvent::SendShutdown { .. } => false,
8746 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8747 &events::MessageSendEvent::HandleError { .. } => false,
8749 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8750 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8751 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8752 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8753 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8754 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8755 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8756 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8757 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8760 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8761 peer_state.is_connected = false;
8762 peer_state.ok_to_remove(true)
8763 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8766 per_peer_state.remove(counterparty_node_id);
8768 mem::drop(per_peer_state);
8770 for failure in failed_channels.drain(..) {
8771 self.finish_close_channel(failure);
8775 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8776 if !init_msg.features.supports_static_remote_key() {
8777 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8781 let mut res = Ok(());
8783 PersistenceNotifierGuard::optionally_notify(self, || {
8784 // If we have too many peers connected which don't have funded channels, disconnect the
8785 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8786 // unfunded channels taking up space in memory for disconnected peers, we still let new
8787 // peers connect, but we'll reject new channels from them.
8788 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8789 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8792 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8793 match peer_state_lock.entry(counterparty_node_id.clone()) {
8794 hash_map::Entry::Vacant(e) => {
8795 if inbound_peer_limited {
8797 return NotifyOption::SkipPersistNoEvents;
8799 e.insert(Mutex::new(PeerState {
8800 channel_by_id: HashMap::new(),
8801 inbound_channel_request_by_id: HashMap::new(),
8802 latest_features: init_msg.features.clone(),
8803 pending_msg_events: Vec::new(),
8804 in_flight_monitor_updates: BTreeMap::new(),
8805 monitor_update_blocked_actions: BTreeMap::new(),
8806 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8810 hash_map::Entry::Occupied(e) => {
8811 let mut peer_state = e.get().lock().unwrap();
8812 peer_state.latest_features = init_msg.features.clone();
8814 let best_block_height = self.best_block.read().unwrap().height();
8815 if inbound_peer_limited &&
8816 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8817 peer_state.channel_by_id.len()
8820 return NotifyOption::SkipPersistNoEvents;
8823 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8824 peer_state.is_connected = true;
8829 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8831 let per_peer_state = self.per_peer_state.read().unwrap();
8832 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8833 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8834 let peer_state = &mut *peer_state_lock;
8835 let pending_msg_events = &mut peer_state.pending_msg_events;
8837 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8838 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8839 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8840 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8841 // worry about closing and removing them.
8842 debug_assert!(false);
8846 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
8847 node_id: chan.context.get_counterparty_node_id(),
8848 msg: chan.get_channel_reestablish(&self.logger),
8853 return NotifyOption::SkipPersistHandleEvents;
8854 //TODO: Also re-broadcast announcement_signatures
8859 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8860 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8862 match &msg.data as &str {
8863 "cannot co-op close channel w/ active htlcs"|
8864 "link failed to shutdown" =>
8866 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8867 // send one while HTLCs are still present. The issue is tracked at
8868 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8869 // to fix it but none so far have managed to land upstream. The issue appears to be
8870 // very low priority for the LND team despite being marked "P1".
8871 // We're not going to bother handling this in a sensible way, instead simply
8872 // repeating the Shutdown message on repeat until morale improves.
8873 if !msg.channel_id.is_zero() {
8874 let per_peer_state = self.per_peer_state.read().unwrap();
8875 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8876 if peer_state_mutex_opt.is_none() { return; }
8877 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8878 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8879 if let Some(msg) = chan.get_outbound_shutdown() {
8880 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8881 node_id: *counterparty_node_id,
8885 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8886 node_id: *counterparty_node_id,
8887 action: msgs::ErrorAction::SendWarningMessage {
8888 msg: msgs::WarningMessage {
8889 channel_id: msg.channel_id,
8890 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8892 log_level: Level::Trace,
8902 if msg.channel_id.is_zero() {
8903 let channel_ids: Vec<ChannelId> = {
8904 let per_peer_state = self.per_peer_state.read().unwrap();
8905 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8906 if peer_state_mutex_opt.is_none() { return; }
8907 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8908 let peer_state = &mut *peer_state_lock;
8909 // Note that we don't bother generating any events for pre-accept channels -
8910 // they're not considered "channels" yet from the PoV of our events interface.
8911 peer_state.inbound_channel_request_by_id.clear();
8912 peer_state.channel_by_id.keys().cloned().collect()
8914 for channel_id in channel_ids {
8915 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8916 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8920 // First check if we can advance the channel type and try again.
8921 let per_peer_state = self.per_peer_state.read().unwrap();
8922 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8923 if peer_state_mutex_opt.is_none() { return; }
8924 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8925 let peer_state = &mut *peer_state_lock;
8926 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8927 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
8928 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8929 node_id: *counterparty_node_id,
8937 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8938 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8942 fn provided_node_features(&self) -> NodeFeatures {
8943 provided_node_features(&self.default_configuration)
8946 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8947 provided_init_features(&self.default_configuration)
8950 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
8951 Some(vec![self.chain_hash])
8954 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8955 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8956 "Dual-funded channels not supported".to_owned(),
8957 msg.channel_id.clone())), *counterparty_node_id);
8960 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
8961 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8962 "Dual-funded channels not supported".to_owned(),
8963 msg.channel_id.clone())), *counterparty_node_id);
8966 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
8967 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8968 "Dual-funded channels not supported".to_owned(),
8969 msg.channel_id.clone())), *counterparty_node_id);
8972 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
8973 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8974 "Dual-funded channels not supported".to_owned(),
8975 msg.channel_id.clone())), *counterparty_node_id);
8978 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
8979 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8980 "Dual-funded channels not supported".to_owned(),
8981 msg.channel_id.clone())), *counterparty_node_id);
8984 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
8985 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8986 "Dual-funded channels not supported".to_owned(),
8987 msg.channel_id.clone())), *counterparty_node_id);
8990 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
8991 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8992 "Dual-funded channels not supported".to_owned(),
8993 msg.channel_id.clone())), *counterparty_node_id);
8996 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
8997 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8998 "Dual-funded channels not supported".to_owned(),
8999 msg.channel_id.clone())), *counterparty_node_id);
9002 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
9003 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9004 "Dual-funded channels not supported".to_owned(),
9005 msg.channel_id.clone())), *counterparty_node_id);
9009 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9010 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9012 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9013 T::Target: BroadcasterInterface,
9014 ES::Target: EntropySource,
9015 NS::Target: NodeSigner,
9016 SP::Target: SignerProvider,
9017 F::Target: FeeEstimator,
9021 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
9022 let secp_ctx = &self.secp_ctx;
9023 let expanded_key = &self.inbound_payment_key;
9026 OffersMessage::InvoiceRequest(invoice_request) => {
9027 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
9030 Ok(amount_msats) => Some(amount_msats),
9031 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9033 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9034 Ok(invoice_request) => invoice_request,
9036 let error = Bolt12SemanticError::InvalidMetadata;
9037 return Some(OffersMessage::InvoiceError(error.into()));
9040 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9042 match self.create_inbound_payment(amount_msats, relative_expiry, None) {
9043 Ok((payment_hash, payment_secret)) if invoice_request.keys.is_some() => {
9044 let payment_paths = vec![
9045 self.create_one_hop_blinded_payment_path(payment_secret),
9047 #[cfg(not(feature = "no-std"))]
9048 let builder = invoice_request.respond_using_derived_keys(
9049 payment_paths, payment_hash
9051 #[cfg(feature = "no-std")]
9052 let created_at = Duration::from_secs(
9053 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9055 #[cfg(feature = "no-std")]
9056 let builder = invoice_request.respond_using_derived_keys_no_std(
9057 payment_paths, payment_hash, created_at
9059 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9060 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9061 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9064 Ok((payment_hash, payment_secret)) => {
9065 let payment_paths = vec![
9066 self.create_one_hop_blinded_payment_path(payment_secret),
9068 #[cfg(not(feature = "no-std"))]
9069 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9070 #[cfg(feature = "no-std")]
9071 let created_at = Duration::from_secs(
9072 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9074 #[cfg(feature = "no-std")]
9075 let builder = invoice_request.respond_with_no_std(
9076 payment_paths, payment_hash, created_at
9078 let response = builder.and_then(|builder| builder.allow_mpp().build())
9079 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9081 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9082 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9083 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9084 InvoiceError::from_string("Failed signing invoice".to_string())
9086 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9087 InvoiceError::from_string("Failed invoice signature verification".to_string())
9091 Ok(invoice) => Some(invoice),
9092 Err(error) => Some(error),
9096 Some(OffersMessage::InvoiceError(Bolt12SemanticError::InvalidAmount.into()))
9100 OffersMessage::Invoice(invoice) => {
9101 match invoice.verify(expanded_key, secp_ctx) {
9103 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9105 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9106 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9109 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9110 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9111 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9118 OffersMessage::InvoiceError(invoice_error) => {
9119 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9125 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9126 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9130 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9131 /// [`ChannelManager`].
9132 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9133 let mut node_features = provided_init_features(config).to_context();
9134 node_features.set_keysend_optional();
9138 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9139 /// [`ChannelManager`].
9141 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9142 /// or not. Thus, this method is not public.
9143 #[cfg(any(feature = "_test_utils", test))]
9144 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9145 provided_init_features(config).to_context()
9148 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9149 /// [`ChannelManager`].
9150 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9151 provided_init_features(config).to_context()
9154 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9155 /// [`ChannelManager`].
9156 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9157 provided_init_features(config).to_context()
9160 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9161 /// [`ChannelManager`].
9162 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9163 ChannelTypeFeatures::from_init(&provided_init_features(config))
9166 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9167 /// [`ChannelManager`].
9168 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9169 // Note that if new features are added here which other peers may (eventually) require, we
9170 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9171 // [`ErroringMessageHandler`].
9172 let mut features = InitFeatures::empty();
9173 features.set_data_loss_protect_required();
9174 features.set_upfront_shutdown_script_optional();
9175 features.set_variable_length_onion_required();
9176 features.set_static_remote_key_required();
9177 features.set_payment_secret_required();
9178 features.set_basic_mpp_optional();
9179 features.set_wumbo_optional();
9180 features.set_shutdown_any_segwit_optional();
9181 features.set_channel_type_optional();
9182 features.set_scid_privacy_optional();
9183 features.set_zero_conf_optional();
9184 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9185 features.set_anchors_zero_fee_htlc_tx_optional();
9190 const SERIALIZATION_VERSION: u8 = 1;
9191 const MIN_SERIALIZATION_VERSION: u8 = 1;
9193 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9194 (2, fee_base_msat, required),
9195 (4, fee_proportional_millionths, required),
9196 (6, cltv_expiry_delta, required),
9199 impl_writeable_tlv_based!(ChannelCounterparty, {
9200 (2, node_id, required),
9201 (4, features, required),
9202 (6, unspendable_punishment_reserve, required),
9203 (8, forwarding_info, option),
9204 (9, outbound_htlc_minimum_msat, option),
9205 (11, outbound_htlc_maximum_msat, option),
9208 impl Writeable for ChannelDetails {
9209 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9210 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9211 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9212 let user_channel_id_low = self.user_channel_id as u64;
9213 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9214 write_tlv_fields!(writer, {
9215 (1, self.inbound_scid_alias, option),
9216 (2, self.channel_id, required),
9217 (3, self.channel_type, option),
9218 (4, self.counterparty, required),
9219 (5, self.outbound_scid_alias, option),
9220 (6, self.funding_txo, option),
9221 (7, self.config, option),
9222 (8, self.short_channel_id, option),
9223 (9, self.confirmations, option),
9224 (10, self.channel_value_satoshis, required),
9225 (12, self.unspendable_punishment_reserve, option),
9226 (14, user_channel_id_low, required),
9227 (16, self.balance_msat, required),
9228 (18, self.outbound_capacity_msat, required),
9229 (19, self.next_outbound_htlc_limit_msat, required),
9230 (20, self.inbound_capacity_msat, required),
9231 (21, self.next_outbound_htlc_minimum_msat, required),
9232 (22, self.confirmations_required, option),
9233 (24, self.force_close_spend_delay, option),
9234 (26, self.is_outbound, required),
9235 (28, self.is_channel_ready, required),
9236 (30, self.is_usable, required),
9237 (32, self.is_public, required),
9238 (33, self.inbound_htlc_minimum_msat, option),
9239 (35, self.inbound_htlc_maximum_msat, option),
9240 (37, user_channel_id_high_opt, option),
9241 (39, self.feerate_sat_per_1000_weight, option),
9242 (41, self.channel_shutdown_state, option),
9248 impl Readable for ChannelDetails {
9249 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9250 _init_and_read_len_prefixed_tlv_fields!(reader, {
9251 (1, inbound_scid_alias, option),
9252 (2, channel_id, required),
9253 (3, channel_type, option),
9254 (4, counterparty, required),
9255 (5, outbound_scid_alias, option),
9256 (6, funding_txo, option),
9257 (7, config, option),
9258 (8, short_channel_id, option),
9259 (9, confirmations, option),
9260 (10, channel_value_satoshis, required),
9261 (12, unspendable_punishment_reserve, option),
9262 (14, user_channel_id_low, required),
9263 (16, balance_msat, required),
9264 (18, outbound_capacity_msat, required),
9265 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9266 // filled in, so we can safely unwrap it here.
9267 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9268 (20, inbound_capacity_msat, required),
9269 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9270 (22, confirmations_required, option),
9271 (24, force_close_spend_delay, option),
9272 (26, is_outbound, required),
9273 (28, is_channel_ready, required),
9274 (30, is_usable, required),
9275 (32, is_public, required),
9276 (33, inbound_htlc_minimum_msat, option),
9277 (35, inbound_htlc_maximum_msat, option),
9278 (37, user_channel_id_high_opt, option),
9279 (39, feerate_sat_per_1000_weight, option),
9280 (41, channel_shutdown_state, option),
9283 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9284 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9285 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9286 let user_channel_id = user_channel_id_low as u128 +
9287 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9291 channel_id: channel_id.0.unwrap(),
9293 counterparty: counterparty.0.unwrap(),
9294 outbound_scid_alias,
9298 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9299 unspendable_punishment_reserve,
9301 balance_msat: balance_msat.0.unwrap(),
9302 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9303 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9304 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9305 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9306 confirmations_required,
9308 force_close_spend_delay,
9309 is_outbound: is_outbound.0.unwrap(),
9310 is_channel_ready: is_channel_ready.0.unwrap(),
9311 is_usable: is_usable.0.unwrap(),
9312 is_public: is_public.0.unwrap(),
9313 inbound_htlc_minimum_msat,
9314 inbound_htlc_maximum_msat,
9315 feerate_sat_per_1000_weight,
9316 channel_shutdown_state,
9321 impl_writeable_tlv_based!(PhantomRouteHints, {
9322 (2, channels, required_vec),
9323 (4, phantom_scid, required),
9324 (6, real_node_pubkey, required),
9327 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9329 (0, onion_packet, required),
9330 (2, short_channel_id, required),
9333 (0, payment_data, required),
9334 (1, phantom_shared_secret, option),
9335 (2, incoming_cltv_expiry, required),
9336 (3, payment_metadata, option),
9337 (5, custom_tlvs, optional_vec),
9339 (2, ReceiveKeysend) => {
9340 (0, payment_preimage, required),
9341 (2, incoming_cltv_expiry, required),
9342 (3, payment_metadata, option),
9343 (4, payment_data, option), // Added in 0.0.116
9344 (5, custom_tlvs, optional_vec),
9348 impl_writeable_tlv_based!(PendingHTLCInfo, {
9349 (0, routing, required),
9350 (2, incoming_shared_secret, required),
9351 (4, payment_hash, required),
9352 (6, outgoing_amt_msat, required),
9353 (8, outgoing_cltv_value, required),
9354 (9, incoming_amt_msat, option),
9355 (10, skimmed_fee_msat, option),
9359 impl Writeable for HTLCFailureMsg {
9360 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9362 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9364 channel_id.write(writer)?;
9365 htlc_id.write(writer)?;
9366 reason.write(writer)?;
9368 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9369 channel_id, htlc_id, sha256_of_onion, failure_code
9372 channel_id.write(writer)?;
9373 htlc_id.write(writer)?;
9374 sha256_of_onion.write(writer)?;
9375 failure_code.write(writer)?;
9382 impl Readable for HTLCFailureMsg {
9383 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9384 let id: u8 = Readable::read(reader)?;
9387 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9388 channel_id: Readable::read(reader)?,
9389 htlc_id: Readable::read(reader)?,
9390 reason: Readable::read(reader)?,
9394 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9395 channel_id: Readable::read(reader)?,
9396 htlc_id: Readable::read(reader)?,
9397 sha256_of_onion: Readable::read(reader)?,
9398 failure_code: Readable::read(reader)?,
9401 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9402 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9403 // messages contained in the variants.
9404 // In version 0.0.101, support for reading the variants with these types was added, and
9405 // we should migrate to writing these variants when UpdateFailHTLC or
9406 // UpdateFailMalformedHTLC get TLV fields.
9408 let length: BigSize = Readable::read(reader)?;
9409 let mut s = FixedLengthReader::new(reader, length.0);
9410 let res = Readable::read(&mut s)?;
9411 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9412 Ok(HTLCFailureMsg::Relay(res))
9415 let length: BigSize = Readable::read(reader)?;
9416 let mut s = FixedLengthReader::new(reader, length.0);
9417 let res = Readable::read(&mut s)?;
9418 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9419 Ok(HTLCFailureMsg::Malformed(res))
9421 _ => Err(DecodeError::UnknownRequiredFeature),
9426 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9431 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9432 (0, short_channel_id, required),
9433 (1, phantom_shared_secret, option),
9434 (2, outpoint, required),
9435 (4, htlc_id, required),
9436 (6, incoming_packet_shared_secret, required),
9437 (7, user_channel_id, option),
9440 impl Writeable for ClaimableHTLC {
9441 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9442 let (payment_data, keysend_preimage) = match &self.onion_payload {
9443 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9444 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9446 write_tlv_fields!(writer, {
9447 (0, self.prev_hop, required),
9448 (1, self.total_msat, required),
9449 (2, self.value, required),
9450 (3, self.sender_intended_value, required),
9451 (4, payment_data, option),
9452 (5, self.total_value_received, option),
9453 (6, self.cltv_expiry, required),
9454 (8, keysend_preimage, option),
9455 (10, self.counterparty_skimmed_fee_msat, option),
9461 impl Readable for ClaimableHTLC {
9462 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9463 _init_and_read_len_prefixed_tlv_fields!(reader, {
9464 (0, prev_hop, required),
9465 (1, total_msat, option),
9466 (2, value_ser, required),
9467 (3, sender_intended_value, option),
9468 (4, payment_data_opt, option),
9469 (5, total_value_received, option),
9470 (6, cltv_expiry, required),
9471 (8, keysend_preimage, option),
9472 (10, counterparty_skimmed_fee_msat, option),
9474 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9475 let value = value_ser.0.unwrap();
9476 let onion_payload = match keysend_preimage {
9478 if payment_data.is_some() {
9479 return Err(DecodeError::InvalidValue)
9481 if total_msat.is_none() {
9482 total_msat = Some(value);
9484 OnionPayload::Spontaneous(p)
9487 if total_msat.is_none() {
9488 if payment_data.is_none() {
9489 return Err(DecodeError::InvalidValue)
9491 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9493 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9497 prev_hop: prev_hop.0.unwrap(),
9500 sender_intended_value: sender_intended_value.unwrap_or(value),
9501 total_value_received,
9502 total_msat: total_msat.unwrap(),
9504 cltv_expiry: cltv_expiry.0.unwrap(),
9505 counterparty_skimmed_fee_msat,
9510 impl Readable for HTLCSource {
9511 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9512 let id: u8 = Readable::read(reader)?;
9515 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9516 let mut first_hop_htlc_msat: u64 = 0;
9517 let mut path_hops = Vec::new();
9518 let mut payment_id = None;
9519 let mut payment_params: Option<PaymentParameters> = None;
9520 let mut blinded_tail: Option<BlindedTail> = None;
9521 read_tlv_fields!(reader, {
9522 (0, session_priv, required),
9523 (1, payment_id, option),
9524 (2, first_hop_htlc_msat, required),
9525 (4, path_hops, required_vec),
9526 (5, payment_params, (option: ReadableArgs, 0)),
9527 (6, blinded_tail, option),
9529 if payment_id.is_none() {
9530 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9532 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9534 let path = Path { hops: path_hops, blinded_tail };
9535 if path.hops.len() == 0 {
9536 return Err(DecodeError::InvalidValue);
9538 if let Some(params) = payment_params.as_mut() {
9539 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9540 if final_cltv_expiry_delta == &0 {
9541 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9545 Ok(HTLCSource::OutboundRoute {
9546 session_priv: session_priv.0.unwrap(),
9547 first_hop_htlc_msat,
9549 payment_id: payment_id.unwrap(),
9552 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9553 _ => Err(DecodeError::UnknownRequiredFeature),
9558 impl Writeable for HTLCSource {
9559 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9561 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9563 let payment_id_opt = Some(payment_id);
9564 write_tlv_fields!(writer, {
9565 (0, session_priv, required),
9566 (1, payment_id_opt, option),
9567 (2, first_hop_htlc_msat, required),
9568 // 3 was previously used to write a PaymentSecret for the payment.
9569 (4, path.hops, required_vec),
9570 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9571 (6, path.blinded_tail, option),
9574 HTLCSource::PreviousHopData(ref field) => {
9576 field.write(writer)?;
9583 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9584 (0, forward_info, required),
9585 (1, prev_user_channel_id, (default_value, 0)),
9586 (2, prev_short_channel_id, required),
9587 (4, prev_htlc_id, required),
9588 (6, prev_funding_outpoint, required),
9591 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
9593 (0, htlc_id, required),
9594 (2, err_packet, required),
9599 impl_writeable_tlv_based!(PendingInboundPayment, {
9600 (0, payment_secret, required),
9601 (2, expiry_time, required),
9602 (4, user_payment_id, required),
9603 (6, payment_preimage, required),
9604 (8, min_value_msat, required),
9607 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
9609 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9610 T::Target: BroadcasterInterface,
9611 ES::Target: EntropySource,
9612 NS::Target: NodeSigner,
9613 SP::Target: SignerProvider,
9614 F::Target: FeeEstimator,
9618 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9619 let _consistency_lock = self.total_consistency_lock.write().unwrap();
9621 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
9623 self.chain_hash.write(writer)?;
9625 let best_block = self.best_block.read().unwrap();
9626 best_block.height().write(writer)?;
9627 best_block.block_hash().write(writer)?;
9630 let mut serializable_peer_count: u64 = 0;
9632 let per_peer_state = self.per_peer_state.read().unwrap();
9633 let mut number_of_funded_channels = 0;
9634 for (_, peer_state_mutex) in per_peer_state.iter() {
9635 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9636 let peer_state = &mut *peer_state_lock;
9637 if !peer_state.ok_to_remove(false) {
9638 serializable_peer_count += 1;
9641 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
9642 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
9646 (number_of_funded_channels as u64).write(writer)?;
9648 for (_, peer_state_mutex) in per_peer_state.iter() {
9649 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9650 let peer_state = &mut *peer_state_lock;
9651 for channel in peer_state.channel_by_id.iter().filter_map(
9652 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
9653 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
9656 channel.write(writer)?;
9662 let forward_htlcs = self.forward_htlcs.lock().unwrap();
9663 (forward_htlcs.len() as u64).write(writer)?;
9664 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
9665 short_channel_id.write(writer)?;
9666 (pending_forwards.len() as u64).write(writer)?;
9667 for forward in pending_forwards {
9668 forward.write(writer)?;
9673 let per_peer_state = self.per_peer_state.write().unwrap();
9675 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9676 let claimable_payments = self.claimable_payments.lock().unwrap();
9677 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9679 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9680 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9681 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9682 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9683 payment_hash.write(writer)?;
9684 (payment.htlcs.len() as u64).write(writer)?;
9685 for htlc in payment.htlcs.iter() {
9686 htlc.write(writer)?;
9688 htlc_purposes.push(&payment.purpose);
9689 htlc_onion_fields.push(&payment.onion_fields);
9692 let mut monitor_update_blocked_actions_per_peer = None;
9693 let mut peer_states = Vec::new();
9694 for (_, peer_state_mutex) in per_peer_state.iter() {
9695 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9696 // of a lockorder violation deadlock - no other thread can be holding any
9697 // per_peer_state lock at all.
9698 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9701 (serializable_peer_count).write(writer)?;
9702 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9703 // Peers which we have no channels to should be dropped once disconnected. As we
9704 // disconnect all peers when shutting down and serializing the ChannelManager, we
9705 // consider all peers as disconnected here. There's therefore no need write peers with
9707 if !peer_state.ok_to_remove(false) {
9708 peer_pubkey.write(writer)?;
9709 peer_state.latest_features.write(writer)?;
9710 if !peer_state.monitor_update_blocked_actions.is_empty() {
9711 monitor_update_blocked_actions_per_peer
9712 .get_or_insert_with(Vec::new)
9713 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9718 let events = self.pending_events.lock().unwrap();
9719 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9720 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9721 // refuse to read the new ChannelManager.
9722 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9723 if events_not_backwards_compatible {
9724 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9725 // well save the space and not write any events here.
9726 0u64.write(writer)?;
9728 (events.len() as u64).write(writer)?;
9729 for (event, _) in events.iter() {
9730 event.write(writer)?;
9734 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9735 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9736 // the closing monitor updates were always effectively replayed on startup (either directly
9737 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9738 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9739 0u64.write(writer)?;
9741 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9742 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9743 // likely to be identical.
9744 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9745 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9747 (pending_inbound_payments.len() as u64).write(writer)?;
9748 for (hash, pending_payment) in pending_inbound_payments.iter() {
9749 hash.write(writer)?;
9750 pending_payment.write(writer)?;
9753 // For backwards compat, write the session privs and their total length.
9754 let mut num_pending_outbounds_compat: u64 = 0;
9755 for (_, outbound) in pending_outbound_payments.iter() {
9756 if !outbound.is_fulfilled() && !outbound.abandoned() {
9757 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
9760 num_pending_outbounds_compat.write(writer)?;
9761 for (_, outbound) in pending_outbound_payments.iter() {
9763 PendingOutboundPayment::Legacy { session_privs } |
9764 PendingOutboundPayment::Retryable { session_privs, .. } => {
9765 for session_priv in session_privs.iter() {
9766 session_priv.write(writer)?;
9769 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9770 PendingOutboundPayment::InvoiceReceived { .. } => {},
9771 PendingOutboundPayment::Fulfilled { .. } => {},
9772 PendingOutboundPayment::Abandoned { .. } => {},
9776 // Encode without retry info for 0.0.101 compatibility.
9777 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9778 for (id, outbound) in pending_outbound_payments.iter() {
9780 PendingOutboundPayment::Legacy { session_privs } |
9781 PendingOutboundPayment::Retryable { session_privs, .. } => {
9782 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9788 let mut pending_intercepted_htlcs = None;
9789 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9790 if our_pending_intercepts.len() != 0 {
9791 pending_intercepted_htlcs = Some(our_pending_intercepts);
9794 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9795 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9796 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9797 // map. Thus, if there are no entries we skip writing a TLV for it.
9798 pending_claiming_payments = None;
9801 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9802 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9803 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9804 if !updates.is_empty() {
9805 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9806 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9811 write_tlv_fields!(writer, {
9812 (1, pending_outbound_payments_no_retry, required),
9813 (2, pending_intercepted_htlcs, option),
9814 (3, pending_outbound_payments, required),
9815 (4, pending_claiming_payments, option),
9816 (5, self.our_network_pubkey, required),
9817 (6, monitor_update_blocked_actions_per_peer, option),
9818 (7, self.fake_scid_rand_bytes, required),
9819 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9820 (9, htlc_purposes, required_vec),
9821 (10, in_flight_monitor_updates, option),
9822 (11, self.probing_cookie_secret, required),
9823 (13, htlc_onion_fields, optional_vec),
9830 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9831 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9832 (self.len() as u64).write(w)?;
9833 for (event, action) in self.iter() {
9836 #[cfg(debug_assertions)] {
9837 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9838 // be persisted and are regenerated on restart. However, if such an event has a
9839 // post-event-handling action we'll write nothing for the event and would have to
9840 // either forget the action or fail on deserialization (which we do below). Thus,
9841 // check that the event is sane here.
9842 let event_encoded = event.encode();
9843 let event_read: Option<Event> =
9844 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
9845 if action.is_some() { assert!(event_read.is_some()); }
9851 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
9852 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9853 let len: u64 = Readable::read(reader)?;
9854 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
9855 let mut events: Self = VecDeque::with_capacity(cmp::min(
9856 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
9859 let ev_opt = MaybeReadable::read(reader)?;
9860 let action = Readable::read(reader)?;
9861 if let Some(ev) = ev_opt {
9862 events.push_back((ev, action));
9863 } else if action.is_some() {
9864 return Err(DecodeError::InvalidValue);
9871 impl_writeable_tlv_based_enum!(ChannelShutdownState,
9872 (0, NotShuttingDown) => {},
9873 (2, ShutdownInitiated) => {},
9874 (4, ResolvingHTLCs) => {},
9875 (6, NegotiatingClosingFee) => {},
9876 (8, ShutdownComplete) => {}, ;
9879 /// Arguments for the creation of a ChannelManager that are not deserialized.
9881 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
9883 /// 1) Deserialize all stored [`ChannelMonitor`]s.
9884 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
9885 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
9886 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
9887 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
9888 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
9889 /// same way you would handle a [`chain::Filter`] call using
9890 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
9891 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
9892 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
9893 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
9894 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
9895 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
9897 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
9898 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
9900 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
9901 /// call any other methods on the newly-deserialized [`ChannelManager`].
9903 /// Note that because some channels may be closed during deserialization, it is critical that you
9904 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
9905 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
9906 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
9907 /// not force-close the same channels but consider them live), you may end up revoking a state for
9908 /// which you've already broadcasted the transaction.
9910 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
9911 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9913 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9914 T::Target: BroadcasterInterface,
9915 ES::Target: EntropySource,
9916 NS::Target: NodeSigner,
9917 SP::Target: SignerProvider,
9918 F::Target: FeeEstimator,
9922 /// A cryptographically secure source of entropy.
9923 pub entropy_source: ES,
9925 /// A signer that is able to perform node-scoped cryptographic operations.
9926 pub node_signer: NS,
9928 /// The keys provider which will give us relevant keys. Some keys will be loaded during
9929 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
9931 pub signer_provider: SP,
9933 /// The fee_estimator for use in the ChannelManager in the future.
9935 /// No calls to the FeeEstimator will be made during deserialization.
9936 pub fee_estimator: F,
9937 /// The chain::Watch for use in the ChannelManager in the future.
9939 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
9940 /// you have deserialized ChannelMonitors separately and will add them to your
9941 /// chain::Watch after deserializing this ChannelManager.
9942 pub chain_monitor: M,
9944 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
9945 /// used to broadcast the latest local commitment transactions of channels which must be
9946 /// force-closed during deserialization.
9947 pub tx_broadcaster: T,
9948 /// The router which will be used in the ChannelManager in the future for finding routes
9949 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
9951 /// No calls to the router will be made during deserialization.
9953 /// The Logger for use in the ChannelManager and which may be used to log information during
9954 /// deserialization.
9956 /// Default settings used for new channels. Any existing channels will continue to use the
9957 /// runtime settings which were stored when the ChannelManager was serialized.
9958 pub default_config: UserConfig,
9960 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
9961 /// value.context.get_funding_txo() should be the key).
9963 /// If a monitor is inconsistent with the channel state during deserialization the channel will
9964 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
9965 /// is true for missing channels as well. If there is a monitor missing for which we find
9966 /// channel data Err(DecodeError::InvalidValue) will be returned.
9968 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
9971 /// This is not exported to bindings users because we have no HashMap bindings
9972 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
9975 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9976 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
9978 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9979 T::Target: BroadcasterInterface,
9980 ES::Target: EntropySource,
9981 NS::Target: NodeSigner,
9982 SP::Target: SignerProvider,
9983 F::Target: FeeEstimator,
9987 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
9988 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
9989 /// populate a HashMap directly from C.
9990 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
9991 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
9993 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
9994 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
9999 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
10000 // SipmleArcChannelManager type:
10001 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10002 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
10004 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
10005 T::Target: BroadcasterInterface,
10006 ES::Target: EntropySource,
10007 NS::Target: NodeSigner,
10008 SP::Target: SignerProvider,
10009 F::Target: FeeEstimator,
10013 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10014 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
10015 Ok((blockhash, Arc::new(chan_manager)))
10019 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10020 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
10022 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
10023 T::Target: BroadcasterInterface,
10024 ES::Target: EntropySource,
10025 NS::Target: NodeSigner,
10026 SP::Target: SignerProvider,
10027 F::Target: FeeEstimator,
10031 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10032 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10034 let chain_hash: ChainHash = Readable::read(reader)?;
10035 let best_block_height: u32 = Readable::read(reader)?;
10036 let best_block_hash: BlockHash = Readable::read(reader)?;
10038 let mut failed_htlcs = Vec::new();
10040 let channel_count: u64 = Readable::read(reader)?;
10041 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
10042 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10043 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10044 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10045 let mut channel_closures = VecDeque::new();
10046 let mut close_background_events = Vec::new();
10047 for _ in 0..channel_count {
10048 let mut channel: Channel<SP> = Channel::read(reader, (
10049 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10051 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10052 funding_txo_set.insert(funding_txo.clone());
10053 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10054 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10055 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10056 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10057 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10058 // But if the channel is behind of the monitor, close the channel:
10059 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10060 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10061 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10062 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10063 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10065 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10066 log_error!(args.logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10067 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10069 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10070 log_error!(args.logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10071 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10073 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10074 log_error!(args.logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10075 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10077 let mut shutdown_result = channel.context.force_shutdown(true);
10078 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10079 return Err(DecodeError::InvalidValue);
10081 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
10082 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10083 counterparty_node_id, funding_txo, update
10086 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10087 channel_closures.push_back((events::Event::ChannelClosed {
10088 channel_id: channel.context.channel_id(),
10089 user_channel_id: channel.context.get_user_id(),
10090 reason: ClosureReason::OutdatedChannelManager,
10091 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10092 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10094 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10095 let mut found_htlc = false;
10096 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10097 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10100 // If we have some HTLCs in the channel which are not present in the newer
10101 // ChannelMonitor, they have been removed and should be failed back to
10102 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10103 // were actually claimed we'd have generated and ensured the previous-hop
10104 // claim update ChannelMonitor updates were persisted prior to persising
10105 // the ChannelMonitor update for the forward leg, so attempting to fail the
10106 // backwards leg of the HTLC will simply be rejected.
10107 log_info!(args.logger,
10108 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10109 &channel.context.channel_id(), &payment_hash);
10110 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10114 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10115 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10116 monitor.get_latest_update_id());
10117 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10118 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10120 if channel.context.is_funding_broadcast() {
10121 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
10123 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10124 hash_map::Entry::Occupied(mut entry) => {
10125 let by_id_map = entry.get_mut();
10126 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10128 hash_map::Entry::Vacant(entry) => {
10129 let mut by_id_map = HashMap::new();
10130 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10131 entry.insert(by_id_map);
10135 } else if channel.is_awaiting_initial_mon_persist() {
10136 // If we were persisted and shut down while the initial ChannelMonitor persistence
10137 // was in-progress, we never broadcasted the funding transaction and can still
10138 // safely discard the channel.
10139 let _ = channel.context.force_shutdown(false);
10140 channel_closures.push_back((events::Event::ChannelClosed {
10141 channel_id: channel.context.channel_id(),
10142 user_channel_id: channel.context.get_user_id(),
10143 reason: ClosureReason::DisconnectedPeer,
10144 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10145 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10148 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10149 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10150 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10151 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10152 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10153 return Err(DecodeError::InvalidValue);
10157 for (funding_txo, _) in args.channel_monitors.iter() {
10158 if !funding_txo_set.contains(funding_txo) {
10159 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
10160 &funding_txo.to_channel_id());
10161 let monitor_update = ChannelMonitorUpdate {
10162 update_id: CLOSED_CHANNEL_UPDATE_ID,
10163 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10165 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
10169 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10170 let forward_htlcs_count: u64 = Readable::read(reader)?;
10171 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10172 for _ in 0..forward_htlcs_count {
10173 let short_channel_id = Readable::read(reader)?;
10174 let pending_forwards_count: u64 = Readable::read(reader)?;
10175 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10176 for _ in 0..pending_forwards_count {
10177 pending_forwards.push(Readable::read(reader)?);
10179 forward_htlcs.insert(short_channel_id, pending_forwards);
10182 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10183 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10184 for _ in 0..claimable_htlcs_count {
10185 let payment_hash = Readable::read(reader)?;
10186 let previous_hops_len: u64 = Readable::read(reader)?;
10187 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10188 for _ in 0..previous_hops_len {
10189 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10191 claimable_htlcs_list.push((payment_hash, previous_hops));
10194 let peer_state_from_chans = |channel_by_id| {
10197 inbound_channel_request_by_id: HashMap::new(),
10198 latest_features: InitFeatures::empty(),
10199 pending_msg_events: Vec::new(),
10200 in_flight_monitor_updates: BTreeMap::new(),
10201 monitor_update_blocked_actions: BTreeMap::new(),
10202 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10203 is_connected: false,
10207 let peer_count: u64 = Readable::read(reader)?;
10208 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10209 for _ in 0..peer_count {
10210 let peer_pubkey = Readable::read(reader)?;
10211 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
10212 let mut peer_state = peer_state_from_chans(peer_chans);
10213 peer_state.latest_features = Readable::read(reader)?;
10214 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10217 let event_count: u64 = Readable::read(reader)?;
10218 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10219 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10220 for _ in 0..event_count {
10221 match MaybeReadable::read(reader)? {
10222 Some(event) => pending_events_read.push_back((event, None)),
10227 let background_event_count: u64 = Readable::read(reader)?;
10228 for _ in 0..background_event_count {
10229 match <u8 as Readable>::read(reader)? {
10231 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10232 // however we really don't (and never did) need them - we regenerate all
10233 // on-startup monitor updates.
10234 let _: OutPoint = Readable::read(reader)?;
10235 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10237 _ => return Err(DecodeError::InvalidValue),
10241 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10242 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10244 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10245 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10246 for _ in 0..pending_inbound_payment_count {
10247 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10248 return Err(DecodeError::InvalidValue);
10252 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10253 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10254 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10255 for _ in 0..pending_outbound_payments_count_compat {
10256 let session_priv = Readable::read(reader)?;
10257 let payment = PendingOutboundPayment::Legacy {
10258 session_privs: [session_priv].iter().cloned().collect()
10260 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10261 return Err(DecodeError::InvalidValue)
10265 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10266 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10267 let mut pending_outbound_payments = None;
10268 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
10269 let mut received_network_pubkey: Option<PublicKey> = None;
10270 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10271 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10272 let mut claimable_htlc_purposes = None;
10273 let mut claimable_htlc_onion_fields = None;
10274 let mut pending_claiming_payments = Some(HashMap::new());
10275 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10276 let mut events_override = None;
10277 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10278 read_tlv_fields!(reader, {
10279 (1, pending_outbound_payments_no_retry, option),
10280 (2, pending_intercepted_htlcs, option),
10281 (3, pending_outbound_payments, option),
10282 (4, pending_claiming_payments, option),
10283 (5, received_network_pubkey, option),
10284 (6, monitor_update_blocked_actions_per_peer, option),
10285 (7, fake_scid_rand_bytes, option),
10286 (8, events_override, option),
10287 (9, claimable_htlc_purposes, optional_vec),
10288 (10, in_flight_monitor_updates, option),
10289 (11, probing_cookie_secret, option),
10290 (13, claimable_htlc_onion_fields, optional_vec),
10292 if fake_scid_rand_bytes.is_none() {
10293 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10296 if probing_cookie_secret.is_none() {
10297 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10300 if let Some(events) = events_override {
10301 pending_events_read = events;
10304 if !channel_closures.is_empty() {
10305 pending_events_read.append(&mut channel_closures);
10308 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10309 pending_outbound_payments = Some(pending_outbound_payments_compat);
10310 } else if pending_outbound_payments.is_none() {
10311 let mut outbounds = HashMap::new();
10312 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10313 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10315 pending_outbound_payments = Some(outbounds);
10317 let pending_outbounds = OutboundPayments {
10318 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10319 retry_lock: Mutex::new(())
10322 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10323 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10324 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10325 // replayed, and for each monitor update we have to replay we have to ensure there's a
10326 // `ChannelMonitor` for it.
10328 // In order to do so we first walk all of our live channels (so that we can check their
10329 // state immediately after doing the update replays, when we have the `update_id`s
10330 // available) and then walk any remaining in-flight updates.
10332 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10333 let mut pending_background_events = Vec::new();
10334 macro_rules! handle_in_flight_updates {
10335 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10336 $monitor: expr, $peer_state: expr, $channel_info_log: expr
10338 let mut max_in_flight_update_id = 0;
10339 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10340 for update in $chan_in_flight_upds.iter() {
10341 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10342 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
10343 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10344 pending_background_events.push(
10345 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10346 counterparty_node_id: $counterparty_node_id,
10347 funding_txo: $funding_txo,
10348 update: update.clone(),
10351 if $chan_in_flight_upds.is_empty() {
10352 // We had some updates to apply, but it turns out they had completed before we
10353 // were serialized, we just weren't notified of that. Thus, we may have to run
10354 // the completion actions for any monitor updates, but otherwise are done.
10355 pending_background_events.push(
10356 BackgroundEvent::MonitorUpdatesComplete {
10357 counterparty_node_id: $counterparty_node_id,
10358 channel_id: $funding_txo.to_channel_id(),
10361 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10362 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
10363 return Err(DecodeError::InvalidValue);
10365 max_in_flight_update_id
10369 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10370 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10371 let peer_state = &mut *peer_state_lock;
10372 for phase in peer_state.channel_by_id.values() {
10373 if let ChannelPhase::Funded(chan) = phase {
10374 // Channels that were persisted have to be funded, otherwise they should have been
10376 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10377 let monitor = args.channel_monitors.get(&funding_txo)
10378 .expect("We already checked for monitor presence when loading channels");
10379 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10380 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10381 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10382 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10383 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10384 funding_txo, monitor, peer_state, ""));
10387 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10388 // If the channel is ahead of the monitor, return InvalidValue:
10389 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10390 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10391 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10392 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10393 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10394 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10395 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10396 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10397 return Err(DecodeError::InvalidValue);
10400 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10401 // created in this `channel_by_id` map.
10402 debug_assert!(false);
10403 return Err(DecodeError::InvalidValue);
10408 if let Some(in_flight_upds) = in_flight_monitor_updates {
10409 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10410 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10411 // Now that we've removed all the in-flight monitor updates for channels that are
10412 // still open, we need to replay any monitor updates that are for closed channels,
10413 // creating the neccessary peer_state entries as we go.
10414 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10415 Mutex::new(peer_state_from_chans(HashMap::new()))
10417 let mut peer_state = peer_state_mutex.lock().unwrap();
10418 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10419 funding_txo, monitor, peer_state, "closed ");
10421 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10422 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
10423 &funding_txo.to_channel_id());
10424 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10425 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10426 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10427 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10428 return Err(DecodeError::InvalidValue);
10433 // Note that we have to do the above replays before we push new monitor updates.
10434 pending_background_events.append(&mut close_background_events);
10436 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10437 // should ensure we try them again on the inbound edge. We put them here and do so after we
10438 // have a fully-constructed `ChannelManager` at the end.
10439 let mut pending_claims_to_replay = Vec::new();
10442 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10443 // ChannelMonitor data for any channels for which we do not have authorative state
10444 // (i.e. those for which we just force-closed above or we otherwise don't have a
10445 // corresponding `Channel` at all).
10446 // This avoids several edge-cases where we would otherwise "forget" about pending
10447 // payments which are still in-flight via their on-chain state.
10448 // We only rebuild the pending payments map if we were most recently serialized by
10450 for (_, monitor) in args.channel_monitors.iter() {
10451 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
10452 if counterparty_opt.is_none() {
10453 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10454 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10455 if path.hops.is_empty() {
10456 log_error!(args.logger, "Got an empty path for a pending payment");
10457 return Err(DecodeError::InvalidValue);
10460 let path_amt = path.final_value_msat();
10461 let mut session_priv_bytes = [0; 32];
10462 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10463 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10464 hash_map::Entry::Occupied(mut entry) => {
10465 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10466 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10467 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
10469 hash_map::Entry::Vacant(entry) => {
10470 let path_fee = path.fee_msat();
10471 entry.insert(PendingOutboundPayment::Retryable {
10472 retry_strategy: None,
10473 attempts: PaymentAttempts::new(),
10474 payment_params: None,
10475 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
10476 payment_hash: htlc.payment_hash,
10477 payment_secret: None, // only used for retries, and we'll never retry on startup
10478 payment_metadata: None, // only used for retries, and we'll never retry on startup
10479 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10480 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10481 pending_amt_msat: path_amt,
10482 pending_fee_msat: Some(path_fee),
10483 total_msat: path_amt,
10484 starting_block_height: best_block_height,
10485 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10487 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10488 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10493 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10494 match htlc_source {
10495 HTLCSource::PreviousHopData(prev_hop_data) => {
10496 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10497 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10498 info.prev_htlc_id == prev_hop_data.htlc_id
10500 // The ChannelMonitor is now responsible for this HTLC's
10501 // failure/success and will let us know what its outcome is. If we
10502 // still have an entry for this HTLC in `forward_htlcs` or
10503 // `pending_intercepted_htlcs`, we were apparently not persisted after
10504 // the monitor was when forwarding the payment.
10505 forward_htlcs.retain(|_, forwards| {
10506 forwards.retain(|forward| {
10507 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10508 if pending_forward_matches_htlc(&htlc_info) {
10509 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10510 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10515 !forwards.is_empty()
10517 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10518 if pending_forward_matches_htlc(&htlc_info) {
10519 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10520 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10521 pending_events_read.retain(|(event, _)| {
10522 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10523 intercepted_id != ev_id
10530 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10531 if let Some(preimage) = preimage_opt {
10532 let pending_events = Mutex::new(pending_events_read);
10533 // Note that we set `from_onchain` to "false" here,
10534 // deliberately keeping the pending payment around forever.
10535 // Given it should only occur when we have a channel we're
10536 // force-closing for being stale that's okay.
10537 // The alternative would be to wipe the state when claiming,
10538 // generating a `PaymentPathSuccessful` event but regenerating
10539 // it and the `PaymentSent` on every restart until the
10540 // `ChannelMonitor` is removed.
10542 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10543 channel_funding_outpoint: monitor.get_funding_txo().0,
10544 counterparty_node_id: path.hops[0].pubkey,
10546 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
10547 path, false, compl_action, &pending_events, &args.logger);
10548 pending_events_read = pending_events.into_inner().unwrap();
10555 // Whether the downstream channel was closed or not, try to re-apply any payment
10556 // preimages from it which may be needed in upstream channels for forwarded
10558 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
10560 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
10561 if let HTLCSource::PreviousHopData(_) = htlc_source {
10562 if let Some(payment_preimage) = preimage_opt {
10563 Some((htlc_source, payment_preimage, htlc.amount_msat,
10564 // Check if `counterparty_opt.is_none()` to see if the
10565 // downstream chan is closed (because we don't have a
10566 // channel_id -> peer map entry).
10567 counterparty_opt.is_none(),
10568 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
10569 monitor.get_funding_txo().0))
10572 // If it was an outbound payment, we've handled it above - if a preimage
10573 // came in and we persisted the `ChannelManager` we either handled it and
10574 // are good to go or the channel force-closed - we don't have to handle the
10575 // channel still live case here.
10579 for tuple in outbound_claimed_htlcs_iter {
10580 pending_claims_to_replay.push(tuple);
10585 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
10586 // If we have pending HTLCs to forward, assume we either dropped a
10587 // `PendingHTLCsForwardable` or the user received it but never processed it as they
10588 // shut down before the timer hit. Either way, set the time_forwardable to a small
10589 // constant as enough time has likely passed that we should simply handle the forwards
10590 // now, or at least after the user gets a chance to reconnect to our peers.
10591 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
10592 time_forwardable: Duration::from_secs(2),
10596 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
10597 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
10599 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
10600 if let Some(purposes) = claimable_htlc_purposes {
10601 if purposes.len() != claimable_htlcs_list.len() {
10602 return Err(DecodeError::InvalidValue);
10604 if let Some(onion_fields) = claimable_htlc_onion_fields {
10605 if onion_fields.len() != claimable_htlcs_list.len() {
10606 return Err(DecodeError::InvalidValue);
10608 for (purpose, (onion, (payment_hash, htlcs))) in
10609 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
10611 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10612 purpose, htlcs, onion_fields: onion,
10614 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10617 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
10618 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10619 purpose, htlcs, onion_fields: None,
10621 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10625 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
10626 // include a `_legacy_hop_data` in the `OnionPayload`.
10627 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
10628 if htlcs.is_empty() {
10629 return Err(DecodeError::InvalidValue);
10631 let purpose = match &htlcs[0].onion_payload {
10632 OnionPayload::Invoice { _legacy_hop_data } => {
10633 if let Some(hop_data) = _legacy_hop_data {
10634 events::PaymentPurpose::InvoicePayment {
10635 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
10636 Some(inbound_payment) => inbound_payment.payment_preimage,
10637 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
10638 Ok((payment_preimage, _)) => payment_preimage,
10640 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
10641 return Err(DecodeError::InvalidValue);
10645 payment_secret: hop_data.payment_secret,
10647 } else { return Err(DecodeError::InvalidValue); }
10649 OnionPayload::Spontaneous(payment_preimage) =>
10650 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
10652 claimable_payments.insert(payment_hash, ClaimablePayment {
10653 purpose, htlcs, onion_fields: None,
10658 let mut secp_ctx = Secp256k1::new();
10659 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
10661 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
10663 Err(()) => return Err(DecodeError::InvalidValue)
10665 if let Some(network_pubkey) = received_network_pubkey {
10666 if network_pubkey != our_network_pubkey {
10667 log_error!(args.logger, "Key that was generated does not match the existing key.");
10668 return Err(DecodeError::InvalidValue);
10672 let mut outbound_scid_aliases = HashSet::new();
10673 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10674 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10675 let peer_state = &mut *peer_state_lock;
10676 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10677 if let ChannelPhase::Funded(chan) = phase {
10678 if chan.context.outbound_scid_alias() == 0 {
10679 let mut outbound_scid_alias;
10681 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10682 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10683 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10685 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10686 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10687 // Note that in rare cases its possible to hit this while reading an older
10688 // channel if we just happened to pick a colliding outbound alias above.
10689 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10690 return Err(DecodeError::InvalidValue);
10692 if chan.context.is_usable() {
10693 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10694 // Note that in rare cases its possible to hit this while reading an older
10695 // channel if we just happened to pick a colliding outbound alias above.
10696 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10697 return Err(DecodeError::InvalidValue);
10701 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10702 // created in this `channel_by_id` map.
10703 debug_assert!(false);
10704 return Err(DecodeError::InvalidValue);
10709 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10711 for (_, monitor) in args.channel_monitors.iter() {
10712 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10713 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10714 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10715 let mut claimable_amt_msat = 0;
10716 let mut receiver_node_id = Some(our_network_pubkey);
10717 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10718 if phantom_shared_secret.is_some() {
10719 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10720 .expect("Failed to get node_id for phantom node recipient");
10721 receiver_node_id = Some(phantom_pubkey)
10723 for claimable_htlc in &payment.htlcs {
10724 claimable_amt_msat += claimable_htlc.value;
10726 // Add a holding-cell claim of the payment to the Channel, which should be
10727 // applied ~immediately on peer reconnection. Because it won't generate a
10728 // new commitment transaction we can just provide the payment preimage to
10729 // the corresponding ChannelMonitor and nothing else.
10731 // We do so directly instead of via the normal ChannelMonitor update
10732 // procedure as the ChainMonitor hasn't yet been initialized, implying
10733 // we're not allowed to call it directly yet. Further, we do the update
10734 // without incrementing the ChannelMonitor update ID as there isn't any
10736 // If we were to generate a new ChannelMonitor update ID here and then
10737 // crash before the user finishes block connect we'd end up force-closing
10738 // this channel as well. On the flip side, there's no harm in restarting
10739 // without the new monitor persisted - we'll end up right back here on
10741 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
10742 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
10743 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
10744 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10745 let peer_state = &mut *peer_state_lock;
10746 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
10747 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
10750 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
10751 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
10754 pending_events_read.push_back((events::Event::PaymentClaimed {
10757 purpose: payment.purpose,
10758 amount_msat: claimable_amt_msat,
10759 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
10760 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10766 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10767 if let Some(peer_state) = per_peer_state.get(&node_id) {
10768 for (_, actions) in monitor_update_blocked_actions.iter() {
10769 for action in actions.iter() {
10770 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10771 downstream_counterparty_and_funding_outpoint:
10772 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10774 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10775 log_trace!(args.logger,
10776 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
10777 blocked_channel_outpoint.to_channel_id());
10778 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10779 .entry(blocked_channel_outpoint.to_channel_id())
10780 .or_insert_with(Vec::new).push(blocking_action.clone());
10782 // If the channel we were blocking has closed, we don't need to
10783 // worry about it - the blocked monitor update should never have
10784 // been released from the `Channel` object so it can't have
10785 // completed, and if the channel closed there's no reason to bother
10789 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
10790 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
10794 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10796 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
10797 return Err(DecodeError::InvalidValue);
10801 let channel_manager = ChannelManager {
10803 fee_estimator: bounded_fee_estimator,
10804 chain_monitor: args.chain_monitor,
10805 tx_broadcaster: args.tx_broadcaster,
10806 router: args.router,
10808 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10810 inbound_payment_key: expanded_inbound_key,
10811 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10812 pending_outbound_payments: pending_outbounds,
10813 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10815 forward_htlcs: Mutex::new(forward_htlcs),
10816 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10817 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10818 id_to_peer: Mutex::new(id_to_peer),
10819 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10820 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10822 probing_cookie_secret: probing_cookie_secret.unwrap(),
10824 our_network_pubkey,
10827 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10829 per_peer_state: FairRwLock::new(per_peer_state),
10831 pending_events: Mutex::new(pending_events_read),
10832 pending_events_processor: AtomicBool::new(false),
10833 pending_background_events: Mutex::new(pending_background_events),
10834 total_consistency_lock: RwLock::new(()),
10835 background_events_processed_since_startup: AtomicBool::new(false),
10837 event_persist_notifier: Notifier::new(),
10838 needs_persist_flag: AtomicBool::new(false),
10840 funding_batch_states: Mutex::new(BTreeMap::new()),
10842 pending_offers_messages: Mutex::new(Vec::new()),
10844 entropy_source: args.entropy_source,
10845 node_signer: args.node_signer,
10846 signer_provider: args.signer_provider,
10848 logger: args.logger,
10849 default_configuration: args.default_config,
10852 for htlc_source in failed_htlcs.drain(..) {
10853 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
10854 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
10855 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
10856 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
10859 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
10860 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
10861 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
10862 // channel is closed we just assume that it probably came from an on-chain claim.
10863 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
10864 downstream_closed, true, downstream_node_id, downstream_funding);
10867 //TODO: Broadcast channel update for closed channels, but only after we've made a
10868 //connection or two.
10870 Ok((best_block_hash.clone(), channel_manager))
10876 use bitcoin::hashes::Hash;
10877 use bitcoin::hashes::sha256::Hash as Sha256;
10878 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
10879 use core::sync::atomic::Ordering;
10880 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
10881 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
10882 use crate::ln::ChannelId;
10883 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
10884 use crate::ln::functional_test_utils::*;
10885 use crate::ln::msgs::{self, ErrorAction};
10886 use crate::ln::msgs::ChannelMessageHandler;
10887 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
10888 use crate::util::errors::APIError;
10889 use crate::util::test_utils;
10890 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
10891 use crate::sign::EntropySource;
10894 fn test_notify_limits() {
10895 // Check that a few cases which don't require the persistence of a new ChannelManager,
10896 // indeed, do not cause the persistence of a new ChannelManager.
10897 let chanmon_cfgs = create_chanmon_cfgs(3);
10898 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10899 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
10900 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10902 // All nodes start with a persistable update pending as `create_network` connects each node
10903 // with all other nodes to make most tests simpler.
10904 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10905 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10906 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10908 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10910 // We check that the channel info nodes have doesn't change too early, even though we try
10911 // to connect messages with new values
10912 chan.0.contents.fee_base_msat *= 2;
10913 chan.1.contents.fee_base_msat *= 2;
10914 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
10915 &nodes[1].node.get_our_node_id()).pop().unwrap();
10916 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
10917 &nodes[0].node.get_our_node_id()).pop().unwrap();
10919 // The first two nodes (which opened a channel) should now require fresh persistence
10920 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10921 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10922 // ... but the last node should not.
10923 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10924 // After persisting the first two nodes they should no longer need fresh persistence.
10925 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10926 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10928 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
10929 // about the channel.
10930 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
10931 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
10932 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10934 // The nodes which are a party to the channel should also ignore messages from unrelated
10936 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10937 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10938 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10939 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10940 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10941 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10943 // At this point the channel info given by peers should still be the same.
10944 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10945 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10947 // An earlier version of handle_channel_update didn't check the directionality of the
10948 // update message and would always update the local fee info, even if our peer was
10949 // (spuriously) forwarding us our own channel_update.
10950 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
10951 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
10952 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
10954 // First deliver each peers' own message, checking that the node doesn't need to be
10955 // persisted and that its channel info remains the same.
10956 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
10957 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
10958 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10959 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10960 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10961 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10963 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
10964 // the channel info has updated.
10965 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
10966 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
10967 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10968 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10969 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
10970 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
10974 fn test_keysend_dup_hash_partial_mpp() {
10975 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
10977 let chanmon_cfgs = create_chanmon_cfgs(2);
10978 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10979 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10980 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10981 create_announced_chan_between_nodes(&nodes, 0, 1);
10983 // First, send a partial MPP payment.
10984 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
10985 let mut mpp_route = route.clone();
10986 mpp_route.paths.push(mpp_route.paths[0].clone());
10988 let payment_id = PaymentId([42; 32]);
10989 // Use the utility function send_payment_along_path to send the payment with MPP data which
10990 // indicates there are more HTLCs coming.
10991 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
10992 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
10993 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
10994 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
10995 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
10996 check_added_monitors!(nodes[0], 1);
10997 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10998 assert_eq!(events.len(), 1);
10999 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
11001 // Next, send a keysend payment with the same payment_hash and make sure it fails.
11002 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11003 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11004 check_added_monitors!(nodes[0], 1);
11005 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11006 assert_eq!(events.len(), 1);
11007 let ev = events.drain(..).next().unwrap();
11008 let payment_event = SendEvent::from_event(ev);
11009 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11010 check_added_monitors!(nodes[1], 0);
11011 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11012 expect_pending_htlcs_forwardable!(nodes[1]);
11013 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
11014 check_added_monitors!(nodes[1], 1);
11015 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11016 assert!(updates.update_add_htlcs.is_empty());
11017 assert!(updates.update_fulfill_htlcs.is_empty());
11018 assert_eq!(updates.update_fail_htlcs.len(), 1);
11019 assert!(updates.update_fail_malformed_htlcs.is_empty());
11020 assert!(updates.update_fee.is_none());
11021 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11022 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11023 expect_payment_failed!(nodes[0], our_payment_hash, true);
11025 // Send the second half of the original MPP payment.
11026 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
11027 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11028 check_added_monitors!(nodes[0], 1);
11029 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11030 assert_eq!(events.len(), 1);
11031 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11033 // Claim the full MPP payment. Note that we can't use a test utility like
11034 // claim_funds_along_route because the ordering of the messages causes the second half of the
11035 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11036 // lightning messages manually.
11037 nodes[1].node.claim_funds(payment_preimage);
11038 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11039 check_added_monitors!(nodes[1], 2);
11041 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11042 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11043 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11044 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11045 check_added_monitors!(nodes[0], 1);
11046 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11047 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11048 check_added_monitors!(nodes[1], 1);
11049 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11050 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11051 check_added_monitors!(nodes[1], 1);
11052 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11053 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11054 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11055 check_added_monitors!(nodes[0], 1);
11056 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11057 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11058 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11059 check_added_monitors!(nodes[0], 1);
11060 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11061 check_added_monitors!(nodes[1], 1);
11062 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11063 check_added_monitors!(nodes[1], 1);
11064 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11065 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11066 check_added_monitors!(nodes[0], 1);
11068 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11069 // path's success and a PaymentPathSuccessful event for each path's success.
11070 let events = nodes[0].node.get_and_clear_pending_events();
11071 assert_eq!(events.len(), 2);
11073 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11074 assert_eq!(payment_id, *actual_payment_id);
11075 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11076 assert_eq!(route.paths[0], *path);
11078 _ => panic!("Unexpected event"),
11081 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11082 assert_eq!(payment_id, *actual_payment_id);
11083 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11084 assert_eq!(route.paths[0], *path);
11086 _ => panic!("Unexpected event"),
11091 fn test_keysend_dup_payment_hash() {
11092 do_test_keysend_dup_payment_hash(false);
11093 do_test_keysend_dup_payment_hash(true);
11096 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11097 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11098 // outbound regular payment fails as expected.
11099 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11100 // fails as expected.
11101 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11102 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11103 // reject MPP keysend payments, since in this case where the payment has no payment
11104 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11105 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11106 // payment secrets and reject otherwise.
11107 let chanmon_cfgs = create_chanmon_cfgs(2);
11108 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11109 let mut mpp_keysend_cfg = test_default_channel_config();
11110 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11111 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11112 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11113 create_announced_chan_between_nodes(&nodes, 0, 1);
11114 let scorer = test_utils::TestScorer::new();
11115 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11117 // To start (1), send a regular payment but don't claim it.
11118 let expected_route = [&nodes[1]];
11119 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11121 // Next, attempt a keysend payment and make sure it fails.
11122 let route_params = RouteParameters::from_payment_params_and_value(
11123 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11124 TEST_FINAL_CLTV, false), 100_000);
11125 let route = find_route(
11126 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11127 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11129 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11130 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11131 check_added_monitors!(nodes[0], 1);
11132 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11133 assert_eq!(events.len(), 1);
11134 let ev = events.drain(..).next().unwrap();
11135 let payment_event = SendEvent::from_event(ev);
11136 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11137 check_added_monitors!(nodes[1], 0);
11138 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11139 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11140 // fails), the second will process the resulting failure and fail the HTLC backward
11141 expect_pending_htlcs_forwardable!(nodes[1]);
11142 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11143 check_added_monitors!(nodes[1], 1);
11144 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11145 assert!(updates.update_add_htlcs.is_empty());
11146 assert!(updates.update_fulfill_htlcs.is_empty());
11147 assert_eq!(updates.update_fail_htlcs.len(), 1);
11148 assert!(updates.update_fail_malformed_htlcs.is_empty());
11149 assert!(updates.update_fee.is_none());
11150 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11151 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11152 expect_payment_failed!(nodes[0], payment_hash, true);
11154 // Finally, claim the original payment.
11155 claim_payment(&nodes[0], &expected_route, payment_preimage);
11157 // To start (2), send a keysend payment but don't claim it.
11158 let payment_preimage = PaymentPreimage([42; 32]);
11159 let route = find_route(
11160 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11161 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11163 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11164 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11165 check_added_monitors!(nodes[0], 1);
11166 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11167 assert_eq!(events.len(), 1);
11168 let event = events.pop().unwrap();
11169 let path = vec![&nodes[1]];
11170 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11172 // Next, attempt a regular payment and make sure it fails.
11173 let payment_secret = PaymentSecret([43; 32]);
11174 nodes[0].node.send_payment_with_route(&route, payment_hash,
11175 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11176 check_added_monitors!(nodes[0], 1);
11177 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11178 assert_eq!(events.len(), 1);
11179 let ev = events.drain(..).next().unwrap();
11180 let payment_event = SendEvent::from_event(ev);
11181 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11182 check_added_monitors!(nodes[1], 0);
11183 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11184 expect_pending_htlcs_forwardable!(nodes[1]);
11185 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11186 check_added_monitors!(nodes[1], 1);
11187 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11188 assert!(updates.update_add_htlcs.is_empty());
11189 assert!(updates.update_fulfill_htlcs.is_empty());
11190 assert_eq!(updates.update_fail_htlcs.len(), 1);
11191 assert!(updates.update_fail_malformed_htlcs.is_empty());
11192 assert!(updates.update_fee.is_none());
11193 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11194 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11195 expect_payment_failed!(nodes[0], payment_hash, true);
11197 // Finally, succeed the keysend payment.
11198 claim_payment(&nodes[0], &expected_route, payment_preimage);
11200 // To start (3), send a keysend payment but don't claim it.
11201 let payment_id_1 = PaymentId([44; 32]);
11202 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11203 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11204 check_added_monitors!(nodes[0], 1);
11205 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11206 assert_eq!(events.len(), 1);
11207 let event = events.pop().unwrap();
11208 let path = vec![&nodes[1]];
11209 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11211 // Next, attempt a keysend payment and make sure it fails.
11212 let route_params = RouteParameters::from_payment_params_and_value(
11213 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11216 let route = find_route(
11217 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11218 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11220 let payment_id_2 = PaymentId([45; 32]);
11221 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11222 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11223 check_added_monitors!(nodes[0], 1);
11224 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11225 assert_eq!(events.len(), 1);
11226 let ev = events.drain(..).next().unwrap();
11227 let payment_event = SendEvent::from_event(ev);
11228 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11229 check_added_monitors!(nodes[1], 0);
11230 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11231 expect_pending_htlcs_forwardable!(nodes[1]);
11232 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11233 check_added_monitors!(nodes[1], 1);
11234 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11235 assert!(updates.update_add_htlcs.is_empty());
11236 assert!(updates.update_fulfill_htlcs.is_empty());
11237 assert_eq!(updates.update_fail_htlcs.len(), 1);
11238 assert!(updates.update_fail_malformed_htlcs.is_empty());
11239 assert!(updates.update_fee.is_none());
11240 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11241 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11242 expect_payment_failed!(nodes[0], payment_hash, true);
11244 // Finally, claim the original payment.
11245 claim_payment(&nodes[0], &expected_route, payment_preimage);
11249 fn test_keysend_hash_mismatch() {
11250 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11251 // preimage doesn't match the msg's payment hash.
11252 let chanmon_cfgs = create_chanmon_cfgs(2);
11253 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11254 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11255 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11257 let payer_pubkey = nodes[0].node.get_our_node_id();
11258 let payee_pubkey = nodes[1].node.get_our_node_id();
11260 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11261 let route_params = RouteParameters::from_payment_params_and_value(
11262 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11263 let network_graph = nodes[0].network_graph.clone();
11264 let first_hops = nodes[0].node.list_usable_channels();
11265 let scorer = test_utils::TestScorer::new();
11266 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11267 let route = find_route(
11268 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11269 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11272 let test_preimage = PaymentPreimage([42; 32]);
11273 let mismatch_payment_hash = PaymentHash([43; 32]);
11274 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11275 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11276 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11277 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11278 check_added_monitors!(nodes[0], 1);
11280 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11281 assert_eq!(updates.update_add_htlcs.len(), 1);
11282 assert!(updates.update_fulfill_htlcs.is_empty());
11283 assert!(updates.update_fail_htlcs.is_empty());
11284 assert!(updates.update_fail_malformed_htlcs.is_empty());
11285 assert!(updates.update_fee.is_none());
11286 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11288 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11292 fn test_keysend_msg_with_secret_err() {
11293 // Test that we error as expected if we receive a keysend payment that includes a payment
11294 // secret when we don't support MPP keysend.
11295 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11296 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11297 let chanmon_cfgs = create_chanmon_cfgs(2);
11298 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11299 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11300 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11302 let payer_pubkey = nodes[0].node.get_our_node_id();
11303 let payee_pubkey = nodes[1].node.get_our_node_id();
11305 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11306 let route_params = RouteParameters::from_payment_params_and_value(
11307 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11308 let network_graph = nodes[0].network_graph.clone();
11309 let first_hops = nodes[0].node.list_usable_channels();
11310 let scorer = test_utils::TestScorer::new();
11311 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11312 let route = find_route(
11313 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11314 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11317 let test_preimage = PaymentPreimage([42; 32]);
11318 let test_secret = PaymentSecret([43; 32]);
11319 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
11320 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11321 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11322 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11323 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11324 PaymentId(payment_hash.0), None, session_privs).unwrap();
11325 check_added_monitors!(nodes[0], 1);
11327 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11328 assert_eq!(updates.update_add_htlcs.len(), 1);
11329 assert!(updates.update_fulfill_htlcs.is_empty());
11330 assert!(updates.update_fail_htlcs.is_empty());
11331 assert!(updates.update_fail_malformed_htlcs.is_empty());
11332 assert!(updates.update_fee.is_none());
11333 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11335 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11339 fn test_multi_hop_missing_secret() {
11340 let chanmon_cfgs = create_chanmon_cfgs(4);
11341 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11342 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11343 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11345 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11346 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11347 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11348 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11350 // Marshall an MPP route.
11351 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11352 let path = route.paths[0].clone();
11353 route.paths.push(path);
11354 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11355 route.paths[0].hops[0].short_channel_id = chan_1_id;
11356 route.paths[0].hops[1].short_channel_id = chan_3_id;
11357 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11358 route.paths[1].hops[0].short_channel_id = chan_2_id;
11359 route.paths[1].hops[1].short_channel_id = chan_4_id;
11361 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11362 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11364 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11365 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11367 _ => panic!("unexpected error")
11372 fn test_drop_disconnected_peers_when_removing_channels() {
11373 let chanmon_cfgs = create_chanmon_cfgs(2);
11374 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11375 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11376 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11378 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11380 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11381 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11383 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11384 check_closed_broadcast!(nodes[0], true);
11385 check_added_monitors!(nodes[0], 1);
11386 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11389 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11390 // disconnected and the channel between has been force closed.
11391 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11392 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11393 assert_eq!(nodes_0_per_peer_state.len(), 1);
11394 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11397 nodes[0].node.timer_tick_occurred();
11400 // Assert that nodes[1] has now been removed.
11401 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11406 fn bad_inbound_payment_hash() {
11407 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11408 let chanmon_cfgs = create_chanmon_cfgs(2);
11409 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11410 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11411 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11413 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11414 let payment_data = msgs::FinalOnionHopData {
11416 total_msat: 100_000,
11419 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11420 // payment verification fails as expected.
11421 let mut bad_payment_hash = payment_hash.clone();
11422 bad_payment_hash.0[0] += 1;
11423 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11424 Ok(_) => panic!("Unexpected ok"),
11426 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11430 // Check that using the original payment hash succeeds.
11431 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11435 fn test_id_to_peer_coverage() {
11436 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
11437 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11438 // the channel is successfully closed.
11439 let chanmon_cfgs = create_chanmon_cfgs(2);
11440 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11441 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11442 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11444 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11445 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11446 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11447 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11448 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11450 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11451 let channel_id = ChannelId::from_bytes(tx.txid().into_inner());
11453 // Ensure that the `id_to_peer` map is empty until either party has received the
11454 // funding transaction, and have the real `channel_id`.
11455 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11456 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11459 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11461 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
11462 // as it has the funding transaction.
11463 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11464 assert_eq!(nodes_0_lock.len(), 1);
11465 assert!(nodes_0_lock.contains_key(&channel_id));
11468 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11470 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11472 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11474 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11475 assert_eq!(nodes_0_lock.len(), 1);
11476 assert!(nodes_0_lock.contains_key(&channel_id));
11478 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11481 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
11482 // as it has the funding transaction.
11483 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11484 assert_eq!(nodes_1_lock.len(), 1);
11485 assert!(nodes_1_lock.contains_key(&channel_id));
11487 check_added_monitors!(nodes[1], 1);
11488 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11489 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11490 check_added_monitors!(nodes[0], 1);
11491 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11492 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11493 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11494 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11496 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11497 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11498 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11499 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11501 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11502 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11504 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
11505 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11506 // fee for the closing transaction has been negotiated and the parties has the other
11507 // party's signature for the fee negotiated closing transaction.)
11508 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11509 assert_eq!(nodes_0_lock.len(), 1);
11510 assert!(nodes_0_lock.contains_key(&channel_id));
11514 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11515 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11516 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11517 // kept in the `nodes[1]`'s `id_to_peer` map.
11518 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11519 assert_eq!(nodes_1_lock.len(), 1);
11520 assert!(nodes_1_lock.contains_key(&channel_id));
11523 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11525 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11526 // therefore has all it needs to fully close the channel (both signatures for the
11527 // closing transaction).
11528 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
11529 // fully closed by `nodes[0]`.
11530 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11532 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
11533 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11534 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11535 assert_eq!(nodes_1_lock.len(), 1);
11536 assert!(nodes_1_lock.contains_key(&channel_id));
11539 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
11541 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
11543 // Assert that the channel has now been removed from both parties `id_to_peer` map once
11544 // they both have everything required to fully close the channel.
11545 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11547 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
11549 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
11550 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
11553 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11554 let expected_message = format!("Not connected to node: {}", expected_public_key);
11555 check_api_error_message(expected_message, res_err)
11558 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11559 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
11560 check_api_error_message(expected_message, res_err)
11563 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
11564 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
11565 check_api_error_message(expected_message, res_err)
11568 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
11569 let expected_message = "No such channel awaiting to be accepted.".to_string();
11570 check_api_error_message(expected_message, res_err)
11573 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
11575 Err(APIError::APIMisuseError { err }) => {
11576 assert_eq!(err, expected_err_message);
11578 Err(APIError::ChannelUnavailable { err }) => {
11579 assert_eq!(err, expected_err_message);
11581 Ok(_) => panic!("Unexpected Ok"),
11582 Err(_) => panic!("Unexpected Error"),
11587 fn test_api_calls_with_unkown_counterparty_node() {
11588 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
11589 // expected if the `counterparty_node_id` is an unkown peer in the
11590 // `ChannelManager::per_peer_state` map.
11591 let chanmon_cfg = create_chanmon_cfgs(2);
11592 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11593 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11594 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11597 let channel_id = ChannelId::from_bytes([4; 32]);
11598 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
11599 let intercept_id = InterceptId([0; 32]);
11601 // Test the API functions.
11602 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
11604 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
11606 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
11608 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
11610 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
11612 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
11614 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
11618 fn test_api_calls_with_unavailable_channel() {
11619 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
11620 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
11621 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
11622 // the given `channel_id`.
11623 let chanmon_cfg = create_chanmon_cfgs(2);
11624 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11625 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11626 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11628 let counterparty_node_id = nodes[1].node.get_our_node_id();
11631 let channel_id = ChannelId::from_bytes([4; 32]);
11633 // Test the API functions.
11634 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
11636 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11638 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11640 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11642 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
11644 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
11648 fn test_connection_limiting() {
11649 // Test that we limit un-channel'd peers and un-funded channels properly.
11650 let chanmon_cfgs = create_chanmon_cfgs(2);
11651 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11652 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11653 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11655 // Note that create_network connects the nodes together for us
11657 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11658 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11660 let mut funding_tx = None;
11661 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11662 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11663 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11666 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11667 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
11668 funding_tx = Some(tx.clone());
11669 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
11670 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11672 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11673 check_added_monitors!(nodes[1], 1);
11674 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11676 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11678 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11679 check_added_monitors!(nodes[0], 1);
11680 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11682 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11685 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11686 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11687 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11688 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11689 open_channel_msg.temporary_channel_id);
11691 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11692 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11694 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11695 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11696 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11697 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11698 peer_pks.push(random_pk);
11699 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11700 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11703 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11704 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11705 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11706 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11707 }, true).unwrap_err();
11709 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11710 // them if we have too many un-channel'd peers.
11711 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11712 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11713 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11714 for ev in chan_closed_events {
11715 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11717 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11718 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11720 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11721 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11722 }, true).unwrap_err();
11724 // but of course if the connection is outbound its allowed...
11725 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11726 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11727 }, false).unwrap();
11728 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11730 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11731 // Even though we accept one more connection from new peers, we won't actually let them
11733 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11734 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11735 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11736 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11737 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11739 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11740 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11741 open_channel_msg.temporary_channel_id);
11743 // Of course, however, outbound channels are always allowed
11744 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
11745 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
11747 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
11748 // "protected" and can connect again.
11749 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
11750 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11751 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11753 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
11755 // Further, because the first channel was funded, we can open another channel with
11757 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11758 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11762 fn test_outbound_chans_unlimited() {
11763 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
11764 let chanmon_cfgs = create_chanmon_cfgs(2);
11765 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11766 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11767 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11769 // Note that create_network connects the nodes together for us
11771 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11772 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11774 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11775 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11776 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11777 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11780 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11782 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11783 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11784 open_channel_msg.temporary_channel_id);
11786 // but we can still open an outbound channel.
11787 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11788 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11790 // but even with such an outbound channel, additional inbound channels will still fail.
11791 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11792 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11793 open_channel_msg.temporary_channel_id);
11797 fn test_0conf_limiting() {
11798 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11799 // flag set and (sometimes) accept channels as 0conf.
11800 let chanmon_cfgs = create_chanmon_cfgs(2);
11801 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11802 let mut settings = test_default_channel_config();
11803 settings.manually_accept_inbound_channels = true;
11804 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11805 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11807 // Note that create_network connects the nodes together for us
11809 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11810 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11812 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11813 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11814 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11815 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11816 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11817 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11820 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11821 let events = nodes[1].node.get_and_clear_pending_events();
11823 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11824 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11826 _ => panic!("Unexpected event"),
11828 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11829 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11832 // If we try to accept a channel from another peer non-0conf it will fail.
11833 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11834 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11835 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11836 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11838 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11839 let events = nodes[1].node.get_and_clear_pending_events();
11841 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11842 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
11843 Err(APIError::APIMisuseError { err }) =>
11844 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
11848 _ => panic!("Unexpected event"),
11850 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11851 open_channel_msg.temporary_channel_id);
11853 // ...however if we accept the same channel 0conf it should work just fine.
11854 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11855 let events = nodes[1].node.get_and_clear_pending_events();
11857 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11858 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
11860 _ => panic!("Unexpected event"),
11862 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11866 fn reject_excessively_underpaying_htlcs() {
11867 let chanmon_cfg = create_chanmon_cfgs(1);
11868 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11869 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11870 let node = create_network(1, &node_cfg, &node_chanmgr);
11871 let sender_intended_amt_msat = 100;
11872 let extra_fee_msat = 10;
11873 let hop_data = msgs::InboundOnionPayload::Receive {
11875 outgoing_cltv_value: 42,
11876 payment_metadata: None,
11877 keysend_preimage: None,
11878 payment_data: Some(msgs::FinalOnionHopData {
11879 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11881 custom_tlvs: Vec::new(),
11883 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
11884 // intended amount, we fail the payment.
11885 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
11886 node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11887 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat))
11889 assert_eq!(err_code, 19);
11890 } else { panic!(); }
11892 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
11893 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
11895 outgoing_cltv_value: 42,
11896 payment_metadata: None,
11897 keysend_preimage: None,
11898 payment_data: Some(msgs::FinalOnionHopData {
11899 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11901 custom_tlvs: Vec::new(),
11903 assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11904 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok());
11908 fn test_final_incorrect_cltv(){
11909 let chanmon_cfg = create_chanmon_cfgs(1);
11910 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11911 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11912 let node = create_network(1, &node_cfg, &node_chanmgr);
11914 let result = node[0].node.construct_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
11916 outgoing_cltv_value: 22,
11917 payment_metadata: None,
11918 keysend_preimage: None,
11919 payment_data: Some(msgs::FinalOnionHopData {
11920 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
11922 custom_tlvs: Vec::new(),
11923 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None);
11925 // Should not return an error as this condition:
11926 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
11927 // is not satisfied.
11928 assert!(result.is_ok());
11932 fn test_inbound_anchors_manual_acceptance() {
11933 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11934 // flag set and (sometimes) accept channels as 0conf.
11935 let mut anchors_cfg = test_default_channel_config();
11936 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11938 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
11939 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
11941 let chanmon_cfgs = create_chanmon_cfgs(3);
11942 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11943 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
11944 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
11945 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11947 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11948 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11950 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11951 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11952 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
11953 match &msg_events[0] {
11954 MessageSendEvent::HandleError { node_id, action } => {
11955 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
11957 ErrorAction::SendErrorMessage { msg } =>
11958 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
11959 _ => panic!("Unexpected error action"),
11962 _ => panic!("Unexpected event"),
11965 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11966 let events = nodes[2].node.get_and_clear_pending_events();
11968 Event::OpenChannelRequest { temporary_channel_id, .. } =>
11969 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
11970 _ => panic!("Unexpected event"),
11972 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11976 fn test_anchors_zero_fee_htlc_tx_fallback() {
11977 // Tests that if both nodes support anchors, but the remote node does not want to accept
11978 // anchor channels at the moment, an error it sent to the local node such that it can retry
11979 // the channel without the anchors feature.
11980 let chanmon_cfgs = create_chanmon_cfgs(2);
11981 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11982 let mut anchors_config = test_default_channel_config();
11983 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11984 anchors_config.manually_accept_inbound_channels = true;
11985 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
11986 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11988 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
11989 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11990 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
11992 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11993 let events = nodes[1].node.get_and_clear_pending_events();
11995 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11996 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
11998 _ => panic!("Unexpected event"),
12001 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
12002 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
12004 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12005 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
12007 // Since nodes[1] should not have accepted the channel, it should
12008 // not have generated any events.
12009 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12013 fn test_update_channel_config() {
12014 let chanmon_cfg = create_chanmon_cfgs(2);
12015 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12016 let mut user_config = test_default_channel_config();
12017 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12018 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12019 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
12020 let channel = &nodes[0].node.list_channels()[0];
12022 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12023 let events = nodes[0].node.get_and_clear_pending_msg_events();
12024 assert_eq!(events.len(), 0);
12026 user_config.channel_config.forwarding_fee_base_msat += 10;
12027 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12028 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12029 let events = nodes[0].node.get_and_clear_pending_msg_events();
12030 assert_eq!(events.len(), 1);
12032 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12033 _ => panic!("expected BroadcastChannelUpdate event"),
12036 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12037 let events = nodes[0].node.get_and_clear_pending_msg_events();
12038 assert_eq!(events.len(), 0);
12040 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12041 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12042 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12043 ..Default::default()
12045 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12046 let events = nodes[0].node.get_and_clear_pending_msg_events();
12047 assert_eq!(events.len(), 1);
12049 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12050 _ => panic!("expected BroadcastChannelUpdate event"),
12053 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12054 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12055 forwarding_fee_proportional_millionths: Some(new_fee),
12056 ..Default::default()
12058 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12059 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12060 let events = nodes[0].node.get_and_clear_pending_msg_events();
12061 assert_eq!(events.len(), 1);
12063 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12064 _ => panic!("expected BroadcastChannelUpdate event"),
12067 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12068 // should be applied to ensure update atomicity as specified in the API docs.
12069 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12070 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12071 let new_fee = current_fee + 100;
12074 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12075 forwarding_fee_proportional_millionths: Some(new_fee),
12076 ..Default::default()
12078 Err(APIError::ChannelUnavailable { err: _ }),
12081 // Check that the fee hasn't changed for the channel that exists.
12082 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12083 let events = nodes[0].node.get_and_clear_pending_msg_events();
12084 assert_eq!(events.len(), 0);
12088 fn test_payment_display() {
12089 let payment_id = PaymentId([42; 32]);
12090 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12091 let payment_hash = PaymentHash([42; 32]);
12092 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12093 let payment_preimage = PaymentPreimage([42; 32]);
12094 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12098 fn test_trigger_lnd_force_close() {
12099 let chanmon_cfg = create_chanmon_cfgs(2);
12100 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12101 let user_config = test_default_channel_config();
12102 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12103 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12105 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12106 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12107 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12108 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12109 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12110 check_closed_broadcast(&nodes[0], 1, true);
12111 check_added_monitors(&nodes[0], 1);
12112 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12114 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12115 assert_eq!(txn.len(), 1);
12116 check_spends!(txn[0], funding_tx);
12119 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12120 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12122 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12123 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12125 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12126 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12127 }, false).unwrap();
12128 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12129 let channel_reestablish = get_event_msg!(
12130 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12132 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12134 // Alice should respond with an error since the channel isn't known, but a bogus
12135 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12136 // close even if it was an lnd node.
12137 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12138 assert_eq!(msg_events.len(), 2);
12139 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12140 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12141 assert_eq!(msg.next_local_commitment_number, 0);
12142 assert_eq!(msg.next_remote_commitment_number, 0);
12143 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12144 } else { panic!() };
12145 check_closed_broadcast(&nodes[1], 1, true);
12146 check_added_monitors(&nodes[1], 1);
12147 let expected_close_reason = ClosureReason::ProcessingError {
12148 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12150 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12152 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12153 assert_eq!(txn.len(), 1);
12154 check_spends!(txn[0], funding_tx);
12161 use crate::chain::Listen;
12162 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12163 use crate::sign::{KeysManager, InMemorySigner};
12164 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12165 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12166 use crate::ln::functional_test_utils::*;
12167 use crate::ln::msgs::{ChannelMessageHandler, Init};
12168 use crate::routing::gossip::NetworkGraph;
12169 use crate::routing::router::{PaymentParameters, RouteParameters};
12170 use crate::util::test_utils;
12171 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12173 use bitcoin::hashes::Hash;
12174 use bitcoin::hashes::sha256::Hash as Sha256;
12175 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
12177 use crate::sync::{Arc, Mutex, RwLock};
12179 use criterion::Criterion;
12181 type Manager<'a, P> = ChannelManager<
12182 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12183 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12184 &'a test_utils::TestLogger, &'a P>,
12185 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12186 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12187 &'a test_utils::TestLogger>;
12189 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12190 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12192 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12193 type CM = Manager<'chan_mon_cfg, P>;
12195 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12197 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12200 pub fn bench_sends(bench: &mut Criterion) {
12201 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12204 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12205 // Do a simple benchmark of sending a payment back and forth between two nodes.
12206 // Note that this is unrealistic as each payment send will require at least two fsync
12208 let network = bitcoin::Network::Testnet;
12209 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12211 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12212 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12213 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12214 let scorer = RwLock::new(test_utils::TestScorer::new());
12215 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
12217 let mut config: UserConfig = Default::default();
12218 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12219 config.channel_handshake_config.minimum_depth = 1;
12221 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12222 let seed_a = [1u8; 32];
12223 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12224 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12226 best_block: BestBlock::from_network(network),
12227 }, genesis_block.header.time);
12228 let node_a_holder = ANodeHolder { node: &node_a };
12230 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12231 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12232 let seed_b = [2u8; 32];
12233 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12234 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12236 best_block: BestBlock::from_network(network),
12237 }, genesis_block.header.time);
12238 let node_b_holder = ANodeHolder { node: &node_b };
12240 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12241 features: node_b.init_features(), networks: None, remote_network_address: None
12243 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12244 features: node_a.init_features(), networks: None, remote_network_address: None
12245 }, false).unwrap();
12246 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12247 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12248 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12251 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12252 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12253 value: 8_000_000, script_pubkey: output_script,
12255 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12256 } else { panic!(); }
12258 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12259 let events_b = node_b.get_and_clear_pending_events();
12260 assert_eq!(events_b.len(), 1);
12261 match events_b[0] {
12262 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12263 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12265 _ => panic!("Unexpected event"),
12268 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12269 let events_a = node_a.get_and_clear_pending_events();
12270 assert_eq!(events_a.len(), 1);
12271 match events_a[0] {
12272 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12273 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12275 _ => panic!("Unexpected event"),
12278 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12280 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12281 Listen::block_connected(&node_a, &block, 1);
12282 Listen::block_connected(&node_b, &block, 1);
12284 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12285 let msg_events = node_a.get_and_clear_pending_msg_events();
12286 assert_eq!(msg_events.len(), 2);
12287 match msg_events[0] {
12288 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12289 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12290 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12294 match msg_events[1] {
12295 MessageSendEvent::SendChannelUpdate { .. } => {},
12299 let events_a = node_a.get_and_clear_pending_events();
12300 assert_eq!(events_a.len(), 1);
12301 match events_a[0] {
12302 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12303 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12305 _ => panic!("Unexpected event"),
12308 let events_b = node_b.get_and_clear_pending_events();
12309 assert_eq!(events_b.len(), 1);
12310 match events_b[0] {
12311 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12312 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12314 _ => panic!("Unexpected event"),
12317 let mut payment_count: u64 = 0;
12318 macro_rules! send_payment {
12319 ($node_a: expr, $node_b: expr) => {
12320 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12321 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12322 let mut payment_preimage = PaymentPreimage([0; 32]);
12323 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12324 payment_count += 1;
12325 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
12326 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12328 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12329 PaymentId(payment_hash.0),
12330 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12331 Retry::Attempts(0)).unwrap();
12332 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12333 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12334 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12335 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12336 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12337 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12338 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12340 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12341 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12342 $node_b.claim_funds(payment_preimage);
12343 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12345 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12346 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12347 assert_eq!(node_id, $node_a.get_our_node_id());
12348 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12349 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12351 _ => panic!("Failed to generate claim event"),
12354 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12355 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12356 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12357 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12359 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12363 bench.bench_function(bench_name, |b| b.iter(|| {
12364 send_payment!(node_a, node_b);
12365 send_payment!(node_b, node_a);