1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
39 use chain::{Confirm, Watch, BestBlock};
40 use chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator};
41 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
42 use chain::transaction::{OutPoint, TransactionData};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
46 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
47 use ln::features::{InitFeatures, NodeFeatures};
48 use routing::router::{Route, RouteHop};
50 use ln::msgs::NetAddress;
52 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
53 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
54 use util::config::UserConfig;
55 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
56 use util::{byte_utils, events};
57 use util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
58 use util::chacha20::{ChaCha20, ChaChaReader};
59 use util::logger::{Logger, Level};
60 use util::errors::APIError;
65 use core::cell::RefCell;
66 use io::{Cursor, Read};
67 use sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
68 use core::sync::atomic::{AtomicUsize, Ordering};
69 use core::time::Duration;
70 #[cfg(any(test, feature = "allow_wallclock_use"))]
71 use std::time::Instant;
74 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
77 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
78 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
81 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
82 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
83 // before we forward it.
85 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
86 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
87 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
88 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
89 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
92 enum PendingHTLCRouting {
94 onion_packet: msgs::OnionPacket,
95 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
98 payment_data: msgs::FinalOnionHopData,
99 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
102 payment_preimage: PaymentPreimage,
103 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
107 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
108 pub(super) struct PendingHTLCInfo {
109 routing: PendingHTLCRouting,
110 incoming_shared_secret: [u8; 32],
111 payment_hash: PaymentHash,
112 pub(super) amt_to_forward: u64,
113 pub(super) outgoing_cltv_value: u32,
116 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
117 pub(super) enum HTLCFailureMsg {
118 Relay(msgs::UpdateFailHTLC),
119 Malformed(msgs::UpdateFailMalformedHTLC),
122 /// Stores whether we can't forward an HTLC or relevant forwarding info
123 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
124 pub(super) enum PendingHTLCStatus {
125 Forward(PendingHTLCInfo),
126 Fail(HTLCFailureMsg),
129 pub(super) enum HTLCForwardInfo {
131 forward_info: PendingHTLCInfo,
133 // These fields are produced in `forward_htlcs()` and consumed in
134 // `process_pending_htlc_forwards()` for constructing the
135 // `HTLCSource::PreviousHopData` for failed and forwarded
137 prev_short_channel_id: u64,
139 prev_funding_outpoint: OutPoint,
143 err_packet: msgs::OnionErrorPacket,
147 /// Tracks the inbound corresponding to an outbound HTLC
148 #[derive(Clone, PartialEq)]
149 pub(crate) struct HTLCPreviousHopData {
150 short_channel_id: u64,
152 incoming_packet_shared_secret: [u8; 32],
154 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
155 // channel with a preimage provided by the forward channel.
160 /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
161 /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
162 /// are part of the same payment.
163 Invoice(msgs::FinalOnionHopData),
164 /// Contains the payer-provided preimage.
165 Spontaneous(PaymentPreimage),
168 struct ClaimableHTLC {
169 prev_hop: HTLCPreviousHopData,
172 onion_payload: OnionPayload,
175 /// A payment identifier used to uniquely identify a payment to LDK.
176 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
177 pub struct PaymentId(pub [u8; 32]);
179 impl Writeable for PaymentId {
180 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
185 impl Readable for PaymentId {
186 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
187 let buf: [u8; 32] = Readable::read(r)?;
191 /// Tracks the inbound corresponding to an outbound HTLC
192 #[derive(Clone, PartialEq)]
193 pub(crate) enum HTLCSource {
194 PreviousHopData(HTLCPreviousHopData),
197 session_priv: SecretKey,
198 /// Technically we can recalculate this from the route, but we cache it here to avoid
199 /// doing a double-pass on route when we get a failure back
200 first_hop_htlc_msat: u64,
201 payment_id: PaymentId,
206 pub fn dummy() -> Self {
207 HTLCSource::OutboundRoute {
209 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
210 first_hop_htlc_msat: 0,
211 payment_id: PaymentId([2; 32]),
216 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
217 pub(super) enum HTLCFailReason {
219 err: msgs::OnionErrorPacket,
227 /// Return value for claim_funds_from_hop
228 enum ClaimFundsFromHop {
230 MonitorUpdateFail(PublicKey, MsgHandleErrInternal, Option<u64>),
235 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
237 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
238 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
239 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
240 /// channel_state lock. We then return the set of things that need to be done outside the lock in
241 /// this struct and call handle_error!() on it.
243 struct MsgHandleErrInternal {
244 err: msgs::LightningError,
245 chan_id: Option<[u8; 32]>, // If Some a channel of ours has been closed
246 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
248 impl MsgHandleErrInternal {
250 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
252 err: LightningError {
254 action: msgs::ErrorAction::SendErrorMessage {
255 msg: msgs::ErrorMessage {
262 shutdown_finish: None,
266 fn ignore_no_close(err: String) -> Self {
268 err: LightningError {
270 action: msgs::ErrorAction::IgnoreError,
273 shutdown_finish: None,
277 fn from_no_close(err: msgs::LightningError) -> Self {
278 Self { err, chan_id: None, shutdown_finish: None }
281 fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
283 err: LightningError {
285 action: msgs::ErrorAction::SendErrorMessage {
286 msg: msgs::ErrorMessage {
292 chan_id: Some(channel_id),
293 shutdown_finish: Some((shutdown_res, channel_update)),
297 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
300 ChannelError::Warn(msg) => LightningError {
302 action: msgs::ErrorAction::IgnoreError,
304 ChannelError::Ignore(msg) => LightningError {
306 action: msgs::ErrorAction::IgnoreError,
308 ChannelError::Close(msg) => LightningError {
310 action: msgs::ErrorAction::SendErrorMessage {
311 msg: msgs::ErrorMessage {
317 ChannelError::CloseDelayBroadcast(msg) => LightningError {
319 action: msgs::ErrorAction::SendErrorMessage {
320 msg: msgs::ErrorMessage {
328 shutdown_finish: None,
333 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
334 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
335 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
336 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
337 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
339 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
340 /// be sent in the order they appear in the return value, however sometimes the order needs to be
341 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
342 /// they were originally sent). In those cases, this enum is also returned.
343 #[derive(Clone, PartialEq)]
344 pub(super) enum RAACommitmentOrder {
345 /// Send the CommitmentUpdate messages first
347 /// Send the RevokeAndACK message first
351 // Note this is only exposed in cfg(test):
352 pub(super) struct ChannelHolder<Signer: Sign> {
353 pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
354 pub(super) short_to_id: HashMap<u64, [u8; 32]>,
355 /// short channel id -> forward infos. Key of 0 means payments received
356 /// Note that while this is held in the same mutex as the channels themselves, no consistency
357 /// guarantees are made about the existence of a channel with the short id here, nor the short
358 /// ids in the PendingHTLCInfo!
359 pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
360 /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
361 /// Note that while this is held in the same mutex as the channels themselves, no consistency
362 /// guarantees are made about the channels given here actually existing anymore by the time you
364 claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
365 /// Messages to send to peers - pushed to in the same lock that they are generated in (except
366 /// for broadcast messages, where ordering isn't as strict).
367 pub(super) pending_msg_events: Vec<MessageSendEvent>,
370 /// Events which we process internally but cannot be procsesed immediately at the generation site
371 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
372 /// quite some time lag.
373 enum BackgroundEvent {
374 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
375 /// commitment transaction.
376 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
379 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
380 /// the latest Init features we heard from the peer.
382 latest_features: InitFeatures,
385 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
386 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
388 /// For users who don't want to bother doing their own payment preimage storage, we also store that
390 struct PendingInboundPayment {
391 /// The payment secret that the sender must use for us to accept this payment
392 payment_secret: PaymentSecret,
393 /// Time at which this HTLC expires - blocks with a header time above this value will result in
394 /// this payment being removed.
396 /// Arbitrary identifier the user specifies (or not)
397 user_payment_id: u64,
398 // Other required attributes of the payment, optionally enforced:
399 payment_preimage: Option<PaymentPreimage>,
400 min_value_msat: Option<u64>,
403 /// Stores the session_priv for each part of a payment that is still pending. For versions 0.0.102
404 /// and later, also stores information for retrying the payment.
405 pub(crate) enum PendingOutboundPayment {
407 session_privs: HashSet<[u8; 32]>,
410 session_privs: HashSet<[u8; 32]>,
411 payment_hash: PaymentHash,
412 payment_secret: Option<PaymentSecret>,
413 pending_amt_msat: u64,
414 /// The total payment amount across all paths, used to verify that a retry is not overpaying.
416 /// Our best known block height at the time this payment was initiated.
417 starting_block_height: u32,
421 impl PendingOutboundPayment {
422 fn remove(&mut self, session_priv: &[u8; 32], part_amt_msat: u64) -> bool {
423 let remove_res = match self {
424 PendingOutboundPayment::Legacy { session_privs } |
425 PendingOutboundPayment::Retryable { session_privs, .. } => {
426 session_privs.remove(session_priv)
430 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, .. } = self {
431 *pending_amt_msat -= part_amt_msat;
437 fn insert(&mut self, session_priv: [u8; 32], part_amt_msat: u64) -> bool {
438 let insert_res = match self {
439 PendingOutboundPayment::Legacy { session_privs } |
440 PendingOutboundPayment::Retryable { session_privs, .. } => {
441 session_privs.insert(session_priv)
445 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, .. } = self {
446 *pending_amt_msat += part_amt_msat;
452 fn remaining_parts(&self) -> usize {
454 PendingOutboundPayment::Legacy { session_privs } |
455 PendingOutboundPayment::Retryable { session_privs, .. } => {
462 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
463 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
464 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
465 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
466 /// issues such as overly long function definitions. Note that the ChannelManager can take any
467 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
468 /// concrete type of the KeysManager.
469 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
471 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
472 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
473 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
474 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
475 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
476 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
477 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
478 /// concrete type of the KeysManager.
479 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
481 /// Manager which keeps track of a number of channels and sends messages to the appropriate
482 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
484 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
485 /// to individual Channels.
487 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
488 /// all peers during write/read (though does not modify this instance, only the instance being
489 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
490 /// called funding_transaction_generated for outbound channels).
492 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
493 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
494 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
495 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
496 /// the serialization process). If the deserialized version is out-of-date compared to the
497 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
498 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
500 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
501 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
502 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
503 /// block_connected() to step towards your best block) upon deserialization before using the
506 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
507 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
508 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
509 /// offline for a full minute. In order to track this, you must call
510 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
512 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
513 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
514 /// essentially you should default to using a SimpleRefChannelManager, and use a
515 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
516 /// you're using lightning-net-tokio.
517 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
518 where M::Target: chain::Watch<Signer>,
519 T::Target: BroadcasterInterface,
520 K::Target: KeysInterface<Signer = Signer>,
521 F::Target: FeeEstimator,
524 default_configuration: UserConfig,
525 genesis_hash: BlockHash,
531 pub(super) best_block: RwLock<BestBlock>,
533 best_block: RwLock<BestBlock>,
534 secp_ctx: Secp256k1<secp256k1::All>,
536 #[cfg(any(test, feature = "_test_utils"))]
537 pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
538 #[cfg(not(any(test, feature = "_test_utils")))]
539 channel_state: Mutex<ChannelHolder<Signer>>,
541 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
542 /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
543 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
544 /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
545 /// Locked *after* channel_state.
546 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
548 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
549 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
550 /// (if the channel has been force-closed), however we track them here to prevent duplicative
551 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
552 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
553 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
554 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
555 /// after reloading from disk while replaying blocks against ChannelMonitors.
557 /// See `PendingOutboundPayment` documentation for more info.
559 /// Locked *after* channel_state.
560 pending_outbound_payments: Mutex<HashMap<PaymentId, PendingOutboundPayment>>,
562 our_network_key: SecretKey,
563 our_network_pubkey: PublicKey,
565 /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
566 /// value increases strictly since we don't assume access to a time source.
567 last_node_announcement_serial: AtomicUsize,
569 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
570 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
571 /// very far in the past, and can only ever be up to two hours in the future.
572 highest_seen_timestamp: AtomicUsize,
574 /// The bulk of our storage will eventually be here (channels and message queues and the like).
575 /// If we are connected to a peer we always at least have an entry here, even if no channels
576 /// are currently open with that peer.
577 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
578 /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
581 /// If also holding `channel_state` lock, must lock `channel_state` prior to `per_peer_state`.
582 per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
584 pending_events: Mutex<Vec<events::Event>>,
585 pending_background_events: Mutex<Vec<BackgroundEvent>>,
586 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
587 /// Essentially just when we're serializing ourselves out.
588 /// Taken first everywhere where we are making changes before any other locks.
589 /// When acquiring this lock in read mode, rather than acquiring it directly, call
590 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
591 /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
592 total_consistency_lock: RwLock<()>,
594 persistence_notifier: PersistenceNotifier,
601 /// Chain-related parameters used to construct a new `ChannelManager`.
603 /// Typically, the block-specific parameters are derived from the best block hash for the network,
604 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
605 /// are not needed when deserializing a previously constructed `ChannelManager`.
606 #[derive(Clone, Copy, PartialEq)]
607 pub struct ChainParameters {
608 /// The network for determining the `chain_hash` in Lightning messages.
609 pub network: Network,
611 /// The hash and height of the latest block successfully connected.
613 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
614 pub best_block: BestBlock,
617 #[derive(Copy, Clone, PartialEq)]
623 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
624 /// desirable to notify any listeners on `await_persistable_update_timeout`/
625 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
626 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
627 /// sending the aforementioned notification (since the lock being released indicates that the
628 /// updates are ready for persistence).
630 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
631 /// notify or not based on whether relevant changes have been made, providing a closure to
632 /// `optionally_notify` which returns a `NotifyOption`.
633 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
634 persistence_notifier: &'a PersistenceNotifier,
636 // We hold onto this result so the lock doesn't get released immediately.
637 _read_guard: RwLockReadGuard<'a, ()>,
640 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
641 fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
642 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
645 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
646 let read_guard = lock.read().unwrap();
648 PersistenceNotifierGuard {
649 persistence_notifier: notifier,
650 should_persist: persist_check,
651 _read_guard: read_guard,
656 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
658 if (self.should_persist)() == NotifyOption::DoPersist {
659 self.persistence_notifier.notify();
664 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
665 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
667 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
669 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
670 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
671 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
672 /// the maximum required amount in lnd as of March 2021.
673 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
675 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
676 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
678 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
680 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
681 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
682 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
683 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
684 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
685 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
686 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
688 /// Minimum CLTV difference between the current block height and received inbound payments.
689 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
691 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
692 // any payments to succeed. Further, we don't want payments to fail if a block was found while
693 // a payment was being routed, so we add an extra block to be safe.
694 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
696 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
697 // ie that if the next-hop peer fails the HTLC within
698 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
699 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
700 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
701 // LATENCY_GRACE_PERIOD_BLOCKS.
704 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
706 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
707 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
710 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
712 /// Information needed for constructing an invoice route hint for this channel.
713 #[derive(Clone, Debug, PartialEq)]
714 pub struct CounterpartyForwardingInfo {
715 /// Base routing fee in millisatoshis.
716 pub fee_base_msat: u32,
717 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
718 pub fee_proportional_millionths: u32,
719 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
720 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
721 /// `cltv_expiry_delta` for more details.
722 pub cltv_expiry_delta: u16,
725 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
726 /// to better separate parameters.
727 #[derive(Clone, Debug, PartialEq)]
728 pub struct ChannelCounterparty {
729 /// The node_id of our counterparty
730 pub node_id: PublicKey,
731 /// The Features the channel counterparty provided upon last connection.
732 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
733 /// many routing-relevant features are present in the init context.
734 pub features: InitFeatures,
735 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
736 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
737 /// claiming at least this value on chain.
739 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
741 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
742 pub unspendable_punishment_reserve: u64,
743 /// Information on the fees and requirements that the counterparty requires when forwarding
744 /// payments to us through this channel.
745 pub forwarding_info: Option<CounterpartyForwardingInfo>,
748 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
749 #[derive(Clone, Debug, PartialEq)]
750 pub struct ChannelDetails {
751 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
752 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
753 /// Note that this means this value is *not* persistent - it can change once during the
754 /// lifetime of the channel.
755 pub channel_id: [u8; 32],
756 /// Parameters which apply to our counterparty. See individual fields for more information.
757 pub counterparty: ChannelCounterparty,
758 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
759 /// our counterparty already.
761 /// Note that, if this has been set, `channel_id` will be equivalent to
762 /// `funding_txo.unwrap().to_channel_id()`.
763 pub funding_txo: Option<OutPoint>,
764 /// The position of the funding transaction in the chain. None if the funding transaction has
765 /// not yet been confirmed and the channel fully opened.
766 pub short_channel_id: Option<u64>,
767 /// The value, in satoshis, of this channel as appears in the funding output
768 pub channel_value_satoshis: u64,
769 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
770 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
771 /// this value on chain.
773 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
775 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
777 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
778 pub unspendable_punishment_reserve: Option<u64>,
779 /// The user_id passed in to create_channel, or 0 if the channel was inbound.
781 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
782 /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
783 /// available for inclusion in new outbound HTLCs). This further does not include any pending
784 /// outgoing HTLCs which are awaiting some other resolution to be sent.
786 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
787 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
788 /// should be able to spend nearly this amount.
789 pub outbound_capacity_msat: u64,
790 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
791 /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
792 /// available for inclusion in new inbound HTLCs).
793 /// Note that there are some corner cases not fully handled here, so the actual available
794 /// inbound capacity may be slightly higher than this.
796 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
797 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
798 /// However, our counterparty should be able to spend nearly this amount.
799 pub inbound_capacity_msat: u64,
800 /// The number of required confirmations on the funding transaction before the funding will be
801 /// considered "locked". This number is selected by the channel fundee (i.e. us if
802 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
803 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
804 /// [`ChannelHandshakeLimits::max_minimum_depth`].
806 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
808 /// [`is_outbound`]: ChannelDetails::is_outbound
809 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
810 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
811 pub confirmations_required: Option<u32>,
812 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
813 /// until we can claim our funds after we force-close the channel. During this time our
814 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
815 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
816 /// time to claim our non-HTLC-encumbered funds.
818 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
819 pub force_close_spend_delay: Option<u16>,
820 /// True if the channel was initiated (and thus funded) by us.
821 pub is_outbound: bool,
822 /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
823 /// channel is not currently being shut down. `funding_locked` message exchange implies the
824 /// required confirmation count has been reached (and we were connected to the peer at some
825 /// point after the funding transaction received enough confirmations). The required
826 /// confirmation count is provided in [`confirmations_required`].
828 /// [`confirmations_required`]: ChannelDetails::confirmations_required
829 pub is_funding_locked: bool,
830 /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
831 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
833 /// This is a strict superset of `is_funding_locked`.
835 /// True if this channel is (or will be) publicly-announced.
839 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
840 /// Err() type describing which state the payment is in, see the description of individual enum
842 #[derive(Clone, Debug)]
843 pub enum PaymentSendFailure {
844 /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
845 /// send the payment at all. No channel state has been changed or messages sent to peers, and
846 /// once you've changed the parameter at error, you can freely retry the payment in full.
847 ParameterError(APIError),
848 /// A parameter in a single path which was passed to send_payment was invalid, preventing us
849 /// from attempting to send the payment at all. No channel state has been changed or messages
850 /// sent to peers, and once you've changed the parameter at error, you can freely retry the
853 /// The results here are ordered the same as the paths in the route object which was passed to
855 PathParameterError(Vec<Result<(), APIError>>),
856 /// All paths which were attempted failed to send, with no channel state change taking place.
857 /// You can freely retry the payment in full (though you probably want to do so over different
858 /// paths than the ones selected).
859 AllFailedRetrySafe(Vec<APIError>),
860 /// Some paths which were attempted failed to send, though possibly not all. At least some
861 /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
862 /// in over-/re-payment.
864 /// The results here are ordered the same as the paths in the route object which was passed to
865 /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
866 /// retried (though there is currently no API with which to do so).
868 /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
869 /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
870 /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
871 /// with the latest update_id.
872 PartialFailure(Vec<Result<(), APIError>>),
875 macro_rules! handle_error {
876 ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
879 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
880 #[cfg(debug_assertions)]
882 // In testing, ensure there are no deadlocks where the lock is already held upon
883 // entering the macro.
884 assert!($self.channel_state.try_lock().is_ok());
885 assert!($self.pending_events.try_lock().is_ok());
888 let mut msg_events = Vec::with_capacity(2);
890 if let Some((shutdown_res, update_option)) = shutdown_finish {
891 $self.finish_force_close_channel(shutdown_res);
892 if let Some(update) = update_option {
893 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
897 if let Some(channel_id) = chan_id {
898 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id, reason: ClosureReason::ProcessingError { err: err.err.clone() } });
902 log_error!($self.logger, "{}", err.err);
903 if let msgs::ErrorAction::IgnoreError = err.action {
905 msg_events.push(events::MessageSendEvent::HandleError {
906 node_id: $counterparty_node_id,
907 action: err.action.clone()
911 if !msg_events.is_empty() {
912 $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
915 // Return error in case higher-API need one
922 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
923 macro_rules! convert_chan_err {
924 ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
926 ChannelError::Warn(msg) => {
927 //TODO: Once warning messages are merged, we should send a `warning` message to our
929 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
931 ChannelError::Ignore(msg) => {
932 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
934 ChannelError::Close(msg) => {
935 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
936 if let Some(short_id) = $channel.get_short_channel_id() {
937 $short_to_id.remove(&short_id);
939 let shutdown_res = $channel.force_shutdown(true);
940 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
942 ChannelError::CloseDelayBroadcast(msg) => {
943 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
944 if let Some(short_id) = $channel.get_short_channel_id() {
945 $short_to_id.remove(&short_id);
947 let shutdown_res = $channel.force_shutdown(false);
948 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
954 macro_rules! break_chan_entry {
955 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
959 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
961 $entry.remove_entry();
969 macro_rules! try_chan_entry {
970 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
974 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
976 $entry.remove_entry();
984 macro_rules! remove_channel {
985 ($channel_state: expr, $entry: expr) => {
987 let channel = $entry.remove_entry().1;
988 if let Some(short_id) = channel.get_short_channel_id() {
989 $channel_state.short_to_id.remove(&short_id);
996 macro_rules! handle_monitor_err {
997 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
998 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
1000 ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $chan_id: expr) => {
1002 ChannelMonitorUpdateErr::PermanentFailure => {
1003 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
1004 if let Some(short_id) = $chan.get_short_channel_id() {
1005 $short_to_id.remove(&short_id);
1007 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
1008 // chain in a confused state! We need to move them into the ChannelMonitor which
1009 // will be responsible for failing backwards once things confirm on-chain.
1010 // It's ok that we drop $failed_forwards here - at this point we'd rather they
1011 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
1012 // us bother trying to claim it just to forward on to another peer. If we're
1013 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
1014 // given up the preimage yet, so might as well just wait until the payment is
1015 // retried, avoiding the on-chain fees.
1016 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id,
1017 $chan.force_shutdown(true), $self.get_channel_update_for_broadcast(&$chan).ok() ));
1020 ChannelMonitorUpdateErr::TemporaryFailure => {
1021 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
1022 log_bytes!($chan_id[..]),
1023 if $resend_commitment && $resend_raa {
1024 match $action_type {
1025 RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
1026 RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
1028 } else if $resend_commitment { "commitment" }
1029 else if $resend_raa { "RAA" }
1031 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
1032 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
1033 if !$resend_commitment {
1034 debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
1037 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
1039 $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
1040 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
1044 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { {
1045 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $entry.key());
1047 $entry.remove_entry();
1053 macro_rules! return_monitor_err {
1054 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1055 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
1057 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1058 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
1062 // Does not break in case of TemporaryFailure!
1063 macro_rules! maybe_break_monitor_err {
1064 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1065 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
1066 (e, ChannelMonitorUpdateErr::PermanentFailure) => {
1069 (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
1074 macro_rules! handle_chan_restoration_locked {
1075 ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
1076 $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
1077 $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr) => { {
1078 let mut htlc_forwards = None;
1079 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
1081 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
1082 let chanmon_update_is_none = chanmon_update.is_none();
1084 let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
1085 if !forwards.is_empty() {
1086 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
1087 $channel_entry.get().get_funding_txo().unwrap(), forwards));
1090 if chanmon_update.is_some() {
1091 // On reconnect, we, by definition, only resend a funding_locked if there have been
1092 // no commitment updates, so the only channel monitor update which could also be
1093 // associated with a funding_locked would be the funding_created/funding_signed
1094 // monitor update. That monitor update failing implies that we won't send
1095 // funding_locked until it's been updated, so we can't have a funding_locked and a
1096 // monitor update here (so we don't bother to handle it correctly below).
1097 assert!($funding_locked.is_none());
1098 // A channel monitor update makes no sense without either a funding_locked or a
1099 // commitment update to process after it. Since we can't have a funding_locked, we
1100 // only bother to handle the monitor-update + commitment_update case below.
1101 assert!($commitment_update.is_some());
1104 if let Some(msg) = $funding_locked {
1105 // Similar to the above, this implies that we're letting the funding_locked fly
1106 // before it should be allowed to.
1107 assert!(chanmon_update.is_none());
1108 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
1109 node_id: counterparty_node_id,
1112 if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
1113 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
1114 node_id: counterparty_node_id,
1115 msg: announcement_sigs,
1118 $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
1121 let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
1122 if let Some(monitor_update) = chanmon_update {
1123 // We only ever broadcast a funding transaction in response to a funding_signed
1124 // message and the resulting monitor update. Thus, on channel_reestablish
1125 // message handling we can't have a funding transaction to broadcast. When
1126 // processing a monitor update finishing resulting in a funding broadcast, we
1127 // cannot have a second monitor update, thus this case would indicate a bug.
1128 assert!(funding_broadcastable.is_none());
1129 // Given we were just reconnected or finished updating a channel monitor, the
1130 // only case where we can get a new ChannelMonitorUpdate would be if we also
1131 // have some commitment updates to send as well.
1132 assert!($commitment_update.is_some());
1133 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
1134 // channel_reestablish doesn't guarantee the order it returns is sensical
1135 // for the messages it returns, but if we're setting what messages to
1136 // re-transmit on monitor update success, we need to make sure it is sane.
1137 let mut order = $order;
1139 order = RAACommitmentOrder::CommitmentFirst;
1141 break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
1145 macro_rules! handle_cs { () => {
1146 if let Some(update) = $commitment_update {
1147 $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1148 node_id: counterparty_node_id,
1153 macro_rules! handle_raa { () => {
1154 if let Some(revoke_and_ack) = $raa {
1155 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
1156 node_id: counterparty_node_id,
1157 msg: revoke_and_ack,
1162 RAACommitmentOrder::CommitmentFirst => {
1166 RAACommitmentOrder::RevokeAndACKFirst => {
1171 if let Some(tx) = funding_broadcastable {
1172 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1173 $self.tx_broadcaster.broadcast_transaction(&tx);
1178 if chanmon_update_is_none {
1179 // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1180 // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1181 // should *never* end up calling back to `chain_monitor.update_channel()`.
1182 assert!(res.is_ok());
1185 (htlc_forwards, res, counterparty_node_id)
1189 macro_rules! post_handle_chan_restoration {
1190 ($self: ident, $locked_res: expr) => { {
1191 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1193 let _ = handle_error!($self, res, counterparty_node_id);
1195 if let Some(forwards) = htlc_forwards {
1196 $self.forward_htlcs(&mut [forwards][..]);
1201 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1202 where M::Target: chain::Watch<Signer>,
1203 T::Target: BroadcasterInterface,
1204 K::Target: KeysInterface<Signer = Signer>,
1205 F::Target: FeeEstimator,
1208 /// Constructs a new ChannelManager to hold several channels and route between them.
1210 /// This is the main "logic hub" for all channel-related actions, and implements
1211 /// ChannelMessageHandler.
1213 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1215 /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
1217 /// Users need to notify the new ChannelManager when a new block is connected or
1218 /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1219 /// from after `params.latest_hash`.
1220 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1221 let mut secp_ctx = Secp256k1::new();
1222 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1225 default_configuration: config.clone(),
1226 genesis_hash: genesis_block(params.network).header.block_hash(),
1227 fee_estimator: fee_est,
1231 best_block: RwLock::new(params.best_block),
1233 channel_state: Mutex::new(ChannelHolder{
1234 by_id: HashMap::new(),
1235 short_to_id: HashMap::new(),
1236 forward_htlcs: HashMap::new(),
1237 claimable_htlcs: HashMap::new(),
1238 pending_msg_events: Vec::new(),
1240 pending_inbound_payments: Mutex::new(HashMap::new()),
1241 pending_outbound_payments: Mutex::new(HashMap::new()),
1243 our_network_key: keys_manager.get_node_secret(),
1244 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
1247 last_node_announcement_serial: AtomicUsize::new(0),
1248 highest_seen_timestamp: AtomicUsize::new(0),
1250 per_peer_state: RwLock::new(HashMap::new()),
1252 pending_events: Mutex::new(Vec::new()),
1253 pending_background_events: Mutex::new(Vec::new()),
1254 total_consistency_lock: RwLock::new(()),
1255 persistence_notifier: PersistenceNotifier::new(),
1263 /// Gets the current configuration applied to all new channels, as
1264 pub fn get_current_default_configuration(&self) -> &UserConfig {
1265 &self.default_configuration
1268 /// Creates a new outbound channel to the given remote node and with the given value.
1270 /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
1271 /// tracking of which events correspond with which create_channel call. Note that the
1272 /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
1273 /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
1274 /// otherwise ignored.
1276 /// If successful, will generate a SendOpenChannel message event, so you should probably poll
1277 /// PeerManager::process_events afterwards.
1279 /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
1280 /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
1282 /// Note that we do not check if you are currently connected to the given peer. If no
1283 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1284 /// the channel eventually being silently forgotten.
1285 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
1286 if channel_value_satoshis < 1000 {
1287 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1291 let per_peer_state = self.per_peer_state.read().unwrap();
1292 match per_peer_state.get(&their_network_key) {
1293 Some(peer_state) => {
1294 let peer_state = peer_state.lock().unwrap();
1295 let their_features = &peer_state.latest_features;
1296 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1297 Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, their_features, channel_value_satoshis, push_msat, user_id, config)?
1299 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", their_network_key) }),
1302 let res = channel.get_open_channel(self.genesis_hash.clone());
1304 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1305 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1306 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1308 let mut channel_state = self.channel_state.lock().unwrap();
1309 match channel_state.by_id.entry(channel.channel_id()) {
1310 hash_map::Entry::Occupied(_) => {
1311 if cfg!(feature = "fuzztarget") {
1312 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1314 panic!("RNG is bad???");
1317 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1319 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1320 node_id: their_network_key,
1326 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1327 let mut res = Vec::new();
1329 let channel_state = self.channel_state.lock().unwrap();
1330 res.reserve(channel_state.by_id.len());
1331 for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1332 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1333 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1334 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1335 res.push(ChannelDetails {
1336 channel_id: (*channel_id).clone(),
1337 counterparty: ChannelCounterparty {
1338 node_id: channel.get_counterparty_node_id(),
1339 features: InitFeatures::empty(),
1340 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1341 forwarding_info: channel.counterparty_forwarding_info(),
1343 funding_txo: channel.get_funding_txo(),
1344 short_channel_id: channel.get_short_channel_id(),
1345 channel_value_satoshis: channel.get_value_satoshis(),
1346 unspendable_punishment_reserve: to_self_reserve_satoshis,
1347 inbound_capacity_msat,
1348 outbound_capacity_msat,
1349 user_id: channel.get_user_id(),
1350 confirmations_required: channel.minimum_depth(),
1351 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1352 is_outbound: channel.is_outbound(),
1353 is_funding_locked: channel.is_usable(),
1354 is_usable: channel.is_live(),
1355 is_public: channel.should_announce(),
1359 let per_peer_state = self.per_peer_state.read().unwrap();
1360 for chan in res.iter_mut() {
1361 if let Some(peer_state) = per_peer_state.get(&chan.counterparty.node_id) {
1362 chan.counterparty.features = peer_state.lock().unwrap().latest_features.clone();
1368 /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1369 /// more information.
1370 pub fn list_channels(&self) -> Vec<ChannelDetails> {
1371 self.list_channels_with_filter(|_| true)
1374 /// Gets the list of usable channels, in random order. Useful as an argument to
1375 /// get_route to ensure non-announced channels are used.
1377 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1378 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1380 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1381 // Note we use is_live here instead of usable which leads to somewhat confused
1382 // internal/external nomenclature, but that's ok cause that's probably what the user
1383 // really wanted anyway.
1384 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1387 fn close_channel_internal(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1388 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1390 let counterparty_node_id;
1391 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1392 let result: Result<(), _> = loop {
1393 let mut channel_state_lock = self.channel_state.lock().unwrap();
1394 let channel_state = &mut *channel_state_lock;
1395 match channel_state.by_id.entry(channel_id.clone()) {
1396 hash_map::Entry::Occupied(mut chan_entry) => {
1397 counterparty_node_id = chan_entry.get().get_counterparty_node_id();
1398 let per_peer_state = self.per_peer_state.read().unwrap();
1399 let (shutdown_msg, monitor_update, htlcs) = match per_peer_state.get(&counterparty_node_id) {
1400 Some(peer_state) => {
1401 let peer_state = peer_state.lock().unwrap();
1402 let their_features = &peer_state.latest_features;
1403 chan_entry.get_mut().get_shutdown(&self.keys_manager, their_features, target_feerate_sats_per_1000_weight)?
1405 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", counterparty_node_id) }),
1407 failed_htlcs = htlcs;
1409 // Update the monitor with the shutdown script if necessary.
1410 if let Some(monitor_update) = monitor_update {
1411 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
1412 let (result, is_permanent) =
1413 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, false, false, Vec::new(), Vec::new(), chan_entry.key());
1415 remove_channel!(channel_state, chan_entry);
1421 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1422 node_id: counterparty_node_id,
1426 if chan_entry.get().is_shutdown() {
1427 let channel = remove_channel!(channel_state, chan_entry);
1428 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1429 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1433 if let Ok(mut pending_events_lock) = self.pending_events.lock() {
1434 pending_events_lock.push(events::Event::ChannelClosed {
1435 channel_id: *channel_id,
1436 reason: ClosureReason::HolderForceClosed
1442 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1446 for htlc_source in failed_htlcs.drain(..) {
1447 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1450 let _ = handle_error!(self, result, counterparty_node_id);
1454 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1455 /// will be accepted on the given channel, and after additional timeout/the closing of all
1456 /// pending HTLCs, the channel will be closed on chain.
1458 /// * If we are the channel initiator, we will pay between our [`Background`] and
1459 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1461 /// * If our counterparty is the channel initiator, we will require a channel closing
1462 /// transaction feerate of at least our [`Background`] feerate or the feerate which
1463 /// would appear on a force-closure transaction, whichever is lower. We will allow our
1464 /// counterparty to pay as much fee as they'd like, however.
1466 /// May generate a SendShutdown message event on success, which should be relayed.
1468 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1469 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1470 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1471 pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1472 self.close_channel_internal(channel_id, None)
1475 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1476 /// will be accepted on the given channel, and after additional timeout/the closing of all
1477 /// pending HTLCs, the channel will be closed on chain.
1479 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1480 /// the channel being closed or not:
1481 /// * If we are the channel initiator, we will pay at least this feerate on the closing
1482 /// transaction. The upper-bound is set by
1483 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1484 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1485 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1486 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1487 /// will appear on a force-closure transaction, whichever is lower).
1489 /// May generate a SendShutdown message event on success, which should be relayed.
1491 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1492 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1493 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1494 pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1495 self.close_channel_internal(channel_id, Some(target_feerate_sats_per_1000_weight))
1499 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1500 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1501 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1502 for htlc_source in failed_htlcs.drain(..) {
1503 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1505 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1506 // There isn't anything we can do if we get an update failure - we're already
1507 // force-closing. The monitor update on the required in-memory copy should broadcast
1508 // the latest local state, which is the best we can do anyway. Thus, it is safe to
1509 // ignore the result here.
1510 let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1514 /// `peer_node_id` should be set when we receive a message from a peer, but not set when the
1515 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1516 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>, peer_msg: Option<&String>) -> Result<PublicKey, APIError> {
1518 let mut channel_state_lock = self.channel_state.lock().unwrap();
1519 let channel_state = &mut *channel_state_lock;
1520 if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1521 if let Some(node_id) = peer_node_id {
1522 if chan.get().get_counterparty_node_id() != *node_id {
1523 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1526 if let Some(short_id) = chan.get().get_short_channel_id() {
1527 channel_state.short_to_id.remove(&short_id);
1529 let mut pending_events_lock = self.pending_events.lock().unwrap();
1530 if peer_node_id.is_some() {
1531 if let Some(peer_msg) = peer_msg {
1532 pending_events_lock.push(events::Event::ChannelClosed { channel_id: *channel_id, reason: ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() } });
1535 pending_events_lock.push(events::Event::ChannelClosed { channel_id: *channel_id, reason: ClosureReason::HolderForceClosed });
1537 chan.remove_entry().1
1539 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1542 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1543 self.finish_force_close_channel(chan.force_shutdown(true));
1544 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
1545 let mut channel_state = self.channel_state.lock().unwrap();
1546 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1551 Ok(chan.get_counterparty_node_id())
1554 /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1555 /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1556 pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1557 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1558 match self.force_close_channel_with_peer(channel_id, None, None) {
1559 Ok(counterparty_node_id) => {
1560 self.channel_state.lock().unwrap().pending_msg_events.push(
1561 events::MessageSendEvent::HandleError {
1562 node_id: counterparty_node_id,
1563 action: msgs::ErrorAction::SendErrorMessage {
1564 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1574 /// Force close all channels, immediately broadcasting the latest local commitment transaction
1575 /// for each to the chain and rejecting new HTLCs on each.
1576 pub fn force_close_all_channels(&self) {
1577 for chan in self.list_channels() {
1578 let _ = self.force_close_channel(&chan.channel_id);
1582 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1583 macro_rules! return_malformed_err {
1584 ($msg: expr, $err_code: expr) => {
1586 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1587 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1588 channel_id: msg.channel_id,
1589 htlc_id: msg.htlc_id,
1590 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1591 failure_code: $err_code,
1592 })), self.channel_state.lock().unwrap());
1597 if let Err(_) = msg.onion_routing_packet.public_key {
1598 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1601 let shared_secret = {
1602 let mut arr = [0; 32];
1603 arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1606 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1608 if msg.onion_routing_packet.version != 0 {
1609 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1610 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1611 //the hash doesn't really serve any purpose - in the case of hashing all data, the
1612 //receiving node would have to brute force to figure out which version was put in the
1613 //packet by the node that send us the message, in the case of hashing the hop_data, the
1614 //node knows the HMAC matched, so they already know what is there...
1615 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1618 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1619 hmac.input(&msg.onion_routing_packet.hop_data);
1620 hmac.input(&msg.payment_hash.0[..]);
1621 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1622 return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1625 let mut channel_state = None;
1626 macro_rules! return_err {
1627 ($msg: expr, $err_code: expr, $data: expr) => {
1629 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1630 if channel_state.is_none() {
1631 channel_state = Some(self.channel_state.lock().unwrap());
1633 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1634 channel_id: msg.channel_id,
1635 htlc_id: msg.htlc_id,
1636 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1637 })), channel_state.unwrap());
1642 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1643 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1644 let (next_hop_data, next_hop_hmac): (msgs::OnionHopData, _) = {
1645 match <msgs::OnionHopData as Readable>::read(&mut chacha_stream) {
1647 let error_code = match err {
1648 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1649 msgs::DecodeError::UnknownRequiredFeature|
1650 msgs::DecodeError::InvalidValue|
1651 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1652 _ => 0x2000 | 2, // Should never happen
1654 return_err!("Unable to decode our hop data", error_code, &[0;0]);
1657 let mut hmac = [0; 32];
1658 if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1659 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1666 let pending_forward_info = if next_hop_hmac == [0; 32] {
1669 // In tests, make sure that the initial onion pcket data is, at least, non-0.
1670 // We could do some fancy randomness test here, but, ehh, whatever.
1671 // This checks for the issue where you can calculate the path length given the
1672 // onion data as all the path entries that the originator sent will be here
1673 // as-is (and were originally 0s).
1674 // Of course reverse path calculation is still pretty easy given naive routing
1675 // algorithms, but this fixes the most-obvious case.
1676 let mut next_bytes = [0; 32];
1677 chacha_stream.read_exact(&mut next_bytes).unwrap();
1678 assert_ne!(next_bytes[..], [0; 32][..]);
1679 chacha_stream.read_exact(&mut next_bytes).unwrap();
1680 assert_ne!(next_bytes[..], [0; 32][..]);
1684 // final_expiry_too_soon
1685 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
1686 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
1687 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
1688 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
1689 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
1690 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1691 return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1693 // final_incorrect_htlc_amount
1694 if next_hop_data.amt_to_forward > msg.amount_msat {
1695 return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1697 // final_incorrect_cltv_expiry
1698 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1699 return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1702 let routing = match next_hop_data.format {
1703 msgs::OnionHopDataFormat::Legacy { .. } => return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]),
1704 msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1705 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
1706 if payment_data.is_some() && keysend_preimage.is_some() {
1707 return_err!("We don't support MPP keysend payments", 0x4000|22, &[0;0]);
1708 } else if let Some(data) = payment_data {
1709 PendingHTLCRouting::Receive {
1711 incoming_cltv_expiry: msg.cltv_expiry,
1713 } else if let Some(payment_preimage) = keysend_preimage {
1714 // We need to check that the sender knows the keysend preimage before processing this
1715 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
1716 // could discover the final destination of X, by probing the adjacent nodes on the route
1717 // with a keysend payment of identical payment hash to X and observing the processing
1718 // time discrepancies due to a hash collision with X.
1719 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
1720 if hashed_preimage != msg.payment_hash {
1721 return_err!("Payment preimage didn't match payment hash", 0x4000|22, &[0;0]);
1724 PendingHTLCRouting::ReceiveKeysend {
1726 incoming_cltv_expiry: msg.cltv_expiry,
1729 return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1734 // Note that we could obviously respond immediately with an update_fulfill_htlc
1735 // message, however that would leak that we are the recipient of this payment, so
1736 // instead we stay symmetric with the forwarding case, only responding (after a
1737 // delay) once they've send us a commitment_signed!
1739 PendingHTLCStatus::Forward(PendingHTLCInfo {
1741 payment_hash: msg.payment_hash.clone(),
1742 incoming_shared_secret: shared_secret,
1743 amt_to_forward: next_hop_data.amt_to_forward,
1744 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1747 let mut new_packet_data = [0; 20*65];
1748 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1749 #[cfg(debug_assertions)]
1751 // Check two things:
1752 // a) that the behavior of our stream here will return Ok(0) even if the TLV
1753 // read above emptied out our buffer and the unwrap() wont needlessly panic
1754 // b) that we didn't somehow magically end up with extra data.
1756 debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1758 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1759 // fill the onion hop data we'll forward to our next-hop peer.
1760 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1762 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1764 let blinding_factor = {
1765 let mut sha = Sha256::engine();
1766 sha.input(&new_pubkey.serialize()[..]);
1767 sha.input(&shared_secret);
1768 Sha256::from_engine(sha).into_inner()
1771 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1773 } else { Ok(new_pubkey) };
1775 let outgoing_packet = msgs::OnionPacket {
1778 hop_data: new_packet_data,
1779 hmac: next_hop_hmac.clone(),
1782 let short_channel_id = match next_hop_data.format {
1783 msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1784 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1785 msgs::OnionHopDataFormat::FinalNode { .. } => {
1786 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1790 PendingHTLCStatus::Forward(PendingHTLCInfo {
1791 routing: PendingHTLCRouting::Forward {
1792 onion_packet: outgoing_packet,
1795 payment_hash: msg.payment_hash.clone(),
1796 incoming_shared_secret: shared_secret,
1797 amt_to_forward: next_hop_data.amt_to_forward,
1798 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1802 channel_state = Some(self.channel_state.lock().unwrap());
1803 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1804 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1805 // with a short_channel_id of 0. This is important as various things later assume
1806 // short_channel_id is non-0 in any ::Forward.
1807 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1808 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1809 if let Some((err, code, chan_update)) = loop {
1810 let forwarding_id = match id_option {
1811 None => { // unknown_next_peer
1812 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
1814 Some(id) => id.clone(),
1817 let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1819 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
1820 // Note that the behavior here should be identical to the above block - we
1821 // should NOT reveal the existence or non-existence of a private channel if
1822 // we don't allow forwards outbound over them.
1823 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
1826 // Note that we could technically not return an error yet here and just hope
1827 // that the connection is reestablished or monitor updated by the time we get
1828 // around to doing the actual forward, but better to fail early if we can and
1829 // hopefully an attacker trying to path-trace payments cannot make this occur
1830 // on a small/per-node/per-channel scale.
1831 if !chan.is_live() { // channel_disabled
1832 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1834 if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1835 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1837 let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64)
1838 .and_then(|prop_fee| { (prop_fee / 1000000)
1839 .checked_add(chan.get_outbound_forwarding_fee_base_msat() as u64) });
1840 if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1841 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1843 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1844 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1846 let cur_height = self.best_block.read().unwrap().height() + 1;
1847 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1848 // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1849 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1850 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1852 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1853 break Some(("CLTV expiry is too far in the future", 21, None));
1855 // In theory, we would be safe against unintentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1856 // But, to be safe against policy reception, we use a longer delay.
1857 if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1858 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1864 let mut res = Vec::with_capacity(8 + 128);
1865 if let Some(chan_update) = chan_update {
1866 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1867 res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1869 else if code == 0x1000 | 13 {
1870 res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1872 else if code == 0x1000 | 20 {
1873 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1874 res.extend_from_slice(&byte_utils::be16_to_array(0));
1876 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1878 return_err!(err, code, &res[..]);
1883 (pending_forward_info, channel_state.unwrap())
1886 /// Gets the current channel_update for the given channel. This first checks if the channel is
1887 /// public, and thus should be called whenever the result is going to be passed out in a
1888 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
1890 /// May be called with channel_state already locked!
1891 fn get_channel_update_for_broadcast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1892 if !chan.should_announce() {
1893 return Err(LightningError {
1894 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
1895 action: msgs::ErrorAction::IgnoreError
1898 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
1899 self.get_channel_update_for_unicast(chan)
1902 /// Gets the current channel_update for the given channel. This does not check if the channel
1903 /// is public (only returning an Err if the channel does not yet have an assigned short_id),
1904 /// and thus MUST NOT be called unless the recipient of the resulting message has already
1905 /// provided evidence that they know about the existence of the channel.
1906 /// May be called with channel_state already locked!
1907 fn get_channel_update_for_unicast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1908 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
1909 let short_channel_id = match chan.get_short_channel_id() {
1910 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1914 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1916 let unsigned = msgs::UnsignedChannelUpdate {
1917 chain_hash: self.genesis_hash,
1919 timestamp: chan.get_update_time_counter(),
1920 flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1921 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1922 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1923 htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1924 fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
1925 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1926 excess_data: Vec::new(),
1929 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1930 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1932 Ok(msgs::ChannelUpdate {
1938 // Only public for testing, this should otherwise never be called direcly
1939 pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>) -> Result<(), APIError> {
1940 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1941 let prng_seed = self.keys_manager.get_secure_random_bytes();
1942 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
1943 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
1945 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1946 .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1947 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
1948 if onion_utils::route_size_insane(&onion_payloads) {
1949 return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1951 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1953 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1955 let err: Result<(), _> = loop {
1956 let mut channel_lock = self.channel_state.lock().unwrap();
1957 let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1958 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1959 Some(id) => id.clone(),
1962 let channel_state = &mut *channel_lock;
1963 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1965 if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1966 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1968 if !chan.get().is_live() {
1969 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1971 let send_res = break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(
1972 htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1974 session_priv: session_priv.clone(),
1975 first_hop_htlc_msat: htlc_msat,
1977 }, onion_packet, &self.logger),
1978 channel_state, chan);
1980 let mut pending_outbounds = self.pending_outbound_payments.lock().unwrap();
1981 let payment = pending_outbounds.entry(payment_id).or_insert_with(|| PendingOutboundPayment::Retryable {
1982 session_privs: HashSet::new(),
1983 pending_amt_msat: 0,
1984 payment_hash: *payment_hash,
1985 payment_secret: *payment_secret,
1986 starting_block_height: self.best_block.read().unwrap().height(),
1987 total_msat: total_value,
1989 assert!(payment.insert(session_priv_bytes, path.last().unwrap().fee_msat));
1993 Some((update_add, commitment_signed, monitor_update)) => {
1994 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1995 maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1996 // Note that MonitorUpdateFailed here indicates (per function docs)
1997 // that we will resend the commitment update once monitor updating
1998 // is restored. Therefore, we must return an error indicating that
1999 // it is unsafe to retry the payment wholesale, which we do in the
2000 // send_payment check for MonitorUpdateFailed, below.
2001 return Err(APIError::MonitorUpdateFailed);
2004 log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
2005 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2006 node_id: path.first().unwrap().pubkey,
2007 updates: msgs::CommitmentUpdate {
2008 update_add_htlcs: vec![update_add],
2009 update_fulfill_htlcs: Vec::new(),
2010 update_fail_htlcs: Vec::new(),
2011 update_fail_malformed_htlcs: Vec::new(),
2019 } else { unreachable!(); }
2023 match handle_error!(self, err, path.first().unwrap().pubkey) {
2024 Ok(_) => unreachable!(),
2026 Err(APIError::ChannelUnavailable { err: e.err })
2031 /// Sends a payment along a given route.
2033 /// Value parameters are provided via the last hop in route, see documentation for RouteHop
2034 /// fields for more info.
2036 /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
2037 /// payment), we don't do anything to stop you! We always try to ensure that if the provided
2038 /// next hop knows the preimage to payment_hash they can claim an additional amount as
2039 /// specified in the last hop in the route! Thus, you should probably do your own
2040 /// payment_preimage tracking (which you should already be doing as they represent "proof of
2041 /// payment") and prevent double-sends yourself.
2043 /// May generate SendHTLCs message(s) event on success, which should be relayed.
2045 /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2046 /// each entry matching the corresponding-index entry in the route paths, see
2047 /// PaymentSendFailure for more info.
2049 /// In general, a path may raise:
2050 /// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
2051 /// node public key) is specified.
2052 /// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
2053 /// (including due to previous monitor update failure or new permanent monitor update
2055 /// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
2056 /// relevant updates.
2058 /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2059 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2060 /// different route unless you intend to pay twice!
2062 /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
2063 /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
2064 /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
2065 /// must not contain multiple paths as multi-path payments require a recipient-provided
2067 /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
2068 /// bit set (either as required or as available). If multiple paths are present in the Route,
2069 /// we assume the invoice had the basic_mpp feature set.
2070 pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<PaymentId, PaymentSendFailure> {
2071 self.send_payment_internal(route, payment_hash, payment_secret, None, None, None)
2074 fn send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: Option<PaymentId>, recv_value_msat: Option<u64>) -> Result<PaymentId, PaymentSendFailure> {
2075 if route.paths.len() < 1 {
2076 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
2078 if route.paths.len() > 10 {
2079 // This limit is completely arbitrary - there aren't any real fundamental path-count
2080 // limits. After we support retrying individual paths we should likely bump this, but
2081 // for now more than 10 paths likely carries too much one-path failure.
2082 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
2084 if payment_secret.is_none() && route.paths.len() > 1 {
2085 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError{err: "Payment secret is required for multi-path payments".to_string()}));
2087 let mut total_value = 0;
2088 let our_node_id = self.get_our_node_id();
2089 let mut path_errs = Vec::with_capacity(route.paths.len());
2090 let payment_id = if let Some(id) = payment_id { id } else { PaymentId(self.keys_manager.get_secure_random_bytes()) };
2091 'path_check: for path in route.paths.iter() {
2092 if path.len() < 1 || path.len() > 20 {
2093 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
2094 continue 'path_check;
2096 for (idx, hop) in path.iter().enumerate() {
2097 if idx != path.len() - 1 && hop.pubkey == our_node_id {
2098 path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
2099 continue 'path_check;
2102 total_value += path.last().unwrap().fee_msat;
2103 path_errs.push(Ok(()));
2105 if path_errs.iter().any(|e| e.is_err()) {
2106 return Err(PaymentSendFailure::PathParameterError(path_errs));
2108 if let Some(amt_msat) = recv_value_msat {
2109 debug_assert!(amt_msat >= total_value);
2110 total_value = amt_msat;
2113 let cur_height = self.best_block.read().unwrap().height() + 1;
2114 let mut results = Vec::new();
2115 for path in route.paths.iter() {
2116 results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height, payment_id, &keysend_preimage));
2118 let mut has_ok = false;
2119 let mut has_err = false;
2120 for res in results.iter() {
2121 if res.is_ok() { has_ok = true; }
2122 if res.is_err() { has_err = true; }
2123 if let &Err(APIError::MonitorUpdateFailed) = res {
2124 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
2131 if has_err && has_ok {
2132 Err(PaymentSendFailure::PartialFailure(results))
2134 Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
2140 /// Retries a payment along the given [`Route`].
2142 /// Errors returned are a superset of those returned from [`send_payment`], so see
2143 /// [`send_payment`] documentation for more details on errors. This method will also error if the
2144 /// retry amount puts the payment more than 10% over the payment's total amount, or if the payment
2145 /// for the given `payment_id` cannot be found (likely due to timeout or success).
2147 /// [`send_payment`]: [`ChannelManager::send_payment`]
2148 pub fn retry_payment(&self, route: &Route, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2149 const RETRY_OVERFLOW_PERCENTAGE: u64 = 10;
2150 for path in route.paths.iter() {
2151 if path.len() == 0 {
2152 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2153 err: "length-0 path in route".to_string()
2158 let (total_msat, payment_hash, payment_secret) = {
2159 let outbounds = self.pending_outbound_payments.lock().unwrap();
2160 if let Some(payment) = outbounds.get(&payment_id) {
2162 PendingOutboundPayment::Retryable {
2163 total_msat, payment_hash, payment_secret, pending_amt_msat, ..
2165 let retry_amt_msat: u64 = route.paths.iter().map(|path| path.last().unwrap().fee_msat).sum();
2166 if retry_amt_msat + *pending_amt_msat > *total_msat * (100 + RETRY_OVERFLOW_PERCENTAGE) / 100 {
2167 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2168 err: format!("retry_amt_msat of {} will put pending_amt_msat (currently: {}) more than 10% over total_payment_amt_msat of {}", retry_amt_msat, pending_amt_msat, total_msat).to_string()
2171 (*total_msat, *payment_hash, *payment_secret)
2173 PendingOutboundPayment::Legacy { .. } => {
2174 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2175 err: "Unable to retry payments that were initially sent on LDK versions prior to 0.0.102".to_string()
2180 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2181 err: format!("Payment with ID {} not found", log_bytes!(payment_id.0)),
2185 return self.send_payment_internal(route, payment_hash, &payment_secret, None, Some(payment_id), Some(total_msat)).map(|_| ())
2188 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2189 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2190 /// the preimage, it must be a cryptographically secure random value that no intermediate node
2191 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2192 /// never reach the recipient.
2194 /// See [`send_payment`] documentation for more details on the return value of this function.
2196 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2197 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2199 /// Note that `route` must have exactly one path.
2201 /// [`send_payment`]: Self::send_payment
2202 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2203 let preimage = match payment_preimage {
2205 None => PaymentPreimage(self.keys_manager.get_secure_random_bytes()),
2207 let payment_hash = PaymentHash(Sha256::hash(&preimage.0).into_inner());
2208 match self.send_payment_internal(route, payment_hash, &None, Some(preimage), None, None) {
2209 Ok(payment_id) => Ok((payment_hash, payment_id)),
2214 /// Handles the generation of a funding transaction, optionally (for tests) with a function
2215 /// which checks the correctness of the funding transaction given the associated channel.
2216 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
2217 (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
2219 let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
2221 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2223 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2224 .map_err(|e| if let ChannelError::Close(msg) = e {
2225 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
2226 } else { unreachable!(); })
2229 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
2231 match handle_error!(self, res, chan.get_counterparty_node_id()) {
2232 Ok(funding_msg) => {
2235 Err(_) => { return Err(APIError::ChannelUnavailable {
2236 err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
2241 let mut channel_state = self.channel_state.lock().unwrap();
2242 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2243 node_id: chan.get_counterparty_node_id(),
2246 match channel_state.by_id.entry(chan.channel_id()) {
2247 hash_map::Entry::Occupied(_) => {
2248 panic!("Generated duplicate funding txid?");
2250 hash_map::Entry::Vacant(e) => {
2258 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2259 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
2260 Ok(OutPoint { txid: tx.txid(), index: output_index })
2264 /// Call this upon creation of a funding transaction for the given channel.
2266 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2267 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2269 /// Panics if a funding transaction has already been provided for this channel.
2271 /// May panic if the output found in the funding transaction is duplicative with some other
2272 /// channel (note that this should be trivially prevented by using unique funding transaction
2273 /// keys per-channel).
2275 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2276 /// counterparty's signature the funding transaction will automatically be broadcast via the
2277 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2279 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2280 /// not currently support replacing a funding transaction on an existing channel. Instead,
2281 /// create a new channel with a conflicting funding transaction.
2283 /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2284 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
2285 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2287 for inp in funding_transaction.input.iter() {
2288 if inp.witness.is_empty() {
2289 return Err(APIError::APIMisuseError {
2290 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2294 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
2295 let mut output_index = None;
2296 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2297 for (idx, outp) in tx.output.iter().enumerate() {
2298 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2299 if output_index.is_some() {
2300 return Err(APIError::APIMisuseError {
2301 err: "Multiple outputs matched the expected script and value".to_owned()
2304 if idx > u16::max_value() as usize {
2305 return Err(APIError::APIMisuseError {
2306 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2309 output_index = Some(idx as u16);
2312 if output_index.is_none() {
2313 return Err(APIError::APIMisuseError {
2314 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2317 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2321 fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
2322 if !chan.should_announce() {
2323 log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
2327 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
2329 Err(_) => return None, // Only in case of state precondition violations eg channel is closing
2331 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2332 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2334 Some(msgs::AnnouncementSignatures {
2335 channel_id: chan.channel_id(),
2336 short_channel_id: chan.get_short_channel_id().unwrap(),
2337 node_signature: our_node_sig,
2338 bitcoin_signature: our_bitcoin_sig,
2343 // Messages of up to 64KB should never end up more than half full with addresses, as that would
2344 // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
2345 // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2347 const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2350 // ...by failing to compile if the number of addresses that would be half of a message is
2351 // smaller than 500:
2352 const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
2354 /// Regenerates channel_announcements and generates a signed node_announcement from the given
2355 /// arguments, providing them in corresponding events via
2356 /// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
2357 /// on-chain. This effectively re-broadcasts all channel announcements and sends our node
2358 /// announcement to ensure that the lightning P2P network is aware of the channels we have and
2359 /// our network addresses.
2361 /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2362 /// node to humans. They carry no in-protocol meaning.
2364 /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2365 /// accepts incoming connections. These will be included in the node_announcement, publicly
2366 /// tying these addresses together and to this node. If you wish to preserve user privacy,
2367 /// addresses should likely contain only Tor Onion addresses.
2369 /// Panics if `addresses` is absurdly large (more than 500).
2371 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2372 pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2373 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2375 if addresses.len() > 500 {
2376 panic!("More than half the message size was taken up by public addresses!");
2379 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2380 // addresses be sorted for future compatibility.
2381 addresses.sort_by_key(|addr| addr.get_id());
2383 let announcement = msgs::UnsignedNodeAnnouncement {
2384 features: NodeFeatures::known(),
2385 timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
2386 node_id: self.get_our_node_id(),
2387 rgb, alias, addresses,
2388 excess_address_data: Vec::new(),
2389 excess_data: Vec::new(),
2391 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2392 let node_announce_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2394 let mut channel_state_lock = self.channel_state.lock().unwrap();
2395 let channel_state = &mut *channel_state_lock;
2397 let mut announced_chans = false;
2398 for (_, chan) in channel_state.by_id.iter() {
2399 if let Some(msg) = chan.get_signed_channel_announcement(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone()) {
2400 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
2402 update_msg: match self.get_channel_update_for_broadcast(chan) {
2407 announced_chans = true;
2409 // If the channel is not public or has not yet reached funding_locked, check the
2410 // next channel. If we don't yet have any public channels, we'll skip the broadcast
2411 // below as peers may not accept it without channels on chain first.
2415 if announced_chans {
2416 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
2417 msg: msgs::NodeAnnouncement {
2418 signature: node_announce_sig,
2419 contents: announcement
2425 /// Processes HTLCs which are pending waiting on random forward delay.
2427 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2428 /// Will likely generate further events.
2429 pub fn process_pending_htlc_forwards(&self) {
2430 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2432 let mut new_events = Vec::new();
2433 let mut failed_forwards = Vec::new();
2434 let mut handle_errors = Vec::new();
2436 let mut channel_state_lock = self.channel_state.lock().unwrap();
2437 let channel_state = &mut *channel_state_lock;
2439 for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
2440 if short_chan_id != 0 {
2441 let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
2442 Some(chan_id) => chan_id.clone(),
2444 failed_forwards.reserve(pending_forwards.len());
2445 for forward_info in pending_forwards.drain(..) {
2446 match forward_info {
2447 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
2448 prev_funding_outpoint } => {
2449 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2450 short_channel_id: prev_short_channel_id,
2451 outpoint: prev_funding_outpoint,
2452 htlc_id: prev_htlc_id,
2453 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
2455 failed_forwards.push((htlc_source, forward_info.payment_hash,
2456 HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
2459 HTLCForwardInfo::FailHTLC { .. } => {
2460 // Channel went away before we could fail it. This implies
2461 // the channel is now on chain and our counterparty is
2462 // trying to broadcast the HTLC-Timeout, but that's their
2463 // problem, not ours.
2470 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
2471 let mut add_htlc_msgs = Vec::new();
2472 let mut fail_htlc_msgs = Vec::new();
2473 for forward_info in pending_forwards.drain(..) {
2474 match forward_info {
2475 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2476 routing: PendingHTLCRouting::Forward {
2478 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2479 prev_funding_outpoint } => {
2480 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
2481 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2482 short_channel_id: prev_short_channel_id,
2483 outpoint: prev_funding_outpoint,
2484 htlc_id: prev_htlc_id,
2485 incoming_packet_shared_secret: incoming_shared_secret,
2487 match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
2489 if let ChannelError::Ignore(msg) = e {
2490 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
2492 panic!("Stated return value requirements in send_htlc() were not met");
2494 let chan_update = self.get_channel_update_for_unicast(chan.get()).unwrap();
2495 failed_forwards.push((htlc_source, payment_hash,
2496 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
2502 Some(msg) => { add_htlc_msgs.push(msg); },
2504 // Nothing to do here...we're waiting on a remote
2505 // revoke_and_ack before we can add anymore HTLCs. The Channel
2506 // will automatically handle building the update_add_htlc and
2507 // commitment_signed messages when we can.
2508 // TODO: Do some kind of timer to set the channel as !is_live()
2509 // as we don't really want others relying on us relaying through
2510 // this channel currently :/.
2516 HTLCForwardInfo::AddHTLC { .. } => {
2517 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
2519 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
2520 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
2521 match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
2523 if let ChannelError::Ignore(msg) = e {
2524 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
2526 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
2528 // fail-backs are best-effort, we probably already have one
2529 // pending, and if not that's OK, if not, the channel is on
2530 // the chain and sending the HTLC-Timeout is their problem.
2533 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
2535 // Nothing to do here...we're waiting on a remote
2536 // revoke_and_ack before we can update the commitment
2537 // transaction. The Channel will automatically handle
2538 // building the update_fail_htlc and commitment_signed
2539 // messages when we can.
2540 // We don't need any kind of timer here as they should fail
2541 // the channel onto the chain if they can't get our
2542 // update_fail_htlc in time, it's not our problem.
2549 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
2550 let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
2553 // We surely failed send_commitment due to bad keys, in that case
2554 // close channel and then send error message to peer.
2555 let counterparty_node_id = chan.get().get_counterparty_node_id();
2556 let err: Result<(), _> = match e {
2557 ChannelError::Ignore(_) | ChannelError::Warn(_) => {
2558 panic!("Stated return value requirements in send_commitment() were not met");
2560 ChannelError::Close(msg) => {
2561 log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
2562 let (channel_id, mut channel) = chan.remove_entry();
2563 if let Some(short_id) = channel.get_short_channel_id() {
2564 channel_state.short_to_id.remove(&short_id);
2566 // ChannelClosed event is generated by handle_error for us.
2567 Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update_for_broadcast(&channel).ok()))
2569 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
2571 handle_errors.push((counterparty_node_id, err));
2575 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2576 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
2579 log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
2580 add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
2581 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2582 node_id: chan.get().get_counterparty_node_id(),
2583 updates: msgs::CommitmentUpdate {
2584 update_add_htlcs: add_htlc_msgs,
2585 update_fulfill_htlcs: Vec::new(),
2586 update_fail_htlcs: fail_htlc_msgs,
2587 update_fail_malformed_htlcs: Vec::new(),
2589 commitment_signed: commitment_msg,
2597 for forward_info in pending_forwards.drain(..) {
2598 match forward_info {
2599 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2600 routing, incoming_shared_secret, payment_hash, amt_to_forward, .. },
2601 prev_funding_outpoint } => {
2602 let (cltv_expiry, onion_payload) = match routing {
2603 PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry } =>
2604 (incoming_cltv_expiry, OnionPayload::Invoice(payment_data)),
2605 PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
2606 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage)),
2608 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2611 let claimable_htlc = ClaimableHTLC {
2612 prev_hop: HTLCPreviousHopData {
2613 short_channel_id: prev_short_channel_id,
2614 outpoint: prev_funding_outpoint,
2615 htlc_id: prev_htlc_id,
2616 incoming_packet_shared_secret: incoming_shared_secret,
2618 value: amt_to_forward,
2623 macro_rules! fail_htlc {
2625 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
2626 htlc_msat_height_data.extend_from_slice(
2627 &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
2629 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
2630 short_channel_id: $htlc.prev_hop.short_channel_id,
2631 outpoint: prev_funding_outpoint,
2632 htlc_id: $htlc.prev_hop.htlc_id,
2633 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
2635 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2640 // Check that the payment hash and secret are known. Note that we
2641 // MUST take care to handle the "unknown payment hash" and
2642 // "incorrect payment secret" cases here identically or we'd expose
2643 // that we are the ultimate recipient of the given payment hash.
2644 // Further, we must not expose whether we have any other HTLCs
2645 // associated with the same payment_hash pending or not.
2646 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2647 match payment_secrets.entry(payment_hash) {
2648 hash_map::Entry::Vacant(_) => {
2649 match claimable_htlc.onion_payload {
2650 OnionPayload::Invoice(_) => {
2651 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2652 fail_htlc!(claimable_htlc);
2654 OnionPayload::Spontaneous(preimage) => {
2655 match channel_state.claimable_htlcs.entry(payment_hash) {
2656 hash_map::Entry::Vacant(e) => {
2657 e.insert(vec![claimable_htlc]);
2658 new_events.push(events::Event::PaymentReceived {
2660 amt: amt_to_forward,
2661 purpose: events::PaymentPurpose::SpontaneousPayment(preimage),
2664 hash_map::Entry::Occupied(_) => {
2665 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
2666 fail_htlc!(claimable_htlc);
2672 hash_map::Entry::Occupied(inbound_payment) => {
2674 if let OnionPayload::Invoice(ref data) = claimable_htlc.onion_payload {
2677 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
2678 fail_htlc!(claimable_htlc);
2681 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2682 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2683 fail_htlc!(claimable_htlc);
2684 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2685 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2686 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2687 fail_htlc!(claimable_htlc);
2689 let mut total_value = 0;
2690 let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2691 .or_insert(Vec::new());
2692 if htlcs.len() == 1 {
2693 if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
2694 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
2695 fail_htlc!(claimable_htlc);
2699 htlcs.push(claimable_htlc);
2700 for htlc in htlcs.iter() {
2701 total_value += htlc.value;
2702 match &htlc.onion_payload {
2703 OnionPayload::Invoice(htlc_payment_data) => {
2704 if htlc_payment_data.total_msat != payment_data.total_msat {
2705 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2706 log_bytes!(payment_hash.0), payment_data.total_msat, htlc_payment_data.total_msat);
2707 total_value = msgs::MAX_VALUE_MSAT;
2709 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2711 _ => unreachable!(),
2714 if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2715 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2716 log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2717 for htlc in htlcs.iter() {
2720 } else if total_value == payment_data.total_msat {
2721 new_events.push(events::Event::PaymentReceived {
2723 purpose: events::PaymentPurpose::InvoicePayment {
2724 payment_preimage: inbound_payment.get().payment_preimage,
2725 payment_secret: payment_data.payment_secret,
2726 user_payment_id: inbound_payment.get().user_payment_id,
2730 // Only ever generate at most one PaymentReceived
2731 // per registered payment_hash, even if it isn't
2733 inbound_payment.remove_entry();
2735 // Nothing to do - we haven't reached the total
2736 // payment value yet, wait until we receive more
2743 HTLCForwardInfo::FailHTLC { .. } => {
2744 panic!("Got pending fail of our own HTLC");
2752 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2753 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2756 for (counterparty_node_id, err) in handle_errors.drain(..) {
2757 let _ = handle_error!(self, err, counterparty_node_id);
2760 if new_events.is_empty() { return }
2761 let mut events = self.pending_events.lock().unwrap();
2762 events.append(&mut new_events);
2765 /// Free the background events, generally called from timer_tick_occurred.
2767 /// Exposed for testing to allow us to process events quickly without generating accidental
2768 /// BroadcastChannelUpdate events in timer_tick_occurred.
2770 /// Expects the caller to have a total_consistency_lock read lock.
2771 fn process_background_events(&self) -> bool {
2772 let mut background_events = Vec::new();
2773 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2774 if background_events.is_empty() {
2778 for event in background_events.drain(..) {
2780 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2781 // The channel has already been closed, so no use bothering to care about the
2782 // monitor updating completing.
2783 let _ = self.chain_monitor.update_channel(funding_txo, update);
2790 #[cfg(any(test, feature = "_test_utils"))]
2791 /// Process background events, for functional testing
2792 pub fn test_process_background_events(&self) {
2793 self.process_background_events();
2796 fn update_channel_fee(&self, short_to_id: &mut HashMap<u64, [u8; 32]>, pending_msg_events: &mut Vec<events::MessageSendEvent>, chan_id: &[u8; 32], chan: &mut Channel<Signer>, new_feerate: u32) -> (bool, NotifyOption, Result<(), MsgHandleErrInternal>) {
2797 if !chan.is_outbound() { return (true, NotifyOption::SkipPersist, Ok(())); }
2798 // If the feerate has decreased by less than half, don't bother
2799 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
2800 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
2801 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2802 return (true, NotifyOption::SkipPersist, Ok(()));
2804 if !chan.is_live() {
2805 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
2806 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2807 return (true, NotifyOption::SkipPersist, Ok(()));
2809 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
2810 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2812 let mut retain_channel = true;
2813 let res = match chan.send_update_fee_and_commit(new_feerate, &self.logger) {
2816 let (drop, res) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
2817 if drop { retain_channel = false; }
2821 let ret_err = match res {
2822 Ok(Some((update_fee, commitment_signed, monitor_update))) => {
2823 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
2824 let (res, drop) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), chan_id);
2825 if drop { retain_channel = false; }
2828 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2829 node_id: chan.get_counterparty_node_id(),
2830 updates: msgs::CommitmentUpdate {
2831 update_add_htlcs: Vec::new(),
2832 update_fulfill_htlcs: Vec::new(),
2833 update_fail_htlcs: Vec::new(),
2834 update_fail_malformed_htlcs: Vec::new(),
2835 update_fee: Some(update_fee),
2845 (retain_channel, NotifyOption::DoPersist, ret_err)
2849 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
2850 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
2851 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
2852 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
2853 pub fn maybe_update_chan_fees(&self) {
2854 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2855 let mut should_persist = NotifyOption::SkipPersist;
2857 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
2859 let mut handle_errors = Vec::new();
2861 let mut channel_state_lock = self.channel_state.lock().unwrap();
2862 let channel_state = &mut *channel_state_lock;
2863 let pending_msg_events = &mut channel_state.pending_msg_events;
2864 let short_to_id = &mut channel_state.short_to_id;
2865 channel_state.by_id.retain(|chan_id, chan| {
2866 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
2867 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
2869 handle_errors.push(err);
2879 /// Performs actions which should happen on startup and roughly once per minute thereafter.
2881 /// This currently includes:
2882 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
2883 /// * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
2884 /// than a minute, informing the network that they should no longer attempt to route over
2887 /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
2888 /// estimate fetches.
2889 pub fn timer_tick_occurred(&self) {
2890 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2891 let mut should_persist = NotifyOption::SkipPersist;
2892 if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
2894 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
2896 let mut handle_errors = Vec::new();
2898 let mut channel_state_lock = self.channel_state.lock().unwrap();
2899 let channel_state = &mut *channel_state_lock;
2900 let pending_msg_events = &mut channel_state.pending_msg_events;
2901 let short_to_id = &mut channel_state.short_to_id;
2902 channel_state.by_id.retain(|chan_id, chan| {
2903 let counterparty_node_id = chan.get_counterparty_node_id();
2904 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
2905 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
2907 handle_errors.push((err, counterparty_node_id));
2909 if !retain_channel { return false; }
2911 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
2912 let (needs_close, err) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
2913 handle_errors.push((Err(err), chan.get_counterparty_node_id()));
2914 if needs_close { return false; }
2917 match chan.channel_update_status() {
2918 ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
2919 ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
2920 ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
2921 ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
2922 ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
2923 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2924 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2928 should_persist = NotifyOption::DoPersist;
2929 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
2931 ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
2932 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2933 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2937 should_persist = NotifyOption::DoPersist;
2938 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
2947 for (err, counterparty_node_id) in handle_errors.drain(..) {
2948 let _ = handle_error!(self, err, counterparty_node_id);
2954 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2955 /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2956 /// along the path (including in our own channel on which we received it).
2957 /// Returns false if no payment was found to fail backwards, true if the process of failing the
2958 /// HTLC backwards has been started.
2959 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2960 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2962 let mut channel_state = Some(self.channel_state.lock().unwrap());
2963 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2964 if let Some(mut sources) = removed_source {
2965 for htlc in sources.drain(..) {
2966 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2967 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2968 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2969 self.best_block.read().unwrap().height()));
2970 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2971 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2972 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2978 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2979 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2980 // be surfaced to the user.
2981 fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2982 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2984 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2985 let (failure_code, onion_failure_data) =
2986 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2987 hash_map::Entry::Occupied(chan_entry) => {
2988 if let Ok(upd) = self.get_channel_update_for_unicast(&chan_entry.get()) {
2989 (0x1000|7, upd.encode_with_len())
2991 (0x4000|10, Vec::new())
2994 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2996 let channel_state = self.channel_state.lock().unwrap();
2997 self.fail_htlc_backwards_internal(channel_state,
2998 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
3000 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
3001 let mut session_priv_bytes = [0; 32];
3002 session_priv_bytes.copy_from_slice(&session_priv[..]);
3003 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3004 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3005 if payment.get_mut().remove(&session_priv_bytes, path.last().unwrap().fee_msat) {
3006 self.pending_events.lock().unwrap().push(
3007 events::Event::PaymentPathFailed {
3009 rejected_by_dest: false,
3010 network_update: None,
3011 all_paths_failed: payment.get().remaining_parts() == 0,
3021 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3028 /// Fails an HTLC backwards to the sender of it to us.
3029 /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
3030 /// There are several callsites that do stupid things like loop over a list of payment_hashes
3031 /// to fail and take the channel_state lock for each iteration (as we take ownership and may
3032 /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
3033 /// still-available channels.
3034 fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
3035 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3036 //identify whether we sent it or not based on the (I presume) very different runtime
3037 //between the branches here. We should make this async and move it into the forward HTLCs
3040 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3041 // from block_connected which may run during initialization prior to the chain_monitor
3042 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3044 HTLCSource::OutboundRoute { ref path, session_priv, payment_id, .. } => {
3045 let mut session_priv_bytes = [0; 32];
3046 session_priv_bytes.copy_from_slice(&session_priv[..]);
3047 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3048 let mut all_paths_failed = false;
3049 if let hash_map::Entry::Occupied(mut sessions) = outbounds.entry(payment_id) {
3050 if !sessions.get_mut().remove(&session_priv_bytes, path.last().unwrap().fee_msat) {
3051 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3054 if sessions.get().remaining_parts() == 0 {
3055 all_paths_failed = true;
3058 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3061 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3062 mem::drop(channel_state_lock);
3063 match &onion_error {
3064 &HTLCFailReason::LightningError { ref err } => {
3066 let (network_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3068 let (network_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3069 // TODO: If we decided to blame ourselves (or one of our channels) in
3070 // process_onion_failure we should close that channel as it implies our
3071 // next-hop is needlessly blaming us!
3072 self.pending_events.lock().unwrap().push(
3073 events::Event::PaymentPathFailed {
3074 payment_hash: payment_hash.clone(),
3075 rejected_by_dest: !payment_retryable,
3080 error_code: onion_error_code,
3082 error_data: onion_error_data
3086 &HTLCFailReason::Reason {
3092 // we get a fail_malformed_htlc from the first hop
3093 // TODO: We'd like to generate a NetworkUpdate for temporary
3094 // failures here, but that would be insufficient as get_route
3095 // generally ignores its view of our own channels as we provide them via
3097 // TODO: For non-temporary failures, we really should be closing the
3098 // channel here as we apparently can't relay through them anyway.
3099 self.pending_events.lock().unwrap().push(
3100 events::Event::PaymentPathFailed {
3101 payment_hash: payment_hash.clone(),
3102 rejected_by_dest: path.len() == 1,
3103 network_update: None,
3107 error_code: Some(*failure_code),
3109 error_data: Some(data.clone()),
3115 HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
3116 let err_packet = match onion_error {
3117 HTLCFailReason::Reason { failure_code, data } => {
3118 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
3119 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
3120 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
3122 HTLCFailReason::LightningError { err } => {
3123 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
3124 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
3128 let mut forward_event = None;
3129 if channel_state_lock.forward_htlcs.is_empty() {
3130 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
3132 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
3133 hash_map::Entry::Occupied(mut entry) => {
3134 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
3136 hash_map::Entry::Vacant(entry) => {
3137 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
3140 mem::drop(channel_state_lock);
3141 if let Some(time) = forward_event {
3142 let mut pending_events = self.pending_events.lock().unwrap();
3143 pending_events.push(events::Event::PendingHTLCsForwardable {
3144 time_forwardable: time
3151 /// Provides a payment preimage in response to a PaymentReceived event, returning true and
3152 /// generating message events for the net layer to claim the payment, if possible. Thus, you
3153 /// should probably kick the net layer to go send messages if this returns true!
3155 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3156 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
3157 /// event matches your expectation. If you fail to do so and call this method, you may provide
3158 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3160 /// May panic if called except in response to a PaymentReceived event.
3162 /// [`create_inbound_payment`]: Self::create_inbound_payment
3163 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3164 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
3165 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3167 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3169 let mut channel_state = Some(self.channel_state.lock().unwrap());
3170 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
3171 if let Some(mut sources) = removed_source {
3172 assert!(!sources.is_empty());
3174 // If we are claiming an MPP payment, we have to take special care to ensure that each
3175 // channel exists before claiming all of the payments (inside one lock).
3176 // Note that channel existance is sufficient as we should always get a monitor update
3177 // which will take care of the real HTLC claim enforcement.
3179 // If we find an HTLC which we would need to claim but for which we do not have a
3180 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3181 // the sender retries the already-failed path(s), it should be a pretty rare case where
3182 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3183 // provide the preimage, so worrying too much about the optimal handling isn't worth
3185 let mut valid_mpp = true;
3186 for htlc in sources.iter() {
3187 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
3193 let mut errs = Vec::new();
3194 let mut claimed_any_htlcs = false;
3195 for htlc in sources.drain(..) {
3197 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
3198 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3199 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3200 self.best_block.read().unwrap().height()));
3201 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
3202 HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
3203 HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
3205 match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
3206 ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) => {
3207 if let msgs::ErrorAction::IgnoreError = err.err.action {
3208 // We got a temporary failure updating monitor, but will claim the
3209 // HTLC when the monitor updating is restored (or on chain).
3210 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
3211 claimed_any_htlcs = true;
3212 } else { errs.push((pk, err)); }
3214 ClaimFundsFromHop::PrevHopForceClosed => unreachable!("We already checked for channel existence, we can't fail here!"),
3215 ClaimFundsFromHop::DuplicateClaim => {
3216 // While we should never get here in most cases, if we do, it likely
3217 // indicates that the HTLC was timed out some time ago and is no longer
3218 // available to be claimed. Thus, it does not make sense to set
3219 // `claimed_any_htlcs`.
3221 ClaimFundsFromHop::Success(_) => claimed_any_htlcs = true,
3226 // Now that we've done the entire above loop in one lock, we can handle any errors
3227 // which were generated.
3228 channel_state.take();
3230 for (counterparty_node_id, err) in errs.drain(..) {
3231 let res: Result<(), _> = Err(err);
3232 let _ = handle_error!(self, res, counterparty_node_id);
3239 fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> ClaimFundsFromHop {
3240 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
3241 let channel_state = &mut **channel_state_lock;
3242 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
3243 Some(chan_id) => chan_id.clone(),
3245 return ClaimFundsFromHop::PrevHopForceClosed
3249 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
3250 match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
3251 Ok(msgs_monitor_option) => {
3252 if let UpdateFulfillCommitFetch::NewClaim { msgs, htlc_value_msat, monitor_update } = msgs_monitor_option {
3253 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3254 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Debug },
3255 "Failed to update channel monitor with preimage {:?}: {:?}",
3256 payment_preimage, e);
3257 return ClaimFundsFromHop::MonitorUpdateFail(
3258 chan.get().get_counterparty_node_id(),
3259 handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err(),
3260 Some(htlc_value_msat)
3263 if let Some((msg, commitment_signed)) = msgs {
3264 log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
3265 log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
3266 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3267 node_id: chan.get().get_counterparty_node_id(),
3268 updates: msgs::CommitmentUpdate {
3269 update_add_htlcs: Vec::new(),
3270 update_fulfill_htlcs: vec![msg],
3271 update_fail_htlcs: Vec::new(),
3272 update_fail_malformed_htlcs: Vec::new(),
3278 return ClaimFundsFromHop::Success(htlc_value_msat);
3280 return ClaimFundsFromHop::DuplicateClaim;
3283 Err((e, monitor_update)) => {
3284 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3285 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Info },
3286 "Failed to update channel monitor with preimage {:?} immediately prior to force-close: {:?}",
3287 payment_preimage, e);
3289 let counterparty_node_id = chan.get().get_counterparty_node_id();
3290 let (drop, res) = convert_chan_err!(self, e, channel_state.short_to_id, chan.get_mut(), &chan_id);
3292 chan.remove_entry();
3294 return ClaimFundsFromHop::MonitorUpdateFail(counterparty_node_id, res, None);
3297 } else { unreachable!(); }
3300 fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool) {
3302 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
3303 mem::drop(channel_state_lock);
3304 let mut session_priv_bytes = [0; 32];
3305 session_priv_bytes.copy_from_slice(&session_priv[..]);
3306 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3307 let found_payment = if let Some(mut sessions) = outbounds.remove(&payment_id) {
3308 sessions.remove(&session_priv_bytes, path.last().unwrap().fee_msat)
3311 self.pending_events.lock().unwrap().push(
3312 events::Event::PaymentSent { payment_preimage }
3315 log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
3318 HTLCSource::PreviousHopData(hop_data) => {
3319 let prev_outpoint = hop_data.outpoint;
3320 let res = self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage);
3321 let claimed_htlc = if let ClaimFundsFromHop::DuplicateClaim = res { false } else { true };
3322 let htlc_claim_value_msat = match res {
3323 ClaimFundsFromHop::MonitorUpdateFail(_, _, amt_opt) => amt_opt,
3324 ClaimFundsFromHop::Success(amt) => Some(amt),
3327 if let ClaimFundsFromHop::PrevHopForceClosed = res {
3328 let preimage_update = ChannelMonitorUpdate {
3329 update_id: CLOSED_CHANNEL_UPDATE_ID,
3330 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
3331 payment_preimage: payment_preimage.clone(),
3334 // We update the ChannelMonitor on the backward link, after
3335 // receiving an offchain preimage event from the forward link (the
3336 // event being update_fulfill_htlc).
3337 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
3338 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
3339 payment_preimage, e);
3341 // Note that we do *not* set `claimed_htlc` to false here. In fact, this
3342 // totally could be a duplicate claim, but we have no way of knowing
3343 // without interrogating the `ChannelMonitor` we've provided the above
3344 // update to. Instead, we simply document in `PaymentForwarded` that this
3347 mem::drop(channel_state_lock);
3348 if let ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) = res {
3349 let result: Result<(), _> = Err(err);
3350 let _ = handle_error!(self, result, pk);
3354 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
3355 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
3356 Some(claimed_htlc_value - forwarded_htlc_value)
3359 let mut pending_events = self.pending_events.lock().unwrap();
3360 pending_events.push(events::Event::PaymentForwarded {
3362 claim_from_onchain_tx: from_onchain,
3370 /// Gets the node_id held by this ChannelManager
3371 pub fn get_our_node_id(&self) -> PublicKey {
3372 self.our_network_pubkey.clone()
3375 /// Restores a single, given channel to normal operation after a
3376 /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
3379 /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
3380 /// fully committed in every copy of the given channels' ChannelMonitors.
3382 /// Note that there is no effect to calling with a highest_applied_update_id other than the
3383 /// current latest ChannelMonitorUpdate and one call to this function after multiple
3384 /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
3385 /// exists largely only to prevent races between this and concurrent update_monitor calls.
3387 /// Thus, the anticipated use is, at a high level:
3388 /// 1) You register a chain::Watch with this ChannelManager,
3389 /// 2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
3390 /// said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
3391 /// any time it cannot do so instantly,
3392 /// 3) update(s) are applied to each remote copy of a ChannelMonitor,
3393 /// 4) once all remote copies are updated, you call this function with the update_id that
3394 /// completed, and once it is the latest the Channel will be re-enabled.
3395 pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
3396 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3398 let chan_restoration_res;
3399 let mut pending_failures = {
3400 let mut channel_lock = self.channel_state.lock().unwrap();
3401 let channel_state = &mut *channel_lock;
3402 let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
3403 hash_map::Entry::Occupied(chan) => chan,
3404 hash_map::Entry::Vacant(_) => return,
3406 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
3410 let (raa, commitment_update, order, pending_forwards, pending_failures, funding_broadcastable, funding_locked) = channel.get_mut().monitor_updating_restored(&self.logger);
3411 let channel_update = if funding_locked.is_some() && channel.get().is_usable() && !channel.get().should_announce() {
3412 // We only send a channel_update in the case where we are just now sending a
3413 // funding_locked and the channel is in a usable state. Further, we rely on the
3414 // normal announcement_signatures process to send a channel_update for public
3415 // channels, only generating a unicast channel_update if this is a private channel.
3416 Some(events::MessageSendEvent::SendChannelUpdate {
3417 node_id: channel.get().get_counterparty_node_id(),
3418 msg: self.get_channel_update_for_unicast(channel.get()).unwrap(),
3421 chan_restoration_res = handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, raa, commitment_update, order, None, pending_forwards, funding_broadcastable, funding_locked);
3422 if let Some(upd) = channel_update {
3423 channel_state.pending_msg_events.push(upd);
3427 post_handle_chan_restoration!(self, chan_restoration_res);
3428 for failure in pending_failures.drain(..) {
3429 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3433 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
3434 if msg.chain_hash != self.genesis_hash {
3435 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
3438 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), &their_features, msg, 0, &self.default_configuration)
3439 .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
3440 let mut channel_state_lock = self.channel_state.lock().unwrap();
3441 let channel_state = &mut *channel_state_lock;
3442 match channel_state.by_id.entry(channel.channel_id()) {
3443 hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
3444 hash_map::Entry::Vacant(entry) => {
3445 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
3446 node_id: counterparty_node_id.clone(),
3447 msg: channel.get_accept_channel(),
3449 entry.insert(channel);
3455 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
3456 let (value, output_script, user_id) = {
3457 let mut channel_lock = self.channel_state.lock().unwrap();
3458 let channel_state = &mut *channel_lock;
3459 match channel_state.by_id.entry(msg.temporary_channel_id) {
3460 hash_map::Entry::Occupied(mut chan) => {
3461 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3462 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
3464 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, &their_features), channel_state, chan);
3465 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
3467 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
3470 let mut pending_events = self.pending_events.lock().unwrap();
3471 pending_events.push(events::Event::FundingGenerationReady {
3472 temporary_channel_id: msg.temporary_channel_id,
3473 channel_value_satoshis: value,
3475 user_channel_id: user_id,
3480 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
3481 let ((funding_msg, monitor), mut chan) = {
3482 let best_block = *self.best_block.read().unwrap();
3483 let mut channel_lock = self.channel_state.lock().unwrap();
3484 let channel_state = &mut *channel_lock;
3485 match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
3486 hash_map::Entry::Occupied(mut chan) => {
3487 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3488 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
3490 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
3492 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
3495 // Because we have exclusive ownership of the channel here we can release the channel_state
3496 // lock before watch_channel
3497 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
3499 ChannelMonitorUpdateErr::PermanentFailure => {
3500 // Note that we reply with the new channel_id in error messages if we gave up on the
3501 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
3502 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
3503 // any messages referencing a previously-closed channel anyway.
3504 // We do not do a force-close here as that would generate a monitor update for
3505 // a monitor that we didn't manage to store (and that we don't care about - we
3506 // don't respond with the funding_signed so the channel can never go on chain).
3507 let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
3508 assert!(failed_htlcs.is_empty());
3509 return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
3511 ChannelMonitorUpdateErr::TemporaryFailure => {
3512 // There's no problem signing a counterparty's funding transaction if our monitor
3513 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
3514 // accepted payment from yet. We do, however, need to wait to send our funding_locked
3515 // until we have persisted our monitor.
3516 chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
3520 let mut channel_state_lock = self.channel_state.lock().unwrap();
3521 let channel_state = &mut *channel_state_lock;
3522 match channel_state.by_id.entry(funding_msg.channel_id) {
3523 hash_map::Entry::Occupied(_) => {
3524 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
3526 hash_map::Entry::Vacant(e) => {
3527 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
3528 node_id: counterparty_node_id.clone(),
3537 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
3539 let best_block = *self.best_block.read().unwrap();
3540 let mut channel_lock = self.channel_state.lock().unwrap();
3541 let channel_state = &mut *channel_lock;
3542 match channel_state.by_id.entry(msg.channel_id) {
3543 hash_map::Entry::Occupied(mut chan) => {
3544 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3545 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3547 let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
3548 Ok(update) => update,
3549 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
3551 if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
3552 let mut res = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
3553 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
3554 // We weren't able to watch the channel to begin with, so no updates should be made on
3555 // it. Previously, full_stack_target found an (unreachable) panic when the
3556 // monitor update contained within `shutdown_finish` was applied.
3557 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
3558 shutdown_finish.0.take();
3565 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3568 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
3569 self.tx_broadcaster.broadcast_transaction(&funding_tx);
3573 fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
3574 let mut channel_state_lock = self.channel_state.lock().unwrap();
3575 let channel_state = &mut *channel_state_lock;
3576 match channel_state.by_id.entry(msg.channel_id) {
3577 hash_map::Entry::Occupied(mut chan) => {
3578 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3579 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3581 try_chan_entry!(self, chan.get_mut().funding_locked(&msg, &self.logger), channel_state, chan);
3582 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
3583 log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
3584 // If we see locking block before receiving remote funding_locked, we broadcast our
3585 // announcement_sigs at remote funding_locked reception. If we receive remote
3586 // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
3587 // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
3588 // the order of the events but our peer may not receive it due to disconnection. The specs
3589 // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
3590 // connection in the future if simultaneous misses by both peers due to network/hardware
3591 // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
3592 // to be received, from then sigs are going to be flood to the whole network.
3593 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3594 node_id: counterparty_node_id.clone(),
3595 msg: announcement_sigs,
3597 } else if chan.get().is_usable() {
3598 channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3599 node_id: counterparty_node_id.clone(),
3600 msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
3605 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3609 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
3610 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
3611 let result: Result<(), _> = loop {
3612 let mut channel_state_lock = self.channel_state.lock().unwrap();
3613 let channel_state = &mut *channel_state_lock;
3615 match channel_state.by_id.entry(msg.channel_id.clone()) {
3616 hash_map::Entry::Occupied(mut chan_entry) => {
3617 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3618 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3621 if !chan_entry.get().received_shutdown() {
3622 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
3623 log_bytes!(msg.channel_id),
3624 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
3627 let (shutdown, monitor_update, htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.keys_manager, &their_features, &msg), channel_state, chan_entry);
3628 dropped_htlcs = htlcs;
3630 // Update the monitor with the shutdown script if necessary.
3631 if let Some(monitor_update) = monitor_update {
3632 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
3633 let (result, is_permanent) =
3634 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, false, false, Vec::new(), Vec::new(), chan_entry.key());
3636 remove_channel!(channel_state, chan_entry);
3642 if let Some(msg) = shutdown {
3643 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3644 node_id: *counterparty_node_id,
3651 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3654 for htlc_source in dropped_htlcs.drain(..) {
3655 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3658 let _ = handle_error!(self, result, *counterparty_node_id);
3662 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
3663 let (tx, chan_option) = {
3664 let mut channel_state_lock = self.channel_state.lock().unwrap();
3665 let channel_state = &mut *channel_state_lock;
3666 match channel_state.by_id.entry(msg.channel_id.clone()) {
3667 hash_map::Entry::Occupied(mut chan_entry) => {
3668 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3669 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3671 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
3672 if let Some(msg) = closing_signed {
3673 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3674 node_id: counterparty_node_id.clone(),
3679 // We're done with this channel, we've got a signed closing transaction and
3680 // will send the closing_signed back to the remote peer upon return. This
3681 // also implies there are no pending HTLCs left on the channel, so we can
3682 // fully delete it from tracking (the channel monitor is still around to
3683 // watch for old state broadcasts)!
3684 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
3685 channel_state.short_to_id.remove(&short_id);
3687 (tx, Some(chan_entry.remove_entry().1))
3688 } else { (tx, None) }
3690 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3693 if let Some(broadcast_tx) = tx {
3694 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
3695 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
3697 if let Some(chan) = chan_option {
3698 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3699 let mut channel_state = self.channel_state.lock().unwrap();
3700 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3704 self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id: msg.channel_id, reason: ClosureReason::CooperativeClosure });
3709 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
3710 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
3711 //determine the state of the payment based on our response/if we forward anything/the time
3712 //we take to respond. We should take care to avoid allowing such an attack.
3714 //TODO: There exists a further attack where a node may garble the onion data, forward it to
3715 //us repeatedly garbled in different ways, and compare our error messages, which are
3716 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
3717 //but we should prevent it anyway.
3719 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
3720 let channel_state = &mut *channel_state_lock;
3722 match channel_state.by_id.entry(msg.channel_id) {
3723 hash_map::Entry::Occupied(mut chan) => {
3724 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3725 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3728 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
3729 // If the update_add is completely bogus, the call will Err and we will close,
3730 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
3731 // want to reject the new HTLC and fail it backwards instead of forwarding.
3732 match pending_forward_info {
3733 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
3734 let reason = if (error_code & 0x1000) != 0 {
3735 if let Ok(upd) = self.get_channel_update_for_unicast(chan) {
3736 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
3737 let mut res = Vec::with_capacity(8 + 128);
3738 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
3739 res.extend_from_slice(&byte_utils::be16_to_array(0));
3740 res.extend_from_slice(&upd.encode_with_len()[..]);
3744 // The only case where we'd be unable to
3745 // successfully get a channel update is if the
3746 // channel isn't in the fully-funded state yet,
3747 // implying our counterparty is trying to route
3748 // payments over the channel back to themselves
3749 // (because no one else should know the short_id
3750 // is a lightning channel yet). We should have
3751 // no problem just calling this
3752 // unknown_next_peer (0x4000|10).
3753 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
3756 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &[])
3758 let msg = msgs::UpdateFailHTLC {
3759 channel_id: msg.channel_id,
3760 htlc_id: msg.htlc_id,
3763 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
3765 _ => pending_forward_info
3768 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
3770 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3775 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
3776 let mut channel_lock = self.channel_state.lock().unwrap();
3777 let (htlc_source, forwarded_htlc_value) = {
3778 let channel_state = &mut *channel_lock;
3779 match channel_state.by_id.entry(msg.channel_id) {
3780 hash_map::Entry::Occupied(mut chan) => {
3781 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3782 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3784 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
3786 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3789 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false);
3793 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
3794 let mut channel_lock = self.channel_state.lock().unwrap();
3795 let channel_state = &mut *channel_lock;
3796 match channel_state.by_id.entry(msg.channel_id) {
3797 hash_map::Entry::Occupied(mut chan) => {
3798 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3799 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3801 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
3803 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3808 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
3809 let mut channel_lock = self.channel_state.lock().unwrap();
3810 let channel_state = &mut *channel_lock;
3811 match channel_state.by_id.entry(msg.channel_id) {
3812 hash_map::Entry::Occupied(mut chan) => {
3813 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3814 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3816 if (msg.failure_code & 0x8000) == 0 {
3817 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
3818 try_chan_entry!(self, Err(chan_err), channel_state, chan);
3820 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
3823 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3827 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
3828 let mut channel_state_lock = self.channel_state.lock().unwrap();
3829 let channel_state = &mut *channel_state_lock;
3830 match channel_state.by_id.entry(msg.channel_id) {
3831 hash_map::Entry::Occupied(mut chan) => {
3832 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3833 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3835 let (revoke_and_ack, commitment_signed, monitor_update) =
3836 match chan.get_mut().commitment_signed(&msg, &self.logger) {
3837 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
3838 Err((Some(update), e)) => {
3839 assert!(chan.get().is_awaiting_monitor_update());
3840 let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
3841 try_chan_entry!(self, Err(e), channel_state, chan);
3846 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3847 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
3849 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3850 node_id: counterparty_node_id.clone(),
3851 msg: revoke_and_ack,
3853 if let Some(msg) = commitment_signed {
3854 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3855 node_id: counterparty_node_id.clone(),
3856 updates: msgs::CommitmentUpdate {
3857 update_add_htlcs: Vec::new(),
3858 update_fulfill_htlcs: Vec::new(),
3859 update_fail_htlcs: Vec::new(),
3860 update_fail_malformed_htlcs: Vec::new(),
3862 commitment_signed: msg,
3868 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3873 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3874 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3875 let mut forward_event = None;
3876 if !pending_forwards.is_empty() {
3877 let mut channel_state = self.channel_state.lock().unwrap();
3878 if channel_state.forward_htlcs.is_empty() {
3879 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3881 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3882 match channel_state.forward_htlcs.entry(match forward_info.routing {
3883 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3884 PendingHTLCRouting::Receive { .. } => 0,
3885 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
3887 hash_map::Entry::Occupied(mut entry) => {
3888 entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3889 prev_htlc_id, forward_info });
3891 hash_map::Entry::Vacant(entry) => {
3892 entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3893 prev_htlc_id, forward_info }));
3898 match forward_event {
3900 let mut pending_events = self.pending_events.lock().unwrap();
3901 pending_events.push(events::Event::PendingHTLCsForwardable {
3902 time_forwardable: time
3910 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3911 let mut htlcs_to_fail = Vec::new();
3913 let mut channel_state_lock = self.channel_state.lock().unwrap();
3914 let channel_state = &mut *channel_state_lock;
3915 match channel_state.by_id.entry(msg.channel_id) {
3916 hash_map::Entry::Occupied(mut chan) => {
3917 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3918 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3920 let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3921 let (commitment_update, pending_forwards, pending_failures, monitor_update, htlcs_to_fail_in) =
3922 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), channel_state, chan);
3923 htlcs_to_fail = htlcs_to_fail_in;
3924 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3925 if was_frozen_for_monitor {
3926 assert!(commitment_update.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3927 break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3929 if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3931 } else { unreachable!(); }
3934 if let Some(updates) = commitment_update {
3935 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3936 node_id: counterparty_node_id.clone(),
3940 break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3942 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3945 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3947 Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3948 for failure in pending_failures.drain(..) {
3949 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3951 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3958 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3959 let mut channel_lock = self.channel_state.lock().unwrap();
3960 let channel_state = &mut *channel_lock;
3961 match channel_state.by_id.entry(msg.channel_id) {
3962 hash_map::Entry::Occupied(mut chan) => {
3963 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3964 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3966 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3968 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3973 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3974 let mut channel_state_lock = self.channel_state.lock().unwrap();
3975 let channel_state = &mut *channel_state_lock;
3977 match channel_state.by_id.entry(msg.channel_id) {
3978 hash_map::Entry::Occupied(mut chan) => {
3979 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3980 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3982 if !chan.get().is_usable() {
3983 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3986 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3987 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone(), msg), channel_state, chan),
3988 // Note that announcement_signatures fails if the channel cannot be announced,
3989 // so get_channel_update_for_broadcast will never fail by the time we get here.
3990 update_msg: self.get_channel_update_for_broadcast(chan.get()).unwrap(),
3993 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3998 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
3999 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
4000 let mut channel_state_lock = self.channel_state.lock().unwrap();
4001 let channel_state = &mut *channel_state_lock;
4002 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
4003 Some(chan_id) => chan_id.clone(),
4005 // It's not a local channel
4006 return Ok(NotifyOption::SkipPersist)
4009 match channel_state.by_id.entry(chan_id) {
4010 hash_map::Entry::Occupied(mut chan) => {
4011 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4012 if chan.get().should_announce() {
4013 // If the announcement is about a channel of ours which is public, some
4014 // other peer may simply be forwarding all its gossip to us. Don't provide
4015 // a scary-looking error message and return Ok instead.
4016 return Ok(NotifyOption::SkipPersist);
4018 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
4020 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
4021 let msg_from_node_one = msg.contents.flags & 1 == 0;
4022 if were_node_one == msg_from_node_one {
4023 return Ok(NotifyOption::SkipPersist);
4025 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
4028 hash_map::Entry::Vacant(_) => unreachable!()
4030 Ok(NotifyOption::DoPersist)
4033 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
4034 let chan_restoration_res;
4035 let (htlcs_failed_forward, need_lnd_workaround) = {
4036 let mut channel_state_lock = self.channel_state.lock().unwrap();
4037 let channel_state = &mut *channel_state_lock;
4039 match channel_state.by_id.entry(msg.channel_id) {
4040 hash_map::Entry::Occupied(mut chan) => {
4041 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4042 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4044 // Currently, we expect all holding cell update_adds to be dropped on peer
4045 // disconnect, so Channel's reestablish will never hand us any holding cell
4046 // freed HTLCs to fail backwards. If in the future we no longer drop pending
4047 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
4048 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, order, htlcs_failed_forward, shutdown) =
4049 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
4050 let mut channel_update = None;
4051 if let Some(msg) = shutdown {
4052 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4053 node_id: counterparty_node_id.clone(),
4056 } else if chan.get().is_usable() {
4057 // If the channel is in a usable state (ie the channel is not being shut
4058 // down), send a unicast channel_update to our counterparty to make sure
4059 // they have the latest channel parameters.
4060 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
4061 node_id: chan.get().get_counterparty_node_id(),
4062 msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
4065 let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
4066 chan_restoration_res = handle_chan_restoration_locked!(self, channel_state_lock, channel_state, chan, revoke_and_ack, commitment_update, order, monitor_update_opt, Vec::new(), None, funding_locked);
4067 if let Some(upd) = channel_update {
4068 channel_state.pending_msg_events.push(upd);
4070 (htlcs_failed_forward, need_lnd_workaround)
4072 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4075 post_handle_chan_restoration!(self, chan_restoration_res);
4076 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
4078 if let Some(funding_locked_msg) = need_lnd_workaround {
4079 self.internal_funding_locked(counterparty_node_id, &funding_locked_msg)?;
4084 /// Process pending events from the `chain::Watch`, returning whether any events were processed.
4085 fn process_pending_monitor_events(&self) -> bool {
4086 let mut failed_channels = Vec::new();
4087 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
4088 let has_pending_monitor_events = !pending_monitor_events.is_empty();
4089 for monitor_event in pending_monitor_events.drain(..) {
4090 match monitor_event {
4091 MonitorEvent::HTLCEvent(htlc_update) => {
4092 if let Some(preimage) = htlc_update.payment_preimage {
4093 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
4094 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage, htlc_update.onchain_value_satoshis.map(|v| v * 1000), true);
4096 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
4097 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4100 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) => {
4101 let mut channel_lock = self.channel_state.lock().unwrap();
4102 let channel_state = &mut *channel_lock;
4103 let by_id = &mut channel_state.by_id;
4104 let short_to_id = &mut channel_state.short_to_id;
4105 let pending_msg_events = &mut channel_state.pending_msg_events;
4106 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
4107 if let Some(short_id) = chan.get_short_channel_id() {
4108 short_to_id.remove(&short_id);
4110 failed_channels.push(chan.force_shutdown(false));
4111 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4112 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4116 self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id: chan.channel_id(), reason: ClosureReason::CommitmentTxConfirmed });
4117 pending_msg_events.push(events::MessageSendEvent::HandleError {
4118 node_id: chan.get_counterparty_node_id(),
4119 action: msgs::ErrorAction::SendErrorMessage {
4120 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
4128 for failure in failed_channels.drain(..) {
4129 self.finish_force_close_channel(failure);
4132 has_pending_monitor_events
4135 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
4136 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
4137 /// update was applied.
4139 /// This should only apply to HTLCs which were added to the holding cell because we were
4140 /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
4141 /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
4142 /// code to inform them of a channel monitor update.
4143 fn check_free_holding_cells(&self) -> bool {
4144 let mut has_monitor_update = false;
4145 let mut failed_htlcs = Vec::new();
4146 let mut handle_errors = Vec::new();
4148 let mut channel_state_lock = self.channel_state.lock().unwrap();
4149 let channel_state = &mut *channel_state_lock;
4150 let by_id = &mut channel_state.by_id;
4151 let short_to_id = &mut channel_state.short_to_id;
4152 let pending_msg_events = &mut channel_state.pending_msg_events;
4154 by_id.retain(|channel_id, chan| {
4155 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
4156 Ok((commitment_opt, holding_cell_failed_htlcs)) => {
4157 if !holding_cell_failed_htlcs.is_empty() {
4158 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
4160 if let Some((commitment_update, monitor_update)) = commitment_opt {
4161 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
4162 has_monitor_update = true;
4163 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), channel_id);
4164 handle_errors.push((chan.get_counterparty_node_id(), res));
4165 if close_channel { return false; }
4167 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4168 node_id: chan.get_counterparty_node_id(),
4169 updates: commitment_update,
4176 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4177 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
4178 // ChannelClosed event is generated by handle_error for us
4185 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
4186 for (failures, channel_id) in failed_htlcs.drain(..) {
4187 self.fail_holding_cell_htlcs(failures, channel_id);
4190 for (counterparty_node_id, err) in handle_errors.drain(..) {
4191 let _ = handle_error!(self, err, counterparty_node_id);
4197 /// Check whether any channels have finished removing all pending updates after a shutdown
4198 /// exchange and can now send a closing_signed.
4199 /// Returns whether any closing_signed messages were generated.
4200 fn maybe_generate_initial_closing_signed(&self) -> bool {
4201 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
4202 let mut has_update = false;
4204 let mut channel_state_lock = self.channel_state.lock().unwrap();
4205 let channel_state = &mut *channel_state_lock;
4206 let by_id = &mut channel_state.by_id;
4207 let short_to_id = &mut channel_state.short_to_id;
4208 let pending_msg_events = &mut channel_state.pending_msg_events;
4210 by_id.retain(|channel_id, chan| {
4211 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
4212 Ok((msg_opt, tx_opt)) => {
4213 if let Some(msg) = msg_opt {
4215 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4216 node_id: chan.get_counterparty_node_id(), msg,
4219 if let Some(tx) = tx_opt {
4220 // We're done with this channel. We got a closing_signed and sent back
4221 // a closing_signed with a closing transaction to broadcast.
4222 if let Some(short_id) = chan.get_short_channel_id() {
4223 short_to_id.remove(&short_id);
4226 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4227 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4232 if let Ok(mut pending_events_lock) = self.pending_events.lock() {
4233 pending_events_lock.push(events::Event::ChannelClosed {
4234 channel_id: *channel_id,
4235 reason: ClosureReason::CooperativeClosure
4239 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
4240 self.tx_broadcaster.broadcast_transaction(&tx);
4246 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4247 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
4254 for (counterparty_node_id, err) in handle_errors.drain(..) {
4255 let _ = handle_error!(self, err, counterparty_node_id);
4261 /// Handle a list of channel failures during a block_connected or block_disconnected call,
4262 /// pushing the channel monitor update (if any) to the background events queue and removing the
4264 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
4265 for mut failure in failed_channels.drain(..) {
4266 // Either a commitment transactions has been confirmed on-chain or
4267 // Channel::block_disconnected detected that the funding transaction has been
4268 // reorganized out of the main chain.
4269 // We cannot broadcast our latest local state via monitor update (as
4270 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
4271 // so we track the update internally and handle it when the user next calls
4272 // timer_tick_occurred, guaranteeing we're running normally.
4273 if let Some((funding_txo, update)) = failure.0.take() {
4274 assert_eq!(update.updates.len(), 1);
4275 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
4276 assert!(should_broadcast);
4277 } else { unreachable!(); }
4278 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
4280 self.finish_force_close_channel(failure);
4284 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
4285 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
4287 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
4289 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4290 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4291 match payment_secrets.entry(payment_hash) {
4292 hash_map::Entry::Vacant(e) => {
4293 e.insert(PendingInboundPayment {
4294 payment_secret, min_value_msat, user_payment_id, payment_preimage,
4295 // We assume that highest_seen_timestamp is pretty close to the current time -
4296 // its updated when we receive a new block with the maximum time we've seen in
4297 // a header. It should never be more than two hours in the future.
4298 // Thus, we add two hours here as a buffer to ensure we absolutely
4299 // never fail a payment too early.
4300 // Note that we assume that received blocks have reasonably up-to-date
4302 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
4305 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
4310 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
4313 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
4314 /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
4316 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
4317 /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
4318 /// passed directly to [`claim_funds`].
4320 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
4322 /// [`claim_funds`]: Self::claim_funds
4323 /// [`PaymentReceived`]: events::Event::PaymentReceived
4324 /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
4325 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
4326 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
4327 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
4328 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4331 self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
4332 .expect("RNG Generated Duplicate PaymentHash"))
4335 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
4336 /// stored external to LDK.
4338 /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
4339 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
4340 /// the `min_value_msat` provided here, if one is provided.
4342 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
4343 /// method may return an Err if another payment with the same payment_hash is still pending.
4345 /// `user_payment_id` will be provided back in [`PaymentPurpose::InvoicePayment::user_payment_id`] events to
4346 /// allow tracking of which events correspond with which calls to this and
4347 /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
4348 /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
4349 /// with invoice metadata stored elsewhere.
4351 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
4352 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
4353 /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
4354 /// sender "proof-of-payment" unless they have paid the required amount.
4356 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
4357 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
4358 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
4359 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
4360 /// invoices when no timeout is set.
4362 /// Note that we use block header time to time-out pending inbound payments (with some margin
4363 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
4364 /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
4365 /// If you need exact expiry semantics, you should enforce them upon receipt of
4366 /// [`PaymentReceived`].
4368 /// Pending inbound payments are stored in memory and in serialized versions of this
4369 /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
4370 /// space is limited, you may wish to rate-limit inbound payment creation.
4372 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
4374 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
4375 /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
4377 /// [`create_inbound_payment`]: Self::create_inbound_payment
4378 /// [`PaymentReceived`]: events::Event::PaymentReceived
4379 /// [`PaymentPurpose::InvoicePayment::user_payment_id`]: events::PaymentPurpose::InvoicePayment::user_payment_id
4380 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
4381 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
4384 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
4385 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
4386 let events = core::cell::RefCell::new(Vec::new());
4387 let event_handler = |event: &events::Event| events.borrow_mut().push(event.clone());
4388 self.process_pending_events(&event_handler);
4393 pub fn has_pending_payments(&self) -> bool {
4394 !self.pending_outbound_payments.lock().unwrap().is_empty()
4398 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
4399 where M::Target: chain::Watch<Signer>,
4400 T::Target: BroadcasterInterface,
4401 K::Target: KeysInterface<Signer = Signer>,
4402 F::Target: FeeEstimator,
4405 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
4406 let events = RefCell::new(Vec::new());
4407 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4408 let mut result = NotifyOption::SkipPersist;
4410 // TODO: This behavior should be documented. It's unintuitive that we query
4411 // ChannelMonitors when clearing other events.
4412 if self.process_pending_monitor_events() {
4413 result = NotifyOption::DoPersist;
4416 if self.check_free_holding_cells() {
4417 result = NotifyOption::DoPersist;
4419 if self.maybe_generate_initial_closing_signed() {
4420 result = NotifyOption::DoPersist;
4423 let mut pending_events = Vec::new();
4424 let mut channel_state = self.channel_state.lock().unwrap();
4425 mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
4427 if !pending_events.is_empty() {
4428 events.replace(pending_events);
4437 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
4439 M::Target: chain::Watch<Signer>,
4440 T::Target: BroadcasterInterface,
4441 K::Target: KeysInterface<Signer = Signer>,
4442 F::Target: FeeEstimator,
4445 /// Processes events that must be periodically handled.
4447 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
4448 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
4450 /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
4451 /// when processed, an [`EventHandler`] must be able to handle previously seen events when
4452 /// restarting from an old state.
4453 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
4454 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4455 let mut result = NotifyOption::SkipPersist;
4457 // TODO: This behavior should be documented. It's unintuitive that we query
4458 // ChannelMonitors when clearing other events.
4459 if self.process_pending_monitor_events() {
4460 result = NotifyOption::DoPersist;
4463 let mut pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
4464 if !pending_events.is_empty() {
4465 result = NotifyOption::DoPersist;
4468 for event in pending_events.drain(..) {
4469 handler.handle_event(&event);
4477 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
4479 M::Target: chain::Watch<Signer>,
4480 T::Target: BroadcasterInterface,
4481 K::Target: KeysInterface<Signer = Signer>,
4482 F::Target: FeeEstimator,
4485 fn block_connected(&self, block: &Block, height: u32) {
4487 let best_block = self.best_block.read().unwrap();
4488 assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
4489 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
4490 assert_eq!(best_block.height(), height - 1,
4491 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
4494 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
4495 self.transactions_confirmed(&block.header, &txdata, height);
4496 self.best_block_updated(&block.header, height);
4499 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
4500 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4501 let new_height = height - 1;
4503 let mut best_block = self.best_block.write().unwrap();
4504 assert_eq!(best_block.block_hash(), header.block_hash(),
4505 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
4506 assert_eq!(best_block.height(), height,
4507 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
4508 *best_block = BestBlock::new(header.prev_blockhash, new_height)
4511 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, &self.logger));
4515 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
4517 M::Target: chain::Watch<Signer>,
4518 T::Target: BroadcasterInterface,
4519 K::Target: KeysInterface<Signer = Signer>,
4520 F::Target: FeeEstimator,
4523 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
4524 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4525 // during initialization prior to the chain_monitor being fully configured in some cases.
4526 // See the docs for `ChannelManagerReadArgs` for more.
4528 let block_hash = header.block_hash();
4529 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
4531 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4532 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
4535 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
4536 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4537 // during initialization prior to the chain_monitor being fully configured in some cases.
4538 // See the docs for `ChannelManagerReadArgs` for more.
4540 let block_hash = header.block_hash();
4541 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
4543 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4545 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
4547 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, &self.logger));
4549 macro_rules! max_time {
4550 ($timestamp: expr) => {
4552 // Update $timestamp to be the max of its current value and the block
4553 // timestamp. This should keep us close to the current time without relying on
4554 // having an explicit local time source.
4555 // Just in case we end up in a race, we loop until we either successfully
4556 // update $timestamp or decide we don't need to.
4557 let old_serial = $timestamp.load(Ordering::Acquire);
4558 if old_serial >= header.time as usize { break; }
4559 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
4565 max_time!(self.last_node_announcement_serial);
4566 max_time!(self.highest_seen_timestamp);
4567 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4568 payment_secrets.retain(|_, inbound_payment| {
4569 inbound_payment.expiry_time > header.time as u64
4572 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
4573 outbounds.retain(|_, payment| {
4574 const PAYMENT_EXPIRY_BLOCKS: u32 = 3;
4575 if payment.remaining_parts() != 0 { return true }
4576 if let PendingOutboundPayment::Retryable { starting_block_height, .. } = payment {
4577 return *starting_block_height + PAYMENT_EXPIRY_BLOCKS > height
4583 fn get_relevant_txids(&self) -> Vec<Txid> {
4584 let channel_state = self.channel_state.lock().unwrap();
4585 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
4586 for chan in channel_state.by_id.values() {
4587 if let Some(funding_txo) = chan.get_funding_txo() {
4588 res.push(funding_txo.txid);
4594 fn transaction_unconfirmed(&self, txid: &Txid) {
4595 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4596 self.do_chain_event(None, |channel| {
4597 if let Some(funding_txo) = channel.get_funding_txo() {
4598 if funding_txo.txid == *txid {
4599 channel.funding_transaction_unconfirmed(&self.logger).map(|_| (None, Vec::new()))
4600 } else { Ok((None, Vec::new())) }
4601 } else { Ok((None, Vec::new())) }
4606 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
4608 M::Target: chain::Watch<Signer>,
4609 T::Target: BroadcasterInterface,
4610 K::Target: KeysInterface<Signer = Signer>,
4611 F::Target: FeeEstimator,
4614 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
4615 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
4617 fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
4618 (&self, height_opt: Option<u32>, f: FN) {
4619 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4620 // during initialization prior to the chain_monitor being fully configured in some cases.
4621 // See the docs for `ChannelManagerReadArgs` for more.
4623 let mut failed_channels = Vec::new();
4624 let mut timed_out_htlcs = Vec::new();
4626 let mut channel_lock = self.channel_state.lock().unwrap();
4627 let channel_state = &mut *channel_lock;
4628 let short_to_id = &mut channel_state.short_to_id;
4629 let pending_msg_events = &mut channel_state.pending_msg_events;
4630 channel_state.by_id.retain(|_, channel| {
4631 let res = f(channel);
4632 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
4633 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
4634 let chan_update = self.get_channel_update_for_unicast(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
4635 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
4636 failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
4640 if let Some(funding_locked) = chan_res {
4641 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
4642 node_id: channel.get_counterparty_node_id(),
4643 msg: funding_locked,
4645 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
4646 log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
4647 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4648 node_id: channel.get_counterparty_node_id(),
4649 msg: announcement_sigs,
4651 } else if channel.is_usable() {
4652 log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures but with private channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
4653 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4654 node_id: channel.get_counterparty_node_id(),
4655 msg: self.get_channel_update_for_unicast(channel).unwrap(),
4658 log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
4660 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
4662 } else if let Err(e) = res {
4663 if let Some(short_id) = channel.get_short_channel_id() {
4664 short_to_id.remove(&short_id);
4666 // It looks like our counterparty went on-chain or funding transaction was
4667 // reorged out of the main chain. Close the channel.
4668 failed_channels.push(channel.force_shutdown(true));
4669 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
4670 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4674 self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id: channel.channel_id(), reason: ClosureReason::CommitmentTxConfirmed });
4675 pending_msg_events.push(events::MessageSendEvent::HandleError {
4676 node_id: channel.get_counterparty_node_id(),
4677 action: msgs::ErrorAction::SendErrorMessage { msg: e },
4684 if let Some(height) = height_opt {
4685 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
4686 htlcs.retain(|htlc| {
4687 // If height is approaching the number of blocks we think it takes us to get
4688 // our commitment transaction confirmed before the HTLC expires, plus the
4689 // number of blocks we generally consider it to take to do a commitment update,
4690 // just give up on it and fail the HTLC.
4691 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
4692 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
4693 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
4694 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
4695 failure_code: 0x4000 | 15,
4696 data: htlc_msat_height_data
4701 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
4706 self.handle_init_event_channel_failures(failed_channels);
4708 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
4709 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
4713 /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
4714 /// indicating whether persistence is necessary. Only one listener on
4715 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4717 /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
4718 #[cfg(any(test, feature = "allow_wallclock_use"))]
4719 pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
4720 self.persistence_notifier.wait_timeout(max_wait)
4723 /// Blocks until ChannelManager needs to be persisted. Only one listener on
4724 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4726 pub fn await_persistable_update(&self) {
4727 self.persistence_notifier.wait()
4730 #[cfg(any(test, feature = "_test_utils"))]
4731 pub fn get_persistence_condvar_value(&self) -> bool {
4732 let mutcond = &self.persistence_notifier.persistence_lock;
4733 let &(ref mtx, _) = mutcond;
4734 let guard = mtx.lock().unwrap();
4738 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
4739 /// [`chain::Confirm`] interfaces.
4740 pub fn current_best_block(&self) -> BestBlock {
4741 self.best_block.read().unwrap().clone()
4745 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
4746 ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
4747 where M::Target: chain::Watch<Signer>,
4748 T::Target: BroadcasterInterface,
4749 K::Target: KeysInterface<Signer = Signer>,
4750 F::Target: FeeEstimator,
4753 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
4754 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4755 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4758 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
4759 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4760 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4763 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
4764 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4765 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
4768 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
4769 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4770 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
4773 fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
4774 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4775 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
4778 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
4779 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4780 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
4783 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
4784 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4785 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
4788 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
4789 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4790 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
4793 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
4794 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4795 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
4798 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
4799 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4800 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
4803 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
4804 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4805 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
4808 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
4809 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4810 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
4813 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
4814 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4815 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
4818 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
4819 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4820 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
4823 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
4824 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4825 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
4828 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
4829 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4830 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
4833 NotifyOption::SkipPersist
4838 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
4839 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4840 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
4843 fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
4844 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4845 let mut failed_channels = Vec::new();
4846 let mut no_channels_remain = true;
4848 let mut channel_state_lock = self.channel_state.lock().unwrap();
4849 let channel_state = &mut *channel_state_lock;
4850 let short_to_id = &mut channel_state.short_to_id;
4851 let pending_msg_events = &mut channel_state.pending_msg_events;
4852 if no_connection_possible {
4853 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
4854 channel_state.by_id.retain(|_, chan| {
4855 if chan.get_counterparty_node_id() == *counterparty_node_id {
4856 if let Some(short_id) = chan.get_short_channel_id() {
4857 short_to_id.remove(&short_id);
4859 failed_channels.push(chan.force_shutdown(true));
4860 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4861 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4865 self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id: chan.channel_id(), reason: ClosureReason::DisconnectedPeer });
4872 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
4873 channel_state.by_id.retain(|_, chan| {
4874 if chan.get_counterparty_node_id() == *counterparty_node_id {
4875 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
4876 if chan.is_shutdown() {
4877 if let Some(short_id) = chan.get_short_channel_id() {
4878 short_to_id.remove(&short_id);
4880 self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id: chan.channel_id(), reason: ClosureReason::DisconnectedPeer });
4883 no_channels_remain = false;
4889 pending_msg_events.retain(|msg| {
4891 &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
4892 &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
4893 &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
4894 &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4895 &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
4896 &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
4897 &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
4898 &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
4899 &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4900 &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
4901 &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
4902 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
4903 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
4904 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
4905 &events::MessageSendEvent::SendChannelUpdate { ref node_id, .. } => node_id != counterparty_node_id,
4906 &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
4907 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
4908 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
4909 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
4913 if no_channels_remain {
4914 self.per_peer_state.write().unwrap().remove(counterparty_node_id);
4917 for failure in failed_channels.drain(..) {
4918 self.finish_force_close_channel(failure);
4922 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
4923 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
4925 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4928 let mut peer_state_lock = self.per_peer_state.write().unwrap();
4929 match peer_state_lock.entry(counterparty_node_id.clone()) {
4930 hash_map::Entry::Vacant(e) => {
4931 e.insert(Mutex::new(PeerState {
4932 latest_features: init_msg.features.clone(),
4935 hash_map::Entry::Occupied(e) => {
4936 e.get().lock().unwrap().latest_features = init_msg.features.clone();
4941 let mut channel_state_lock = self.channel_state.lock().unwrap();
4942 let channel_state = &mut *channel_state_lock;
4943 let pending_msg_events = &mut channel_state.pending_msg_events;
4944 channel_state.by_id.retain(|_, chan| {
4945 if chan.get_counterparty_node_id() == *counterparty_node_id {
4946 if !chan.have_received_message() {
4947 // If we created this (outbound) channel while we were disconnected from the
4948 // peer we probably failed to send the open_channel message, which is now
4949 // lost. We can't have had anything pending related to this channel, so we just
4953 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
4954 node_id: chan.get_counterparty_node_id(),
4955 msg: chan.get_channel_reestablish(&self.logger),
4961 //TODO: Also re-broadcast announcement_signatures
4964 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
4965 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4967 if msg.channel_id == [0; 32] {
4968 for chan in self.list_channels() {
4969 if chan.counterparty.node_id == *counterparty_node_id {
4970 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4971 let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id), Some(&msg.data));
4975 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4976 let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id), Some(&msg.data));
4981 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4982 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4983 struct PersistenceNotifier {
4984 /// Users won't access the persistence_lock directly, but rather wait on its bool using
4985 /// `wait_timeout` and `wait`.
4986 persistence_lock: (Mutex<bool>, Condvar),
4989 impl PersistenceNotifier {
4992 persistence_lock: (Mutex::new(false), Condvar::new()),
4998 let &(ref mtx, ref cvar) = &self.persistence_lock;
4999 let mut guard = mtx.lock().unwrap();
5004 guard = cvar.wait(guard).unwrap();
5005 let result = *guard;
5013 #[cfg(any(test, feature = "allow_wallclock_use"))]
5014 fn wait_timeout(&self, max_wait: Duration) -> bool {
5015 let current_time = Instant::now();
5017 let &(ref mtx, ref cvar) = &self.persistence_lock;
5018 let mut guard = mtx.lock().unwrap();
5023 guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
5024 // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
5025 // desired wait time has actually passed, and if not then restart the loop with a reduced wait
5026 // time. Note that this logic can be highly simplified through the use of
5027 // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
5029 let elapsed = current_time.elapsed();
5030 let result = *guard;
5031 if result || elapsed >= max_wait {
5035 match max_wait.checked_sub(elapsed) {
5036 None => return result,
5042 // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
5044 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
5045 let mut persistence_lock = persist_mtx.lock().unwrap();
5046 *persistence_lock = true;
5047 mem::drop(persistence_lock);
5052 const SERIALIZATION_VERSION: u8 = 1;
5053 const MIN_SERIALIZATION_VERSION: u8 = 1;
5055 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
5057 (0, onion_packet, required),
5058 (2, short_channel_id, required),
5061 (0, payment_data, required),
5062 (2, incoming_cltv_expiry, required),
5064 (2, ReceiveKeysend) => {
5065 (0, payment_preimage, required),
5066 (2, incoming_cltv_expiry, required),
5070 impl_writeable_tlv_based!(PendingHTLCInfo, {
5071 (0, routing, required),
5072 (2, incoming_shared_secret, required),
5073 (4, payment_hash, required),
5074 (6, amt_to_forward, required),
5075 (8, outgoing_cltv_value, required)
5079 impl Writeable for HTLCFailureMsg {
5080 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5082 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
5084 channel_id.write(writer)?;
5085 htlc_id.write(writer)?;
5086 reason.write(writer)?;
5088 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
5089 channel_id, htlc_id, sha256_of_onion, failure_code
5092 channel_id.write(writer)?;
5093 htlc_id.write(writer)?;
5094 sha256_of_onion.write(writer)?;
5095 failure_code.write(writer)?;
5102 impl Readable for HTLCFailureMsg {
5103 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
5104 let id: u8 = Readable::read(reader)?;
5107 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
5108 channel_id: Readable::read(reader)?,
5109 htlc_id: Readable::read(reader)?,
5110 reason: Readable::read(reader)?,
5114 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
5115 channel_id: Readable::read(reader)?,
5116 htlc_id: Readable::read(reader)?,
5117 sha256_of_onion: Readable::read(reader)?,
5118 failure_code: Readable::read(reader)?,
5121 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
5122 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
5123 // messages contained in the variants.
5124 // In version 0.0.101, support for reading the variants with these types was added, and
5125 // we should migrate to writing these variants when UpdateFailHTLC or
5126 // UpdateFailMalformedHTLC get TLV fields.
5128 let length: BigSize = Readable::read(reader)?;
5129 let mut s = FixedLengthReader::new(reader, length.0);
5130 let res = Readable::read(&mut s)?;
5131 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
5132 Ok(HTLCFailureMsg::Relay(res))
5135 let length: BigSize = Readable::read(reader)?;
5136 let mut s = FixedLengthReader::new(reader, length.0);
5137 let res = Readable::read(&mut s)?;
5138 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
5139 Ok(HTLCFailureMsg::Malformed(res))
5141 _ => Err(DecodeError::UnknownRequiredFeature),
5146 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
5151 impl_writeable_tlv_based!(HTLCPreviousHopData, {
5152 (0, short_channel_id, required),
5153 (2, outpoint, required),
5154 (4, htlc_id, required),
5155 (6, incoming_packet_shared_secret, required)
5158 impl Writeable for ClaimableHTLC {
5159 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5160 let payment_data = match &self.onion_payload {
5161 OnionPayload::Invoice(data) => Some(data.clone()),
5164 let keysend_preimage = match self.onion_payload {
5165 OnionPayload::Invoice(_) => None,
5166 OnionPayload::Spontaneous(preimage) => Some(preimage.clone()),
5171 (0, self.prev_hop, required), (2, self.value, required),
5172 (4, payment_data, option), (6, self.cltv_expiry, required),
5173 (8, keysend_preimage, option),
5179 impl Readable for ClaimableHTLC {
5180 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
5181 let mut prev_hop = ::util::ser::OptionDeserWrapper(None);
5183 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
5184 let mut cltv_expiry = 0;
5185 let mut keysend_preimage: Option<PaymentPreimage> = None;
5189 (0, prev_hop, required), (2, value, required),
5190 (4, payment_data, option), (6, cltv_expiry, required),
5191 (8, keysend_preimage, option)
5193 let onion_payload = match keysend_preimage {
5195 if payment_data.is_some() {
5196 return Err(DecodeError::InvalidValue)
5198 OnionPayload::Spontaneous(p)
5201 if payment_data.is_none() {
5202 return Err(DecodeError::InvalidValue)
5204 OnionPayload::Invoice(payment_data.unwrap())
5208 prev_hop: prev_hop.0.unwrap(),
5216 impl Readable for HTLCSource {
5217 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
5218 let id: u8 = Readable::read(reader)?;
5221 let mut session_priv: ::util::ser::OptionDeserWrapper<SecretKey> = ::util::ser::OptionDeserWrapper(None);
5222 let mut first_hop_htlc_msat: u64 = 0;
5223 let mut path = Some(Vec::new());
5224 let mut payment_id = None;
5225 read_tlv_fields!(reader, {
5226 (0, session_priv, required),
5227 (1, payment_id, option),
5228 (2, first_hop_htlc_msat, required),
5229 (4, path, vec_type),
5231 if payment_id.is_none() {
5232 // For backwards compat, if there was no payment_id written, use the session_priv bytes
5234 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
5236 Ok(HTLCSource::OutboundRoute {
5237 session_priv: session_priv.0.unwrap(),
5238 first_hop_htlc_msat: first_hop_htlc_msat,
5239 path: path.unwrap(),
5240 payment_id: payment_id.unwrap(),
5243 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
5244 _ => Err(DecodeError::UnknownRequiredFeature),
5249 impl Writeable for HTLCSource {
5250 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::io::Error> {
5252 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
5254 let payment_id_opt = Some(payment_id);
5255 write_tlv_fields!(writer, {
5256 (0, session_priv, required),
5257 (1, payment_id_opt, option),
5258 (2, first_hop_htlc_msat, required),
5259 (4, path, vec_type),
5262 HTLCSource::PreviousHopData(ref field) => {
5264 field.write(writer)?;
5271 impl_writeable_tlv_based_enum!(HTLCFailReason,
5272 (0, LightningError) => {
5276 (0, failure_code, required),
5277 (2, data, vec_type),
5281 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
5283 (0, forward_info, required),
5284 (2, prev_short_channel_id, required),
5285 (4, prev_htlc_id, required),
5286 (6, prev_funding_outpoint, required),
5289 (0, htlc_id, required),
5290 (2, err_packet, required),
5294 impl_writeable_tlv_based!(PendingInboundPayment, {
5295 (0, payment_secret, required),
5296 (2, expiry_time, required),
5297 (4, user_payment_id, required),
5298 (6, payment_preimage, required),
5299 (8, min_value_msat, required),
5302 impl_writeable_tlv_based_enum!(PendingOutboundPayment,
5304 (0, session_privs, required),
5307 (0, session_privs, required),
5308 (2, payment_hash, required),
5309 (4, payment_secret, option),
5310 (6, total_msat, required),
5311 (8, pending_amt_msat, required),
5312 (10, starting_block_height, required),
5316 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
5317 where M::Target: chain::Watch<Signer>,
5318 T::Target: BroadcasterInterface,
5319 K::Target: KeysInterface<Signer = Signer>,
5320 F::Target: FeeEstimator,
5323 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5324 let _consistency_lock = self.total_consistency_lock.write().unwrap();
5326 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
5328 self.genesis_hash.write(writer)?;
5330 let best_block = self.best_block.read().unwrap();
5331 best_block.height().write(writer)?;
5332 best_block.block_hash().write(writer)?;
5335 let channel_state = self.channel_state.lock().unwrap();
5336 let mut unfunded_channels = 0;
5337 for (_, channel) in channel_state.by_id.iter() {
5338 if !channel.is_funding_initiated() {
5339 unfunded_channels += 1;
5342 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
5343 for (_, channel) in channel_state.by_id.iter() {
5344 if channel.is_funding_initiated() {
5345 channel.write(writer)?;
5349 (channel_state.forward_htlcs.len() as u64).write(writer)?;
5350 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
5351 short_channel_id.write(writer)?;
5352 (pending_forwards.len() as u64).write(writer)?;
5353 for forward in pending_forwards {
5354 forward.write(writer)?;
5358 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
5359 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
5360 payment_hash.write(writer)?;
5361 (previous_hops.len() as u64).write(writer)?;
5362 for htlc in previous_hops.iter() {
5363 htlc.write(writer)?;
5367 let per_peer_state = self.per_peer_state.write().unwrap();
5368 (per_peer_state.len() as u64).write(writer)?;
5369 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
5370 peer_pubkey.write(writer)?;
5371 let peer_state = peer_state_mutex.lock().unwrap();
5372 peer_state.latest_features.write(writer)?;
5375 let events = self.pending_events.lock().unwrap();
5376 (events.len() as u64).write(writer)?;
5377 for event in events.iter() {
5378 event.write(writer)?;
5381 let background_events = self.pending_background_events.lock().unwrap();
5382 (background_events.len() as u64).write(writer)?;
5383 for event in background_events.iter() {
5385 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
5387 funding_txo.write(writer)?;
5388 monitor_update.write(writer)?;
5393 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
5394 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
5396 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
5397 (pending_inbound_payments.len() as u64).write(writer)?;
5398 for (hash, pending_payment) in pending_inbound_payments.iter() {
5399 hash.write(writer)?;
5400 pending_payment.write(writer)?;
5403 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
5404 // For backwards compat, write the session privs and their total length.
5405 let mut num_pending_outbounds_compat: u64 = 0;
5406 for (_, outbound) in pending_outbound_payments.iter() {
5407 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
5409 num_pending_outbounds_compat.write(writer)?;
5410 for (_, outbound) in pending_outbound_payments.iter() {
5412 PendingOutboundPayment::Legacy { session_privs } |
5413 PendingOutboundPayment::Retryable { session_privs, .. } => {
5414 for session_priv in session_privs.iter() {
5415 session_priv.write(writer)?;
5421 // Encode without retry info for 0.0.101 compatibility.
5422 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
5423 for (id, outbound) in pending_outbound_payments.iter() {
5425 PendingOutboundPayment::Legacy { session_privs } |
5426 PendingOutboundPayment::Retryable { session_privs, .. } => {
5427 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
5431 write_tlv_fields!(writer, {
5432 (1, pending_outbound_payments_no_retry, required),
5433 (3, pending_outbound_payments, required),
5440 /// Arguments for the creation of a ChannelManager that are not deserialized.
5442 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
5444 /// 1) Deserialize all stored ChannelMonitors.
5445 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
5446 /// <(BlockHash, ChannelManager)>::read(reader, args)
5447 /// This may result in closing some Channels if the ChannelMonitor is newer than the stored
5448 /// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
5449 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
5450 /// way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
5451 /// ChannelMonitor::get_funding_txo().
5452 /// 4) Reconnect blocks on your ChannelMonitors.
5453 /// 5) Disconnect/connect blocks on the ChannelManager.
5454 /// 6) Move the ChannelMonitors into your local chain::Watch.
5456 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
5457 /// call any other methods on the newly-deserialized ChannelManager.
5459 /// Note that because some channels may be closed during deserialization, it is critical that you
5460 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
5461 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
5462 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
5463 /// not force-close the same channels but consider them live), you may end up revoking a state for
5464 /// which you've already broadcasted the transaction.
5465 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5466 where M::Target: chain::Watch<Signer>,
5467 T::Target: BroadcasterInterface,
5468 K::Target: KeysInterface<Signer = Signer>,
5469 F::Target: FeeEstimator,
5472 /// The keys provider which will give us relevant keys. Some keys will be loaded during
5473 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
5475 pub keys_manager: K,
5477 /// The fee_estimator for use in the ChannelManager in the future.
5479 /// No calls to the FeeEstimator will be made during deserialization.
5480 pub fee_estimator: F,
5481 /// The chain::Watch for use in the ChannelManager in the future.
5483 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
5484 /// you have deserialized ChannelMonitors separately and will add them to your
5485 /// chain::Watch after deserializing this ChannelManager.
5486 pub chain_monitor: M,
5488 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
5489 /// used to broadcast the latest local commitment transactions of channels which must be
5490 /// force-closed during deserialization.
5491 pub tx_broadcaster: T,
5492 /// The Logger for use in the ChannelManager and which may be used to log information during
5493 /// deserialization.
5495 /// Default settings used for new channels. Any existing channels will continue to use the
5496 /// runtime settings which were stored when the ChannelManager was serialized.
5497 pub default_config: UserConfig,
5499 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
5500 /// value.get_funding_txo() should be the key).
5502 /// If a monitor is inconsistent with the channel state during deserialization the channel will
5503 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
5504 /// is true for missing channels as well. If there is a monitor missing for which we find
5505 /// channel data Err(DecodeError::InvalidValue) will be returned.
5507 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
5510 /// (C-not exported) because we have no HashMap bindings
5511 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
5514 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5515 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
5516 where M::Target: chain::Watch<Signer>,
5517 T::Target: BroadcasterInterface,
5518 K::Target: KeysInterface<Signer = Signer>,
5519 F::Target: FeeEstimator,
5522 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
5523 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
5524 /// populate a HashMap directly from C.
5525 pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
5526 mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
5528 keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
5529 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
5534 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
5535 // SipmleArcChannelManager type:
5536 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5537 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
5538 where M::Target: chain::Watch<Signer>,
5539 T::Target: BroadcasterInterface,
5540 K::Target: KeysInterface<Signer = Signer>,
5541 F::Target: FeeEstimator,
5544 fn read<R: io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
5545 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
5546 Ok((blockhash, Arc::new(chan_manager)))
5550 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5551 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
5552 where M::Target: chain::Watch<Signer>,
5553 T::Target: BroadcasterInterface,
5554 K::Target: KeysInterface<Signer = Signer>,
5555 F::Target: FeeEstimator,
5558 fn read<R: io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
5559 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
5561 let genesis_hash: BlockHash = Readable::read(reader)?;
5562 let best_block_height: u32 = Readable::read(reader)?;
5563 let best_block_hash: BlockHash = Readable::read(reader)?;
5565 let mut failed_htlcs = Vec::new();
5567 let channel_count: u64 = Readable::read(reader)?;
5568 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
5569 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
5570 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
5571 let mut channel_closures = Vec::new();
5572 for _ in 0..channel_count {
5573 let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
5574 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
5575 funding_txo_set.insert(funding_txo.clone());
5576 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
5577 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
5578 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
5579 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
5580 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
5581 // If the channel is ahead of the monitor, return InvalidValue:
5582 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
5583 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
5584 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
5585 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
5586 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
5587 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
5588 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
5589 return Err(DecodeError::InvalidValue);
5590 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
5591 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
5592 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
5593 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
5594 // But if the channel is behind of the monitor, close the channel:
5595 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
5596 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
5597 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
5598 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
5599 let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
5600 failed_htlcs.append(&mut new_failed_htlcs);
5601 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
5602 channel_closures.push(events::Event::ChannelClosed {
5603 channel_id: channel.channel_id(),
5604 reason: ClosureReason::OutdatedChannelManager
5607 if let Some(short_channel_id) = channel.get_short_channel_id() {
5608 short_to_id.insert(short_channel_id, channel.channel_id());
5610 by_id.insert(channel.channel_id(), channel);
5613 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
5614 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
5615 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
5616 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
5617 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
5618 return Err(DecodeError::InvalidValue);
5622 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
5623 if !funding_txo_set.contains(funding_txo) {
5624 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
5628 const MAX_ALLOC_SIZE: usize = 1024 * 64;
5629 let forward_htlcs_count: u64 = Readable::read(reader)?;
5630 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
5631 for _ in 0..forward_htlcs_count {
5632 let short_channel_id = Readable::read(reader)?;
5633 let pending_forwards_count: u64 = Readable::read(reader)?;
5634 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
5635 for _ in 0..pending_forwards_count {
5636 pending_forwards.push(Readable::read(reader)?);
5638 forward_htlcs.insert(short_channel_id, pending_forwards);
5641 let claimable_htlcs_count: u64 = Readable::read(reader)?;
5642 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
5643 for _ in 0..claimable_htlcs_count {
5644 let payment_hash = Readable::read(reader)?;
5645 let previous_hops_len: u64 = Readable::read(reader)?;
5646 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
5647 for _ in 0..previous_hops_len {
5648 previous_hops.push(Readable::read(reader)?);
5650 claimable_htlcs.insert(payment_hash, previous_hops);
5653 let peer_count: u64 = Readable::read(reader)?;
5654 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
5655 for _ in 0..peer_count {
5656 let peer_pubkey = Readable::read(reader)?;
5657 let peer_state = PeerState {
5658 latest_features: Readable::read(reader)?,
5660 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
5663 let event_count: u64 = Readable::read(reader)?;
5664 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
5665 for _ in 0..event_count {
5666 match MaybeReadable::read(reader)? {
5667 Some(event) => pending_events_read.push(event),
5671 if forward_htlcs_count > 0 {
5672 // If we have pending HTLCs to forward, assume we either dropped a
5673 // `PendingHTLCsForwardable` or the user received it but never processed it as they
5674 // shut down before the timer hit. Either way, set the time_forwardable to a small
5675 // constant as enough time has likely passed that we should simply handle the forwards
5676 // now, or at least after the user gets a chance to reconnect to our peers.
5677 pending_events_read.push(events::Event::PendingHTLCsForwardable {
5678 time_forwardable: Duration::from_secs(2),
5682 let background_event_count: u64 = Readable::read(reader)?;
5683 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
5684 for _ in 0..background_event_count {
5685 match <u8 as Readable>::read(reader)? {
5686 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
5687 _ => return Err(DecodeError::InvalidValue),
5691 let last_node_announcement_serial: u32 = Readable::read(reader)?;
5692 let highest_seen_timestamp: u32 = Readable::read(reader)?;
5694 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
5695 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
5696 for _ in 0..pending_inbound_payment_count {
5697 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
5698 return Err(DecodeError::InvalidValue);
5702 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
5703 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
5704 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
5705 for _ in 0..pending_outbound_payments_count_compat {
5706 let session_priv = Readable::read(reader)?;
5707 let payment = PendingOutboundPayment::Legacy {
5708 session_privs: [session_priv].iter().cloned().collect()
5710 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
5711 return Err(DecodeError::InvalidValue)
5715 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
5716 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
5717 let mut pending_outbound_payments = None;
5718 read_tlv_fields!(reader, {
5719 (1, pending_outbound_payments_no_retry, option),
5720 (3, pending_outbound_payments, option),
5722 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
5723 pending_outbound_payments = Some(pending_outbound_payments_compat);
5724 } else if pending_outbound_payments.is_none() {
5725 let mut outbounds = HashMap::new();
5726 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
5727 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
5729 pending_outbound_payments = Some(outbounds);
5732 let mut secp_ctx = Secp256k1::new();
5733 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
5735 if !channel_closures.is_empty() {
5736 pending_events_read.append(&mut channel_closures);
5739 let channel_manager = ChannelManager {
5741 fee_estimator: args.fee_estimator,
5742 chain_monitor: args.chain_monitor,
5743 tx_broadcaster: args.tx_broadcaster,
5745 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
5747 channel_state: Mutex::new(ChannelHolder {
5752 pending_msg_events: Vec::new(),
5754 pending_inbound_payments: Mutex::new(pending_inbound_payments),
5755 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
5757 our_network_key: args.keys_manager.get_node_secret(),
5758 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
5761 last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
5762 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
5764 per_peer_state: RwLock::new(per_peer_state),
5766 pending_events: Mutex::new(pending_events_read),
5767 pending_background_events: Mutex::new(pending_background_events_read),
5768 total_consistency_lock: RwLock::new(()),
5769 persistence_notifier: PersistenceNotifier::new(),
5771 keys_manager: args.keys_manager,
5772 logger: args.logger,
5773 default_configuration: args.default_config,
5776 for htlc_source in failed_htlcs.drain(..) {
5777 channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
5780 //TODO: Broadcast channel update for closed channels, but only after we've made a
5781 //connection or two.
5783 Ok((best_block_hash.clone(), channel_manager))
5789 use bitcoin::hashes::Hash;
5790 use bitcoin::hashes::sha256::Hash as Sha256;
5791 use core::time::Duration;
5792 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
5793 use ln::channelmanager::{PaymentId, PaymentSendFailure};
5794 use ln::features::{InitFeatures, InvoiceFeatures};
5795 use ln::functional_test_utils::*;
5797 use ln::msgs::ChannelMessageHandler;
5798 use routing::router::{get_keysend_route, get_route};
5799 use util::errors::APIError;
5800 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
5801 use util::test_utils;
5803 #[cfg(feature = "std")]
5805 fn test_wait_timeout() {
5806 use ln::channelmanager::PersistenceNotifier;
5808 use core::sync::atomic::{AtomicBool, Ordering};
5811 let persistence_notifier = Arc::new(PersistenceNotifier::new());
5812 let thread_notifier = Arc::clone(&persistence_notifier);
5814 let exit_thread = Arc::new(AtomicBool::new(false));
5815 let exit_thread_clone = exit_thread.clone();
5816 thread::spawn(move || {
5818 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
5819 let mut persistence_lock = persist_mtx.lock().unwrap();
5820 *persistence_lock = true;
5823 if exit_thread_clone.load(Ordering::SeqCst) {
5829 // Check that we can block indefinitely until updates are available.
5830 let _ = persistence_notifier.wait();
5832 // Check that the PersistenceNotifier will return after the given duration if updates are
5835 if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
5840 exit_thread.store(true, Ordering::SeqCst);
5842 // Check that the PersistenceNotifier will return after the given duration even if no updates
5845 if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
5852 fn test_notify_limits() {
5853 // Check that a few cases which don't require the persistence of a new ChannelManager,
5854 // indeed, do not cause the persistence of a new ChannelManager.
5855 let chanmon_cfgs = create_chanmon_cfgs(3);
5856 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
5857 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
5858 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
5860 // All nodes start with a persistable update pending as `create_network` connects each node
5861 // with all other nodes to make most tests simpler.
5862 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5863 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5864 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
5866 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
5868 // We check that the channel info nodes have doesn't change too early, even though we try
5869 // to connect messages with new values
5870 chan.0.contents.fee_base_msat *= 2;
5871 chan.1.contents.fee_base_msat *= 2;
5872 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
5873 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
5875 // The first two nodes (which opened a channel) should now require fresh persistence
5876 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5877 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5878 // ... but the last node should not.
5879 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
5880 // After persisting the first two nodes they should no longer need fresh persistence.
5881 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5882 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5884 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
5885 // about the channel.
5886 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
5887 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
5888 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
5890 // The nodes which are a party to the channel should also ignore messages from unrelated
5892 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
5893 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
5894 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
5895 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
5896 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5897 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5899 // At this point the channel info given by peers should still be the same.
5900 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
5901 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
5903 // An earlier version of handle_channel_update didn't check the directionality of the
5904 // update message and would always update the local fee info, even if our peer was
5905 // (spuriously) forwarding us our own channel_update.
5906 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
5907 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
5908 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
5910 // First deliver each peers' own message, checking that the node doesn't need to be
5911 // persisted and that its channel info remains the same.
5912 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
5913 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
5914 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5915 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5916 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
5917 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
5919 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
5920 // the channel info has updated.
5921 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
5922 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
5923 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5924 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5925 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
5926 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
5930 fn test_keysend_dup_hash_partial_mpp() {
5931 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
5933 let chanmon_cfgs = create_chanmon_cfgs(2);
5934 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
5935 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
5936 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
5937 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
5938 let logger = test_utils::TestLogger::new();
5940 // First, send a partial MPP payment.
5941 let net_graph_msg_handler = &nodes[0].net_graph_msg_handler;
5942 let route = get_route(&nodes[0].node.get_our_node_id(), &net_graph_msg_handler.network_graph, &nodes[1].node.get_our_node_id(), Some(InvoiceFeatures::known()), None, &Vec::new(), 100_000, TEST_FINAL_CLTV, &logger).unwrap();
5943 let (payment_preimage, our_payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[1]);
5944 let payment_id = PaymentId([42; 32]);
5945 // Use the utility function send_payment_along_path to send the payment with MPP data which
5946 // indicates there are more HTLCs coming.
5947 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
5948 nodes[0].node.send_payment_along_path(&route.paths[0], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
5949 check_added_monitors!(nodes[0], 1);
5950 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
5951 assert_eq!(events.len(), 1);
5952 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
5954 // Next, send a keysend payment with the same payment_hash and make sure it fails.
5955 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
5956 check_added_monitors!(nodes[0], 1);
5957 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
5958 assert_eq!(events.len(), 1);
5959 let ev = events.drain(..).next().unwrap();
5960 let payment_event = SendEvent::from_event(ev);
5961 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
5962 check_added_monitors!(nodes[1], 0);
5963 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
5964 expect_pending_htlcs_forwardable!(nodes[1]);
5965 expect_pending_htlcs_forwardable!(nodes[1]);
5966 check_added_monitors!(nodes[1], 1);
5967 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
5968 assert!(updates.update_add_htlcs.is_empty());
5969 assert!(updates.update_fulfill_htlcs.is_empty());
5970 assert_eq!(updates.update_fail_htlcs.len(), 1);
5971 assert!(updates.update_fail_malformed_htlcs.is_empty());
5972 assert!(updates.update_fee.is_none());
5973 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
5974 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
5975 expect_payment_failed!(nodes[0], our_payment_hash, true);
5977 // Send the second half of the original MPP payment.
5978 nodes[0].node.send_payment_along_path(&route.paths[0], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
5979 check_added_monitors!(nodes[0], 1);
5980 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
5981 assert_eq!(events.len(), 1);
5982 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
5984 // Claim the full MPP payment. Note that we can't use a test utility like
5985 // claim_funds_along_route because the ordering of the messages causes the second half of the
5986 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
5987 // lightning messages manually.
5988 assert!(nodes[1].node.claim_funds(payment_preimage));
5989 check_added_monitors!(nodes[1], 2);
5990 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
5991 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
5992 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
5993 check_added_monitors!(nodes[0], 1);
5994 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
5995 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
5996 check_added_monitors!(nodes[1], 1);
5997 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
5998 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
5999 check_added_monitors!(nodes[1], 1);
6000 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
6001 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
6002 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
6003 check_added_monitors!(nodes[0], 1);
6004 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
6005 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
6006 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
6007 check_added_monitors!(nodes[0], 1);
6008 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
6009 check_added_monitors!(nodes[1], 1);
6010 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
6011 check_added_monitors!(nodes[1], 1);
6012 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
6013 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
6014 check_added_monitors!(nodes[0], 1);
6016 // Note that successful MPP payments will generate 1 event upon the first path's success. No
6017 // further events will be generated for subsequence path successes.
6018 let events = nodes[0].node.get_and_clear_pending_events();
6020 Event::PaymentSent { payment_preimage: ref preimage } => {
6021 assert_eq!(payment_preimage, *preimage);
6023 _ => panic!("Unexpected event"),
6028 fn test_keysend_dup_payment_hash() {
6029 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
6030 // outbound regular payment fails as expected.
6031 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
6032 // fails as expected.
6033 let chanmon_cfgs = create_chanmon_cfgs(2);
6034 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6035 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6036 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6037 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
6038 let logger = test_utils::TestLogger::new();
6040 // To start (1), send a regular payment but don't claim it.
6041 let expected_route = [&nodes[1]];
6042 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
6044 // Next, attempt a keysend payment and make sure it fails.
6045 let route = get_route(&nodes[0].node.get_our_node_id(), &nodes[0].net_graph_msg_handler.network_graph, &expected_route.last().unwrap().node.get_our_node_id(), Some(InvoiceFeatures::known()), None, &Vec::new(), 100_000, TEST_FINAL_CLTV, &logger).unwrap();
6046 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
6047 check_added_monitors!(nodes[0], 1);
6048 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6049 assert_eq!(events.len(), 1);
6050 let ev = events.drain(..).next().unwrap();
6051 let payment_event = SendEvent::from_event(ev);
6052 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
6053 check_added_monitors!(nodes[1], 0);
6054 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
6055 expect_pending_htlcs_forwardable!(nodes[1]);
6056 expect_pending_htlcs_forwardable!(nodes[1]);
6057 check_added_monitors!(nodes[1], 1);
6058 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6059 assert!(updates.update_add_htlcs.is_empty());
6060 assert!(updates.update_fulfill_htlcs.is_empty());
6061 assert_eq!(updates.update_fail_htlcs.len(), 1);
6062 assert!(updates.update_fail_malformed_htlcs.is_empty());
6063 assert!(updates.update_fee.is_none());
6064 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
6065 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
6066 expect_payment_failed!(nodes[0], payment_hash, true);
6068 // Finally, claim the original payment.
6069 claim_payment(&nodes[0], &expected_route, payment_preimage);
6071 // To start (2), send a keysend payment but don't claim it.
6072 let payment_preimage = PaymentPreimage([42; 32]);
6073 let route = get_route(&nodes[0].node.get_our_node_id(), &nodes[0].net_graph_msg_handler.network_graph, &expected_route.last().unwrap().node.get_our_node_id(), Some(InvoiceFeatures::known()), None, &Vec::new(), 100_000, TEST_FINAL_CLTV, &logger).unwrap();
6074 let (payment_hash, _) = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
6075 check_added_monitors!(nodes[0], 1);
6076 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6077 assert_eq!(events.len(), 1);
6078 let event = events.pop().unwrap();
6079 let path = vec![&nodes[1]];
6080 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
6082 // Next, attempt a regular payment and make sure it fails.
6083 let payment_secret = PaymentSecret([43; 32]);
6084 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
6085 check_added_monitors!(nodes[0], 1);
6086 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6087 assert_eq!(events.len(), 1);
6088 let ev = events.drain(..).next().unwrap();
6089 let payment_event = SendEvent::from_event(ev);
6090 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
6091 check_added_monitors!(nodes[1], 0);
6092 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
6093 expect_pending_htlcs_forwardable!(nodes[1]);
6094 expect_pending_htlcs_forwardable!(nodes[1]);
6095 check_added_monitors!(nodes[1], 1);
6096 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6097 assert!(updates.update_add_htlcs.is_empty());
6098 assert!(updates.update_fulfill_htlcs.is_empty());
6099 assert_eq!(updates.update_fail_htlcs.len(), 1);
6100 assert!(updates.update_fail_malformed_htlcs.is_empty());
6101 assert!(updates.update_fee.is_none());
6102 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
6103 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
6104 expect_payment_failed!(nodes[0], payment_hash, true);
6106 // Finally, succeed the keysend payment.
6107 claim_payment(&nodes[0], &expected_route, payment_preimage);
6111 fn test_keysend_hash_mismatch() {
6112 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
6113 // preimage doesn't match the msg's payment hash.
6114 let chanmon_cfgs = create_chanmon_cfgs(2);
6115 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6116 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6117 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6119 let payer_pubkey = nodes[0].node.get_our_node_id();
6120 let payee_pubkey = nodes[1].node.get_our_node_id();
6121 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() });
6122 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() });
6124 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
6125 let network_graph = &nodes[0].net_graph_msg_handler.network_graph;
6126 let first_hops = nodes[0].node.list_usable_channels();
6127 let route = get_keysend_route(&payer_pubkey, network_graph, &payee_pubkey,
6128 Some(&first_hops.iter().collect::<Vec<_>>()), &vec![], 10000, 40,
6129 nodes[0].logger).unwrap();
6131 let test_preimage = PaymentPreimage([42; 32]);
6132 let mismatch_payment_hash = PaymentHash([43; 32]);
6133 let _ = nodes[0].node.send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), None, None).unwrap();
6134 check_added_monitors!(nodes[0], 1);
6136 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
6137 assert_eq!(updates.update_add_htlcs.len(), 1);
6138 assert!(updates.update_fulfill_htlcs.is_empty());
6139 assert!(updates.update_fail_htlcs.is_empty());
6140 assert!(updates.update_fail_malformed_htlcs.is_empty());
6141 assert!(updates.update_fee.is_none());
6142 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
6144 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
6148 fn test_keysend_msg_with_secret_err() {
6149 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
6150 let chanmon_cfgs = create_chanmon_cfgs(2);
6151 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6152 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6153 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6155 let payer_pubkey = nodes[0].node.get_our_node_id();
6156 let payee_pubkey = nodes[1].node.get_our_node_id();
6157 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() });
6158 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() });
6160 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
6161 let network_graph = &nodes[0].net_graph_msg_handler.network_graph;
6162 let first_hops = nodes[0].node.list_usable_channels();
6163 let route = get_keysend_route(&payer_pubkey, network_graph, &payee_pubkey,
6164 Some(&first_hops.iter().collect::<Vec<_>>()), &vec![], 10000, 40,
6165 nodes[0].logger).unwrap();
6167 let test_preimage = PaymentPreimage([42; 32]);
6168 let test_secret = PaymentSecret([43; 32]);
6169 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
6170 let _ = nodes[0].node.send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), None, None).unwrap();
6171 check_added_monitors!(nodes[0], 1);
6173 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
6174 assert_eq!(updates.update_add_htlcs.len(), 1);
6175 assert!(updates.update_fulfill_htlcs.is_empty());
6176 assert!(updates.update_fail_htlcs.is_empty());
6177 assert!(updates.update_fail_malformed_htlcs.is_empty());
6178 assert!(updates.update_fee.is_none());
6179 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
6181 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
6185 fn test_multi_hop_missing_secret() {
6186 let chanmon_cfgs = create_chanmon_cfgs(4);
6187 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
6188 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
6189 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
6191 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6192 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6193 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6194 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6195 let logger = test_utils::TestLogger::new();
6197 // Marshall an MPP route.
6198 let (_, payment_hash, _) = get_payment_preimage_hash!(&nodes[3]);
6199 let net_graph_msg_handler = &nodes[0].net_graph_msg_handler;
6200 let mut route = get_route(&nodes[0].node.get_our_node_id(), &net_graph_msg_handler.network_graph, &nodes[3].node.get_our_node_id(), Some(InvoiceFeatures::known()), None, &[], 100000, TEST_FINAL_CLTV, &logger).unwrap();
6201 let path = route.paths[0].clone();
6202 route.paths.push(path);
6203 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
6204 route.paths[0][0].short_channel_id = chan_1_id;
6205 route.paths[0][1].short_channel_id = chan_3_id;
6206 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
6207 route.paths[1][0].short_channel_id = chan_2_id;
6208 route.paths[1][1].short_channel_id = chan_4_id;
6210 match nodes[0].node.send_payment(&route, payment_hash, &None).unwrap_err() {
6211 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
6212 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err)) },
6213 _ => panic!("unexpected error")
6218 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
6221 use chain::chainmonitor::ChainMonitor;
6222 use chain::channelmonitor::Persist;
6223 use chain::keysinterface::{KeysManager, InMemorySigner};
6224 use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
6225 use ln::features::{InitFeatures, InvoiceFeatures};
6226 use ln::functional_test_utils::*;
6227 use ln::msgs::{ChannelMessageHandler, Init};
6228 use routing::network_graph::NetworkGraph;
6229 use routing::router::get_route;
6230 use util::test_utils;
6231 use util::config::UserConfig;
6232 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider, PaymentPurpose};
6234 use bitcoin::hashes::Hash;
6235 use bitcoin::hashes::sha256::Hash as Sha256;
6236 use bitcoin::{Block, BlockHeader, Transaction, TxOut};
6238 use sync::{Arc, Mutex};
6242 struct NodeHolder<'a, P: Persist<InMemorySigner>> {
6243 node: &'a ChannelManager<InMemorySigner,
6244 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
6245 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
6246 &'a test_utils::TestLogger, &'a P>,
6247 &'a test_utils::TestBroadcaster, &'a KeysManager,
6248 &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
6253 fn bench_sends(bench: &mut Bencher) {
6254 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
6257 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
6258 // Do a simple benchmark of sending a payment back and forth between two nodes.
6259 // Note that this is unrealistic as each payment send will require at least two fsync
6261 let network = bitcoin::Network::Testnet;
6262 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
6264 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
6265 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
6267 let mut config: UserConfig = Default::default();
6268 config.own_channel_config.minimum_depth = 1;
6270 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
6271 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
6272 let seed_a = [1u8; 32];
6273 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
6274 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
6276 best_block: BestBlock::from_genesis(network),
6278 let node_a_holder = NodeHolder { node: &node_a };
6280 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
6281 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
6282 let seed_b = [2u8; 32];
6283 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
6284 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
6286 best_block: BestBlock::from_genesis(network),
6288 let node_b_holder = NodeHolder { node: &node_b };
6290 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: InitFeatures::known() });
6291 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: InitFeatures::known() });
6292 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
6293 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
6294 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
6297 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
6298 tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
6299 value: 8_000_000, script_pubkey: output_script,
6301 node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
6302 } else { panic!(); }
6304 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
6305 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
6307 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
6310 header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
6313 Listen::block_connected(&node_a, &block, 1);
6314 Listen::block_connected(&node_b, &block, 1);
6316 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
6317 let msg_events = node_a.get_and_clear_pending_msg_events();
6318 assert_eq!(msg_events.len(), 2);
6319 match msg_events[0] {
6320 MessageSendEvent::SendFundingLocked { ref msg, .. } => {
6321 node_b.handle_funding_locked(&node_a.get_our_node_id(), msg);
6322 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
6326 match msg_events[1] {
6327 MessageSendEvent::SendChannelUpdate { .. } => {},
6331 let dummy_graph = NetworkGraph::new(genesis_hash);
6333 let mut payment_count: u64 = 0;
6334 macro_rules! send_payment {
6335 ($node_a: expr, $node_b: expr) => {
6336 let usable_channels = $node_a.list_usable_channels();
6337 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
6338 Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
6340 let mut payment_preimage = PaymentPreimage([0; 32]);
6341 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
6343 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
6344 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
6346 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
6347 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
6348 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
6349 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
6350 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
6351 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
6352 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
6353 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
6355 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
6356 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
6357 assert!($node_b.claim_funds(payment_preimage));
6359 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
6360 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
6361 assert_eq!(node_id, $node_a.get_our_node_id());
6362 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
6363 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
6365 _ => panic!("Failed to generate claim event"),
6368 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
6369 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
6370 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
6371 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
6373 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
6378 send_payment!(node_a, node_b);
6379 send_payment!(node_b, node_a);