1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::BlindedPath;
35 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
48 #[cfg(any(feature = "_test_utils", test))]
49 use crate::ln::features::Bolt11InvoiceFeatures;
50 use crate::routing::gossip::NetworkGraph;
51 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
53 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundOnionErr, NextPacketDetails};
55 use crate::ln::onion_utils;
56 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
57 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
59 use crate::ln::outbound_payment;
60 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
61 use crate::ln::wire::Encode;
62 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
63 use crate::offers::invoice_error::InvoiceError;
64 use crate::offers::merkle::SignError;
65 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
66 use crate::offers::parse::Bolt12SemanticError;
67 use crate::offers::refund::{Refund, RefundBuilder};
68 use crate::onion_message::{Destination, OffersMessage, OffersMessageHandler, PendingOnionMessage, new_pending_onion_message};
69 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider};
70 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
71 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
72 use crate::util::wakers::{Future, Notifier};
73 use crate::util::scid_utils::fake_scid;
74 use crate::util::string::UntrustedString;
75 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
76 use crate::util::logger::{Level, Logger, WithContext};
77 use crate::util::errors::APIError;
79 use alloc::collections::{btree_map, BTreeMap};
82 use crate::prelude::*;
84 use core::cell::RefCell;
86 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
87 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
88 use core::time::Duration;
91 // Re-export this for use in the public API.
92 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
93 use crate::ln::script::ShutdownScript;
95 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
97 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
98 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
99 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
101 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
102 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
103 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
104 // before we forward it.
106 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
107 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
108 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
109 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
110 // our payment, which we can use to decode errors or inform the user that the payment was sent.
112 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub enum PendingHTLCRouting {
115 /// An HTLC which should be forwarded on to another node.
117 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
118 /// do with the HTLC.
119 onion_packet: msgs::OnionPacket,
120 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
122 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
123 /// to the receiving node, such as one returned from
124 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
125 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
126 /// Set if this HTLC is being forwarded within a blinded path.
127 blinded: Option<BlindedForward>,
129 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
131 /// Note that at this point, we have not checked that the invoice being paid was actually
132 /// generated by us, but rather it's claiming to pay an invoice of ours.
134 /// Information about the amount the sender intended to pay and (potential) proof that this
135 /// is a payment for an invoice we generated. This proof of payment is is also used for
136 /// linking MPP parts of a larger payment.
137 payment_data: msgs::FinalOnionHopData,
138 /// Additional data which we (allegedly) instructed the sender to include in the onion.
140 /// For HTLCs received by LDK, this will ultimately be exposed in
141 /// [`Event::PaymentClaimable::onion_fields`] as
142 /// [`RecipientOnionFields::payment_metadata`].
143 payment_metadata: Option<Vec<u8>>,
144 /// CLTV expiry of the received HTLC.
146 /// Used to track when we should expire pending HTLCs that go unclaimed.
147 incoming_cltv_expiry: u32,
148 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
149 /// provide the onion shared secret used to decrypt the next level of forwarding
151 phantom_shared_secret: Option<[u8; 32]>,
152 /// Custom TLVs which were set by the sender.
154 /// For HTLCs received by LDK, this will ultimately be exposed in
155 /// [`Event::PaymentClaimable::onion_fields`] as
156 /// [`RecipientOnionFields::custom_tlvs`].
157 custom_tlvs: Vec<(u64, Vec<u8>)>,
158 /// Set if this HTLC is the final hop in a multi-hop blinded path.
159 requires_blinded_error: bool,
161 /// The onion indicates that this is for payment to us but which contains the preimage for
162 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
163 /// "keysend" or "spontaneous" payment).
165 /// Information about the amount the sender intended to pay and possibly a token to
166 /// associate MPP parts of a larger payment.
168 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
169 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
170 payment_data: Option<msgs::FinalOnionHopData>,
171 /// Preimage for this onion payment. This preimage is provided by the sender and will be
172 /// used to settle the spontaneous payment.
173 payment_preimage: PaymentPreimage,
174 /// Additional data which we (allegedly) instructed the sender to include in the onion.
176 /// For HTLCs received by LDK, this will ultimately bubble back up as
177 /// [`RecipientOnionFields::payment_metadata`].
178 payment_metadata: Option<Vec<u8>>,
179 /// CLTV expiry of the received HTLC.
181 /// Used to track when we should expire pending HTLCs that go unclaimed.
182 incoming_cltv_expiry: u32,
183 /// Custom TLVs which were set by the sender.
185 /// For HTLCs received by LDK, these will ultimately bubble back up as
186 /// [`RecipientOnionFields::custom_tlvs`].
187 custom_tlvs: Vec<(u64, Vec<u8>)>,
191 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
192 #[derive(Clone, Copy, Hash, PartialEq, Eq)]
193 pub struct BlindedForward {
194 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
195 /// onion payload if we're the introduction node. Useful for calculating the next hop's
196 /// [`msgs::UpdateAddHTLC::blinding_point`].
197 pub inbound_blinding_point: PublicKey,
198 // Another field will be added here when we support forwarding as a non-intro node.
201 impl PendingHTLCRouting {
202 // Used to override the onion failure code and data if the HTLC is blinded.
203 fn blinded_failure(&self) -> Option<BlindedFailure> {
204 // TODO: needs update when we support forwarding blinded HTLCs as non-intro node
206 Self::Forward { blinded: Some(_), .. } => Some(BlindedFailure::FromIntroductionNode),
207 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
213 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
215 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
216 pub struct PendingHTLCInfo {
217 /// Further routing details based on whether the HTLC is being forwarded or received.
218 pub routing: PendingHTLCRouting,
219 /// The onion shared secret we build with the sender used to decrypt the onion.
221 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
222 pub incoming_shared_secret: [u8; 32],
223 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
224 pub payment_hash: PaymentHash,
225 /// Amount received in the incoming HTLC.
227 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
229 pub incoming_amt_msat: Option<u64>,
230 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
231 /// intended for us to receive for received payments.
233 /// If the received amount is less than this for received payments, an intermediary hop has
234 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
235 /// it along another path).
237 /// Because nodes can take less than their required fees, and because senders may wish to
238 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
239 /// received payments. In such cases, recipients must handle this HTLC as if it had received
240 /// [`Self::outgoing_amt_msat`].
241 pub outgoing_amt_msat: u64,
242 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
243 /// should have been set on the received HTLC for received payments).
244 pub outgoing_cltv_value: u32,
245 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
247 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
250 /// If this is a received payment, this is the fee that our counterparty took.
252 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
254 pub skimmed_fee_msat: Option<u64>,
257 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
258 pub(super) enum HTLCFailureMsg {
259 Relay(msgs::UpdateFailHTLC),
260 Malformed(msgs::UpdateFailMalformedHTLC),
263 /// Stores whether we can't forward an HTLC or relevant forwarding info
264 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
265 pub(super) enum PendingHTLCStatus {
266 Forward(PendingHTLCInfo),
267 Fail(HTLCFailureMsg),
270 pub(super) struct PendingAddHTLCInfo {
271 pub(super) forward_info: PendingHTLCInfo,
273 // These fields are produced in `forward_htlcs()` and consumed in
274 // `process_pending_htlc_forwards()` for constructing the
275 // `HTLCSource::PreviousHopData` for failed and forwarded
278 // Note that this may be an outbound SCID alias for the associated channel.
279 prev_short_channel_id: u64,
281 prev_funding_outpoint: OutPoint,
282 prev_user_channel_id: u128,
285 pub(super) enum HTLCForwardInfo {
286 AddHTLC(PendingAddHTLCInfo),
289 err_packet: msgs::OnionErrorPacket,
293 // Used for failing blinded HTLCs backwards correctly.
294 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
295 enum BlindedFailure {
296 FromIntroductionNode,
300 /// Tracks the inbound corresponding to an outbound HTLC
301 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
302 pub(crate) struct HTLCPreviousHopData {
303 // Note that this may be an outbound SCID alias for the associated channel.
304 short_channel_id: u64,
305 user_channel_id: Option<u128>,
307 incoming_packet_shared_secret: [u8; 32],
308 phantom_shared_secret: Option<[u8; 32]>,
309 blinded_failure: Option<BlindedFailure>,
311 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
312 // channel with a preimage provided by the forward channel.
317 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
319 /// This is only here for backwards-compatibility in serialization, in the future it can be
320 /// removed, breaking clients running 0.0.106 and earlier.
321 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
323 /// Contains the payer-provided preimage.
324 Spontaneous(PaymentPreimage),
327 /// HTLCs that are to us and can be failed/claimed by the user
328 struct ClaimableHTLC {
329 prev_hop: HTLCPreviousHopData,
331 /// The amount (in msats) of this MPP part
333 /// The amount (in msats) that the sender intended to be sent in this MPP
334 /// part (used for validating total MPP amount)
335 sender_intended_value: u64,
336 onion_payload: OnionPayload,
338 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
339 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
340 total_value_received: Option<u64>,
341 /// The sender intended sum total of all MPP parts specified in the onion
343 /// The extra fee our counterparty skimmed off the top of this HTLC.
344 counterparty_skimmed_fee_msat: Option<u64>,
347 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
348 fn from(val: &ClaimableHTLC) -> Self {
349 events::ClaimedHTLC {
350 channel_id: val.prev_hop.outpoint.to_channel_id(),
351 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
352 cltv_expiry: val.cltv_expiry,
353 value_msat: val.value,
354 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
359 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
360 /// a payment and ensure idempotency in LDK.
362 /// This is not exported to bindings users as we just use [u8; 32] directly
363 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
364 pub struct PaymentId(pub [u8; Self::LENGTH]);
367 /// Number of bytes in the id.
368 pub const LENGTH: usize = 32;
371 impl Writeable for PaymentId {
372 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
377 impl Readable for PaymentId {
378 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
379 let buf: [u8; 32] = Readable::read(r)?;
384 impl core::fmt::Display for PaymentId {
385 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
386 crate::util::logger::DebugBytes(&self.0).fmt(f)
390 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
392 /// This is not exported to bindings users as we just use [u8; 32] directly
393 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
394 pub struct InterceptId(pub [u8; 32]);
396 impl Writeable for InterceptId {
397 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
402 impl Readable for InterceptId {
403 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
404 let buf: [u8; 32] = Readable::read(r)?;
409 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
410 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
411 pub(crate) enum SentHTLCId {
412 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
413 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
416 pub(crate) fn from_source(source: &HTLCSource) -> Self {
418 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
419 short_channel_id: hop_data.short_channel_id,
420 htlc_id: hop_data.htlc_id,
422 HTLCSource::OutboundRoute { session_priv, .. } =>
423 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
427 impl_writeable_tlv_based_enum!(SentHTLCId,
428 (0, PreviousHopData) => {
429 (0, short_channel_id, required),
430 (2, htlc_id, required),
432 (2, OutboundRoute) => {
433 (0, session_priv, required),
438 /// Tracks the inbound corresponding to an outbound HTLC
439 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
440 #[derive(Clone, Debug, PartialEq, Eq)]
441 pub(crate) enum HTLCSource {
442 PreviousHopData(HTLCPreviousHopData),
445 session_priv: SecretKey,
446 /// Technically we can recalculate this from the route, but we cache it here to avoid
447 /// doing a double-pass on route when we get a failure back
448 first_hop_htlc_msat: u64,
449 payment_id: PaymentId,
452 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
453 impl core::hash::Hash for HTLCSource {
454 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
456 HTLCSource::PreviousHopData(prev_hop_data) => {
458 prev_hop_data.hash(hasher);
460 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
463 session_priv[..].hash(hasher);
464 payment_id.hash(hasher);
465 first_hop_htlc_msat.hash(hasher);
471 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
473 pub fn dummy() -> Self {
474 HTLCSource::OutboundRoute {
475 path: Path { hops: Vec::new(), blinded_tail: None },
476 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
477 first_hop_htlc_msat: 0,
478 payment_id: PaymentId([2; 32]),
482 #[cfg(debug_assertions)]
483 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
484 /// transaction. Useful to ensure different datastructures match up.
485 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
486 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
487 *first_hop_htlc_msat == htlc.amount_msat
489 // There's nothing we can check for forwarded HTLCs
495 /// This enum is used to specify which error data to send to peers when failing back an HTLC
496 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
498 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
499 #[derive(Clone, Copy)]
500 pub enum FailureCode {
501 /// We had a temporary error processing the payment. Useful if no other error codes fit
502 /// and you want to indicate that the payer may want to retry.
503 TemporaryNodeFailure,
504 /// We have a required feature which was not in this onion. For example, you may require
505 /// some additional metadata that was not provided with this payment.
506 RequiredNodeFeatureMissing,
507 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
508 /// the HTLC is too close to the current block height for safe handling.
509 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
510 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
511 IncorrectOrUnknownPaymentDetails,
512 /// We failed to process the payload after the onion was decrypted. You may wish to
513 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
515 /// If available, the tuple data may include the type number and byte offset in the
516 /// decrypted byte stream where the failure occurred.
517 InvalidOnionPayload(Option<(u64, u16)>),
520 impl Into<u16> for FailureCode {
521 fn into(self) -> u16 {
523 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
524 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
525 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
526 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
531 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
532 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
533 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
534 /// peer_state lock. We then return the set of things that need to be done outside the lock in
535 /// this struct and call handle_error!() on it.
537 struct MsgHandleErrInternal {
538 err: msgs::LightningError,
539 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
540 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
541 channel_capacity: Option<u64>,
543 impl MsgHandleErrInternal {
545 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
547 err: LightningError {
549 action: msgs::ErrorAction::SendErrorMessage {
550 msg: msgs::ErrorMessage {
557 shutdown_finish: None,
558 channel_capacity: None,
562 fn from_no_close(err: msgs::LightningError) -> Self {
563 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
566 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
567 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
568 let action = if shutdown_res.monitor_update.is_some() {
569 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
570 // should disconnect our peer such that we force them to broadcast their latest
571 // commitment upon reconnecting.
572 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
574 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
577 err: LightningError { err, action },
578 chan_id: Some((channel_id, user_channel_id)),
579 shutdown_finish: Some((shutdown_res, channel_update)),
580 channel_capacity: Some(channel_capacity)
584 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
587 ChannelError::Warn(msg) => LightningError {
589 action: msgs::ErrorAction::SendWarningMessage {
590 msg: msgs::WarningMessage {
594 log_level: Level::Warn,
597 ChannelError::Ignore(msg) => LightningError {
599 action: msgs::ErrorAction::IgnoreError,
601 ChannelError::Close(msg) => LightningError {
603 action: msgs::ErrorAction::SendErrorMessage {
604 msg: msgs::ErrorMessage {
612 shutdown_finish: None,
613 channel_capacity: None,
617 fn closes_channel(&self) -> bool {
618 self.chan_id.is_some()
622 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
623 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
624 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
625 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
626 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
628 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
629 /// be sent in the order they appear in the return value, however sometimes the order needs to be
630 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
631 /// they were originally sent). In those cases, this enum is also returned.
632 #[derive(Clone, PartialEq)]
633 pub(super) enum RAACommitmentOrder {
634 /// Send the CommitmentUpdate messages first
636 /// Send the RevokeAndACK message first
640 /// Information about a payment which is currently being claimed.
641 struct ClaimingPayment {
643 payment_purpose: events::PaymentPurpose,
644 receiver_node_id: PublicKey,
645 htlcs: Vec<events::ClaimedHTLC>,
646 sender_intended_value: Option<u64>,
648 impl_writeable_tlv_based!(ClaimingPayment, {
649 (0, amount_msat, required),
650 (2, payment_purpose, required),
651 (4, receiver_node_id, required),
652 (5, htlcs, optional_vec),
653 (7, sender_intended_value, option),
656 struct ClaimablePayment {
657 purpose: events::PaymentPurpose,
658 onion_fields: Option<RecipientOnionFields>,
659 htlcs: Vec<ClaimableHTLC>,
662 /// Information about claimable or being-claimed payments
663 struct ClaimablePayments {
664 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
665 /// failed/claimed by the user.
667 /// Note that, no consistency guarantees are made about the channels given here actually
668 /// existing anymore by the time you go to read them!
670 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
671 /// we don't get a duplicate payment.
672 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
674 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
675 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
676 /// as an [`events::Event::PaymentClaimed`].
677 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
680 /// Events which we process internally but cannot be processed immediately at the generation site
681 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
682 /// running normally, and specifically must be processed before any other non-background
683 /// [`ChannelMonitorUpdate`]s are applied.
685 enum BackgroundEvent {
686 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
687 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
688 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
689 /// channel has been force-closed we do not need the counterparty node_id.
691 /// Note that any such events are lost on shutdown, so in general they must be updates which
692 /// are regenerated on startup.
693 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
694 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
695 /// channel to continue normal operation.
697 /// In general this should be used rather than
698 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
699 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
700 /// error the other variant is acceptable.
702 /// Note that any such events are lost on shutdown, so in general they must be updates which
703 /// are regenerated on startup.
704 MonitorUpdateRegeneratedOnStartup {
705 counterparty_node_id: PublicKey,
706 funding_txo: OutPoint,
707 update: ChannelMonitorUpdate
709 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
710 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
712 MonitorUpdatesComplete {
713 counterparty_node_id: PublicKey,
714 channel_id: ChannelId,
719 pub(crate) enum MonitorUpdateCompletionAction {
720 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
721 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
722 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
723 /// event can be generated.
724 PaymentClaimed { payment_hash: PaymentHash },
725 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
726 /// operation of another channel.
728 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
729 /// from completing a monitor update which removes the payment preimage until the inbound edge
730 /// completes a monitor update containing the payment preimage. In that case, after the inbound
731 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
733 EmitEventAndFreeOtherChannel {
734 event: events::Event,
735 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
737 /// Indicates we should immediately resume the operation of another channel, unless there is
738 /// some other reason why the channel is blocked. In practice this simply means immediately
739 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
741 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
742 /// from completing a monitor update which removes the payment preimage until the inbound edge
743 /// completes a monitor update containing the payment preimage. However, we use this variant
744 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
745 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
747 /// This variant should thus never be written to disk, as it is processed inline rather than
748 /// stored for later processing.
749 FreeOtherChannelImmediately {
750 downstream_counterparty_node_id: PublicKey,
751 downstream_funding_outpoint: OutPoint,
752 blocking_action: RAAMonitorUpdateBlockingAction,
756 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
757 (0, PaymentClaimed) => { (0, payment_hash, required) },
758 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
759 // *immediately*. However, for simplicity we implement read/write here.
760 (1, FreeOtherChannelImmediately) => {
761 (0, downstream_counterparty_node_id, required),
762 (2, downstream_funding_outpoint, required),
763 (4, blocking_action, required),
765 (2, EmitEventAndFreeOtherChannel) => {
766 (0, event, upgradable_required),
767 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
768 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
769 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
770 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
771 // downgrades to prior versions.
772 (1, downstream_counterparty_and_funding_outpoint, option),
776 #[derive(Clone, Debug, PartialEq, Eq)]
777 pub(crate) enum EventCompletionAction {
778 ReleaseRAAChannelMonitorUpdate {
779 counterparty_node_id: PublicKey,
780 channel_funding_outpoint: OutPoint,
783 impl_writeable_tlv_based_enum!(EventCompletionAction,
784 (0, ReleaseRAAChannelMonitorUpdate) => {
785 (0, channel_funding_outpoint, required),
786 (2, counterparty_node_id, required),
790 #[derive(Clone, PartialEq, Eq, Debug)]
791 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
792 /// the blocked action here. See enum variants for more info.
793 pub(crate) enum RAAMonitorUpdateBlockingAction {
794 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
795 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
797 ForwardedPaymentInboundClaim {
798 /// The upstream channel ID (i.e. the inbound edge).
799 channel_id: ChannelId,
800 /// The HTLC ID on the inbound edge.
805 impl RAAMonitorUpdateBlockingAction {
806 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
807 Self::ForwardedPaymentInboundClaim {
808 channel_id: prev_hop.outpoint.to_channel_id(),
809 htlc_id: prev_hop.htlc_id,
814 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
815 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
819 /// State we hold per-peer.
820 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
821 /// `channel_id` -> `ChannelPhase`
823 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
824 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
825 /// `temporary_channel_id` -> `InboundChannelRequest`.
827 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
828 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
829 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
830 /// the channel is rejected, then the entry is simply removed.
831 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
832 /// The latest `InitFeatures` we heard from the peer.
833 latest_features: InitFeatures,
834 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
835 /// for broadcast messages, where ordering isn't as strict).
836 pub(super) pending_msg_events: Vec<MessageSendEvent>,
837 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
838 /// user but which have not yet completed.
840 /// Note that the channel may no longer exist. For example if the channel was closed but we
841 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
842 /// for a missing channel.
843 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
844 /// Map from a specific channel to some action(s) that should be taken when all pending
845 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
847 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
848 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
849 /// channels with a peer this will just be one allocation and will amount to a linear list of
850 /// channels to walk, avoiding the whole hashing rigmarole.
852 /// Note that the channel may no longer exist. For example, if a channel was closed but we
853 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
854 /// for a missing channel. While a malicious peer could construct a second channel with the
855 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
856 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
857 /// duplicates do not occur, so such channels should fail without a monitor update completing.
858 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
859 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
860 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
861 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
862 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
863 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
864 /// The peer is currently connected (i.e. we've seen a
865 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
866 /// [`ChannelMessageHandler::peer_disconnected`].
870 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
871 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
872 /// If true is passed for `require_disconnected`, the function will return false if we haven't
873 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
874 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
875 if require_disconnected && self.is_connected {
878 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
879 && self.monitor_update_blocked_actions.is_empty()
880 && self.in_flight_monitor_updates.is_empty()
883 // Returns a count of all channels we have with this peer, including unfunded channels.
884 fn total_channel_count(&self) -> usize {
885 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
888 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
889 fn has_channel(&self, channel_id: &ChannelId) -> bool {
890 self.channel_by_id.contains_key(channel_id) ||
891 self.inbound_channel_request_by_id.contains_key(channel_id)
895 /// A not-yet-accepted inbound (from counterparty) channel. Once
896 /// accepted, the parameters will be used to construct a channel.
897 pub(super) struct InboundChannelRequest {
898 /// The original OpenChannel message.
899 pub open_channel_msg: msgs::OpenChannel,
900 /// The number of ticks remaining before the request expires.
901 pub ticks_remaining: i32,
904 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
905 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
906 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
908 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
909 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
911 /// For users who don't want to bother doing their own payment preimage storage, we also store that
914 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
915 /// and instead encoding it in the payment secret.
916 struct PendingInboundPayment {
917 /// The payment secret that the sender must use for us to accept this payment
918 payment_secret: PaymentSecret,
919 /// Time at which this HTLC expires - blocks with a header time above this value will result in
920 /// this payment being removed.
922 /// Arbitrary identifier the user specifies (or not)
923 user_payment_id: u64,
924 // Other required attributes of the payment, optionally enforced:
925 payment_preimage: Option<PaymentPreimage>,
926 min_value_msat: Option<u64>,
929 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
930 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
931 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
932 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
933 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
934 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
935 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
936 /// of [`KeysManager`] and [`DefaultRouter`].
938 /// This is not exported to bindings users as type aliases aren't supported in most languages.
939 #[cfg(not(c_bindings))]
940 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
948 Arc<NetworkGraph<Arc<L>>>,
950 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
951 ProbabilisticScoringFeeParameters,
952 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
957 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
958 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
959 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
960 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
961 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
962 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
963 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
964 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
965 /// of [`KeysManager`] and [`DefaultRouter`].
967 /// This is not exported to bindings users as type aliases aren't supported in most languages.
968 #[cfg(not(c_bindings))]
969 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
978 &'f NetworkGraph<&'g L>,
980 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
981 ProbabilisticScoringFeeParameters,
982 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
987 /// A trivial trait which describes any [`ChannelManager`].
989 /// This is not exported to bindings users as general cover traits aren't useful in other
991 pub trait AChannelManager {
992 /// A type implementing [`chain::Watch`].
993 type Watch: chain::Watch<Self::Signer> + ?Sized;
994 /// A type that may be dereferenced to [`Self::Watch`].
995 type M: Deref<Target = Self::Watch>;
996 /// A type implementing [`BroadcasterInterface`].
997 type Broadcaster: BroadcasterInterface + ?Sized;
998 /// A type that may be dereferenced to [`Self::Broadcaster`].
999 type T: Deref<Target = Self::Broadcaster>;
1000 /// A type implementing [`EntropySource`].
1001 type EntropySource: EntropySource + ?Sized;
1002 /// A type that may be dereferenced to [`Self::EntropySource`].
1003 type ES: Deref<Target = Self::EntropySource>;
1004 /// A type implementing [`NodeSigner`].
1005 type NodeSigner: NodeSigner + ?Sized;
1006 /// A type that may be dereferenced to [`Self::NodeSigner`].
1007 type NS: Deref<Target = Self::NodeSigner>;
1008 /// A type implementing [`WriteableEcdsaChannelSigner`].
1009 type Signer: WriteableEcdsaChannelSigner + Sized;
1010 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1011 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1012 /// A type that may be dereferenced to [`Self::SignerProvider`].
1013 type SP: Deref<Target = Self::SignerProvider>;
1014 /// A type implementing [`FeeEstimator`].
1015 type FeeEstimator: FeeEstimator + ?Sized;
1016 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1017 type F: Deref<Target = Self::FeeEstimator>;
1018 /// A type implementing [`Router`].
1019 type Router: Router + ?Sized;
1020 /// A type that may be dereferenced to [`Self::Router`].
1021 type R: Deref<Target = Self::Router>;
1022 /// A type implementing [`Logger`].
1023 type Logger: Logger + ?Sized;
1024 /// A type that may be dereferenced to [`Self::Logger`].
1025 type L: Deref<Target = Self::Logger>;
1026 /// Returns a reference to the actual [`ChannelManager`] object.
1027 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1030 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1031 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1033 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1034 T::Target: BroadcasterInterface,
1035 ES::Target: EntropySource,
1036 NS::Target: NodeSigner,
1037 SP::Target: SignerProvider,
1038 F::Target: FeeEstimator,
1042 type Watch = M::Target;
1044 type Broadcaster = T::Target;
1046 type EntropySource = ES::Target;
1048 type NodeSigner = NS::Target;
1050 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1051 type SignerProvider = SP::Target;
1053 type FeeEstimator = F::Target;
1055 type Router = R::Target;
1057 type Logger = L::Target;
1059 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1062 /// Manager which keeps track of a number of channels and sends messages to the appropriate
1063 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
1065 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
1066 /// to individual Channels.
1068 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1069 /// all peers during write/read (though does not modify this instance, only the instance being
1070 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1071 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1073 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1074 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1075 /// [`ChannelMonitorUpdate`] before returning from
1076 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1077 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1078 /// `ChannelManager` operations from occurring during the serialization process). If the
1079 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1080 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1081 /// will be lost (modulo on-chain transaction fees).
1083 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1084 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1085 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1087 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1088 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1089 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1090 /// offline for a full minute. In order to track this, you must call
1091 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1093 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1094 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1095 /// not have a channel with being unable to connect to us or open new channels with us if we have
1096 /// many peers with unfunded channels.
1098 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1099 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1100 /// never limited. Please ensure you limit the count of such channels yourself.
1102 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1103 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1104 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1105 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1106 /// you're using lightning-net-tokio.
1108 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1109 /// [`funding_created`]: msgs::FundingCreated
1110 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1111 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1112 /// [`update_channel`]: chain::Watch::update_channel
1113 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1114 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1115 /// [`read`]: ReadableArgs::read
1118 // The tree structure below illustrates the lock order requirements for the different locks of the
1119 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1120 // and should then be taken in the order of the lowest to the highest level in the tree.
1121 // Note that locks on different branches shall not be taken at the same time, as doing so will
1122 // create a new lock order for those specific locks in the order they were taken.
1126 // `pending_offers_messages`
1128 // `total_consistency_lock`
1130 // |__`forward_htlcs`
1132 // | |__`pending_intercepted_htlcs`
1134 // |__`per_peer_state`
1136 // |__`pending_inbound_payments`
1138 // |__`claimable_payments`
1140 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1146 // |__`short_to_chan_info`
1148 // |__`outbound_scid_aliases`
1152 // |__`pending_events`
1154 // |__`pending_background_events`
1156 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1158 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1159 T::Target: BroadcasterInterface,
1160 ES::Target: EntropySource,
1161 NS::Target: NodeSigner,
1162 SP::Target: SignerProvider,
1163 F::Target: FeeEstimator,
1167 default_configuration: UserConfig,
1168 chain_hash: ChainHash,
1169 fee_estimator: LowerBoundedFeeEstimator<F>,
1175 /// See `ChannelManager` struct-level documentation for lock order requirements.
1177 pub(super) best_block: RwLock<BestBlock>,
1179 best_block: RwLock<BestBlock>,
1180 secp_ctx: Secp256k1<secp256k1::All>,
1182 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1183 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1184 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1185 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1187 /// See `ChannelManager` struct-level documentation for lock order requirements.
1188 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1190 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1191 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1192 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1193 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1194 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1195 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1196 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1197 /// after reloading from disk while replaying blocks against ChannelMonitors.
1199 /// See `PendingOutboundPayment` documentation for more info.
1201 /// See `ChannelManager` struct-level documentation for lock order requirements.
1202 pending_outbound_payments: OutboundPayments,
1204 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1206 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1207 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1208 /// and via the classic SCID.
1210 /// Note that no consistency guarantees are made about the existence of a channel with the
1211 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1213 /// See `ChannelManager` struct-level documentation for lock order requirements.
1215 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1217 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1218 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1219 /// until the user tells us what we should do with them.
1221 /// See `ChannelManager` struct-level documentation for lock order requirements.
1222 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1224 /// The sets of payments which are claimable or currently being claimed. See
1225 /// [`ClaimablePayments`]' individual field docs for more info.
1227 /// See `ChannelManager` struct-level documentation for lock order requirements.
1228 claimable_payments: Mutex<ClaimablePayments>,
1230 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1231 /// and some closed channels which reached a usable state prior to being closed. This is used
1232 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1233 /// active channel list on load.
1235 /// See `ChannelManager` struct-level documentation for lock order requirements.
1236 outbound_scid_aliases: Mutex<HashSet<u64>>,
1238 /// `channel_id` -> `counterparty_node_id`.
1240 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1241 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1242 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1244 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1245 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1246 /// the handling of the events.
1248 /// Note that no consistency guarantees are made about the existence of a peer with the
1249 /// `counterparty_node_id` in our other maps.
1252 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1253 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1254 /// would break backwards compatability.
1255 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1256 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1257 /// required to access the channel with the `counterparty_node_id`.
1259 /// See `ChannelManager` struct-level documentation for lock order requirements.
1260 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1262 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1264 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1265 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1266 /// confirmation depth.
1268 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1269 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1270 /// channel with the `channel_id` in our other maps.
1272 /// See `ChannelManager` struct-level documentation for lock order requirements.
1274 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1276 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1278 our_network_pubkey: PublicKey,
1280 inbound_payment_key: inbound_payment::ExpandedKey,
1282 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1283 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1284 /// we encrypt the namespace identifier using these bytes.
1286 /// [fake scids]: crate::util::scid_utils::fake_scid
1287 fake_scid_rand_bytes: [u8; 32],
1289 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1290 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1291 /// keeping additional state.
1292 probing_cookie_secret: [u8; 32],
1294 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1295 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1296 /// very far in the past, and can only ever be up to two hours in the future.
1297 highest_seen_timestamp: AtomicUsize,
1299 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1300 /// basis, as well as the peer's latest features.
1302 /// If we are connected to a peer we always at least have an entry here, even if no channels
1303 /// are currently open with that peer.
1305 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1306 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1309 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1311 /// See `ChannelManager` struct-level documentation for lock order requirements.
1312 #[cfg(not(any(test, feature = "_test_utils")))]
1313 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1314 #[cfg(any(test, feature = "_test_utils"))]
1315 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1317 /// The set of events which we need to give to the user to handle. In some cases an event may
1318 /// require some further action after the user handles it (currently only blocking a monitor
1319 /// update from being handed to the user to ensure the included changes to the channel state
1320 /// are handled by the user before they're persisted durably to disk). In that case, the second
1321 /// element in the tuple is set to `Some` with further details of the action.
1323 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1324 /// could be in the middle of being processed without the direct mutex held.
1326 /// See `ChannelManager` struct-level documentation for lock order requirements.
1327 #[cfg(not(any(test, feature = "_test_utils")))]
1328 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1329 #[cfg(any(test, feature = "_test_utils"))]
1330 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1332 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1333 pending_events_processor: AtomicBool,
1335 /// If we are running during init (either directly during the deserialization method or in
1336 /// block connection methods which run after deserialization but before normal operation) we
1337 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1338 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1339 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1341 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1343 /// See `ChannelManager` struct-level documentation for lock order requirements.
1345 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1346 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1347 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1348 /// Essentially just when we're serializing ourselves out.
1349 /// Taken first everywhere where we are making changes before any other locks.
1350 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1351 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1352 /// Notifier the lock contains sends out a notification when the lock is released.
1353 total_consistency_lock: RwLock<()>,
1354 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1355 /// received and the monitor has been persisted.
1357 /// This information does not need to be persisted as funding nodes can forget
1358 /// unfunded channels upon disconnection.
1359 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1361 background_events_processed_since_startup: AtomicBool,
1363 event_persist_notifier: Notifier,
1364 needs_persist_flag: AtomicBool,
1366 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1370 signer_provider: SP,
1375 /// Chain-related parameters used to construct a new `ChannelManager`.
1377 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1378 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1379 /// are not needed when deserializing a previously constructed `ChannelManager`.
1380 #[derive(Clone, Copy, PartialEq)]
1381 pub struct ChainParameters {
1382 /// The network for determining the `chain_hash` in Lightning messages.
1383 pub network: Network,
1385 /// The hash and height of the latest block successfully connected.
1387 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1388 pub best_block: BestBlock,
1391 #[derive(Copy, Clone, PartialEq)]
1395 SkipPersistHandleEvents,
1396 SkipPersistNoEvents,
1399 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1400 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1401 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1402 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1403 /// sending the aforementioned notification (since the lock being released indicates that the
1404 /// updates are ready for persistence).
1406 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1407 /// notify or not based on whether relevant changes have been made, providing a closure to
1408 /// `optionally_notify` which returns a `NotifyOption`.
1409 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1410 event_persist_notifier: &'a Notifier,
1411 needs_persist_flag: &'a AtomicBool,
1413 // We hold onto this result so the lock doesn't get released immediately.
1414 _read_guard: RwLockReadGuard<'a, ()>,
1417 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1418 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1419 /// events to handle.
1421 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1422 /// other cases where losing the changes on restart may result in a force-close or otherwise
1424 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1425 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1428 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1429 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1430 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1431 let force_notify = cm.get_cm().process_background_events();
1433 PersistenceNotifierGuard {
1434 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1435 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1436 should_persist: move || {
1437 // Pick the "most" action between `persist_check` and the background events
1438 // processing and return that.
1439 let notify = persist_check();
1440 match (notify, force_notify) {
1441 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1442 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1443 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1444 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1445 _ => NotifyOption::SkipPersistNoEvents,
1448 _read_guard: read_guard,
1452 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1453 /// [`ChannelManager::process_background_events`] MUST be called first (or
1454 /// [`Self::optionally_notify`] used).
1455 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1456 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1457 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1459 PersistenceNotifierGuard {
1460 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1461 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1462 should_persist: persist_check,
1463 _read_guard: read_guard,
1468 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1469 fn drop(&mut self) {
1470 match (self.should_persist)() {
1471 NotifyOption::DoPersist => {
1472 self.needs_persist_flag.store(true, Ordering::Release);
1473 self.event_persist_notifier.notify()
1475 NotifyOption::SkipPersistHandleEvents =>
1476 self.event_persist_notifier.notify(),
1477 NotifyOption::SkipPersistNoEvents => {},
1482 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1483 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1485 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1487 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1488 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1489 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1490 /// the maximum required amount in lnd as of March 2021.
1491 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1493 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1494 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1496 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1498 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1499 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1500 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1501 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1502 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1503 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1504 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1505 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1506 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1507 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1508 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1509 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1510 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1512 /// Minimum CLTV difference between the current block height and received inbound payments.
1513 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1515 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1516 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1517 // a payment was being routed, so we add an extra block to be safe.
1518 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1520 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1521 // ie that if the next-hop peer fails the HTLC within
1522 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1523 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1524 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1525 // LATENCY_GRACE_PERIOD_BLOCKS.
1528 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1530 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1531 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1534 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1536 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1537 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1539 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1540 /// until we mark the channel disabled and gossip the update.
1541 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1543 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1544 /// we mark the channel enabled and gossip the update.
1545 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1547 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1548 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1549 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1550 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1552 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1553 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1554 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1556 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1557 /// many peers we reject new (inbound) connections.
1558 const MAX_NO_CHANNEL_PEERS: usize = 250;
1560 /// Information needed for constructing an invoice route hint for this channel.
1561 #[derive(Clone, Debug, PartialEq)]
1562 pub struct CounterpartyForwardingInfo {
1563 /// Base routing fee in millisatoshis.
1564 pub fee_base_msat: u32,
1565 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1566 pub fee_proportional_millionths: u32,
1567 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1568 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1569 /// `cltv_expiry_delta` for more details.
1570 pub cltv_expiry_delta: u16,
1573 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1574 /// to better separate parameters.
1575 #[derive(Clone, Debug, PartialEq)]
1576 pub struct ChannelCounterparty {
1577 /// The node_id of our counterparty
1578 pub node_id: PublicKey,
1579 /// The Features the channel counterparty provided upon last connection.
1580 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1581 /// many routing-relevant features are present in the init context.
1582 pub features: InitFeatures,
1583 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1584 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1585 /// claiming at least this value on chain.
1587 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1589 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1590 pub unspendable_punishment_reserve: u64,
1591 /// Information on the fees and requirements that the counterparty requires when forwarding
1592 /// payments to us through this channel.
1593 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1594 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1595 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1596 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1597 pub outbound_htlc_minimum_msat: Option<u64>,
1598 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1599 pub outbound_htlc_maximum_msat: Option<u64>,
1602 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1603 #[derive(Clone, Debug, PartialEq)]
1604 pub struct ChannelDetails {
1605 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1606 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1607 /// Note that this means this value is *not* persistent - it can change once during the
1608 /// lifetime of the channel.
1609 pub channel_id: ChannelId,
1610 /// Parameters which apply to our counterparty. See individual fields for more information.
1611 pub counterparty: ChannelCounterparty,
1612 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1613 /// our counterparty already.
1615 /// Note that, if this has been set, `channel_id` will be equivalent to
1616 /// `funding_txo.unwrap().to_channel_id()`.
1617 pub funding_txo: Option<OutPoint>,
1618 /// The features which this channel operates with. See individual features for more info.
1620 /// `None` until negotiation completes and the channel type is finalized.
1621 pub channel_type: Option<ChannelTypeFeatures>,
1622 /// The position of the funding transaction in the chain. None if the funding transaction has
1623 /// not yet been confirmed and the channel fully opened.
1625 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1626 /// payments instead of this. See [`get_inbound_payment_scid`].
1628 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1629 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1631 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1632 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1633 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1634 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1635 /// [`confirmations_required`]: Self::confirmations_required
1636 pub short_channel_id: Option<u64>,
1637 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1638 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1639 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1642 /// This will be `None` as long as the channel is not available for routing outbound payments.
1644 /// [`short_channel_id`]: Self::short_channel_id
1645 /// [`confirmations_required`]: Self::confirmations_required
1646 pub outbound_scid_alias: Option<u64>,
1647 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1648 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1649 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1650 /// when they see a payment to be routed to us.
1652 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1653 /// previous values for inbound payment forwarding.
1655 /// [`short_channel_id`]: Self::short_channel_id
1656 pub inbound_scid_alias: Option<u64>,
1657 /// The value, in satoshis, of this channel as appears in the funding output
1658 pub channel_value_satoshis: u64,
1659 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1660 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1661 /// this value on chain.
1663 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1665 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1667 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1668 pub unspendable_punishment_reserve: Option<u64>,
1669 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1670 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1671 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1672 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1673 /// serialized with LDK versions prior to 0.0.113.
1675 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1676 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1677 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1678 pub user_channel_id: u128,
1679 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1680 /// which is applied to commitment and HTLC transactions.
1682 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1683 pub feerate_sat_per_1000_weight: Option<u32>,
1684 /// Our total balance. This is the amount we would get if we close the channel.
1685 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1686 /// amount is not likely to be recoverable on close.
1688 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1689 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1690 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1691 /// This does not consider any on-chain fees.
1693 /// See also [`ChannelDetails::outbound_capacity_msat`]
1694 pub balance_msat: u64,
1695 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1696 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1697 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1698 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1700 /// See also [`ChannelDetails::balance_msat`]
1702 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1703 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1704 /// should be able to spend nearly this amount.
1705 pub outbound_capacity_msat: u64,
1706 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1707 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1708 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1709 /// to use a limit as close as possible to the HTLC limit we can currently send.
1711 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1712 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1713 pub next_outbound_htlc_limit_msat: u64,
1714 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1715 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1716 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1717 /// route which is valid.
1718 pub next_outbound_htlc_minimum_msat: u64,
1719 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1720 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1721 /// available for inclusion in new inbound HTLCs).
1722 /// Note that there are some corner cases not fully handled here, so the actual available
1723 /// inbound capacity may be slightly higher than this.
1725 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1726 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1727 /// However, our counterparty should be able to spend nearly this amount.
1728 pub inbound_capacity_msat: u64,
1729 /// The number of required confirmations on the funding transaction before the funding will be
1730 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1731 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1732 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1733 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1735 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1737 /// [`is_outbound`]: ChannelDetails::is_outbound
1738 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1739 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1740 pub confirmations_required: Option<u32>,
1741 /// The current number of confirmations on the funding transaction.
1743 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1744 pub confirmations: Option<u32>,
1745 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1746 /// until we can claim our funds after we force-close the channel. During this time our
1747 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1748 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1749 /// time to claim our non-HTLC-encumbered funds.
1751 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1752 pub force_close_spend_delay: Option<u16>,
1753 /// True if the channel was initiated (and thus funded) by us.
1754 pub is_outbound: bool,
1755 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1756 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1757 /// required confirmation count has been reached (and we were connected to the peer at some
1758 /// point after the funding transaction received enough confirmations). The required
1759 /// confirmation count is provided in [`confirmations_required`].
1761 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1762 pub is_channel_ready: bool,
1763 /// The stage of the channel's shutdown.
1764 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1765 pub channel_shutdown_state: Option<ChannelShutdownState>,
1766 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1767 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1769 /// This is a strict superset of `is_channel_ready`.
1770 pub is_usable: bool,
1771 /// True if this channel is (or will be) publicly-announced.
1772 pub is_public: bool,
1773 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1774 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1775 pub inbound_htlc_minimum_msat: Option<u64>,
1776 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1777 pub inbound_htlc_maximum_msat: Option<u64>,
1778 /// Set of configurable parameters that affect channel operation.
1780 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1781 pub config: Option<ChannelConfig>,
1784 impl ChannelDetails {
1785 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1786 /// This should be used for providing invoice hints or in any other context where our
1787 /// counterparty will forward a payment to us.
1789 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1790 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1791 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1792 self.inbound_scid_alias.or(self.short_channel_id)
1795 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1796 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1797 /// we're sending or forwarding a payment outbound over this channel.
1799 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1800 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1801 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1802 self.short_channel_id.or(self.outbound_scid_alias)
1805 fn from_channel_context<SP: Deref, F: Deref>(
1806 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1807 fee_estimator: &LowerBoundedFeeEstimator<F>
1810 SP::Target: SignerProvider,
1811 F::Target: FeeEstimator
1813 let balance = context.get_available_balances(fee_estimator);
1814 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1815 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1817 channel_id: context.channel_id(),
1818 counterparty: ChannelCounterparty {
1819 node_id: context.get_counterparty_node_id(),
1820 features: latest_features,
1821 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1822 forwarding_info: context.counterparty_forwarding_info(),
1823 // Ensures that we have actually received the `htlc_minimum_msat` value
1824 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1825 // message (as they are always the first message from the counterparty).
1826 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1827 // default `0` value set by `Channel::new_outbound`.
1828 outbound_htlc_minimum_msat: if context.have_received_message() {
1829 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1830 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1832 funding_txo: context.get_funding_txo(),
1833 // Note that accept_channel (or open_channel) is always the first message, so
1834 // `have_received_message` indicates that type negotiation has completed.
1835 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1836 short_channel_id: context.get_short_channel_id(),
1837 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1838 inbound_scid_alias: context.latest_inbound_scid_alias(),
1839 channel_value_satoshis: context.get_value_satoshis(),
1840 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1841 unspendable_punishment_reserve: to_self_reserve_satoshis,
1842 balance_msat: balance.balance_msat,
1843 inbound_capacity_msat: balance.inbound_capacity_msat,
1844 outbound_capacity_msat: balance.outbound_capacity_msat,
1845 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1846 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1847 user_channel_id: context.get_user_id(),
1848 confirmations_required: context.minimum_depth(),
1849 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1850 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1851 is_outbound: context.is_outbound(),
1852 is_channel_ready: context.is_usable(),
1853 is_usable: context.is_live(),
1854 is_public: context.should_announce(),
1855 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1856 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1857 config: Some(context.config()),
1858 channel_shutdown_state: Some(context.shutdown_state()),
1863 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1864 /// Further information on the details of the channel shutdown.
1865 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1866 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1867 /// the channel will be removed shortly.
1868 /// Also note, that in normal operation, peers could disconnect at any of these states
1869 /// and require peer re-connection before making progress onto other states
1870 pub enum ChannelShutdownState {
1871 /// Channel has not sent or received a shutdown message.
1873 /// Local node has sent a shutdown message for this channel.
1875 /// Shutdown message exchanges have concluded and the channels are in the midst of
1876 /// resolving all existing open HTLCs before closing can continue.
1878 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1879 NegotiatingClosingFee,
1880 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1881 /// to drop the channel.
1885 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1886 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1887 #[derive(Debug, PartialEq)]
1888 pub enum RecentPaymentDetails {
1889 /// When an invoice was requested and thus a payment has not yet been sent.
1891 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1892 /// a payment and ensure idempotency in LDK.
1893 payment_id: PaymentId,
1895 /// When a payment is still being sent and awaiting successful delivery.
1897 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1898 /// a payment and ensure idempotency in LDK.
1899 payment_id: PaymentId,
1900 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1902 payment_hash: PaymentHash,
1903 /// Total amount (in msat, excluding fees) across all paths for this payment,
1904 /// not just the amount currently inflight.
1907 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1908 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1909 /// payment is removed from tracking.
1911 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1912 /// a payment and ensure idempotency in LDK.
1913 payment_id: PaymentId,
1914 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1915 /// made before LDK version 0.0.104.
1916 payment_hash: Option<PaymentHash>,
1918 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1919 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1920 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1922 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1923 /// a payment and ensure idempotency in LDK.
1924 payment_id: PaymentId,
1925 /// Hash of the payment that we have given up trying to send.
1926 payment_hash: PaymentHash,
1930 /// Route hints used in constructing invoices for [phantom node payents].
1932 /// [phantom node payments]: crate::sign::PhantomKeysManager
1934 pub struct PhantomRouteHints {
1935 /// The list of channels to be included in the invoice route hints.
1936 pub channels: Vec<ChannelDetails>,
1937 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1939 pub phantom_scid: u64,
1940 /// The pubkey of the real backing node that would ultimately receive the payment.
1941 pub real_node_pubkey: PublicKey,
1944 macro_rules! handle_error {
1945 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1946 // In testing, ensure there are no deadlocks where the lock is already held upon
1947 // entering the macro.
1948 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1949 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1953 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1954 let mut msg_events = Vec::with_capacity(2);
1956 if let Some((shutdown_res, update_option)) = shutdown_finish {
1957 $self.finish_close_channel(shutdown_res);
1958 if let Some(update) = update_option {
1959 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1963 if let Some((channel_id, user_channel_id)) = chan_id {
1964 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1965 channel_id, user_channel_id,
1966 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1967 counterparty_node_id: Some($counterparty_node_id),
1968 channel_capacity_sats: channel_capacity,
1973 let logger = WithContext::from(
1974 &$self.logger, Some($counterparty_node_id), chan_id.map(|(chan_id, _)| chan_id)
1976 log_error!(logger, "{}", err.err);
1977 if let msgs::ErrorAction::IgnoreError = err.action {
1979 msg_events.push(events::MessageSendEvent::HandleError {
1980 node_id: $counterparty_node_id,
1981 action: err.action.clone()
1985 if !msg_events.is_empty() {
1986 let per_peer_state = $self.per_peer_state.read().unwrap();
1987 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1988 let mut peer_state = peer_state_mutex.lock().unwrap();
1989 peer_state.pending_msg_events.append(&mut msg_events);
1993 // Return error in case higher-API need one
2000 macro_rules! update_maps_on_chan_removal {
2001 ($self: expr, $channel_context: expr) => {{
2002 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
2003 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2004 if let Some(short_id) = $channel_context.get_short_channel_id() {
2005 short_to_chan_info.remove(&short_id);
2007 // If the channel was never confirmed on-chain prior to its closure, remove the
2008 // outbound SCID alias we used for it from the collision-prevention set. While we
2009 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2010 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2011 // opening a million channels with us which are closed before we ever reach the funding
2013 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2014 debug_assert!(alias_removed);
2016 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2020 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2021 macro_rules! convert_chan_phase_err {
2022 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2024 ChannelError::Warn(msg) => {
2025 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2027 ChannelError::Ignore(msg) => {
2028 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2030 ChannelError::Close(msg) => {
2031 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2032 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2033 update_maps_on_chan_removal!($self, $channel.context);
2034 let shutdown_res = $channel.context.force_shutdown(true);
2035 let user_id = $channel.context.get_user_id();
2036 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
2038 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
2039 shutdown_res, $channel_update, channel_capacity_satoshis))
2043 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2044 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2046 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2047 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2049 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2050 match $channel_phase {
2051 ChannelPhase::Funded(channel) => {
2052 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2054 ChannelPhase::UnfundedOutboundV1(channel) => {
2055 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2057 ChannelPhase::UnfundedInboundV1(channel) => {
2058 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2064 macro_rules! break_chan_phase_entry {
2065 ($self: ident, $res: expr, $entry: expr) => {
2069 let key = *$entry.key();
2070 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2072 $entry.remove_entry();
2080 macro_rules! try_chan_phase_entry {
2081 ($self: ident, $res: expr, $entry: expr) => {
2085 let key = *$entry.key();
2086 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2088 $entry.remove_entry();
2096 macro_rules! remove_channel_phase {
2097 ($self: expr, $entry: expr) => {
2099 let channel = $entry.remove_entry().1;
2100 update_maps_on_chan_removal!($self, &channel.context());
2106 macro_rules! send_channel_ready {
2107 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2108 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2109 node_id: $channel.context.get_counterparty_node_id(),
2110 msg: $channel_ready_msg,
2112 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2113 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2114 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2115 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2116 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2117 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2118 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2119 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2120 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2121 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2126 macro_rules! emit_channel_pending_event {
2127 ($locked_events: expr, $channel: expr) => {
2128 if $channel.context.should_emit_channel_pending_event() {
2129 $locked_events.push_back((events::Event::ChannelPending {
2130 channel_id: $channel.context.channel_id(),
2131 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2132 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2133 user_channel_id: $channel.context.get_user_id(),
2134 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2136 $channel.context.set_channel_pending_event_emitted();
2141 macro_rules! emit_channel_ready_event {
2142 ($locked_events: expr, $channel: expr) => {
2143 if $channel.context.should_emit_channel_ready_event() {
2144 debug_assert!($channel.context.channel_pending_event_emitted());
2145 $locked_events.push_back((events::Event::ChannelReady {
2146 channel_id: $channel.context.channel_id(),
2147 user_channel_id: $channel.context.get_user_id(),
2148 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2149 channel_type: $channel.context.get_channel_type().clone(),
2151 $channel.context.set_channel_ready_event_emitted();
2156 macro_rules! handle_monitor_update_completion {
2157 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2158 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2159 let mut updates = $chan.monitor_updating_restored(&&logger,
2160 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2161 $self.best_block.read().unwrap().height());
2162 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2163 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2164 // We only send a channel_update in the case where we are just now sending a
2165 // channel_ready and the channel is in a usable state. We may re-send a
2166 // channel_update later through the announcement_signatures process for public
2167 // channels, but there's no reason not to just inform our counterparty of our fees
2169 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2170 Some(events::MessageSendEvent::SendChannelUpdate {
2171 node_id: counterparty_node_id,
2177 let update_actions = $peer_state.monitor_update_blocked_actions
2178 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2180 let htlc_forwards = $self.handle_channel_resumption(
2181 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2182 updates.commitment_update, updates.order, updates.accepted_htlcs,
2183 updates.funding_broadcastable, updates.channel_ready,
2184 updates.announcement_sigs);
2185 if let Some(upd) = channel_update {
2186 $peer_state.pending_msg_events.push(upd);
2189 let channel_id = $chan.context.channel_id();
2190 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2191 core::mem::drop($peer_state_lock);
2192 core::mem::drop($per_peer_state_lock);
2194 // If the channel belongs to a batch funding transaction, the progress of the batch
2195 // should be updated as we have received funding_signed and persisted the monitor.
2196 if let Some(txid) = unbroadcasted_batch_funding_txid {
2197 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2198 let mut batch_completed = false;
2199 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2200 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2201 *chan_id == channel_id &&
2202 *pubkey == counterparty_node_id
2204 if let Some(channel_state) = channel_state {
2205 channel_state.2 = true;
2207 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2209 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2211 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2214 // When all channels in a batched funding transaction have become ready, it is not necessary
2215 // to track the progress of the batch anymore and the state of the channels can be updated.
2216 if batch_completed {
2217 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2218 let per_peer_state = $self.per_peer_state.read().unwrap();
2219 let mut batch_funding_tx = None;
2220 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2221 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2222 let mut peer_state = peer_state_mutex.lock().unwrap();
2223 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2224 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2225 chan.set_batch_ready();
2226 let mut pending_events = $self.pending_events.lock().unwrap();
2227 emit_channel_pending_event!(pending_events, chan);
2231 if let Some(tx) = batch_funding_tx {
2232 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2233 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2238 $self.handle_monitor_update_completion_actions(update_actions);
2240 if let Some(forwards) = htlc_forwards {
2241 $self.forward_htlcs(&mut [forwards][..]);
2243 $self.finalize_claims(updates.finalized_claimed_htlcs);
2244 for failure in updates.failed_htlcs.drain(..) {
2245 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2246 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2251 macro_rules! handle_new_monitor_update {
2252 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2253 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2254 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2256 ChannelMonitorUpdateStatus::UnrecoverableError => {
2257 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2258 log_error!(logger, "{}", err_str);
2259 panic!("{}", err_str);
2261 ChannelMonitorUpdateStatus::InProgress => {
2262 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2263 &$chan.context.channel_id());
2266 ChannelMonitorUpdateStatus::Completed => {
2272 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2273 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2274 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2276 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2277 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2278 .or_insert_with(Vec::new);
2279 // During startup, we push monitor updates as background events through to here in
2280 // order to replay updates that were in-flight when we shut down. Thus, we have to
2281 // filter for uniqueness here.
2282 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2283 .unwrap_or_else(|| {
2284 in_flight_updates.push($update);
2285 in_flight_updates.len() - 1
2287 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2288 handle_new_monitor_update!($self, update_res, $chan, _internal,
2290 let _ = in_flight_updates.remove(idx);
2291 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2292 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2298 macro_rules! process_events_body {
2299 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2300 let mut processed_all_events = false;
2301 while !processed_all_events {
2302 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2309 // We'll acquire our total consistency lock so that we can be sure no other
2310 // persists happen while processing monitor events.
2311 let _read_guard = $self.total_consistency_lock.read().unwrap();
2313 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2314 // ensure any startup-generated background events are handled first.
2315 result = $self.process_background_events();
2317 // TODO: This behavior should be documented. It's unintuitive that we query
2318 // ChannelMonitors when clearing other events.
2319 if $self.process_pending_monitor_events() {
2320 result = NotifyOption::DoPersist;
2324 let pending_events = $self.pending_events.lock().unwrap().clone();
2325 let num_events = pending_events.len();
2326 if !pending_events.is_empty() {
2327 result = NotifyOption::DoPersist;
2330 let mut post_event_actions = Vec::new();
2332 for (event, action_opt) in pending_events {
2333 $event_to_handle = event;
2335 if let Some(action) = action_opt {
2336 post_event_actions.push(action);
2341 let mut pending_events = $self.pending_events.lock().unwrap();
2342 pending_events.drain(..num_events);
2343 processed_all_events = pending_events.is_empty();
2344 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2345 // updated here with the `pending_events` lock acquired.
2346 $self.pending_events_processor.store(false, Ordering::Release);
2349 if !post_event_actions.is_empty() {
2350 $self.handle_post_event_actions(post_event_actions);
2351 // If we had some actions, go around again as we may have more events now
2352 processed_all_events = false;
2356 NotifyOption::DoPersist => {
2357 $self.needs_persist_flag.store(true, Ordering::Release);
2358 $self.event_persist_notifier.notify();
2360 NotifyOption::SkipPersistHandleEvents =>
2361 $self.event_persist_notifier.notify(),
2362 NotifyOption::SkipPersistNoEvents => {},
2368 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2370 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
2371 T::Target: BroadcasterInterface,
2372 ES::Target: EntropySource,
2373 NS::Target: NodeSigner,
2374 SP::Target: SignerProvider,
2375 F::Target: FeeEstimator,
2379 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2381 /// The current time or latest block header time can be provided as the `current_timestamp`.
2383 /// This is the main "logic hub" for all channel-related actions, and implements
2384 /// [`ChannelMessageHandler`].
2386 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2388 /// Users need to notify the new `ChannelManager` when a new block is connected or
2389 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2390 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2393 /// [`block_connected`]: chain::Listen::block_connected
2394 /// [`block_disconnected`]: chain::Listen::block_disconnected
2395 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2397 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2398 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2399 current_timestamp: u32,
2401 let mut secp_ctx = Secp256k1::new();
2402 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2403 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2404 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2406 default_configuration: config.clone(),
2407 chain_hash: ChainHash::using_genesis_block(params.network),
2408 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2413 best_block: RwLock::new(params.best_block),
2415 outbound_scid_aliases: Mutex::new(HashSet::new()),
2416 pending_inbound_payments: Mutex::new(HashMap::new()),
2417 pending_outbound_payments: OutboundPayments::new(),
2418 forward_htlcs: Mutex::new(HashMap::new()),
2419 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2420 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2421 id_to_peer: Mutex::new(HashMap::new()),
2422 short_to_chan_info: FairRwLock::new(HashMap::new()),
2424 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2427 inbound_payment_key: expanded_inbound_key,
2428 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2430 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2432 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2434 per_peer_state: FairRwLock::new(HashMap::new()),
2436 pending_events: Mutex::new(VecDeque::new()),
2437 pending_events_processor: AtomicBool::new(false),
2438 pending_background_events: Mutex::new(Vec::new()),
2439 total_consistency_lock: RwLock::new(()),
2440 background_events_processed_since_startup: AtomicBool::new(false),
2441 event_persist_notifier: Notifier::new(),
2442 needs_persist_flag: AtomicBool::new(false),
2443 funding_batch_states: Mutex::new(BTreeMap::new()),
2445 pending_offers_messages: Mutex::new(Vec::new()),
2455 /// Gets the current configuration applied to all new channels.
2456 pub fn get_current_default_configuration(&self) -> &UserConfig {
2457 &self.default_configuration
2460 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2461 let height = self.best_block.read().unwrap().height();
2462 let mut outbound_scid_alias = 0;
2465 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2466 outbound_scid_alias += 1;
2468 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2470 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2474 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2479 /// Creates a new outbound channel to the given remote node and with the given value.
2481 /// `user_channel_id` will be provided back as in
2482 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2483 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2484 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2485 /// is simply copied to events and otherwise ignored.
2487 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2488 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2490 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2491 /// generate a shutdown scriptpubkey or destination script set by
2492 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2494 /// Note that we do not check if you are currently connected to the given peer. If no
2495 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2496 /// the channel eventually being silently forgotten (dropped on reload).
2498 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2499 /// channel. Otherwise, a random one will be generated for you.
2501 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2502 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2503 /// [`ChannelDetails::channel_id`] until after
2504 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2505 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2506 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2508 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2509 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2510 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2511 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2512 if channel_value_satoshis < 1000 {
2513 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2516 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2517 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2518 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2520 let per_peer_state = self.per_peer_state.read().unwrap();
2522 let peer_state_mutex = per_peer_state.get(&their_network_key)
2523 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2525 let mut peer_state = peer_state_mutex.lock().unwrap();
2527 if let Some(temporary_channel_id) = temporary_channel_id {
2528 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2529 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2534 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2535 let their_features = &peer_state.latest_features;
2536 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2537 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2538 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2539 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2543 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2548 let res = channel.get_open_channel(self.chain_hash);
2550 let temporary_channel_id = channel.context.channel_id();
2551 match peer_state.channel_by_id.entry(temporary_channel_id) {
2552 hash_map::Entry::Occupied(_) => {
2554 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2556 panic!("RNG is bad???");
2559 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2562 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2563 node_id: their_network_key,
2566 Ok(temporary_channel_id)
2569 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2570 // Allocate our best estimate of the number of channels we have in the `res`
2571 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2572 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2573 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2574 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2575 // the same channel.
2576 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2578 let best_block_height = self.best_block.read().unwrap().height();
2579 let per_peer_state = self.per_peer_state.read().unwrap();
2580 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2581 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2582 let peer_state = &mut *peer_state_lock;
2583 res.extend(peer_state.channel_by_id.iter()
2584 .filter_map(|(chan_id, phase)| match phase {
2585 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2586 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2590 .map(|(_channel_id, channel)| {
2591 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2592 peer_state.latest_features.clone(), &self.fee_estimator)
2600 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2601 /// more information.
2602 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2603 // Allocate our best estimate of the number of channels we have in the `res`
2604 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2605 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2606 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2607 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2608 // the same channel.
2609 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2611 let best_block_height = self.best_block.read().unwrap().height();
2612 let per_peer_state = self.per_peer_state.read().unwrap();
2613 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2614 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2615 let peer_state = &mut *peer_state_lock;
2616 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2617 let details = ChannelDetails::from_channel_context(context, best_block_height,
2618 peer_state.latest_features.clone(), &self.fee_estimator);
2626 /// Gets the list of usable channels, in random order. Useful as an argument to
2627 /// [`Router::find_route`] to ensure non-announced channels are used.
2629 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2630 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2632 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2633 // Note we use is_live here instead of usable which leads to somewhat confused
2634 // internal/external nomenclature, but that's ok cause that's probably what the user
2635 // really wanted anyway.
2636 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2639 /// Gets the list of channels we have with a given counterparty, in random order.
2640 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2641 let best_block_height = self.best_block.read().unwrap().height();
2642 let per_peer_state = self.per_peer_state.read().unwrap();
2644 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2645 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2646 let peer_state = &mut *peer_state_lock;
2647 let features = &peer_state.latest_features;
2648 let context_to_details = |context| {
2649 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2651 return peer_state.channel_by_id
2653 .map(|(_, phase)| phase.context())
2654 .map(context_to_details)
2660 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2661 /// successful path, or have unresolved HTLCs.
2663 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2664 /// result of a crash. If such a payment exists, is not listed here, and an
2665 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2667 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2668 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2669 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2670 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2671 PendingOutboundPayment::AwaitingInvoice { .. } => {
2672 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2674 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2675 PendingOutboundPayment::InvoiceReceived { .. } => {
2676 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2678 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2679 Some(RecentPaymentDetails::Pending {
2680 payment_id: *payment_id,
2681 payment_hash: *payment_hash,
2682 total_msat: *total_msat,
2685 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2686 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2688 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2689 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2691 PendingOutboundPayment::Legacy { .. } => None
2696 /// Helper function that issues the channel close events
2697 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2698 let mut pending_events_lock = self.pending_events.lock().unwrap();
2699 match context.unbroadcasted_funding() {
2700 Some(transaction) => {
2701 pending_events_lock.push_back((events::Event::DiscardFunding {
2702 channel_id: context.channel_id(), transaction
2707 pending_events_lock.push_back((events::Event::ChannelClosed {
2708 channel_id: context.channel_id(),
2709 user_channel_id: context.get_user_id(),
2710 reason: closure_reason,
2711 counterparty_node_id: Some(context.get_counterparty_node_id()),
2712 channel_capacity_sats: Some(context.get_value_satoshis()),
2716 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2717 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2719 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
2720 let mut shutdown_result = None;
2723 let per_peer_state = self.per_peer_state.read().unwrap();
2725 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2726 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2728 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2729 let peer_state = &mut *peer_state_lock;
2731 match peer_state.channel_by_id.entry(channel_id.clone()) {
2732 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2733 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2734 let funding_txo_opt = chan.context.get_funding_txo();
2735 let their_features = &peer_state.latest_features;
2736 let (shutdown_msg, mut monitor_update_opt, htlcs) =
2737 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2738 failed_htlcs = htlcs;
2740 // We can send the `shutdown` message before updating the `ChannelMonitor`
2741 // here as we don't need the monitor update to complete until we send a
2742 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2743 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2744 node_id: *counterparty_node_id,
2748 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2749 "We can't both complete shutdown and generate a monitor update");
2751 // Update the monitor with the shutdown script if necessary.
2752 if let Some(monitor_update) = monitor_update_opt.take() {
2753 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2754 peer_state_lock, peer_state, per_peer_state, chan);
2757 self.issue_channel_close_events(chan_phase_entry.get().context(), ClosureReason::HolderForceClosed);
2758 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2759 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false));
2762 hash_map::Entry::Vacant(_) => {
2763 return Err(APIError::ChannelUnavailable {
2765 "Channel with id {} not found for the passed counterparty node_id {}",
2766 channel_id, counterparty_node_id,
2773 for htlc_source in failed_htlcs.drain(..) {
2774 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2775 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2776 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2779 if let Some(shutdown_result) = shutdown_result {
2780 self.finish_close_channel(shutdown_result);
2786 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2787 /// will be accepted on the given channel, and after additional timeout/the closing of all
2788 /// pending HTLCs, the channel will be closed on chain.
2790 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2791 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2793 /// * If our counterparty is the channel initiator, we will require a channel closing
2794 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2795 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2796 /// counterparty to pay as much fee as they'd like, however.
2798 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2800 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2801 /// generate a shutdown scriptpubkey or destination script set by
2802 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2805 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2806 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2807 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2808 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2809 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2810 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2813 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2814 /// will be accepted on the given channel, and after additional timeout/the closing of all
2815 /// pending HTLCs, the channel will be closed on chain.
2817 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2818 /// the channel being closed or not:
2819 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2820 /// transaction. The upper-bound is set by
2821 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2822 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2823 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2824 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2825 /// will appear on a force-closure transaction, whichever is lower).
2827 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2828 /// Will fail if a shutdown script has already been set for this channel by
2829 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2830 /// also be compatible with our and the counterparty's features.
2832 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2834 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2835 /// generate a shutdown scriptpubkey or destination script set by
2836 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2839 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2840 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2841 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2842 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2843 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2846 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2847 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2848 #[cfg(debug_assertions)]
2849 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2850 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2853 let logger = WithContext::from(
2854 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
2856 log_debug!(logger, "Finishing closure of channel with {} HTLCs to fail", shutdown_res.dropped_outbound_htlcs.len());
2857 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2858 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2859 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2860 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2861 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2863 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2864 // There isn't anything we can do if we get an update failure - we're already
2865 // force-closing. The monitor update on the required in-memory copy should broadcast
2866 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2867 // ignore the result here.
2868 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2870 let mut shutdown_results = Vec::new();
2871 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2872 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2873 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2874 let per_peer_state = self.per_peer_state.read().unwrap();
2875 let mut has_uncompleted_channel = None;
2876 for (channel_id, counterparty_node_id, state) in affected_channels {
2877 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2878 let mut peer_state = peer_state_mutex.lock().unwrap();
2879 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2880 update_maps_on_chan_removal!(self, &chan.context());
2881 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2882 shutdown_results.push(chan.context_mut().force_shutdown(false));
2885 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2888 has_uncompleted_channel.unwrap_or(true),
2889 "Closing a batch where all channels have completed initial monitor update",
2892 for shutdown_result in shutdown_results.drain(..) {
2893 self.finish_close_channel(shutdown_result);
2897 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2898 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2899 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2900 -> Result<PublicKey, APIError> {
2901 let per_peer_state = self.per_peer_state.read().unwrap();
2902 let peer_state_mutex = per_peer_state.get(peer_node_id)
2903 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2904 let (update_opt, counterparty_node_id) = {
2905 let mut peer_state = peer_state_mutex.lock().unwrap();
2906 let closure_reason = if let Some(peer_msg) = peer_msg {
2907 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2909 ClosureReason::HolderForceClosed
2911 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
2912 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2913 log_error!(logger, "Force-closing channel {}", channel_id);
2914 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2915 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2916 mem::drop(peer_state);
2917 mem::drop(per_peer_state);
2919 ChannelPhase::Funded(mut chan) => {
2920 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2921 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2923 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2924 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2925 // Unfunded channel has no update
2926 (None, chan_phase.context().get_counterparty_node_id())
2929 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2930 log_error!(logger, "Force-closing channel {}", &channel_id);
2931 // N.B. that we don't send any channel close event here: we
2932 // don't have a user_channel_id, and we never sent any opening
2934 (None, *peer_node_id)
2936 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2939 if let Some(update) = update_opt {
2940 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2941 // not try to broadcast it via whatever peer we have.
2942 let per_peer_state = self.per_peer_state.read().unwrap();
2943 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2944 .ok_or(per_peer_state.values().next());
2945 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2946 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2947 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2953 Ok(counterparty_node_id)
2956 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2957 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2958 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2959 Ok(counterparty_node_id) => {
2960 let per_peer_state = self.per_peer_state.read().unwrap();
2961 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2962 let mut peer_state = peer_state_mutex.lock().unwrap();
2963 peer_state.pending_msg_events.push(
2964 events::MessageSendEvent::HandleError {
2965 node_id: counterparty_node_id,
2966 action: msgs::ErrorAction::DisconnectPeer {
2967 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2978 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2979 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2980 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2982 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2983 -> Result<(), APIError> {
2984 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2987 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2988 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2989 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2991 /// You can always get the latest local transaction(s) to broadcast from
2992 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2993 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2994 -> Result<(), APIError> {
2995 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2998 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2999 /// for each to the chain and rejecting new HTLCs on each.
3000 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3001 for chan in self.list_channels() {
3002 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3006 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3007 /// local transaction(s).
3008 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3009 for chan in self.list_channels() {
3010 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3014 fn decode_update_add_htlc_onion(
3015 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3017 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3019 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3020 msg, &self.node_signer, &self.logger, &self.secp_ctx
3023 let is_blinded = match next_hop {
3024 onion_utils::Hop::Forward {
3025 next_hop_data: msgs::InboundOnionPayload::BlindedForward { .. }, ..
3027 _ => false, // TODO: update this when we support receiving to multi-hop blinded paths
3030 macro_rules! return_err {
3031 ($msg: expr, $err_code: expr, $data: expr) => {
3034 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3035 "Failed to accept/forward incoming HTLC: {}", $msg
3037 let (err_code, err_data) = if is_blinded {
3038 (INVALID_ONION_BLINDING, &[0; 32][..])
3039 } else { ($err_code, $data) };
3040 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3041 channel_id: msg.channel_id,
3042 htlc_id: msg.htlc_id,
3043 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3044 .get_encrypted_failure_packet(&shared_secret, &None),
3050 let NextPacketDetails {
3051 next_packet_pubkey, outgoing_amt_msat, outgoing_scid, outgoing_cltv_value
3052 } = match next_packet_details_opt {
3053 Some(next_packet_details) => next_packet_details,
3054 // it is a receive, so no need for outbound checks
3055 None => return Ok((next_hop, shared_secret, None)),
3058 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3059 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3060 if let Some((err, mut code, chan_update)) = loop {
3061 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3062 let forwarding_chan_info_opt = match id_option {
3063 None => { // unknown_next_peer
3064 // Note that this is likely a timing oracle for detecting whether an scid is a
3065 // phantom or an intercept.
3066 if (self.default_configuration.accept_intercept_htlcs &&
3067 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
3068 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
3072 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3075 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3077 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3078 let per_peer_state = self.per_peer_state.read().unwrap();
3079 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3080 if peer_state_mutex_opt.is_none() {
3081 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3083 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3084 let peer_state = &mut *peer_state_lock;
3085 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3086 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3089 // Channel was removed. The short_to_chan_info and channel_by_id maps
3090 // have no consistency guarantees.
3091 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3095 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3096 // Note that the behavior here should be identical to the above block - we
3097 // should NOT reveal the existence or non-existence of a private channel if
3098 // we don't allow forwards outbound over them.
3099 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3101 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3102 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3103 // "refuse to forward unless the SCID alias was used", so we pretend
3104 // we don't have the channel here.
3105 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3107 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3109 // Note that we could technically not return an error yet here and just hope
3110 // that the connection is reestablished or monitor updated by the time we get
3111 // around to doing the actual forward, but better to fail early if we can and
3112 // hopefully an attacker trying to path-trace payments cannot make this occur
3113 // on a small/per-node/per-channel scale.
3114 if !chan.context.is_live() { // channel_disabled
3115 // If the channel_update we're going to return is disabled (i.e. the
3116 // peer has been disabled for some time), return `channel_disabled`,
3117 // otherwise return `temporary_channel_failure`.
3118 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3119 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3121 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3124 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3125 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3127 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3128 break Some((err, code, chan_update_opt));
3135 let cur_height = self.best_block.read().unwrap().height() + 1;
3137 if let Err((err_msg, code)) = check_incoming_htlc_cltv(
3138 cur_height, outgoing_cltv_value, msg.cltv_expiry
3140 if code & 0x1000 != 0 && chan_update_opt.is_none() {
3141 // We really should set `incorrect_cltv_expiry` here but as we're not
3142 // forwarding over a real channel we can't generate a channel_update
3143 // for it. Instead we just return a generic temporary_node_failure.
3144 break Some((err_msg, 0x2000 | 2, None))
3146 let chan_update_opt = if code & 0x1000 != 0 { chan_update_opt } else { None };
3147 break Some((err_msg, code, chan_update_opt));
3153 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3154 if let Some(chan_update) = chan_update {
3155 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3156 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3158 else if code == 0x1000 | 13 {
3159 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3161 else if code == 0x1000 | 20 {
3162 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3163 0u16.write(&mut res).expect("Writes cannot fail");
3165 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3166 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3167 chan_update.write(&mut res).expect("Writes cannot fail");
3168 } else if code & 0x1000 == 0x1000 {
3169 // If we're trying to return an error that requires a `channel_update` but
3170 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3171 // generate an update), just use the generic "temporary_node_failure"
3175 return_err!(err, code, &res.0[..]);
3177 Ok((next_hop, shared_secret, Some(next_packet_pubkey)))
3180 fn construct_pending_htlc_status<'a>(
3181 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3182 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3183 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3184 ) -> PendingHTLCStatus {
3185 macro_rules! return_err {
3186 ($msg: expr, $err_code: expr, $data: expr) => {
3188 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3189 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3190 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3191 channel_id: msg.channel_id,
3192 htlc_id: msg.htlc_id,
3193 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3194 .get_encrypted_failure_packet(&shared_secret, &None),
3200 onion_utils::Hop::Receive(next_hop_data) => {
3202 let current_height: u32 = self.best_block.read().unwrap().height();
3203 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3204 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3205 current_height, self.default_configuration.accept_mpp_keysend)
3208 // Note that we could obviously respond immediately with an update_fulfill_htlc
3209 // message, however that would leak that we are the recipient of this payment, so
3210 // instead we stay symmetric with the forwarding case, only responding (after a
3211 // delay) once they've send us a commitment_signed!
3212 PendingHTLCStatus::Forward(info)
3214 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3217 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3218 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3219 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3220 Ok(info) => PendingHTLCStatus::Forward(info),
3221 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3227 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3228 /// public, and thus should be called whenever the result is going to be passed out in a
3229 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3231 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3232 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3233 /// storage and the `peer_state` lock has been dropped.
3235 /// [`channel_update`]: msgs::ChannelUpdate
3236 /// [`internal_closing_signed`]: Self::internal_closing_signed
3237 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3238 if !chan.context.should_announce() {
3239 return Err(LightningError {
3240 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3241 action: msgs::ErrorAction::IgnoreError
3244 if chan.context.get_short_channel_id().is_none() {
3245 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3247 let logger = WithChannelContext::from(&self.logger, &chan.context);
3248 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3249 self.get_channel_update_for_unicast(chan)
3252 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3253 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3254 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3255 /// provided evidence that they know about the existence of the channel.
3257 /// Note that through [`internal_closing_signed`], this function is called without the
3258 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3259 /// removed from the storage and the `peer_state` lock has been dropped.
3261 /// [`channel_update`]: msgs::ChannelUpdate
3262 /// [`internal_closing_signed`]: Self::internal_closing_signed
3263 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3264 let logger = WithChannelContext::from(&self.logger, &chan.context);
3265 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
3266 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3267 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3271 self.get_channel_update_for_onion(short_channel_id, chan)
3274 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3275 let logger = WithChannelContext::from(&self.logger, &chan.context);
3276 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
3277 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3279 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3280 ChannelUpdateStatus::Enabled => true,
3281 ChannelUpdateStatus::DisabledStaged(_) => true,
3282 ChannelUpdateStatus::Disabled => false,
3283 ChannelUpdateStatus::EnabledStaged(_) => false,
3286 let unsigned = msgs::UnsignedChannelUpdate {
3287 chain_hash: self.chain_hash,
3289 timestamp: chan.context.get_update_time_counter(),
3290 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3291 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3292 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3293 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3294 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3295 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3296 excess_data: Vec::new(),
3298 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3299 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3300 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3302 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3304 Ok(msgs::ChannelUpdate {
3311 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3312 let _lck = self.total_consistency_lock.read().unwrap();
3313 self.send_payment_along_path(SendAlongPathArgs {
3314 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3319 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3320 let SendAlongPathArgs {
3321 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3324 // The top-level caller should hold the total_consistency_lock read lock.
3325 debug_assert!(self.total_consistency_lock.try_write().is_err());
3326 let prng_seed = self.entropy_source.get_secure_random_bytes();
3327 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3329 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
3330 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
3331 payment_hash, keysend_preimage, prng_seed
3333 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3334 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
3338 let err: Result<(), _> = loop {
3339 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3341 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3342 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
3343 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
3345 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3348 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
3350 "Attempting to send payment with payment hash {} along path with next hop {}",
3351 payment_hash, path.hops.first().unwrap().short_channel_id);
3353 let per_peer_state = self.per_peer_state.read().unwrap();
3354 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3355 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3356 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3357 let peer_state = &mut *peer_state_lock;
3358 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3359 match chan_phase_entry.get_mut() {
3360 ChannelPhase::Funded(chan) => {
3361 if !chan.context.is_live() {
3362 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3364 let funding_txo = chan.context.get_funding_txo().unwrap();
3365 let logger = WithChannelContext::from(&self.logger, &chan.context);
3366 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3367 htlc_cltv, HTLCSource::OutboundRoute {
3369 session_priv: session_priv.clone(),
3370 first_hop_htlc_msat: htlc_msat,
3372 }, onion_packet, None, &self.fee_estimator, &&logger);
3373 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3374 Some(monitor_update) => {
3375 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3377 // Note that MonitorUpdateInProgress here indicates (per function
3378 // docs) that we will resend the commitment update once monitor
3379 // updating completes. Therefore, we must return an error
3380 // indicating that it is unsafe to retry the payment wholesale,
3381 // which we do in the send_payment check for
3382 // MonitorUpdateInProgress, below.
3383 return Err(APIError::MonitorUpdateInProgress);
3391 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3394 // The channel was likely removed after we fetched the id from the
3395 // `short_to_chan_info` map, but before we successfully locked the
3396 // `channel_by_id` map.
3397 // This can occur as no consistency guarantees exists between the two maps.
3398 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3402 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3403 Ok(_) => unreachable!(),
3405 Err(APIError::ChannelUnavailable { err: e.err })
3410 /// Sends a payment along a given route.
3412 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3413 /// fields for more info.
3415 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3416 /// [`PeerManager::process_events`]).
3418 /// # Avoiding Duplicate Payments
3420 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3421 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3422 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3423 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3424 /// second payment with the same [`PaymentId`].
3426 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3427 /// tracking of payments, including state to indicate once a payment has completed. Because you
3428 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3429 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3430 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3432 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3433 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3434 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3435 /// [`ChannelManager::list_recent_payments`] for more information.
3437 /// # Possible Error States on [`PaymentSendFailure`]
3439 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3440 /// each entry matching the corresponding-index entry in the route paths, see
3441 /// [`PaymentSendFailure`] for more info.
3443 /// In general, a path may raise:
3444 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3445 /// node public key) is specified.
3446 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3447 /// closed, doesn't exist, or the peer is currently disconnected.
3448 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3449 /// relevant updates.
3451 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3452 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3453 /// different route unless you intend to pay twice!
3455 /// [`RouteHop`]: crate::routing::router::RouteHop
3456 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3457 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3458 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3459 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3460 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3461 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3462 let best_block_height = self.best_block.read().unwrap().height();
3463 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3464 self.pending_outbound_payments
3465 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3466 &self.entropy_source, &self.node_signer, best_block_height,
3467 |args| self.send_payment_along_path(args))
3470 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3471 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3472 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3473 let best_block_height = self.best_block.read().unwrap().height();
3474 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3475 self.pending_outbound_payments
3476 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3477 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3478 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3479 &self.pending_events, |args| self.send_payment_along_path(args))
3483 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3484 let best_block_height = self.best_block.read().unwrap().height();
3485 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3486 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3487 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3488 best_block_height, |args| self.send_payment_along_path(args))
3492 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3493 let best_block_height = self.best_block.read().unwrap().height();
3494 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3498 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3499 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3502 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3503 let best_block_height = self.best_block.read().unwrap().height();
3504 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3505 self.pending_outbound_payments
3506 .send_payment_for_bolt12_invoice(
3507 invoice, payment_id, &self.router, self.list_usable_channels(),
3508 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3509 best_block_height, &self.logger, &self.pending_events,
3510 |args| self.send_payment_along_path(args)
3514 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3515 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3516 /// retries are exhausted.
3518 /// # Event Generation
3520 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3521 /// as there are no remaining pending HTLCs for this payment.
3523 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3524 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3525 /// determine the ultimate status of a payment.
3527 /// # Requested Invoices
3529 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3530 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3531 /// and prevent any attempts at paying it once received. The other events may only be generated
3532 /// once the invoice has been received.
3534 /// # Restart Behavior
3536 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3537 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3538 /// [`Event::InvoiceRequestFailed`].
3540 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3541 pub fn abandon_payment(&self, payment_id: PaymentId) {
3542 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3543 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3546 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3547 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3548 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3549 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3550 /// never reach the recipient.
3552 /// See [`send_payment`] documentation for more details on the return value of this function
3553 /// and idempotency guarantees provided by the [`PaymentId`] key.
3555 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3556 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3558 /// [`send_payment`]: Self::send_payment
3559 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3560 let best_block_height = self.best_block.read().unwrap().height();
3561 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3562 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3563 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3564 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3567 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3568 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3570 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3573 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3574 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3575 let best_block_height = self.best_block.read().unwrap().height();
3576 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3577 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3578 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3579 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3580 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3583 /// Send a payment that is probing the given route for liquidity. We calculate the
3584 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3585 /// us to easily discern them from real payments.
3586 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3587 let best_block_height = self.best_block.read().unwrap().height();
3588 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3589 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3590 &self.entropy_source, &self.node_signer, best_block_height,
3591 |args| self.send_payment_along_path(args))
3594 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3597 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3598 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3601 /// Sends payment probes over all paths of a route that would be used to pay the given
3602 /// amount to the given `node_id`.
3604 /// See [`ChannelManager::send_preflight_probes`] for more information.
3605 pub fn send_spontaneous_preflight_probes(
3606 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3607 liquidity_limit_multiplier: Option<u64>,
3608 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3609 let payment_params =
3610 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3612 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3614 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3617 /// Sends payment probes over all paths of a route that would be used to pay a route found
3618 /// according to the given [`RouteParameters`].
3620 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3621 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3622 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3623 /// confirmation in a wallet UI.
3625 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3626 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3627 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3628 /// payment. To mitigate this issue, channels with available liquidity less than the required
3629 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3630 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3631 pub fn send_preflight_probes(
3632 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3633 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3634 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3636 let payer = self.get_our_node_id();
3637 let usable_channels = self.list_usable_channels();
3638 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3639 let inflight_htlcs = self.compute_inflight_htlcs();
3643 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3645 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3646 ProbeSendFailure::RouteNotFound
3649 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3651 let mut res = Vec::new();
3653 for mut path in route.paths {
3654 // If the last hop is probably an unannounced channel we refrain from probing all the
3655 // way through to the end and instead probe up to the second-to-last channel.
3656 while let Some(last_path_hop) = path.hops.last() {
3657 if last_path_hop.maybe_announced_channel {
3658 // We found a potentially announced last hop.
3661 // Drop the last hop, as it's likely unannounced.
3664 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3665 last_path_hop.short_channel_id
3667 let final_value_msat = path.final_value_msat();
3669 if let Some(new_last) = path.hops.last_mut() {
3670 new_last.fee_msat += final_value_msat;
3675 if path.hops.len() < 2 {
3678 "Skipped sending payment probe over path with less than two hops."
3683 if let Some(first_path_hop) = path.hops.first() {
3684 if let Some(first_hop) = first_hops.iter().find(|h| {
3685 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3687 let path_value = path.final_value_msat() + path.fee_msat();
3688 let used_liquidity =
3689 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3691 if first_hop.next_outbound_htlc_limit_msat
3692 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3694 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3697 *used_liquidity += path_value;
3702 res.push(self.send_probe(path).map_err(|e| {
3703 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3704 ProbeSendFailure::SendingFailed(e)
3711 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3712 /// which checks the correctness of the funding transaction given the associated channel.
3713 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3714 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3715 mut find_funding_output: FundingOutput,
3716 ) -> Result<(), APIError> {
3717 let per_peer_state = self.per_peer_state.read().unwrap();
3718 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3719 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3721 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3722 let peer_state = &mut *peer_state_lock;
3723 let (chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3724 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
3725 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3727 let logger = WithChannelContext::from(&self.logger, &chan.context);
3728 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger)
3729 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3730 let channel_id = chan.context.channel_id();
3731 let user_id = chan.context.get_user_id();
3732 let shutdown_res = chan.context.force_shutdown(false);
3733 let channel_capacity = chan.context.get_value_satoshis();
3734 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3735 } else { unreachable!(); });
3737 Ok(funding_msg) => (chan, funding_msg),
3738 Err((chan, err)) => {
3739 mem::drop(peer_state_lock);
3740 mem::drop(per_peer_state);
3741 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3742 return Err(APIError::ChannelUnavailable {
3743 err: "Signer refused to sign the initial commitment transaction".to_owned()
3749 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3750 return Err(APIError::APIMisuseError {
3752 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3753 temporary_channel_id, counterparty_node_id),
3756 None => return Err(APIError::ChannelUnavailable {err: format!(
3757 "Channel with id {} not found for the passed counterparty node_id {}",
3758 temporary_channel_id, counterparty_node_id),
3762 if let Some(msg) = msg_opt {
3763 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3764 node_id: chan.context.get_counterparty_node_id(),
3768 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3769 hash_map::Entry::Occupied(_) => {
3770 panic!("Generated duplicate funding txid?");
3772 hash_map::Entry::Vacant(e) => {
3773 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3774 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3775 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3777 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
3784 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3785 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3786 Ok(OutPoint { txid: tx.txid(), index: output_index })
3790 /// Call this upon creation of a funding transaction for the given channel.
3792 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3793 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3795 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3796 /// across the p2p network.
3798 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3799 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3801 /// May panic if the output found in the funding transaction is duplicative with some other
3802 /// channel (note that this should be trivially prevented by using unique funding transaction
3803 /// keys per-channel).
3805 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3806 /// counterparty's signature the funding transaction will automatically be broadcast via the
3807 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3809 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3810 /// not currently support replacing a funding transaction on an existing channel. Instead,
3811 /// create a new channel with a conflicting funding transaction.
3813 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3814 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3815 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3816 /// for more details.
3818 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3819 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3820 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3821 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3824 /// Call this upon creation of a batch funding transaction for the given channels.
3826 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3827 /// each individual channel and transaction output.
3829 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3830 /// will only be broadcast when we have safely received and persisted the counterparty's
3831 /// signature for each channel.
3833 /// If there is an error, all channels in the batch are to be considered closed.
3834 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3835 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3836 let mut result = Ok(());
3838 if !funding_transaction.is_coin_base() {
3839 for inp in funding_transaction.input.iter() {
3840 if inp.witness.is_empty() {
3841 result = result.and(Err(APIError::APIMisuseError {
3842 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3847 if funding_transaction.output.len() > u16::max_value() as usize {
3848 result = result.and(Err(APIError::APIMisuseError {
3849 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3853 let height = self.best_block.read().unwrap().height();
3854 // Transactions are evaluated as final by network mempools if their locktime is strictly
3855 // lower than the next block height. However, the modules constituting our Lightning
3856 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3857 // module is ahead of LDK, only allow one more block of headroom.
3858 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
3859 funding_transaction.lock_time.is_block_height() &&
3860 funding_transaction.lock_time.to_consensus_u32() > height + 1
3862 result = result.and(Err(APIError::APIMisuseError {
3863 err: "Funding transaction absolute timelock is non-final".to_owned()
3868 let txid = funding_transaction.txid();
3869 let is_batch_funding = temporary_channels.len() > 1;
3870 let mut funding_batch_states = if is_batch_funding {
3871 Some(self.funding_batch_states.lock().unwrap())
3875 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3876 match states.entry(txid) {
3877 btree_map::Entry::Occupied(_) => {
3878 result = result.clone().and(Err(APIError::APIMisuseError {
3879 err: "Batch funding transaction with the same txid already exists".to_owned()
3883 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3886 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3887 result = result.and_then(|_| self.funding_transaction_generated_intern(
3888 temporary_channel_id,
3889 counterparty_node_id,
3890 funding_transaction.clone(),
3893 let mut output_index = None;
3894 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3895 for (idx, outp) in tx.output.iter().enumerate() {
3896 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3897 if output_index.is_some() {
3898 return Err(APIError::APIMisuseError {
3899 err: "Multiple outputs matched the expected script and value".to_owned()
3902 output_index = Some(idx as u16);
3905 if output_index.is_none() {
3906 return Err(APIError::APIMisuseError {
3907 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3910 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3911 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
3912 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
3918 if let Err(ref e) = result {
3919 // Remaining channels need to be removed on any error.
3920 let e = format!("Error in transaction funding: {:?}", e);
3921 let mut channels_to_remove = Vec::new();
3922 channels_to_remove.extend(funding_batch_states.as_mut()
3923 .and_then(|states| states.remove(&txid))
3924 .into_iter().flatten()
3925 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
3927 channels_to_remove.extend(temporary_channels.iter()
3928 .map(|(&chan_id, &node_id)| (chan_id, node_id))
3930 let mut shutdown_results = Vec::new();
3932 let per_peer_state = self.per_peer_state.read().unwrap();
3933 for (channel_id, counterparty_node_id) in channels_to_remove {
3934 per_peer_state.get(&counterparty_node_id)
3935 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
3936 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
3938 update_maps_on_chan_removal!(self, &chan.context());
3939 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
3940 shutdown_results.push(chan.context_mut().force_shutdown(false));
3944 for shutdown_result in shutdown_results.drain(..) {
3945 self.finish_close_channel(shutdown_result);
3951 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3953 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3954 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3955 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3956 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3958 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3959 /// `counterparty_node_id` is provided.
3961 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3962 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3964 /// If an error is returned, none of the updates should be considered applied.
3966 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3967 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3968 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3969 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3970 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3971 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3972 /// [`APIMisuseError`]: APIError::APIMisuseError
3973 pub fn update_partial_channel_config(
3974 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
3975 ) -> Result<(), APIError> {
3976 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3977 return Err(APIError::APIMisuseError {
3978 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3982 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3983 let per_peer_state = self.per_peer_state.read().unwrap();
3984 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3985 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3986 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3987 let peer_state = &mut *peer_state_lock;
3988 for channel_id in channel_ids {
3989 if !peer_state.has_channel(channel_id) {
3990 return Err(APIError::ChannelUnavailable {
3991 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
3995 for channel_id in channel_ids {
3996 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
3997 let mut config = channel_phase.context().config();
3998 config.apply(config_update);
3999 if !channel_phase.context_mut().update_config(&config) {
4002 if let ChannelPhase::Funded(channel) = channel_phase {
4003 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4004 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4005 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4006 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4007 node_id: channel.context.get_counterparty_node_id(),
4014 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4015 debug_assert!(false);
4016 return Err(APIError::ChannelUnavailable {
4018 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4019 channel_id, counterparty_node_id),
4026 /// Atomically updates the [`ChannelConfig`] for the given channels.
4028 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4029 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4030 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4031 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4033 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4034 /// `counterparty_node_id` is provided.
4036 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4037 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4039 /// If an error is returned, none of the updates should be considered applied.
4041 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4042 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4043 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4044 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4045 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4046 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4047 /// [`APIMisuseError`]: APIError::APIMisuseError
4048 pub fn update_channel_config(
4049 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4050 ) -> Result<(), APIError> {
4051 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4054 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4055 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4057 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4058 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4060 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4061 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4062 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4063 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4064 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4066 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4067 /// you from forwarding more than you received. See
4068 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4071 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4074 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4075 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4076 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4077 // TODO: when we move to deciding the best outbound channel at forward time, only take
4078 // `next_node_id` and not `next_hop_channel_id`
4079 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4080 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4082 let next_hop_scid = {
4083 let peer_state_lock = self.per_peer_state.read().unwrap();
4084 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4085 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4086 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4087 let peer_state = &mut *peer_state_lock;
4088 match peer_state.channel_by_id.get(next_hop_channel_id) {
4089 Some(ChannelPhase::Funded(chan)) => {
4090 if !chan.context.is_usable() {
4091 return Err(APIError::ChannelUnavailable {
4092 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4095 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4097 Some(_) => return Err(APIError::ChannelUnavailable {
4098 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4099 next_hop_channel_id, next_node_id)
4102 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4103 next_hop_channel_id, next_node_id);
4104 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4105 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4106 return Err(APIError::ChannelUnavailable {
4113 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4114 .ok_or_else(|| APIError::APIMisuseError {
4115 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4118 let routing = match payment.forward_info.routing {
4119 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4120 PendingHTLCRouting::Forward {
4121 onion_packet, blinded, short_channel_id: next_hop_scid
4124 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4126 let skimmed_fee_msat =
4127 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4128 let pending_htlc_info = PendingHTLCInfo {
4129 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4130 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4133 let mut per_source_pending_forward = [(
4134 payment.prev_short_channel_id,
4135 payment.prev_funding_outpoint,
4136 payment.prev_user_channel_id,
4137 vec![(pending_htlc_info, payment.prev_htlc_id)]
4139 self.forward_htlcs(&mut per_source_pending_forward);
4143 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4144 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4146 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4149 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4150 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4151 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4153 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4154 .ok_or_else(|| APIError::APIMisuseError {
4155 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4158 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4159 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4160 short_channel_id: payment.prev_short_channel_id,
4161 user_channel_id: Some(payment.prev_user_channel_id),
4162 outpoint: payment.prev_funding_outpoint,
4163 htlc_id: payment.prev_htlc_id,
4164 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4165 phantom_shared_secret: None,
4166 blinded_failure: payment.forward_info.routing.blinded_failure(),
4169 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4170 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4171 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4172 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4177 /// Processes HTLCs which are pending waiting on random forward delay.
4179 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4180 /// Will likely generate further events.
4181 pub fn process_pending_htlc_forwards(&self) {
4182 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4184 let mut new_events = VecDeque::new();
4185 let mut failed_forwards = Vec::new();
4186 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4188 let mut forward_htlcs = HashMap::new();
4189 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4191 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4192 if short_chan_id != 0 {
4193 let mut forwarding_counterparty = None;
4194 macro_rules! forwarding_channel_not_found {
4196 for forward_info in pending_forwards.drain(..) {
4197 match forward_info {
4198 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4199 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4200 forward_info: PendingHTLCInfo {
4201 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4202 outgoing_cltv_value, ..
4205 macro_rules! failure_handler {
4206 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4207 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_funding_outpoint.to_channel_id()));
4208 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4210 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4211 short_channel_id: prev_short_channel_id,
4212 user_channel_id: Some(prev_user_channel_id),
4213 outpoint: prev_funding_outpoint,
4214 htlc_id: prev_htlc_id,
4215 incoming_packet_shared_secret: incoming_shared_secret,
4216 phantom_shared_secret: $phantom_ss,
4217 blinded_failure: routing.blinded_failure(),
4220 let reason = if $next_hop_unknown {
4221 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4223 HTLCDestination::FailedPayment{ payment_hash }
4226 failed_forwards.push((htlc_source, payment_hash,
4227 HTLCFailReason::reason($err_code, $err_data),
4233 macro_rules! fail_forward {
4234 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4236 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4240 macro_rules! failed_payment {
4241 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4243 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4247 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
4248 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4249 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4250 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4251 let next_hop = match onion_utils::decode_next_payment_hop(
4252 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4253 payment_hash, None, &self.node_signer
4256 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4257 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
4258 // In this scenario, the phantom would have sent us an
4259 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4260 // if it came from us (the second-to-last hop) but contains the sha256
4262 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4264 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4265 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4269 onion_utils::Hop::Receive(hop_data) => {
4270 let current_height: u32 = self.best_block.read().unwrap().height();
4271 match create_recv_pending_htlc_info(hop_data,
4272 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4273 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
4274 current_height, self.default_configuration.accept_mpp_keysend)
4276 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4277 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4283 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4286 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4289 HTLCForwardInfo::FailHTLC { .. } => {
4290 // Channel went away before we could fail it. This implies
4291 // the channel is now on chain and our counterparty is
4292 // trying to broadcast the HTLC-Timeout, but that's their
4293 // problem, not ours.
4299 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4300 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4301 Some((cp_id, chan_id)) => (cp_id, chan_id),
4303 forwarding_channel_not_found!();
4307 forwarding_counterparty = Some(counterparty_node_id);
4308 let per_peer_state = self.per_peer_state.read().unwrap();
4309 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4310 if peer_state_mutex_opt.is_none() {
4311 forwarding_channel_not_found!();
4314 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4315 let peer_state = &mut *peer_state_lock;
4316 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4317 let logger = WithChannelContext::from(&self.logger, &chan.context);
4318 for forward_info in pending_forwards.drain(..) {
4319 match forward_info {
4320 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4321 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4322 forward_info: PendingHTLCInfo {
4323 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4324 routing: PendingHTLCRouting::Forward {
4325 onion_packet, blinded, ..
4326 }, skimmed_fee_msat, ..
4329 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4330 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4331 short_channel_id: prev_short_channel_id,
4332 user_channel_id: Some(prev_user_channel_id),
4333 outpoint: prev_funding_outpoint,
4334 htlc_id: prev_htlc_id,
4335 incoming_packet_shared_secret: incoming_shared_secret,
4336 // Phantom payments are only PendingHTLCRouting::Receive.
4337 phantom_shared_secret: None,
4338 blinded_failure: blinded.map(|_| BlindedFailure::FromIntroductionNode),
4340 let next_blinding_point = blinded.and_then(|b| {
4341 let encrypted_tlvs_ss = self.node_signer.ecdh(
4342 Recipient::Node, &b.inbound_blinding_point, None
4343 ).unwrap().secret_bytes();
4344 onion_utils::next_hop_pubkey(
4345 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
4348 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4349 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4350 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
4353 if let ChannelError::Ignore(msg) = e {
4354 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4356 panic!("Stated return value requirements in send_htlc() were not met");
4358 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4359 failed_forwards.push((htlc_source, payment_hash,
4360 HTLCFailReason::reason(failure_code, data),
4361 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4366 HTLCForwardInfo::AddHTLC { .. } => {
4367 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4369 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4370 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4371 if let Err(e) = chan.queue_fail_htlc(
4372 htlc_id, err_packet, &&logger
4374 if let ChannelError::Ignore(msg) = e {
4375 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4377 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4379 // fail-backs are best-effort, we probably already have one
4380 // pending, and if not that's OK, if not, the channel is on
4381 // the chain and sending the HTLC-Timeout is their problem.
4388 forwarding_channel_not_found!();
4392 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4393 match forward_info {
4394 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4395 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4396 forward_info: PendingHTLCInfo {
4397 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4398 skimmed_fee_msat, ..
4401 let blinded_failure = routing.blinded_failure();
4402 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4403 PendingHTLCRouting::Receive {
4404 payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret,
4405 custom_tlvs, requires_blinded_error: _
4407 let _legacy_hop_data = Some(payment_data.clone());
4408 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4409 payment_metadata, custom_tlvs };
4410 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4411 Some(payment_data), phantom_shared_secret, onion_fields)
4413 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4414 let onion_fields = RecipientOnionFields {
4415 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4419 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4420 payment_data, None, onion_fields)
4423 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4426 let claimable_htlc = ClaimableHTLC {
4427 prev_hop: HTLCPreviousHopData {
4428 short_channel_id: prev_short_channel_id,
4429 user_channel_id: Some(prev_user_channel_id),
4430 outpoint: prev_funding_outpoint,
4431 htlc_id: prev_htlc_id,
4432 incoming_packet_shared_secret: incoming_shared_secret,
4433 phantom_shared_secret,
4436 // We differentiate the received value from the sender intended value
4437 // if possible so that we don't prematurely mark MPP payments complete
4438 // if routing nodes overpay
4439 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4440 sender_intended_value: outgoing_amt_msat,
4442 total_value_received: None,
4443 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4446 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4449 let mut committed_to_claimable = false;
4451 macro_rules! fail_htlc {
4452 ($htlc: expr, $payment_hash: expr) => {
4453 debug_assert!(!committed_to_claimable);
4454 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4455 htlc_msat_height_data.extend_from_slice(
4456 &self.best_block.read().unwrap().height().to_be_bytes(),
4458 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4459 short_channel_id: $htlc.prev_hop.short_channel_id,
4460 user_channel_id: $htlc.prev_hop.user_channel_id,
4461 outpoint: prev_funding_outpoint,
4462 htlc_id: $htlc.prev_hop.htlc_id,
4463 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4464 phantom_shared_secret,
4467 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4468 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4470 continue 'next_forwardable_htlc;
4473 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4474 let mut receiver_node_id = self.our_network_pubkey;
4475 if phantom_shared_secret.is_some() {
4476 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4477 .expect("Failed to get node_id for phantom node recipient");
4480 macro_rules! check_total_value {
4481 ($purpose: expr) => {{
4482 let mut payment_claimable_generated = false;
4483 let is_keysend = match $purpose {
4484 events::PaymentPurpose::SpontaneousPayment(_) => true,
4485 events::PaymentPurpose::InvoicePayment { .. } => false,
4487 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4488 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4489 fail_htlc!(claimable_htlc, payment_hash);
4491 let ref mut claimable_payment = claimable_payments.claimable_payments
4492 .entry(payment_hash)
4493 // Note that if we insert here we MUST NOT fail_htlc!()
4494 .or_insert_with(|| {
4495 committed_to_claimable = true;
4497 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4500 if $purpose != claimable_payment.purpose {
4501 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4502 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4503 fail_htlc!(claimable_htlc, payment_hash);
4505 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4506 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4507 fail_htlc!(claimable_htlc, payment_hash);
4509 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4510 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4511 fail_htlc!(claimable_htlc, payment_hash);
4514 claimable_payment.onion_fields = Some(onion_fields);
4516 let ref mut htlcs = &mut claimable_payment.htlcs;
4517 let mut total_value = claimable_htlc.sender_intended_value;
4518 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4519 for htlc in htlcs.iter() {
4520 total_value += htlc.sender_intended_value;
4521 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4522 if htlc.total_msat != claimable_htlc.total_msat {
4523 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4524 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4525 total_value = msgs::MAX_VALUE_MSAT;
4527 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4529 // The condition determining whether an MPP is complete must
4530 // match exactly the condition used in `timer_tick_occurred`
4531 if total_value >= msgs::MAX_VALUE_MSAT {
4532 fail_htlc!(claimable_htlc, payment_hash);
4533 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4534 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4536 fail_htlc!(claimable_htlc, payment_hash);
4537 } else if total_value >= claimable_htlc.total_msat {
4538 #[allow(unused_assignments)] {
4539 committed_to_claimable = true;
4541 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4542 htlcs.push(claimable_htlc);
4543 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4544 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4545 let counterparty_skimmed_fee_msat = htlcs.iter()
4546 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4547 debug_assert!(total_value.saturating_sub(amount_msat) <=
4548 counterparty_skimmed_fee_msat);
4549 new_events.push_back((events::Event::PaymentClaimable {
4550 receiver_node_id: Some(receiver_node_id),
4554 counterparty_skimmed_fee_msat,
4555 via_channel_id: Some(prev_channel_id),
4556 via_user_channel_id: Some(prev_user_channel_id),
4557 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4558 onion_fields: claimable_payment.onion_fields.clone(),
4560 payment_claimable_generated = true;
4562 // Nothing to do - we haven't reached the total
4563 // payment value yet, wait until we receive more
4565 htlcs.push(claimable_htlc);
4566 #[allow(unused_assignments)] {
4567 committed_to_claimable = true;
4570 payment_claimable_generated
4574 // Check that the payment hash and secret are known. Note that we
4575 // MUST take care to handle the "unknown payment hash" and
4576 // "incorrect payment secret" cases here identically or we'd expose
4577 // that we are the ultimate recipient of the given payment hash.
4578 // Further, we must not expose whether we have any other HTLCs
4579 // associated with the same payment_hash pending or not.
4580 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4581 match payment_secrets.entry(payment_hash) {
4582 hash_map::Entry::Vacant(_) => {
4583 match claimable_htlc.onion_payload {
4584 OnionPayload::Invoice { .. } => {
4585 let payment_data = payment_data.unwrap();
4586 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4587 Ok(result) => result,
4589 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4590 fail_htlc!(claimable_htlc, payment_hash);
4593 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4594 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4595 if (cltv_expiry as u64) < expected_min_expiry_height {
4596 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4597 &payment_hash, cltv_expiry, expected_min_expiry_height);
4598 fail_htlc!(claimable_htlc, payment_hash);
4601 let purpose = events::PaymentPurpose::InvoicePayment {
4602 payment_preimage: payment_preimage.clone(),
4603 payment_secret: payment_data.payment_secret,
4605 check_total_value!(purpose);
4607 OnionPayload::Spontaneous(preimage) => {
4608 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4609 check_total_value!(purpose);
4613 hash_map::Entry::Occupied(inbound_payment) => {
4614 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4615 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4616 fail_htlc!(claimable_htlc, payment_hash);
4618 let payment_data = payment_data.unwrap();
4619 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4620 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4621 fail_htlc!(claimable_htlc, payment_hash);
4622 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4623 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4624 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4625 fail_htlc!(claimable_htlc, payment_hash);
4627 let purpose = events::PaymentPurpose::InvoicePayment {
4628 payment_preimage: inbound_payment.get().payment_preimage,
4629 payment_secret: payment_data.payment_secret,
4631 let payment_claimable_generated = check_total_value!(purpose);
4632 if payment_claimable_generated {
4633 inbound_payment.remove_entry();
4639 HTLCForwardInfo::FailHTLC { .. } => {
4640 panic!("Got pending fail of our own HTLC");
4648 let best_block_height = self.best_block.read().unwrap().height();
4649 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4650 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4651 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4653 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4654 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4656 self.forward_htlcs(&mut phantom_receives);
4658 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4659 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4660 // nice to do the work now if we can rather than while we're trying to get messages in the
4662 self.check_free_holding_cells();
4664 if new_events.is_empty() { return }
4665 let mut events = self.pending_events.lock().unwrap();
4666 events.append(&mut new_events);
4669 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4671 /// Expects the caller to have a total_consistency_lock read lock.
4672 fn process_background_events(&self) -> NotifyOption {
4673 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4675 self.background_events_processed_since_startup.store(true, Ordering::Release);
4677 let mut background_events = Vec::new();
4678 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4679 if background_events.is_empty() {
4680 return NotifyOption::SkipPersistNoEvents;
4683 for event in background_events.drain(..) {
4685 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4686 // The channel has already been closed, so no use bothering to care about the
4687 // monitor updating completing.
4688 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4690 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4691 let mut updated_chan = false;
4693 let per_peer_state = self.per_peer_state.read().unwrap();
4694 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4695 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4696 let peer_state = &mut *peer_state_lock;
4697 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4698 hash_map::Entry::Occupied(mut chan_phase) => {
4699 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4700 updated_chan = true;
4701 handle_new_monitor_update!(self, funding_txo, update.clone(),
4702 peer_state_lock, peer_state, per_peer_state, chan);
4704 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4707 hash_map::Entry::Vacant(_) => {},
4712 // TODO: Track this as in-flight even though the channel is closed.
4713 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4716 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4717 let per_peer_state = self.per_peer_state.read().unwrap();
4718 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4719 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4720 let peer_state = &mut *peer_state_lock;
4721 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4722 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4724 let update_actions = peer_state.monitor_update_blocked_actions
4725 .remove(&channel_id).unwrap_or(Vec::new());
4726 mem::drop(peer_state_lock);
4727 mem::drop(per_peer_state);
4728 self.handle_monitor_update_completion_actions(update_actions);
4734 NotifyOption::DoPersist
4737 #[cfg(any(test, feature = "_test_utils"))]
4738 /// Process background events, for functional testing
4739 pub fn test_process_background_events(&self) {
4740 let _lck = self.total_consistency_lock.read().unwrap();
4741 let _ = self.process_background_events();
4744 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4745 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4747 let logger = WithChannelContext::from(&self.logger, &chan.context);
4749 // If the feerate has decreased by less than half, don't bother
4750 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4751 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4752 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4753 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4755 return NotifyOption::SkipPersistNoEvents;
4757 if !chan.context.is_live() {
4758 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4759 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4760 return NotifyOption::SkipPersistNoEvents;
4762 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
4763 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4765 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
4766 NotifyOption::DoPersist
4770 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4771 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4772 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4773 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4774 pub fn maybe_update_chan_fees(&self) {
4775 PersistenceNotifierGuard::optionally_notify(self, || {
4776 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4778 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4779 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4781 let per_peer_state = self.per_peer_state.read().unwrap();
4782 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4783 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4784 let peer_state = &mut *peer_state_lock;
4785 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4786 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4788 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4793 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4794 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4802 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4804 /// This currently includes:
4805 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4806 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4807 /// than a minute, informing the network that they should no longer attempt to route over
4809 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4810 /// with the current [`ChannelConfig`].
4811 /// * Removing peers which have disconnected but and no longer have any channels.
4812 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4813 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4814 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4815 /// The latter is determined using the system clock in `std` and the highest seen block time
4816 /// minus two hours in `no-std`.
4818 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4819 /// estimate fetches.
4821 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4822 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4823 pub fn timer_tick_occurred(&self) {
4824 PersistenceNotifierGuard::optionally_notify(self, || {
4825 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4827 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4828 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4830 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4831 let mut timed_out_mpp_htlcs = Vec::new();
4832 let mut pending_peers_awaiting_removal = Vec::new();
4833 let mut shutdown_channels = Vec::new();
4835 let mut process_unfunded_channel_tick = |
4836 chan_id: &ChannelId,
4837 context: &mut ChannelContext<SP>,
4838 unfunded_context: &mut UnfundedChannelContext,
4839 pending_msg_events: &mut Vec<MessageSendEvent>,
4840 counterparty_node_id: PublicKey,
4842 context.maybe_expire_prev_config();
4843 if unfunded_context.should_expire_unfunded_channel() {
4844 let logger = WithChannelContext::from(&self.logger, context);
4846 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4847 update_maps_on_chan_removal!(self, &context);
4848 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4849 shutdown_channels.push(context.force_shutdown(false));
4850 pending_msg_events.push(MessageSendEvent::HandleError {
4851 node_id: counterparty_node_id,
4852 action: msgs::ErrorAction::SendErrorMessage {
4853 msg: msgs::ErrorMessage {
4854 channel_id: *chan_id,
4855 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4866 let per_peer_state = self.per_peer_state.read().unwrap();
4867 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4868 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4869 let peer_state = &mut *peer_state_lock;
4870 let pending_msg_events = &mut peer_state.pending_msg_events;
4871 let counterparty_node_id = *counterparty_node_id;
4872 peer_state.channel_by_id.retain(|chan_id, phase| {
4874 ChannelPhase::Funded(chan) => {
4875 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4880 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4881 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4883 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4884 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4885 handle_errors.push((Err(err), counterparty_node_id));
4886 if needs_close { return false; }
4889 match chan.channel_update_status() {
4890 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4891 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4892 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4893 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4894 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4895 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4896 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4898 if n >= DISABLE_GOSSIP_TICKS {
4899 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4900 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4901 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4905 should_persist = NotifyOption::DoPersist;
4907 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4910 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4912 if n >= ENABLE_GOSSIP_TICKS {
4913 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4914 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4915 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4919 should_persist = NotifyOption::DoPersist;
4921 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4927 chan.context.maybe_expire_prev_config();
4929 if chan.should_disconnect_peer_awaiting_response() {
4930 let logger = WithChannelContext::from(&self.logger, &chan.context);
4931 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
4932 counterparty_node_id, chan_id);
4933 pending_msg_events.push(MessageSendEvent::HandleError {
4934 node_id: counterparty_node_id,
4935 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4936 msg: msgs::WarningMessage {
4937 channel_id: *chan_id,
4938 data: "Disconnecting due to timeout awaiting response".to_owned(),
4946 ChannelPhase::UnfundedInboundV1(chan) => {
4947 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4948 pending_msg_events, counterparty_node_id)
4950 ChannelPhase::UnfundedOutboundV1(chan) => {
4951 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4952 pending_msg_events, counterparty_node_id)
4957 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4958 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4959 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
4960 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
4961 peer_state.pending_msg_events.push(
4962 events::MessageSendEvent::HandleError {
4963 node_id: counterparty_node_id,
4964 action: msgs::ErrorAction::SendErrorMessage {
4965 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4971 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4973 if peer_state.ok_to_remove(true) {
4974 pending_peers_awaiting_removal.push(counterparty_node_id);
4979 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4980 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4981 // of to that peer is later closed while still being disconnected (i.e. force closed),
4982 // we therefore need to remove the peer from `peer_state` separately.
4983 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4984 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4985 // negative effects on parallelism as much as possible.
4986 if pending_peers_awaiting_removal.len() > 0 {
4987 let mut per_peer_state = self.per_peer_state.write().unwrap();
4988 for counterparty_node_id in pending_peers_awaiting_removal {
4989 match per_peer_state.entry(counterparty_node_id) {
4990 hash_map::Entry::Occupied(entry) => {
4991 // Remove the entry if the peer is still disconnected and we still
4992 // have no channels to the peer.
4993 let remove_entry = {
4994 let peer_state = entry.get().lock().unwrap();
4995 peer_state.ok_to_remove(true)
4998 entry.remove_entry();
5001 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5006 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5007 if payment.htlcs.is_empty() {
5008 // This should be unreachable
5009 debug_assert!(false);
5012 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5013 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5014 // In this case we're not going to handle any timeouts of the parts here.
5015 // This condition determining whether the MPP is complete here must match
5016 // exactly the condition used in `process_pending_htlc_forwards`.
5017 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5018 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5021 } else if payment.htlcs.iter_mut().any(|htlc| {
5022 htlc.timer_ticks += 1;
5023 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5025 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5026 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5033 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5034 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5035 let reason = HTLCFailReason::from_failure_code(23);
5036 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5037 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5040 for (err, counterparty_node_id) in handle_errors.drain(..) {
5041 let _ = handle_error!(self, err, counterparty_node_id);
5044 for shutdown_res in shutdown_channels {
5045 self.finish_close_channel(shutdown_res);
5048 #[cfg(feature = "std")]
5049 let duration_since_epoch = std::time::SystemTime::now()
5050 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5051 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5052 #[cfg(not(feature = "std"))]
5053 let duration_since_epoch = Duration::from_secs(
5054 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5057 self.pending_outbound_payments.remove_stale_payments(
5058 duration_since_epoch, &self.pending_events
5061 // Technically we don't need to do this here, but if we have holding cell entries in a
5062 // channel that need freeing, it's better to do that here and block a background task
5063 // than block the message queueing pipeline.
5064 if self.check_free_holding_cells() {
5065 should_persist = NotifyOption::DoPersist;
5072 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5073 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5074 /// along the path (including in our own channel on which we received it).
5076 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5077 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5078 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5079 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5081 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5082 /// [`ChannelManager::claim_funds`]), you should still monitor for
5083 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5084 /// startup during which time claims that were in-progress at shutdown may be replayed.
5085 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5086 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5089 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5090 /// reason for the failure.
5092 /// See [`FailureCode`] for valid failure codes.
5093 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5094 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5096 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5097 if let Some(payment) = removed_source {
5098 for htlc in payment.htlcs {
5099 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5100 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5101 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5102 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5107 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5108 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5109 match failure_code {
5110 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5111 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5112 FailureCode::IncorrectOrUnknownPaymentDetails => {
5113 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5114 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5115 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5117 FailureCode::InvalidOnionPayload(data) => {
5118 let fail_data = match data {
5119 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5122 HTLCFailReason::reason(failure_code.into(), fail_data)
5127 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5128 /// that we want to return and a channel.
5130 /// This is for failures on the channel on which the HTLC was *received*, not failures
5132 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5133 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5134 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5135 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5136 // an inbound SCID alias before the real SCID.
5137 let scid_pref = if chan.context.should_announce() {
5138 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5140 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5142 if let Some(scid) = scid_pref {
5143 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5145 (0x4000|10, Vec::new())
5150 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5151 /// that we want to return and a channel.
5152 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5153 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5154 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5155 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5156 if desired_err_code == 0x1000 | 20 {
5157 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5158 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5159 0u16.write(&mut enc).expect("Writes cannot fail");
5161 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5162 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5163 upd.write(&mut enc).expect("Writes cannot fail");
5164 (desired_err_code, enc.0)
5166 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5167 // which means we really shouldn't have gotten a payment to be forwarded over this
5168 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5169 // PERM|no_such_channel should be fine.
5170 (0x4000|10, Vec::new())
5174 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5175 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5176 // be surfaced to the user.
5177 fn fail_holding_cell_htlcs(
5178 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5179 counterparty_node_id: &PublicKey
5181 let (failure_code, onion_failure_data) = {
5182 let per_peer_state = self.per_peer_state.read().unwrap();
5183 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5184 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5185 let peer_state = &mut *peer_state_lock;
5186 match peer_state.channel_by_id.entry(channel_id) {
5187 hash_map::Entry::Occupied(chan_phase_entry) => {
5188 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5189 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5191 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5192 debug_assert!(false);
5193 (0x4000|10, Vec::new())
5196 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5198 } else { (0x4000|10, Vec::new()) }
5201 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5202 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5203 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5204 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5208 /// Fails an HTLC backwards to the sender of it to us.
5209 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5210 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5211 // Ensure that no peer state channel storage lock is held when calling this function.
5212 // This ensures that future code doesn't introduce a lock-order requirement for
5213 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5214 // this function with any `per_peer_state` peer lock acquired would.
5215 #[cfg(debug_assertions)]
5216 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5217 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5220 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5221 //identify whether we sent it or not based on the (I presume) very different runtime
5222 //between the branches here. We should make this async and move it into the forward HTLCs
5225 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5226 // from block_connected which may run during initialization prior to the chain_monitor
5227 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5229 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5230 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5231 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5232 &self.pending_events, &self.logger)
5233 { self.push_pending_forwards_ev(); }
5235 HTLCSource::PreviousHopData(HTLCPreviousHopData {
5236 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
5237 ref phantom_shared_secret, ref outpoint, ref blinded_failure, ..
5240 WithContext::from(&self.logger, None, Some(outpoint.to_channel_id())),
5241 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
5242 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
5244 let err_packet = match blinded_failure {
5245 Some(BlindedFailure::FromIntroductionNode) => {
5246 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
5247 blinded_onion_error.get_encrypted_failure_packet(
5248 incoming_packet_shared_secret, phantom_shared_secret
5251 Some(BlindedFailure::FromBlindedNode) => todo!(),
5253 onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret)
5257 let mut push_forward_ev = false;
5258 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5259 if forward_htlcs.is_empty() {
5260 push_forward_ev = true;
5262 match forward_htlcs.entry(*short_channel_id) {
5263 hash_map::Entry::Occupied(mut entry) => {
5264 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5266 hash_map::Entry::Vacant(entry) => {
5267 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5270 mem::drop(forward_htlcs);
5271 if push_forward_ev { self.push_pending_forwards_ev(); }
5272 let mut pending_events = self.pending_events.lock().unwrap();
5273 pending_events.push_back((events::Event::HTLCHandlingFailed {
5274 prev_channel_id: outpoint.to_channel_id(),
5275 failed_next_destination: destination,
5281 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5282 /// [`MessageSendEvent`]s needed to claim the payment.
5284 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5285 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5286 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5287 /// successful. It will generally be available in the next [`process_pending_events`] call.
5289 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5290 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5291 /// event matches your expectation. If you fail to do so and call this method, you may provide
5292 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5294 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5295 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5296 /// [`claim_funds_with_known_custom_tlvs`].
5298 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5299 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5300 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5301 /// [`process_pending_events`]: EventsProvider::process_pending_events
5302 /// [`create_inbound_payment`]: Self::create_inbound_payment
5303 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5304 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5305 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5306 self.claim_payment_internal(payment_preimage, false);
5309 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5310 /// even type numbers.
5314 /// You MUST check you've understood all even TLVs before using this to
5315 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5317 /// [`claim_funds`]: Self::claim_funds
5318 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5319 self.claim_payment_internal(payment_preimage, true);
5322 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5323 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
5325 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5328 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5329 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5330 let mut receiver_node_id = self.our_network_pubkey;
5331 for htlc in payment.htlcs.iter() {
5332 if htlc.prev_hop.phantom_shared_secret.is_some() {
5333 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5334 .expect("Failed to get node_id for phantom node recipient");
5335 receiver_node_id = phantom_pubkey;
5340 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5341 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5342 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5343 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5344 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5346 if dup_purpose.is_some() {
5347 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5348 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5352 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5353 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5354 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5355 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5356 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5357 mem::drop(claimable_payments);
5358 for htlc in payment.htlcs {
5359 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5360 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5361 let receiver = HTLCDestination::FailedPayment { payment_hash };
5362 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5371 debug_assert!(!sources.is_empty());
5373 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5374 // and when we got here we need to check that the amount we're about to claim matches the
5375 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5376 // the MPP parts all have the same `total_msat`.
5377 let mut claimable_amt_msat = 0;
5378 let mut prev_total_msat = None;
5379 let mut expected_amt_msat = None;
5380 let mut valid_mpp = true;
5381 let mut errs = Vec::new();
5382 let per_peer_state = self.per_peer_state.read().unwrap();
5383 for htlc in sources.iter() {
5384 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5385 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5386 debug_assert!(false);
5390 prev_total_msat = Some(htlc.total_msat);
5392 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5393 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5394 debug_assert!(false);
5398 expected_amt_msat = htlc.total_value_received;
5399 claimable_amt_msat += htlc.value;
5401 mem::drop(per_peer_state);
5402 if sources.is_empty() || expected_amt_msat.is_none() {
5403 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5404 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5407 if claimable_amt_msat != expected_amt_msat.unwrap() {
5408 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5409 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5410 expected_amt_msat.unwrap(), claimable_amt_msat);
5414 for htlc in sources.drain(..) {
5415 let prev_hop_chan_id = htlc.prev_hop.outpoint.to_channel_id();
5416 if let Err((pk, err)) = self.claim_funds_from_hop(
5417 htlc.prev_hop, payment_preimage,
5418 |_, definitely_duplicate| {
5419 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5420 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5423 if let msgs::ErrorAction::IgnoreError = err.err.action {
5424 // We got a temporary failure updating monitor, but will claim the
5425 // HTLC when the monitor updating is restored (or on chain).
5426 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
5427 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5428 } else { errs.push((pk, err)); }
5433 for htlc in sources.drain(..) {
5434 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5435 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5436 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5437 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5438 let receiver = HTLCDestination::FailedPayment { payment_hash };
5439 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5441 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5444 // Now we can handle any errors which were generated.
5445 for (counterparty_node_id, err) in errs.drain(..) {
5446 let res: Result<(), _> = Err(err);
5447 let _ = handle_error!(self, res, counterparty_node_id);
5451 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5452 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5453 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5454 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5456 // If we haven't yet run background events assume we're still deserializing and shouldn't
5457 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5458 // `BackgroundEvent`s.
5459 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5461 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5462 // the required mutexes are not held before we start.
5463 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5464 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5467 let per_peer_state = self.per_peer_state.read().unwrap();
5468 let chan_id = prev_hop.outpoint.to_channel_id();
5469 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5470 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5474 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5475 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5476 .map(|peer_mutex| peer_mutex.lock().unwrap())
5479 if peer_state_opt.is_some() {
5480 let mut peer_state_lock = peer_state_opt.unwrap();
5481 let peer_state = &mut *peer_state_lock;
5482 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5483 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5484 let counterparty_node_id = chan.context.get_counterparty_node_id();
5485 let logger = WithChannelContext::from(&self.logger, &chan.context);
5486 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
5489 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5490 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5491 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
5493 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5496 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5497 peer_state, per_peer_state, chan);
5499 // If we're running during init we cannot update a monitor directly -
5500 // they probably haven't actually been loaded yet. Instead, push the
5501 // monitor update as a background event.
5502 self.pending_background_events.lock().unwrap().push(
5503 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5504 counterparty_node_id,
5505 funding_txo: prev_hop.outpoint,
5506 update: monitor_update.clone(),
5510 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5511 let action = if let Some(action) = completion_action(None, true) {
5516 mem::drop(peer_state_lock);
5518 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5520 let (node_id, funding_outpoint, blocker) =
5521 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5522 downstream_counterparty_node_id: node_id,
5523 downstream_funding_outpoint: funding_outpoint,
5524 blocking_action: blocker,
5526 (node_id, funding_outpoint, blocker)
5528 debug_assert!(false,
5529 "Duplicate claims should always free another channel immediately");
5532 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5533 let mut peer_state = peer_state_mtx.lock().unwrap();
5534 if let Some(blockers) = peer_state
5535 .actions_blocking_raa_monitor_updates
5536 .get_mut(&funding_outpoint.to_channel_id())
5538 let mut found_blocker = false;
5539 blockers.retain(|iter| {
5540 // Note that we could actually be blocked, in
5541 // which case we need to only remove the one
5542 // blocker which was added duplicatively.
5543 let first_blocker = !found_blocker;
5544 if *iter == blocker { found_blocker = true; }
5545 *iter != blocker || !first_blocker
5547 debug_assert!(found_blocker);
5550 debug_assert!(false);
5559 let preimage_update = ChannelMonitorUpdate {
5560 update_id: CLOSED_CHANNEL_UPDATE_ID,
5561 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5567 // We update the ChannelMonitor on the backward link, after
5568 // receiving an `update_fulfill_htlc` from the forward link.
5569 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5570 if update_res != ChannelMonitorUpdateStatus::Completed {
5571 // TODO: This needs to be handled somehow - if we receive a monitor update
5572 // with a preimage we *must* somehow manage to propagate it to the upstream
5573 // channel, or we must have an ability to receive the same event and try
5574 // again on restart.
5575 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.outpoint.to_channel_id())), "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5576 payment_preimage, update_res);
5579 // If we're running during init we cannot update a monitor directly - they probably
5580 // haven't actually been loaded yet. Instead, push the monitor update as a background
5582 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5583 // channel is already closed) we need to ultimately handle the monitor update
5584 // completion action only after we've completed the monitor update. This is the only
5585 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5586 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5587 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5588 // complete the monitor update completion action from `completion_action`.
5589 self.pending_background_events.lock().unwrap().push(
5590 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5591 prev_hop.outpoint, preimage_update,
5594 // Note that we do process the completion action here. This totally could be a
5595 // duplicate claim, but we have no way of knowing without interrogating the
5596 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5597 // generally always allowed to be duplicative (and it's specifically noted in
5598 // `PaymentForwarded`).
5599 self.handle_monitor_update_completion_actions(completion_action(None, false));
5603 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5604 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5607 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5608 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5609 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5612 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5613 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5614 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5615 if let Some(pubkey) = next_channel_counterparty_node_id {
5616 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5618 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5619 channel_funding_outpoint: next_channel_outpoint,
5620 counterparty_node_id: path.hops[0].pubkey,
5622 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5623 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5626 HTLCSource::PreviousHopData(hop_data) => {
5627 let prev_outpoint = hop_data.outpoint;
5628 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5629 #[cfg(debug_assertions)]
5630 let claiming_chan_funding_outpoint = hop_data.outpoint;
5631 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5632 |htlc_claim_value_msat, definitely_duplicate| {
5633 let chan_to_release =
5634 if let Some(node_id) = next_channel_counterparty_node_id {
5635 Some((node_id, next_channel_outpoint, completed_blocker))
5637 // We can only get `None` here if we are processing a
5638 // `ChannelMonitor`-originated event, in which case we
5639 // don't care about ensuring we wake the downstream
5640 // channel's monitor updating - the channel is already
5645 if definitely_duplicate && startup_replay {
5646 // On startup we may get redundant claims which are related to
5647 // monitor updates still in flight. In that case, we shouldn't
5648 // immediately free, but instead let that monitor update complete
5649 // in the background.
5650 #[cfg(debug_assertions)] {
5651 let background_events = self.pending_background_events.lock().unwrap();
5652 // There should be a `BackgroundEvent` pending...
5653 assert!(background_events.iter().any(|ev| {
5655 // to apply a monitor update that blocked the claiming channel,
5656 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5657 funding_txo, update, ..
5659 if *funding_txo == claiming_chan_funding_outpoint {
5660 assert!(update.updates.iter().any(|upd|
5661 if let ChannelMonitorUpdateStep::PaymentPreimage {
5662 payment_preimage: update_preimage
5664 payment_preimage == *update_preimage
5670 // or the channel we'd unblock is already closed,
5671 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5672 (funding_txo, monitor_update)
5674 if *funding_txo == next_channel_outpoint {
5675 assert_eq!(monitor_update.updates.len(), 1);
5677 monitor_update.updates[0],
5678 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5683 // or the monitor update has completed and will unblock
5684 // immediately once we get going.
5685 BackgroundEvent::MonitorUpdatesComplete {
5688 *channel_id == claiming_chan_funding_outpoint.to_channel_id(),
5690 }), "{:?}", *background_events);
5693 } else if definitely_duplicate {
5694 if let Some(other_chan) = chan_to_release {
5695 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5696 downstream_counterparty_node_id: other_chan.0,
5697 downstream_funding_outpoint: other_chan.1,
5698 blocking_action: other_chan.2,
5702 let fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5703 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5704 Some(claimed_htlc_value - forwarded_htlc_value)
5707 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5708 event: events::Event::PaymentForwarded {
5710 claim_from_onchain_tx: from_onchain,
5711 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5712 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5713 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5715 downstream_counterparty_and_funding_outpoint: chan_to_release,
5719 if let Err((pk, err)) = res {
5720 let result: Result<(), _> = Err(err);
5721 let _ = handle_error!(self, result, pk);
5727 /// Gets the node_id held by this ChannelManager
5728 pub fn get_our_node_id(&self) -> PublicKey {
5729 self.our_network_pubkey.clone()
5732 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5733 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5734 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5735 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5737 for action in actions.into_iter() {
5739 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5740 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5741 if let Some(ClaimingPayment {
5743 payment_purpose: purpose,
5746 sender_intended_value: sender_intended_total_msat,
5748 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5752 receiver_node_id: Some(receiver_node_id),
5754 sender_intended_total_msat,
5758 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5759 event, downstream_counterparty_and_funding_outpoint
5761 self.pending_events.lock().unwrap().push_back((event, None));
5762 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5763 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5766 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5767 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5769 self.handle_monitor_update_release(
5770 downstream_counterparty_node_id,
5771 downstream_funding_outpoint,
5772 Some(blocking_action),
5779 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5780 /// update completion.
5781 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5782 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5783 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5784 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5785 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5786 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5787 let logger = WithChannelContext::from(&self.logger, &channel.context);
5788 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5789 &channel.context.channel_id(),
5790 if raa.is_some() { "an" } else { "no" },
5791 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5792 if funding_broadcastable.is_some() { "" } else { "not " },
5793 if channel_ready.is_some() { "sending" } else { "without" },
5794 if announcement_sigs.is_some() { "sending" } else { "without" });
5796 let mut htlc_forwards = None;
5798 let counterparty_node_id = channel.context.get_counterparty_node_id();
5799 if !pending_forwards.is_empty() {
5800 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5801 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5804 if let Some(msg) = channel_ready {
5805 send_channel_ready!(self, pending_msg_events, channel, msg);
5807 if let Some(msg) = announcement_sigs {
5808 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5809 node_id: counterparty_node_id,
5814 macro_rules! handle_cs { () => {
5815 if let Some(update) = commitment_update {
5816 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5817 node_id: counterparty_node_id,
5822 macro_rules! handle_raa { () => {
5823 if let Some(revoke_and_ack) = raa {
5824 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5825 node_id: counterparty_node_id,
5826 msg: revoke_and_ack,
5831 RAACommitmentOrder::CommitmentFirst => {
5835 RAACommitmentOrder::RevokeAndACKFirst => {
5841 if let Some(tx) = funding_broadcastable {
5842 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
5843 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5847 let mut pending_events = self.pending_events.lock().unwrap();
5848 emit_channel_pending_event!(pending_events, channel);
5849 emit_channel_ready_event!(pending_events, channel);
5855 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5856 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5858 let counterparty_node_id = match counterparty_node_id {
5859 Some(cp_id) => cp_id.clone(),
5861 // TODO: Once we can rely on the counterparty_node_id from the
5862 // monitor event, this and the id_to_peer map should be removed.
5863 let id_to_peer = self.id_to_peer.lock().unwrap();
5864 match id_to_peer.get(&funding_txo.to_channel_id()) {
5865 Some(cp_id) => cp_id.clone(),
5870 let per_peer_state = self.per_peer_state.read().unwrap();
5871 let mut peer_state_lock;
5872 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5873 if peer_state_mutex_opt.is_none() { return }
5874 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5875 let peer_state = &mut *peer_state_lock;
5877 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5880 let update_actions = peer_state.monitor_update_blocked_actions
5881 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5882 mem::drop(peer_state_lock);
5883 mem::drop(per_peer_state);
5884 self.handle_monitor_update_completion_actions(update_actions);
5887 let remaining_in_flight =
5888 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5889 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5892 let logger = WithChannelContext::from(&self.logger, &channel.context);
5893 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5894 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5895 remaining_in_flight);
5896 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5899 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5902 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5904 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5905 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5908 /// The `user_channel_id` parameter will be provided back in
5909 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5910 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5912 /// Note that this method will return an error and reject the channel, if it requires support
5913 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5914 /// used to accept such channels.
5916 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5917 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5918 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5919 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5922 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5923 /// it as confirmed immediately.
5925 /// The `user_channel_id` parameter will be provided back in
5926 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5927 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5929 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5930 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5932 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5933 /// transaction and blindly assumes that it will eventually confirm.
5935 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5936 /// does not pay to the correct script the correct amount, *you will lose funds*.
5938 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5939 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5940 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5941 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5944 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5945 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5947 let peers_without_funded_channels =
5948 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5949 let per_peer_state = self.per_peer_state.read().unwrap();
5950 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5951 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5952 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5953 let peer_state = &mut *peer_state_lock;
5954 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5956 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5957 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5958 // that we can delay allocating the SCID until after we're sure that the checks below will
5960 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5961 Some(unaccepted_channel) => {
5962 let best_block_height = self.best_block.read().unwrap().height();
5963 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5964 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5965 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5966 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5968 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5972 // This should have been correctly configured by the call to InboundV1Channel::new.
5973 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
5974 } else if channel.context.get_channel_type().requires_zero_conf() {
5975 let send_msg_err_event = events::MessageSendEvent::HandleError {
5976 node_id: channel.context.get_counterparty_node_id(),
5977 action: msgs::ErrorAction::SendErrorMessage{
5978 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5981 peer_state.pending_msg_events.push(send_msg_err_event);
5982 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5984 // If this peer already has some channels, a new channel won't increase our number of peers
5985 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5986 // channels per-peer we can accept channels from a peer with existing ones.
5987 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5988 let send_msg_err_event = events::MessageSendEvent::HandleError {
5989 node_id: channel.context.get_counterparty_node_id(),
5990 action: msgs::ErrorAction::SendErrorMessage{
5991 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5994 peer_state.pending_msg_events.push(send_msg_err_event);
5995 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5999 // Now that we know we have a channel, assign an outbound SCID alias.
6000 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6001 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6003 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6004 node_id: channel.context.get_counterparty_node_id(),
6005 msg: channel.accept_inbound_channel(),
6008 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
6013 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
6014 /// or 0-conf channels.
6016 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
6017 /// non-0-conf channels we have with the peer.
6018 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
6019 where Filter: Fn(&PeerState<SP>) -> bool {
6020 let mut peers_without_funded_channels = 0;
6021 let best_block_height = self.best_block.read().unwrap().height();
6023 let peer_state_lock = self.per_peer_state.read().unwrap();
6024 for (_, peer_mtx) in peer_state_lock.iter() {
6025 let peer = peer_mtx.lock().unwrap();
6026 if !maybe_count_peer(&*peer) { continue; }
6027 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
6028 if num_unfunded_channels == peer.total_channel_count() {
6029 peers_without_funded_channels += 1;
6033 return peers_without_funded_channels;
6036 fn unfunded_channel_count(
6037 peer: &PeerState<SP>, best_block_height: u32
6039 let mut num_unfunded_channels = 0;
6040 for (_, phase) in peer.channel_by_id.iter() {
6042 ChannelPhase::Funded(chan) => {
6043 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
6044 // which have not yet had any confirmations on-chain.
6045 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
6046 chan.context.get_funding_tx_confirmations(best_block_height) == 0
6048 num_unfunded_channels += 1;
6051 ChannelPhase::UnfundedInboundV1(chan) => {
6052 if chan.context.minimum_depth().unwrap_or(1) != 0 {
6053 num_unfunded_channels += 1;
6056 ChannelPhase::UnfundedOutboundV1(_) => {
6057 // Outbound channels don't contribute to the unfunded count in the DoS context.
6062 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
6065 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
6066 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6067 // likely to be lost on restart!
6068 if msg.chain_hash != self.chain_hash {
6069 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
6072 if !self.default_configuration.accept_inbound_channels {
6073 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6076 // Get the number of peers with channels, but without funded ones. We don't care too much
6077 // about peers that never open a channel, so we filter by peers that have at least one
6078 // channel, and then limit the number of those with unfunded channels.
6079 let channeled_peers_without_funding =
6080 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
6082 let per_peer_state = self.per_peer_state.read().unwrap();
6083 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6085 debug_assert!(false);
6086 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
6088 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6089 let peer_state = &mut *peer_state_lock;
6091 // If this peer already has some channels, a new channel won't increase our number of peers
6092 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6093 // channels per-peer we can accept channels from a peer with existing ones.
6094 if peer_state.total_channel_count() == 0 &&
6095 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
6096 !self.default_configuration.manually_accept_inbound_channels
6098 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6099 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
6100 msg.temporary_channel_id.clone()));
6103 let best_block_height = self.best_block.read().unwrap().height();
6104 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
6105 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6106 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
6107 msg.temporary_channel_id.clone()));
6110 let channel_id = msg.temporary_channel_id;
6111 let channel_exists = peer_state.has_channel(&channel_id);
6113 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
6116 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
6117 if self.default_configuration.manually_accept_inbound_channels {
6118 let mut pending_events = self.pending_events.lock().unwrap();
6119 pending_events.push_back((events::Event::OpenChannelRequest {
6120 temporary_channel_id: msg.temporary_channel_id.clone(),
6121 counterparty_node_id: counterparty_node_id.clone(),
6122 funding_satoshis: msg.funding_satoshis,
6123 push_msat: msg.push_msat,
6124 channel_type: msg.channel_type.clone().unwrap(),
6126 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
6127 open_channel_msg: msg.clone(),
6128 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
6133 // Otherwise create the channel right now.
6134 let mut random_bytes = [0u8; 16];
6135 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
6136 let user_channel_id = u128::from_be_bytes(random_bytes);
6137 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6138 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
6139 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
6142 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
6147 let channel_type = channel.context.get_channel_type();
6148 if channel_type.requires_zero_conf() {
6149 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6151 if channel_type.requires_anchors_zero_fee_htlc_tx() {
6152 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
6155 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6156 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6158 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6159 node_id: counterparty_node_id.clone(),
6160 msg: channel.accept_inbound_channel(),
6162 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6166 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6167 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6168 // likely to be lost on restart!
6169 let (value, output_script, user_id) = {
6170 let per_peer_state = self.per_peer_state.read().unwrap();
6171 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6173 debug_assert!(false);
6174 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6176 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6177 let peer_state = &mut *peer_state_lock;
6178 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6179 hash_map::Entry::Occupied(mut phase) => {
6180 match phase.get_mut() {
6181 ChannelPhase::UnfundedOutboundV1(chan) => {
6182 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6183 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6186 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6190 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6193 let mut pending_events = self.pending_events.lock().unwrap();
6194 pending_events.push_back((events::Event::FundingGenerationReady {
6195 temporary_channel_id: msg.temporary_channel_id,
6196 counterparty_node_id: *counterparty_node_id,
6197 channel_value_satoshis: value,
6199 user_channel_id: user_id,
6204 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6205 let best_block = *self.best_block.read().unwrap();
6207 let per_peer_state = self.per_peer_state.read().unwrap();
6208 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6210 debug_assert!(false);
6211 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6214 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6215 let peer_state = &mut *peer_state_lock;
6216 let (chan, funding_msg_opt, monitor) =
6217 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6218 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6219 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
6220 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
6222 Err((mut inbound_chan, err)) => {
6223 // We've already removed this inbound channel from the map in `PeerState`
6224 // above so at this point we just need to clean up any lingering entries
6225 // concerning this channel as it is safe to do so.
6226 update_maps_on_chan_removal!(self, &inbound_chan.context);
6227 let user_id = inbound_chan.context.get_user_id();
6228 let shutdown_res = inbound_chan.context.force_shutdown(false);
6229 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6230 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6234 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6235 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6237 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6240 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
6241 hash_map::Entry::Occupied(_) => {
6242 Err(MsgHandleErrInternal::send_err_msg_no_close(
6243 "Already had channel with the new channel_id".to_owned(),
6244 chan.context.channel_id()
6247 hash_map::Entry::Vacant(e) => {
6248 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6249 match id_to_peer_lock.entry(chan.context.channel_id()) {
6250 hash_map::Entry::Occupied(_) => {
6251 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6252 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6253 chan.context.channel_id()))
6255 hash_map::Entry::Vacant(i_e) => {
6256 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6257 if let Ok(persist_state) = monitor_res {
6258 i_e.insert(chan.context.get_counterparty_node_id());
6259 mem::drop(id_to_peer_lock);
6261 // There's no problem signing a counterparty's funding transaction if our monitor
6262 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6263 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6264 // until we have persisted our monitor.
6265 if let Some(msg) = funding_msg_opt {
6266 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6267 node_id: counterparty_node_id.clone(),
6272 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6273 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6274 per_peer_state, chan, INITIAL_MONITOR);
6276 unreachable!("This must be a funded channel as we just inserted it.");
6280 let logger = WithChannelContext::from(&self.logger, &chan.context);
6281 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6282 let channel_id = match funding_msg_opt {
6283 Some(msg) => msg.channel_id,
6284 None => chan.context.channel_id(),
6286 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6287 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6296 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6297 let best_block = *self.best_block.read().unwrap();
6298 let per_peer_state = self.per_peer_state.read().unwrap();
6299 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6301 debug_assert!(false);
6302 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6305 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6306 let peer_state = &mut *peer_state_lock;
6307 match peer_state.channel_by_id.entry(msg.channel_id) {
6308 hash_map::Entry::Occupied(chan_phase_entry) => {
6309 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
6310 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
6311 let logger = WithContext::from(
6313 Some(chan.context.get_counterparty_node_id()),
6314 Some(chan.context.channel_id())
6317 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
6319 Ok((chan, monitor)) => {
6320 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6321 // We really should be able to insert here without doing a second
6322 // lookup, but sadly rust stdlib doesn't currently allow keeping
6323 // the original Entry around with the value removed.
6324 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
6325 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
6326 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6327 } else { unreachable!(); }
6330 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
6331 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
6335 debug_assert!(matches!(e, ChannelError::Close(_)),
6336 "We don't have a channel anymore, so the error better have expected close");
6337 // We've already removed this outbound channel from the map in
6338 // `PeerState` above so at this point we just need to clean up any
6339 // lingering entries concerning this channel as it is safe to do so.
6340 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
6344 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6347 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6351 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6352 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6353 // closing a channel), so any changes are likely to be lost on restart!
6354 let per_peer_state = self.per_peer_state.read().unwrap();
6355 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6357 debug_assert!(false);
6358 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6360 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6361 let peer_state = &mut *peer_state_lock;
6362 match peer_state.channel_by_id.entry(msg.channel_id) {
6363 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6364 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6365 let logger = WithChannelContext::from(&self.logger, &chan.context);
6366 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6367 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
6368 if let Some(announcement_sigs) = announcement_sigs_opt {
6369 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6370 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6371 node_id: counterparty_node_id.clone(),
6372 msg: announcement_sigs,
6374 } else if chan.context.is_usable() {
6375 // If we're sending an announcement_signatures, we'll send the (public)
6376 // channel_update after sending a channel_announcement when we receive our
6377 // counterparty's announcement_signatures. Thus, we only bother to send a
6378 // channel_update here if the channel is not public, i.e. we're not sending an
6379 // announcement_signatures.
6380 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6381 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6382 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6383 node_id: counterparty_node_id.clone(),
6390 let mut pending_events = self.pending_events.lock().unwrap();
6391 emit_channel_ready_event!(pending_events, chan);
6396 try_chan_phase_entry!(self, Err(ChannelError::Close(
6397 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6400 hash_map::Entry::Vacant(_) => {
6401 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6406 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6407 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6408 let mut finish_shutdown = None;
6410 let per_peer_state = self.per_peer_state.read().unwrap();
6411 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6413 debug_assert!(false);
6414 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6416 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6417 let peer_state = &mut *peer_state_lock;
6418 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6419 let phase = chan_phase_entry.get_mut();
6421 ChannelPhase::Funded(chan) => {
6422 if !chan.received_shutdown() {
6423 let logger = WithChannelContext::from(&self.logger, &chan.context);
6424 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
6426 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6429 let funding_txo_opt = chan.context.get_funding_txo();
6430 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6431 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6432 dropped_htlcs = htlcs;
6434 if let Some(msg) = shutdown {
6435 // We can send the `shutdown` message before updating the `ChannelMonitor`
6436 // here as we don't need the monitor update to complete until we send a
6437 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6438 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6439 node_id: *counterparty_node_id,
6443 // Update the monitor with the shutdown script if necessary.
6444 if let Some(monitor_update) = monitor_update_opt {
6445 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6446 peer_state_lock, peer_state, per_peer_state, chan);
6449 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6450 let context = phase.context_mut();
6451 let logger = WithChannelContext::from(&self.logger, context);
6452 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6453 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6454 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6455 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6459 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6462 for htlc_source in dropped_htlcs.drain(..) {
6463 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6464 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6465 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6467 if let Some(shutdown_res) = finish_shutdown {
6468 self.finish_close_channel(shutdown_res);
6474 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6475 let per_peer_state = self.per_peer_state.read().unwrap();
6476 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6478 debug_assert!(false);
6479 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6481 let (tx, chan_option, shutdown_result) = {
6482 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6483 let peer_state = &mut *peer_state_lock;
6484 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6485 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6486 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6487 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6488 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6489 if let Some(msg) = closing_signed {
6490 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6491 node_id: counterparty_node_id.clone(),
6496 // We're done with this channel, we've got a signed closing transaction and
6497 // will send the closing_signed back to the remote peer upon return. This
6498 // also implies there are no pending HTLCs left on the channel, so we can
6499 // fully delete it from tracking (the channel monitor is still around to
6500 // watch for old state broadcasts)!
6501 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6502 } else { (tx, None, shutdown_result) }
6504 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6505 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6508 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6511 if let Some(broadcast_tx) = tx {
6512 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
6513 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
6514 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6516 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6517 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6518 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6519 let peer_state = &mut *peer_state_lock;
6520 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6524 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6526 mem::drop(per_peer_state);
6527 if let Some(shutdown_result) = shutdown_result {
6528 self.finish_close_channel(shutdown_result);
6533 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6534 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6535 //determine the state of the payment based on our response/if we forward anything/the time
6536 //we take to respond. We should take care to avoid allowing such an attack.
6538 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6539 //us repeatedly garbled in different ways, and compare our error messages, which are
6540 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6541 //but we should prevent it anyway.
6543 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6544 // closing a channel), so any changes are likely to be lost on restart!
6546 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
6547 let per_peer_state = self.per_peer_state.read().unwrap();
6548 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6550 debug_assert!(false);
6551 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6553 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6554 let peer_state = &mut *peer_state_lock;
6555 match peer_state.channel_by_id.entry(msg.channel_id) {
6556 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6557 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6558 let pending_forward_info = match decoded_hop_res {
6559 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6560 self.construct_pending_htlc_status(
6561 msg, counterparty_node_id, shared_secret, next_hop,
6562 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
6564 Err(e) => PendingHTLCStatus::Fail(e)
6566 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6567 // If the update_add is completely bogus, the call will Err and we will close,
6568 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6569 // want to reject the new HTLC and fail it backwards instead of forwarding.
6570 match pending_forward_info {
6571 PendingHTLCStatus::Forward(PendingHTLCInfo {
6572 ref incoming_shared_secret, ref routing, ..
6574 let reason = if routing.blinded_failure().is_some() {
6575 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
6576 } else if (error_code & 0x1000) != 0 {
6577 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6578 HTLCFailReason::reason(real_code, error_data)
6580 HTLCFailReason::from_failure_code(error_code)
6581 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6582 let msg = msgs::UpdateFailHTLC {
6583 channel_id: msg.channel_id,
6584 htlc_id: msg.htlc_id,
6587 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6589 _ => pending_forward_info
6592 let logger = WithChannelContext::from(&self.logger, &chan.context);
6593 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &&logger), chan_phase_entry);
6595 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6596 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6599 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6604 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6606 let (htlc_source, forwarded_htlc_value) = {
6607 let per_peer_state = self.per_peer_state.read().unwrap();
6608 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6610 debug_assert!(false);
6611 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6613 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6614 let peer_state = &mut *peer_state_lock;
6615 match peer_state.channel_by_id.entry(msg.channel_id) {
6616 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6617 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6618 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6619 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6620 let logger = WithChannelContext::from(&self.logger, &chan.context);
6622 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6624 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6625 .or_insert_with(Vec::new)
6626 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6628 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6629 // entry here, even though we *do* need to block the next RAA monitor update.
6630 // We do this instead in the `claim_funds_internal` by attaching a
6631 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6632 // outbound HTLC is claimed. This is guaranteed to all complete before we
6633 // process the RAA as messages are processed from single peers serially.
6634 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6637 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6638 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6641 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6644 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6648 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6649 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6650 // closing a channel), so any changes are likely to be lost on restart!
6651 let per_peer_state = self.per_peer_state.read().unwrap();
6652 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6654 debug_assert!(false);
6655 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6657 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6658 let peer_state = &mut *peer_state_lock;
6659 match peer_state.channel_by_id.entry(msg.channel_id) {
6660 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6661 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6662 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6664 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6665 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6668 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6673 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6674 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6675 // closing a channel), so any changes are likely to be lost on restart!
6676 let per_peer_state = self.per_peer_state.read().unwrap();
6677 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6679 debug_assert!(false);
6680 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6682 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6683 let peer_state = &mut *peer_state_lock;
6684 match peer_state.channel_by_id.entry(msg.channel_id) {
6685 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6686 if (msg.failure_code & 0x8000) == 0 {
6687 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6688 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6690 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6691 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6693 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6694 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6698 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6702 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6703 let per_peer_state = self.per_peer_state.read().unwrap();
6704 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6706 debug_assert!(false);
6707 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6709 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6710 let peer_state = &mut *peer_state_lock;
6711 match peer_state.channel_by_id.entry(msg.channel_id) {
6712 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6713 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6714 let logger = WithChannelContext::from(&self.logger, &chan.context);
6715 let funding_txo = chan.context.get_funding_txo();
6716 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
6717 if let Some(monitor_update) = monitor_update_opt {
6718 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6719 peer_state, per_peer_state, chan);
6723 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6724 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6727 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6732 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6733 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6734 let mut push_forward_event = false;
6735 let mut new_intercept_events = VecDeque::new();
6736 let mut failed_intercept_forwards = Vec::new();
6737 if !pending_forwards.is_empty() {
6738 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6739 let scid = match forward_info.routing {
6740 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6741 PendingHTLCRouting::Receive { .. } => 0,
6742 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6744 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6745 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6747 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6748 let forward_htlcs_empty = forward_htlcs.is_empty();
6749 match forward_htlcs.entry(scid) {
6750 hash_map::Entry::Occupied(mut entry) => {
6751 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6752 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6754 hash_map::Entry::Vacant(entry) => {
6755 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6756 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6758 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
6759 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6760 match pending_intercepts.entry(intercept_id) {
6761 hash_map::Entry::Vacant(entry) => {
6762 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6763 requested_next_hop_scid: scid,
6764 payment_hash: forward_info.payment_hash,
6765 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6766 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6769 entry.insert(PendingAddHTLCInfo {
6770 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6772 hash_map::Entry::Occupied(_) => {
6773 let logger = WithContext::from(&self.logger, None, Some(prev_funding_outpoint.to_channel_id()));
6774 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6775 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6776 short_channel_id: prev_short_channel_id,
6777 user_channel_id: Some(prev_user_channel_id),
6778 outpoint: prev_funding_outpoint,
6779 htlc_id: prev_htlc_id,
6780 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6781 phantom_shared_secret: None,
6782 blinded_failure: forward_info.routing.blinded_failure(),
6785 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6786 HTLCFailReason::from_failure_code(0x4000 | 10),
6787 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6792 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6793 // payments are being processed.
6794 if forward_htlcs_empty {
6795 push_forward_event = true;
6797 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6798 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6805 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6806 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6809 if !new_intercept_events.is_empty() {
6810 let mut events = self.pending_events.lock().unwrap();
6811 events.append(&mut new_intercept_events);
6813 if push_forward_event { self.push_pending_forwards_ev() }
6817 fn push_pending_forwards_ev(&self) {
6818 let mut pending_events = self.pending_events.lock().unwrap();
6819 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6820 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6821 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6823 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6824 // events is done in batches and they are not removed until we're done processing each
6825 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6826 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6827 // payments will need an additional forwarding event before being claimed to make them look
6828 // real by taking more time.
6829 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6830 pending_events.push_back((Event::PendingHTLCsForwardable {
6831 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6836 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6837 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6838 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6839 /// the [`ChannelMonitorUpdate`] in question.
6840 fn raa_monitor_updates_held(&self,
6841 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6842 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6844 actions_blocking_raa_monitor_updates
6845 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6846 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6847 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6848 channel_funding_outpoint,
6849 counterparty_node_id,
6854 #[cfg(any(test, feature = "_test_utils"))]
6855 pub(crate) fn test_raa_monitor_updates_held(&self,
6856 counterparty_node_id: PublicKey, channel_id: ChannelId
6858 let per_peer_state = self.per_peer_state.read().unwrap();
6859 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6860 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6861 let peer_state = &mut *peer_state_lck;
6863 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6864 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6865 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6871 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6872 let htlcs_to_fail = {
6873 let per_peer_state = self.per_peer_state.read().unwrap();
6874 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6876 debug_assert!(false);
6877 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6878 }).map(|mtx| mtx.lock().unwrap())?;
6879 let peer_state = &mut *peer_state_lock;
6880 match peer_state.channel_by_id.entry(msg.channel_id) {
6881 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6882 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6883 let logger = WithChannelContext::from(&self.logger, &chan.context);
6884 let funding_txo_opt = chan.context.get_funding_txo();
6885 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6886 self.raa_monitor_updates_held(
6887 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6888 *counterparty_node_id)
6890 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6891 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
6892 if let Some(monitor_update) = monitor_update_opt {
6893 let funding_txo = funding_txo_opt
6894 .expect("Funding outpoint must have been set for RAA handling to succeed");
6895 handle_new_monitor_update!(self, funding_txo, monitor_update,
6896 peer_state_lock, peer_state, per_peer_state, chan);
6900 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6901 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6904 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6907 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6911 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6912 let per_peer_state = self.per_peer_state.read().unwrap();
6913 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6915 debug_assert!(false);
6916 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6918 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6919 let peer_state = &mut *peer_state_lock;
6920 match peer_state.channel_by_id.entry(msg.channel_id) {
6921 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6922 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6923 let logger = WithChannelContext::from(&self.logger, &chan.context);
6924 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
6926 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6927 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6930 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6935 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6936 let per_peer_state = self.per_peer_state.read().unwrap();
6937 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6939 debug_assert!(false);
6940 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6942 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6943 let peer_state = &mut *peer_state_lock;
6944 match peer_state.channel_by_id.entry(msg.channel_id) {
6945 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6946 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6947 if !chan.context.is_usable() {
6948 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6951 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6952 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6953 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
6954 msg, &self.default_configuration
6955 ), chan_phase_entry),
6956 // Note that announcement_signatures fails if the channel cannot be announced,
6957 // so get_channel_update_for_broadcast will never fail by the time we get here.
6958 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6961 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6962 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6965 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6970 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6971 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6972 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6973 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6975 // It's not a local channel
6976 return Ok(NotifyOption::SkipPersistNoEvents)
6979 let per_peer_state = self.per_peer_state.read().unwrap();
6980 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6981 if peer_state_mutex_opt.is_none() {
6982 return Ok(NotifyOption::SkipPersistNoEvents)
6984 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6985 let peer_state = &mut *peer_state_lock;
6986 match peer_state.channel_by_id.entry(chan_id) {
6987 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6988 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6989 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6990 if chan.context.should_announce() {
6991 // If the announcement is about a channel of ours which is public, some
6992 // other peer may simply be forwarding all its gossip to us. Don't provide
6993 // a scary-looking error message and return Ok instead.
6994 return Ok(NotifyOption::SkipPersistNoEvents);
6996 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6998 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6999 let msg_from_node_one = msg.contents.flags & 1 == 0;
7000 if were_node_one == msg_from_node_one {
7001 return Ok(NotifyOption::SkipPersistNoEvents);
7003 let logger = WithChannelContext::from(&self.logger, &chan.context);
7004 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
7005 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
7006 // If nothing changed after applying their update, we don't need to bother
7009 return Ok(NotifyOption::SkipPersistNoEvents);
7013 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7014 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
7017 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
7019 Ok(NotifyOption::DoPersist)
7022 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
7024 let need_lnd_workaround = {
7025 let per_peer_state = self.per_peer_state.read().unwrap();
7027 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7029 debug_assert!(false);
7030 MsgHandleErrInternal::send_err_msg_no_close(
7031 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7035 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
7036 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7037 let peer_state = &mut *peer_state_lock;
7038 match peer_state.channel_by_id.entry(msg.channel_id) {
7039 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7040 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7041 // Currently, we expect all holding cell update_adds to be dropped on peer
7042 // disconnect, so Channel's reestablish will never hand us any holding cell
7043 // freed HTLCs to fail backwards. If in the future we no longer drop pending
7044 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
7045 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
7046 msg, &&logger, &self.node_signer, self.chain_hash,
7047 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
7048 let mut channel_update = None;
7049 if let Some(msg) = responses.shutdown_msg {
7050 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7051 node_id: counterparty_node_id.clone(),
7054 } else if chan.context.is_usable() {
7055 // If the channel is in a usable state (ie the channel is not being shut
7056 // down), send a unicast channel_update to our counterparty to make sure
7057 // they have the latest channel parameters.
7058 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7059 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
7060 node_id: chan.context.get_counterparty_node_id(),
7065 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
7066 htlc_forwards = self.handle_channel_resumption(
7067 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
7068 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
7069 if let Some(upd) = channel_update {
7070 peer_state.pending_msg_events.push(upd);
7074 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7075 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
7078 hash_map::Entry::Vacant(_) => {
7079 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
7081 // Unfortunately, lnd doesn't force close on errors
7082 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
7083 // One of the few ways to get an lnd counterparty to force close is by
7084 // replicating what they do when restoring static channel backups (SCBs). They
7085 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
7086 // invalid `your_last_per_commitment_secret`.
7088 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
7089 // can assume it's likely the channel closed from our point of view, but it
7090 // remains open on the counterparty's side. By sending this bogus
7091 // `ChannelReestablish` message now as a response to theirs, we trigger them to
7092 // force close broadcasting their latest state. If the closing transaction from
7093 // our point of view remains unconfirmed, it'll enter a race with the
7094 // counterparty's to-be-broadcast latest commitment transaction.
7095 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
7096 node_id: *counterparty_node_id,
7097 msg: msgs::ChannelReestablish {
7098 channel_id: msg.channel_id,
7099 next_local_commitment_number: 0,
7100 next_remote_commitment_number: 0,
7101 your_last_per_commitment_secret: [1u8; 32],
7102 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
7103 next_funding_txid: None,
7106 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7107 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
7108 counterparty_node_id), msg.channel_id)
7114 let mut persist = NotifyOption::SkipPersistHandleEvents;
7115 if let Some(forwards) = htlc_forwards {
7116 self.forward_htlcs(&mut [forwards][..]);
7117 persist = NotifyOption::DoPersist;
7120 if let Some(channel_ready_msg) = need_lnd_workaround {
7121 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
7126 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
7127 fn process_pending_monitor_events(&self) -> bool {
7128 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
7130 let mut failed_channels = Vec::new();
7131 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
7132 let has_pending_monitor_events = !pending_monitor_events.is_empty();
7133 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
7134 for monitor_event in monitor_events.drain(..) {
7135 match monitor_event {
7136 MonitorEvent::HTLCEvent(htlc_update) => {
7137 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(funding_outpoint.to_channel_id()));
7138 if let Some(preimage) = htlc_update.payment_preimage {
7139 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
7140 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
7142 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
7143 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
7144 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7145 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
7148 MonitorEvent::HolderForceClosed(funding_outpoint) => {
7149 let counterparty_node_id_opt = match counterparty_node_id {
7150 Some(cp_id) => Some(cp_id),
7152 // TODO: Once we can rely on the counterparty_node_id from the
7153 // monitor event, this and the id_to_peer map should be removed.
7154 let id_to_peer = self.id_to_peer.lock().unwrap();
7155 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
7158 if let Some(counterparty_node_id) = counterparty_node_id_opt {
7159 let per_peer_state = self.per_peer_state.read().unwrap();
7160 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7161 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7162 let peer_state = &mut *peer_state_lock;
7163 let pending_msg_events = &mut peer_state.pending_msg_events;
7164 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
7165 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
7166 failed_channels.push(chan.context.force_shutdown(false));
7167 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7168 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7172 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
7173 pending_msg_events.push(events::MessageSendEvent::HandleError {
7174 node_id: chan.context.get_counterparty_node_id(),
7175 action: msgs::ErrorAction::DisconnectPeer {
7176 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
7184 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
7185 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
7191 for failure in failed_channels.drain(..) {
7192 self.finish_close_channel(failure);
7195 has_pending_monitor_events
7198 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
7199 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
7200 /// update events as a separate process method here.
7202 pub fn process_monitor_events(&self) {
7203 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7204 self.process_pending_monitor_events();
7207 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7208 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7209 /// update was applied.
7210 fn check_free_holding_cells(&self) -> bool {
7211 let mut has_monitor_update = false;
7212 let mut failed_htlcs = Vec::new();
7214 // Walk our list of channels and find any that need to update. Note that when we do find an
7215 // update, if it includes actions that must be taken afterwards, we have to drop the
7216 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7217 // manage to go through all our peers without finding a single channel to update.
7219 let per_peer_state = self.per_peer_state.read().unwrap();
7220 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7222 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7223 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7224 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7225 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7227 let counterparty_node_id = chan.context.get_counterparty_node_id();
7228 let funding_txo = chan.context.get_funding_txo();
7229 let (monitor_opt, holding_cell_failed_htlcs) =
7230 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
7231 if !holding_cell_failed_htlcs.is_empty() {
7232 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7234 if let Some(monitor_update) = monitor_opt {
7235 has_monitor_update = true;
7237 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7238 peer_state_lock, peer_state, per_peer_state, chan);
7239 continue 'peer_loop;
7248 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7249 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7250 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7256 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7257 /// is (temporarily) unavailable, and the operation should be retried later.
7259 /// This method allows for that retry - either checking for any signer-pending messages to be
7260 /// attempted in every channel, or in the specifically provided channel.
7262 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7263 #[cfg(test)] // This is only implemented for one signer method, and should be private until we
7264 // actually finish implementing it fully.
7265 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7266 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7268 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7269 let node_id = phase.context().get_counterparty_node_id();
7271 ChannelPhase::Funded(chan) => {
7272 let msgs = chan.signer_maybe_unblocked(&self.logger);
7273 if let Some(updates) = msgs.commitment_update {
7274 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7279 if let Some(msg) = msgs.funding_signed {
7280 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7285 if let Some(msg) = msgs.channel_ready {
7286 send_channel_ready!(self, pending_msg_events, chan, msg);
7289 ChannelPhase::UnfundedOutboundV1(chan) => {
7290 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
7291 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7297 ChannelPhase::UnfundedInboundV1(_) => {},
7301 let per_peer_state = self.per_peer_state.read().unwrap();
7302 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7303 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7304 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7305 let peer_state = &mut *peer_state_lock;
7306 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7307 unblock_chan(chan, &mut peer_state.pending_msg_events);
7311 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7312 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7313 let peer_state = &mut *peer_state_lock;
7314 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7315 unblock_chan(chan, &mut peer_state.pending_msg_events);
7321 /// Check whether any channels have finished removing all pending updates after a shutdown
7322 /// exchange and can now send a closing_signed.
7323 /// Returns whether any closing_signed messages were generated.
7324 fn maybe_generate_initial_closing_signed(&self) -> bool {
7325 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7326 let mut has_update = false;
7327 let mut shutdown_results = Vec::new();
7329 let per_peer_state = self.per_peer_state.read().unwrap();
7331 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7332 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7333 let peer_state = &mut *peer_state_lock;
7334 let pending_msg_events = &mut peer_state.pending_msg_events;
7335 peer_state.channel_by_id.retain(|channel_id, phase| {
7337 ChannelPhase::Funded(chan) => {
7338 let logger = WithChannelContext::from(&self.logger, &chan.context);
7339 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
7340 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7341 if let Some(msg) = msg_opt {
7343 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7344 node_id: chan.context.get_counterparty_node_id(), msg,
7347 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7348 if let Some(shutdown_result) = shutdown_result_opt {
7349 shutdown_results.push(shutdown_result);
7351 if let Some(tx) = tx_opt {
7352 // We're done with this channel. We got a closing_signed and sent back
7353 // a closing_signed with a closing transaction to broadcast.
7354 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7355 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7360 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7362 log_info!(logger, "Broadcasting {}", log_tx!(tx));
7363 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7364 update_maps_on_chan_removal!(self, &chan.context);
7370 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7371 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7376 _ => true, // Retain unfunded channels if present.
7382 for (counterparty_node_id, err) in handle_errors.drain(..) {
7383 let _ = handle_error!(self, err, counterparty_node_id);
7386 for shutdown_result in shutdown_results.drain(..) {
7387 self.finish_close_channel(shutdown_result);
7393 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7394 /// pushing the channel monitor update (if any) to the background events queue and removing the
7396 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7397 for mut failure in failed_channels.drain(..) {
7398 // Either a commitment transactions has been confirmed on-chain or
7399 // Channel::block_disconnected detected that the funding transaction has been
7400 // reorganized out of the main chain.
7401 // We cannot broadcast our latest local state via monitor update (as
7402 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7403 // so we track the update internally and handle it when the user next calls
7404 // timer_tick_occurred, guaranteeing we're running normally.
7405 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7406 assert_eq!(update.updates.len(), 1);
7407 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7408 assert!(should_broadcast);
7409 } else { unreachable!(); }
7410 self.pending_background_events.lock().unwrap().push(
7411 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7412 counterparty_node_id, funding_txo, update
7415 self.finish_close_channel(failure);
7419 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7420 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7421 /// not have an expiration unless otherwise set on the builder.
7425 /// Uses a one-hop [`BlindedPath`] for the offer with [`ChannelManager::get_our_node_id`] as the
7426 /// introduction node and a derived signing pubkey for recipient privacy. As such, currently,
7427 /// the node must be announced. Otherwise, there is no way to find a path to the introduction
7428 /// node in order to send the [`InvoiceRequest`].
7432 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7435 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7437 /// [`Offer`]: crate::offers::offer::Offer
7438 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7439 pub fn create_offer_builder(
7440 &self, description: String
7441 ) -> OfferBuilder<DerivedMetadata, secp256k1::All> {
7442 let node_id = self.get_our_node_id();
7443 let expanded_key = &self.inbound_payment_key;
7444 let entropy = &*self.entropy_source;
7445 let secp_ctx = &self.secp_ctx;
7446 let path = self.create_one_hop_blinded_path();
7448 OfferBuilder::deriving_signing_pubkey(description, node_id, expanded_key, entropy, secp_ctx)
7449 .chain_hash(self.chain_hash)
7453 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7454 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7458 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7459 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7461 /// The builder will have the provided expiration set. Any changes to the expiration on the
7462 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7463 /// block time minus two hours is used for the current time when determining if the refund has
7466 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7467 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7468 /// with an [`Event::InvoiceRequestFailed`].
7470 /// If `max_total_routing_fee_msat` is not specified, The default from
7471 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7475 /// Uses a one-hop [`BlindedPath`] for the refund with [`ChannelManager::get_our_node_id`] as
7476 /// the introduction node and a derived payer id for payer privacy. As such, currently, the
7477 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7478 /// in order to send the [`Bolt12Invoice`].
7482 /// Requires a direct connection to an introduction node in the responding
7483 /// [`Bolt12Invoice::payment_paths`].
7487 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7488 /// or if `amount_msats` is invalid.
7490 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7492 /// [`Refund`]: crate::offers::refund::Refund
7493 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7494 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7495 pub fn create_refund_builder(
7496 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7497 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7498 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7499 let node_id = self.get_our_node_id();
7500 let expanded_key = &self.inbound_payment_key;
7501 let entropy = &*self.entropy_source;
7502 let secp_ctx = &self.secp_ctx;
7503 let path = self.create_one_hop_blinded_path();
7505 let builder = RefundBuilder::deriving_payer_id(
7506 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7508 .chain_hash(self.chain_hash)
7509 .absolute_expiry(absolute_expiry)
7512 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7513 self.pending_outbound_payments
7514 .add_new_awaiting_invoice(
7515 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7517 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7522 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7523 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7524 /// [`Bolt12Invoice`] once it is received.
7526 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7527 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7528 /// The optional parameters are used in the builder, if `Some`:
7529 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7530 /// [`Offer::expects_quantity`] is `true`.
7531 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7532 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7534 /// If `max_total_routing_fee_msat` is not specified, The default from
7535 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7539 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7540 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7543 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7544 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7545 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7549 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7550 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7551 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7552 /// in order to send the [`Bolt12Invoice`].
7556 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7557 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7558 /// [`Bolt12Invoice::payment_paths`].
7562 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7563 /// or if the provided parameters are invalid for the offer.
7565 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7566 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7567 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7568 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7569 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7570 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7571 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7572 pub fn pay_for_offer(
7573 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7574 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7575 max_total_routing_fee_msat: Option<u64>
7576 ) -> Result<(), Bolt12SemanticError> {
7577 let expanded_key = &self.inbound_payment_key;
7578 let entropy = &*self.entropy_source;
7579 let secp_ctx = &self.secp_ctx;
7582 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7583 .chain_hash(self.chain_hash)?;
7584 let builder = match quantity {
7586 Some(quantity) => builder.quantity(quantity)?,
7588 let builder = match amount_msats {
7590 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7592 let builder = match payer_note {
7594 Some(payer_note) => builder.payer_note(payer_note),
7597 let invoice_request = builder.build_and_sign()?;
7598 let reply_path = self.create_one_hop_blinded_path();
7600 let expiration = StaleExpiration::TimerTicks(1);
7601 self.pending_outbound_payments
7602 .add_new_awaiting_invoice(
7603 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7605 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7607 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7608 if offer.paths().is_empty() {
7609 let message = new_pending_onion_message(
7610 OffersMessage::InvoiceRequest(invoice_request),
7611 Destination::Node(offer.signing_pubkey()),
7614 pending_offers_messages.push(message);
7616 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7617 // Using only one path could result in a failure if the path no longer exists. But only
7618 // one invoice for a given payment id will be paid, even if more than one is received.
7619 const REQUEST_LIMIT: usize = 10;
7620 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7621 let message = new_pending_onion_message(
7622 OffersMessage::InvoiceRequest(invoice_request.clone()),
7623 Destination::BlindedPath(path.clone()),
7624 Some(reply_path.clone()),
7626 pending_offers_messages.push(message);
7633 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7636 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7637 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7638 /// [`PaymentPreimage`].
7642 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7643 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7644 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7645 /// received and no retries will be made.
7647 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7648 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7649 let expanded_key = &self.inbound_payment_key;
7650 let entropy = &*self.entropy_source;
7651 let secp_ctx = &self.secp_ctx;
7653 let amount_msats = refund.amount_msats();
7654 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7656 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7657 Ok((payment_hash, payment_secret)) => {
7658 let payment_paths = vec![
7659 self.create_one_hop_blinded_payment_path(payment_secret),
7661 #[cfg(not(feature = "no-std"))]
7662 let builder = refund.respond_using_derived_keys(
7663 payment_paths, payment_hash, expanded_key, entropy
7665 #[cfg(feature = "no-std")]
7666 let created_at = Duration::from_secs(
7667 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7669 #[cfg(feature = "no-std")]
7670 let builder = refund.respond_using_derived_keys_no_std(
7671 payment_paths, payment_hash, created_at, expanded_key, entropy
7673 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7674 let reply_path = self.create_one_hop_blinded_path();
7676 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7677 if refund.paths().is_empty() {
7678 let message = new_pending_onion_message(
7679 OffersMessage::Invoice(invoice),
7680 Destination::Node(refund.payer_id()),
7683 pending_offers_messages.push(message);
7685 for path in refund.paths() {
7686 let message = new_pending_onion_message(
7687 OffersMessage::Invoice(invoice.clone()),
7688 Destination::BlindedPath(path.clone()),
7689 Some(reply_path.clone()),
7691 pending_offers_messages.push(message);
7697 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7701 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7704 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7705 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7707 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7708 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7709 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7710 /// passed directly to [`claim_funds`].
7712 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7714 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7715 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7719 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7720 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7722 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7724 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7725 /// on versions of LDK prior to 0.0.114.
7727 /// [`claim_funds`]: Self::claim_funds
7728 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7729 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7730 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7731 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7732 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7733 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7734 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7735 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7736 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7737 min_final_cltv_expiry_delta)
7740 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7741 /// stored external to LDK.
7743 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7744 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7745 /// the `min_value_msat` provided here, if one is provided.
7747 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7748 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7751 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7752 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7753 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7754 /// sender "proof-of-payment" unless they have paid the required amount.
7756 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7757 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7758 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7759 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7760 /// invoices when no timeout is set.
7762 /// Note that we use block header time to time-out pending inbound payments (with some margin
7763 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7764 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7765 /// If you need exact expiry semantics, you should enforce them upon receipt of
7766 /// [`PaymentClaimable`].
7768 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7769 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7771 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7772 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7776 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7777 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7779 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7781 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7782 /// on versions of LDK prior to 0.0.114.
7784 /// [`create_inbound_payment`]: Self::create_inbound_payment
7785 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7786 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7787 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7788 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7789 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7790 min_final_cltv_expiry)
7793 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7794 /// previously returned from [`create_inbound_payment`].
7796 /// [`create_inbound_payment`]: Self::create_inbound_payment
7797 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7798 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7801 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7803 fn create_one_hop_blinded_path(&self) -> BlindedPath {
7804 let entropy_source = self.entropy_source.deref();
7805 let secp_ctx = &self.secp_ctx;
7806 BlindedPath::one_hop_for_message(self.get_our_node_id(), entropy_source, secp_ctx).unwrap()
7809 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7811 fn create_one_hop_blinded_payment_path(
7812 &self, payment_secret: PaymentSecret
7813 ) -> (BlindedPayInfo, BlindedPath) {
7814 let entropy_source = self.entropy_source.deref();
7815 let secp_ctx = &self.secp_ctx;
7817 let payee_node_id = self.get_our_node_id();
7818 let max_cltv_expiry = self.best_block.read().unwrap().height() + LATENCY_GRACE_PERIOD_BLOCKS;
7819 let payee_tlvs = ReceiveTlvs {
7821 payment_constraints: PaymentConstraints {
7823 htlc_minimum_msat: 1,
7826 // TODO: Err for overflow?
7827 BlindedPath::one_hop_for_payment(
7828 payee_node_id, payee_tlvs, entropy_source, secp_ctx
7832 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7833 /// are used when constructing the phantom invoice's route hints.
7835 /// [phantom node payments]: crate::sign::PhantomKeysManager
7836 pub fn get_phantom_scid(&self) -> u64 {
7837 let best_block_height = self.best_block.read().unwrap().height();
7838 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7840 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7841 // Ensure the generated scid doesn't conflict with a real channel.
7842 match short_to_chan_info.get(&scid_candidate) {
7843 Some(_) => continue,
7844 None => return scid_candidate
7849 /// Gets route hints for use in receiving [phantom node payments].
7851 /// [phantom node payments]: crate::sign::PhantomKeysManager
7852 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7854 channels: self.list_usable_channels(),
7855 phantom_scid: self.get_phantom_scid(),
7856 real_node_pubkey: self.get_our_node_id(),
7860 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7861 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7862 /// [`ChannelManager::forward_intercepted_htlc`].
7864 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7865 /// times to get a unique scid.
7866 pub fn get_intercept_scid(&self) -> u64 {
7867 let best_block_height = self.best_block.read().unwrap().height();
7868 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7870 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7871 // Ensure the generated scid doesn't conflict with a real channel.
7872 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7873 return scid_candidate
7877 /// Gets inflight HTLC information by processing pending outbound payments that are in
7878 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7879 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7880 let mut inflight_htlcs = InFlightHtlcs::new();
7882 let per_peer_state = self.per_peer_state.read().unwrap();
7883 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7884 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7885 let peer_state = &mut *peer_state_lock;
7886 for chan in peer_state.channel_by_id.values().filter_map(
7887 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7889 for (htlc_source, _) in chan.inflight_htlc_sources() {
7890 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7891 inflight_htlcs.process_path(path, self.get_our_node_id());
7900 #[cfg(any(test, feature = "_test_utils"))]
7901 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7902 let events = core::cell::RefCell::new(Vec::new());
7903 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7904 self.process_pending_events(&event_handler);
7908 #[cfg(feature = "_test_utils")]
7909 pub fn push_pending_event(&self, event: events::Event) {
7910 let mut events = self.pending_events.lock().unwrap();
7911 events.push_back((event, None));
7915 pub fn pop_pending_event(&self) -> Option<events::Event> {
7916 let mut events = self.pending_events.lock().unwrap();
7917 events.pop_front().map(|(e, _)| e)
7921 pub fn has_pending_payments(&self) -> bool {
7922 self.pending_outbound_payments.has_pending_payments()
7926 pub fn clear_pending_payments(&self) {
7927 self.pending_outbound_payments.clear_pending_payments()
7930 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7931 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7932 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7933 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7934 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7935 let logger = WithContext::from(
7936 &self.logger, Some(counterparty_node_id), Some(channel_funding_outpoint.to_channel_id())
7939 let per_peer_state = self.per_peer_state.read().unwrap();
7940 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7941 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7942 let peer_state = &mut *peer_state_lck;
7943 if let Some(blocker) = completed_blocker.take() {
7944 // Only do this on the first iteration of the loop.
7945 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7946 .get_mut(&channel_funding_outpoint.to_channel_id())
7948 blockers.retain(|iter| iter != &blocker);
7952 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7953 channel_funding_outpoint, counterparty_node_id) {
7954 // Check that, while holding the peer lock, we don't have anything else
7955 // blocking monitor updates for this channel. If we do, release the monitor
7956 // update(s) when those blockers complete.
7957 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7958 &channel_funding_outpoint.to_channel_id());
7962 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7963 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7964 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7965 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7966 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
7967 channel_funding_outpoint.to_channel_id());
7968 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7969 peer_state_lck, peer_state, per_peer_state, chan);
7970 if further_update_exists {
7971 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7976 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
7977 channel_funding_outpoint.to_channel_id());
7983 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7984 log_pubkey!(counterparty_node_id));
7990 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7991 for action in actions {
7993 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7994 channel_funding_outpoint, counterparty_node_id
7996 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
8002 /// Processes any events asynchronously in the order they were generated since the last call
8003 /// using the given event handler.
8005 /// See the trait-level documentation of [`EventsProvider`] for requirements.
8006 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
8010 process_events_body!(self, ev, { handler(ev).await });
8014 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8016 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8017 T::Target: BroadcasterInterface,
8018 ES::Target: EntropySource,
8019 NS::Target: NodeSigner,
8020 SP::Target: SignerProvider,
8021 F::Target: FeeEstimator,
8025 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
8026 /// The returned array will contain `MessageSendEvent`s for different peers if
8027 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
8028 /// is always placed next to each other.
8030 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
8031 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
8032 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
8033 /// will randomly be placed first or last in the returned array.
8035 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
8036 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
8037 /// the `MessageSendEvent`s to the specific peer they were generated under.
8038 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
8039 let events = RefCell::new(Vec::new());
8040 PersistenceNotifierGuard::optionally_notify(self, || {
8041 let mut result = NotifyOption::SkipPersistNoEvents;
8043 // TODO: This behavior should be documented. It's unintuitive that we query
8044 // ChannelMonitors when clearing other events.
8045 if self.process_pending_monitor_events() {
8046 result = NotifyOption::DoPersist;
8049 if self.check_free_holding_cells() {
8050 result = NotifyOption::DoPersist;
8052 if self.maybe_generate_initial_closing_signed() {
8053 result = NotifyOption::DoPersist;
8056 let mut pending_events = Vec::new();
8057 let per_peer_state = self.per_peer_state.read().unwrap();
8058 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8059 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8060 let peer_state = &mut *peer_state_lock;
8061 if peer_state.pending_msg_events.len() > 0 {
8062 pending_events.append(&mut peer_state.pending_msg_events);
8066 if !pending_events.is_empty() {
8067 events.replace(pending_events);
8076 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8078 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8079 T::Target: BroadcasterInterface,
8080 ES::Target: EntropySource,
8081 NS::Target: NodeSigner,
8082 SP::Target: SignerProvider,
8083 F::Target: FeeEstimator,
8087 /// Processes events that must be periodically handled.
8089 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8090 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8091 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8093 process_events_body!(self, ev, handler.handle_event(ev));
8097 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8099 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8100 T::Target: BroadcasterInterface,
8101 ES::Target: EntropySource,
8102 NS::Target: NodeSigner,
8103 SP::Target: SignerProvider,
8104 F::Target: FeeEstimator,
8108 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
8110 let best_block = self.best_block.read().unwrap();
8111 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8112 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8113 assert_eq!(best_block.height(), height - 1,
8114 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8117 self.transactions_confirmed(header, txdata, height);
8118 self.best_block_updated(header, height);
8121 fn block_disconnected(&self, header: &Header, height: u32) {
8122 let _persistence_guard =
8123 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8124 self, || -> NotifyOption { NotifyOption::DoPersist });
8125 let new_height = height - 1;
8127 let mut best_block = self.best_block.write().unwrap();
8128 assert_eq!(best_block.block_hash(), header.block_hash(),
8129 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8130 assert_eq!(best_block.height(), height,
8131 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8132 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8135 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8139 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8141 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8142 T::Target: BroadcasterInterface,
8143 ES::Target: EntropySource,
8144 NS::Target: NodeSigner,
8145 SP::Target: SignerProvider,
8146 F::Target: FeeEstimator,
8150 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
8151 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8152 // during initialization prior to the chain_monitor being fully configured in some cases.
8153 // See the docs for `ChannelManagerReadArgs` for more.
8155 let block_hash = header.block_hash();
8156 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8158 let _persistence_guard =
8159 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8160 self, || -> NotifyOption { NotifyOption::DoPersist });
8161 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
8162 .map(|(a, b)| (a, Vec::new(), b)));
8164 let last_best_block_height = self.best_block.read().unwrap().height();
8165 if height < last_best_block_height {
8166 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8167 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8171 fn best_block_updated(&self, header: &Header, height: u32) {
8172 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8173 // during initialization prior to the chain_monitor being fully configured in some cases.
8174 // See the docs for `ChannelManagerReadArgs` for more.
8176 let block_hash = header.block_hash();
8177 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8179 let _persistence_guard =
8180 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8181 self, || -> NotifyOption { NotifyOption::DoPersist });
8182 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8184 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8186 macro_rules! max_time {
8187 ($timestamp: expr) => {
8189 // Update $timestamp to be the max of its current value and the block
8190 // timestamp. This should keep us close to the current time without relying on
8191 // having an explicit local time source.
8192 // Just in case we end up in a race, we loop until we either successfully
8193 // update $timestamp or decide we don't need to.
8194 let old_serial = $timestamp.load(Ordering::Acquire);
8195 if old_serial >= header.time as usize { break; }
8196 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8202 max_time!(self.highest_seen_timestamp);
8203 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8204 payment_secrets.retain(|_, inbound_payment| {
8205 inbound_payment.expiry_time > header.time as u64
8209 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
8210 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8211 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8212 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8213 let peer_state = &mut *peer_state_lock;
8214 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8215 let txid_opt = chan.context.get_funding_txo();
8216 let height_opt = chan.context.get_funding_tx_confirmation_height();
8217 let hash_opt = chan.context.get_funding_tx_confirmed_in();
8218 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
8219 res.push((funding_txo.txid, conf_height, Some(block_hash)));
8226 fn transaction_unconfirmed(&self, txid: &Txid) {
8227 let _persistence_guard =
8228 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8229 self, || -> NotifyOption { NotifyOption::DoPersist });
8230 self.do_chain_event(None, |channel| {
8231 if let Some(funding_txo) = channel.context.get_funding_txo() {
8232 if funding_txo.txid == *txid {
8233 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
8234 } else { Ok((None, Vec::new(), None)) }
8235 } else { Ok((None, Vec::new(), None)) }
8240 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8242 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8243 T::Target: BroadcasterInterface,
8244 ES::Target: EntropySource,
8245 NS::Target: NodeSigner,
8246 SP::Target: SignerProvider,
8247 F::Target: FeeEstimator,
8251 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8252 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8254 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8255 (&self, height_opt: Option<u32>, f: FN) {
8256 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8257 // during initialization prior to the chain_monitor being fully configured in some cases.
8258 // See the docs for `ChannelManagerReadArgs` for more.
8260 let mut failed_channels = Vec::new();
8261 let mut timed_out_htlcs = Vec::new();
8263 let per_peer_state = self.per_peer_state.read().unwrap();
8264 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8265 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8266 let peer_state = &mut *peer_state_lock;
8267 let pending_msg_events = &mut peer_state.pending_msg_events;
8268 peer_state.channel_by_id.retain(|_, phase| {
8270 // Retain unfunded channels.
8271 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8272 ChannelPhase::Funded(channel) => {
8273 let res = f(channel);
8274 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8275 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8276 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8277 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8278 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8280 let logger = WithChannelContext::from(&self.logger, &channel.context);
8281 if let Some(channel_ready) = channel_ready_opt {
8282 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8283 if channel.context.is_usable() {
8284 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8285 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8286 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8287 node_id: channel.context.get_counterparty_node_id(),
8292 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8297 let mut pending_events = self.pending_events.lock().unwrap();
8298 emit_channel_ready_event!(pending_events, channel);
8301 if let Some(announcement_sigs) = announcement_sigs {
8302 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8303 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8304 node_id: channel.context.get_counterparty_node_id(),
8305 msg: announcement_sigs,
8307 if let Some(height) = height_opt {
8308 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8309 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8311 // Note that announcement_signatures fails if the channel cannot be announced,
8312 // so get_channel_update_for_broadcast will never fail by the time we get here.
8313 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8318 if channel.is_our_channel_ready() {
8319 if let Some(real_scid) = channel.context.get_short_channel_id() {
8320 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8321 // to the short_to_chan_info map here. Note that we check whether we
8322 // can relay using the real SCID at relay-time (i.e.
8323 // enforce option_scid_alias then), and if the funding tx is ever
8324 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8325 // is always consistent.
8326 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8327 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8328 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8329 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8330 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8333 } else if let Err(reason) = res {
8334 update_maps_on_chan_removal!(self, &channel.context);
8335 // It looks like our counterparty went on-chain or funding transaction was
8336 // reorged out of the main chain. Close the channel.
8337 failed_channels.push(channel.context.force_shutdown(true));
8338 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8339 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8343 let reason_message = format!("{}", reason);
8344 self.issue_channel_close_events(&channel.context, reason);
8345 pending_msg_events.push(events::MessageSendEvent::HandleError {
8346 node_id: channel.context.get_counterparty_node_id(),
8347 action: msgs::ErrorAction::DisconnectPeer {
8348 msg: Some(msgs::ErrorMessage {
8349 channel_id: channel.context.channel_id(),
8350 data: reason_message,
8363 if let Some(height) = height_opt {
8364 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8365 payment.htlcs.retain(|htlc| {
8366 // If height is approaching the number of blocks we think it takes us to get
8367 // our commitment transaction confirmed before the HTLC expires, plus the
8368 // number of blocks we generally consider it to take to do a commitment update,
8369 // just give up on it and fail the HTLC.
8370 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8371 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8372 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8374 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8375 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8376 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8380 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8383 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8384 intercepted_htlcs.retain(|_, htlc| {
8385 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8386 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8387 short_channel_id: htlc.prev_short_channel_id,
8388 user_channel_id: Some(htlc.prev_user_channel_id),
8389 htlc_id: htlc.prev_htlc_id,
8390 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8391 phantom_shared_secret: None,
8392 outpoint: htlc.prev_funding_outpoint,
8393 blinded_failure: htlc.forward_info.routing.blinded_failure(),
8396 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8397 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8398 _ => unreachable!(),
8400 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8401 HTLCFailReason::from_failure_code(0x2000 | 2),
8402 HTLCDestination::InvalidForward { requested_forward_scid }));
8403 let logger = WithContext::from(
8404 &self.logger, None, Some(htlc.prev_funding_outpoint.to_channel_id())
8406 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8412 self.handle_init_event_channel_failures(failed_channels);
8414 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8415 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8419 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8420 /// may have events that need processing.
8422 /// In order to check if this [`ChannelManager`] needs persisting, call
8423 /// [`Self::get_and_clear_needs_persistence`].
8425 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8426 /// [`ChannelManager`] and should instead register actions to be taken later.
8427 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8428 self.event_persist_notifier.get_future()
8431 /// Returns true if this [`ChannelManager`] needs to be persisted.
8432 pub fn get_and_clear_needs_persistence(&self) -> bool {
8433 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8436 #[cfg(any(test, feature = "_test_utils"))]
8437 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8438 self.event_persist_notifier.notify_pending()
8441 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8442 /// [`chain::Confirm`] interfaces.
8443 pub fn current_best_block(&self) -> BestBlock {
8444 self.best_block.read().unwrap().clone()
8447 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8448 /// [`ChannelManager`].
8449 pub fn node_features(&self) -> NodeFeatures {
8450 provided_node_features(&self.default_configuration)
8453 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8454 /// [`ChannelManager`].
8456 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8457 /// or not. Thus, this method is not public.
8458 #[cfg(any(feature = "_test_utils", test))]
8459 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8460 provided_bolt11_invoice_features(&self.default_configuration)
8463 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8464 /// [`ChannelManager`].
8465 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8466 provided_bolt12_invoice_features(&self.default_configuration)
8469 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8470 /// [`ChannelManager`].
8471 pub fn channel_features(&self) -> ChannelFeatures {
8472 provided_channel_features(&self.default_configuration)
8475 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8476 /// [`ChannelManager`].
8477 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8478 provided_channel_type_features(&self.default_configuration)
8481 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8482 /// [`ChannelManager`].
8483 pub fn init_features(&self) -> InitFeatures {
8484 provided_init_features(&self.default_configuration)
8488 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8489 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8491 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8492 T::Target: BroadcasterInterface,
8493 ES::Target: EntropySource,
8494 NS::Target: NodeSigner,
8495 SP::Target: SignerProvider,
8496 F::Target: FeeEstimator,
8500 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8501 // Note that we never need to persist the updated ChannelManager for an inbound
8502 // open_channel message - pre-funded channels are never written so there should be no
8503 // change to the contents.
8504 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8505 let res = self.internal_open_channel(counterparty_node_id, msg);
8506 let persist = match &res {
8507 Err(e) if e.closes_channel() => {
8508 debug_assert!(false, "We shouldn't close a new channel");
8509 NotifyOption::DoPersist
8511 _ => NotifyOption::SkipPersistHandleEvents,
8513 let _ = handle_error!(self, res, *counterparty_node_id);
8518 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8519 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8520 "Dual-funded channels not supported".to_owned(),
8521 msg.temporary_channel_id.clone())), *counterparty_node_id);
8524 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8525 // Note that we never need to persist the updated ChannelManager for an inbound
8526 // accept_channel message - pre-funded channels are never written so there should be no
8527 // change to the contents.
8528 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8529 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8530 NotifyOption::SkipPersistHandleEvents
8534 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8535 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8536 "Dual-funded channels not supported".to_owned(),
8537 msg.temporary_channel_id.clone())), *counterparty_node_id);
8540 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8541 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8542 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8545 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8546 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8547 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8550 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8551 // Note that we never need to persist the updated ChannelManager for an inbound
8552 // channel_ready message - while the channel's state will change, any channel_ready message
8553 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8554 // will not force-close the channel on startup.
8555 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8556 let res = self.internal_channel_ready(counterparty_node_id, msg);
8557 let persist = match &res {
8558 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8559 _ => NotifyOption::SkipPersistHandleEvents,
8561 let _ = handle_error!(self, res, *counterparty_node_id);
8566 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
8567 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8568 "Quiescence not supported".to_owned(),
8569 msg.channel_id.clone())), *counterparty_node_id);
8572 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
8573 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8574 "Splicing not supported".to_owned(),
8575 msg.channel_id.clone())), *counterparty_node_id);
8578 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
8579 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8580 "Splicing not supported (splice_ack)".to_owned(),
8581 msg.channel_id.clone())), *counterparty_node_id);
8584 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
8585 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8586 "Splicing not supported (splice_locked)".to_owned(),
8587 msg.channel_id.clone())), *counterparty_node_id);
8590 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8591 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8592 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8595 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8596 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8597 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8600 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8601 // Note that we never need to persist the updated ChannelManager for an inbound
8602 // update_add_htlc message - the message itself doesn't change our channel state only the
8603 // `commitment_signed` message afterwards will.
8604 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8605 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8606 let persist = match &res {
8607 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8608 Err(_) => NotifyOption::SkipPersistHandleEvents,
8609 Ok(()) => NotifyOption::SkipPersistNoEvents,
8611 let _ = handle_error!(self, res, *counterparty_node_id);
8616 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8617 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8618 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8621 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8622 // Note that we never need to persist the updated ChannelManager for an inbound
8623 // update_fail_htlc message - the message itself doesn't change our channel state only the
8624 // `commitment_signed` message afterwards will.
8625 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8626 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8627 let persist = match &res {
8628 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8629 Err(_) => NotifyOption::SkipPersistHandleEvents,
8630 Ok(()) => NotifyOption::SkipPersistNoEvents,
8632 let _ = handle_error!(self, res, *counterparty_node_id);
8637 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8638 // Note that we never need to persist the updated ChannelManager for an inbound
8639 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8640 // only the `commitment_signed` message afterwards will.
8641 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8642 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8643 let persist = match &res {
8644 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8645 Err(_) => NotifyOption::SkipPersistHandleEvents,
8646 Ok(()) => NotifyOption::SkipPersistNoEvents,
8648 let _ = handle_error!(self, res, *counterparty_node_id);
8653 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8654 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8655 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8658 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8659 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8660 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8663 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8664 // Note that we never need to persist the updated ChannelManager for an inbound
8665 // update_fee message - the message itself doesn't change our channel state only the
8666 // `commitment_signed` message afterwards will.
8667 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8668 let res = self.internal_update_fee(counterparty_node_id, msg);
8669 let persist = match &res {
8670 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8671 Err(_) => NotifyOption::SkipPersistHandleEvents,
8672 Ok(()) => NotifyOption::SkipPersistNoEvents,
8674 let _ = handle_error!(self, res, *counterparty_node_id);
8679 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8680 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8681 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8684 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8685 PersistenceNotifierGuard::optionally_notify(self, || {
8686 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8689 NotifyOption::DoPersist
8694 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8695 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8696 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8697 let persist = match &res {
8698 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8699 Err(_) => NotifyOption::SkipPersistHandleEvents,
8700 Ok(persist) => *persist,
8702 let _ = handle_error!(self, res, *counterparty_node_id);
8707 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8708 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8709 self, || NotifyOption::SkipPersistHandleEvents);
8710 let mut failed_channels = Vec::new();
8711 let mut per_peer_state = self.per_peer_state.write().unwrap();
8714 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
8715 "Marking channels with {} disconnected and generating channel_updates.",
8716 log_pubkey!(counterparty_node_id)
8718 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8719 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8720 let peer_state = &mut *peer_state_lock;
8721 let pending_msg_events = &mut peer_state.pending_msg_events;
8722 peer_state.channel_by_id.retain(|_, phase| {
8723 let context = match phase {
8724 ChannelPhase::Funded(chan) => {
8725 let logger = WithChannelContext::from(&self.logger, &chan.context);
8726 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
8727 // We only retain funded channels that are not shutdown.
8732 // Unfunded channels will always be removed.
8733 ChannelPhase::UnfundedOutboundV1(chan) => {
8736 ChannelPhase::UnfundedInboundV1(chan) => {
8740 // Clean up for removal.
8741 update_maps_on_chan_removal!(self, &context);
8742 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8743 failed_channels.push(context.force_shutdown(false));
8746 // Note that we don't bother generating any events for pre-accept channels -
8747 // they're not considered "channels" yet from the PoV of our events interface.
8748 peer_state.inbound_channel_request_by_id.clear();
8749 pending_msg_events.retain(|msg| {
8751 // V1 Channel Establishment
8752 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8753 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8754 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8755 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8756 // V2 Channel Establishment
8757 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8758 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8759 // Common Channel Establishment
8760 &events::MessageSendEvent::SendChannelReady { .. } => false,
8761 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8763 &events::MessageSendEvent::SendStfu { .. } => false,
8765 &events::MessageSendEvent::SendSplice { .. } => false,
8766 &events::MessageSendEvent::SendSpliceAck { .. } => false,
8767 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
8768 // Interactive Transaction Construction
8769 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8770 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8771 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8772 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8773 &events::MessageSendEvent::SendTxComplete { .. } => false,
8774 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8775 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8776 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8777 &events::MessageSendEvent::SendTxAbort { .. } => false,
8778 // Channel Operations
8779 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8780 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8781 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8782 &events::MessageSendEvent::SendShutdown { .. } => false,
8783 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8784 &events::MessageSendEvent::HandleError { .. } => false,
8786 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8787 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8788 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8789 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8790 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8791 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8792 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8793 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8794 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8797 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8798 peer_state.is_connected = false;
8799 peer_state.ok_to_remove(true)
8800 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8803 per_peer_state.remove(counterparty_node_id);
8805 mem::drop(per_peer_state);
8807 for failure in failed_channels.drain(..) {
8808 self.finish_close_channel(failure);
8812 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8813 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
8814 if !init_msg.features.supports_static_remote_key() {
8815 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8819 let mut res = Ok(());
8821 PersistenceNotifierGuard::optionally_notify(self, || {
8822 // If we have too many peers connected which don't have funded channels, disconnect the
8823 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8824 // unfunded channels taking up space in memory for disconnected peers, we still let new
8825 // peers connect, but we'll reject new channels from them.
8826 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8827 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8830 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8831 match peer_state_lock.entry(counterparty_node_id.clone()) {
8832 hash_map::Entry::Vacant(e) => {
8833 if inbound_peer_limited {
8835 return NotifyOption::SkipPersistNoEvents;
8837 e.insert(Mutex::new(PeerState {
8838 channel_by_id: HashMap::new(),
8839 inbound_channel_request_by_id: HashMap::new(),
8840 latest_features: init_msg.features.clone(),
8841 pending_msg_events: Vec::new(),
8842 in_flight_monitor_updates: BTreeMap::new(),
8843 monitor_update_blocked_actions: BTreeMap::new(),
8844 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8848 hash_map::Entry::Occupied(e) => {
8849 let mut peer_state = e.get().lock().unwrap();
8850 peer_state.latest_features = init_msg.features.clone();
8852 let best_block_height = self.best_block.read().unwrap().height();
8853 if inbound_peer_limited &&
8854 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8855 peer_state.channel_by_id.len()
8858 return NotifyOption::SkipPersistNoEvents;
8861 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8862 peer_state.is_connected = true;
8867 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8869 let per_peer_state = self.per_peer_state.read().unwrap();
8870 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8871 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8872 let peer_state = &mut *peer_state_lock;
8873 let pending_msg_events = &mut peer_state.pending_msg_events;
8875 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8876 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8877 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8878 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8879 // worry about closing and removing them.
8880 debug_assert!(false);
8884 let logger = WithChannelContext::from(&self.logger, &chan.context);
8885 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
8886 node_id: chan.context.get_counterparty_node_id(),
8887 msg: chan.get_channel_reestablish(&&logger),
8892 return NotifyOption::SkipPersistHandleEvents;
8893 //TODO: Also re-broadcast announcement_signatures
8898 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8899 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8901 match &msg.data as &str {
8902 "cannot co-op close channel w/ active htlcs"|
8903 "link failed to shutdown" =>
8905 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8906 // send one while HTLCs are still present. The issue is tracked at
8907 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8908 // to fix it but none so far have managed to land upstream. The issue appears to be
8909 // very low priority for the LND team despite being marked "P1".
8910 // We're not going to bother handling this in a sensible way, instead simply
8911 // repeating the Shutdown message on repeat until morale improves.
8912 if !msg.channel_id.is_zero() {
8913 let per_peer_state = self.per_peer_state.read().unwrap();
8914 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8915 if peer_state_mutex_opt.is_none() { return; }
8916 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8917 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8918 if let Some(msg) = chan.get_outbound_shutdown() {
8919 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8920 node_id: *counterparty_node_id,
8924 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8925 node_id: *counterparty_node_id,
8926 action: msgs::ErrorAction::SendWarningMessage {
8927 msg: msgs::WarningMessage {
8928 channel_id: msg.channel_id,
8929 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8931 log_level: Level::Trace,
8941 if msg.channel_id.is_zero() {
8942 let channel_ids: Vec<ChannelId> = {
8943 let per_peer_state = self.per_peer_state.read().unwrap();
8944 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8945 if peer_state_mutex_opt.is_none() { return; }
8946 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8947 let peer_state = &mut *peer_state_lock;
8948 // Note that we don't bother generating any events for pre-accept channels -
8949 // they're not considered "channels" yet from the PoV of our events interface.
8950 peer_state.inbound_channel_request_by_id.clear();
8951 peer_state.channel_by_id.keys().cloned().collect()
8953 for channel_id in channel_ids {
8954 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8955 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8959 // First check if we can advance the channel type and try again.
8960 let per_peer_state = self.per_peer_state.read().unwrap();
8961 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8962 if peer_state_mutex_opt.is_none() { return; }
8963 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8964 let peer_state = &mut *peer_state_lock;
8965 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8966 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
8967 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8968 node_id: *counterparty_node_id,
8976 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8977 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8981 fn provided_node_features(&self) -> NodeFeatures {
8982 provided_node_features(&self.default_configuration)
8985 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8986 provided_init_features(&self.default_configuration)
8989 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
8990 Some(vec![self.chain_hash])
8993 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8994 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8995 "Dual-funded channels not supported".to_owned(),
8996 msg.channel_id.clone())), *counterparty_node_id);
8999 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
9000 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9001 "Dual-funded channels not supported".to_owned(),
9002 msg.channel_id.clone())), *counterparty_node_id);
9005 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
9006 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9007 "Dual-funded channels not supported".to_owned(),
9008 msg.channel_id.clone())), *counterparty_node_id);
9011 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
9012 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9013 "Dual-funded channels not supported".to_owned(),
9014 msg.channel_id.clone())), *counterparty_node_id);
9017 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
9018 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9019 "Dual-funded channels not supported".to_owned(),
9020 msg.channel_id.clone())), *counterparty_node_id);
9023 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
9024 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9025 "Dual-funded channels not supported".to_owned(),
9026 msg.channel_id.clone())), *counterparty_node_id);
9029 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
9030 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9031 "Dual-funded channels not supported".to_owned(),
9032 msg.channel_id.clone())), *counterparty_node_id);
9035 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
9036 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9037 "Dual-funded channels not supported".to_owned(),
9038 msg.channel_id.clone())), *counterparty_node_id);
9041 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
9042 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9043 "Dual-funded channels not supported".to_owned(),
9044 msg.channel_id.clone())), *counterparty_node_id);
9048 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9049 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9051 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9052 T::Target: BroadcasterInterface,
9053 ES::Target: EntropySource,
9054 NS::Target: NodeSigner,
9055 SP::Target: SignerProvider,
9056 F::Target: FeeEstimator,
9060 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
9061 let secp_ctx = &self.secp_ctx;
9062 let expanded_key = &self.inbound_payment_key;
9065 OffersMessage::InvoiceRequest(invoice_request) => {
9066 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
9069 Ok(amount_msats) => Some(amount_msats),
9070 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9072 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9073 Ok(invoice_request) => invoice_request,
9075 let error = Bolt12SemanticError::InvalidMetadata;
9076 return Some(OffersMessage::InvoiceError(error.into()));
9079 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9081 match self.create_inbound_payment(amount_msats, relative_expiry, None) {
9082 Ok((payment_hash, payment_secret)) if invoice_request.keys.is_some() => {
9083 let payment_paths = vec![
9084 self.create_one_hop_blinded_payment_path(payment_secret),
9086 #[cfg(not(feature = "no-std"))]
9087 let builder = invoice_request.respond_using_derived_keys(
9088 payment_paths, payment_hash
9090 #[cfg(feature = "no-std")]
9091 let created_at = Duration::from_secs(
9092 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9094 #[cfg(feature = "no-std")]
9095 let builder = invoice_request.respond_using_derived_keys_no_std(
9096 payment_paths, payment_hash, created_at
9098 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9099 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9100 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9103 Ok((payment_hash, payment_secret)) => {
9104 let payment_paths = vec![
9105 self.create_one_hop_blinded_payment_path(payment_secret),
9107 #[cfg(not(feature = "no-std"))]
9108 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9109 #[cfg(feature = "no-std")]
9110 let created_at = Duration::from_secs(
9111 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9113 #[cfg(feature = "no-std")]
9114 let builder = invoice_request.respond_with_no_std(
9115 payment_paths, payment_hash, created_at
9117 let response = builder.and_then(|builder| builder.allow_mpp().build())
9118 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9120 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9121 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9122 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9123 InvoiceError::from_string("Failed signing invoice".to_string())
9125 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9126 InvoiceError::from_string("Failed invoice signature verification".to_string())
9130 Ok(invoice) => Some(invoice),
9131 Err(error) => Some(error),
9135 Some(OffersMessage::InvoiceError(Bolt12SemanticError::InvalidAmount.into()))
9139 OffersMessage::Invoice(invoice) => {
9140 match invoice.verify(expanded_key, secp_ctx) {
9142 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9144 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9145 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9148 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9149 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9150 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9157 OffersMessage::InvoiceError(invoice_error) => {
9158 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9164 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9165 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9169 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9170 /// [`ChannelManager`].
9171 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9172 let mut node_features = provided_init_features(config).to_context();
9173 node_features.set_keysend_optional();
9177 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9178 /// [`ChannelManager`].
9180 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9181 /// or not. Thus, this method is not public.
9182 #[cfg(any(feature = "_test_utils", test))]
9183 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9184 provided_init_features(config).to_context()
9187 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9188 /// [`ChannelManager`].
9189 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9190 provided_init_features(config).to_context()
9193 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9194 /// [`ChannelManager`].
9195 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9196 provided_init_features(config).to_context()
9199 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9200 /// [`ChannelManager`].
9201 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9202 ChannelTypeFeatures::from_init(&provided_init_features(config))
9205 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9206 /// [`ChannelManager`].
9207 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9208 // Note that if new features are added here which other peers may (eventually) require, we
9209 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9210 // [`ErroringMessageHandler`].
9211 let mut features = InitFeatures::empty();
9212 features.set_data_loss_protect_required();
9213 features.set_upfront_shutdown_script_optional();
9214 features.set_variable_length_onion_required();
9215 features.set_static_remote_key_required();
9216 features.set_payment_secret_required();
9217 features.set_basic_mpp_optional();
9218 features.set_wumbo_optional();
9219 features.set_shutdown_any_segwit_optional();
9220 features.set_channel_type_optional();
9221 features.set_scid_privacy_optional();
9222 features.set_zero_conf_optional();
9223 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9224 features.set_anchors_zero_fee_htlc_tx_optional();
9229 const SERIALIZATION_VERSION: u8 = 1;
9230 const MIN_SERIALIZATION_VERSION: u8 = 1;
9232 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9233 (2, fee_base_msat, required),
9234 (4, fee_proportional_millionths, required),
9235 (6, cltv_expiry_delta, required),
9238 impl_writeable_tlv_based!(ChannelCounterparty, {
9239 (2, node_id, required),
9240 (4, features, required),
9241 (6, unspendable_punishment_reserve, required),
9242 (8, forwarding_info, option),
9243 (9, outbound_htlc_minimum_msat, option),
9244 (11, outbound_htlc_maximum_msat, option),
9247 impl Writeable for ChannelDetails {
9248 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9249 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9250 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9251 let user_channel_id_low = self.user_channel_id as u64;
9252 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9253 write_tlv_fields!(writer, {
9254 (1, self.inbound_scid_alias, option),
9255 (2, self.channel_id, required),
9256 (3, self.channel_type, option),
9257 (4, self.counterparty, required),
9258 (5, self.outbound_scid_alias, option),
9259 (6, self.funding_txo, option),
9260 (7, self.config, option),
9261 (8, self.short_channel_id, option),
9262 (9, self.confirmations, option),
9263 (10, self.channel_value_satoshis, required),
9264 (12, self.unspendable_punishment_reserve, option),
9265 (14, user_channel_id_low, required),
9266 (16, self.balance_msat, required),
9267 (18, self.outbound_capacity_msat, required),
9268 (19, self.next_outbound_htlc_limit_msat, required),
9269 (20, self.inbound_capacity_msat, required),
9270 (21, self.next_outbound_htlc_minimum_msat, required),
9271 (22, self.confirmations_required, option),
9272 (24, self.force_close_spend_delay, option),
9273 (26, self.is_outbound, required),
9274 (28, self.is_channel_ready, required),
9275 (30, self.is_usable, required),
9276 (32, self.is_public, required),
9277 (33, self.inbound_htlc_minimum_msat, option),
9278 (35, self.inbound_htlc_maximum_msat, option),
9279 (37, user_channel_id_high_opt, option),
9280 (39, self.feerate_sat_per_1000_weight, option),
9281 (41, self.channel_shutdown_state, option),
9287 impl Readable for ChannelDetails {
9288 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9289 _init_and_read_len_prefixed_tlv_fields!(reader, {
9290 (1, inbound_scid_alias, option),
9291 (2, channel_id, required),
9292 (3, channel_type, option),
9293 (4, counterparty, required),
9294 (5, outbound_scid_alias, option),
9295 (6, funding_txo, option),
9296 (7, config, option),
9297 (8, short_channel_id, option),
9298 (9, confirmations, option),
9299 (10, channel_value_satoshis, required),
9300 (12, unspendable_punishment_reserve, option),
9301 (14, user_channel_id_low, required),
9302 (16, balance_msat, required),
9303 (18, outbound_capacity_msat, required),
9304 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9305 // filled in, so we can safely unwrap it here.
9306 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9307 (20, inbound_capacity_msat, required),
9308 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9309 (22, confirmations_required, option),
9310 (24, force_close_spend_delay, option),
9311 (26, is_outbound, required),
9312 (28, is_channel_ready, required),
9313 (30, is_usable, required),
9314 (32, is_public, required),
9315 (33, inbound_htlc_minimum_msat, option),
9316 (35, inbound_htlc_maximum_msat, option),
9317 (37, user_channel_id_high_opt, option),
9318 (39, feerate_sat_per_1000_weight, option),
9319 (41, channel_shutdown_state, option),
9322 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9323 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9324 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9325 let user_channel_id = user_channel_id_low as u128 +
9326 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9330 channel_id: channel_id.0.unwrap(),
9332 counterparty: counterparty.0.unwrap(),
9333 outbound_scid_alias,
9337 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9338 unspendable_punishment_reserve,
9340 balance_msat: balance_msat.0.unwrap(),
9341 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9342 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9343 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9344 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9345 confirmations_required,
9347 force_close_spend_delay,
9348 is_outbound: is_outbound.0.unwrap(),
9349 is_channel_ready: is_channel_ready.0.unwrap(),
9350 is_usable: is_usable.0.unwrap(),
9351 is_public: is_public.0.unwrap(),
9352 inbound_htlc_minimum_msat,
9353 inbound_htlc_maximum_msat,
9354 feerate_sat_per_1000_weight,
9355 channel_shutdown_state,
9360 impl_writeable_tlv_based!(PhantomRouteHints, {
9361 (2, channels, required_vec),
9362 (4, phantom_scid, required),
9363 (6, real_node_pubkey, required),
9366 impl_writeable_tlv_based!(BlindedForward, {
9367 (0, inbound_blinding_point, required),
9370 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9372 (0, onion_packet, required),
9373 (1, blinded, option),
9374 (2, short_channel_id, required),
9377 (0, payment_data, required),
9378 (1, phantom_shared_secret, option),
9379 (2, incoming_cltv_expiry, required),
9380 (3, payment_metadata, option),
9381 (5, custom_tlvs, optional_vec),
9382 (7, requires_blinded_error, (default_value, false)),
9384 (2, ReceiveKeysend) => {
9385 (0, payment_preimage, required),
9386 (2, incoming_cltv_expiry, required),
9387 (3, payment_metadata, option),
9388 (4, payment_data, option), // Added in 0.0.116
9389 (5, custom_tlvs, optional_vec),
9393 impl_writeable_tlv_based!(PendingHTLCInfo, {
9394 (0, routing, required),
9395 (2, incoming_shared_secret, required),
9396 (4, payment_hash, required),
9397 (6, outgoing_amt_msat, required),
9398 (8, outgoing_cltv_value, required),
9399 (9, incoming_amt_msat, option),
9400 (10, skimmed_fee_msat, option),
9404 impl Writeable for HTLCFailureMsg {
9405 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9407 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9409 channel_id.write(writer)?;
9410 htlc_id.write(writer)?;
9411 reason.write(writer)?;
9413 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9414 channel_id, htlc_id, sha256_of_onion, failure_code
9417 channel_id.write(writer)?;
9418 htlc_id.write(writer)?;
9419 sha256_of_onion.write(writer)?;
9420 failure_code.write(writer)?;
9427 impl Readable for HTLCFailureMsg {
9428 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9429 let id: u8 = Readable::read(reader)?;
9432 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9433 channel_id: Readable::read(reader)?,
9434 htlc_id: Readable::read(reader)?,
9435 reason: Readable::read(reader)?,
9439 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9440 channel_id: Readable::read(reader)?,
9441 htlc_id: Readable::read(reader)?,
9442 sha256_of_onion: Readable::read(reader)?,
9443 failure_code: Readable::read(reader)?,
9446 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9447 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9448 // messages contained in the variants.
9449 // In version 0.0.101, support for reading the variants with these types was added, and
9450 // we should migrate to writing these variants when UpdateFailHTLC or
9451 // UpdateFailMalformedHTLC get TLV fields.
9453 let length: BigSize = Readable::read(reader)?;
9454 let mut s = FixedLengthReader::new(reader, length.0);
9455 let res = Readable::read(&mut s)?;
9456 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9457 Ok(HTLCFailureMsg::Relay(res))
9460 let length: BigSize = Readable::read(reader)?;
9461 let mut s = FixedLengthReader::new(reader, length.0);
9462 let res = Readable::read(&mut s)?;
9463 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9464 Ok(HTLCFailureMsg::Malformed(res))
9466 _ => Err(DecodeError::UnknownRequiredFeature),
9471 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9476 impl_writeable_tlv_based_enum!(BlindedFailure,
9477 (0, FromIntroductionNode) => {},
9478 (2, FromBlindedNode) => {}, ;
9481 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9482 (0, short_channel_id, required),
9483 (1, phantom_shared_secret, option),
9484 (2, outpoint, required),
9485 (3, blinded_failure, option),
9486 (4, htlc_id, required),
9487 (6, incoming_packet_shared_secret, required),
9488 (7, user_channel_id, option),
9491 impl Writeable for ClaimableHTLC {
9492 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9493 let (payment_data, keysend_preimage) = match &self.onion_payload {
9494 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9495 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9497 write_tlv_fields!(writer, {
9498 (0, self.prev_hop, required),
9499 (1, self.total_msat, required),
9500 (2, self.value, required),
9501 (3, self.sender_intended_value, required),
9502 (4, payment_data, option),
9503 (5, self.total_value_received, option),
9504 (6, self.cltv_expiry, required),
9505 (8, keysend_preimage, option),
9506 (10, self.counterparty_skimmed_fee_msat, option),
9512 impl Readable for ClaimableHTLC {
9513 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9514 _init_and_read_len_prefixed_tlv_fields!(reader, {
9515 (0, prev_hop, required),
9516 (1, total_msat, option),
9517 (2, value_ser, required),
9518 (3, sender_intended_value, option),
9519 (4, payment_data_opt, option),
9520 (5, total_value_received, option),
9521 (6, cltv_expiry, required),
9522 (8, keysend_preimage, option),
9523 (10, counterparty_skimmed_fee_msat, option),
9525 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9526 let value = value_ser.0.unwrap();
9527 let onion_payload = match keysend_preimage {
9529 if payment_data.is_some() {
9530 return Err(DecodeError::InvalidValue)
9532 if total_msat.is_none() {
9533 total_msat = Some(value);
9535 OnionPayload::Spontaneous(p)
9538 if total_msat.is_none() {
9539 if payment_data.is_none() {
9540 return Err(DecodeError::InvalidValue)
9542 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9544 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9548 prev_hop: prev_hop.0.unwrap(),
9551 sender_intended_value: sender_intended_value.unwrap_or(value),
9552 total_value_received,
9553 total_msat: total_msat.unwrap(),
9555 cltv_expiry: cltv_expiry.0.unwrap(),
9556 counterparty_skimmed_fee_msat,
9561 impl Readable for HTLCSource {
9562 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9563 let id: u8 = Readable::read(reader)?;
9566 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9567 let mut first_hop_htlc_msat: u64 = 0;
9568 let mut path_hops = Vec::new();
9569 let mut payment_id = None;
9570 let mut payment_params: Option<PaymentParameters> = None;
9571 let mut blinded_tail: Option<BlindedTail> = None;
9572 read_tlv_fields!(reader, {
9573 (0, session_priv, required),
9574 (1, payment_id, option),
9575 (2, first_hop_htlc_msat, required),
9576 (4, path_hops, required_vec),
9577 (5, payment_params, (option: ReadableArgs, 0)),
9578 (6, blinded_tail, option),
9580 if payment_id.is_none() {
9581 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9583 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9585 let path = Path { hops: path_hops, blinded_tail };
9586 if path.hops.len() == 0 {
9587 return Err(DecodeError::InvalidValue);
9589 if let Some(params) = payment_params.as_mut() {
9590 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9591 if final_cltv_expiry_delta == &0 {
9592 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9596 Ok(HTLCSource::OutboundRoute {
9597 session_priv: session_priv.0.unwrap(),
9598 first_hop_htlc_msat,
9600 payment_id: payment_id.unwrap(),
9603 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9604 _ => Err(DecodeError::UnknownRequiredFeature),
9609 impl Writeable for HTLCSource {
9610 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9612 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9614 let payment_id_opt = Some(payment_id);
9615 write_tlv_fields!(writer, {
9616 (0, session_priv, required),
9617 (1, payment_id_opt, option),
9618 (2, first_hop_htlc_msat, required),
9619 // 3 was previously used to write a PaymentSecret for the payment.
9620 (4, path.hops, required_vec),
9621 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9622 (6, path.blinded_tail, option),
9625 HTLCSource::PreviousHopData(ref field) => {
9627 field.write(writer)?;
9634 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9635 (0, forward_info, required),
9636 (1, prev_user_channel_id, (default_value, 0)),
9637 (2, prev_short_channel_id, required),
9638 (4, prev_htlc_id, required),
9639 (6, prev_funding_outpoint, required),
9642 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
9644 (0, htlc_id, required),
9645 (2, err_packet, required),
9650 impl_writeable_tlv_based!(PendingInboundPayment, {
9651 (0, payment_secret, required),
9652 (2, expiry_time, required),
9653 (4, user_payment_id, required),
9654 (6, payment_preimage, required),
9655 (8, min_value_msat, required),
9658 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
9660 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9661 T::Target: BroadcasterInterface,
9662 ES::Target: EntropySource,
9663 NS::Target: NodeSigner,
9664 SP::Target: SignerProvider,
9665 F::Target: FeeEstimator,
9669 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9670 let _consistency_lock = self.total_consistency_lock.write().unwrap();
9672 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
9674 self.chain_hash.write(writer)?;
9676 let best_block = self.best_block.read().unwrap();
9677 best_block.height().write(writer)?;
9678 best_block.block_hash().write(writer)?;
9681 let mut serializable_peer_count: u64 = 0;
9683 let per_peer_state = self.per_peer_state.read().unwrap();
9684 let mut number_of_funded_channels = 0;
9685 for (_, peer_state_mutex) in per_peer_state.iter() {
9686 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9687 let peer_state = &mut *peer_state_lock;
9688 if !peer_state.ok_to_remove(false) {
9689 serializable_peer_count += 1;
9692 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
9693 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
9697 (number_of_funded_channels as u64).write(writer)?;
9699 for (_, peer_state_mutex) in per_peer_state.iter() {
9700 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9701 let peer_state = &mut *peer_state_lock;
9702 for channel in peer_state.channel_by_id.iter().filter_map(
9703 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
9704 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
9707 channel.write(writer)?;
9713 let forward_htlcs = self.forward_htlcs.lock().unwrap();
9714 (forward_htlcs.len() as u64).write(writer)?;
9715 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
9716 short_channel_id.write(writer)?;
9717 (pending_forwards.len() as u64).write(writer)?;
9718 for forward in pending_forwards {
9719 forward.write(writer)?;
9724 let per_peer_state = self.per_peer_state.write().unwrap();
9726 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9727 let claimable_payments = self.claimable_payments.lock().unwrap();
9728 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9730 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9731 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9732 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9733 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9734 payment_hash.write(writer)?;
9735 (payment.htlcs.len() as u64).write(writer)?;
9736 for htlc in payment.htlcs.iter() {
9737 htlc.write(writer)?;
9739 htlc_purposes.push(&payment.purpose);
9740 htlc_onion_fields.push(&payment.onion_fields);
9743 let mut monitor_update_blocked_actions_per_peer = None;
9744 let mut peer_states = Vec::new();
9745 for (_, peer_state_mutex) in per_peer_state.iter() {
9746 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9747 // of a lockorder violation deadlock - no other thread can be holding any
9748 // per_peer_state lock at all.
9749 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9752 (serializable_peer_count).write(writer)?;
9753 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9754 // Peers which we have no channels to should be dropped once disconnected. As we
9755 // disconnect all peers when shutting down and serializing the ChannelManager, we
9756 // consider all peers as disconnected here. There's therefore no need write peers with
9758 if !peer_state.ok_to_remove(false) {
9759 peer_pubkey.write(writer)?;
9760 peer_state.latest_features.write(writer)?;
9761 if !peer_state.monitor_update_blocked_actions.is_empty() {
9762 monitor_update_blocked_actions_per_peer
9763 .get_or_insert_with(Vec::new)
9764 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9769 let events = self.pending_events.lock().unwrap();
9770 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9771 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9772 // refuse to read the new ChannelManager.
9773 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9774 if events_not_backwards_compatible {
9775 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9776 // well save the space and not write any events here.
9777 0u64.write(writer)?;
9779 (events.len() as u64).write(writer)?;
9780 for (event, _) in events.iter() {
9781 event.write(writer)?;
9785 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9786 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9787 // the closing monitor updates were always effectively replayed on startup (either directly
9788 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9789 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9790 0u64.write(writer)?;
9792 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9793 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9794 // likely to be identical.
9795 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9796 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9798 (pending_inbound_payments.len() as u64).write(writer)?;
9799 for (hash, pending_payment) in pending_inbound_payments.iter() {
9800 hash.write(writer)?;
9801 pending_payment.write(writer)?;
9804 // For backwards compat, write the session privs and their total length.
9805 let mut num_pending_outbounds_compat: u64 = 0;
9806 for (_, outbound) in pending_outbound_payments.iter() {
9807 if !outbound.is_fulfilled() && !outbound.abandoned() {
9808 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
9811 num_pending_outbounds_compat.write(writer)?;
9812 for (_, outbound) in pending_outbound_payments.iter() {
9814 PendingOutboundPayment::Legacy { session_privs } |
9815 PendingOutboundPayment::Retryable { session_privs, .. } => {
9816 for session_priv in session_privs.iter() {
9817 session_priv.write(writer)?;
9820 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9821 PendingOutboundPayment::InvoiceReceived { .. } => {},
9822 PendingOutboundPayment::Fulfilled { .. } => {},
9823 PendingOutboundPayment::Abandoned { .. } => {},
9827 // Encode without retry info for 0.0.101 compatibility.
9828 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9829 for (id, outbound) in pending_outbound_payments.iter() {
9831 PendingOutboundPayment::Legacy { session_privs } |
9832 PendingOutboundPayment::Retryable { session_privs, .. } => {
9833 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9839 let mut pending_intercepted_htlcs = None;
9840 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9841 if our_pending_intercepts.len() != 0 {
9842 pending_intercepted_htlcs = Some(our_pending_intercepts);
9845 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9846 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9847 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9848 // map. Thus, if there are no entries we skip writing a TLV for it.
9849 pending_claiming_payments = None;
9852 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9853 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9854 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9855 if !updates.is_empty() {
9856 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9857 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9862 write_tlv_fields!(writer, {
9863 (1, pending_outbound_payments_no_retry, required),
9864 (2, pending_intercepted_htlcs, option),
9865 (3, pending_outbound_payments, required),
9866 (4, pending_claiming_payments, option),
9867 (5, self.our_network_pubkey, required),
9868 (6, monitor_update_blocked_actions_per_peer, option),
9869 (7, self.fake_scid_rand_bytes, required),
9870 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9871 (9, htlc_purposes, required_vec),
9872 (10, in_flight_monitor_updates, option),
9873 (11, self.probing_cookie_secret, required),
9874 (13, htlc_onion_fields, optional_vec),
9881 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9882 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9883 (self.len() as u64).write(w)?;
9884 for (event, action) in self.iter() {
9887 #[cfg(debug_assertions)] {
9888 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9889 // be persisted and are regenerated on restart. However, if such an event has a
9890 // post-event-handling action we'll write nothing for the event and would have to
9891 // either forget the action or fail on deserialization (which we do below). Thus,
9892 // check that the event is sane here.
9893 let event_encoded = event.encode();
9894 let event_read: Option<Event> =
9895 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
9896 if action.is_some() { assert!(event_read.is_some()); }
9902 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
9903 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9904 let len: u64 = Readable::read(reader)?;
9905 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
9906 let mut events: Self = VecDeque::with_capacity(cmp::min(
9907 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
9910 let ev_opt = MaybeReadable::read(reader)?;
9911 let action = Readable::read(reader)?;
9912 if let Some(ev) = ev_opt {
9913 events.push_back((ev, action));
9914 } else if action.is_some() {
9915 return Err(DecodeError::InvalidValue);
9922 impl_writeable_tlv_based_enum!(ChannelShutdownState,
9923 (0, NotShuttingDown) => {},
9924 (2, ShutdownInitiated) => {},
9925 (4, ResolvingHTLCs) => {},
9926 (6, NegotiatingClosingFee) => {},
9927 (8, ShutdownComplete) => {}, ;
9930 /// Arguments for the creation of a ChannelManager that are not deserialized.
9932 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
9934 /// 1) Deserialize all stored [`ChannelMonitor`]s.
9935 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
9936 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
9937 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
9938 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
9939 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
9940 /// same way you would handle a [`chain::Filter`] call using
9941 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
9942 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
9943 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
9944 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
9945 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
9946 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
9948 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
9949 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
9951 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
9952 /// call any other methods on the newly-deserialized [`ChannelManager`].
9954 /// Note that because some channels may be closed during deserialization, it is critical that you
9955 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
9956 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
9957 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
9958 /// not force-close the same channels but consider them live), you may end up revoking a state for
9959 /// which you've already broadcasted the transaction.
9961 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
9962 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9964 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9965 T::Target: BroadcasterInterface,
9966 ES::Target: EntropySource,
9967 NS::Target: NodeSigner,
9968 SP::Target: SignerProvider,
9969 F::Target: FeeEstimator,
9973 /// A cryptographically secure source of entropy.
9974 pub entropy_source: ES,
9976 /// A signer that is able to perform node-scoped cryptographic operations.
9977 pub node_signer: NS,
9979 /// The keys provider which will give us relevant keys. Some keys will be loaded during
9980 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
9982 pub signer_provider: SP,
9984 /// The fee_estimator for use in the ChannelManager in the future.
9986 /// No calls to the FeeEstimator will be made during deserialization.
9987 pub fee_estimator: F,
9988 /// The chain::Watch for use in the ChannelManager in the future.
9990 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
9991 /// you have deserialized ChannelMonitors separately and will add them to your
9992 /// chain::Watch after deserializing this ChannelManager.
9993 pub chain_monitor: M,
9995 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
9996 /// used to broadcast the latest local commitment transactions of channels which must be
9997 /// force-closed during deserialization.
9998 pub tx_broadcaster: T,
9999 /// The router which will be used in the ChannelManager in the future for finding routes
10000 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
10002 /// No calls to the router will be made during deserialization.
10004 /// The Logger for use in the ChannelManager and which may be used to log information during
10005 /// deserialization.
10007 /// Default settings used for new channels. Any existing channels will continue to use the
10008 /// runtime settings which were stored when the ChannelManager was serialized.
10009 pub default_config: UserConfig,
10011 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
10012 /// value.context.get_funding_txo() should be the key).
10014 /// If a monitor is inconsistent with the channel state during deserialization the channel will
10015 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
10016 /// is true for missing channels as well. If there is a monitor missing for which we find
10017 /// channel data Err(DecodeError::InvalidValue) will be returned.
10019 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
10022 /// This is not exported to bindings users because we have no HashMap bindings
10023 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
10026 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10027 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
10029 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10030 T::Target: BroadcasterInterface,
10031 ES::Target: EntropySource,
10032 NS::Target: NodeSigner,
10033 SP::Target: SignerProvider,
10034 F::Target: FeeEstimator,
10038 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
10039 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
10040 /// populate a HashMap directly from C.
10041 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
10042 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
10044 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
10045 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
10050 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
10051 // SipmleArcChannelManager type:
10052 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10053 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
10055 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10056 T::Target: BroadcasterInterface,
10057 ES::Target: EntropySource,
10058 NS::Target: NodeSigner,
10059 SP::Target: SignerProvider,
10060 F::Target: FeeEstimator,
10064 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10065 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
10066 Ok((blockhash, Arc::new(chan_manager)))
10070 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10071 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
10073 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10074 T::Target: BroadcasterInterface,
10075 ES::Target: EntropySource,
10076 NS::Target: NodeSigner,
10077 SP::Target: SignerProvider,
10078 F::Target: FeeEstimator,
10082 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10083 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10085 let chain_hash: ChainHash = Readable::read(reader)?;
10086 let best_block_height: u32 = Readable::read(reader)?;
10087 let best_block_hash: BlockHash = Readable::read(reader)?;
10089 let mut failed_htlcs = Vec::new();
10091 let channel_count: u64 = Readable::read(reader)?;
10092 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
10093 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10094 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10095 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10096 let mut channel_closures = VecDeque::new();
10097 let mut close_background_events = Vec::new();
10098 for _ in 0..channel_count {
10099 let mut channel: Channel<SP> = Channel::read(reader, (
10100 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10102 let logger = WithChannelContext::from(&args.logger, &channel.context);
10103 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10104 funding_txo_set.insert(funding_txo.clone());
10105 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10106 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10107 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10108 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10109 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10110 // But if the channel is behind of the monitor, close the channel:
10111 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10112 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10113 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10114 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10115 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10117 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10118 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10119 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10121 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10122 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10123 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10125 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10126 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10127 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10129 let mut shutdown_result = channel.context.force_shutdown(true);
10130 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10131 return Err(DecodeError::InvalidValue);
10133 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
10134 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10135 counterparty_node_id, funding_txo, update
10138 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10139 channel_closures.push_back((events::Event::ChannelClosed {
10140 channel_id: channel.context.channel_id(),
10141 user_channel_id: channel.context.get_user_id(),
10142 reason: ClosureReason::OutdatedChannelManager,
10143 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10144 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10146 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10147 let mut found_htlc = false;
10148 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10149 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10152 // If we have some HTLCs in the channel which are not present in the newer
10153 // ChannelMonitor, they have been removed and should be failed back to
10154 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10155 // were actually claimed we'd have generated and ensured the previous-hop
10156 // claim update ChannelMonitor updates were persisted prior to persising
10157 // the ChannelMonitor update for the forward leg, so attempting to fail the
10158 // backwards leg of the HTLC will simply be rejected.
10160 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10161 &channel.context.channel_id(), &payment_hash);
10162 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10166 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10167 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10168 monitor.get_latest_update_id());
10169 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10170 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10172 if channel.context.is_funding_broadcast() {
10173 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
10175 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10176 hash_map::Entry::Occupied(mut entry) => {
10177 let by_id_map = entry.get_mut();
10178 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10180 hash_map::Entry::Vacant(entry) => {
10181 let mut by_id_map = HashMap::new();
10182 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10183 entry.insert(by_id_map);
10187 } else if channel.is_awaiting_initial_mon_persist() {
10188 // If we were persisted and shut down while the initial ChannelMonitor persistence
10189 // was in-progress, we never broadcasted the funding transaction and can still
10190 // safely discard the channel.
10191 let _ = channel.context.force_shutdown(false);
10192 channel_closures.push_back((events::Event::ChannelClosed {
10193 channel_id: channel.context.channel_id(),
10194 user_channel_id: channel.context.get_user_id(),
10195 reason: ClosureReason::DisconnectedPeer,
10196 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10197 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10200 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10201 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10202 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10203 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10204 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10205 return Err(DecodeError::InvalidValue);
10209 for (funding_txo, monitor) in args.channel_monitors.iter() {
10210 if !funding_txo_set.contains(funding_txo) {
10211 let logger = WithChannelMonitor::from(&args.logger, monitor);
10212 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
10213 &funding_txo.to_channel_id());
10214 let monitor_update = ChannelMonitorUpdate {
10215 update_id: CLOSED_CHANNEL_UPDATE_ID,
10216 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10218 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
10222 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10223 let forward_htlcs_count: u64 = Readable::read(reader)?;
10224 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10225 for _ in 0..forward_htlcs_count {
10226 let short_channel_id = Readable::read(reader)?;
10227 let pending_forwards_count: u64 = Readable::read(reader)?;
10228 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10229 for _ in 0..pending_forwards_count {
10230 pending_forwards.push(Readable::read(reader)?);
10232 forward_htlcs.insert(short_channel_id, pending_forwards);
10235 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10236 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10237 for _ in 0..claimable_htlcs_count {
10238 let payment_hash = Readable::read(reader)?;
10239 let previous_hops_len: u64 = Readable::read(reader)?;
10240 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10241 for _ in 0..previous_hops_len {
10242 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10244 claimable_htlcs_list.push((payment_hash, previous_hops));
10247 let peer_state_from_chans = |channel_by_id| {
10250 inbound_channel_request_by_id: HashMap::new(),
10251 latest_features: InitFeatures::empty(),
10252 pending_msg_events: Vec::new(),
10253 in_flight_monitor_updates: BTreeMap::new(),
10254 monitor_update_blocked_actions: BTreeMap::new(),
10255 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10256 is_connected: false,
10260 let peer_count: u64 = Readable::read(reader)?;
10261 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10262 for _ in 0..peer_count {
10263 let peer_pubkey = Readable::read(reader)?;
10264 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
10265 let mut peer_state = peer_state_from_chans(peer_chans);
10266 peer_state.latest_features = Readable::read(reader)?;
10267 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10270 let event_count: u64 = Readable::read(reader)?;
10271 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10272 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10273 for _ in 0..event_count {
10274 match MaybeReadable::read(reader)? {
10275 Some(event) => pending_events_read.push_back((event, None)),
10280 let background_event_count: u64 = Readable::read(reader)?;
10281 for _ in 0..background_event_count {
10282 match <u8 as Readable>::read(reader)? {
10284 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10285 // however we really don't (and never did) need them - we regenerate all
10286 // on-startup monitor updates.
10287 let _: OutPoint = Readable::read(reader)?;
10288 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10290 _ => return Err(DecodeError::InvalidValue),
10294 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10295 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10297 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10298 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10299 for _ in 0..pending_inbound_payment_count {
10300 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10301 return Err(DecodeError::InvalidValue);
10305 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10306 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10307 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10308 for _ in 0..pending_outbound_payments_count_compat {
10309 let session_priv = Readable::read(reader)?;
10310 let payment = PendingOutboundPayment::Legacy {
10311 session_privs: [session_priv].iter().cloned().collect()
10313 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10314 return Err(DecodeError::InvalidValue)
10318 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10319 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10320 let mut pending_outbound_payments = None;
10321 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
10322 let mut received_network_pubkey: Option<PublicKey> = None;
10323 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10324 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10325 let mut claimable_htlc_purposes = None;
10326 let mut claimable_htlc_onion_fields = None;
10327 let mut pending_claiming_payments = Some(HashMap::new());
10328 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10329 let mut events_override = None;
10330 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10331 read_tlv_fields!(reader, {
10332 (1, pending_outbound_payments_no_retry, option),
10333 (2, pending_intercepted_htlcs, option),
10334 (3, pending_outbound_payments, option),
10335 (4, pending_claiming_payments, option),
10336 (5, received_network_pubkey, option),
10337 (6, monitor_update_blocked_actions_per_peer, option),
10338 (7, fake_scid_rand_bytes, option),
10339 (8, events_override, option),
10340 (9, claimable_htlc_purposes, optional_vec),
10341 (10, in_flight_monitor_updates, option),
10342 (11, probing_cookie_secret, option),
10343 (13, claimable_htlc_onion_fields, optional_vec),
10345 if fake_scid_rand_bytes.is_none() {
10346 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10349 if probing_cookie_secret.is_none() {
10350 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10353 if let Some(events) = events_override {
10354 pending_events_read = events;
10357 if !channel_closures.is_empty() {
10358 pending_events_read.append(&mut channel_closures);
10361 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10362 pending_outbound_payments = Some(pending_outbound_payments_compat);
10363 } else if pending_outbound_payments.is_none() {
10364 let mut outbounds = HashMap::new();
10365 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10366 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10368 pending_outbound_payments = Some(outbounds);
10370 let pending_outbounds = OutboundPayments {
10371 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10372 retry_lock: Mutex::new(())
10375 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10376 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10377 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10378 // replayed, and for each monitor update we have to replay we have to ensure there's a
10379 // `ChannelMonitor` for it.
10381 // In order to do so we first walk all of our live channels (so that we can check their
10382 // state immediately after doing the update replays, when we have the `update_id`s
10383 // available) and then walk any remaining in-flight updates.
10385 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10386 let mut pending_background_events = Vec::new();
10387 macro_rules! handle_in_flight_updates {
10388 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10389 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
10391 let mut max_in_flight_update_id = 0;
10392 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10393 for update in $chan_in_flight_upds.iter() {
10394 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10395 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
10396 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10397 pending_background_events.push(
10398 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10399 counterparty_node_id: $counterparty_node_id,
10400 funding_txo: $funding_txo,
10401 update: update.clone(),
10404 if $chan_in_flight_upds.is_empty() {
10405 // We had some updates to apply, but it turns out they had completed before we
10406 // were serialized, we just weren't notified of that. Thus, we may have to run
10407 // the completion actions for any monitor updates, but otherwise are done.
10408 pending_background_events.push(
10409 BackgroundEvent::MonitorUpdatesComplete {
10410 counterparty_node_id: $counterparty_node_id,
10411 channel_id: $funding_txo.to_channel_id(),
10414 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10415 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
10416 return Err(DecodeError::InvalidValue);
10418 max_in_flight_update_id
10422 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10423 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10424 let peer_state = &mut *peer_state_lock;
10425 for phase in peer_state.channel_by_id.values() {
10426 if let ChannelPhase::Funded(chan) = phase {
10427 let logger = WithChannelContext::from(&args.logger, &chan.context);
10429 // Channels that were persisted have to be funded, otherwise they should have been
10431 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10432 let monitor = args.channel_monitors.get(&funding_txo)
10433 .expect("We already checked for monitor presence when loading channels");
10434 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10435 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10436 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10437 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10438 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10439 funding_txo, monitor, peer_state, logger, ""));
10442 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10443 // If the channel is ahead of the monitor, return InvalidValue:
10444 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10445 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10446 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10447 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10448 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10449 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10450 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10451 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10452 return Err(DecodeError::InvalidValue);
10455 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10456 // created in this `channel_by_id` map.
10457 debug_assert!(false);
10458 return Err(DecodeError::InvalidValue);
10463 if let Some(in_flight_upds) = in_flight_monitor_updates {
10464 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10465 let logger = WithContext::from(&args.logger, Some(counterparty_id), Some(funding_txo.to_channel_id()));
10466 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10467 // Now that we've removed all the in-flight monitor updates for channels that are
10468 // still open, we need to replay any monitor updates that are for closed channels,
10469 // creating the neccessary peer_state entries as we go.
10470 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10471 Mutex::new(peer_state_from_chans(HashMap::new()))
10473 let mut peer_state = peer_state_mutex.lock().unwrap();
10474 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10475 funding_txo, monitor, peer_state, logger, "closed ");
10477 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10478 log_error!(logger, " The ChannelMonitor for channel {} is missing.",
10479 &funding_txo.to_channel_id());
10480 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10481 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10482 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10483 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10484 return Err(DecodeError::InvalidValue);
10489 // Note that we have to do the above replays before we push new monitor updates.
10490 pending_background_events.append(&mut close_background_events);
10492 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10493 // should ensure we try them again on the inbound edge. We put them here and do so after we
10494 // have a fully-constructed `ChannelManager` at the end.
10495 let mut pending_claims_to_replay = Vec::new();
10498 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10499 // ChannelMonitor data for any channels for which we do not have authorative state
10500 // (i.e. those for which we just force-closed above or we otherwise don't have a
10501 // corresponding `Channel` at all).
10502 // This avoids several edge-cases where we would otherwise "forget" about pending
10503 // payments which are still in-flight via their on-chain state.
10504 // We only rebuild the pending payments map if we were most recently serialized by
10506 for (_, monitor) in args.channel_monitors.iter() {
10507 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
10508 let chan_id = monitor.get_funding_txo().0.to_channel_id();
10509 if counterparty_opt.is_none() {
10510 let logger = WithChannelMonitor::from(&args.logger, monitor);
10511 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10512 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10513 if path.hops.is_empty() {
10514 log_error!(logger, "Got an empty path for a pending payment");
10515 return Err(DecodeError::InvalidValue);
10518 let path_amt = path.final_value_msat();
10519 let mut session_priv_bytes = [0; 32];
10520 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10521 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10522 hash_map::Entry::Occupied(mut entry) => {
10523 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10524 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10525 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
10527 hash_map::Entry::Vacant(entry) => {
10528 let path_fee = path.fee_msat();
10529 entry.insert(PendingOutboundPayment::Retryable {
10530 retry_strategy: None,
10531 attempts: PaymentAttempts::new(),
10532 payment_params: None,
10533 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
10534 payment_hash: htlc.payment_hash,
10535 payment_secret: None, // only used for retries, and we'll never retry on startup
10536 payment_metadata: None, // only used for retries, and we'll never retry on startup
10537 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10538 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10539 pending_amt_msat: path_amt,
10540 pending_fee_msat: Some(path_fee),
10541 total_msat: path_amt,
10542 starting_block_height: best_block_height,
10543 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10545 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10546 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10551 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10552 match htlc_source {
10553 HTLCSource::PreviousHopData(prev_hop_data) => {
10554 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10555 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10556 info.prev_htlc_id == prev_hop_data.htlc_id
10558 // The ChannelMonitor is now responsible for this HTLC's
10559 // failure/success and will let us know what its outcome is. If we
10560 // still have an entry for this HTLC in `forward_htlcs` or
10561 // `pending_intercepted_htlcs`, we were apparently not persisted after
10562 // the monitor was when forwarding the payment.
10563 forward_htlcs.retain(|_, forwards| {
10564 forwards.retain(|forward| {
10565 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10566 if pending_forward_matches_htlc(&htlc_info) {
10567 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10568 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10573 !forwards.is_empty()
10575 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10576 if pending_forward_matches_htlc(&htlc_info) {
10577 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10578 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10579 pending_events_read.retain(|(event, _)| {
10580 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10581 intercepted_id != ev_id
10588 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10589 if let Some(preimage) = preimage_opt {
10590 let pending_events = Mutex::new(pending_events_read);
10591 // Note that we set `from_onchain` to "false" here,
10592 // deliberately keeping the pending payment around forever.
10593 // Given it should only occur when we have a channel we're
10594 // force-closing for being stale that's okay.
10595 // The alternative would be to wipe the state when claiming,
10596 // generating a `PaymentPathSuccessful` event but regenerating
10597 // it and the `PaymentSent` on every restart until the
10598 // `ChannelMonitor` is removed.
10600 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10601 channel_funding_outpoint: monitor.get_funding_txo().0,
10602 counterparty_node_id: path.hops[0].pubkey,
10604 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
10605 path, false, compl_action, &pending_events, &&logger);
10606 pending_events_read = pending_events.into_inner().unwrap();
10613 // Whether the downstream channel was closed or not, try to re-apply any payment
10614 // preimages from it which may be needed in upstream channels for forwarded
10616 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
10618 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
10619 if let HTLCSource::PreviousHopData(_) = htlc_source {
10620 if let Some(payment_preimage) = preimage_opt {
10621 Some((htlc_source, payment_preimage, htlc.amount_msat,
10622 // Check if `counterparty_opt.is_none()` to see if the
10623 // downstream chan is closed (because we don't have a
10624 // channel_id -> peer map entry).
10625 counterparty_opt.is_none(),
10626 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
10627 monitor.get_funding_txo().0))
10630 // If it was an outbound payment, we've handled it above - if a preimage
10631 // came in and we persisted the `ChannelManager` we either handled it and
10632 // are good to go or the channel force-closed - we don't have to handle the
10633 // channel still live case here.
10637 for tuple in outbound_claimed_htlcs_iter {
10638 pending_claims_to_replay.push(tuple);
10643 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
10644 // If we have pending HTLCs to forward, assume we either dropped a
10645 // `PendingHTLCsForwardable` or the user received it but never processed it as they
10646 // shut down before the timer hit. Either way, set the time_forwardable to a small
10647 // constant as enough time has likely passed that we should simply handle the forwards
10648 // now, or at least after the user gets a chance to reconnect to our peers.
10649 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
10650 time_forwardable: Duration::from_secs(2),
10654 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
10655 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
10657 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
10658 if let Some(purposes) = claimable_htlc_purposes {
10659 if purposes.len() != claimable_htlcs_list.len() {
10660 return Err(DecodeError::InvalidValue);
10662 if let Some(onion_fields) = claimable_htlc_onion_fields {
10663 if onion_fields.len() != claimable_htlcs_list.len() {
10664 return Err(DecodeError::InvalidValue);
10666 for (purpose, (onion, (payment_hash, htlcs))) in
10667 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
10669 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10670 purpose, htlcs, onion_fields: onion,
10672 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10675 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
10676 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10677 purpose, htlcs, onion_fields: None,
10679 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10683 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
10684 // include a `_legacy_hop_data` in the `OnionPayload`.
10685 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
10686 if htlcs.is_empty() {
10687 return Err(DecodeError::InvalidValue);
10689 let purpose = match &htlcs[0].onion_payload {
10690 OnionPayload::Invoice { _legacy_hop_data } => {
10691 if let Some(hop_data) = _legacy_hop_data {
10692 events::PaymentPurpose::InvoicePayment {
10693 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
10694 Some(inbound_payment) => inbound_payment.payment_preimage,
10695 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
10696 Ok((payment_preimage, _)) => payment_preimage,
10698 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
10699 return Err(DecodeError::InvalidValue);
10703 payment_secret: hop_data.payment_secret,
10705 } else { return Err(DecodeError::InvalidValue); }
10707 OnionPayload::Spontaneous(payment_preimage) =>
10708 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
10710 claimable_payments.insert(payment_hash, ClaimablePayment {
10711 purpose, htlcs, onion_fields: None,
10716 let mut secp_ctx = Secp256k1::new();
10717 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
10719 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
10721 Err(()) => return Err(DecodeError::InvalidValue)
10723 if let Some(network_pubkey) = received_network_pubkey {
10724 if network_pubkey != our_network_pubkey {
10725 log_error!(args.logger, "Key that was generated does not match the existing key.");
10726 return Err(DecodeError::InvalidValue);
10730 let mut outbound_scid_aliases = HashSet::new();
10731 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10732 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10733 let peer_state = &mut *peer_state_lock;
10734 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10735 if let ChannelPhase::Funded(chan) = phase {
10736 let logger = WithChannelContext::from(&args.logger, &chan.context);
10737 if chan.context.outbound_scid_alias() == 0 {
10738 let mut outbound_scid_alias;
10740 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10741 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10742 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10744 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10745 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10746 // Note that in rare cases its possible to hit this while reading an older
10747 // channel if we just happened to pick a colliding outbound alias above.
10748 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10749 return Err(DecodeError::InvalidValue);
10751 if chan.context.is_usable() {
10752 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10753 // Note that in rare cases its possible to hit this while reading an older
10754 // channel if we just happened to pick a colliding outbound alias above.
10755 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10756 return Err(DecodeError::InvalidValue);
10760 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10761 // created in this `channel_by_id` map.
10762 debug_assert!(false);
10763 return Err(DecodeError::InvalidValue);
10768 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10770 for (_, monitor) in args.channel_monitors.iter() {
10771 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10772 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10773 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10774 let mut claimable_amt_msat = 0;
10775 let mut receiver_node_id = Some(our_network_pubkey);
10776 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10777 if phantom_shared_secret.is_some() {
10778 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10779 .expect("Failed to get node_id for phantom node recipient");
10780 receiver_node_id = Some(phantom_pubkey)
10782 for claimable_htlc in &payment.htlcs {
10783 claimable_amt_msat += claimable_htlc.value;
10785 // Add a holding-cell claim of the payment to the Channel, which should be
10786 // applied ~immediately on peer reconnection. Because it won't generate a
10787 // new commitment transaction we can just provide the payment preimage to
10788 // the corresponding ChannelMonitor and nothing else.
10790 // We do so directly instead of via the normal ChannelMonitor update
10791 // procedure as the ChainMonitor hasn't yet been initialized, implying
10792 // we're not allowed to call it directly yet. Further, we do the update
10793 // without incrementing the ChannelMonitor update ID as there isn't any
10795 // If we were to generate a new ChannelMonitor update ID here and then
10796 // crash before the user finishes block connect we'd end up force-closing
10797 // this channel as well. On the flip side, there's no harm in restarting
10798 // without the new monitor persisted - we'll end up right back here on
10800 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
10801 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
10802 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
10803 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10804 let peer_state = &mut *peer_state_lock;
10805 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
10806 let logger = WithChannelContext::from(&args.logger, &channel.context);
10807 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
10810 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
10811 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
10814 pending_events_read.push_back((events::Event::PaymentClaimed {
10817 purpose: payment.purpose,
10818 amount_msat: claimable_amt_msat,
10819 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
10820 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10826 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10827 if let Some(peer_state) = per_peer_state.get(&node_id) {
10828 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
10829 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
10830 for action in actions.iter() {
10831 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10832 downstream_counterparty_and_funding_outpoint:
10833 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10835 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10837 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
10838 blocked_channel_outpoint.to_channel_id());
10839 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10840 .entry(blocked_channel_outpoint.to_channel_id())
10841 .or_insert_with(Vec::new).push(blocking_action.clone());
10843 // If the channel we were blocking has closed, we don't need to
10844 // worry about it - the blocked monitor update should never have
10845 // been released from the `Channel` object so it can't have
10846 // completed, and if the channel closed there's no reason to bother
10850 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
10851 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
10855 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10857 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
10858 return Err(DecodeError::InvalidValue);
10862 let channel_manager = ChannelManager {
10864 fee_estimator: bounded_fee_estimator,
10865 chain_monitor: args.chain_monitor,
10866 tx_broadcaster: args.tx_broadcaster,
10867 router: args.router,
10869 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10871 inbound_payment_key: expanded_inbound_key,
10872 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10873 pending_outbound_payments: pending_outbounds,
10874 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10876 forward_htlcs: Mutex::new(forward_htlcs),
10877 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10878 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10879 id_to_peer: Mutex::new(id_to_peer),
10880 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10881 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10883 probing_cookie_secret: probing_cookie_secret.unwrap(),
10885 our_network_pubkey,
10888 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10890 per_peer_state: FairRwLock::new(per_peer_state),
10892 pending_events: Mutex::new(pending_events_read),
10893 pending_events_processor: AtomicBool::new(false),
10894 pending_background_events: Mutex::new(pending_background_events),
10895 total_consistency_lock: RwLock::new(()),
10896 background_events_processed_since_startup: AtomicBool::new(false),
10898 event_persist_notifier: Notifier::new(),
10899 needs_persist_flag: AtomicBool::new(false),
10901 funding_batch_states: Mutex::new(BTreeMap::new()),
10903 pending_offers_messages: Mutex::new(Vec::new()),
10905 entropy_source: args.entropy_source,
10906 node_signer: args.node_signer,
10907 signer_provider: args.signer_provider,
10909 logger: args.logger,
10910 default_configuration: args.default_config,
10913 for htlc_source in failed_htlcs.drain(..) {
10914 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
10915 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
10916 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
10917 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
10920 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
10921 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
10922 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
10923 // channel is closed we just assume that it probably came from an on-chain claim.
10924 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
10925 downstream_closed, true, downstream_node_id, downstream_funding);
10928 //TODO: Broadcast channel update for closed channels, but only after we've made a
10929 //connection or two.
10931 Ok((best_block_hash.clone(), channel_manager))
10937 use bitcoin::hashes::Hash;
10938 use bitcoin::hashes::sha256::Hash as Sha256;
10939 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
10940 use core::sync::atomic::Ordering;
10941 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
10942 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
10943 use crate::ln::ChannelId;
10944 use crate::ln::channelmanager::{create_recv_pending_htlc_info, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
10945 use crate::ln::functional_test_utils::*;
10946 use crate::ln::msgs::{self, ErrorAction};
10947 use crate::ln::msgs::ChannelMessageHandler;
10948 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
10949 use crate::util::errors::APIError;
10950 use crate::util::test_utils;
10951 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
10952 use crate::sign::EntropySource;
10955 fn test_notify_limits() {
10956 // Check that a few cases which don't require the persistence of a new ChannelManager,
10957 // indeed, do not cause the persistence of a new ChannelManager.
10958 let chanmon_cfgs = create_chanmon_cfgs(3);
10959 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10960 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
10961 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10963 // All nodes start with a persistable update pending as `create_network` connects each node
10964 // with all other nodes to make most tests simpler.
10965 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10966 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10967 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10969 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10971 // We check that the channel info nodes have doesn't change too early, even though we try
10972 // to connect messages with new values
10973 chan.0.contents.fee_base_msat *= 2;
10974 chan.1.contents.fee_base_msat *= 2;
10975 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
10976 &nodes[1].node.get_our_node_id()).pop().unwrap();
10977 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
10978 &nodes[0].node.get_our_node_id()).pop().unwrap();
10980 // The first two nodes (which opened a channel) should now require fresh persistence
10981 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10982 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10983 // ... but the last node should not.
10984 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10985 // After persisting the first two nodes they should no longer need fresh persistence.
10986 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10987 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10989 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
10990 // about the channel.
10991 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
10992 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
10993 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10995 // The nodes which are a party to the channel should also ignore messages from unrelated
10997 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10998 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10999 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
11000 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
11001 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11002 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11004 // At this point the channel info given by peers should still be the same.
11005 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11006 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11008 // An earlier version of handle_channel_update didn't check the directionality of the
11009 // update message and would always update the local fee info, even if our peer was
11010 // (spuriously) forwarding us our own channel_update.
11011 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
11012 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
11013 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
11015 // First deliver each peers' own message, checking that the node doesn't need to be
11016 // persisted and that its channel info remains the same.
11017 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
11018 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
11019 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11020 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11021 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11022 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11024 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
11025 // the channel info has updated.
11026 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
11027 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
11028 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11029 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11030 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
11031 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
11035 fn test_keysend_dup_hash_partial_mpp() {
11036 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
11038 let chanmon_cfgs = create_chanmon_cfgs(2);
11039 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11040 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11041 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11042 create_announced_chan_between_nodes(&nodes, 0, 1);
11044 // First, send a partial MPP payment.
11045 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
11046 let mut mpp_route = route.clone();
11047 mpp_route.paths.push(mpp_route.paths[0].clone());
11049 let payment_id = PaymentId([42; 32]);
11050 // Use the utility function send_payment_along_path to send the payment with MPP data which
11051 // indicates there are more HTLCs coming.
11052 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
11053 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
11054 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
11055 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
11056 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
11057 check_added_monitors!(nodes[0], 1);
11058 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11059 assert_eq!(events.len(), 1);
11060 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
11062 // Next, send a keysend payment with the same payment_hash and make sure it fails.
11063 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11064 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11065 check_added_monitors!(nodes[0], 1);
11066 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11067 assert_eq!(events.len(), 1);
11068 let ev = events.drain(..).next().unwrap();
11069 let payment_event = SendEvent::from_event(ev);
11070 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11071 check_added_monitors!(nodes[1], 0);
11072 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11073 expect_pending_htlcs_forwardable!(nodes[1]);
11074 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
11075 check_added_monitors!(nodes[1], 1);
11076 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11077 assert!(updates.update_add_htlcs.is_empty());
11078 assert!(updates.update_fulfill_htlcs.is_empty());
11079 assert_eq!(updates.update_fail_htlcs.len(), 1);
11080 assert!(updates.update_fail_malformed_htlcs.is_empty());
11081 assert!(updates.update_fee.is_none());
11082 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11083 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11084 expect_payment_failed!(nodes[0], our_payment_hash, true);
11086 // Send the second half of the original MPP payment.
11087 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
11088 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11089 check_added_monitors!(nodes[0], 1);
11090 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11091 assert_eq!(events.len(), 1);
11092 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11094 // Claim the full MPP payment. Note that we can't use a test utility like
11095 // claim_funds_along_route because the ordering of the messages causes the second half of the
11096 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11097 // lightning messages manually.
11098 nodes[1].node.claim_funds(payment_preimage);
11099 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11100 check_added_monitors!(nodes[1], 2);
11102 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11103 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11104 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11105 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11106 check_added_monitors!(nodes[0], 1);
11107 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11108 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11109 check_added_monitors!(nodes[1], 1);
11110 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11111 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11112 check_added_monitors!(nodes[1], 1);
11113 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11114 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11115 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11116 check_added_monitors!(nodes[0], 1);
11117 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11118 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11119 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11120 check_added_monitors!(nodes[0], 1);
11121 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11122 check_added_monitors!(nodes[1], 1);
11123 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11124 check_added_monitors!(nodes[1], 1);
11125 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11126 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11127 check_added_monitors!(nodes[0], 1);
11129 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11130 // path's success and a PaymentPathSuccessful event for each path's success.
11131 let events = nodes[0].node.get_and_clear_pending_events();
11132 assert_eq!(events.len(), 2);
11134 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11135 assert_eq!(payment_id, *actual_payment_id);
11136 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11137 assert_eq!(route.paths[0], *path);
11139 _ => panic!("Unexpected event"),
11142 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11143 assert_eq!(payment_id, *actual_payment_id);
11144 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11145 assert_eq!(route.paths[0], *path);
11147 _ => panic!("Unexpected event"),
11152 fn test_keysend_dup_payment_hash() {
11153 do_test_keysend_dup_payment_hash(false);
11154 do_test_keysend_dup_payment_hash(true);
11157 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11158 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11159 // outbound regular payment fails as expected.
11160 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11161 // fails as expected.
11162 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11163 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11164 // reject MPP keysend payments, since in this case where the payment has no payment
11165 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11166 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11167 // payment secrets and reject otherwise.
11168 let chanmon_cfgs = create_chanmon_cfgs(2);
11169 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11170 let mut mpp_keysend_cfg = test_default_channel_config();
11171 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11172 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11173 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11174 create_announced_chan_between_nodes(&nodes, 0, 1);
11175 let scorer = test_utils::TestScorer::new();
11176 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11178 // To start (1), send a regular payment but don't claim it.
11179 let expected_route = [&nodes[1]];
11180 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11182 // Next, attempt a keysend payment and make sure it fails.
11183 let route_params = RouteParameters::from_payment_params_and_value(
11184 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11185 TEST_FINAL_CLTV, false), 100_000);
11186 let route = find_route(
11187 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11188 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11190 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11191 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11192 check_added_monitors!(nodes[0], 1);
11193 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11194 assert_eq!(events.len(), 1);
11195 let ev = events.drain(..).next().unwrap();
11196 let payment_event = SendEvent::from_event(ev);
11197 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11198 check_added_monitors!(nodes[1], 0);
11199 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11200 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11201 // fails), the second will process the resulting failure and fail the HTLC backward
11202 expect_pending_htlcs_forwardable!(nodes[1]);
11203 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11204 check_added_monitors!(nodes[1], 1);
11205 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11206 assert!(updates.update_add_htlcs.is_empty());
11207 assert!(updates.update_fulfill_htlcs.is_empty());
11208 assert_eq!(updates.update_fail_htlcs.len(), 1);
11209 assert!(updates.update_fail_malformed_htlcs.is_empty());
11210 assert!(updates.update_fee.is_none());
11211 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11212 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11213 expect_payment_failed!(nodes[0], payment_hash, true);
11215 // Finally, claim the original payment.
11216 claim_payment(&nodes[0], &expected_route, payment_preimage);
11218 // To start (2), send a keysend payment but don't claim it.
11219 let payment_preimage = PaymentPreimage([42; 32]);
11220 let route = find_route(
11221 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11222 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11224 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11225 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11226 check_added_monitors!(nodes[0], 1);
11227 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11228 assert_eq!(events.len(), 1);
11229 let event = events.pop().unwrap();
11230 let path = vec![&nodes[1]];
11231 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11233 // Next, attempt a regular payment and make sure it fails.
11234 let payment_secret = PaymentSecret([43; 32]);
11235 nodes[0].node.send_payment_with_route(&route, payment_hash,
11236 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11237 check_added_monitors!(nodes[0], 1);
11238 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11239 assert_eq!(events.len(), 1);
11240 let ev = events.drain(..).next().unwrap();
11241 let payment_event = SendEvent::from_event(ev);
11242 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11243 check_added_monitors!(nodes[1], 0);
11244 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11245 expect_pending_htlcs_forwardable!(nodes[1]);
11246 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11247 check_added_monitors!(nodes[1], 1);
11248 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11249 assert!(updates.update_add_htlcs.is_empty());
11250 assert!(updates.update_fulfill_htlcs.is_empty());
11251 assert_eq!(updates.update_fail_htlcs.len(), 1);
11252 assert!(updates.update_fail_malformed_htlcs.is_empty());
11253 assert!(updates.update_fee.is_none());
11254 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11255 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11256 expect_payment_failed!(nodes[0], payment_hash, true);
11258 // Finally, succeed the keysend payment.
11259 claim_payment(&nodes[0], &expected_route, payment_preimage);
11261 // To start (3), send a keysend payment but don't claim it.
11262 let payment_id_1 = PaymentId([44; 32]);
11263 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11264 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11265 check_added_monitors!(nodes[0], 1);
11266 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11267 assert_eq!(events.len(), 1);
11268 let event = events.pop().unwrap();
11269 let path = vec![&nodes[1]];
11270 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11272 // Next, attempt a keysend payment and make sure it fails.
11273 let route_params = RouteParameters::from_payment_params_and_value(
11274 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11277 let route = find_route(
11278 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11279 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11281 let payment_id_2 = PaymentId([45; 32]);
11282 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11283 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11284 check_added_monitors!(nodes[0], 1);
11285 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11286 assert_eq!(events.len(), 1);
11287 let ev = events.drain(..).next().unwrap();
11288 let payment_event = SendEvent::from_event(ev);
11289 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11290 check_added_monitors!(nodes[1], 0);
11291 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11292 expect_pending_htlcs_forwardable!(nodes[1]);
11293 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11294 check_added_monitors!(nodes[1], 1);
11295 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11296 assert!(updates.update_add_htlcs.is_empty());
11297 assert!(updates.update_fulfill_htlcs.is_empty());
11298 assert_eq!(updates.update_fail_htlcs.len(), 1);
11299 assert!(updates.update_fail_malformed_htlcs.is_empty());
11300 assert!(updates.update_fee.is_none());
11301 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11302 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11303 expect_payment_failed!(nodes[0], payment_hash, true);
11305 // Finally, claim the original payment.
11306 claim_payment(&nodes[0], &expected_route, payment_preimage);
11310 fn test_keysend_hash_mismatch() {
11311 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11312 // preimage doesn't match the msg's payment hash.
11313 let chanmon_cfgs = create_chanmon_cfgs(2);
11314 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11315 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11316 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11318 let payer_pubkey = nodes[0].node.get_our_node_id();
11319 let payee_pubkey = nodes[1].node.get_our_node_id();
11321 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11322 let route_params = RouteParameters::from_payment_params_and_value(
11323 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11324 let network_graph = nodes[0].network_graph;
11325 let first_hops = nodes[0].node.list_usable_channels();
11326 let scorer = test_utils::TestScorer::new();
11327 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11328 let route = find_route(
11329 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11330 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11333 let test_preimage = PaymentPreimage([42; 32]);
11334 let mismatch_payment_hash = PaymentHash([43; 32]);
11335 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11336 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11337 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11338 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11339 check_added_monitors!(nodes[0], 1);
11341 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11342 assert_eq!(updates.update_add_htlcs.len(), 1);
11343 assert!(updates.update_fulfill_htlcs.is_empty());
11344 assert!(updates.update_fail_htlcs.is_empty());
11345 assert!(updates.update_fail_malformed_htlcs.is_empty());
11346 assert!(updates.update_fee.is_none());
11347 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11349 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11353 fn test_keysend_msg_with_secret_err() {
11354 // Test that we error as expected if we receive a keysend payment that includes a payment
11355 // secret when we don't support MPP keysend.
11356 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11357 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11358 let chanmon_cfgs = create_chanmon_cfgs(2);
11359 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11360 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11361 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11363 let payer_pubkey = nodes[0].node.get_our_node_id();
11364 let payee_pubkey = nodes[1].node.get_our_node_id();
11366 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11367 let route_params = RouteParameters::from_payment_params_and_value(
11368 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11369 let network_graph = nodes[0].network_graph;
11370 let first_hops = nodes[0].node.list_usable_channels();
11371 let scorer = test_utils::TestScorer::new();
11372 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11373 let route = find_route(
11374 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11375 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11378 let test_preimage = PaymentPreimage([42; 32]);
11379 let test_secret = PaymentSecret([43; 32]);
11380 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
11381 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11382 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11383 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11384 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11385 PaymentId(payment_hash.0), None, session_privs).unwrap();
11386 check_added_monitors!(nodes[0], 1);
11388 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11389 assert_eq!(updates.update_add_htlcs.len(), 1);
11390 assert!(updates.update_fulfill_htlcs.is_empty());
11391 assert!(updates.update_fail_htlcs.is_empty());
11392 assert!(updates.update_fail_malformed_htlcs.is_empty());
11393 assert!(updates.update_fee.is_none());
11394 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11396 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11400 fn test_multi_hop_missing_secret() {
11401 let chanmon_cfgs = create_chanmon_cfgs(4);
11402 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11403 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11404 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11406 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11407 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11408 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11409 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11411 // Marshall an MPP route.
11412 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11413 let path = route.paths[0].clone();
11414 route.paths.push(path);
11415 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11416 route.paths[0].hops[0].short_channel_id = chan_1_id;
11417 route.paths[0].hops[1].short_channel_id = chan_3_id;
11418 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11419 route.paths[1].hops[0].short_channel_id = chan_2_id;
11420 route.paths[1].hops[1].short_channel_id = chan_4_id;
11422 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11423 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11425 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11426 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11428 _ => panic!("unexpected error")
11433 fn test_drop_disconnected_peers_when_removing_channels() {
11434 let chanmon_cfgs = create_chanmon_cfgs(2);
11435 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11436 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11437 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11439 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11441 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11442 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11444 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11445 check_closed_broadcast!(nodes[0], true);
11446 check_added_monitors!(nodes[0], 1);
11447 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11450 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11451 // disconnected and the channel between has been force closed.
11452 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11453 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11454 assert_eq!(nodes_0_per_peer_state.len(), 1);
11455 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11458 nodes[0].node.timer_tick_occurred();
11461 // Assert that nodes[1] has now been removed.
11462 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11467 fn bad_inbound_payment_hash() {
11468 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11469 let chanmon_cfgs = create_chanmon_cfgs(2);
11470 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11471 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11472 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11474 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11475 let payment_data = msgs::FinalOnionHopData {
11477 total_msat: 100_000,
11480 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11481 // payment verification fails as expected.
11482 let mut bad_payment_hash = payment_hash.clone();
11483 bad_payment_hash.0[0] += 1;
11484 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11485 Ok(_) => panic!("Unexpected ok"),
11487 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11491 // Check that using the original payment hash succeeds.
11492 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11496 fn test_id_to_peer_coverage() {
11497 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
11498 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11499 // the channel is successfully closed.
11500 let chanmon_cfgs = create_chanmon_cfgs(2);
11501 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11502 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11503 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11505 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11506 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11507 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11508 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11509 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11511 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11512 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
11514 // Ensure that the `id_to_peer` map is empty until either party has received the
11515 // funding transaction, and have the real `channel_id`.
11516 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11517 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11520 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11522 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
11523 // as it has the funding transaction.
11524 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11525 assert_eq!(nodes_0_lock.len(), 1);
11526 assert!(nodes_0_lock.contains_key(&channel_id));
11529 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11531 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11533 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11535 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11536 assert_eq!(nodes_0_lock.len(), 1);
11537 assert!(nodes_0_lock.contains_key(&channel_id));
11539 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11542 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
11543 // as it has the funding transaction.
11544 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11545 assert_eq!(nodes_1_lock.len(), 1);
11546 assert!(nodes_1_lock.contains_key(&channel_id));
11548 check_added_monitors!(nodes[1], 1);
11549 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11550 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11551 check_added_monitors!(nodes[0], 1);
11552 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11553 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11554 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11555 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11557 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11558 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11559 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11560 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11562 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11563 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11565 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
11566 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11567 // fee for the closing transaction has been negotiated and the parties has the other
11568 // party's signature for the fee negotiated closing transaction.)
11569 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11570 assert_eq!(nodes_0_lock.len(), 1);
11571 assert!(nodes_0_lock.contains_key(&channel_id));
11575 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11576 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11577 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11578 // kept in the `nodes[1]`'s `id_to_peer` map.
11579 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11580 assert_eq!(nodes_1_lock.len(), 1);
11581 assert!(nodes_1_lock.contains_key(&channel_id));
11584 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11586 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11587 // therefore has all it needs to fully close the channel (both signatures for the
11588 // closing transaction).
11589 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
11590 // fully closed by `nodes[0]`.
11591 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11593 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
11594 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11595 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11596 assert_eq!(nodes_1_lock.len(), 1);
11597 assert!(nodes_1_lock.contains_key(&channel_id));
11600 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
11602 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
11604 // Assert that the channel has now been removed from both parties `id_to_peer` map once
11605 // they both have everything required to fully close the channel.
11606 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11608 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
11610 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
11611 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
11614 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11615 let expected_message = format!("Not connected to node: {}", expected_public_key);
11616 check_api_error_message(expected_message, res_err)
11619 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11620 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
11621 check_api_error_message(expected_message, res_err)
11624 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
11625 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
11626 check_api_error_message(expected_message, res_err)
11629 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
11630 let expected_message = "No such channel awaiting to be accepted.".to_string();
11631 check_api_error_message(expected_message, res_err)
11634 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
11636 Err(APIError::APIMisuseError { err }) => {
11637 assert_eq!(err, expected_err_message);
11639 Err(APIError::ChannelUnavailable { err }) => {
11640 assert_eq!(err, expected_err_message);
11642 Ok(_) => panic!("Unexpected Ok"),
11643 Err(_) => panic!("Unexpected Error"),
11648 fn test_api_calls_with_unkown_counterparty_node() {
11649 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
11650 // expected if the `counterparty_node_id` is an unkown peer in the
11651 // `ChannelManager::per_peer_state` map.
11652 let chanmon_cfg = create_chanmon_cfgs(2);
11653 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11654 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11655 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11658 let channel_id = ChannelId::from_bytes([4; 32]);
11659 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
11660 let intercept_id = InterceptId([0; 32]);
11662 // Test the API functions.
11663 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
11665 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
11667 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
11669 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
11671 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
11673 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
11675 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
11679 fn test_api_calls_with_unavailable_channel() {
11680 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
11681 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
11682 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
11683 // the given `channel_id`.
11684 let chanmon_cfg = create_chanmon_cfgs(2);
11685 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11686 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11687 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11689 let counterparty_node_id = nodes[1].node.get_our_node_id();
11692 let channel_id = ChannelId::from_bytes([4; 32]);
11694 // Test the API functions.
11695 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
11697 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11699 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11701 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11703 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
11705 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
11709 fn test_connection_limiting() {
11710 // Test that we limit un-channel'd peers and un-funded channels properly.
11711 let chanmon_cfgs = create_chanmon_cfgs(2);
11712 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11713 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11714 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11716 // Note that create_network connects the nodes together for us
11718 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11719 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11721 let mut funding_tx = None;
11722 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11723 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11724 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11727 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11728 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
11729 funding_tx = Some(tx.clone());
11730 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
11731 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11733 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11734 check_added_monitors!(nodes[1], 1);
11735 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11737 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11739 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11740 check_added_monitors!(nodes[0], 1);
11741 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11743 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11746 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11747 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11748 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11749 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11750 open_channel_msg.temporary_channel_id);
11752 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11753 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11755 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11756 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11757 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11758 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11759 peer_pks.push(random_pk);
11760 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11761 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11764 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11765 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11766 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11767 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11768 }, true).unwrap_err();
11770 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11771 // them if we have too many un-channel'd peers.
11772 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11773 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11774 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11775 for ev in chan_closed_events {
11776 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11778 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11779 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11781 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11782 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11783 }, true).unwrap_err();
11785 // but of course if the connection is outbound its allowed...
11786 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11787 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11788 }, false).unwrap();
11789 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11791 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11792 // Even though we accept one more connection from new peers, we won't actually let them
11794 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11795 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11796 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11797 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11798 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11800 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11801 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11802 open_channel_msg.temporary_channel_id);
11804 // Of course, however, outbound channels are always allowed
11805 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
11806 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
11808 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
11809 // "protected" and can connect again.
11810 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
11811 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11812 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11814 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
11816 // Further, because the first channel was funded, we can open another channel with
11818 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11819 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11823 fn test_outbound_chans_unlimited() {
11824 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
11825 let chanmon_cfgs = create_chanmon_cfgs(2);
11826 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11827 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11828 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11830 // Note that create_network connects the nodes together for us
11832 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11833 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11835 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11836 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11837 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11838 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11841 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11843 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11844 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11845 open_channel_msg.temporary_channel_id);
11847 // but we can still open an outbound channel.
11848 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11849 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11851 // but even with such an outbound channel, additional inbound channels will still fail.
11852 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11853 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11854 open_channel_msg.temporary_channel_id);
11858 fn test_0conf_limiting() {
11859 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11860 // flag set and (sometimes) accept channels as 0conf.
11861 let chanmon_cfgs = create_chanmon_cfgs(2);
11862 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11863 let mut settings = test_default_channel_config();
11864 settings.manually_accept_inbound_channels = true;
11865 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11866 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11868 // Note that create_network connects the nodes together for us
11870 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11871 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11873 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11874 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11875 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11876 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11877 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11878 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11881 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11882 let events = nodes[1].node.get_and_clear_pending_events();
11884 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11885 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11887 _ => panic!("Unexpected event"),
11889 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11890 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11893 // If we try to accept a channel from another peer non-0conf it will fail.
11894 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11895 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11896 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11897 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11899 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11900 let events = nodes[1].node.get_and_clear_pending_events();
11902 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11903 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
11904 Err(APIError::APIMisuseError { err }) =>
11905 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
11909 _ => panic!("Unexpected event"),
11911 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11912 open_channel_msg.temporary_channel_id);
11914 // ...however if we accept the same channel 0conf it should work just fine.
11915 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11916 let events = nodes[1].node.get_and_clear_pending_events();
11918 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11919 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
11921 _ => panic!("Unexpected event"),
11923 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11927 fn reject_excessively_underpaying_htlcs() {
11928 let chanmon_cfg = create_chanmon_cfgs(1);
11929 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11930 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11931 let node = create_network(1, &node_cfg, &node_chanmgr);
11932 let sender_intended_amt_msat = 100;
11933 let extra_fee_msat = 10;
11934 let hop_data = msgs::InboundOnionPayload::Receive {
11936 outgoing_cltv_value: 42,
11937 payment_metadata: None,
11938 keysend_preimage: None,
11939 payment_data: Some(msgs::FinalOnionHopData {
11940 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11942 custom_tlvs: Vec::new(),
11944 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
11945 // intended amount, we fail the payment.
11946 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
11947 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
11948 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11949 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
11950 current_height, node[0].node.default_configuration.accept_mpp_keysend)
11952 assert_eq!(err_code, 19);
11953 } else { panic!(); }
11955 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
11956 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
11958 outgoing_cltv_value: 42,
11959 payment_metadata: None,
11960 keysend_preimage: None,
11961 payment_data: Some(msgs::FinalOnionHopData {
11962 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11964 custom_tlvs: Vec::new(),
11966 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
11967 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11968 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
11969 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
11973 fn test_final_incorrect_cltv(){
11974 let chanmon_cfg = create_chanmon_cfgs(1);
11975 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11976 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11977 let node = create_network(1, &node_cfg, &node_chanmgr);
11979 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
11980 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
11982 outgoing_cltv_value: 22,
11983 payment_metadata: None,
11984 keysend_preimage: None,
11985 payment_data: Some(msgs::FinalOnionHopData {
11986 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
11988 custom_tlvs: Vec::new(),
11989 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
11990 node[0].node.default_configuration.accept_mpp_keysend);
11992 // Should not return an error as this condition:
11993 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
11994 // is not satisfied.
11995 assert!(result.is_ok());
11999 fn test_inbound_anchors_manual_acceptance() {
12000 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
12001 // flag set and (sometimes) accept channels as 0conf.
12002 let mut anchors_cfg = test_default_channel_config();
12003 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12005 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
12006 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
12008 let chanmon_cfgs = create_chanmon_cfgs(3);
12009 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12010 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
12011 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
12012 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12014 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12015 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12017 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12018 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12019 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
12020 match &msg_events[0] {
12021 MessageSendEvent::HandleError { node_id, action } => {
12022 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
12024 ErrorAction::SendErrorMessage { msg } =>
12025 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
12026 _ => panic!("Unexpected error action"),
12029 _ => panic!("Unexpected event"),
12032 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12033 let events = nodes[2].node.get_and_clear_pending_events();
12035 Event::OpenChannelRequest { temporary_channel_id, .. } =>
12036 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
12037 _ => panic!("Unexpected event"),
12039 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12043 fn test_anchors_zero_fee_htlc_tx_fallback() {
12044 // Tests that if both nodes support anchors, but the remote node does not want to accept
12045 // anchor channels at the moment, an error it sent to the local node such that it can retry
12046 // the channel without the anchors feature.
12047 let chanmon_cfgs = create_chanmon_cfgs(2);
12048 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12049 let mut anchors_config = test_default_channel_config();
12050 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12051 anchors_config.manually_accept_inbound_channels = true;
12052 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
12053 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12055 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
12056 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12057 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
12059 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12060 let events = nodes[1].node.get_and_clear_pending_events();
12062 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12063 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
12065 _ => panic!("Unexpected event"),
12068 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
12069 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
12071 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12072 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
12074 // Since nodes[1] should not have accepted the channel, it should
12075 // not have generated any events.
12076 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12080 fn test_update_channel_config() {
12081 let chanmon_cfg = create_chanmon_cfgs(2);
12082 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12083 let mut user_config = test_default_channel_config();
12084 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12085 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12086 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
12087 let channel = &nodes[0].node.list_channels()[0];
12089 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12090 let events = nodes[0].node.get_and_clear_pending_msg_events();
12091 assert_eq!(events.len(), 0);
12093 user_config.channel_config.forwarding_fee_base_msat += 10;
12094 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12095 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12096 let events = nodes[0].node.get_and_clear_pending_msg_events();
12097 assert_eq!(events.len(), 1);
12099 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12100 _ => panic!("expected BroadcastChannelUpdate event"),
12103 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12104 let events = nodes[0].node.get_and_clear_pending_msg_events();
12105 assert_eq!(events.len(), 0);
12107 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12108 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12109 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12110 ..Default::default()
12112 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12113 let events = nodes[0].node.get_and_clear_pending_msg_events();
12114 assert_eq!(events.len(), 1);
12116 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12117 _ => panic!("expected BroadcastChannelUpdate event"),
12120 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12121 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12122 forwarding_fee_proportional_millionths: Some(new_fee),
12123 ..Default::default()
12125 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12126 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12127 let events = nodes[0].node.get_and_clear_pending_msg_events();
12128 assert_eq!(events.len(), 1);
12130 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12131 _ => panic!("expected BroadcastChannelUpdate event"),
12134 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12135 // should be applied to ensure update atomicity as specified in the API docs.
12136 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12137 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12138 let new_fee = current_fee + 100;
12141 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12142 forwarding_fee_proportional_millionths: Some(new_fee),
12143 ..Default::default()
12145 Err(APIError::ChannelUnavailable { err: _ }),
12148 // Check that the fee hasn't changed for the channel that exists.
12149 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12150 let events = nodes[0].node.get_and_clear_pending_msg_events();
12151 assert_eq!(events.len(), 0);
12155 fn test_payment_display() {
12156 let payment_id = PaymentId([42; 32]);
12157 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12158 let payment_hash = PaymentHash([42; 32]);
12159 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12160 let payment_preimage = PaymentPreimage([42; 32]);
12161 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12165 fn test_trigger_lnd_force_close() {
12166 let chanmon_cfg = create_chanmon_cfgs(2);
12167 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12168 let user_config = test_default_channel_config();
12169 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12170 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12172 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12173 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12174 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12175 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12176 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12177 check_closed_broadcast(&nodes[0], 1, true);
12178 check_added_monitors(&nodes[0], 1);
12179 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12181 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12182 assert_eq!(txn.len(), 1);
12183 check_spends!(txn[0], funding_tx);
12186 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12187 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12189 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12190 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12192 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12193 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12194 }, false).unwrap();
12195 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12196 let channel_reestablish = get_event_msg!(
12197 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12199 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12201 // Alice should respond with an error since the channel isn't known, but a bogus
12202 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12203 // close even if it was an lnd node.
12204 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12205 assert_eq!(msg_events.len(), 2);
12206 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12207 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12208 assert_eq!(msg.next_local_commitment_number, 0);
12209 assert_eq!(msg.next_remote_commitment_number, 0);
12210 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12211 } else { panic!() };
12212 check_closed_broadcast(&nodes[1], 1, true);
12213 check_added_monitors(&nodes[1], 1);
12214 let expected_close_reason = ClosureReason::ProcessingError {
12215 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12217 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12219 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12220 assert_eq!(txn.len(), 1);
12221 check_spends!(txn[0], funding_tx);
12228 use crate::chain::Listen;
12229 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12230 use crate::sign::{KeysManager, InMemorySigner};
12231 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12232 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12233 use crate::ln::functional_test_utils::*;
12234 use crate::ln::msgs::{ChannelMessageHandler, Init};
12235 use crate::routing::gossip::NetworkGraph;
12236 use crate::routing::router::{PaymentParameters, RouteParameters};
12237 use crate::util::test_utils;
12238 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12240 use bitcoin::blockdata::locktime::absolute::LockTime;
12241 use bitcoin::hashes::Hash;
12242 use bitcoin::hashes::sha256::Hash as Sha256;
12243 use bitcoin::{Block, Transaction, TxOut};
12245 use crate::sync::{Arc, Mutex, RwLock};
12247 use criterion::Criterion;
12249 type Manager<'a, P> = ChannelManager<
12250 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12251 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12252 &'a test_utils::TestLogger, &'a P>,
12253 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12254 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12255 &'a test_utils::TestLogger>;
12257 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12258 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12260 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12261 type CM = Manager<'chan_mon_cfg, P>;
12263 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12265 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12268 pub fn bench_sends(bench: &mut Criterion) {
12269 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12272 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12273 // Do a simple benchmark of sending a payment back and forth between two nodes.
12274 // Note that this is unrealistic as each payment send will require at least two fsync
12276 let network = bitcoin::Network::Testnet;
12277 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12279 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12280 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12281 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12282 let scorer = RwLock::new(test_utils::TestScorer::new());
12283 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
12285 let mut config: UserConfig = Default::default();
12286 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12287 config.channel_handshake_config.minimum_depth = 1;
12289 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12290 let seed_a = [1u8; 32];
12291 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12292 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12294 best_block: BestBlock::from_network(network),
12295 }, genesis_block.header.time);
12296 let node_a_holder = ANodeHolder { node: &node_a };
12298 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12299 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12300 let seed_b = [2u8; 32];
12301 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12302 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12304 best_block: BestBlock::from_network(network),
12305 }, genesis_block.header.time);
12306 let node_b_holder = ANodeHolder { node: &node_b };
12308 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12309 features: node_b.init_features(), networks: None, remote_network_address: None
12311 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12312 features: node_a.init_features(), networks: None, remote_network_address: None
12313 }, false).unwrap();
12314 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12315 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12316 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12319 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12320 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12321 value: 8_000_000, script_pubkey: output_script,
12323 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12324 } else { panic!(); }
12326 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12327 let events_b = node_b.get_and_clear_pending_events();
12328 assert_eq!(events_b.len(), 1);
12329 match events_b[0] {
12330 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12331 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12333 _ => panic!("Unexpected event"),
12336 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12337 let events_a = node_a.get_and_clear_pending_events();
12338 assert_eq!(events_a.len(), 1);
12339 match events_a[0] {
12340 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12341 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12343 _ => panic!("Unexpected event"),
12346 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12348 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12349 Listen::block_connected(&node_a, &block, 1);
12350 Listen::block_connected(&node_b, &block, 1);
12352 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12353 let msg_events = node_a.get_and_clear_pending_msg_events();
12354 assert_eq!(msg_events.len(), 2);
12355 match msg_events[0] {
12356 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12357 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12358 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12362 match msg_events[1] {
12363 MessageSendEvent::SendChannelUpdate { .. } => {},
12367 let events_a = node_a.get_and_clear_pending_events();
12368 assert_eq!(events_a.len(), 1);
12369 match events_a[0] {
12370 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12371 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12373 _ => panic!("Unexpected event"),
12376 let events_b = node_b.get_and_clear_pending_events();
12377 assert_eq!(events_b.len(), 1);
12378 match events_b[0] {
12379 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12380 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12382 _ => panic!("Unexpected event"),
12385 let mut payment_count: u64 = 0;
12386 macro_rules! send_payment {
12387 ($node_a: expr, $node_b: expr) => {
12388 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12389 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12390 let mut payment_preimage = PaymentPreimage([0; 32]);
12391 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12392 payment_count += 1;
12393 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
12394 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12396 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12397 PaymentId(payment_hash.0),
12398 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12399 Retry::Attempts(0)).unwrap();
12400 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12401 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12402 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12403 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12404 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12405 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12406 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12408 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12409 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12410 $node_b.claim_funds(payment_preimage);
12411 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12413 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12414 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12415 assert_eq!(node_id, $node_a.get_our_node_id());
12416 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12417 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12419 _ => panic!("Failed to generate claim event"),
12422 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12423 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12424 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12425 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12427 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12431 bench.bench_function(bench_name, |b| b.iter(|| {
12432 send_payment!(node_a, node_b);
12433 send_payment!(node_b, node_a);