1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
39 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{DefaultRouter, InFlightHtlcs, PaymentParameters, Route, RouteHop, RouteParameters, RoutePath, Router};
49 use crate::routing::scoring::ProbabilisticScorer;
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
57 use crate::ln::wire::Encode;
58 use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner, WriteableEcdsaChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig};
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::string::UntrustedString;
63 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
64 use crate::util::logger::{Level, Logger};
65 use crate::util::errors::APIError;
67 use alloc::collections::BTreeMap;
70 use crate::prelude::*;
72 use core::cell::RefCell;
74 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
75 use core::sync::atomic::{AtomicUsize, Ordering};
76 use core::time::Duration;
79 // Re-export this for use in the public API.
80 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
82 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
84 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
85 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
86 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
88 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
89 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
90 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
91 // before we forward it.
93 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
94 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
95 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
96 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
97 // our payment, which we can use to decode errors or inform the user that the payment was sent.
99 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
100 pub(super) enum PendingHTLCRouting {
102 onion_packet: msgs::OnionPacket,
103 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
104 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
105 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
108 payment_data: msgs::FinalOnionHopData,
109 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
110 phantom_shared_secret: Option<[u8; 32]>,
113 payment_preimage: PaymentPreimage,
114 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
118 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
119 pub(super) struct PendingHTLCInfo {
120 pub(super) routing: PendingHTLCRouting,
121 pub(super) incoming_shared_secret: [u8; 32],
122 payment_hash: PaymentHash,
124 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
125 /// Sender intended amount to forward or receive (actual amount received
126 /// may overshoot this in either case)
127 pub(super) outgoing_amt_msat: u64,
128 pub(super) outgoing_cltv_value: u32,
131 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
132 pub(super) enum HTLCFailureMsg {
133 Relay(msgs::UpdateFailHTLC),
134 Malformed(msgs::UpdateFailMalformedHTLC),
137 /// Stores whether we can't forward an HTLC or relevant forwarding info
138 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
139 pub(super) enum PendingHTLCStatus {
140 Forward(PendingHTLCInfo),
141 Fail(HTLCFailureMsg),
144 pub(super) struct PendingAddHTLCInfo {
145 pub(super) forward_info: PendingHTLCInfo,
147 // These fields are produced in `forward_htlcs()` and consumed in
148 // `process_pending_htlc_forwards()` for constructing the
149 // `HTLCSource::PreviousHopData` for failed and forwarded
152 // Note that this may be an outbound SCID alias for the associated channel.
153 prev_short_channel_id: u64,
155 prev_funding_outpoint: OutPoint,
156 prev_user_channel_id: u128,
159 pub(super) enum HTLCForwardInfo {
160 AddHTLC(PendingAddHTLCInfo),
163 err_packet: msgs::OnionErrorPacket,
167 /// Tracks the inbound corresponding to an outbound HTLC
168 #[derive(Clone, Hash, PartialEq, Eq)]
169 pub(crate) struct HTLCPreviousHopData {
170 // Note that this may be an outbound SCID alias for the associated channel.
171 short_channel_id: u64,
173 incoming_packet_shared_secret: [u8; 32],
174 phantom_shared_secret: Option<[u8; 32]>,
176 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
177 // channel with a preimage provided by the forward channel.
182 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
184 /// This is only here for backwards-compatibility in serialization, in the future it can be
185 /// removed, breaking clients running 0.0.106 and earlier.
186 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
188 /// Contains the payer-provided preimage.
189 Spontaneous(PaymentPreimage),
192 /// HTLCs that are to us and can be failed/claimed by the user
193 struct ClaimableHTLC {
194 prev_hop: HTLCPreviousHopData,
196 /// The amount (in msats) of this MPP part
198 /// The amount (in msats) that the sender intended to be sent in this MPP
199 /// part (used for validating total MPP amount)
200 sender_intended_value: u64,
201 onion_payload: OnionPayload,
203 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
204 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
205 total_value_received: Option<u64>,
206 /// The sender intended sum total of all MPP parts specified in the onion
210 /// A payment identifier used to uniquely identify a payment to LDK.
212 /// This is not exported to bindings users as we just use [u8; 32] directly
213 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
214 pub struct PaymentId(pub [u8; 32]);
216 impl Writeable for PaymentId {
217 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
222 impl Readable for PaymentId {
223 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
224 let buf: [u8; 32] = Readable::read(r)?;
229 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
231 /// This is not exported to bindings users as we just use [u8; 32] directly
232 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
233 pub struct InterceptId(pub [u8; 32]);
235 impl Writeable for InterceptId {
236 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
241 impl Readable for InterceptId {
242 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
243 let buf: [u8; 32] = Readable::read(r)?;
248 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
249 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
250 pub(crate) enum SentHTLCId {
251 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
252 OutboundRoute { session_priv: SecretKey },
255 pub(crate) fn from_source(source: &HTLCSource) -> Self {
257 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
258 short_channel_id: hop_data.short_channel_id,
259 htlc_id: hop_data.htlc_id,
261 HTLCSource::OutboundRoute { session_priv, .. } =>
262 Self::OutboundRoute { session_priv: *session_priv },
266 impl_writeable_tlv_based_enum!(SentHTLCId,
267 (0, PreviousHopData) => {
268 (0, short_channel_id, required),
269 (2, htlc_id, required),
271 (2, OutboundRoute) => {
272 (0, session_priv, required),
277 /// Tracks the inbound corresponding to an outbound HTLC
278 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
279 #[derive(Clone, PartialEq, Eq)]
280 pub(crate) enum HTLCSource {
281 PreviousHopData(HTLCPreviousHopData),
284 session_priv: SecretKey,
285 /// Technically we can recalculate this from the route, but we cache it here to avoid
286 /// doing a double-pass on route when we get a failure back
287 first_hop_htlc_msat: u64,
288 payment_id: PaymentId,
291 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
292 impl core::hash::Hash for HTLCSource {
293 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
295 HTLCSource::PreviousHopData(prev_hop_data) => {
297 prev_hop_data.hash(hasher);
299 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
302 session_priv[..].hash(hasher);
303 payment_id.hash(hasher);
304 first_hop_htlc_msat.hash(hasher);
310 #[cfg(not(feature = "grind_signatures"))]
312 pub fn dummy() -> Self {
313 HTLCSource::OutboundRoute {
315 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
316 first_hop_htlc_msat: 0,
317 payment_id: PaymentId([2; 32]),
321 #[cfg(debug_assertions)]
322 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
323 /// transaction. Useful to ensure different datastructures match up.
324 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
325 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
326 *first_hop_htlc_msat == htlc.amount_msat
328 // There's nothing we can check for forwarded HTLCs
334 struct ReceiveError {
340 /// This enum is used to specify which error data to send to peers when failing back an HTLC
341 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
343 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
344 #[derive(Clone, Copy)]
345 pub enum FailureCode {
346 /// We had a temporary error processing the payment. Useful if no other error codes fit
347 /// and you want to indicate that the payer may want to retry.
348 TemporaryNodeFailure = 0x2000 | 2,
349 /// We have a required feature which was not in this onion. For example, you may require
350 /// some additional metadata that was not provided with this payment.
351 RequiredNodeFeatureMissing = 0x4000 | 0x2000 | 3,
352 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
353 /// the HTLC is too close to the current block height for safe handling.
354 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
355 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
356 IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
359 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
361 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
362 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
363 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
364 /// peer_state lock. We then return the set of things that need to be done outside the lock in
365 /// this struct and call handle_error!() on it.
367 struct MsgHandleErrInternal {
368 err: msgs::LightningError,
369 chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
370 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
372 impl MsgHandleErrInternal {
374 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
376 err: LightningError {
378 action: msgs::ErrorAction::SendErrorMessage {
379 msg: msgs::ErrorMessage {
386 shutdown_finish: None,
390 fn from_no_close(err: msgs::LightningError) -> Self {
391 Self { err, chan_id: None, shutdown_finish: None }
394 fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
396 err: LightningError {
398 action: msgs::ErrorAction::SendErrorMessage {
399 msg: msgs::ErrorMessage {
405 chan_id: Some((channel_id, user_channel_id)),
406 shutdown_finish: Some((shutdown_res, channel_update)),
410 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
413 ChannelError::Warn(msg) => LightningError {
415 action: msgs::ErrorAction::SendWarningMessage {
416 msg: msgs::WarningMessage {
420 log_level: Level::Warn,
423 ChannelError::Ignore(msg) => LightningError {
425 action: msgs::ErrorAction::IgnoreError,
427 ChannelError::Close(msg) => LightningError {
429 action: msgs::ErrorAction::SendErrorMessage {
430 msg: msgs::ErrorMessage {
438 shutdown_finish: None,
443 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
444 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
445 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
446 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
447 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
449 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
450 /// be sent in the order they appear in the return value, however sometimes the order needs to be
451 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
452 /// they were originally sent). In those cases, this enum is also returned.
453 #[derive(Clone, PartialEq)]
454 pub(super) enum RAACommitmentOrder {
455 /// Send the CommitmentUpdate messages first
457 /// Send the RevokeAndACK message first
461 /// Information about a payment which is currently being claimed.
462 struct ClaimingPayment {
464 payment_purpose: events::PaymentPurpose,
465 receiver_node_id: PublicKey,
467 impl_writeable_tlv_based!(ClaimingPayment, {
468 (0, amount_msat, required),
469 (2, payment_purpose, required),
470 (4, receiver_node_id, required),
473 /// Information about claimable or being-claimed payments
474 struct ClaimablePayments {
475 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
476 /// failed/claimed by the user.
478 /// Note that, no consistency guarantees are made about the channels given here actually
479 /// existing anymore by the time you go to read them!
481 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
482 /// we don't get a duplicate payment.
483 claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
485 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
486 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
487 /// as an [`events::Event::PaymentClaimed`].
488 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
491 /// Events which we process internally but cannot be procsesed immediately at the generation site
492 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
493 /// quite some time lag.
494 enum BackgroundEvent {
495 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
496 /// commitment transaction.
497 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
501 pub(crate) enum MonitorUpdateCompletionAction {
502 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
503 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
504 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
505 /// event can be generated.
506 PaymentClaimed { payment_hash: PaymentHash },
507 /// Indicates an [`events::Event`] should be surfaced to the user.
508 EmitEvent { event: events::Event },
511 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
512 (0, PaymentClaimed) => { (0, payment_hash, required) },
513 (2, EmitEvent) => { (0, event, upgradable_required) },
516 /// State we hold per-peer.
517 pub(super) struct PeerState<Signer: ChannelSigner> {
518 /// `temporary_channel_id` or `channel_id` -> `channel`.
520 /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
521 /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
523 pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
524 /// The latest `InitFeatures` we heard from the peer.
525 latest_features: InitFeatures,
526 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
527 /// for broadcast messages, where ordering isn't as strict).
528 pub(super) pending_msg_events: Vec<MessageSendEvent>,
529 /// Map from a specific channel to some action(s) that should be taken when all pending
530 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
532 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
533 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
534 /// channels with a peer this will just be one allocation and will amount to a linear list of
535 /// channels to walk, avoiding the whole hashing rigmarole.
537 /// Note that the channel may no longer exist. For example, if a channel was closed but we
538 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
539 /// for a missing channel. While a malicious peer could construct a second channel with the
540 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
541 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
542 /// duplicates do not occur, so such channels should fail without a monitor update completing.
543 monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
544 /// The peer is currently connected (i.e. we've seen a
545 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
546 /// [`ChannelMessageHandler::peer_disconnected`].
550 impl <Signer: ChannelSigner> PeerState<Signer> {
551 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
552 /// If true is passed for `require_disconnected`, the function will return false if we haven't
553 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
554 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
555 if require_disconnected && self.is_connected {
558 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
562 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
563 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
565 /// For users who don't want to bother doing their own payment preimage storage, we also store that
568 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
569 /// and instead encoding it in the payment secret.
570 struct PendingInboundPayment {
571 /// The payment secret that the sender must use for us to accept this payment
572 payment_secret: PaymentSecret,
573 /// Time at which this HTLC expires - blocks with a header time above this value will result in
574 /// this payment being removed.
576 /// Arbitrary identifier the user specifies (or not)
577 user_payment_id: u64,
578 // Other required attributes of the payment, optionally enforced:
579 payment_preimage: Option<PaymentPreimage>,
580 min_value_msat: Option<u64>,
583 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
584 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
585 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
586 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
587 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
588 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
589 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
590 /// of [`KeysManager`] and [`DefaultRouter`].
592 /// This is not exported to bindings users as Arcs don't make sense in bindings
593 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
601 Arc<NetworkGraph<Arc<L>>>,
603 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
608 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
609 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
610 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
611 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
612 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
613 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
614 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
615 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
616 /// of [`KeysManager`] and [`DefaultRouter`].
618 /// This is not exported to bindings users as Arcs don't make sense in bindings
619 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
621 /// A trivial trait which describes any [`ChannelManager`] used in testing.
622 #[cfg(any(test, feature = "_test_utils"))]
623 pub trait AChannelManager {
624 type Watch: chain::Watch<Self::Signer>;
625 type M: Deref<Target = Self::Watch>;
626 type Broadcaster: BroadcasterInterface;
627 type T: Deref<Target = Self::Broadcaster>;
628 type EntropySource: EntropySource;
629 type ES: Deref<Target = Self::EntropySource>;
630 type NodeSigner: NodeSigner;
631 type NS: Deref<Target = Self::NodeSigner>;
632 type Signer: WriteableEcdsaChannelSigner;
633 type SignerProvider: SignerProvider<Signer = Self::Signer>;
634 type SP: Deref<Target = Self::SignerProvider>;
635 type FeeEstimator: FeeEstimator;
636 type F: Deref<Target = Self::FeeEstimator>;
638 type R: Deref<Target = Self::Router>;
640 type L: Deref<Target = Self::Logger>;
641 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
643 #[cfg(any(test, feature = "_test_utils"))]
644 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
645 for ChannelManager<M, T, ES, NS, SP, F, R, L>
647 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer> + Sized,
648 T::Target: BroadcasterInterface + Sized,
649 ES::Target: EntropySource + Sized,
650 NS::Target: NodeSigner + Sized,
651 SP::Target: SignerProvider + Sized,
652 F::Target: FeeEstimator + Sized,
653 R::Target: Router + Sized,
654 L::Target: Logger + Sized,
656 type Watch = M::Target;
658 type Broadcaster = T::Target;
660 type EntropySource = ES::Target;
662 type NodeSigner = NS::Target;
664 type Signer = <SP::Target as SignerProvider>::Signer;
665 type SignerProvider = SP::Target;
667 type FeeEstimator = F::Target;
669 type Router = R::Target;
671 type Logger = L::Target;
673 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
676 /// Manager which keeps track of a number of channels and sends messages to the appropriate
677 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
679 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
680 /// to individual Channels.
682 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
683 /// all peers during write/read (though does not modify this instance, only the instance being
684 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
685 /// called [`funding_transaction_generated`] for outbound channels) being closed.
687 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
688 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST write each monitor update out to disk before
689 /// returning from [`chain::Watch::watch_channel`]/[`update_channel`], with ChannelManagers, writing updates
690 /// happens out-of-band (and will prevent any other `ChannelManager` operations from occurring during
691 /// the serialization process). If the deserialized version is out-of-date compared to the
692 /// [`ChannelMonitor`] passed by reference to [`read`], those channels will be force-closed based on the
693 /// `ChannelMonitor` state and no funds will be lost (mod on-chain transaction fees).
695 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
696 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
697 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
699 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
700 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
701 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
702 /// offline for a full minute. In order to track this, you must call
703 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
705 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
706 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
707 /// not have a channel with being unable to connect to us or open new channels with us if we have
708 /// many peers with unfunded channels.
710 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
711 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
712 /// never limited. Please ensure you limit the count of such channels yourself.
714 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
715 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
716 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
717 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
718 /// you're using lightning-net-tokio.
720 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
721 /// [`funding_created`]: msgs::FundingCreated
722 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
723 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
724 /// [`update_channel`]: chain::Watch::update_channel
725 /// [`ChannelUpdate`]: msgs::ChannelUpdate
726 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
727 /// [`read`]: ReadableArgs::read
730 // The tree structure below illustrates the lock order requirements for the different locks of the
731 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
732 // and should then be taken in the order of the lowest to the highest level in the tree.
733 // Note that locks on different branches shall not be taken at the same time, as doing so will
734 // create a new lock order for those specific locks in the order they were taken.
738 // `total_consistency_lock`
740 // |__`forward_htlcs`
742 // | |__`pending_intercepted_htlcs`
744 // |__`per_peer_state`
746 // | |__`pending_inbound_payments`
748 // | |__`claimable_payments`
750 // | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
756 // | |__`short_to_chan_info`
758 // | |__`outbound_scid_aliases`
762 // | |__`pending_events`
764 // | |__`pending_background_events`
766 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
768 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
769 T::Target: BroadcasterInterface,
770 ES::Target: EntropySource,
771 NS::Target: NodeSigner,
772 SP::Target: SignerProvider,
773 F::Target: FeeEstimator,
777 default_configuration: UserConfig,
778 genesis_hash: BlockHash,
779 fee_estimator: LowerBoundedFeeEstimator<F>,
785 /// See `ChannelManager` struct-level documentation for lock order requirements.
787 pub(super) best_block: RwLock<BestBlock>,
789 best_block: RwLock<BestBlock>,
790 secp_ctx: Secp256k1<secp256k1::All>,
792 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
793 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
794 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
795 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
797 /// See `ChannelManager` struct-level documentation for lock order requirements.
798 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
800 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
801 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
802 /// (if the channel has been force-closed), however we track them here to prevent duplicative
803 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
804 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
805 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
806 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
807 /// after reloading from disk while replaying blocks against ChannelMonitors.
809 /// See `PendingOutboundPayment` documentation for more info.
811 /// See `ChannelManager` struct-level documentation for lock order requirements.
812 pending_outbound_payments: OutboundPayments,
814 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
816 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
817 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
818 /// and via the classic SCID.
820 /// Note that no consistency guarantees are made about the existence of a channel with the
821 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
823 /// See `ChannelManager` struct-level documentation for lock order requirements.
825 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
827 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
828 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
829 /// until the user tells us what we should do with them.
831 /// See `ChannelManager` struct-level documentation for lock order requirements.
832 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
834 /// The sets of payments which are claimable or currently being claimed. See
835 /// [`ClaimablePayments`]' individual field docs for more info.
837 /// See `ChannelManager` struct-level documentation for lock order requirements.
838 claimable_payments: Mutex<ClaimablePayments>,
840 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
841 /// and some closed channels which reached a usable state prior to being closed. This is used
842 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
843 /// active channel list on load.
845 /// See `ChannelManager` struct-level documentation for lock order requirements.
846 outbound_scid_aliases: Mutex<HashSet<u64>>,
848 /// `channel_id` -> `counterparty_node_id`.
850 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
851 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
852 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
854 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
855 /// the corresponding channel for the event, as we only have access to the `channel_id` during
856 /// the handling of the events.
858 /// Note that no consistency guarantees are made about the existence of a peer with the
859 /// `counterparty_node_id` in our other maps.
862 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
863 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
864 /// would break backwards compatability.
865 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
866 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
867 /// required to access the channel with the `counterparty_node_id`.
869 /// See `ChannelManager` struct-level documentation for lock order requirements.
870 id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
872 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
874 /// Outbound SCID aliases are added here once the channel is available for normal use, with
875 /// SCIDs being added once the funding transaction is confirmed at the channel's required
876 /// confirmation depth.
878 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
879 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
880 /// channel with the `channel_id` in our other maps.
882 /// See `ChannelManager` struct-level documentation for lock order requirements.
884 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
886 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
888 our_network_pubkey: PublicKey,
890 inbound_payment_key: inbound_payment::ExpandedKey,
892 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
893 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
894 /// we encrypt the namespace identifier using these bytes.
896 /// [fake scids]: crate::util::scid_utils::fake_scid
897 fake_scid_rand_bytes: [u8; 32],
899 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
900 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
901 /// keeping additional state.
902 probing_cookie_secret: [u8; 32],
904 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
905 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
906 /// very far in the past, and can only ever be up to two hours in the future.
907 highest_seen_timestamp: AtomicUsize,
909 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
910 /// basis, as well as the peer's latest features.
912 /// If we are connected to a peer we always at least have an entry here, even if no channels
913 /// are currently open with that peer.
915 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
916 /// operate on the inner value freely. This opens up for parallel per-peer operation for
919 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
921 /// See `ChannelManager` struct-level documentation for lock order requirements.
922 #[cfg(not(any(test, feature = "_test_utils")))]
923 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
924 #[cfg(any(test, feature = "_test_utils"))]
925 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
927 /// See `ChannelManager` struct-level documentation for lock order requirements.
928 pending_events: Mutex<Vec<events::Event>>,
929 /// See `ChannelManager` struct-level documentation for lock order requirements.
930 pending_background_events: Mutex<Vec<BackgroundEvent>>,
931 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
932 /// Essentially just when we're serializing ourselves out.
933 /// Taken first everywhere where we are making changes before any other locks.
934 /// When acquiring this lock in read mode, rather than acquiring it directly, call
935 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
936 /// Notifier the lock contains sends out a notification when the lock is released.
937 total_consistency_lock: RwLock<()>,
939 persistence_notifier: Notifier,
948 /// Chain-related parameters used to construct a new `ChannelManager`.
950 /// Typically, the block-specific parameters are derived from the best block hash for the network,
951 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
952 /// are not needed when deserializing a previously constructed `ChannelManager`.
953 #[derive(Clone, Copy, PartialEq)]
954 pub struct ChainParameters {
955 /// The network for determining the `chain_hash` in Lightning messages.
956 pub network: Network,
958 /// The hash and height of the latest block successfully connected.
960 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
961 pub best_block: BestBlock,
964 #[derive(Copy, Clone, PartialEq)]
970 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
971 /// desirable to notify any listeners on `await_persistable_update_timeout`/
972 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
973 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
974 /// sending the aforementioned notification (since the lock being released indicates that the
975 /// updates are ready for persistence).
977 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
978 /// notify or not based on whether relevant changes have been made, providing a closure to
979 /// `optionally_notify` which returns a `NotifyOption`.
980 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
981 persistence_notifier: &'a Notifier,
983 // We hold onto this result so the lock doesn't get released immediately.
984 _read_guard: RwLockReadGuard<'a, ()>,
987 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
988 fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
989 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
992 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
993 let read_guard = lock.read().unwrap();
995 PersistenceNotifierGuard {
996 persistence_notifier: notifier,
997 should_persist: persist_check,
998 _read_guard: read_guard,
1003 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1004 fn drop(&mut self) {
1005 if (self.should_persist)() == NotifyOption::DoPersist {
1006 self.persistence_notifier.notify();
1011 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1012 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1014 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1016 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1017 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1018 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1019 /// the maximum required amount in lnd as of March 2021.
1020 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1022 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1023 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1025 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1027 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1028 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1029 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1030 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1031 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1032 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1033 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1034 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1035 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1036 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1037 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1038 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1039 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1041 /// Minimum CLTV difference between the current block height and received inbound payments.
1042 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1044 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1045 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1046 // a payment was being routed, so we add an extra block to be safe.
1047 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1049 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1050 // ie that if the next-hop peer fails the HTLC within
1051 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1052 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1053 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1054 // LATENCY_GRACE_PERIOD_BLOCKS.
1057 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1059 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1060 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1063 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1065 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1066 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1068 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
1069 /// idempotency of payments by [`PaymentId`]. See
1070 /// [`OutboundPayments::remove_stale_resolved_payments`].
1071 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
1073 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1074 /// until we mark the channel disabled and gossip the update.
1075 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1077 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1078 /// we mark the channel enabled and gossip the update.
1079 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1081 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1082 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1083 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1084 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1086 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1087 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1088 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1090 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1091 /// many peers we reject new (inbound) connections.
1092 const MAX_NO_CHANNEL_PEERS: usize = 250;
1094 /// Information needed for constructing an invoice route hint for this channel.
1095 #[derive(Clone, Debug, PartialEq)]
1096 pub struct CounterpartyForwardingInfo {
1097 /// Base routing fee in millisatoshis.
1098 pub fee_base_msat: u32,
1099 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1100 pub fee_proportional_millionths: u32,
1101 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1102 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1103 /// `cltv_expiry_delta` for more details.
1104 pub cltv_expiry_delta: u16,
1107 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1108 /// to better separate parameters.
1109 #[derive(Clone, Debug, PartialEq)]
1110 pub struct ChannelCounterparty {
1111 /// The node_id of our counterparty
1112 pub node_id: PublicKey,
1113 /// The Features the channel counterparty provided upon last connection.
1114 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1115 /// many routing-relevant features are present in the init context.
1116 pub features: InitFeatures,
1117 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1118 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1119 /// claiming at least this value on chain.
1121 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1123 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1124 pub unspendable_punishment_reserve: u64,
1125 /// Information on the fees and requirements that the counterparty requires when forwarding
1126 /// payments to us through this channel.
1127 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1128 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1129 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1130 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1131 pub outbound_htlc_minimum_msat: Option<u64>,
1132 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1133 pub outbound_htlc_maximum_msat: Option<u64>,
1136 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1137 #[derive(Clone, Debug, PartialEq)]
1138 pub struct ChannelDetails {
1139 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1140 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1141 /// Note that this means this value is *not* persistent - it can change once during the
1142 /// lifetime of the channel.
1143 pub channel_id: [u8; 32],
1144 /// Parameters which apply to our counterparty. See individual fields for more information.
1145 pub counterparty: ChannelCounterparty,
1146 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1147 /// our counterparty already.
1149 /// Note that, if this has been set, `channel_id` will be equivalent to
1150 /// `funding_txo.unwrap().to_channel_id()`.
1151 pub funding_txo: Option<OutPoint>,
1152 /// The features which this channel operates with. See individual features for more info.
1154 /// `None` until negotiation completes and the channel type is finalized.
1155 pub channel_type: Option<ChannelTypeFeatures>,
1156 /// The position of the funding transaction in the chain. None if the funding transaction has
1157 /// not yet been confirmed and the channel fully opened.
1159 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1160 /// payments instead of this. See [`get_inbound_payment_scid`].
1162 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1163 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1165 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1166 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1167 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1168 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1169 /// [`confirmations_required`]: Self::confirmations_required
1170 pub short_channel_id: Option<u64>,
1171 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1172 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1173 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1176 /// This will be `None` as long as the channel is not available for routing outbound payments.
1178 /// [`short_channel_id`]: Self::short_channel_id
1179 /// [`confirmations_required`]: Self::confirmations_required
1180 pub outbound_scid_alias: Option<u64>,
1181 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1182 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1183 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1184 /// when they see a payment to be routed to us.
1186 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1187 /// previous values for inbound payment forwarding.
1189 /// [`short_channel_id`]: Self::short_channel_id
1190 pub inbound_scid_alias: Option<u64>,
1191 /// The value, in satoshis, of this channel as appears in the funding output
1192 pub channel_value_satoshis: u64,
1193 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1194 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1195 /// this value on chain.
1197 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1199 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1201 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1202 pub unspendable_punishment_reserve: Option<u64>,
1203 /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1204 /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1206 pub user_channel_id: u128,
1207 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1208 /// which is applied to commitment and HTLC transactions.
1210 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1211 pub feerate_sat_per_1000_weight: Option<u32>,
1212 /// Our total balance. This is the amount we would get if we close the channel.
1213 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1214 /// amount is not likely to be recoverable on close.
1216 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1217 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1218 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1219 /// This does not consider any on-chain fees.
1221 /// See also [`ChannelDetails::outbound_capacity_msat`]
1222 pub balance_msat: u64,
1223 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1224 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1225 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1226 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1228 /// See also [`ChannelDetails::balance_msat`]
1230 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1231 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1232 /// should be able to spend nearly this amount.
1233 pub outbound_capacity_msat: u64,
1234 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1235 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1236 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1237 /// to use a limit as close as possible to the HTLC limit we can currently send.
1239 /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1240 pub next_outbound_htlc_limit_msat: u64,
1241 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1242 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1243 /// available for inclusion in new inbound HTLCs).
1244 /// Note that there are some corner cases not fully handled here, so the actual available
1245 /// inbound capacity may be slightly higher than this.
1247 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1248 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1249 /// However, our counterparty should be able to spend nearly this amount.
1250 pub inbound_capacity_msat: u64,
1251 /// The number of required confirmations on the funding transaction before the funding will be
1252 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1253 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1254 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1255 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1257 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1259 /// [`is_outbound`]: ChannelDetails::is_outbound
1260 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1261 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1262 pub confirmations_required: Option<u32>,
1263 /// The current number of confirmations on the funding transaction.
1265 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1266 pub confirmations: Option<u32>,
1267 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1268 /// until we can claim our funds after we force-close the channel. During this time our
1269 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1270 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1271 /// time to claim our non-HTLC-encumbered funds.
1273 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1274 pub force_close_spend_delay: Option<u16>,
1275 /// True if the channel was initiated (and thus funded) by us.
1276 pub is_outbound: bool,
1277 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1278 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1279 /// required confirmation count has been reached (and we were connected to the peer at some
1280 /// point after the funding transaction received enough confirmations). The required
1281 /// confirmation count is provided in [`confirmations_required`].
1283 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1284 pub is_channel_ready: bool,
1285 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1286 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1288 /// This is a strict superset of `is_channel_ready`.
1289 pub is_usable: bool,
1290 /// True if this channel is (or will be) publicly-announced.
1291 pub is_public: bool,
1292 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1293 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1294 pub inbound_htlc_minimum_msat: Option<u64>,
1295 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1296 pub inbound_htlc_maximum_msat: Option<u64>,
1297 /// Set of configurable parameters that affect channel operation.
1299 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1300 pub config: Option<ChannelConfig>,
1303 impl ChannelDetails {
1304 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1305 /// This should be used for providing invoice hints or in any other context where our
1306 /// counterparty will forward a payment to us.
1308 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1309 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1310 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1311 self.inbound_scid_alias.or(self.short_channel_id)
1314 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1315 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1316 /// we're sending or forwarding a payment outbound over this channel.
1318 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1319 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1320 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1321 self.short_channel_id.or(self.outbound_scid_alias)
1324 fn from_channel<Signer: WriteableEcdsaChannelSigner>(channel: &Channel<Signer>,
1325 best_block_height: u32, latest_features: InitFeatures) -> Self {
1327 let balance = channel.get_available_balances();
1328 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1329 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1331 channel_id: channel.channel_id(),
1332 counterparty: ChannelCounterparty {
1333 node_id: channel.get_counterparty_node_id(),
1334 features: latest_features,
1335 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1336 forwarding_info: channel.counterparty_forwarding_info(),
1337 // Ensures that we have actually received the `htlc_minimum_msat` value
1338 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1339 // message (as they are always the first message from the counterparty).
1340 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1341 // default `0` value set by `Channel::new_outbound`.
1342 outbound_htlc_minimum_msat: if channel.have_received_message() {
1343 Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1344 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1346 funding_txo: channel.get_funding_txo(),
1347 // Note that accept_channel (or open_channel) is always the first message, so
1348 // `have_received_message` indicates that type negotiation has completed.
1349 channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1350 short_channel_id: channel.get_short_channel_id(),
1351 outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1352 inbound_scid_alias: channel.latest_inbound_scid_alias(),
1353 channel_value_satoshis: channel.get_value_satoshis(),
1354 feerate_sat_per_1000_weight: Some(channel.get_feerate_sat_per_1000_weight()),
1355 unspendable_punishment_reserve: to_self_reserve_satoshis,
1356 balance_msat: balance.balance_msat,
1357 inbound_capacity_msat: balance.inbound_capacity_msat,
1358 outbound_capacity_msat: balance.outbound_capacity_msat,
1359 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1360 user_channel_id: channel.get_user_id(),
1361 confirmations_required: channel.minimum_depth(),
1362 confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1363 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1364 is_outbound: channel.is_outbound(),
1365 is_channel_ready: channel.is_usable(),
1366 is_usable: channel.is_live(),
1367 is_public: channel.should_announce(),
1368 inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1369 inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1370 config: Some(channel.config()),
1375 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1376 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1377 #[derive(Debug, PartialEq)]
1378 pub enum RecentPaymentDetails {
1379 /// When a payment is still being sent and awaiting successful delivery.
1381 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1383 payment_hash: PaymentHash,
1384 /// Total amount (in msat, excluding fees) across all paths for this payment,
1385 /// not just the amount currently inflight.
1388 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1389 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1390 /// payment is removed from tracking.
1392 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1393 /// made before LDK version 0.0.104.
1394 payment_hash: Option<PaymentHash>,
1396 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1397 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1398 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1400 /// Hash of the payment that we have given up trying to send.
1401 payment_hash: PaymentHash,
1405 /// Route hints used in constructing invoices for [phantom node payents].
1407 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1409 pub struct PhantomRouteHints {
1410 /// The list of channels to be included in the invoice route hints.
1411 pub channels: Vec<ChannelDetails>,
1412 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1414 pub phantom_scid: u64,
1415 /// The pubkey of the real backing node that would ultimately receive the payment.
1416 pub real_node_pubkey: PublicKey,
1419 macro_rules! handle_error {
1420 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1421 // In testing, ensure there are no deadlocks where the lock is already held upon
1422 // entering the macro.
1423 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1424 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1428 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1429 let mut msg_events = Vec::with_capacity(2);
1431 if let Some((shutdown_res, update_option)) = shutdown_finish {
1432 $self.finish_force_close_channel(shutdown_res);
1433 if let Some(update) = update_option {
1434 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1438 if let Some((channel_id, user_channel_id)) = chan_id {
1439 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1440 channel_id, user_channel_id,
1441 reason: ClosureReason::ProcessingError { err: err.err.clone() }
1446 log_error!($self.logger, "{}", err.err);
1447 if let msgs::ErrorAction::IgnoreError = err.action {
1449 msg_events.push(events::MessageSendEvent::HandleError {
1450 node_id: $counterparty_node_id,
1451 action: err.action.clone()
1455 if !msg_events.is_empty() {
1456 let per_peer_state = $self.per_peer_state.read().unwrap();
1457 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1458 let mut peer_state = peer_state_mutex.lock().unwrap();
1459 peer_state.pending_msg_events.append(&mut msg_events);
1463 // Return error in case higher-API need one
1470 macro_rules! update_maps_on_chan_removal {
1471 ($self: expr, $channel: expr) => {{
1472 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1473 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1474 if let Some(short_id) = $channel.get_short_channel_id() {
1475 short_to_chan_info.remove(&short_id);
1477 // If the channel was never confirmed on-chain prior to its closure, remove the
1478 // outbound SCID alias we used for it from the collision-prevention set. While we
1479 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1480 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1481 // opening a million channels with us which are closed before we ever reach the funding
1483 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1484 debug_assert!(alias_removed);
1486 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1490 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1491 macro_rules! convert_chan_err {
1492 ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1494 ChannelError::Warn(msg) => {
1495 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1497 ChannelError::Ignore(msg) => {
1498 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1500 ChannelError::Close(msg) => {
1501 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1502 update_maps_on_chan_removal!($self, $channel);
1503 let shutdown_res = $channel.force_shutdown(true);
1504 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1505 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1511 macro_rules! break_chan_entry {
1512 ($self: ident, $res: expr, $entry: expr) => {
1516 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1518 $entry.remove_entry();
1526 macro_rules! try_chan_entry {
1527 ($self: ident, $res: expr, $entry: expr) => {
1531 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1533 $entry.remove_entry();
1541 macro_rules! remove_channel {
1542 ($self: expr, $entry: expr) => {
1544 let channel = $entry.remove_entry().1;
1545 update_maps_on_chan_removal!($self, channel);
1551 macro_rules! send_channel_ready {
1552 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1553 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1554 node_id: $channel.get_counterparty_node_id(),
1555 msg: $channel_ready_msg,
1557 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1558 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1559 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1560 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1561 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1562 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1563 if let Some(real_scid) = $channel.get_short_channel_id() {
1564 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1565 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1566 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1571 macro_rules! emit_channel_pending_event {
1572 ($locked_events: expr, $channel: expr) => {
1573 if $channel.should_emit_channel_pending_event() {
1574 $locked_events.push(events::Event::ChannelPending {
1575 channel_id: $channel.channel_id(),
1576 former_temporary_channel_id: $channel.temporary_channel_id(),
1577 counterparty_node_id: $channel.get_counterparty_node_id(),
1578 user_channel_id: $channel.get_user_id(),
1579 funding_txo: $channel.get_funding_txo().unwrap().into_bitcoin_outpoint(),
1581 $channel.set_channel_pending_event_emitted();
1586 macro_rules! emit_channel_ready_event {
1587 ($locked_events: expr, $channel: expr) => {
1588 if $channel.should_emit_channel_ready_event() {
1589 debug_assert!($channel.channel_pending_event_emitted());
1590 $locked_events.push(events::Event::ChannelReady {
1591 channel_id: $channel.channel_id(),
1592 user_channel_id: $channel.get_user_id(),
1593 counterparty_node_id: $channel.get_counterparty_node_id(),
1594 channel_type: $channel.get_channel_type().clone(),
1596 $channel.set_channel_ready_event_emitted();
1601 macro_rules! handle_monitor_update_completion {
1602 ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1603 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1604 &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1605 $self.best_block.read().unwrap().height());
1606 let counterparty_node_id = $chan.get_counterparty_node_id();
1607 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1608 // We only send a channel_update in the case where we are just now sending a
1609 // channel_ready and the channel is in a usable state. We may re-send a
1610 // channel_update later through the announcement_signatures process for public
1611 // channels, but there's no reason not to just inform our counterparty of our fees
1613 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1614 Some(events::MessageSendEvent::SendChannelUpdate {
1615 node_id: counterparty_node_id,
1621 let update_actions = $peer_state.monitor_update_blocked_actions
1622 .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1624 let htlc_forwards = $self.handle_channel_resumption(
1625 &mut $peer_state.pending_msg_events, $chan, updates.raa,
1626 updates.commitment_update, updates.order, updates.accepted_htlcs,
1627 updates.funding_broadcastable, updates.channel_ready,
1628 updates.announcement_sigs);
1629 if let Some(upd) = channel_update {
1630 $peer_state.pending_msg_events.push(upd);
1633 let channel_id = $chan.channel_id();
1634 core::mem::drop($peer_state_lock);
1635 core::mem::drop($per_peer_state_lock);
1637 $self.handle_monitor_update_completion_actions(update_actions);
1639 if let Some(forwards) = htlc_forwards {
1640 $self.forward_htlcs(&mut [forwards][..]);
1642 $self.finalize_claims(updates.finalized_claimed_htlcs);
1643 for failure in updates.failed_htlcs.drain(..) {
1644 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1645 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1650 macro_rules! handle_new_monitor_update {
1651 ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1652 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1653 // any case so that it won't deadlock.
1654 debug_assert_ne!($self.id_to_peer.held_by_thread(), LockHeldState::HeldByThread);
1656 ChannelMonitorUpdateStatus::InProgress => {
1657 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1658 log_bytes!($chan.channel_id()[..]));
1661 ChannelMonitorUpdateStatus::PermanentFailure => {
1662 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1663 log_bytes!($chan.channel_id()[..]));
1664 update_maps_on_chan_removal!($self, $chan);
1665 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1666 "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1667 $chan.get_user_id(), $chan.force_shutdown(false),
1668 $self.get_channel_update_for_broadcast(&$chan).ok()));
1672 ChannelMonitorUpdateStatus::Completed => {
1673 if ($update_id == 0 || $chan.get_next_monitor_update()
1674 .expect("We can't be processing a monitor update if it isn't queued")
1675 .update_id == $update_id) &&
1676 $chan.get_latest_monitor_update_id() == $update_id
1678 handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1684 ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1685 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1689 macro_rules! process_events_body {
1690 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
1691 // We'll acquire our total consistency lock until the returned future completes so that
1692 // we can be sure no other persists happen while processing events.
1693 let _read_guard = $self.total_consistency_lock.read().unwrap();
1695 let mut result = NotifyOption::SkipPersist;
1697 // TODO: This behavior should be documented. It's unintuitive that we query
1698 // ChannelMonitors when clearing other events.
1699 if $self.process_pending_monitor_events() {
1700 result = NotifyOption::DoPersist;
1703 let pending_events = mem::replace(&mut *$self.pending_events.lock().unwrap(), vec![]);
1704 if !pending_events.is_empty() {
1705 result = NotifyOption::DoPersist;
1708 for event in pending_events {
1709 $event_to_handle = event;
1713 if result == NotifyOption::DoPersist {
1714 $self.persistence_notifier.notify();
1719 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1721 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1722 T::Target: BroadcasterInterface,
1723 ES::Target: EntropySource,
1724 NS::Target: NodeSigner,
1725 SP::Target: SignerProvider,
1726 F::Target: FeeEstimator,
1730 /// Constructs a new `ChannelManager` to hold several channels and route between them.
1732 /// This is the main "logic hub" for all channel-related actions, and implements
1733 /// [`ChannelMessageHandler`].
1735 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1737 /// Users need to notify the new `ChannelManager` when a new block is connected or
1738 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
1739 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
1742 /// [`block_connected`]: chain::Listen::block_connected
1743 /// [`block_disconnected`]: chain::Listen::block_disconnected
1744 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
1745 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1746 let mut secp_ctx = Secp256k1::new();
1747 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1748 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1749 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1751 default_configuration: config.clone(),
1752 genesis_hash: genesis_block(params.network).header.block_hash(),
1753 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1758 best_block: RwLock::new(params.best_block),
1760 outbound_scid_aliases: Mutex::new(HashSet::new()),
1761 pending_inbound_payments: Mutex::new(HashMap::new()),
1762 pending_outbound_payments: OutboundPayments::new(),
1763 forward_htlcs: Mutex::new(HashMap::new()),
1764 claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1765 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1766 id_to_peer: Mutex::new(HashMap::new()),
1767 short_to_chan_info: FairRwLock::new(HashMap::new()),
1769 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1772 inbound_payment_key: expanded_inbound_key,
1773 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1775 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1777 highest_seen_timestamp: AtomicUsize::new(0),
1779 per_peer_state: FairRwLock::new(HashMap::new()),
1781 pending_events: Mutex::new(Vec::new()),
1782 pending_background_events: Mutex::new(Vec::new()),
1783 total_consistency_lock: RwLock::new(()),
1784 persistence_notifier: Notifier::new(),
1794 /// Gets the current configuration applied to all new channels.
1795 pub fn get_current_default_configuration(&self) -> &UserConfig {
1796 &self.default_configuration
1799 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1800 let height = self.best_block.read().unwrap().height();
1801 let mut outbound_scid_alias = 0;
1804 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1805 outbound_scid_alias += 1;
1807 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1809 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1813 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1818 /// Creates a new outbound channel to the given remote node and with the given value.
1820 /// `user_channel_id` will be provided back as in
1821 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1822 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1823 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1824 /// is simply copied to events and otherwise ignored.
1826 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1827 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1829 /// Note that we do not check if you are currently connected to the given peer. If no
1830 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1831 /// the channel eventually being silently forgotten (dropped on reload).
1833 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1834 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1835 /// [`ChannelDetails::channel_id`] until after
1836 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1837 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1838 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1840 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1841 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1842 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1843 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1844 if channel_value_satoshis < 1000 {
1845 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1848 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1849 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1850 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1852 let per_peer_state = self.per_peer_state.read().unwrap();
1854 let peer_state_mutex = per_peer_state.get(&their_network_key)
1855 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1857 let mut peer_state = peer_state_mutex.lock().unwrap();
1859 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1860 let their_features = &peer_state.latest_features;
1861 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1862 match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1863 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1864 self.best_block.read().unwrap().height(), outbound_scid_alias)
1868 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1873 let res = channel.get_open_channel(self.genesis_hash.clone());
1875 let temporary_channel_id = channel.channel_id();
1876 match peer_state.channel_by_id.entry(temporary_channel_id) {
1877 hash_map::Entry::Occupied(_) => {
1879 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1881 panic!("RNG is bad???");
1884 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1887 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1888 node_id: their_network_key,
1891 Ok(temporary_channel_id)
1894 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1895 // Allocate our best estimate of the number of channels we have in the `res`
1896 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1897 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1898 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1899 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1900 // the same channel.
1901 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1903 let best_block_height = self.best_block.read().unwrap().height();
1904 let per_peer_state = self.per_peer_state.read().unwrap();
1905 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1906 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1907 let peer_state = &mut *peer_state_lock;
1908 for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1909 let details = ChannelDetails::from_channel(channel, best_block_height,
1910 peer_state.latest_features.clone());
1918 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
1919 /// more information.
1920 pub fn list_channels(&self) -> Vec<ChannelDetails> {
1921 self.list_channels_with_filter(|_| true)
1924 /// Gets the list of usable channels, in random order. Useful as an argument to
1925 /// [`Router::find_route`] to ensure non-announced channels are used.
1927 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1928 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1930 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1931 // Note we use is_live here instead of usable which leads to somewhat confused
1932 // internal/external nomenclature, but that's ok cause that's probably what the user
1933 // really wanted anyway.
1934 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1937 /// Gets the list of channels we have with a given counterparty, in random order.
1938 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
1939 let best_block_height = self.best_block.read().unwrap().height();
1940 let per_peer_state = self.per_peer_state.read().unwrap();
1942 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
1943 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1944 let peer_state = &mut *peer_state_lock;
1945 let features = &peer_state.latest_features;
1946 return peer_state.channel_by_id
1949 ChannelDetails::from_channel(channel, best_block_height, features.clone()))
1955 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
1956 /// successful path, or have unresolved HTLCs.
1958 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
1959 /// result of a crash. If such a payment exists, is not listed here, and an
1960 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
1962 /// [`Event::PaymentSent`]: events::Event::PaymentSent
1963 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
1964 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
1965 .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
1966 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
1967 Some(RecentPaymentDetails::Pending {
1968 payment_hash: *payment_hash,
1969 total_msat: *total_msat,
1972 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
1973 Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
1975 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
1976 Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
1978 PendingOutboundPayment::Legacy { .. } => None
1983 /// Helper function that issues the channel close events
1984 fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
1985 let mut pending_events_lock = self.pending_events.lock().unwrap();
1986 match channel.unbroadcasted_funding() {
1987 Some(transaction) => {
1988 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1992 pending_events_lock.push(events::Event::ChannelClosed {
1993 channel_id: channel.channel_id(),
1994 user_channel_id: channel.get_user_id(),
1995 reason: closure_reason
1999 fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
2000 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2002 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2003 let result: Result<(), _> = loop {
2004 let per_peer_state = self.per_peer_state.read().unwrap();
2006 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2007 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2009 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2010 let peer_state = &mut *peer_state_lock;
2011 match peer_state.channel_by_id.entry(channel_id.clone()) {
2012 hash_map::Entry::Occupied(mut chan_entry) => {
2013 let funding_txo_opt = chan_entry.get().get_funding_txo();
2014 let their_features = &peer_state.latest_features;
2015 let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
2016 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
2017 failed_htlcs = htlcs;
2019 // We can send the `shutdown` message before updating the `ChannelMonitor`
2020 // here as we don't need the monitor update to complete until we send a
2021 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2022 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2023 node_id: *counterparty_node_id,
2027 // Update the monitor with the shutdown script if necessary.
2028 if let Some(monitor_update) = monitor_update_opt.take() {
2029 let update_id = monitor_update.update_id;
2030 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
2031 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
2034 if chan_entry.get().is_shutdown() {
2035 let channel = remove_channel!(self, chan_entry);
2036 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
2037 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2041 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
2045 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
2049 for htlc_source in failed_htlcs.drain(..) {
2050 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2051 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2052 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2055 let _ = handle_error!(self, result, *counterparty_node_id);
2059 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2060 /// will be accepted on the given channel, and after additional timeout/the closing of all
2061 /// pending HTLCs, the channel will be closed on chain.
2063 /// * If we are the channel initiator, we will pay between our [`Background`] and
2064 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2066 /// * If our counterparty is the channel initiator, we will require a channel closing
2067 /// transaction feerate of at least our [`Background`] feerate or the feerate which
2068 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2069 /// counterparty to pay as much fee as they'd like, however.
2071 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2073 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2074 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2075 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2076 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2077 pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2078 self.close_channel_internal(channel_id, counterparty_node_id, None)
2081 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2082 /// will be accepted on the given channel, and after additional timeout/the closing of all
2083 /// pending HTLCs, the channel will be closed on chain.
2085 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2086 /// the channel being closed or not:
2087 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2088 /// transaction. The upper-bound is set by
2089 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2090 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2091 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2092 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2093 /// will appear on a force-closure transaction, whichever is lower).
2095 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2097 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2098 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2099 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2100 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2101 pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
2102 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
2106 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
2107 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
2108 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
2109 for htlc_source in failed_htlcs.drain(..) {
2110 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2111 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2112 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2113 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2115 if let Some((funding_txo, monitor_update)) = monitor_update_option {
2116 // There isn't anything we can do if we get an update failure - we're already
2117 // force-closing. The monitor update on the required in-memory copy should broadcast
2118 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2119 // ignore the result here.
2120 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2124 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2125 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2126 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2127 -> Result<PublicKey, APIError> {
2128 let per_peer_state = self.per_peer_state.read().unwrap();
2129 let peer_state_mutex = per_peer_state.get(peer_node_id)
2130 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2132 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2133 let peer_state = &mut *peer_state_lock;
2134 if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
2135 if let Some(peer_msg) = peer_msg {
2136 self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) });
2138 self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
2140 remove_channel!(self, chan)
2142 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
2145 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2146 self.finish_force_close_channel(chan.force_shutdown(broadcast));
2147 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2148 let mut peer_state = peer_state_mutex.lock().unwrap();
2149 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2154 Ok(chan.get_counterparty_node_id())
2157 fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2158 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2159 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2160 Ok(counterparty_node_id) => {
2161 let per_peer_state = self.per_peer_state.read().unwrap();
2162 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2163 let mut peer_state = peer_state_mutex.lock().unwrap();
2164 peer_state.pending_msg_events.push(
2165 events::MessageSendEvent::HandleError {
2166 node_id: counterparty_node_id,
2167 action: msgs::ErrorAction::SendErrorMessage {
2168 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2179 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2180 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2181 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2183 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2184 -> Result<(), APIError> {
2185 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2188 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2189 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2190 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2192 /// You can always get the latest local transaction(s) to broadcast from
2193 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2194 pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2195 -> Result<(), APIError> {
2196 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2199 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2200 /// for each to the chain and rejecting new HTLCs on each.
2201 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2202 for chan in self.list_channels() {
2203 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2207 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2208 /// local transaction(s).
2209 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2210 for chan in self.list_channels() {
2211 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2215 fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2216 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2218 // final_incorrect_cltv_expiry
2219 if hop_data.outgoing_cltv_value > cltv_expiry {
2220 return Err(ReceiveError {
2221 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2223 err_data: cltv_expiry.to_be_bytes().to_vec()
2226 // final_expiry_too_soon
2227 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2228 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2230 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2231 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2232 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2233 let current_height: u32 = self.best_block.read().unwrap().height();
2234 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2235 let mut err_data = Vec::with_capacity(12);
2236 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2237 err_data.extend_from_slice(¤t_height.to_be_bytes());
2238 return Err(ReceiveError {
2239 err_code: 0x4000 | 15, err_data,
2240 msg: "The final CLTV expiry is too soon to handle",
2243 if hop_data.amt_to_forward > amt_msat {
2244 return Err(ReceiveError {
2246 err_data: amt_msat.to_be_bytes().to_vec(),
2247 msg: "Upstream node sent less than we were supposed to receive in payment",
2251 let routing = match hop_data.format {
2252 msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2253 return Err(ReceiveError {
2254 err_code: 0x4000|22,
2255 err_data: Vec::new(),
2256 msg: "Got non final data with an HMAC of 0",
2259 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2260 if payment_data.is_some() && keysend_preimage.is_some() {
2261 return Err(ReceiveError {
2262 err_code: 0x4000|22,
2263 err_data: Vec::new(),
2264 msg: "We don't support MPP keysend payments",
2266 } else if let Some(data) = payment_data {
2267 PendingHTLCRouting::Receive {
2269 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2270 phantom_shared_secret,
2272 } else if let Some(payment_preimage) = keysend_preimage {
2273 // We need to check that the sender knows the keysend preimage before processing this
2274 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2275 // could discover the final destination of X, by probing the adjacent nodes on the route
2276 // with a keysend payment of identical payment hash to X and observing the processing
2277 // time discrepancies due to a hash collision with X.
2278 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2279 if hashed_preimage != payment_hash {
2280 return Err(ReceiveError {
2281 err_code: 0x4000|22,
2282 err_data: Vec::new(),
2283 msg: "Payment preimage didn't match payment hash",
2287 PendingHTLCRouting::ReceiveKeysend {
2289 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2292 return Err(ReceiveError {
2293 err_code: 0x4000|0x2000|3,
2294 err_data: Vec::new(),
2295 msg: "We require payment_secrets",
2300 Ok(PendingHTLCInfo {
2303 incoming_shared_secret: shared_secret,
2304 incoming_amt_msat: Some(amt_msat),
2305 outgoing_amt_msat: hop_data.amt_to_forward,
2306 outgoing_cltv_value: hop_data.outgoing_cltv_value,
2310 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2311 macro_rules! return_malformed_err {
2312 ($msg: expr, $err_code: expr) => {
2314 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2315 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2316 channel_id: msg.channel_id,
2317 htlc_id: msg.htlc_id,
2318 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2319 failure_code: $err_code,
2325 if let Err(_) = msg.onion_routing_packet.public_key {
2326 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2329 let shared_secret = self.node_signer.ecdh(
2330 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2331 ).unwrap().secret_bytes();
2333 if msg.onion_routing_packet.version != 0 {
2334 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2335 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2336 //the hash doesn't really serve any purpose - in the case of hashing all data, the
2337 //receiving node would have to brute force to figure out which version was put in the
2338 //packet by the node that send us the message, in the case of hashing the hop_data, the
2339 //node knows the HMAC matched, so they already know what is there...
2340 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2342 macro_rules! return_err {
2343 ($msg: expr, $err_code: expr, $data: expr) => {
2345 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2346 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2347 channel_id: msg.channel_id,
2348 htlc_id: msg.htlc_id,
2349 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2350 .get_encrypted_failure_packet(&shared_secret, &None),
2356 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2358 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2359 return_malformed_err!(err_msg, err_code);
2361 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2362 return_err!(err_msg, err_code, &[0; 0]);
2366 let pending_forward_info = match next_hop {
2367 onion_utils::Hop::Receive(next_hop_data) => {
2369 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2371 // Note that we could obviously respond immediately with an update_fulfill_htlc
2372 // message, however that would leak that we are the recipient of this payment, so
2373 // instead we stay symmetric with the forwarding case, only responding (after a
2374 // delay) once they've send us a commitment_signed!
2375 PendingHTLCStatus::Forward(info)
2377 Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2380 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2381 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2382 let outgoing_packet = msgs::OnionPacket {
2384 public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2385 hop_data: new_packet_bytes,
2386 hmac: next_hop_hmac.clone(),
2389 let short_channel_id = match next_hop_data.format {
2390 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2391 msgs::OnionHopDataFormat::FinalNode { .. } => {
2392 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2396 PendingHTLCStatus::Forward(PendingHTLCInfo {
2397 routing: PendingHTLCRouting::Forward {
2398 onion_packet: outgoing_packet,
2401 payment_hash: msg.payment_hash.clone(),
2402 incoming_shared_secret: shared_secret,
2403 incoming_amt_msat: Some(msg.amount_msat),
2404 outgoing_amt_msat: next_hop_data.amt_to_forward,
2405 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2410 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2411 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2412 // with a short_channel_id of 0. This is important as various things later assume
2413 // short_channel_id is non-0 in any ::Forward.
2414 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2415 if let Some((err, mut code, chan_update)) = loop {
2416 let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2417 let forwarding_chan_info_opt = match id_option {
2418 None => { // unknown_next_peer
2419 // Note that this is likely a timing oracle for detecting whether an scid is a
2420 // phantom or an intercept.
2421 if (self.default_configuration.accept_intercept_htlcs &&
2422 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2423 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2427 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2430 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2432 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2433 let per_peer_state = self.per_peer_state.read().unwrap();
2434 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2435 if peer_state_mutex_opt.is_none() {
2436 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2438 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2439 let peer_state = &mut *peer_state_lock;
2440 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2442 // Channel was removed. The short_to_chan_info and channel_by_id maps
2443 // have no consistency guarantees.
2444 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2448 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2449 // Note that the behavior here should be identical to the above block - we
2450 // should NOT reveal the existence or non-existence of a private channel if
2451 // we don't allow forwards outbound over them.
2452 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2454 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2455 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2456 // "refuse to forward unless the SCID alias was used", so we pretend
2457 // we don't have the channel here.
2458 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2460 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2462 // Note that we could technically not return an error yet here and just hope
2463 // that the connection is reestablished or monitor updated by the time we get
2464 // around to doing the actual forward, but better to fail early if we can and
2465 // hopefully an attacker trying to path-trace payments cannot make this occur
2466 // on a small/per-node/per-channel scale.
2467 if !chan.is_live() { // channel_disabled
2468 // If the channel_update we're going to return is disabled (i.e. the
2469 // peer has been disabled for some time), return `channel_disabled`,
2470 // otherwise return `temporary_channel_failure`.
2471 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
2472 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
2474 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
2477 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2478 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2480 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2481 break Some((err, code, chan_update_opt));
2485 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2486 // We really should set `incorrect_cltv_expiry` here but as we're not
2487 // forwarding over a real channel we can't generate a channel_update
2488 // for it. Instead we just return a generic temporary_node_failure.
2490 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2497 let cur_height = self.best_block.read().unwrap().height() + 1;
2498 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2499 // but we want to be robust wrt to counterparty packet sanitization (see
2500 // HTLC_FAIL_BACK_BUFFER rationale).
2501 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2502 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2504 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2505 break Some(("CLTV expiry is too far in the future", 21, None));
2507 // If the HTLC expires ~now, don't bother trying to forward it to our
2508 // counterparty. They should fail it anyway, but we don't want to bother with
2509 // the round-trips or risk them deciding they definitely want the HTLC and
2510 // force-closing to ensure they get it if we're offline.
2511 // We previously had a much more aggressive check here which tried to ensure
2512 // our counterparty receives an HTLC which has *our* risk threshold met on it,
2513 // but there is no need to do that, and since we're a bit conservative with our
2514 // risk threshold it just results in failing to forward payments.
2515 if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2516 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2522 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2523 if let Some(chan_update) = chan_update {
2524 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2525 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2527 else if code == 0x1000 | 13 {
2528 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2530 else if code == 0x1000 | 20 {
2531 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2532 0u16.write(&mut res).expect("Writes cannot fail");
2534 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2535 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2536 chan_update.write(&mut res).expect("Writes cannot fail");
2537 } else if code & 0x1000 == 0x1000 {
2538 // If we're trying to return an error that requires a `channel_update` but
2539 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2540 // generate an update), just use the generic "temporary_node_failure"
2544 return_err!(err, code, &res.0[..]);
2549 pending_forward_info
2552 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
2553 /// public, and thus should be called whenever the result is going to be passed out in a
2554 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2556 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
2557 /// corresponding to the channel's counterparty locked, as the channel been removed from the
2558 /// storage and the `peer_state` lock has been dropped.
2560 /// [`channel_update`]: msgs::ChannelUpdate
2561 /// [`internal_closing_signed`]: Self::internal_closing_signed
2562 fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2563 if !chan.should_announce() {
2564 return Err(LightningError {
2565 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2566 action: msgs::ErrorAction::IgnoreError
2569 if chan.get_short_channel_id().is_none() {
2570 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2572 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2573 self.get_channel_update_for_unicast(chan)
2576 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
2577 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
2578 /// and thus MUST NOT be called unless the recipient of the resulting message has already
2579 /// provided evidence that they know about the existence of the channel.
2581 /// Note that through [`internal_closing_signed`], this function is called without the
2582 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
2583 /// removed from the storage and the `peer_state` lock has been dropped.
2585 /// [`channel_update`]: msgs::ChannelUpdate
2586 /// [`internal_closing_signed`]: Self::internal_closing_signed
2587 fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2588 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2589 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2590 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2594 self.get_channel_update_for_onion(short_channel_id, chan)
2596 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2597 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2598 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2600 let enabled = chan.is_usable() && match chan.channel_update_status() {
2601 ChannelUpdateStatus::Enabled => true,
2602 ChannelUpdateStatus::DisabledStaged(_) => true,
2603 ChannelUpdateStatus::Disabled => false,
2604 ChannelUpdateStatus::EnabledStaged(_) => false,
2607 let unsigned = msgs::UnsignedChannelUpdate {
2608 chain_hash: self.genesis_hash,
2610 timestamp: chan.get_update_time_counter(),
2611 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
2612 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2613 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2614 htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2615 fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2616 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2617 excess_data: Vec::new(),
2619 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2620 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2621 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2623 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2625 Ok(msgs::ChannelUpdate {
2632 pub(crate) fn test_send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2633 let _lck = self.total_consistency_lock.read().unwrap();
2634 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
2637 fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2638 // The top-level caller should hold the total_consistency_lock read lock.
2639 debug_assert!(self.total_consistency_lock.try_write().is_err());
2641 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2642 let prng_seed = self.entropy_source.get_secure_random_bytes();
2643 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2645 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2646 .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2647 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
2648 if onion_utils::route_size_insane(&onion_payloads) {
2649 return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
2651 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2653 let err: Result<(), _> = loop {
2654 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.first().unwrap().short_channel_id) {
2655 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2656 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2659 let per_peer_state = self.per_peer_state.read().unwrap();
2660 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2661 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2662 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2663 let peer_state = &mut *peer_state_lock;
2664 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2665 if !chan.get().is_live() {
2666 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2668 let funding_txo = chan.get().get_funding_txo().unwrap();
2669 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2670 htlc_cltv, HTLCSource::OutboundRoute {
2672 session_priv: session_priv.clone(),
2673 first_hop_htlc_msat: htlc_msat,
2675 }, onion_packet, &self.logger);
2676 match break_chan_entry!(self, send_res, chan) {
2677 Some(monitor_update) => {
2678 let update_id = monitor_update.update_id;
2679 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2680 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
2683 if update_res == ChannelMonitorUpdateStatus::InProgress {
2684 // Note that MonitorUpdateInProgress here indicates (per function
2685 // docs) that we will resend the commitment update once monitor
2686 // updating completes. Therefore, we must return an error
2687 // indicating that it is unsafe to retry the payment wholesale,
2688 // which we do in the send_payment check for
2689 // MonitorUpdateInProgress, below.
2690 return Err(APIError::MonitorUpdateInProgress);
2696 // The channel was likely removed after we fetched the id from the
2697 // `short_to_chan_info` map, but before we successfully locked the
2698 // `channel_by_id` map.
2699 // This can occur as no consistency guarantees exists between the two maps.
2700 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2705 match handle_error!(self, err, path.first().unwrap().pubkey) {
2706 Ok(_) => unreachable!(),
2708 Err(APIError::ChannelUnavailable { err: e.err })
2713 /// Sends a payment along a given route.
2715 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2716 /// fields for more info.
2718 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
2719 /// [`PeerManager::process_events`]).
2721 /// # Avoiding Duplicate Payments
2723 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2724 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2725 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2726 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2727 /// second payment with the same [`PaymentId`].
2729 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2730 /// tracking of payments, including state to indicate once a payment has completed. Because you
2731 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2732 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2733 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2735 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2736 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2737 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2738 /// [`ChannelManager::list_recent_payments`] for more information.
2740 /// # Possible Error States on [`PaymentSendFailure`]
2742 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
2743 /// each entry matching the corresponding-index entry in the route paths, see
2744 /// [`PaymentSendFailure`] for more info.
2746 /// In general, a path may raise:
2747 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2748 /// node public key) is specified.
2749 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2750 /// (including due to previous monitor update failure or new permanent monitor update
2752 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2753 /// relevant updates.
2755 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
2756 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2757 /// different route unless you intend to pay twice!
2759 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2760 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2761 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
2762 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2763 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2764 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2765 let best_block_height = self.best_block.read().unwrap().height();
2766 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2767 self.pending_outbound_payments
2768 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2769 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2770 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2773 /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2774 /// `route_params` and retry failed payment paths based on `retry_strategy`.
2775 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2776 let best_block_height = self.best_block.read().unwrap().height();
2777 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2778 self.pending_outbound_payments
2779 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
2780 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2781 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2782 &self.pending_events,
2783 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2784 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2788 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2789 let best_block_height = self.best_block.read().unwrap().height();
2790 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2791 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2792 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2793 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2797 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2798 let best_block_height = self.best_block.read().unwrap().height();
2799 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
2803 /// Signals that no further retries for the given payment should occur. Useful if you have a
2804 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2805 /// retries are exhausted.
2807 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2808 /// as there are no remaining pending HTLCs for this payment.
2810 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2811 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2812 /// determine the ultimate status of a payment.
2814 /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2815 /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2817 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2818 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2819 pub fn abandon_payment(&self, payment_id: PaymentId) {
2820 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2821 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
2824 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2825 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2826 /// the preimage, it must be a cryptographically secure random value that no intermediate node
2827 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2828 /// never reach the recipient.
2830 /// See [`send_payment`] documentation for more details on the return value of this function
2831 /// and idempotency guarantees provided by the [`PaymentId`] key.
2833 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2834 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2836 /// Note that `route` must have exactly one path.
2838 /// [`send_payment`]: Self::send_payment
2839 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2840 let best_block_height = self.best_block.read().unwrap().height();
2841 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2842 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2843 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
2844 &self.node_signer, best_block_height,
2845 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2846 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2849 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2850 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2852 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2855 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2856 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2857 let best_block_height = self.best_block.read().unwrap().height();
2858 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2859 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
2860 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
2861 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
2862 &self.logger, &self.pending_events,
2863 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2864 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2867 /// Send a payment that is probing the given route for liquidity. We calculate the
2868 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2869 /// us to easily discern them from real payments.
2870 pub fn send_probe(&self, hops: Vec<RouteHop>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2871 let best_block_height = self.best_block.read().unwrap().height();
2872 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2873 self.pending_outbound_payments.send_probe(hops, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2874 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2875 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2878 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2881 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2882 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2885 /// Handles the generation of a funding transaction, optionally (for tests) with a function
2886 /// which checks the correctness of the funding transaction given the associated channel.
2887 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2888 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2889 ) -> Result<(), APIError> {
2890 let per_peer_state = self.per_peer_state.read().unwrap();
2891 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2892 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2894 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2895 let peer_state = &mut *peer_state_lock;
2896 let (msg, chan) = match peer_state.channel_by_id.remove(temporary_channel_id) {
2898 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2900 let funding_res = chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2901 .map_err(|e| if let ChannelError::Close(msg) = e {
2902 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2903 } else { unreachable!(); });
2905 Ok(funding_msg) => (funding_msg, chan),
2907 mem::drop(peer_state_lock);
2908 mem::drop(per_peer_state);
2910 let _ = handle_error!(self, funding_res, chan.get_counterparty_node_id());
2911 return Err(APIError::ChannelUnavailable {
2912 err: "Signer refused to sign the initial commitment transaction".to_owned()
2918 return Err(APIError::ChannelUnavailable {
2920 "Channel with id {} not found for the passed counterparty node_id {}",
2921 log_bytes!(*temporary_channel_id), counterparty_node_id),
2926 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2927 node_id: chan.get_counterparty_node_id(),
2930 match peer_state.channel_by_id.entry(chan.channel_id()) {
2931 hash_map::Entry::Occupied(_) => {
2932 panic!("Generated duplicate funding txid?");
2934 hash_map::Entry::Vacant(e) => {
2935 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2936 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2937 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2946 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2947 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2948 Ok(OutPoint { txid: tx.txid(), index: output_index })
2952 /// Call this upon creation of a funding transaction for the given channel.
2954 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2955 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2957 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2958 /// across the p2p network.
2960 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2961 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2963 /// May panic if the output found in the funding transaction is duplicative with some other
2964 /// channel (note that this should be trivially prevented by using unique funding transaction
2965 /// keys per-channel).
2967 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2968 /// counterparty's signature the funding transaction will automatically be broadcast via the
2969 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2971 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2972 /// not currently support replacing a funding transaction on an existing channel. Instead,
2973 /// create a new channel with a conflicting funding transaction.
2975 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
2976 /// the wallet software generating the funding transaction to apply anti-fee sniping as
2977 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
2978 /// for more details.
2980 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
2981 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
2982 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2983 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2985 for inp in funding_transaction.input.iter() {
2986 if inp.witness.is_empty() {
2987 return Err(APIError::APIMisuseError {
2988 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2993 let height = self.best_block.read().unwrap().height();
2994 // Transactions are evaluated as final by network mempools at the next block. However, the modules
2995 // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
2996 // the wallet module is in advance on the LDK view, allow one more block of headroom.
2997 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 2 {
2998 return Err(APIError::APIMisuseError {
2999 err: "Funding transaction absolute timelock is non-final".to_owned()
3003 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
3004 let mut output_index = None;
3005 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
3006 for (idx, outp) in tx.output.iter().enumerate() {
3007 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
3008 if output_index.is_some() {
3009 return Err(APIError::APIMisuseError {
3010 err: "Multiple outputs matched the expected script and value".to_owned()
3013 if idx > u16::max_value() as usize {
3014 return Err(APIError::APIMisuseError {
3015 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3018 output_index = Some(idx as u16);
3021 if output_index.is_none() {
3022 return Err(APIError::APIMisuseError {
3023 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3026 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
3030 /// Atomically updates the [`ChannelConfig`] for the given channels.
3032 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3033 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3034 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3035 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3037 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3038 /// `counterparty_node_id` is provided.
3040 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3041 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3043 /// If an error is returned, none of the updates should be considered applied.
3045 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3046 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3047 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3048 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3049 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3050 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3051 /// [`APIMisuseError`]: APIError::APIMisuseError
3052 pub fn update_channel_config(
3053 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
3054 ) -> Result<(), APIError> {
3055 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
3056 return Err(APIError::APIMisuseError {
3057 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3061 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
3062 &self.total_consistency_lock, &self.persistence_notifier,
3064 let per_peer_state = self.per_peer_state.read().unwrap();
3065 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3066 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3067 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3068 let peer_state = &mut *peer_state_lock;
3069 for channel_id in channel_ids {
3070 if !peer_state.channel_by_id.contains_key(channel_id) {
3071 return Err(APIError::ChannelUnavailable {
3072 err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
3076 for channel_id in channel_ids {
3077 let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
3078 if !channel.update_config(config) {
3081 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3082 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3083 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3084 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3085 node_id: channel.get_counterparty_node_id(),
3093 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
3094 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
3096 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
3097 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
3099 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
3100 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
3101 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
3102 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
3103 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
3105 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
3106 /// you from forwarding more than you received.
3108 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3111 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
3112 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3113 // TODO: when we move to deciding the best outbound channel at forward time, only take
3114 // `next_node_id` and not `next_hop_channel_id`
3115 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
3116 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3118 let next_hop_scid = {
3119 let peer_state_lock = self.per_peer_state.read().unwrap();
3120 let peer_state_mutex = peer_state_lock.get(&next_node_id)
3121 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
3122 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3123 let peer_state = &mut *peer_state_lock;
3124 match peer_state.channel_by_id.get(next_hop_channel_id) {
3126 if !chan.is_usable() {
3127 return Err(APIError::ChannelUnavailable {
3128 err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
3131 chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
3133 None => return Err(APIError::ChannelUnavailable {
3134 err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
3139 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3140 .ok_or_else(|| APIError::APIMisuseError {
3141 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3144 let routing = match payment.forward_info.routing {
3145 PendingHTLCRouting::Forward { onion_packet, .. } => {
3146 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
3148 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
3150 let pending_htlc_info = PendingHTLCInfo {
3151 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
3154 let mut per_source_pending_forward = [(
3155 payment.prev_short_channel_id,
3156 payment.prev_funding_outpoint,
3157 payment.prev_user_channel_id,
3158 vec![(pending_htlc_info, payment.prev_htlc_id)]
3160 self.forward_htlcs(&mut per_source_pending_forward);
3164 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3165 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3167 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3170 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3171 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3172 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3174 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3175 .ok_or_else(|| APIError::APIMisuseError {
3176 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3179 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3180 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3181 short_channel_id: payment.prev_short_channel_id,
3182 outpoint: payment.prev_funding_outpoint,
3183 htlc_id: payment.prev_htlc_id,
3184 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3185 phantom_shared_secret: None,
3188 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3189 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3190 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3191 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3196 /// Processes HTLCs which are pending waiting on random forward delay.
3198 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3199 /// Will likely generate further events.
3200 pub fn process_pending_htlc_forwards(&self) {
3201 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3203 let mut new_events = Vec::new();
3204 let mut failed_forwards = Vec::new();
3205 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3207 let mut forward_htlcs = HashMap::new();
3208 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3210 for (short_chan_id, mut pending_forwards) in forward_htlcs {
3211 if short_chan_id != 0 {
3212 macro_rules! forwarding_channel_not_found {
3214 for forward_info in pending_forwards.drain(..) {
3215 match forward_info {
3216 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3217 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3218 forward_info: PendingHTLCInfo {
3219 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3220 outgoing_cltv_value, incoming_amt_msat: _
3223 macro_rules! failure_handler {
3224 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3225 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3227 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3228 short_channel_id: prev_short_channel_id,
3229 outpoint: prev_funding_outpoint,
3230 htlc_id: prev_htlc_id,
3231 incoming_packet_shared_secret: incoming_shared_secret,
3232 phantom_shared_secret: $phantom_ss,
3235 let reason = if $next_hop_unknown {
3236 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3238 HTLCDestination::FailedPayment{ payment_hash }
3241 failed_forwards.push((htlc_source, payment_hash,
3242 HTLCFailReason::reason($err_code, $err_data),
3248 macro_rules! fail_forward {
3249 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3251 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3255 macro_rules! failed_payment {
3256 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3258 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3262 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3263 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3264 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3265 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3266 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3268 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3269 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3270 // In this scenario, the phantom would have sent us an
3271 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3272 // if it came from us (the second-to-last hop) but contains the sha256
3274 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3276 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3277 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3281 onion_utils::Hop::Receive(hop_data) => {
3282 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3283 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3284 Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3290 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3293 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3296 HTLCForwardInfo::FailHTLC { .. } => {
3297 // Channel went away before we could fail it. This implies
3298 // the channel is now on chain and our counterparty is
3299 // trying to broadcast the HTLC-Timeout, but that's their
3300 // problem, not ours.
3306 let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3307 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3309 forwarding_channel_not_found!();
3313 let per_peer_state = self.per_peer_state.read().unwrap();
3314 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3315 if peer_state_mutex_opt.is_none() {
3316 forwarding_channel_not_found!();
3319 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3320 let peer_state = &mut *peer_state_lock;
3321 match peer_state.channel_by_id.entry(forward_chan_id) {
3322 hash_map::Entry::Vacant(_) => {
3323 forwarding_channel_not_found!();
3326 hash_map::Entry::Occupied(mut chan) => {
3327 for forward_info in pending_forwards.drain(..) {
3328 match forward_info {
3329 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3330 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3331 forward_info: PendingHTLCInfo {
3332 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3333 routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3336 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3337 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3338 short_channel_id: prev_short_channel_id,
3339 outpoint: prev_funding_outpoint,
3340 htlc_id: prev_htlc_id,
3341 incoming_packet_shared_secret: incoming_shared_secret,
3342 // Phantom payments are only PendingHTLCRouting::Receive.
3343 phantom_shared_secret: None,
3345 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3346 payment_hash, outgoing_cltv_value, htlc_source.clone(),
3347 onion_packet, &self.logger)
3349 if let ChannelError::Ignore(msg) = e {
3350 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3352 panic!("Stated return value requirements in send_htlc() were not met");
3354 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3355 failed_forwards.push((htlc_source, payment_hash,
3356 HTLCFailReason::reason(failure_code, data),
3357 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3362 HTLCForwardInfo::AddHTLC { .. } => {
3363 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3365 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3366 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3367 if let Err(e) = chan.get_mut().queue_fail_htlc(
3368 htlc_id, err_packet, &self.logger
3370 if let ChannelError::Ignore(msg) = e {
3371 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3373 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3375 // fail-backs are best-effort, we probably already have one
3376 // pending, and if not that's OK, if not, the channel is on
3377 // the chain and sending the HTLC-Timeout is their problem.
3386 for forward_info in pending_forwards.drain(..) {
3387 match forward_info {
3388 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3389 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3390 forward_info: PendingHTLCInfo {
3391 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat, ..
3394 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3395 PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3396 let _legacy_hop_data = Some(payment_data.clone());
3397 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3399 PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3400 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3402 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3405 let mut claimable_htlc = ClaimableHTLC {
3406 prev_hop: HTLCPreviousHopData {
3407 short_channel_id: prev_short_channel_id,
3408 outpoint: prev_funding_outpoint,
3409 htlc_id: prev_htlc_id,
3410 incoming_packet_shared_secret: incoming_shared_secret,
3411 phantom_shared_secret,
3413 // We differentiate the received value from the sender intended value
3414 // if possible so that we don't prematurely mark MPP payments complete
3415 // if routing nodes overpay
3416 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
3417 sender_intended_value: outgoing_amt_msat,
3419 total_value_received: None,
3420 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3425 macro_rules! fail_htlc {
3426 ($htlc: expr, $payment_hash: expr) => {
3427 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3428 htlc_msat_height_data.extend_from_slice(
3429 &self.best_block.read().unwrap().height().to_be_bytes(),
3431 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3432 short_channel_id: $htlc.prev_hop.short_channel_id,
3433 outpoint: prev_funding_outpoint,
3434 htlc_id: $htlc.prev_hop.htlc_id,
3435 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3436 phantom_shared_secret,
3438 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3439 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3443 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3444 let mut receiver_node_id = self.our_network_pubkey;
3445 if phantom_shared_secret.is_some() {
3446 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3447 .expect("Failed to get node_id for phantom node recipient");
3450 macro_rules! check_total_value {
3451 ($payment_data: expr, $payment_preimage: expr) => {{
3452 let mut payment_claimable_generated = false;
3454 events::PaymentPurpose::InvoicePayment {
3455 payment_preimage: $payment_preimage,
3456 payment_secret: $payment_data.payment_secret,
3459 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3460 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3461 fail_htlc!(claimable_htlc, payment_hash);
3464 let (_, ref mut htlcs) = claimable_payments.claimable_htlcs.entry(payment_hash)
3465 .or_insert_with(|| (purpose(), Vec::new()));
3466 if htlcs.len() == 1 {
3467 if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3468 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3469 fail_htlc!(claimable_htlc, payment_hash);
3473 let mut total_value = claimable_htlc.sender_intended_value;
3474 let mut earliest_expiry = claimable_htlc.cltv_expiry;
3475 for htlc in htlcs.iter() {
3476 total_value += htlc.sender_intended_value;
3477 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
3478 match &htlc.onion_payload {
3479 OnionPayload::Invoice { .. } => {
3480 if htlc.total_msat != $payment_data.total_msat {
3481 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3482 log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3483 total_value = msgs::MAX_VALUE_MSAT;
3485 if total_value >= msgs::MAX_VALUE_MSAT { break; }
3487 _ => unreachable!(),
3490 // The condition determining whether an MPP is complete must
3491 // match exactly the condition used in `timer_tick_occurred`
3492 if total_value >= msgs::MAX_VALUE_MSAT {
3493 fail_htlc!(claimable_htlc, payment_hash);
3494 } else if total_value - claimable_htlc.sender_intended_value >= $payment_data.total_msat {
3495 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
3496 log_bytes!(payment_hash.0));
3497 fail_htlc!(claimable_htlc, payment_hash);
3498 } else if total_value >= $payment_data.total_msat {
3499 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3500 htlcs.push(claimable_htlc);
3501 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
3502 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
3503 new_events.push(events::Event::PaymentClaimable {
3504 receiver_node_id: Some(receiver_node_id),
3508 via_channel_id: Some(prev_channel_id),
3509 via_user_channel_id: Some(prev_user_channel_id),
3510 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
3512 payment_claimable_generated = true;
3514 // Nothing to do - we haven't reached the total
3515 // payment value yet, wait until we receive more
3517 htlcs.push(claimable_htlc);
3519 payment_claimable_generated
3523 // Check that the payment hash and secret are known. Note that we
3524 // MUST take care to handle the "unknown payment hash" and
3525 // "incorrect payment secret" cases here identically or we'd expose
3526 // that we are the ultimate recipient of the given payment hash.
3527 // Further, we must not expose whether we have any other HTLCs
3528 // associated with the same payment_hash pending or not.
3529 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3530 match payment_secrets.entry(payment_hash) {
3531 hash_map::Entry::Vacant(_) => {
3532 match claimable_htlc.onion_payload {
3533 OnionPayload::Invoice { .. } => {
3534 let payment_data = payment_data.unwrap();
3535 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3536 Ok(result) => result,
3538 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3539 fail_htlc!(claimable_htlc, payment_hash);
3543 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3544 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3545 if (cltv_expiry as u64) < expected_min_expiry_height {
3546 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3547 log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3548 fail_htlc!(claimable_htlc, payment_hash);
3552 check_total_value!(payment_data, payment_preimage);
3554 OnionPayload::Spontaneous(preimage) => {
3555 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3556 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3557 fail_htlc!(claimable_htlc, payment_hash);
3560 match claimable_payments.claimable_htlcs.entry(payment_hash) {
3561 hash_map::Entry::Vacant(e) => {
3562 let amount_msat = claimable_htlc.value;
3563 claimable_htlc.total_value_received = Some(amount_msat);
3564 let claim_deadline = Some(claimable_htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER);
3565 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3566 e.insert((purpose.clone(), vec![claimable_htlc]));
3567 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3568 new_events.push(events::Event::PaymentClaimable {
3569 receiver_node_id: Some(receiver_node_id),
3573 via_channel_id: Some(prev_channel_id),
3574 via_user_channel_id: Some(prev_user_channel_id),
3578 hash_map::Entry::Occupied(_) => {
3579 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3580 fail_htlc!(claimable_htlc, payment_hash);
3586 hash_map::Entry::Occupied(inbound_payment) => {
3587 if payment_data.is_none() {
3588 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3589 fail_htlc!(claimable_htlc, payment_hash);
3592 let payment_data = payment_data.unwrap();
3593 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3594 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3595 fail_htlc!(claimable_htlc, payment_hash);
3596 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3597 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3598 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3599 fail_htlc!(claimable_htlc, payment_hash);
3601 let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3602 if payment_claimable_generated {
3603 inbound_payment.remove_entry();
3609 HTLCForwardInfo::FailHTLC { .. } => {
3610 panic!("Got pending fail of our own HTLC");
3618 let best_block_height = self.best_block.read().unwrap().height();
3619 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3620 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3621 &self.pending_events, &self.logger,
3622 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3623 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3625 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3626 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3628 self.forward_htlcs(&mut phantom_receives);
3630 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3631 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3632 // nice to do the work now if we can rather than while we're trying to get messages in the
3634 self.check_free_holding_cells();
3636 if new_events.is_empty() { return }
3637 let mut events = self.pending_events.lock().unwrap();
3638 events.append(&mut new_events);
3641 /// Free the background events, generally called from timer_tick_occurred.
3643 /// Exposed for testing to allow us to process events quickly without generating accidental
3644 /// BroadcastChannelUpdate events in timer_tick_occurred.
3646 /// Expects the caller to have a total_consistency_lock read lock.
3647 fn process_background_events(&self) -> bool {
3648 let mut background_events = Vec::new();
3649 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3650 if background_events.is_empty() {
3654 for event in background_events.drain(..) {
3656 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3657 // The channel has already been closed, so no use bothering to care about the
3658 // monitor updating completing.
3659 let _ = self.chain_monitor.update_channel(funding_txo, &update);
3666 #[cfg(any(test, feature = "_test_utils"))]
3667 /// Process background events, for functional testing
3668 pub fn test_process_background_events(&self) {
3669 self.process_background_events();
3672 fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3673 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3674 // If the feerate has decreased by less than half, don't bother
3675 if new_feerate <= chan.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.get_feerate_sat_per_1000_weight() {
3676 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3677 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3678 return NotifyOption::SkipPersist;
3680 if !chan.is_live() {
3681 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3682 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3683 return NotifyOption::SkipPersist;
3685 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3686 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3688 chan.queue_update_fee(new_feerate, &self.logger);
3689 NotifyOption::DoPersist
3693 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3694 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3695 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3696 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3697 pub fn maybe_update_chan_fees(&self) {
3698 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3699 let mut should_persist = NotifyOption::SkipPersist;
3701 let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3703 let per_peer_state = self.per_peer_state.read().unwrap();
3704 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3705 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3706 let peer_state = &mut *peer_state_lock;
3707 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3708 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3709 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3717 /// Performs actions which should happen on startup and roughly once per minute thereafter.
3719 /// This currently includes:
3720 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3721 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
3722 /// than a minute, informing the network that they should no longer attempt to route over
3724 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
3725 /// with the current [`ChannelConfig`].
3726 /// * Removing peers which have disconnected but and no longer have any channels.
3728 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
3729 /// estimate fetches.
3731 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3732 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
3733 pub fn timer_tick_occurred(&self) {
3734 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3735 let mut should_persist = NotifyOption::SkipPersist;
3736 if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3738 let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3740 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3741 let mut timed_out_mpp_htlcs = Vec::new();
3742 let mut pending_peers_awaiting_removal = Vec::new();
3744 let per_peer_state = self.per_peer_state.read().unwrap();
3745 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3746 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3747 let peer_state = &mut *peer_state_lock;
3748 let pending_msg_events = &mut peer_state.pending_msg_events;
3749 let counterparty_node_id = *counterparty_node_id;
3750 peer_state.channel_by_id.retain(|chan_id, chan| {
3751 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3752 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3754 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3755 let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3756 handle_errors.push((Err(err), counterparty_node_id));
3757 if needs_close { return false; }
3760 match chan.channel_update_status() {
3761 ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
3762 ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
3763 ChannelUpdateStatus::DisabledStaged(_) if chan.is_live()
3764 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3765 ChannelUpdateStatus::EnabledStaged(_) if !chan.is_live()
3766 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3767 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.is_live() => {
3769 if n >= DISABLE_GOSSIP_TICKS {
3770 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3771 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3772 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3776 should_persist = NotifyOption::DoPersist;
3778 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
3781 ChannelUpdateStatus::EnabledStaged(mut n) if chan.is_live() => {
3783 if n >= ENABLE_GOSSIP_TICKS {
3784 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3785 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3786 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3790 should_persist = NotifyOption::DoPersist;
3792 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
3798 chan.maybe_expire_prev_config();
3802 if peer_state.ok_to_remove(true) {
3803 pending_peers_awaiting_removal.push(counterparty_node_id);
3808 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3809 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3810 // of to that peer is later closed while still being disconnected (i.e. force closed),
3811 // we therefore need to remove the peer from `peer_state` separately.
3812 // To avoid having to take the `per_peer_state` `write` lock once the channels are
3813 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3814 // negative effects on parallelism as much as possible.
3815 if pending_peers_awaiting_removal.len() > 0 {
3816 let mut per_peer_state = self.per_peer_state.write().unwrap();
3817 for counterparty_node_id in pending_peers_awaiting_removal {
3818 match per_peer_state.entry(counterparty_node_id) {
3819 hash_map::Entry::Occupied(entry) => {
3820 // Remove the entry if the peer is still disconnected and we still
3821 // have no channels to the peer.
3822 let remove_entry = {
3823 let peer_state = entry.get().lock().unwrap();
3824 peer_state.ok_to_remove(true)
3827 entry.remove_entry();
3830 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3835 self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3836 if htlcs.is_empty() {
3837 // This should be unreachable
3838 debug_assert!(false);
3841 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3842 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3843 // In this case we're not going to handle any timeouts of the parts here.
3844 // This condition determining whether the MPP is complete here must match
3845 // exactly the condition used in `process_pending_htlc_forwards`.
3846 if htlcs[0].total_msat <= htlcs.iter().fold(0, |total, htlc| total + htlc.sender_intended_value) {
3848 } else if htlcs.into_iter().any(|htlc| {
3849 htlc.timer_ticks += 1;
3850 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3852 timed_out_mpp_htlcs.extend(htlcs.drain(..).map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3859 for htlc_source in timed_out_mpp_htlcs.drain(..) {
3860 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3861 let reason = HTLCFailReason::from_failure_code(23);
3862 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3863 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3866 for (err, counterparty_node_id) in handle_errors.drain(..) {
3867 let _ = handle_error!(self, err, counterparty_node_id);
3870 self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3872 // Technically we don't need to do this here, but if we have holding cell entries in a
3873 // channel that need freeing, it's better to do that here and block a background task
3874 // than block the message queueing pipeline.
3875 if self.check_free_holding_cells() {
3876 should_persist = NotifyOption::DoPersist;
3883 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3884 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
3885 /// along the path (including in our own channel on which we received it).
3887 /// Note that in some cases around unclean shutdown, it is possible the payment may have
3888 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3889 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
3890 /// may have already been failed automatically by LDK if it was nearing its expiration time.
3892 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3893 /// [`ChannelManager::claim_funds`]), you should still monitor for
3894 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3895 /// startup during which time claims that were in-progress at shutdown may be replayed.
3896 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3897 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
3900 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
3901 /// reason for the failure.
3903 /// See [`FailureCode`] for valid failure codes.
3904 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
3905 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3907 let removed_source = self.claimable_payments.lock().unwrap().claimable_htlcs.remove(payment_hash);
3908 if let Some((_, mut sources)) = removed_source {
3909 for htlc in sources.drain(..) {
3910 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
3911 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3912 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
3913 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3918 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
3919 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
3920 match failure_code {
3921 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
3922 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
3923 FailureCode::IncorrectOrUnknownPaymentDetails => {
3924 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3925 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3926 HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
3931 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3932 /// that we want to return and a channel.
3934 /// This is for failures on the channel on which the HTLC was *received*, not failures
3936 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3937 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3938 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3939 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3940 // an inbound SCID alias before the real SCID.
3941 let scid_pref = if chan.should_announce() {
3942 chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3944 chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3946 if let Some(scid) = scid_pref {
3947 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3949 (0x4000|10, Vec::new())
3954 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3955 /// that we want to return and a channel.
3956 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3957 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3958 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3959 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3960 if desired_err_code == 0x1000 | 20 {
3961 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
3962 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
3963 0u16.write(&mut enc).expect("Writes cannot fail");
3965 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3966 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3967 upd.write(&mut enc).expect("Writes cannot fail");
3968 (desired_err_code, enc.0)
3970 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3971 // which means we really shouldn't have gotten a payment to be forwarded over this
3972 // channel yet, or if we did it's from a route hint. Either way, returning an error of
3973 // PERM|no_such_channel should be fine.
3974 (0x4000|10, Vec::new())
3978 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3979 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3980 // be surfaced to the user.
3981 fn fail_holding_cell_htlcs(
3982 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3983 counterparty_node_id: &PublicKey
3985 let (failure_code, onion_failure_data) = {
3986 let per_peer_state = self.per_peer_state.read().unwrap();
3987 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3988 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3989 let peer_state = &mut *peer_state_lock;
3990 match peer_state.channel_by_id.entry(channel_id) {
3991 hash_map::Entry::Occupied(chan_entry) => {
3992 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3994 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3996 } else { (0x4000|10, Vec::new()) }
3999 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
4000 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
4001 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
4002 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
4006 /// Fails an HTLC backwards to the sender of it to us.
4007 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
4008 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
4009 // Ensure that no peer state channel storage lock is held when calling this function.
4010 // This ensures that future code doesn't introduce a lock-order requirement for
4011 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
4012 // this function with any `per_peer_state` peer lock acquired would.
4013 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
4014 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
4017 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
4018 //identify whether we sent it or not based on the (I presume) very different runtime
4019 //between the branches here. We should make this async and move it into the forward HTLCs
4022 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4023 // from block_connected which may run during initialization prior to the chain_monitor
4024 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
4026 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
4027 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
4028 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
4029 &self.pending_events, &self.logger)
4030 { self.push_pending_forwards_ev(); }
4032 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
4033 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
4034 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
4036 let mut push_forward_ev = false;
4037 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4038 if forward_htlcs.is_empty() {
4039 push_forward_ev = true;
4041 match forward_htlcs.entry(*short_channel_id) {
4042 hash_map::Entry::Occupied(mut entry) => {
4043 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
4045 hash_map::Entry::Vacant(entry) => {
4046 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
4049 mem::drop(forward_htlcs);
4050 if push_forward_ev { self.push_pending_forwards_ev(); }
4051 let mut pending_events = self.pending_events.lock().unwrap();
4052 pending_events.push(events::Event::HTLCHandlingFailed {
4053 prev_channel_id: outpoint.to_channel_id(),
4054 failed_next_destination: destination,
4060 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
4061 /// [`MessageSendEvent`]s needed to claim the payment.
4063 /// This method is guaranteed to ensure the payment has been claimed but only if the current
4064 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
4065 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
4066 /// successful. It will generally be available in the next [`process_pending_events`] call.
4068 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
4069 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
4070 /// event matches your expectation. If you fail to do so and call this method, you may provide
4071 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
4073 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
4074 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
4075 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
4076 /// [`process_pending_events`]: EventsProvider::process_pending_events
4077 /// [`create_inbound_payment`]: Self::create_inbound_payment
4078 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
4079 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
4080 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4082 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4085 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4086 if let Some((payment_purpose, sources)) = claimable_payments.claimable_htlcs.remove(&payment_hash) {
4087 let mut receiver_node_id = self.our_network_pubkey;
4088 for htlc in sources.iter() {
4089 if htlc.prev_hop.phantom_shared_secret.is_some() {
4090 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
4091 .expect("Failed to get node_id for phantom node recipient");
4092 receiver_node_id = phantom_pubkey;
4097 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
4098 ClaimingPayment { amount_msat: sources.iter().map(|source| source.value).sum(),
4099 payment_purpose, receiver_node_id,
4101 if dup_purpose.is_some() {
4102 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
4103 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
4104 log_bytes!(payment_hash.0));
4109 debug_assert!(!sources.is_empty());
4111 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
4112 // and when we got here we need to check that the amount we're about to claim matches the
4113 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
4114 // the MPP parts all have the same `total_msat`.
4115 let mut claimable_amt_msat = 0;
4116 let mut prev_total_msat = None;
4117 let mut expected_amt_msat = None;
4118 let mut valid_mpp = true;
4119 let mut errs = Vec::new();
4120 let per_peer_state = self.per_peer_state.read().unwrap();
4121 for htlc in sources.iter() {
4122 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
4123 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
4124 debug_assert!(false);
4128 prev_total_msat = Some(htlc.total_msat);
4130 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
4131 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
4132 debug_assert!(false);
4136 expected_amt_msat = htlc.total_value_received;
4138 if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
4139 // We don't currently support MPP for spontaneous payments, so just check
4140 // that there's one payment here and move on.
4141 if sources.len() != 1 {
4142 log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
4143 debug_assert!(false);
4149 claimable_amt_msat += htlc.value;
4151 mem::drop(per_peer_state);
4152 if sources.is_empty() || expected_amt_msat.is_none() {
4153 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4154 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
4157 if claimable_amt_msat != expected_amt_msat.unwrap() {
4158 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4159 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
4160 expected_amt_msat.unwrap(), claimable_amt_msat);
4164 for htlc in sources.drain(..) {
4165 if let Err((pk, err)) = self.claim_funds_from_hop(
4166 htlc.prev_hop, payment_preimage,
4167 |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
4169 if let msgs::ErrorAction::IgnoreError = err.err.action {
4170 // We got a temporary failure updating monitor, but will claim the
4171 // HTLC when the monitor updating is restored (or on chain).
4172 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
4173 } else { errs.push((pk, err)); }
4178 for htlc in sources.drain(..) {
4179 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4180 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4181 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4182 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
4183 let receiver = HTLCDestination::FailedPayment { payment_hash };
4184 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4186 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4189 // Now we can handle any errors which were generated.
4190 for (counterparty_node_id, err) in errs.drain(..) {
4191 let res: Result<(), _> = Err(err);
4192 let _ = handle_error!(self, res, counterparty_node_id);
4196 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
4197 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
4198 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
4199 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4202 let per_peer_state = self.per_peer_state.read().unwrap();
4203 let chan_id = prev_hop.outpoint.to_channel_id();
4204 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
4205 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
4209 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
4210 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
4211 .map(|peer_mutex| peer_mutex.lock().unwrap())
4214 if peer_state_opt.is_some() {
4215 let mut peer_state_lock = peer_state_opt.unwrap();
4216 let peer_state = &mut *peer_state_lock;
4217 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
4218 let counterparty_node_id = chan.get().get_counterparty_node_id();
4219 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
4221 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
4222 if let Some(action) = completion_action(Some(htlc_value_msat)) {
4223 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4224 log_bytes!(chan_id), action);
4225 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4227 let update_id = monitor_update.update_id;
4228 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
4229 let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4230 peer_state, per_peer_state, chan);
4231 if let Err(e) = res {
4232 // TODO: This is a *critical* error - we probably updated the outbound edge
4233 // of the HTLC's monitor with a preimage. We should retry this monitor
4234 // update over and over again until morale improves.
4235 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4236 return Err((counterparty_node_id, e));
4243 let preimage_update = ChannelMonitorUpdate {
4244 update_id: CLOSED_CHANNEL_UPDATE_ID,
4245 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4249 // We update the ChannelMonitor on the backward link, after
4250 // receiving an `update_fulfill_htlc` from the forward link.
4251 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4252 if update_res != ChannelMonitorUpdateStatus::Completed {
4253 // TODO: This needs to be handled somehow - if we receive a monitor update
4254 // with a preimage we *must* somehow manage to propagate it to the upstream
4255 // channel, or we must have an ability to receive the same event and try
4256 // again on restart.
4257 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4258 payment_preimage, update_res);
4260 // Note that we do process the completion action here. This totally could be a
4261 // duplicate claim, but we have no way of knowing without interrogating the
4262 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4263 // generally always allowed to be duplicative (and it's specifically noted in
4264 // `PaymentForwarded`).
4265 self.handle_monitor_update_completion_actions(completion_action(None));
4269 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4270 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4273 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4275 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4276 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4278 HTLCSource::PreviousHopData(hop_data) => {
4279 let prev_outpoint = hop_data.outpoint;
4280 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4281 |htlc_claim_value_msat| {
4282 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4283 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4284 Some(claimed_htlc_value - forwarded_htlc_value)
4287 let prev_channel_id = Some(prev_outpoint.to_channel_id());
4288 let next_channel_id = Some(next_channel_id);
4290 Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4292 claim_from_onchain_tx: from_onchain,
4295 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
4299 if let Err((pk, err)) = res {
4300 let result: Result<(), _> = Err(err);
4301 let _ = handle_error!(self, result, pk);
4307 /// Gets the node_id held by this ChannelManager
4308 pub fn get_our_node_id(&self) -> PublicKey {
4309 self.our_network_pubkey.clone()
4312 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4313 for action in actions.into_iter() {
4315 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4316 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4317 if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4318 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4319 payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4323 MonitorUpdateCompletionAction::EmitEvent { event } => {
4324 self.pending_events.lock().unwrap().push(event);
4330 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4331 /// update completion.
4332 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4333 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4334 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4335 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4336 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4337 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4338 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4339 log_bytes!(channel.channel_id()),
4340 if raa.is_some() { "an" } else { "no" },
4341 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4342 if funding_broadcastable.is_some() { "" } else { "not " },
4343 if channel_ready.is_some() { "sending" } else { "without" },
4344 if announcement_sigs.is_some() { "sending" } else { "without" });
4346 let mut htlc_forwards = None;
4348 let counterparty_node_id = channel.get_counterparty_node_id();
4349 if !pending_forwards.is_empty() {
4350 htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4351 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4354 if let Some(msg) = channel_ready {
4355 send_channel_ready!(self, pending_msg_events, channel, msg);
4357 if let Some(msg) = announcement_sigs {
4358 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4359 node_id: counterparty_node_id,
4364 macro_rules! handle_cs { () => {
4365 if let Some(update) = commitment_update {
4366 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4367 node_id: counterparty_node_id,
4372 macro_rules! handle_raa { () => {
4373 if let Some(revoke_and_ack) = raa {
4374 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4375 node_id: counterparty_node_id,
4376 msg: revoke_and_ack,
4381 RAACommitmentOrder::CommitmentFirst => {
4385 RAACommitmentOrder::RevokeAndACKFirst => {
4391 if let Some(tx) = funding_broadcastable {
4392 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4393 self.tx_broadcaster.broadcast_transaction(&tx);
4397 let mut pending_events = self.pending_events.lock().unwrap();
4398 emit_channel_pending_event!(pending_events, channel);
4399 emit_channel_ready_event!(pending_events, channel);
4405 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4406 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4408 let counterparty_node_id = match counterparty_node_id {
4409 Some(cp_id) => cp_id.clone(),
4411 // TODO: Once we can rely on the counterparty_node_id from the
4412 // monitor event, this and the id_to_peer map should be removed.
4413 let id_to_peer = self.id_to_peer.lock().unwrap();
4414 match id_to_peer.get(&funding_txo.to_channel_id()) {
4415 Some(cp_id) => cp_id.clone(),
4420 let per_peer_state = self.per_peer_state.read().unwrap();
4421 let mut peer_state_lock;
4422 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4423 if peer_state_mutex_opt.is_none() { return }
4424 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4425 let peer_state = &mut *peer_state_lock;
4427 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4428 hash_map::Entry::Occupied(chan) => chan,
4429 hash_map::Entry::Vacant(_) => return,
4432 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4433 highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4434 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4437 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4440 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4442 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4443 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4446 /// The `user_channel_id` parameter will be provided back in
4447 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4448 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4450 /// Note that this method will return an error and reject the channel, if it requires support
4451 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4452 /// used to accept such channels.
4454 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4455 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4456 pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4457 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4460 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4461 /// it as confirmed immediately.
4463 /// The `user_channel_id` parameter will be provided back in
4464 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4465 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4467 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4468 /// and (if the counterparty agrees), enables forwarding of payments immediately.
4470 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4471 /// transaction and blindly assumes that it will eventually confirm.
4473 /// If it does not confirm before we decide to close the channel, or if the funding transaction
4474 /// does not pay to the correct script the correct amount, *you will lose funds*.
4476 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4477 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4478 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4479 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4482 fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4483 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4485 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4486 let per_peer_state = self.per_peer_state.read().unwrap();
4487 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4488 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4489 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4490 let peer_state = &mut *peer_state_lock;
4491 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4492 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4493 hash_map::Entry::Occupied(mut channel) => {
4494 if !channel.get().inbound_is_awaiting_accept() {
4495 return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4498 channel.get_mut().set_0conf();
4499 } else if channel.get().get_channel_type().requires_zero_conf() {
4500 let send_msg_err_event = events::MessageSendEvent::HandleError {
4501 node_id: channel.get().get_counterparty_node_id(),
4502 action: msgs::ErrorAction::SendErrorMessage{
4503 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4506 peer_state.pending_msg_events.push(send_msg_err_event);
4507 let _ = remove_channel!(self, channel);
4508 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4510 // If this peer already has some channels, a new channel won't increase our number of peers
4511 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4512 // channels per-peer we can accept channels from a peer with existing ones.
4513 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4514 let send_msg_err_event = events::MessageSendEvent::HandleError {
4515 node_id: channel.get().get_counterparty_node_id(),
4516 action: msgs::ErrorAction::SendErrorMessage{
4517 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4520 peer_state.pending_msg_events.push(send_msg_err_event);
4521 let _ = remove_channel!(self, channel);
4522 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4526 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4527 node_id: channel.get().get_counterparty_node_id(),
4528 msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4531 hash_map::Entry::Vacant(_) => {
4532 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4538 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4539 /// or 0-conf channels.
4541 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4542 /// non-0-conf channels we have with the peer.
4543 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4544 where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4545 let mut peers_without_funded_channels = 0;
4546 let best_block_height = self.best_block.read().unwrap().height();
4548 let peer_state_lock = self.per_peer_state.read().unwrap();
4549 for (_, peer_mtx) in peer_state_lock.iter() {
4550 let peer = peer_mtx.lock().unwrap();
4551 if !maybe_count_peer(&*peer) { continue; }
4552 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4553 if num_unfunded_channels == peer.channel_by_id.len() {
4554 peers_without_funded_channels += 1;
4558 return peers_without_funded_channels;
4561 fn unfunded_channel_count(
4562 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4564 let mut num_unfunded_channels = 0;
4565 for (_, chan) in peer.channel_by_id.iter() {
4566 if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4567 chan.get_funding_tx_confirmations(best_block_height) == 0
4569 num_unfunded_channels += 1;
4572 num_unfunded_channels
4575 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4576 if msg.chain_hash != self.genesis_hash {
4577 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4580 if !self.default_configuration.accept_inbound_channels {
4581 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4584 let mut random_bytes = [0u8; 16];
4585 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4586 let user_channel_id = u128::from_be_bytes(random_bytes);
4587 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4589 // Get the number of peers with channels, but without funded ones. We don't care too much
4590 // about peers that never open a channel, so we filter by peers that have at least one
4591 // channel, and then limit the number of those with unfunded channels.
4592 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4594 let per_peer_state = self.per_peer_state.read().unwrap();
4595 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4597 debug_assert!(false);
4598 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4600 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4601 let peer_state = &mut *peer_state_lock;
4603 // If this peer already has some channels, a new channel won't increase our number of peers
4604 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4605 // channels per-peer we can accept channels from a peer with existing ones.
4606 if peer_state.channel_by_id.is_empty() &&
4607 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4608 !self.default_configuration.manually_accept_inbound_channels
4610 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4611 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4612 msg.temporary_channel_id.clone()));
4615 let best_block_height = self.best_block.read().unwrap().height();
4616 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4617 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4618 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4619 msg.temporary_channel_id.clone()));
4622 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4623 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4624 &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4627 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4628 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4632 match peer_state.channel_by_id.entry(channel.channel_id()) {
4633 hash_map::Entry::Occupied(_) => {
4634 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4635 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4637 hash_map::Entry::Vacant(entry) => {
4638 if !self.default_configuration.manually_accept_inbound_channels {
4639 if channel.get_channel_type().requires_zero_conf() {
4640 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4642 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4643 node_id: counterparty_node_id.clone(),
4644 msg: channel.accept_inbound_channel(user_channel_id),
4647 let mut pending_events = self.pending_events.lock().unwrap();
4648 pending_events.push(
4649 events::Event::OpenChannelRequest {
4650 temporary_channel_id: msg.temporary_channel_id.clone(),
4651 counterparty_node_id: counterparty_node_id.clone(),
4652 funding_satoshis: msg.funding_satoshis,
4653 push_msat: msg.push_msat,
4654 channel_type: channel.get_channel_type().clone(),
4659 entry.insert(channel);
4665 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4666 let (value, output_script, user_id) = {
4667 let per_peer_state = self.per_peer_state.read().unwrap();
4668 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4670 debug_assert!(false);
4671 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4673 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4674 let peer_state = &mut *peer_state_lock;
4675 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4676 hash_map::Entry::Occupied(mut chan) => {
4677 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4678 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4680 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4683 let mut pending_events = self.pending_events.lock().unwrap();
4684 pending_events.push(events::Event::FundingGenerationReady {
4685 temporary_channel_id: msg.temporary_channel_id,
4686 counterparty_node_id: *counterparty_node_id,
4687 channel_value_satoshis: value,
4689 user_channel_id: user_id,
4694 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4695 let best_block = *self.best_block.read().unwrap();
4697 let per_peer_state = self.per_peer_state.read().unwrap();
4698 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4700 debug_assert!(false);
4701 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4704 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4705 let peer_state = &mut *peer_state_lock;
4706 let ((funding_msg, monitor), chan) =
4707 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4708 hash_map::Entry::Occupied(mut chan) => {
4709 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4711 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4714 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4715 hash_map::Entry::Occupied(_) => {
4716 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4718 hash_map::Entry::Vacant(e) => {
4719 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4720 hash_map::Entry::Occupied(_) => {
4721 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4722 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4723 funding_msg.channel_id))
4725 hash_map::Entry::Vacant(i_e) => {
4726 i_e.insert(chan.get_counterparty_node_id());
4730 // There's no problem signing a counterparty's funding transaction if our monitor
4731 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4732 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4733 // until we have persisted our monitor.
4734 let new_channel_id = funding_msg.channel_id;
4735 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4736 node_id: counterparty_node_id.clone(),
4740 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4742 let chan = e.insert(chan);
4743 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
4744 per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4746 // Note that we reply with the new channel_id in error messages if we gave up on the
4747 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4748 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4749 // any messages referencing a previously-closed channel anyway.
4750 // We do not propagate the monitor update to the user as it would be for a monitor
4751 // that we didn't manage to store (and that we don't care about - we don't respond
4752 // with the funding_signed so the channel can never go on chain).
4753 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4761 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4762 let best_block = *self.best_block.read().unwrap();
4763 let per_peer_state = self.per_peer_state.read().unwrap();
4764 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4766 debug_assert!(false);
4767 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4770 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4771 let peer_state = &mut *peer_state_lock;
4772 match peer_state.channel_by_id.entry(msg.channel_id) {
4773 hash_map::Entry::Occupied(mut chan) => {
4774 let monitor = try_chan_entry!(self,
4775 chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4776 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4777 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
4778 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4779 // We weren't able to watch the channel to begin with, so no updates should be made on
4780 // it. Previously, full_stack_target found an (unreachable) panic when the
4781 // monitor update contained within `shutdown_finish` was applied.
4782 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4783 shutdown_finish.0.take();
4788 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4792 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4793 let per_peer_state = self.per_peer_state.read().unwrap();
4794 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4796 debug_assert!(false);
4797 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4799 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4800 let peer_state = &mut *peer_state_lock;
4801 match peer_state.channel_by_id.entry(msg.channel_id) {
4802 hash_map::Entry::Occupied(mut chan) => {
4803 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4804 self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4805 if let Some(announcement_sigs) = announcement_sigs_opt {
4806 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4807 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4808 node_id: counterparty_node_id.clone(),
4809 msg: announcement_sigs,
4811 } else if chan.get().is_usable() {
4812 // If we're sending an announcement_signatures, we'll send the (public)
4813 // channel_update after sending a channel_announcement when we receive our
4814 // counterparty's announcement_signatures. Thus, we only bother to send a
4815 // channel_update here if the channel is not public, i.e. we're not sending an
4816 // announcement_signatures.
4817 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4818 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4819 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4820 node_id: counterparty_node_id.clone(),
4827 let mut pending_events = self.pending_events.lock().unwrap();
4828 emit_channel_ready_event!(pending_events, chan.get_mut());
4833 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4837 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4838 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4839 let result: Result<(), _> = loop {
4840 let per_peer_state = self.per_peer_state.read().unwrap();
4841 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4843 debug_assert!(false);
4844 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4846 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4847 let peer_state = &mut *peer_state_lock;
4848 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4849 hash_map::Entry::Occupied(mut chan_entry) => {
4851 if !chan_entry.get().received_shutdown() {
4852 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4853 log_bytes!(msg.channel_id),
4854 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4857 let funding_txo_opt = chan_entry.get().get_funding_txo();
4858 let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4859 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4860 dropped_htlcs = htlcs;
4862 if let Some(msg) = shutdown {
4863 // We can send the `shutdown` message before updating the `ChannelMonitor`
4864 // here as we don't need the monitor update to complete until we send a
4865 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4866 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4867 node_id: *counterparty_node_id,
4872 // Update the monitor with the shutdown script if necessary.
4873 if let Some(monitor_update) = monitor_update_opt {
4874 let update_id = monitor_update.update_id;
4875 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
4876 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
4880 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4883 for htlc_source in dropped_htlcs.drain(..) {
4884 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4885 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
4886 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
4892 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4893 let per_peer_state = self.per_peer_state.read().unwrap();
4894 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4896 debug_assert!(false);
4897 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4899 let (tx, chan_option) = {
4900 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4901 let peer_state = &mut *peer_state_lock;
4902 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4903 hash_map::Entry::Occupied(mut chan_entry) => {
4904 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
4905 if let Some(msg) = closing_signed {
4906 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4907 node_id: counterparty_node_id.clone(),
4912 // We're done with this channel, we've got a signed closing transaction and
4913 // will send the closing_signed back to the remote peer upon return. This
4914 // also implies there are no pending HTLCs left on the channel, so we can
4915 // fully delete it from tracking (the channel monitor is still around to
4916 // watch for old state broadcasts)!
4917 (tx, Some(remove_channel!(self, chan_entry)))
4918 } else { (tx, None) }
4920 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4923 if let Some(broadcast_tx) = tx {
4924 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4925 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4927 if let Some(chan) = chan_option {
4928 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4929 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4930 let peer_state = &mut *peer_state_lock;
4931 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4935 self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4940 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4941 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4942 //determine the state of the payment based on our response/if we forward anything/the time
4943 //we take to respond. We should take care to avoid allowing such an attack.
4945 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4946 //us repeatedly garbled in different ways, and compare our error messages, which are
4947 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4948 //but we should prevent it anyway.
4950 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
4951 let per_peer_state = self.per_peer_state.read().unwrap();
4952 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4954 debug_assert!(false);
4955 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4957 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4958 let peer_state = &mut *peer_state_lock;
4959 match peer_state.channel_by_id.entry(msg.channel_id) {
4960 hash_map::Entry::Occupied(mut chan) => {
4962 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4963 // If the update_add is completely bogus, the call will Err and we will close,
4964 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4965 // want to reject the new HTLC and fail it backwards instead of forwarding.
4966 match pending_forward_info {
4967 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4968 let reason = if (error_code & 0x1000) != 0 {
4969 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4970 HTLCFailReason::reason(real_code, error_data)
4972 HTLCFailReason::from_failure_code(error_code)
4973 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
4974 let msg = msgs::UpdateFailHTLC {
4975 channel_id: msg.channel_id,
4976 htlc_id: msg.htlc_id,
4979 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4981 _ => pending_forward_info
4984 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
4986 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4991 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4992 let (htlc_source, forwarded_htlc_value) = {
4993 let per_peer_state = self.per_peer_state.read().unwrap();
4994 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4996 debug_assert!(false);
4997 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4999 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5000 let peer_state = &mut *peer_state_lock;
5001 match peer_state.channel_by_id.entry(msg.channel_id) {
5002 hash_map::Entry::Occupied(mut chan) => {
5003 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
5005 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5008 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
5012 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
5013 let per_peer_state = self.per_peer_state.read().unwrap();
5014 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5016 debug_assert!(false);
5017 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5019 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5020 let peer_state = &mut *peer_state_lock;
5021 match peer_state.channel_by_id.entry(msg.channel_id) {
5022 hash_map::Entry::Occupied(mut chan) => {
5023 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
5025 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5030 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
5031 let per_peer_state = self.per_peer_state.read().unwrap();
5032 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5034 debug_assert!(false);
5035 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5037 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5038 let peer_state = &mut *peer_state_lock;
5039 match peer_state.channel_by_id.entry(msg.channel_id) {
5040 hash_map::Entry::Occupied(mut chan) => {
5041 if (msg.failure_code & 0x8000) == 0 {
5042 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
5043 try_chan_entry!(self, Err(chan_err), chan);
5045 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
5048 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5052 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
5053 let per_peer_state = self.per_peer_state.read().unwrap();
5054 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5056 debug_assert!(false);
5057 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5059 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5060 let peer_state = &mut *peer_state_lock;
5061 match peer_state.channel_by_id.entry(msg.channel_id) {
5062 hash_map::Entry::Occupied(mut chan) => {
5063 let funding_txo = chan.get().get_funding_txo();
5064 let monitor_update = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
5065 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5066 let update_id = monitor_update.update_id;
5067 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
5068 peer_state, per_peer_state, chan)
5070 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5075 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
5076 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
5077 let mut push_forward_event = false;
5078 let mut new_intercept_events = Vec::new();
5079 let mut failed_intercept_forwards = Vec::new();
5080 if !pending_forwards.is_empty() {
5081 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
5082 let scid = match forward_info.routing {
5083 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
5084 PendingHTLCRouting::Receive { .. } => 0,
5085 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
5087 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
5088 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
5090 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5091 let forward_htlcs_empty = forward_htlcs.is_empty();
5092 match forward_htlcs.entry(scid) {
5093 hash_map::Entry::Occupied(mut entry) => {
5094 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5095 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
5097 hash_map::Entry::Vacant(entry) => {
5098 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
5099 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
5101 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
5102 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
5103 match pending_intercepts.entry(intercept_id) {
5104 hash_map::Entry::Vacant(entry) => {
5105 new_intercept_events.push(events::Event::HTLCIntercepted {
5106 requested_next_hop_scid: scid,
5107 payment_hash: forward_info.payment_hash,
5108 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
5109 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
5112 entry.insert(PendingAddHTLCInfo {
5113 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
5115 hash_map::Entry::Occupied(_) => {
5116 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
5117 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5118 short_channel_id: prev_short_channel_id,
5119 outpoint: prev_funding_outpoint,
5120 htlc_id: prev_htlc_id,
5121 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
5122 phantom_shared_secret: None,
5125 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
5126 HTLCFailReason::from_failure_code(0x4000 | 10),
5127 HTLCDestination::InvalidForward { requested_forward_scid: scid },
5132 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
5133 // payments are being processed.
5134 if forward_htlcs_empty {
5135 push_forward_event = true;
5137 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5138 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
5145 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
5146 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5149 if !new_intercept_events.is_empty() {
5150 let mut events = self.pending_events.lock().unwrap();
5151 events.append(&mut new_intercept_events);
5153 if push_forward_event { self.push_pending_forwards_ev() }
5157 // We only want to push a PendingHTLCsForwardable event if no others are queued.
5158 fn push_pending_forwards_ev(&self) {
5159 let mut pending_events = self.pending_events.lock().unwrap();
5160 let forward_ev_exists = pending_events.iter()
5161 .find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
5163 if !forward_ev_exists {
5164 pending_events.push(events::Event::PendingHTLCsForwardable {
5166 Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
5171 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
5172 let (htlcs_to_fail, res) = {
5173 let per_peer_state = self.per_peer_state.read().unwrap();
5174 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
5176 debug_assert!(false);
5177 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5178 }).map(|mtx| mtx.lock().unwrap())?;
5179 let peer_state = &mut *peer_state_lock;
5180 match peer_state.channel_by_id.entry(msg.channel_id) {
5181 hash_map::Entry::Occupied(mut chan) => {
5182 let funding_txo = chan.get().get_funding_txo();
5183 let (htlcs_to_fail, monitor_update) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
5184 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5185 let update_id = monitor_update.update_id;
5186 let res = handle_new_monitor_update!(self, update_res, update_id,
5187 peer_state_lock, peer_state, per_peer_state, chan);
5188 (htlcs_to_fail, res)
5190 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5193 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
5197 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
5198 let per_peer_state = self.per_peer_state.read().unwrap();
5199 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5201 debug_assert!(false);
5202 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5204 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5205 let peer_state = &mut *peer_state_lock;
5206 match peer_state.channel_by_id.entry(msg.channel_id) {
5207 hash_map::Entry::Occupied(mut chan) => {
5208 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
5210 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5215 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5216 let per_peer_state = self.per_peer_state.read().unwrap();
5217 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5219 debug_assert!(false);
5220 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5222 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5223 let peer_state = &mut *peer_state_lock;
5224 match peer_state.channel_by_id.entry(msg.channel_id) {
5225 hash_map::Entry::Occupied(mut chan) => {
5226 if !chan.get().is_usable() {
5227 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5230 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5231 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5232 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5233 msg, &self.default_configuration
5235 // Note that announcement_signatures fails if the channel cannot be announced,
5236 // so get_channel_update_for_broadcast will never fail by the time we get here.
5237 update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5240 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5245 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5246 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5247 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5248 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5250 // It's not a local channel
5251 return Ok(NotifyOption::SkipPersist)
5254 let per_peer_state = self.per_peer_state.read().unwrap();
5255 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5256 if peer_state_mutex_opt.is_none() {
5257 return Ok(NotifyOption::SkipPersist)
5259 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5260 let peer_state = &mut *peer_state_lock;
5261 match peer_state.channel_by_id.entry(chan_id) {
5262 hash_map::Entry::Occupied(mut chan) => {
5263 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5264 if chan.get().should_announce() {
5265 // If the announcement is about a channel of ours which is public, some
5266 // other peer may simply be forwarding all its gossip to us. Don't provide
5267 // a scary-looking error message and return Ok instead.
5268 return Ok(NotifyOption::SkipPersist);
5270 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5272 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5273 let msg_from_node_one = msg.contents.flags & 1 == 0;
5274 if were_node_one == msg_from_node_one {
5275 return Ok(NotifyOption::SkipPersist);
5277 log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5278 try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5281 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5283 Ok(NotifyOption::DoPersist)
5286 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5288 let need_lnd_workaround = {
5289 let per_peer_state = self.per_peer_state.read().unwrap();
5291 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5293 debug_assert!(false);
5294 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5296 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5297 let peer_state = &mut *peer_state_lock;
5298 match peer_state.channel_by_id.entry(msg.channel_id) {
5299 hash_map::Entry::Occupied(mut chan) => {
5300 // Currently, we expect all holding cell update_adds to be dropped on peer
5301 // disconnect, so Channel's reestablish will never hand us any holding cell
5302 // freed HTLCs to fail backwards. If in the future we no longer drop pending
5303 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5304 let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5305 msg, &self.logger, &self.node_signer, self.genesis_hash,
5306 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5307 let mut channel_update = None;
5308 if let Some(msg) = responses.shutdown_msg {
5309 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5310 node_id: counterparty_node_id.clone(),
5313 } else if chan.get().is_usable() {
5314 // If the channel is in a usable state (ie the channel is not being shut
5315 // down), send a unicast channel_update to our counterparty to make sure
5316 // they have the latest channel parameters.
5317 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5318 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5319 node_id: chan.get().get_counterparty_node_id(),
5324 let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5325 htlc_forwards = self.handle_channel_resumption(
5326 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5327 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5328 if let Some(upd) = channel_update {
5329 peer_state.pending_msg_events.push(upd);
5333 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5337 if let Some(forwards) = htlc_forwards {
5338 self.forward_htlcs(&mut [forwards][..]);
5341 if let Some(channel_ready_msg) = need_lnd_workaround {
5342 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5347 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
5348 fn process_pending_monitor_events(&self) -> bool {
5349 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5351 let mut failed_channels = Vec::new();
5352 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5353 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5354 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5355 for monitor_event in monitor_events.drain(..) {
5356 match monitor_event {
5357 MonitorEvent::HTLCEvent(htlc_update) => {
5358 if let Some(preimage) = htlc_update.payment_preimage {
5359 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5360 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5362 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5363 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5364 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5365 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5368 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5369 MonitorEvent::UpdateFailed(funding_outpoint) => {
5370 let counterparty_node_id_opt = match counterparty_node_id {
5371 Some(cp_id) => Some(cp_id),
5373 // TODO: Once we can rely on the counterparty_node_id from the
5374 // monitor event, this and the id_to_peer map should be removed.
5375 let id_to_peer = self.id_to_peer.lock().unwrap();
5376 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5379 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5380 let per_peer_state = self.per_peer_state.read().unwrap();
5381 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5382 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5383 let peer_state = &mut *peer_state_lock;
5384 let pending_msg_events = &mut peer_state.pending_msg_events;
5385 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5386 let mut chan = remove_channel!(self, chan_entry);
5387 failed_channels.push(chan.force_shutdown(false));
5388 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5389 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5393 let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5394 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5396 ClosureReason::CommitmentTxConfirmed
5398 self.issue_channel_close_events(&chan, reason);
5399 pending_msg_events.push(events::MessageSendEvent::HandleError {
5400 node_id: chan.get_counterparty_node_id(),
5401 action: msgs::ErrorAction::SendErrorMessage {
5402 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5409 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5410 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5416 for failure in failed_channels.drain(..) {
5417 self.finish_force_close_channel(failure);
5420 has_pending_monitor_events
5423 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5424 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5425 /// update events as a separate process method here.
5427 pub fn process_monitor_events(&self) {
5428 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5429 if self.process_pending_monitor_events() {
5430 NotifyOption::DoPersist
5432 NotifyOption::SkipPersist
5437 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5438 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5439 /// update was applied.
5440 fn check_free_holding_cells(&self) -> bool {
5441 let mut has_monitor_update = false;
5442 let mut failed_htlcs = Vec::new();
5443 let mut handle_errors = Vec::new();
5445 // Walk our list of channels and find any that need to update. Note that when we do find an
5446 // update, if it includes actions that must be taken afterwards, we have to drop the
5447 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5448 // manage to go through all our peers without finding a single channel to update.
5450 let per_peer_state = self.per_peer_state.read().unwrap();
5451 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5453 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5454 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5455 for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5456 let counterparty_node_id = chan.get_counterparty_node_id();
5457 let funding_txo = chan.get_funding_txo();
5458 let (monitor_opt, holding_cell_failed_htlcs) =
5459 chan.maybe_free_holding_cell_htlcs(&self.logger);
5460 if !holding_cell_failed_htlcs.is_empty() {
5461 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5463 if let Some(monitor_update) = monitor_opt {
5464 has_monitor_update = true;
5466 let update_res = self.chain_monitor.update_channel(
5467 funding_txo.expect("channel is live"), monitor_update);
5468 let update_id = monitor_update.update_id;
5469 let channel_id: [u8; 32] = *channel_id;
5470 let res = handle_new_monitor_update!(self, update_res, update_id,
5471 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
5472 peer_state.channel_by_id.remove(&channel_id));
5474 handle_errors.push((counterparty_node_id, res));
5476 continue 'peer_loop;
5485 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5486 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5487 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5490 for (counterparty_node_id, err) in handle_errors.drain(..) {
5491 let _ = handle_error!(self, err, counterparty_node_id);
5497 /// Check whether any channels have finished removing all pending updates after a shutdown
5498 /// exchange and can now send a closing_signed.
5499 /// Returns whether any closing_signed messages were generated.
5500 fn maybe_generate_initial_closing_signed(&self) -> bool {
5501 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5502 let mut has_update = false;
5504 let per_peer_state = self.per_peer_state.read().unwrap();
5506 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5507 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5508 let peer_state = &mut *peer_state_lock;
5509 let pending_msg_events = &mut peer_state.pending_msg_events;
5510 peer_state.channel_by_id.retain(|channel_id, chan| {
5511 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5512 Ok((msg_opt, tx_opt)) => {
5513 if let Some(msg) = msg_opt {
5515 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5516 node_id: chan.get_counterparty_node_id(), msg,
5519 if let Some(tx) = tx_opt {
5520 // We're done with this channel. We got a closing_signed and sent back
5521 // a closing_signed with a closing transaction to broadcast.
5522 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5523 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5528 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5530 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5531 self.tx_broadcaster.broadcast_transaction(&tx);
5532 update_maps_on_chan_removal!(self, chan);
5538 let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5539 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5547 for (counterparty_node_id, err) in handle_errors.drain(..) {
5548 let _ = handle_error!(self, err, counterparty_node_id);
5554 /// Handle a list of channel failures during a block_connected or block_disconnected call,
5555 /// pushing the channel monitor update (if any) to the background events queue and removing the
5557 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5558 for mut failure in failed_channels.drain(..) {
5559 // Either a commitment transactions has been confirmed on-chain or
5560 // Channel::block_disconnected detected that the funding transaction has been
5561 // reorganized out of the main chain.
5562 // We cannot broadcast our latest local state via monitor update (as
5563 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5564 // so we track the update internally and handle it when the user next calls
5565 // timer_tick_occurred, guaranteeing we're running normally.
5566 if let Some((funding_txo, update)) = failure.0.take() {
5567 assert_eq!(update.updates.len(), 1);
5568 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5569 assert!(should_broadcast);
5570 } else { unreachable!(); }
5571 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5573 self.finish_force_close_channel(failure);
5577 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5578 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5580 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5581 return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5584 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5586 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5587 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5588 match payment_secrets.entry(payment_hash) {
5589 hash_map::Entry::Vacant(e) => {
5590 e.insert(PendingInboundPayment {
5591 payment_secret, min_value_msat, payment_preimage,
5592 user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5593 // We assume that highest_seen_timestamp is pretty close to the current time -
5594 // it's updated when we receive a new block with the maximum time we've seen in
5595 // a header. It should never be more than two hours in the future.
5596 // Thus, we add two hours here as a buffer to ensure we absolutely
5597 // never fail a payment too early.
5598 // Note that we assume that received blocks have reasonably up-to-date
5600 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5603 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5608 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5611 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5612 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5614 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5615 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5616 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5617 /// passed directly to [`claim_funds`].
5619 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5621 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5622 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5626 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5627 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5629 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5631 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5632 /// on versions of LDK prior to 0.0.114.
5634 /// [`claim_funds`]: Self::claim_funds
5635 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5636 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5637 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5638 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5639 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5640 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5641 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5642 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5643 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5644 min_final_cltv_expiry_delta)
5647 /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5648 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5650 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5653 /// This method is deprecated and will be removed soon.
5655 /// [`create_inbound_payment`]: Self::create_inbound_payment
5657 pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5658 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5659 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5660 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5661 Ok((payment_hash, payment_secret))
5664 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5665 /// stored external to LDK.
5667 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5668 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5669 /// the `min_value_msat` provided here, if one is provided.
5671 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5672 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5675 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5676 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5677 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5678 /// sender "proof-of-payment" unless they have paid the required amount.
5680 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5681 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5682 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5683 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5684 /// invoices when no timeout is set.
5686 /// Note that we use block header time to time-out pending inbound payments (with some margin
5687 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5688 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5689 /// If you need exact expiry semantics, you should enforce them upon receipt of
5690 /// [`PaymentClaimable`].
5692 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5693 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5695 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5696 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5700 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5701 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5703 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5705 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5706 /// on versions of LDK prior to 0.0.114.
5708 /// [`create_inbound_payment`]: Self::create_inbound_payment
5709 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5710 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5711 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5712 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5713 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5714 min_final_cltv_expiry)
5717 /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5718 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5720 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5723 /// This method is deprecated and will be removed soon.
5725 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5727 pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5728 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5731 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5732 /// previously returned from [`create_inbound_payment`].
5734 /// [`create_inbound_payment`]: Self::create_inbound_payment
5735 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5736 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5739 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5740 /// are used when constructing the phantom invoice's route hints.
5742 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5743 pub fn get_phantom_scid(&self) -> u64 {
5744 let best_block_height = self.best_block.read().unwrap().height();
5745 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5747 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5748 // Ensure the generated scid doesn't conflict with a real channel.
5749 match short_to_chan_info.get(&scid_candidate) {
5750 Some(_) => continue,
5751 None => return scid_candidate
5756 /// Gets route hints for use in receiving [phantom node payments].
5758 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5759 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5761 channels: self.list_usable_channels(),
5762 phantom_scid: self.get_phantom_scid(),
5763 real_node_pubkey: self.get_our_node_id(),
5767 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5768 /// used when constructing the route hints for HTLCs intended to be intercepted. See
5769 /// [`ChannelManager::forward_intercepted_htlc`].
5771 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5772 /// times to get a unique scid.
5773 pub fn get_intercept_scid(&self) -> u64 {
5774 let best_block_height = self.best_block.read().unwrap().height();
5775 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5777 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5778 // Ensure the generated scid doesn't conflict with a real channel.
5779 if short_to_chan_info.contains_key(&scid_candidate) { continue }
5780 return scid_candidate
5784 /// Gets inflight HTLC information by processing pending outbound payments that are in
5785 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5786 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5787 let mut inflight_htlcs = InFlightHtlcs::new();
5789 let per_peer_state = self.per_peer_state.read().unwrap();
5790 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5791 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5792 let peer_state = &mut *peer_state_lock;
5793 for chan in peer_state.channel_by_id.values() {
5794 for (htlc_source, _) in chan.inflight_htlc_sources() {
5795 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5796 inflight_htlcs.process_path(path, self.get_our_node_id());
5805 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5806 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5807 let events = core::cell::RefCell::new(Vec::new());
5808 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5809 self.process_pending_events(&event_handler);
5813 #[cfg(feature = "_test_utils")]
5814 pub fn push_pending_event(&self, event: events::Event) {
5815 let mut events = self.pending_events.lock().unwrap();
5820 pub fn pop_pending_event(&self) -> Option<events::Event> {
5821 let mut events = self.pending_events.lock().unwrap();
5822 if events.is_empty() { None } else { Some(events.remove(0)) }
5826 pub fn has_pending_payments(&self) -> bool {
5827 self.pending_outbound_payments.has_pending_payments()
5831 pub fn clear_pending_payments(&self) {
5832 self.pending_outbound_payments.clear_pending_payments()
5835 /// Processes any events asynchronously in the order they were generated since the last call
5836 /// using the given event handler.
5838 /// See the trait-level documentation of [`EventsProvider`] for requirements.
5839 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
5843 process_events_body!(self, ev, { handler(ev).await });
5847 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5849 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5850 T::Target: BroadcasterInterface,
5851 ES::Target: EntropySource,
5852 NS::Target: NodeSigner,
5853 SP::Target: SignerProvider,
5854 F::Target: FeeEstimator,
5858 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
5859 /// The returned array will contain `MessageSendEvent`s for different peers if
5860 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
5861 /// is always placed next to each other.
5863 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
5864 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
5865 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
5866 /// will randomly be placed first or last in the returned array.
5868 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
5869 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
5870 /// the `MessageSendEvent`s to the specific peer they were generated under.
5871 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5872 let events = RefCell::new(Vec::new());
5873 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5874 let mut result = NotifyOption::SkipPersist;
5876 // TODO: This behavior should be documented. It's unintuitive that we query
5877 // ChannelMonitors when clearing other events.
5878 if self.process_pending_monitor_events() {
5879 result = NotifyOption::DoPersist;
5882 if self.check_free_holding_cells() {
5883 result = NotifyOption::DoPersist;
5885 if self.maybe_generate_initial_closing_signed() {
5886 result = NotifyOption::DoPersist;
5889 let mut pending_events = Vec::new();
5890 let per_peer_state = self.per_peer_state.read().unwrap();
5891 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5892 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5893 let peer_state = &mut *peer_state_lock;
5894 if peer_state.pending_msg_events.len() > 0 {
5895 pending_events.append(&mut peer_state.pending_msg_events);
5899 if !pending_events.is_empty() {
5900 events.replace(pending_events);
5909 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5911 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5912 T::Target: BroadcasterInterface,
5913 ES::Target: EntropySource,
5914 NS::Target: NodeSigner,
5915 SP::Target: SignerProvider,
5916 F::Target: FeeEstimator,
5920 /// Processes events that must be periodically handled.
5922 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5923 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5924 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5926 process_events_body!(self, ev, handler.handle_event(ev));
5930 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
5932 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5933 T::Target: BroadcasterInterface,
5934 ES::Target: EntropySource,
5935 NS::Target: NodeSigner,
5936 SP::Target: SignerProvider,
5937 F::Target: FeeEstimator,
5941 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5943 let best_block = self.best_block.read().unwrap();
5944 assert_eq!(best_block.block_hash(), header.prev_blockhash,
5945 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5946 assert_eq!(best_block.height(), height - 1,
5947 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5950 self.transactions_confirmed(header, txdata, height);
5951 self.best_block_updated(header, height);
5954 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5955 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5956 let new_height = height - 1;
5958 let mut best_block = self.best_block.write().unwrap();
5959 assert_eq!(best_block.block_hash(), header.block_hash(),
5960 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5961 assert_eq!(best_block.height(), height,
5962 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5963 *best_block = BestBlock::new(header.prev_blockhash, new_height)
5966 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5970 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
5972 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5973 T::Target: BroadcasterInterface,
5974 ES::Target: EntropySource,
5975 NS::Target: NodeSigner,
5976 SP::Target: SignerProvider,
5977 F::Target: FeeEstimator,
5981 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5982 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5983 // during initialization prior to the chain_monitor being fully configured in some cases.
5984 // See the docs for `ChannelManagerReadArgs` for more.
5986 let block_hash = header.block_hash();
5987 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5989 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5990 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
5991 .map(|(a, b)| (a, Vec::new(), b)));
5993 let last_best_block_height = self.best_block.read().unwrap().height();
5994 if height < last_best_block_height {
5995 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5996 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6000 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
6001 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6002 // during initialization prior to the chain_monitor being fully configured in some cases.
6003 // See the docs for `ChannelManagerReadArgs` for more.
6005 let block_hash = header.block_hash();
6006 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
6008 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6010 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
6012 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6014 macro_rules! max_time {
6015 ($timestamp: expr) => {
6017 // Update $timestamp to be the max of its current value and the block
6018 // timestamp. This should keep us close to the current time without relying on
6019 // having an explicit local time source.
6020 // Just in case we end up in a race, we loop until we either successfully
6021 // update $timestamp or decide we don't need to.
6022 let old_serial = $timestamp.load(Ordering::Acquire);
6023 if old_serial >= header.time as usize { break; }
6024 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
6030 max_time!(self.highest_seen_timestamp);
6031 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
6032 payment_secrets.retain(|_, inbound_payment| {
6033 inbound_payment.expiry_time > header.time as u64
6037 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
6038 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
6039 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
6040 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6041 let peer_state = &mut *peer_state_lock;
6042 for chan in peer_state.channel_by_id.values() {
6043 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
6044 res.push((funding_txo.txid, Some(block_hash)));
6051 fn transaction_unconfirmed(&self, txid: &Txid) {
6052 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6053 self.do_chain_event(None, |channel| {
6054 if let Some(funding_txo) = channel.get_funding_txo() {
6055 if funding_txo.txid == *txid {
6056 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
6057 } else { Ok((None, Vec::new(), None)) }
6058 } else { Ok((None, Vec::new(), None)) }
6063 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
6065 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6066 T::Target: BroadcasterInterface,
6067 ES::Target: EntropySource,
6068 NS::Target: NodeSigner,
6069 SP::Target: SignerProvider,
6070 F::Target: FeeEstimator,
6074 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
6075 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
6077 fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
6078 (&self, height_opt: Option<u32>, f: FN) {
6079 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6080 // during initialization prior to the chain_monitor being fully configured in some cases.
6081 // See the docs for `ChannelManagerReadArgs` for more.
6083 let mut failed_channels = Vec::new();
6084 let mut timed_out_htlcs = Vec::new();
6086 let per_peer_state = self.per_peer_state.read().unwrap();
6087 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6088 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6089 let peer_state = &mut *peer_state_lock;
6090 let pending_msg_events = &mut peer_state.pending_msg_events;
6091 peer_state.channel_by_id.retain(|_, channel| {
6092 let res = f(channel);
6093 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
6094 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
6095 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
6096 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
6097 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
6099 if let Some(channel_ready) = channel_ready_opt {
6100 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
6101 if channel.is_usable() {
6102 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
6103 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
6104 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6105 node_id: channel.get_counterparty_node_id(),
6110 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
6115 let mut pending_events = self.pending_events.lock().unwrap();
6116 emit_channel_ready_event!(pending_events, channel);
6119 if let Some(announcement_sigs) = announcement_sigs {
6120 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
6121 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6122 node_id: channel.get_counterparty_node_id(),
6123 msg: announcement_sigs,
6125 if let Some(height) = height_opt {
6126 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
6127 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6129 // Note that announcement_signatures fails if the channel cannot be announced,
6130 // so get_channel_update_for_broadcast will never fail by the time we get here.
6131 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
6136 if channel.is_our_channel_ready() {
6137 if let Some(real_scid) = channel.get_short_channel_id() {
6138 // If we sent a 0conf channel_ready, and now have an SCID, we add it
6139 // to the short_to_chan_info map here. Note that we check whether we
6140 // can relay using the real SCID at relay-time (i.e.
6141 // enforce option_scid_alias then), and if the funding tx is ever
6142 // un-confirmed we force-close the channel, ensuring short_to_chan_info
6143 // is always consistent.
6144 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
6145 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
6146 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
6147 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
6148 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
6151 } else if let Err(reason) = res {
6152 update_maps_on_chan_removal!(self, channel);
6153 // It looks like our counterparty went on-chain or funding transaction was
6154 // reorged out of the main chain. Close the channel.
6155 failed_channels.push(channel.force_shutdown(true));
6156 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
6157 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6161 let reason_message = format!("{}", reason);
6162 self.issue_channel_close_events(channel, reason);
6163 pending_msg_events.push(events::MessageSendEvent::HandleError {
6164 node_id: channel.get_counterparty_node_id(),
6165 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
6166 channel_id: channel.channel_id(),
6167 data: reason_message,
6177 if let Some(height) = height_opt {
6178 self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
6179 htlcs.retain(|htlc| {
6180 // If height is approaching the number of blocks we think it takes us to get
6181 // our commitment transaction confirmed before the HTLC expires, plus the
6182 // number of blocks we generally consider it to take to do a commitment update,
6183 // just give up on it and fail the HTLC.
6184 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
6185 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6186 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
6188 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
6189 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
6190 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6194 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6197 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6198 intercepted_htlcs.retain(|_, htlc| {
6199 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6200 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6201 short_channel_id: htlc.prev_short_channel_id,
6202 htlc_id: htlc.prev_htlc_id,
6203 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6204 phantom_shared_secret: None,
6205 outpoint: htlc.prev_funding_outpoint,
6208 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6209 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6210 _ => unreachable!(),
6212 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6213 HTLCFailReason::from_failure_code(0x2000 | 2),
6214 HTLCDestination::InvalidForward { requested_forward_scid }));
6215 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6221 self.handle_init_event_channel_failures(failed_channels);
6223 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6224 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6228 /// Gets a [`Future`] that completes when this [`ChannelManager`] needs to be persisted.
6230 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
6231 /// [`ChannelManager`] and should instead register actions to be taken later.
6233 pub fn get_persistable_update_future(&self) -> Future {
6234 self.persistence_notifier.get_future()
6237 #[cfg(any(test, feature = "_test_utils"))]
6238 pub fn get_persistence_condvar_value(&self) -> bool {
6239 self.persistence_notifier.notify_pending()
6242 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6243 /// [`chain::Confirm`] interfaces.
6244 pub fn current_best_block(&self) -> BestBlock {
6245 self.best_block.read().unwrap().clone()
6248 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6249 /// [`ChannelManager`].
6250 pub fn node_features(&self) -> NodeFeatures {
6251 provided_node_features(&self.default_configuration)
6254 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6255 /// [`ChannelManager`].
6257 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6258 /// or not. Thus, this method is not public.
6259 #[cfg(any(feature = "_test_utils", test))]
6260 pub fn invoice_features(&self) -> InvoiceFeatures {
6261 provided_invoice_features(&self.default_configuration)
6264 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6265 /// [`ChannelManager`].
6266 pub fn channel_features(&self) -> ChannelFeatures {
6267 provided_channel_features(&self.default_configuration)
6270 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6271 /// [`ChannelManager`].
6272 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6273 provided_channel_type_features(&self.default_configuration)
6276 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6277 /// [`ChannelManager`].
6278 pub fn init_features(&self) -> InitFeatures {
6279 provided_init_features(&self.default_configuration)
6283 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6284 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6286 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6287 T::Target: BroadcasterInterface,
6288 ES::Target: EntropySource,
6289 NS::Target: NodeSigner,
6290 SP::Target: SignerProvider,
6291 F::Target: FeeEstimator,
6295 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6296 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6297 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6300 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6301 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6302 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6305 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6306 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6307 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6310 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6311 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6312 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6315 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6316 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6317 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6320 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6321 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6322 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6325 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6326 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6327 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6330 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6331 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6332 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6335 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6336 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6337 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6340 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6341 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6342 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6345 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6346 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6347 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6350 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6351 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6352 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6355 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6356 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6357 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6360 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6361 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6362 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6365 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6366 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6367 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6370 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6371 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6372 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6375 NotifyOption::SkipPersist
6380 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6381 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6382 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6385 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6386 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6387 let mut failed_channels = Vec::new();
6388 let mut per_peer_state = self.per_peer_state.write().unwrap();
6390 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6391 log_pubkey!(counterparty_node_id));
6392 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6393 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6394 let peer_state = &mut *peer_state_lock;
6395 let pending_msg_events = &mut peer_state.pending_msg_events;
6396 peer_state.channel_by_id.retain(|_, chan| {
6397 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6398 if chan.is_shutdown() {
6399 update_maps_on_chan_removal!(self, chan);
6400 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6405 pending_msg_events.retain(|msg| {
6407 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6408 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6409 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6410 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6411 &events::MessageSendEvent::SendChannelReady { .. } => false,
6412 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6413 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6414 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6415 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6416 &events::MessageSendEvent::SendShutdown { .. } => false,
6417 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6418 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6419 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6420 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6421 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6422 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6423 &events::MessageSendEvent::HandleError { .. } => false,
6424 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6425 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6426 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6427 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6430 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6431 peer_state.is_connected = false;
6432 peer_state.ok_to_remove(true)
6433 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6436 per_peer_state.remove(counterparty_node_id);
6438 mem::drop(per_peer_state);
6440 for failure in failed_channels.drain(..) {
6441 self.finish_force_close_channel(failure);
6445 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6446 if !init_msg.features.supports_static_remote_key() {
6447 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6451 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6453 // If we have too many peers connected which don't have funded channels, disconnect the
6454 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6455 // unfunded channels taking up space in memory for disconnected peers, we still let new
6456 // peers connect, but we'll reject new channels from them.
6457 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6458 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6461 let mut peer_state_lock = self.per_peer_state.write().unwrap();
6462 match peer_state_lock.entry(counterparty_node_id.clone()) {
6463 hash_map::Entry::Vacant(e) => {
6464 if inbound_peer_limited {
6467 e.insert(Mutex::new(PeerState {
6468 channel_by_id: HashMap::new(),
6469 latest_features: init_msg.features.clone(),
6470 pending_msg_events: Vec::new(),
6471 monitor_update_blocked_actions: BTreeMap::new(),
6475 hash_map::Entry::Occupied(e) => {
6476 let mut peer_state = e.get().lock().unwrap();
6477 peer_state.latest_features = init_msg.features.clone();
6479 let best_block_height = self.best_block.read().unwrap().height();
6480 if inbound_peer_limited &&
6481 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6482 peer_state.channel_by_id.len()
6487 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6488 peer_state.is_connected = true;
6493 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6495 let per_peer_state = self.per_peer_state.read().unwrap();
6496 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6497 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6498 let peer_state = &mut *peer_state_lock;
6499 let pending_msg_events = &mut peer_state.pending_msg_events;
6500 peer_state.channel_by_id.retain(|_, chan| {
6501 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6502 if !chan.have_received_message() {
6503 // If we created this (outbound) channel while we were disconnected from the
6504 // peer we probably failed to send the open_channel message, which is now
6505 // lost. We can't have had anything pending related to this channel, so we just
6509 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6510 node_id: chan.get_counterparty_node_id(),
6511 msg: chan.get_channel_reestablish(&self.logger),
6516 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6517 if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6518 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6519 pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6520 node_id: *counterparty_node_id,
6529 //TODO: Also re-broadcast announcement_signatures
6533 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6534 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6536 if msg.channel_id == [0; 32] {
6537 let channel_ids: Vec<[u8; 32]> = {
6538 let per_peer_state = self.per_peer_state.read().unwrap();
6539 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6540 if peer_state_mutex_opt.is_none() { return; }
6541 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6542 let peer_state = &mut *peer_state_lock;
6543 peer_state.channel_by_id.keys().cloned().collect()
6545 for channel_id in channel_ids {
6546 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6547 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6551 // First check if we can advance the channel type and try again.
6552 let per_peer_state = self.per_peer_state.read().unwrap();
6553 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6554 if peer_state_mutex_opt.is_none() { return; }
6555 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6556 let peer_state = &mut *peer_state_lock;
6557 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6558 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6559 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6560 node_id: *counterparty_node_id,
6568 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6569 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6573 fn provided_node_features(&self) -> NodeFeatures {
6574 provided_node_features(&self.default_configuration)
6577 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6578 provided_init_features(&self.default_configuration)
6582 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6583 /// [`ChannelManager`].
6584 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6585 provided_init_features(config).to_context()
6588 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6589 /// [`ChannelManager`].
6591 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6592 /// or not. Thus, this method is not public.
6593 #[cfg(any(feature = "_test_utils", test))]
6594 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6595 provided_init_features(config).to_context()
6598 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6599 /// [`ChannelManager`].
6600 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6601 provided_init_features(config).to_context()
6604 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6605 /// [`ChannelManager`].
6606 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6607 ChannelTypeFeatures::from_init(&provided_init_features(config))
6610 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6611 /// [`ChannelManager`].
6612 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6613 // Note that if new features are added here which other peers may (eventually) require, we
6614 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
6615 // [`ErroringMessageHandler`].
6616 let mut features = InitFeatures::empty();
6617 features.set_data_loss_protect_optional();
6618 features.set_upfront_shutdown_script_optional();
6619 features.set_variable_length_onion_required();
6620 features.set_static_remote_key_required();
6621 features.set_payment_secret_required();
6622 features.set_basic_mpp_optional();
6623 features.set_wumbo_optional();
6624 features.set_shutdown_any_segwit_optional();
6625 features.set_channel_type_optional();
6626 features.set_scid_privacy_optional();
6627 features.set_zero_conf_optional();
6629 { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6630 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6631 features.set_anchors_zero_fee_htlc_tx_optional();
6637 const SERIALIZATION_VERSION: u8 = 1;
6638 const MIN_SERIALIZATION_VERSION: u8 = 1;
6640 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6641 (2, fee_base_msat, required),
6642 (4, fee_proportional_millionths, required),
6643 (6, cltv_expiry_delta, required),
6646 impl_writeable_tlv_based!(ChannelCounterparty, {
6647 (2, node_id, required),
6648 (4, features, required),
6649 (6, unspendable_punishment_reserve, required),
6650 (8, forwarding_info, option),
6651 (9, outbound_htlc_minimum_msat, option),
6652 (11, outbound_htlc_maximum_msat, option),
6655 impl Writeable for ChannelDetails {
6656 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6657 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6658 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6659 let user_channel_id_low = self.user_channel_id as u64;
6660 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6661 write_tlv_fields!(writer, {
6662 (1, self.inbound_scid_alias, option),
6663 (2, self.channel_id, required),
6664 (3, self.channel_type, option),
6665 (4, self.counterparty, required),
6666 (5, self.outbound_scid_alias, option),
6667 (6, self.funding_txo, option),
6668 (7, self.config, option),
6669 (8, self.short_channel_id, option),
6670 (9, self.confirmations, option),
6671 (10, self.channel_value_satoshis, required),
6672 (12, self.unspendable_punishment_reserve, option),
6673 (14, user_channel_id_low, required),
6674 (16, self.balance_msat, required),
6675 (18, self.outbound_capacity_msat, required),
6676 // Note that by the time we get past the required read above, outbound_capacity_msat will be
6677 // filled in, so we can safely unwrap it here.
6678 (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6679 (20, self.inbound_capacity_msat, required),
6680 (22, self.confirmations_required, option),
6681 (24, self.force_close_spend_delay, option),
6682 (26, self.is_outbound, required),
6683 (28, self.is_channel_ready, required),
6684 (30, self.is_usable, required),
6685 (32, self.is_public, required),
6686 (33, self.inbound_htlc_minimum_msat, option),
6687 (35, self.inbound_htlc_maximum_msat, option),
6688 (37, user_channel_id_high_opt, option),
6689 (39, self.feerate_sat_per_1000_weight, option),
6695 impl Readable for ChannelDetails {
6696 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6697 _init_and_read_tlv_fields!(reader, {
6698 (1, inbound_scid_alias, option),
6699 (2, channel_id, required),
6700 (3, channel_type, option),
6701 (4, counterparty, required),
6702 (5, outbound_scid_alias, option),
6703 (6, funding_txo, option),
6704 (7, config, option),
6705 (8, short_channel_id, option),
6706 (9, confirmations, option),
6707 (10, channel_value_satoshis, required),
6708 (12, unspendable_punishment_reserve, option),
6709 (14, user_channel_id_low, required),
6710 (16, balance_msat, required),
6711 (18, outbound_capacity_msat, required),
6712 // Note that by the time we get past the required read above, outbound_capacity_msat will be
6713 // filled in, so we can safely unwrap it here.
6714 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6715 (20, inbound_capacity_msat, required),
6716 (22, confirmations_required, option),
6717 (24, force_close_spend_delay, option),
6718 (26, is_outbound, required),
6719 (28, is_channel_ready, required),
6720 (30, is_usable, required),
6721 (32, is_public, required),
6722 (33, inbound_htlc_minimum_msat, option),
6723 (35, inbound_htlc_maximum_msat, option),
6724 (37, user_channel_id_high_opt, option),
6725 (39, feerate_sat_per_1000_weight, option),
6728 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6729 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6730 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
6731 let user_channel_id = user_channel_id_low as u128 +
6732 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
6736 channel_id: channel_id.0.unwrap(),
6738 counterparty: counterparty.0.unwrap(),
6739 outbound_scid_alias,
6743 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
6744 unspendable_punishment_reserve,
6746 balance_msat: balance_msat.0.unwrap(),
6747 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
6748 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
6749 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
6750 confirmations_required,
6752 force_close_spend_delay,
6753 is_outbound: is_outbound.0.unwrap(),
6754 is_channel_ready: is_channel_ready.0.unwrap(),
6755 is_usable: is_usable.0.unwrap(),
6756 is_public: is_public.0.unwrap(),
6757 inbound_htlc_minimum_msat,
6758 inbound_htlc_maximum_msat,
6759 feerate_sat_per_1000_weight,
6764 impl_writeable_tlv_based!(PhantomRouteHints, {
6765 (2, channels, vec_type),
6766 (4, phantom_scid, required),
6767 (6, real_node_pubkey, required),
6770 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6772 (0, onion_packet, required),
6773 (2, short_channel_id, required),
6776 (0, payment_data, required),
6777 (1, phantom_shared_secret, option),
6778 (2, incoming_cltv_expiry, required),
6780 (2, ReceiveKeysend) => {
6781 (0, payment_preimage, required),
6782 (2, incoming_cltv_expiry, required),
6786 impl_writeable_tlv_based!(PendingHTLCInfo, {
6787 (0, routing, required),
6788 (2, incoming_shared_secret, required),
6789 (4, payment_hash, required),
6790 (6, outgoing_amt_msat, required),
6791 (8, outgoing_cltv_value, required),
6792 (9, incoming_amt_msat, option),
6796 impl Writeable for HTLCFailureMsg {
6797 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6799 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6801 channel_id.write(writer)?;
6802 htlc_id.write(writer)?;
6803 reason.write(writer)?;
6805 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6806 channel_id, htlc_id, sha256_of_onion, failure_code
6809 channel_id.write(writer)?;
6810 htlc_id.write(writer)?;
6811 sha256_of_onion.write(writer)?;
6812 failure_code.write(writer)?;
6819 impl Readable for HTLCFailureMsg {
6820 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6821 let id: u8 = Readable::read(reader)?;
6824 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6825 channel_id: Readable::read(reader)?,
6826 htlc_id: Readable::read(reader)?,
6827 reason: Readable::read(reader)?,
6831 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6832 channel_id: Readable::read(reader)?,
6833 htlc_id: Readable::read(reader)?,
6834 sha256_of_onion: Readable::read(reader)?,
6835 failure_code: Readable::read(reader)?,
6838 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6839 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6840 // messages contained in the variants.
6841 // In version 0.0.101, support for reading the variants with these types was added, and
6842 // we should migrate to writing these variants when UpdateFailHTLC or
6843 // UpdateFailMalformedHTLC get TLV fields.
6845 let length: BigSize = Readable::read(reader)?;
6846 let mut s = FixedLengthReader::new(reader, length.0);
6847 let res = Readable::read(&mut s)?;
6848 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6849 Ok(HTLCFailureMsg::Relay(res))
6852 let length: BigSize = Readable::read(reader)?;
6853 let mut s = FixedLengthReader::new(reader, length.0);
6854 let res = Readable::read(&mut s)?;
6855 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6856 Ok(HTLCFailureMsg::Malformed(res))
6858 _ => Err(DecodeError::UnknownRequiredFeature),
6863 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6868 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6869 (0, short_channel_id, required),
6870 (1, phantom_shared_secret, option),
6871 (2, outpoint, required),
6872 (4, htlc_id, required),
6873 (6, incoming_packet_shared_secret, required)
6876 impl Writeable for ClaimableHTLC {
6877 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6878 let (payment_data, keysend_preimage) = match &self.onion_payload {
6879 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6880 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6882 write_tlv_fields!(writer, {
6883 (0, self.prev_hop, required),
6884 (1, self.total_msat, required),
6885 (2, self.value, required),
6886 (3, self.sender_intended_value, required),
6887 (4, payment_data, option),
6888 (5, self.total_value_received, option),
6889 (6, self.cltv_expiry, required),
6890 (8, keysend_preimage, option),
6896 impl Readable for ClaimableHTLC {
6897 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6898 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
6900 let mut sender_intended_value = None;
6901 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6902 let mut cltv_expiry = 0;
6903 let mut total_value_received = None;
6904 let mut total_msat = None;
6905 let mut keysend_preimage: Option<PaymentPreimage> = None;
6906 read_tlv_fields!(reader, {
6907 (0, prev_hop, required),
6908 (1, total_msat, option),
6909 (2, value, required),
6910 (3, sender_intended_value, option),
6911 (4, payment_data, option),
6912 (5, total_value_received, option),
6913 (6, cltv_expiry, required),
6914 (8, keysend_preimage, option)
6916 let onion_payload = match keysend_preimage {
6918 if payment_data.is_some() {
6919 return Err(DecodeError::InvalidValue)
6921 if total_msat.is_none() {
6922 total_msat = Some(value);
6924 OnionPayload::Spontaneous(p)
6927 if total_msat.is_none() {
6928 if payment_data.is_none() {
6929 return Err(DecodeError::InvalidValue)
6931 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6933 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6937 prev_hop: prev_hop.0.unwrap(),
6940 sender_intended_value: sender_intended_value.unwrap_or(value),
6941 total_value_received,
6942 total_msat: total_msat.unwrap(),
6949 impl Readable for HTLCSource {
6950 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6951 let id: u8 = Readable::read(reader)?;
6954 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
6955 let mut first_hop_htlc_msat: u64 = 0;
6956 let mut path: Option<Vec<RouteHop>> = Some(Vec::new());
6957 let mut payment_id = None;
6958 let mut payment_params: Option<PaymentParameters> = None;
6959 read_tlv_fields!(reader, {
6960 (0, session_priv, required),
6961 (1, payment_id, option),
6962 (2, first_hop_htlc_msat, required),
6963 (4, path, vec_type),
6964 (5, payment_params, (option: ReadableArgs, 0)),
6966 if payment_id.is_none() {
6967 // For backwards compat, if there was no payment_id written, use the session_priv bytes
6969 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6971 if path.is_none() || path.as_ref().unwrap().is_empty() {
6972 return Err(DecodeError::InvalidValue);
6974 let path = path.unwrap();
6975 if let Some(params) = payment_params.as_mut() {
6976 if params.final_cltv_expiry_delta == 0 {
6977 params.final_cltv_expiry_delta = path.last().unwrap().cltv_expiry_delta;
6980 Ok(HTLCSource::OutboundRoute {
6981 session_priv: session_priv.0.unwrap(),
6982 first_hop_htlc_msat,
6984 payment_id: payment_id.unwrap(),
6987 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6988 _ => Err(DecodeError::UnknownRequiredFeature),
6993 impl Writeable for HTLCSource {
6994 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
6996 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
6998 let payment_id_opt = Some(payment_id);
6999 write_tlv_fields!(writer, {
7000 (0, session_priv, required),
7001 (1, payment_id_opt, option),
7002 (2, first_hop_htlc_msat, required),
7003 // 3 was previously used to write a PaymentSecret for the payment.
7004 (4, *path, vec_type),
7005 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
7008 HTLCSource::PreviousHopData(ref field) => {
7010 field.write(writer)?;
7017 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
7018 (0, forward_info, required),
7019 (1, prev_user_channel_id, (default_value, 0)),
7020 (2, prev_short_channel_id, required),
7021 (4, prev_htlc_id, required),
7022 (6, prev_funding_outpoint, required),
7025 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
7027 (0, htlc_id, required),
7028 (2, err_packet, required),
7033 impl_writeable_tlv_based!(PendingInboundPayment, {
7034 (0, payment_secret, required),
7035 (2, expiry_time, required),
7036 (4, user_payment_id, required),
7037 (6, payment_preimage, required),
7038 (8, min_value_msat, required),
7041 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
7043 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7044 T::Target: BroadcasterInterface,
7045 ES::Target: EntropySource,
7046 NS::Target: NodeSigner,
7047 SP::Target: SignerProvider,
7048 F::Target: FeeEstimator,
7052 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7053 let _consistency_lock = self.total_consistency_lock.write().unwrap();
7055 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
7057 self.genesis_hash.write(writer)?;
7059 let best_block = self.best_block.read().unwrap();
7060 best_block.height().write(writer)?;
7061 best_block.block_hash().write(writer)?;
7064 let mut serializable_peer_count: u64 = 0;
7066 let per_peer_state = self.per_peer_state.read().unwrap();
7067 let mut unfunded_channels = 0;
7068 let mut number_of_channels = 0;
7069 for (_, peer_state_mutex) in per_peer_state.iter() {
7070 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7071 let peer_state = &mut *peer_state_lock;
7072 if !peer_state.ok_to_remove(false) {
7073 serializable_peer_count += 1;
7075 number_of_channels += peer_state.channel_by_id.len();
7076 for (_, channel) in peer_state.channel_by_id.iter() {
7077 if !channel.is_funding_initiated() {
7078 unfunded_channels += 1;
7083 ((number_of_channels - unfunded_channels) as u64).write(writer)?;
7085 for (_, peer_state_mutex) in per_peer_state.iter() {
7086 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7087 let peer_state = &mut *peer_state_lock;
7088 for (_, channel) in peer_state.channel_by_id.iter() {
7089 if channel.is_funding_initiated() {
7090 channel.write(writer)?;
7097 let forward_htlcs = self.forward_htlcs.lock().unwrap();
7098 (forward_htlcs.len() as u64).write(writer)?;
7099 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
7100 short_channel_id.write(writer)?;
7101 (pending_forwards.len() as u64).write(writer)?;
7102 for forward in pending_forwards {
7103 forward.write(writer)?;
7108 let per_peer_state = self.per_peer_state.write().unwrap();
7110 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
7111 let claimable_payments = self.claimable_payments.lock().unwrap();
7112 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
7114 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
7115 (claimable_payments.claimable_htlcs.len() as u64).write(writer)?;
7116 for (payment_hash, (purpose, previous_hops)) in claimable_payments.claimable_htlcs.iter() {
7117 payment_hash.write(writer)?;
7118 (previous_hops.len() as u64).write(writer)?;
7119 for htlc in previous_hops.iter() {
7120 htlc.write(writer)?;
7122 htlc_purposes.push(purpose);
7125 let mut monitor_update_blocked_actions_per_peer = None;
7126 let mut peer_states = Vec::new();
7127 for (_, peer_state_mutex) in per_peer_state.iter() {
7128 // Because we're holding the owning `per_peer_state` write lock here there's no chance
7129 // of a lockorder violation deadlock - no other thread can be holding any
7130 // per_peer_state lock at all.
7131 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
7134 (serializable_peer_count).write(writer)?;
7135 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
7136 // Peers which we have no channels to should be dropped once disconnected. As we
7137 // disconnect all peers when shutting down and serializing the ChannelManager, we
7138 // consider all peers as disconnected here. There's therefore no need write peers with
7140 if !peer_state.ok_to_remove(false) {
7141 peer_pubkey.write(writer)?;
7142 peer_state.latest_features.write(writer)?;
7143 if !peer_state.monitor_update_blocked_actions.is_empty() {
7144 monitor_update_blocked_actions_per_peer
7145 .get_or_insert_with(Vec::new)
7146 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
7151 let events = self.pending_events.lock().unwrap();
7152 (events.len() as u64).write(writer)?;
7153 for event in events.iter() {
7154 event.write(writer)?;
7157 let background_events = self.pending_background_events.lock().unwrap();
7158 (background_events.len() as u64).write(writer)?;
7159 for event in background_events.iter() {
7161 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
7163 funding_txo.write(writer)?;
7164 monitor_update.write(writer)?;
7169 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
7170 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
7171 // likely to be identical.
7172 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7173 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7175 (pending_inbound_payments.len() as u64).write(writer)?;
7176 for (hash, pending_payment) in pending_inbound_payments.iter() {
7177 hash.write(writer)?;
7178 pending_payment.write(writer)?;
7181 // For backwards compat, write the session privs and their total length.
7182 let mut num_pending_outbounds_compat: u64 = 0;
7183 for (_, outbound) in pending_outbound_payments.iter() {
7184 if !outbound.is_fulfilled() && !outbound.abandoned() {
7185 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7188 num_pending_outbounds_compat.write(writer)?;
7189 for (_, outbound) in pending_outbound_payments.iter() {
7191 PendingOutboundPayment::Legacy { session_privs } |
7192 PendingOutboundPayment::Retryable { session_privs, .. } => {
7193 for session_priv in session_privs.iter() {
7194 session_priv.write(writer)?;
7197 PendingOutboundPayment::Fulfilled { .. } => {},
7198 PendingOutboundPayment::Abandoned { .. } => {},
7202 // Encode without retry info for 0.0.101 compatibility.
7203 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7204 for (id, outbound) in pending_outbound_payments.iter() {
7206 PendingOutboundPayment::Legacy { session_privs } |
7207 PendingOutboundPayment::Retryable { session_privs, .. } => {
7208 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7214 let mut pending_intercepted_htlcs = None;
7215 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7216 if our_pending_intercepts.len() != 0 {
7217 pending_intercepted_htlcs = Some(our_pending_intercepts);
7220 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7221 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7222 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7223 // map. Thus, if there are no entries we skip writing a TLV for it.
7224 pending_claiming_payments = None;
7227 write_tlv_fields!(writer, {
7228 (1, pending_outbound_payments_no_retry, required),
7229 (2, pending_intercepted_htlcs, option),
7230 (3, pending_outbound_payments, required),
7231 (4, pending_claiming_payments, option),
7232 (5, self.our_network_pubkey, required),
7233 (6, monitor_update_blocked_actions_per_peer, option),
7234 (7, self.fake_scid_rand_bytes, required),
7235 (9, htlc_purposes, vec_type),
7236 (11, self.probing_cookie_secret, required),
7243 /// Arguments for the creation of a ChannelManager that are not deserialized.
7245 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7247 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7248 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7249 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
7250 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7251 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7252 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7253 /// same way you would handle a [`chain::Filter`] call using
7254 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7255 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7256 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7257 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7258 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7259 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7261 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7262 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7264 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7265 /// call any other methods on the newly-deserialized [`ChannelManager`].
7267 /// Note that because some channels may be closed during deserialization, it is critical that you
7268 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7269 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7270 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7271 /// not force-close the same channels but consider them live), you may end up revoking a state for
7272 /// which you've already broadcasted the transaction.
7274 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7275 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7277 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7278 T::Target: BroadcasterInterface,
7279 ES::Target: EntropySource,
7280 NS::Target: NodeSigner,
7281 SP::Target: SignerProvider,
7282 F::Target: FeeEstimator,
7286 /// A cryptographically secure source of entropy.
7287 pub entropy_source: ES,
7289 /// A signer that is able to perform node-scoped cryptographic operations.
7290 pub node_signer: NS,
7292 /// The keys provider which will give us relevant keys. Some keys will be loaded during
7293 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7295 pub signer_provider: SP,
7297 /// The fee_estimator for use in the ChannelManager in the future.
7299 /// No calls to the FeeEstimator will be made during deserialization.
7300 pub fee_estimator: F,
7301 /// The chain::Watch for use in the ChannelManager in the future.
7303 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7304 /// you have deserialized ChannelMonitors separately and will add them to your
7305 /// chain::Watch after deserializing this ChannelManager.
7306 pub chain_monitor: M,
7308 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7309 /// used to broadcast the latest local commitment transactions of channels which must be
7310 /// force-closed during deserialization.
7311 pub tx_broadcaster: T,
7312 /// The router which will be used in the ChannelManager in the future for finding routes
7313 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7315 /// No calls to the router will be made during deserialization.
7317 /// The Logger for use in the ChannelManager and which may be used to log information during
7318 /// deserialization.
7320 /// Default settings used for new channels. Any existing channels will continue to use the
7321 /// runtime settings which were stored when the ChannelManager was serialized.
7322 pub default_config: UserConfig,
7324 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7325 /// value.get_funding_txo() should be the key).
7327 /// If a monitor is inconsistent with the channel state during deserialization the channel will
7328 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7329 /// is true for missing channels as well. If there is a monitor missing for which we find
7330 /// channel data Err(DecodeError::InvalidValue) will be returned.
7332 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7335 /// This is not exported to bindings users because we have no HashMap bindings
7336 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7339 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7340 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7342 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7343 T::Target: BroadcasterInterface,
7344 ES::Target: EntropySource,
7345 NS::Target: NodeSigner,
7346 SP::Target: SignerProvider,
7347 F::Target: FeeEstimator,
7351 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7352 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7353 /// populate a HashMap directly from C.
7354 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7355 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7357 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7358 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7363 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7364 // SipmleArcChannelManager type:
7365 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7366 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7368 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7369 T::Target: BroadcasterInterface,
7370 ES::Target: EntropySource,
7371 NS::Target: NodeSigner,
7372 SP::Target: SignerProvider,
7373 F::Target: FeeEstimator,
7377 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7378 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7379 Ok((blockhash, Arc::new(chan_manager)))
7383 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7384 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7386 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7387 T::Target: BroadcasterInterface,
7388 ES::Target: EntropySource,
7389 NS::Target: NodeSigner,
7390 SP::Target: SignerProvider,
7391 F::Target: FeeEstimator,
7395 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7396 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7398 let genesis_hash: BlockHash = Readable::read(reader)?;
7399 let best_block_height: u32 = Readable::read(reader)?;
7400 let best_block_hash: BlockHash = Readable::read(reader)?;
7402 let mut failed_htlcs = Vec::new();
7404 let channel_count: u64 = Readable::read(reader)?;
7405 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7406 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7407 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7408 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7409 let mut channel_closures = Vec::new();
7410 let mut pending_background_events = Vec::new();
7411 for _ in 0..channel_count {
7412 let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7413 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7415 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7416 funding_txo_set.insert(funding_txo.clone());
7417 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7418 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
7419 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
7420 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
7421 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
7422 // If the channel is ahead of the monitor, return InvalidValue:
7423 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7424 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7425 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7426 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7427 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7428 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7429 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7430 return Err(DecodeError::InvalidValue);
7431 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7432 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7433 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7434 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7435 // But if the channel is behind of the monitor, close the channel:
7436 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7437 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7438 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7439 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7440 let (monitor_update, mut new_failed_htlcs) = channel.force_shutdown(true);
7441 if let Some(monitor_update) = monitor_update {
7442 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate(monitor_update));
7444 failed_htlcs.append(&mut new_failed_htlcs);
7445 channel_closures.push(events::Event::ChannelClosed {
7446 channel_id: channel.channel_id(),
7447 user_channel_id: channel.get_user_id(),
7448 reason: ClosureReason::OutdatedChannelManager
7450 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7451 let mut found_htlc = false;
7452 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7453 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7456 // If we have some HTLCs in the channel which are not present in the newer
7457 // ChannelMonitor, they have been removed and should be failed back to
7458 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7459 // were actually claimed we'd have generated and ensured the previous-hop
7460 // claim update ChannelMonitor updates were persisted prior to persising
7461 // the ChannelMonitor update for the forward leg, so attempting to fail the
7462 // backwards leg of the HTLC will simply be rejected.
7463 log_info!(args.logger,
7464 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7465 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7466 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7470 log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7471 if let Some(short_channel_id) = channel.get_short_channel_id() {
7472 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7474 if channel.is_funding_initiated() {
7475 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7477 match peer_channels.entry(channel.get_counterparty_node_id()) {
7478 hash_map::Entry::Occupied(mut entry) => {
7479 let by_id_map = entry.get_mut();
7480 by_id_map.insert(channel.channel_id(), channel);
7482 hash_map::Entry::Vacant(entry) => {
7483 let mut by_id_map = HashMap::new();
7484 by_id_map.insert(channel.channel_id(), channel);
7485 entry.insert(by_id_map);
7489 } else if channel.is_awaiting_initial_mon_persist() {
7490 // If we were persisted and shut down while the initial ChannelMonitor persistence
7491 // was in-progress, we never broadcasted the funding transaction and can still
7492 // safely discard the channel.
7493 let _ = channel.force_shutdown(false);
7494 channel_closures.push(events::Event::ChannelClosed {
7495 channel_id: channel.channel_id(),
7496 user_channel_id: channel.get_user_id(),
7497 reason: ClosureReason::DisconnectedPeer,
7500 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7501 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7502 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7503 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7504 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7505 return Err(DecodeError::InvalidValue);
7509 for (funding_txo, _) in args.channel_monitors.iter() {
7510 if !funding_txo_set.contains(funding_txo) {
7511 let monitor_update = ChannelMonitorUpdate {
7512 update_id: CLOSED_CHANNEL_UPDATE_ID,
7513 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
7515 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate((*funding_txo, monitor_update)));
7519 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7520 let forward_htlcs_count: u64 = Readable::read(reader)?;
7521 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7522 for _ in 0..forward_htlcs_count {
7523 let short_channel_id = Readable::read(reader)?;
7524 let pending_forwards_count: u64 = Readable::read(reader)?;
7525 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7526 for _ in 0..pending_forwards_count {
7527 pending_forwards.push(Readable::read(reader)?);
7529 forward_htlcs.insert(short_channel_id, pending_forwards);
7532 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7533 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7534 for _ in 0..claimable_htlcs_count {
7535 let payment_hash = Readable::read(reader)?;
7536 let previous_hops_len: u64 = Readable::read(reader)?;
7537 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7538 for _ in 0..previous_hops_len {
7539 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7541 claimable_htlcs_list.push((payment_hash, previous_hops));
7544 let peer_count: u64 = Readable::read(reader)?;
7545 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7546 for _ in 0..peer_count {
7547 let peer_pubkey = Readable::read(reader)?;
7548 let peer_state = PeerState {
7549 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7550 latest_features: Readable::read(reader)?,
7551 pending_msg_events: Vec::new(),
7552 monitor_update_blocked_actions: BTreeMap::new(),
7553 is_connected: false,
7555 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7558 let event_count: u64 = Readable::read(reader)?;
7559 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7560 for _ in 0..event_count {
7561 match MaybeReadable::read(reader)? {
7562 Some(event) => pending_events_read.push(event),
7567 let background_event_count: u64 = Readable::read(reader)?;
7568 for _ in 0..background_event_count {
7569 match <u8 as Readable>::read(reader)? {
7571 let (funding_txo, monitor_update): (OutPoint, ChannelMonitorUpdate) = (Readable::read(reader)?, Readable::read(reader)?);
7572 if pending_background_events.iter().find(|e| {
7573 let BackgroundEvent::ClosingMonitorUpdate((pending_funding_txo, pending_monitor_update)) = e;
7574 *pending_funding_txo == funding_txo && *pending_monitor_update == monitor_update
7576 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)));
7579 _ => return Err(DecodeError::InvalidValue),
7583 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7584 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7586 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7587 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7588 for _ in 0..pending_inbound_payment_count {
7589 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7590 return Err(DecodeError::InvalidValue);
7594 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7595 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7596 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7597 for _ in 0..pending_outbound_payments_count_compat {
7598 let session_priv = Readable::read(reader)?;
7599 let payment = PendingOutboundPayment::Legacy {
7600 session_privs: [session_priv].iter().cloned().collect()
7602 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7603 return Err(DecodeError::InvalidValue)
7607 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7608 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7609 let mut pending_outbound_payments = None;
7610 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7611 let mut received_network_pubkey: Option<PublicKey> = None;
7612 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7613 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7614 let mut claimable_htlc_purposes = None;
7615 let mut pending_claiming_payments = Some(HashMap::new());
7616 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7617 read_tlv_fields!(reader, {
7618 (1, pending_outbound_payments_no_retry, option),
7619 (2, pending_intercepted_htlcs, option),
7620 (3, pending_outbound_payments, option),
7621 (4, pending_claiming_payments, option),
7622 (5, received_network_pubkey, option),
7623 (6, monitor_update_blocked_actions_per_peer, option),
7624 (7, fake_scid_rand_bytes, option),
7625 (9, claimable_htlc_purposes, vec_type),
7626 (11, probing_cookie_secret, option),
7628 if fake_scid_rand_bytes.is_none() {
7629 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7632 if probing_cookie_secret.is_none() {
7633 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7636 if !channel_closures.is_empty() {
7637 pending_events_read.append(&mut channel_closures);
7640 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7641 pending_outbound_payments = Some(pending_outbound_payments_compat);
7642 } else if pending_outbound_payments.is_none() {
7643 let mut outbounds = HashMap::new();
7644 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7645 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7647 pending_outbound_payments = Some(outbounds);
7649 let pending_outbounds = OutboundPayments {
7650 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7651 retry_lock: Mutex::new(())
7655 // If we're tracking pending payments, ensure we haven't lost any by looking at the
7656 // ChannelMonitor data for any channels for which we do not have authorative state
7657 // (i.e. those for which we just force-closed above or we otherwise don't have a
7658 // corresponding `Channel` at all).
7659 // This avoids several edge-cases where we would otherwise "forget" about pending
7660 // payments which are still in-flight via their on-chain state.
7661 // We only rebuild the pending payments map if we were most recently serialized by
7663 for (_, monitor) in args.channel_monitors.iter() {
7664 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7665 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
7666 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
7667 if path.is_empty() {
7668 log_error!(args.logger, "Got an empty path for a pending payment");
7669 return Err(DecodeError::InvalidValue);
7672 let path_amt = path.last().unwrap().fee_msat;
7673 let mut session_priv_bytes = [0; 32];
7674 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7675 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
7676 hash_map::Entry::Occupied(mut entry) => {
7677 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7678 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7679 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7681 hash_map::Entry::Vacant(entry) => {
7682 let path_fee = path.get_path_fees();
7683 entry.insert(PendingOutboundPayment::Retryable {
7684 retry_strategy: None,
7685 attempts: PaymentAttempts::new(),
7686 payment_params: None,
7687 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7688 payment_hash: htlc.payment_hash,
7689 payment_secret: None, // only used for retries, and we'll never retry on startup
7690 keysend_preimage: None, // only used for retries, and we'll never retry on startup
7691 pending_amt_msat: path_amt,
7692 pending_fee_msat: Some(path_fee),
7693 total_msat: path_amt,
7694 starting_block_height: best_block_height,
7696 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7697 path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes));
7702 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
7704 HTLCSource::PreviousHopData(prev_hop_data) => {
7705 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
7706 info.prev_funding_outpoint == prev_hop_data.outpoint &&
7707 info.prev_htlc_id == prev_hop_data.htlc_id
7709 // The ChannelMonitor is now responsible for this HTLC's
7710 // failure/success and will let us know what its outcome is. If we
7711 // still have an entry for this HTLC in `forward_htlcs` or
7712 // `pending_intercepted_htlcs`, we were apparently not persisted after
7713 // the monitor was when forwarding the payment.
7714 forward_htlcs.retain(|_, forwards| {
7715 forwards.retain(|forward| {
7716 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
7717 if pending_forward_matches_htlc(&htlc_info) {
7718 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
7719 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7724 !forwards.is_empty()
7726 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
7727 if pending_forward_matches_htlc(&htlc_info) {
7728 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
7729 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7730 pending_events_read.retain(|event| {
7731 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
7732 intercepted_id != ev_id
7739 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
7740 if let Some(preimage) = preimage_opt {
7741 let pending_events = Mutex::new(pending_events_read);
7742 // Note that we set `from_onchain` to "false" here,
7743 // deliberately keeping the pending payment around forever.
7744 // Given it should only occur when we have a channel we're
7745 // force-closing for being stale that's okay.
7746 // The alternative would be to wipe the state when claiming,
7747 // generating a `PaymentPathSuccessful` event but regenerating
7748 // it and the `PaymentSent` on every restart until the
7749 // `ChannelMonitor` is removed.
7750 pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
7751 pending_events_read = pending_events.into_inner().unwrap();
7760 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
7761 // If we have pending HTLCs to forward, assume we either dropped a
7762 // `PendingHTLCsForwardable` or the user received it but never processed it as they
7763 // shut down before the timer hit. Either way, set the time_forwardable to a small
7764 // constant as enough time has likely passed that we should simply handle the forwards
7765 // now, or at least after the user gets a chance to reconnect to our peers.
7766 pending_events_read.push(events::Event::PendingHTLCsForwardable {
7767 time_forwardable: Duration::from_secs(2),
7771 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
7772 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7774 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
7775 if let Some(mut purposes) = claimable_htlc_purposes {
7776 if purposes.len() != claimable_htlcs_list.len() {
7777 return Err(DecodeError::InvalidValue);
7779 for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
7780 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7783 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7784 // include a `_legacy_hop_data` in the `OnionPayload`.
7785 for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
7786 if previous_hops.is_empty() {
7787 return Err(DecodeError::InvalidValue);
7789 let purpose = match &previous_hops[0].onion_payload {
7790 OnionPayload::Invoice { _legacy_hop_data } => {
7791 if let Some(hop_data) = _legacy_hop_data {
7792 events::PaymentPurpose::InvoicePayment {
7793 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7794 Some(inbound_payment) => inbound_payment.payment_preimage,
7795 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7796 Ok((payment_preimage, _)) => payment_preimage,
7798 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7799 return Err(DecodeError::InvalidValue);
7803 payment_secret: hop_data.payment_secret,
7805 } else { return Err(DecodeError::InvalidValue); }
7807 OnionPayload::Spontaneous(payment_preimage) =>
7808 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7810 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7814 let mut secp_ctx = Secp256k1::new();
7815 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
7817 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
7819 Err(()) => return Err(DecodeError::InvalidValue)
7821 if let Some(network_pubkey) = received_network_pubkey {
7822 if network_pubkey != our_network_pubkey {
7823 log_error!(args.logger, "Key that was generated does not match the existing key.");
7824 return Err(DecodeError::InvalidValue);
7828 let mut outbound_scid_aliases = HashSet::new();
7829 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
7830 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7831 let peer_state = &mut *peer_state_lock;
7832 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
7833 if chan.outbound_scid_alias() == 0 {
7834 let mut outbound_scid_alias;
7836 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7837 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
7838 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7840 chan.set_outbound_scid_alias(outbound_scid_alias);
7841 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7842 // Note that in rare cases its possible to hit this while reading an older
7843 // channel if we just happened to pick a colliding outbound alias above.
7844 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7845 return Err(DecodeError::InvalidValue);
7847 if chan.is_usable() {
7848 if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7849 // Note that in rare cases its possible to hit this while reading an older
7850 // channel if we just happened to pick a colliding outbound alias above.
7851 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7852 return Err(DecodeError::InvalidValue);
7858 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7860 for (_, monitor) in args.channel_monitors.iter() {
7861 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7862 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7863 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7864 let mut claimable_amt_msat = 0;
7865 let mut receiver_node_id = Some(our_network_pubkey);
7866 let phantom_shared_secret = claimable_htlcs[0].prev_hop.phantom_shared_secret;
7867 if phantom_shared_secret.is_some() {
7868 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
7869 .expect("Failed to get node_id for phantom node recipient");
7870 receiver_node_id = Some(phantom_pubkey)
7872 for claimable_htlc in claimable_htlcs {
7873 claimable_amt_msat += claimable_htlc.value;
7875 // Add a holding-cell claim of the payment to the Channel, which should be
7876 // applied ~immediately on peer reconnection. Because it won't generate a
7877 // new commitment transaction we can just provide the payment preimage to
7878 // the corresponding ChannelMonitor and nothing else.
7880 // We do so directly instead of via the normal ChannelMonitor update
7881 // procedure as the ChainMonitor hasn't yet been initialized, implying
7882 // we're not allowed to call it directly yet. Further, we do the update
7883 // without incrementing the ChannelMonitor update ID as there isn't any
7885 // If we were to generate a new ChannelMonitor update ID here and then
7886 // crash before the user finishes block connect we'd end up force-closing
7887 // this channel as well. On the flip side, there's no harm in restarting
7888 // without the new monitor persisted - we'll end up right back here on
7890 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7891 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
7892 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
7893 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7894 let peer_state = &mut *peer_state_lock;
7895 if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
7896 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7899 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7900 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
7903 pending_events_read.push(events::Event::PaymentClaimed {
7906 purpose: payment_purpose,
7907 amount_msat: claimable_amt_msat,
7913 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
7914 if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
7915 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
7917 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
7918 return Err(DecodeError::InvalidValue);
7922 let channel_manager = ChannelManager {
7924 fee_estimator: bounded_fee_estimator,
7925 chain_monitor: args.chain_monitor,
7926 tx_broadcaster: args.tx_broadcaster,
7927 router: args.router,
7929 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7931 inbound_payment_key: expanded_inbound_key,
7932 pending_inbound_payments: Mutex::new(pending_inbound_payments),
7933 pending_outbound_payments: pending_outbounds,
7934 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
7936 forward_htlcs: Mutex::new(forward_htlcs),
7937 claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs, pending_claiming_payments: pending_claiming_payments.unwrap() }),
7938 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7939 id_to_peer: Mutex::new(id_to_peer),
7940 short_to_chan_info: FairRwLock::new(short_to_chan_info),
7941 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7943 probing_cookie_secret: probing_cookie_secret.unwrap(),
7948 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7950 per_peer_state: FairRwLock::new(per_peer_state),
7952 pending_events: Mutex::new(pending_events_read),
7953 pending_background_events: Mutex::new(pending_background_events),
7954 total_consistency_lock: RwLock::new(()),
7955 persistence_notifier: Notifier::new(),
7957 entropy_source: args.entropy_source,
7958 node_signer: args.node_signer,
7959 signer_provider: args.signer_provider,
7961 logger: args.logger,
7962 default_configuration: args.default_config,
7965 for htlc_source in failed_htlcs.drain(..) {
7966 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
7967 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
7968 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7969 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
7972 //TODO: Broadcast channel update for closed channels, but only after we've made a
7973 //connection or two.
7975 Ok((best_block_hash.clone(), channel_manager))
7981 use bitcoin::hashes::Hash;
7982 use bitcoin::hashes::sha256::Hash as Sha256;
7983 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
7984 #[cfg(feature = "std")]
7985 use core::time::Duration;
7986 use core::sync::atomic::Ordering;
7987 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
7988 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7989 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
7990 use crate::ln::functional_test_utils::*;
7991 use crate::ln::msgs;
7992 use crate::ln::msgs::ChannelMessageHandler;
7993 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
7994 use crate::util::errors::APIError;
7995 use crate::util::test_utils;
7996 use crate::util::config::ChannelConfig;
7997 use crate::chain::keysinterface::EntropySource;
8000 fn test_notify_limits() {
8001 // Check that a few cases which don't require the persistence of a new ChannelManager,
8002 // indeed, do not cause the persistence of a new ChannelManager.
8003 let chanmon_cfgs = create_chanmon_cfgs(3);
8004 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
8005 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
8006 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
8008 // All nodes start with a persistable update pending as `create_network` connects each node
8009 // with all other nodes to make most tests simpler.
8010 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8011 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8012 assert!(nodes[2].node.get_persistable_update_future().poll_is_complete());
8014 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8016 // We check that the channel info nodes have doesn't change too early, even though we try
8017 // to connect messages with new values
8018 chan.0.contents.fee_base_msat *= 2;
8019 chan.1.contents.fee_base_msat *= 2;
8020 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
8021 &nodes[1].node.get_our_node_id()).pop().unwrap();
8022 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
8023 &nodes[0].node.get_our_node_id()).pop().unwrap();
8025 // The first two nodes (which opened a channel) should now require fresh persistence
8026 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8027 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8028 // ... but the last node should not.
8029 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
8030 // After persisting the first two nodes they should no longer need fresh persistence.
8031 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8032 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8034 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
8035 // about the channel.
8036 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
8037 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
8038 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
8040 // The nodes which are a party to the channel should also ignore messages from unrelated
8042 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8043 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8044 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8045 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8046 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8047 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8049 // At this point the channel info given by peers should still be the same.
8050 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8051 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8053 // An earlier version of handle_channel_update didn't check the directionality of the
8054 // update message and would always update the local fee info, even if our peer was
8055 // (spuriously) forwarding us our own channel_update.
8056 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
8057 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
8058 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
8060 // First deliver each peers' own message, checking that the node doesn't need to be
8061 // persisted and that its channel info remains the same.
8062 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
8063 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
8064 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8065 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8066 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8067 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8069 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
8070 // the channel info has updated.
8071 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
8072 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
8073 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8074 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8075 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
8076 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
8080 fn test_keysend_dup_hash_partial_mpp() {
8081 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
8083 let chanmon_cfgs = create_chanmon_cfgs(2);
8084 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8085 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8086 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8087 create_announced_chan_between_nodes(&nodes, 0, 1);
8089 // First, send a partial MPP payment.
8090 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
8091 let mut mpp_route = route.clone();
8092 mpp_route.paths.push(mpp_route.paths[0].clone());
8094 let payment_id = PaymentId([42; 32]);
8095 // Use the utility function send_payment_along_path to send the payment with MPP data which
8096 // indicates there are more HTLCs coming.
8097 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
8098 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
8099 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
8100 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
8101 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
8102 check_added_monitors!(nodes[0], 1);
8103 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8104 assert_eq!(events.len(), 1);
8105 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
8107 // Next, send a keysend payment with the same payment_hash and make sure it fails.
8108 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8109 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8110 check_added_monitors!(nodes[0], 1);
8111 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8112 assert_eq!(events.len(), 1);
8113 let ev = events.drain(..).next().unwrap();
8114 let payment_event = SendEvent::from_event(ev);
8115 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8116 check_added_monitors!(nodes[1], 0);
8117 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8118 expect_pending_htlcs_forwardable!(nodes[1]);
8119 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
8120 check_added_monitors!(nodes[1], 1);
8121 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8122 assert!(updates.update_add_htlcs.is_empty());
8123 assert!(updates.update_fulfill_htlcs.is_empty());
8124 assert_eq!(updates.update_fail_htlcs.len(), 1);
8125 assert!(updates.update_fail_malformed_htlcs.is_empty());
8126 assert!(updates.update_fee.is_none());
8127 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8128 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8129 expect_payment_failed!(nodes[0], our_payment_hash, true);
8131 // Send the second half of the original MPP payment.
8132 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
8133 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
8134 check_added_monitors!(nodes[0], 1);
8135 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8136 assert_eq!(events.len(), 1);
8137 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
8139 // Claim the full MPP payment. Note that we can't use a test utility like
8140 // claim_funds_along_route because the ordering of the messages causes the second half of the
8141 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
8142 // lightning messages manually.
8143 nodes[1].node.claim_funds(payment_preimage);
8144 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
8145 check_added_monitors!(nodes[1], 2);
8147 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8148 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
8149 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
8150 check_added_monitors!(nodes[0], 1);
8151 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8152 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
8153 check_added_monitors!(nodes[1], 1);
8154 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8155 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
8156 check_added_monitors!(nodes[1], 1);
8157 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8158 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
8159 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
8160 check_added_monitors!(nodes[0], 1);
8161 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
8162 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
8163 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8164 check_added_monitors!(nodes[0], 1);
8165 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
8166 check_added_monitors!(nodes[1], 1);
8167 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
8168 check_added_monitors!(nodes[1], 1);
8169 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8170 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
8171 check_added_monitors!(nodes[0], 1);
8173 // Note that successful MPP payments will generate a single PaymentSent event upon the first
8174 // path's success and a PaymentPathSuccessful event for each path's success.
8175 let events = nodes[0].node.get_and_clear_pending_events();
8176 assert_eq!(events.len(), 3);
8178 Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
8179 assert_eq!(Some(payment_id), *id);
8180 assert_eq!(payment_preimage, *preimage);
8181 assert_eq!(our_payment_hash, *hash);
8183 _ => panic!("Unexpected event"),
8186 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8187 assert_eq!(payment_id, *actual_payment_id);
8188 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8189 assert_eq!(route.paths[0], *path);
8191 _ => panic!("Unexpected event"),
8194 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8195 assert_eq!(payment_id, *actual_payment_id);
8196 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8197 assert_eq!(route.paths[0], *path);
8199 _ => panic!("Unexpected event"),
8204 fn test_keysend_dup_payment_hash() {
8205 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
8206 // outbound regular payment fails as expected.
8207 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
8208 // fails as expected.
8209 let chanmon_cfgs = create_chanmon_cfgs(2);
8210 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8211 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8212 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8213 create_announced_chan_between_nodes(&nodes, 0, 1);
8214 let scorer = test_utils::TestScorer::new();
8215 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8217 // To start (1), send a regular payment but don't claim it.
8218 let expected_route = [&nodes[1]];
8219 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
8221 // Next, attempt a keysend payment and make sure it fails.
8222 let route_params = RouteParameters {
8223 payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
8224 final_value_msat: 100_000,
8226 let route = find_route(
8227 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8228 None, nodes[0].logger, &scorer, &random_seed_bytes
8230 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8231 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8232 check_added_monitors!(nodes[0], 1);
8233 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8234 assert_eq!(events.len(), 1);
8235 let ev = events.drain(..).next().unwrap();
8236 let payment_event = SendEvent::from_event(ev);
8237 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8238 check_added_monitors!(nodes[1], 0);
8239 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8240 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
8241 // fails), the second will process the resulting failure and fail the HTLC backward
8242 expect_pending_htlcs_forwardable!(nodes[1]);
8243 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8244 check_added_monitors!(nodes[1], 1);
8245 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8246 assert!(updates.update_add_htlcs.is_empty());
8247 assert!(updates.update_fulfill_htlcs.is_empty());
8248 assert_eq!(updates.update_fail_htlcs.len(), 1);
8249 assert!(updates.update_fail_malformed_htlcs.is_empty());
8250 assert!(updates.update_fee.is_none());
8251 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8252 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8253 expect_payment_failed!(nodes[0], payment_hash, true);
8255 // Finally, claim the original payment.
8256 claim_payment(&nodes[0], &expected_route, payment_preimage);
8258 // To start (2), send a keysend payment but don't claim it.
8259 let payment_preimage = PaymentPreimage([42; 32]);
8260 let route = find_route(
8261 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8262 None, nodes[0].logger, &scorer, &random_seed_bytes
8264 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8265 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8266 check_added_monitors!(nodes[0], 1);
8267 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8268 assert_eq!(events.len(), 1);
8269 let event = events.pop().unwrap();
8270 let path = vec![&nodes[1]];
8271 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8273 // Next, attempt a regular payment and make sure it fails.
8274 let payment_secret = PaymentSecret([43; 32]);
8275 nodes[0].node.send_payment_with_route(&route, payment_hash,
8276 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
8277 check_added_monitors!(nodes[0], 1);
8278 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8279 assert_eq!(events.len(), 1);
8280 let ev = events.drain(..).next().unwrap();
8281 let payment_event = SendEvent::from_event(ev);
8282 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8283 check_added_monitors!(nodes[1], 0);
8284 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8285 expect_pending_htlcs_forwardable!(nodes[1]);
8286 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8287 check_added_monitors!(nodes[1], 1);
8288 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8289 assert!(updates.update_add_htlcs.is_empty());
8290 assert!(updates.update_fulfill_htlcs.is_empty());
8291 assert_eq!(updates.update_fail_htlcs.len(), 1);
8292 assert!(updates.update_fail_malformed_htlcs.is_empty());
8293 assert!(updates.update_fee.is_none());
8294 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8295 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8296 expect_payment_failed!(nodes[0], payment_hash, true);
8298 // Finally, succeed the keysend payment.
8299 claim_payment(&nodes[0], &expected_route, payment_preimage);
8303 fn test_keysend_hash_mismatch() {
8304 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8305 // preimage doesn't match the msg's payment hash.
8306 let chanmon_cfgs = create_chanmon_cfgs(2);
8307 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8308 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8309 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8311 let payer_pubkey = nodes[0].node.get_our_node_id();
8312 let payee_pubkey = nodes[1].node.get_our_node_id();
8314 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8315 let route_params = RouteParameters {
8316 payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8317 final_value_msat: 10_000,
8319 let network_graph = nodes[0].network_graph.clone();
8320 let first_hops = nodes[0].node.list_usable_channels();
8321 let scorer = test_utils::TestScorer::new();
8322 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8323 let route = find_route(
8324 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8325 nodes[0].logger, &scorer, &random_seed_bytes
8328 let test_preimage = PaymentPreimage([42; 32]);
8329 let mismatch_payment_hash = PaymentHash([43; 32]);
8330 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
8331 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
8332 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
8333 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8334 check_added_monitors!(nodes[0], 1);
8336 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8337 assert_eq!(updates.update_add_htlcs.len(), 1);
8338 assert!(updates.update_fulfill_htlcs.is_empty());
8339 assert!(updates.update_fail_htlcs.is_empty());
8340 assert!(updates.update_fail_malformed_htlcs.is_empty());
8341 assert!(updates.update_fee.is_none());
8342 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8344 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
8348 fn test_keysend_msg_with_secret_err() {
8349 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8350 let chanmon_cfgs = create_chanmon_cfgs(2);
8351 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8352 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8353 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8355 let payer_pubkey = nodes[0].node.get_our_node_id();
8356 let payee_pubkey = nodes[1].node.get_our_node_id();
8358 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8359 let route_params = RouteParameters {
8360 payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8361 final_value_msat: 10_000,
8363 let network_graph = nodes[0].network_graph.clone();
8364 let first_hops = nodes[0].node.list_usable_channels();
8365 let scorer = test_utils::TestScorer::new();
8366 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8367 let route = find_route(
8368 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8369 nodes[0].logger, &scorer, &random_seed_bytes
8372 let test_preimage = PaymentPreimage([42; 32]);
8373 let test_secret = PaymentSecret([43; 32]);
8374 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8375 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
8376 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8377 nodes[0].node.test_send_payment_internal(&route, payment_hash,
8378 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
8379 PaymentId(payment_hash.0), None, session_privs).unwrap();
8380 check_added_monitors!(nodes[0], 1);
8382 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8383 assert_eq!(updates.update_add_htlcs.len(), 1);
8384 assert!(updates.update_fulfill_htlcs.is_empty());
8385 assert!(updates.update_fail_htlcs.is_empty());
8386 assert!(updates.update_fail_malformed_htlcs.is_empty());
8387 assert!(updates.update_fee.is_none());
8388 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8390 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
8394 fn test_multi_hop_missing_secret() {
8395 let chanmon_cfgs = create_chanmon_cfgs(4);
8396 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8397 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8398 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8400 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8401 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8402 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8403 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8405 // Marshall an MPP route.
8406 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8407 let path = route.paths[0].clone();
8408 route.paths.push(path);
8409 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
8410 route.paths[0][0].short_channel_id = chan_1_id;
8411 route.paths[0][1].short_channel_id = chan_3_id;
8412 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
8413 route.paths[1][0].short_channel_id = chan_2_id;
8414 route.paths[1][1].short_channel_id = chan_4_id;
8416 match nodes[0].node.send_payment_with_route(&route, payment_hash,
8417 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
8419 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8420 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
8422 _ => panic!("unexpected error")
8427 fn test_drop_disconnected_peers_when_removing_channels() {
8428 let chanmon_cfgs = create_chanmon_cfgs(2);
8429 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8430 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8431 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8433 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8435 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8436 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8438 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8439 check_closed_broadcast!(nodes[0], true);
8440 check_added_monitors!(nodes[0], 1);
8441 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8444 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8445 // disconnected and the channel between has been force closed.
8446 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8447 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8448 assert_eq!(nodes_0_per_peer_state.len(), 1);
8449 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8452 nodes[0].node.timer_tick_occurred();
8455 // Assert that nodes[1] has now been removed.
8456 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8461 fn bad_inbound_payment_hash() {
8462 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8463 let chanmon_cfgs = create_chanmon_cfgs(2);
8464 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8465 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8466 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8468 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8469 let payment_data = msgs::FinalOnionHopData {
8471 total_msat: 100_000,
8474 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8475 // payment verification fails as expected.
8476 let mut bad_payment_hash = payment_hash.clone();
8477 bad_payment_hash.0[0] += 1;
8478 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8479 Ok(_) => panic!("Unexpected ok"),
8481 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
8485 // Check that using the original payment hash succeeds.
8486 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8490 fn test_id_to_peer_coverage() {
8491 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8492 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8493 // the channel is successfully closed.
8494 let chanmon_cfgs = create_chanmon_cfgs(2);
8495 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8496 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8497 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8499 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8500 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8501 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8502 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8503 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8505 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8506 let channel_id = &tx.txid().into_inner();
8508 // Ensure that the `id_to_peer` map is empty until either party has received the
8509 // funding transaction, and have the real `channel_id`.
8510 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8511 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8514 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8516 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8517 // as it has the funding transaction.
8518 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8519 assert_eq!(nodes_0_lock.len(), 1);
8520 assert!(nodes_0_lock.contains_key(channel_id));
8523 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8525 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8527 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8529 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8530 assert_eq!(nodes_0_lock.len(), 1);
8531 assert!(nodes_0_lock.contains_key(channel_id));
8533 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
8536 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8537 // as it has the funding transaction.
8538 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8539 assert_eq!(nodes_1_lock.len(), 1);
8540 assert!(nodes_1_lock.contains_key(channel_id));
8542 check_added_monitors!(nodes[1], 1);
8543 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8544 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8545 check_added_monitors!(nodes[0], 1);
8546 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
8547 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8548 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8549 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8551 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8552 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8553 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8554 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8556 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8557 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8559 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8560 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8561 // fee for the closing transaction has been negotiated and the parties has the other
8562 // party's signature for the fee negotiated closing transaction.)
8563 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8564 assert_eq!(nodes_0_lock.len(), 1);
8565 assert!(nodes_0_lock.contains_key(channel_id));
8569 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8570 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8571 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8572 // kept in the `nodes[1]`'s `id_to_peer` map.
8573 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8574 assert_eq!(nodes_1_lock.len(), 1);
8575 assert!(nodes_1_lock.contains_key(channel_id));
8578 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8580 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8581 // therefore has all it needs to fully close the channel (both signatures for the
8582 // closing transaction).
8583 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8584 // fully closed by `nodes[0]`.
8585 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8587 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
8588 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8589 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8590 assert_eq!(nodes_1_lock.len(), 1);
8591 assert!(nodes_1_lock.contains_key(channel_id));
8594 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8596 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8598 // Assert that the channel has now been removed from both parties `id_to_peer` map once
8599 // they both have everything required to fully close the channel.
8600 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8602 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8604 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8605 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8608 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8609 let expected_message = format!("Not connected to node: {}", expected_public_key);
8610 check_api_error_message(expected_message, res_err)
8613 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8614 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8615 check_api_error_message(expected_message, res_err)
8618 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8620 Err(APIError::APIMisuseError { err }) => {
8621 assert_eq!(err, expected_err_message);
8623 Err(APIError::ChannelUnavailable { err }) => {
8624 assert_eq!(err, expected_err_message);
8626 Ok(_) => panic!("Unexpected Ok"),
8627 Err(_) => panic!("Unexpected Error"),
8632 fn test_api_calls_with_unkown_counterparty_node() {
8633 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8634 // expected if the `counterparty_node_id` is an unkown peer in the
8635 // `ChannelManager::per_peer_state` map.
8636 let chanmon_cfg = create_chanmon_cfgs(2);
8637 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8638 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8639 let nodes = create_network(2, &node_cfg, &node_chanmgr);
8642 let channel_id = [4; 32];
8643 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
8644 let intercept_id = InterceptId([0; 32]);
8646 // Test the API functions.
8647 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
8649 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
8651 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
8653 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
8655 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
8657 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
8659 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
8663 fn test_connection_limiting() {
8664 // Test that we limit un-channel'd peers and un-funded channels properly.
8665 let chanmon_cfgs = create_chanmon_cfgs(2);
8666 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8667 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8668 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8670 // Note that create_network connects the nodes together for us
8672 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8673 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8675 let mut funding_tx = None;
8676 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8677 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8678 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8681 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8682 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
8683 funding_tx = Some(tx.clone());
8684 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
8685 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8687 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8688 check_added_monitors!(nodes[1], 1);
8689 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
8691 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8693 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8694 check_added_monitors!(nodes[0], 1);
8695 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
8697 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8700 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
8701 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8702 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8703 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8704 open_channel_msg.temporary_channel_id);
8706 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
8707 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
8709 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
8710 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
8711 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8712 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8713 peer_pks.push(random_pk);
8714 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8715 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8717 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8718 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8719 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8720 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8722 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
8723 // them if we have too many un-channel'd peers.
8724 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8725 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
8726 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
8727 for ev in chan_closed_events {
8728 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
8730 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8731 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8732 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8733 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8735 // but of course if the connection is outbound its allowed...
8736 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8737 features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
8738 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8740 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
8741 // Even though we accept one more connection from new peers, we won't actually let them
8743 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
8744 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8745 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
8746 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
8747 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8749 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8750 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8751 open_channel_msg.temporary_channel_id);
8753 // Of course, however, outbound channels are always allowed
8754 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
8755 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
8757 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
8758 // "protected" and can connect again.
8759 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
8760 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8761 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8762 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
8764 // Further, because the first channel was funded, we can open another channel with
8766 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8767 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8771 fn test_outbound_chans_unlimited() {
8772 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
8773 let chanmon_cfgs = create_chanmon_cfgs(2);
8774 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8775 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8776 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8778 // Note that create_network connects the nodes together for us
8780 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8781 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8783 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8784 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8785 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8786 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8789 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
8791 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8792 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8793 open_channel_msg.temporary_channel_id);
8795 // but we can still open an outbound channel.
8796 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8797 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
8799 // but even with such an outbound channel, additional inbound channels will still fail.
8800 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8801 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8802 open_channel_msg.temporary_channel_id);
8806 fn test_0conf_limiting() {
8807 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
8808 // flag set and (sometimes) accept channels as 0conf.
8809 let chanmon_cfgs = create_chanmon_cfgs(2);
8810 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8811 let mut settings = test_default_channel_config();
8812 settings.manually_accept_inbound_channels = true;
8813 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
8814 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8816 // Note that create_network connects the nodes together for us
8818 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8819 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8821 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
8822 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8823 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8824 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8825 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8826 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8828 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
8829 let events = nodes[1].node.get_and_clear_pending_events();
8831 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8832 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
8834 _ => panic!("Unexpected event"),
8836 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
8837 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8840 // If we try to accept a channel from another peer non-0conf it will fail.
8841 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8842 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8843 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8844 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8845 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8846 let events = nodes[1].node.get_and_clear_pending_events();
8848 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8849 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
8850 Err(APIError::APIMisuseError { err }) =>
8851 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
8855 _ => panic!("Unexpected event"),
8857 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8858 open_channel_msg.temporary_channel_id);
8860 // ...however if we accept the same channel 0conf it should work just fine.
8861 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8862 let events = nodes[1].node.get_and_clear_pending_events();
8864 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8865 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
8867 _ => panic!("Unexpected event"),
8869 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8874 fn test_anchors_zero_fee_htlc_tx_fallback() {
8875 // Tests that if both nodes support anchors, but the remote node does not want to accept
8876 // anchor channels at the moment, an error it sent to the local node such that it can retry
8877 // the channel without the anchors feature.
8878 let chanmon_cfgs = create_chanmon_cfgs(2);
8879 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8880 let mut anchors_config = test_default_channel_config();
8881 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
8882 anchors_config.manually_accept_inbound_channels = true;
8883 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
8884 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8886 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
8887 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8888 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
8890 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8891 let events = nodes[1].node.get_and_clear_pending_events();
8893 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8894 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
8896 _ => panic!("Unexpected event"),
8899 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
8900 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
8902 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8903 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
8905 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
8909 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
8911 use crate::chain::Listen;
8912 use crate::chain::chainmonitor::{ChainMonitor, Persist};
8913 use crate::chain::keysinterface::{KeysManager, InMemorySigner};
8914 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
8915 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
8916 use crate::ln::functional_test_utils::*;
8917 use crate::ln::msgs::{ChannelMessageHandler, Init};
8918 use crate::routing::gossip::NetworkGraph;
8919 use crate::routing::router::{PaymentParameters, RouteParameters};
8920 use crate::util::test_utils;
8921 use crate::util::config::UserConfig;
8923 use bitcoin::hashes::Hash;
8924 use bitcoin::hashes::sha256::Hash as Sha256;
8925 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
8927 use crate::sync::{Arc, Mutex};
8931 type Manager<'a, P> = ChannelManager<
8932 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
8933 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
8934 &'a test_utils::TestLogger, &'a P>,
8935 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
8936 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
8937 &'a test_utils::TestLogger>;
8939 struct ANodeHolder<'a, P: Persist<InMemorySigner>> {
8940 node: &'a Manager<'a, P>,
8942 impl<'a, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'a, P> {
8943 type CM = Manager<'a, P>;
8945 fn node(&self) -> &Manager<'a, P> { self.node }
8947 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
8952 fn bench_sends(bench: &mut Bencher) {
8953 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
8956 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
8957 // Do a simple benchmark of sending a payment back and forth between two nodes.
8958 // Note that this is unrealistic as each payment send will require at least two fsync
8960 let network = bitcoin::Network::Testnet;
8962 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
8963 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
8964 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
8965 let scorer = Mutex::new(test_utils::TestScorer::new());
8966 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
8968 let mut config: UserConfig = Default::default();
8969 config.channel_handshake_config.minimum_depth = 1;
8971 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
8972 let seed_a = [1u8; 32];
8973 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
8974 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
8976 best_block: BestBlock::from_network(network),
8978 let node_a_holder = ANodeHolder { node: &node_a };
8980 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
8981 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
8982 let seed_b = [2u8; 32];
8983 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
8984 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
8986 best_block: BestBlock::from_network(network),
8988 let node_b_holder = ANodeHolder { node: &node_b };
8990 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
8991 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
8992 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
8993 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
8994 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
8997 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
8998 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
8999 value: 8_000_000, script_pubkey: output_script,
9001 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
9002 } else { panic!(); }
9004 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
9005 let events_b = node_b.get_and_clear_pending_events();
9006 assert_eq!(events_b.len(), 1);
9008 Event::ChannelPending{ ref counterparty_node_id, .. } => {
9009 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
9011 _ => panic!("Unexpected event"),
9014 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
9015 let events_a = node_a.get_and_clear_pending_events();
9016 assert_eq!(events_a.len(), 1);
9018 Event::ChannelPending{ ref counterparty_node_id, .. } => {
9019 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
9021 _ => panic!("Unexpected event"),
9024 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
9027 header: BlockHeader { version: 0x20000000, prev_blockhash: BestBlock::from_network(network).block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
9030 Listen::block_connected(&node_a, &block, 1);
9031 Listen::block_connected(&node_b, &block, 1);
9033 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
9034 let msg_events = node_a.get_and_clear_pending_msg_events();
9035 assert_eq!(msg_events.len(), 2);
9036 match msg_events[0] {
9037 MessageSendEvent::SendChannelReady { ref msg, .. } => {
9038 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
9039 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
9043 match msg_events[1] {
9044 MessageSendEvent::SendChannelUpdate { .. } => {},
9048 let events_a = node_a.get_and_clear_pending_events();
9049 assert_eq!(events_a.len(), 1);
9051 Event::ChannelReady{ ref counterparty_node_id, .. } => {
9052 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
9054 _ => panic!("Unexpected event"),
9057 let events_b = node_b.get_and_clear_pending_events();
9058 assert_eq!(events_b.len(), 1);
9060 Event::ChannelReady{ ref counterparty_node_id, .. } => {
9061 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
9063 _ => panic!("Unexpected event"),
9066 let mut payment_count: u64 = 0;
9067 macro_rules! send_payment {
9068 ($node_a: expr, $node_b: expr) => {
9069 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
9070 .with_features($node_b.invoice_features());
9071 let mut payment_preimage = PaymentPreimage([0; 32]);
9072 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
9074 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
9075 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
9077 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
9078 PaymentId(payment_hash.0), RouteParameters {
9079 payment_params, final_value_msat: 10_000,
9080 }, Retry::Attempts(0)).unwrap();
9081 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
9082 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
9083 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
9084 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
9085 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
9086 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
9087 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
9089 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
9090 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
9091 $node_b.claim_funds(payment_preimage);
9092 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
9094 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
9095 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
9096 assert_eq!(node_id, $node_a.get_our_node_id());
9097 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
9098 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
9100 _ => panic!("Failed to generate claim event"),
9103 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
9104 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
9105 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
9106 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
9108 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
9113 send_payment!(node_a, node_b);
9114 send_payment!(node_b, node_a);