Implement writeable for APIError
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see [`find_route`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20 //! [`find_route`]: crate::routing::router::find_route
21
22 use bitcoin::blockdata::block::BlockHeader;
23 use bitcoin::blockdata::transaction::Transaction;
24 use bitcoin::blockdata::constants::genesis_block;
25 use bitcoin::network::constants::Network;
26
27 use bitcoin::hashes::Hash;
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hash_types::{BlockHash, Txid};
30
31 use bitcoin::secp256k1::{SecretKey,PublicKey};
32 use bitcoin::secp256k1::Secp256k1;
33 use bitcoin::{LockTime, secp256k1, Sequence};
34
35 use crate::chain;
36 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
37 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
38 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
39 use crate::chain::transaction::{OutPoint, TransactionData};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{DefaultRouter, InFlightHtlcs, PaymentParameters, Route, RouteHop, RouteParameters, RoutePath, Router};
49 use crate::routing::scoring::ProbabilisticScorer;
50 use crate::ln::msgs;
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
54 #[cfg(test)]
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
57 use crate::ln::wire::Encode;
58 use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig};
60 use crate::util::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination};
61 use crate::util::events;
62 use crate::util::wakers::{Future, Notifier};
63 use crate::util::scid_utils::fake_scid;
64 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
65 use crate::util::logger::{Level, Logger};
66 use crate::util::errors::APIError;
67
68 use alloc::collections::BTreeMap;
69
70 use crate::io;
71 use crate::prelude::*;
72 use core::{cmp, mem};
73 use core::cell::RefCell;
74 use crate::io::Read;
75 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
76 use core::sync::atomic::{AtomicUsize, Ordering};
77 use core::time::Duration;
78 use core::ops::Deref;
79
80 // Re-export this for use in the public API.
81 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure};
82
83 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
84 //
85 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
86 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
87 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
88 //
89 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
90 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
91 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
92 // before we forward it.
93 //
94 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
95 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
96 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
97 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
98 // our payment, which we can use to decode errors or inform the user that the payment was sent.
99
100 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
101 pub(super) enum PendingHTLCRouting {
102         Forward {
103                 onion_packet: msgs::OnionPacket,
104                 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
105                 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
106                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
107         },
108         Receive {
109                 payment_data: msgs::FinalOnionHopData,
110                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
111                 phantom_shared_secret: Option<[u8; 32]>,
112         },
113         ReceiveKeysend {
114                 payment_preimage: PaymentPreimage,
115                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
116         },
117 }
118
119 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
120 pub(super) struct PendingHTLCInfo {
121         pub(super) routing: PendingHTLCRouting,
122         pub(super) incoming_shared_secret: [u8; 32],
123         payment_hash: PaymentHash,
124         pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
125         pub(super) outgoing_amt_msat: u64,
126         pub(super) outgoing_cltv_value: u32,
127 }
128
129 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
130 pub(super) enum HTLCFailureMsg {
131         Relay(msgs::UpdateFailHTLC),
132         Malformed(msgs::UpdateFailMalformedHTLC),
133 }
134
135 /// Stores whether we can't forward an HTLC or relevant forwarding info
136 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
137 pub(super) enum PendingHTLCStatus {
138         Forward(PendingHTLCInfo),
139         Fail(HTLCFailureMsg),
140 }
141
142 pub(super) struct PendingAddHTLCInfo {
143         pub(super) forward_info: PendingHTLCInfo,
144
145         // These fields are produced in `forward_htlcs()` and consumed in
146         // `process_pending_htlc_forwards()` for constructing the
147         // `HTLCSource::PreviousHopData` for failed and forwarded
148         // HTLCs.
149         //
150         // Note that this may be an outbound SCID alias for the associated channel.
151         prev_short_channel_id: u64,
152         prev_htlc_id: u64,
153         prev_funding_outpoint: OutPoint,
154         prev_user_channel_id: u128,
155 }
156
157 pub(super) enum HTLCForwardInfo {
158         AddHTLC(PendingAddHTLCInfo),
159         FailHTLC {
160                 htlc_id: u64,
161                 err_packet: msgs::OnionErrorPacket,
162         },
163 }
164
165 /// Tracks the inbound corresponding to an outbound HTLC
166 #[derive(Clone, Hash, PartialEq, Eq)]
167 pub(crate) struct HTLCPreviousHopData {
168         // Note that this may be an outbound SCID alias for the associated channel.
169         short_channel_id: u64,
170         htlc_id: u64,
171         incoming_packet_shared_secret: [u8; 32],
172         phantom_shared_secret: Option<[u8; 32]>,
173
174         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
175         // channel with a preimage provided by the forward channel.
176         outpoint: OutPoint,
177 }
178
179 enum OnionPayload {
180         /// Indicates this incoming onion payload is for the purpose of paying an invoice.
181         Invoice {
182                 /// This is only here for backwards-compatibility in serialization, in the future it can be
183                 /// removed, breaking clients running 0.0.106 and earlier.
184                 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
185         },
186         /// Contains the payer-provided preimage.
187         Spontaneous(PaymentPreimage),
188 }
189
190 /// HTLCs that are to us and can be failed/claimed by the user
191 struct ClaimableHTLC {
192         prev_hop: HTLCPreviousHopData,
193         cltv_expiry: u32,
194         /// The amount (in msats) of this MPP part
195         value: u64,
196         onion_payload: OnionPayload,
197         timer_ticks: u8,
198         /// The sum total of all MPP parts
199         total_msat: u64,
200 }
201
202 /// A payment identifier used to uniquely identify a payment to LDK.
203 /// (C-not exported) as we just use [u8; 32] directly
204 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
205 pub struct PaymentId(pub [u8; 32]);
206
207 impl Writeable for PaymentId {
208         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
209                 self.0.write(w)
210         }
211 }
212
213 impl Readable for PaymentId {
214         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
215                 let buf: [u8; 32] = Readable::read(r)?;
216                 Ok(PaymentId(buf))
217         }
218 }
219
220 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
221 /// (C-not exported) as we just use [u8; 32] directly
222 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
223 pub struct InterceptId(pub [u8; 32]);
224
225 impl Writeable for InterceptId {
226         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
227                 self.0.write(w)
228         }
229 }
230
231 impl Readable for InterceptId {
232         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
233                 let buf: [u8; 32] = Readable::read(r)?;
234                 Ok(InterceptId(buf))
235         }
236 }
237 /// Tracks the inbound corresponding to an outbound HTLC
238 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
239 #[derive(Clone, PartialEq, Eq)]
240 pub(crate) enum HTLCSource {
241         PreviousHopData(HTLCPreviousHopData),
242         OutboundRoute {
243                 path: Vec<RouteHop>,
244                 session_priv: SecretKey,
245                 /// Technically we can recalculate this from the route, but we cache it here to avoid
246                 /// doing a double-pass on route when we get a failure back
247                 first_hop_htlc_msat: u64,
248                 payment_id: PaymentId,
249                 payment_secret: Option<PaymentSecret>,
250                 /// Note that this is now "deprecated" - we write it for forwards (and read it for
251                 /// backwards) compatibility reasons, but prefer to use the data in the
252                 /// [`super::outbound_payment`] module, which stores per-payment data once instead of in
253                 /// each HTLC.
254                 payment_params: Option<PaymentParameters>,
255         },
256 }
257 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
258 impl core::hash::Hash for HTLCSource {
259         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
260                 match self {
261                         HTLCSource::PreviousHopData(prev_hop_data) => {
262                                 0u8.hash(hasher);
263                                 prev_hop_data.hash(hasher);
264                         },
265                         HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payment_params } => {
266                                 1u8.hash(hasher);
267                                 path.hash(hasher);
268                                 session_priv[..].hash(hasher);
269                                 payment_id.hash(hasher);
270                                 payment_secret.hash(hasher);
271                                 first_hop_htlc_msat.hash(hasher);
272                                 payment_params.hash(hasher);
273                         },
274                 }
275         }
276 }
277 #[cfg(not(feature = "grind_signatures"))]
278 #[cfg(test)]
279 impl HTLCSource {
280         pub fn dummy() -> Self {
281                 HTLCSource::OutboundRoute {
282                         path: Vec::new(),
283                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
284                         first_hop_htlc_msat: 0,
285                         payment_id: PaymentId([2; 32]),
286                         payment_secret: None,
287                         payment_params: None,
288                 }
289         }
290 }
291
292 struct ReceiveError {
293         err_code: u16,
294         err_data: Vec<u8>,
295         msg: &'static str,
296 }
297
298 /// This enum is used to specify which error data to send to peers when failing back an HTLC
299 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
300 ///
301 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
302 #[derive(Clone, Copy)]
303 pub enum FailureCode {
304         /// We had a temporary error processing the payment. Useful if no other error codes fit
305         /// and you want to indicate that the payer may want to retry.
306         TemporaryNodeFailure             = 0x2000 | 2,
307         /// We have a required feature which was not in this onion. For example, you may require
308         /// some additional metadata that was not provided with this payment.
309         RequiredNodeFeatureMissing       = 0x4000 | 0x2000 | 3,
310         /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
311         /// the HTLC is too close to the current block height for safe handling.
312         /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
313         /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
314         IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
315 }
316
317 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
318
319 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
320 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
321 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
322 /// peer_state lock. We then return the set of things that need to be done outside the lock in
323 /// this struct and call handle_error!() on it.
324
325 struct MsgHandleErrInternal {
326         err: msgs::LightningError,
327         chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
328         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
329 }
330 impl MsgHandleErrInternal {
331         #[inline]
332         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
333                 Self {
334                         err: LightningError {
335                                 err: err.clone(),
336                                 action: msgs::ErrorAction::SendErrorMessage {
337                                         msg: msgs::ErrorMessage {
338                                                 channel_id,
339                                                 data: err
340                                         },
341                                 },
342                         },
343                         chan_id: None,
344                         shutdown_finish: None,
345                 }
346         }
347         #[inline]
348         fn from_no_close(err: msgs::LightningError) -> Self {
349                 Self { err, chan_id: None, shutdown_finish: None }
350         }
351         #[inline]
352         fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
353                 Self {
354                         err: LightningError {
355                                 err: err.clone(),
356                                 action: msgs::ErrorAction::SendErrorMessage {
357                                         msg: msgs::ErrorMessage {
358                                                 channel_id,
359                                                 data: err
360                                         },
361                                 },
362                         },
363                         chan_id: Some((channel_id, user_channel_id)),
364                         shutdown_finish: Some((shutdown_res, channel_update)),
365                 }
366         }
367         #[inline]
368         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
369                 Self {
370                         err: match err {
371                                 ChannelError::Warn(msg) =>  LightningError {
372                                         err: msg.clone(),
373                                         action: msgs::ErrorAction::SendWarningMessage {
374                                                 msg: msgs::WarningMessage {
375                                                         channel_id,
376                                                         data: msg
377                                                 },
378                                                 log_level: Level::Warn,
379                                         },
380                                 },
381                                 ChannelError::Ignore(msg) => LightningError {
382                                         err: msg,
383                                         action: msgs::ErrorAction::IgnoreError,
384                                 },
385                                 ChannelError::Close(msg) => LightningError {
386                                         err: msg.clone(),
387                                         action: msgs::ErrorAction::SendErrorMessage {
388                                                 msg: msgs::ErrorMessage {
389                                                         channel_id,
390                                                         data: msg
391                                                 },
392                                         },
393                                 },
394                         },
395                         chan_id: None,
396                         shutdown_finish: None,
397                 }
398         }
399 }
400
401 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
402 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
403 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
404 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
405 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
406
407 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
408 /// be sent in the order they appear in the return value, however sometimes the order needs to be
409 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
410 /// they were originally sent). In those cases, this enum is also returned.
411 #[derive(Clone, PartialEq)]
412 pub(super) enum RAACommitmentOrder {
413         /// Send the CommitmentUpdate messages first
414         CommitmentFirst,
415         /// Send the RevokeAndACK message first
416         RevokeAndACKFirst,
417 }
418
419 /// Information about a payment which is currently being claimed.
420 struct ClaimingPayment {
421         amount_msat: u64,
422         payment_purpose: events::PaymentPurpose,
423         receiver_node_id: PublicKey,
424 }
425 impl_writeable_tlv_based!(ClaimingPayment, {
426         (0, amount_msat, required),
427         (2, payment_purpose, required),
428         (4, receiver_node_id, required),
429 });
430
431 /// Information about claimable or being-claimed payments
432 struct ClaimablePayments {
433         /// Map from payment hash to the payment data and any HTLCs which are to us and can be
434         /// failed/claimed by the user.
435         ///
436         /// Note that, no consistency guarantees are made about the channels given here actually
437         /// existing anymore by the time you go to read them!
438         ///
439         /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
440         /// we don't get a duplicate payment.
441         claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
442
443         /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
444         /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
445         /// as an [`events::Event::PaymentClaimed`].
446         pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
447 }
448
449 /// Events which we process internally but cannot be procsesed immediately at the generation site
450 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
451 /// quite some time lag.
452 enum BackgroundEvent {
453         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
454         /// commitment transaction.
455         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
456 }
457
458 #[derive(Debug)]
459 pub(crate) enum MonitorUpdateCompletionAction {
460         /// Indicates that a payment ultimately destined for us was claimed and we should emit an
461         /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
462         /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
463         /// event can be generated.
464         PaymentClaimed { payment_hash: PaymentHash },
465         /// Indicates an [`events::Event`] should be surfaced to the user.
466         EmitEvent { event: events::Event },
467 }
468
469 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
470         (0, PaymentClaimed) => { (0, payment_hash, required) },
471         (2, EmitEvent) => { (0, event, upgradable_required) },
472 );
473
474 /// State we hold per-peer.
475 pub(super) struct PeerState<Signer: ChannelSigner> {
476         /// `temporary_channel_id` or `channel_id` -> `channel`.
477         ///
478         /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
479         /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
480         /// `channel_id`.
481         pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
482         /// The latest `InitFeatures` we heard from the peer.
483         latest_features: InitFeatures,
484         /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
485         /// for broadcast messages, where ordering isn't as strict).
486         pub(super) pending_msg_events: Vec<MessageSendEvent>,
487         /// Map from a specific channel to some action(s) that should be taken when all pending
488         /// [`ChannelMonitorUpdate`]s for the channel complete updating.
489         ///
490         /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
491         /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
492         /// channels with a peer this will just be one allocation and will amount to a linear list of
493         /// channels to walk, avoiding the whole hashing rigmarole.
494         ///
495         /// Note that the channel may no longer exist. For example, if a channel was closed but we
496         /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
497         /// for a missing channel. While a malicious peer could construct a second channel with the
498         /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
499         /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
500         /// duplicates do not occur, so such channels should fail without a monitor update completing.
501         monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
502         /// The peer is currently connected (i.e. we've seen a
503         /// [`ChannelMessageHandler::peer_connected`] and no corresponding
504         /// [`ChannelMessageHandler::peer_disconnected`].
505         is_connected: bool,
506 }
507
508 impl <Signer: ChannelSigner> PeerState<Signer> {
509         /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
510         /// If true is passed for `require_disconnected`, the function will return false if we haven't
511         /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
512         fn ok_to_remove(&self, require_disconnected: bool) -> bool {
513                 if require_disconnected && self.is_connected {
514                         return false
515                 }
516                 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
517         }
518 }
519
520 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
521 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
522 ///
523 /// For users who don't want to bother doing their own payment preimage storage, we also store that
524 /// here.
525 ///
526 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
527 /// and instead encoding it in the payment secret.
528 struct PendingInboundPayment {
529         /// The payment secret that the sender must use for us to accept this payment
530         payment_secret: PaymentSecret,
531         /// Time at which this HTLC expires - blocks with a header time above this value will result in
532         /// this payment being removed.
533         expiry_time: u64,
534         /// Arbitrary identifier the user specifies (or not)
535         user_payment_id: u64,
536         // Other required attributes of the payment, optionally enforced:
537         payment_preimage: Option<PaymentPreimage>,
538         min_value_msat: Option<u64>,
539 }
540
541 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
542 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
543 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
544 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
545 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
546 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
547 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
548 ///
549 /// (C-not exported) as Arcs don't make sense in bindings
550 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
551         Arc<M>,
552         Arc<T>,
553         Arc<KeysManager>,
554         Arc<KeysManager>,
555         Arc<KeysManager>,
556         Arc<F>,
557         Arc<DefaultRouter<
558                 Arc<NetworkGraph<Arc<L>>>,
559                 Arc<L>,
560                 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
561         >>,
562         Arc<L>
563 >;
564
565 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
566 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
567 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
568 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
569 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
570 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
571 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
572 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
573 ///
574 /// (C-not exported) as Arcs don't make sense in bindings
575 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
576
577 /// Manager which keeps track of a number of channels and sends messages to the appropriate
578 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
579 ///
580 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
581 /// to individual Channels.
582 ///
583 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
584 /// all peers during write/read (though does not modify this instance, only the instance being
585 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
586 /// called funding_transaction_generated for outbound channels).
587 ///
588 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
589 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
590 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
591 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
592 /// the serialization process). If the deserialized version is out-of-date compared to the
593 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
594 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
595 ///
596 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
597 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
598 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
599 /// block_connected() to step towards your best block) upon deserialization before using the
600 /// object!
601 ///
602 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
603 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
604 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
605 /// offline for a full minute. In order to track this, you must call
606 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
607 ///
608 /// To avoid trivial DoS issues, ChannelManager limits the number of inbound connections and
609 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
610 /// not have a channel with being unable to connect to us or open new channels with us if we have
611 /// many peers with unfunded channels.
612 ///
613 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
614 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
615 /// never limited. Please ensure you limit the count of such channels yourself.
616 ///
617 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
618 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
619 /// essentially you should default to using a SimpleRefChannelManager, and use a
620 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
621 /// you're using lightning-net-tokio.
622 //
623 // Lock order:
624 // The tree structure below illustrates the lock order requirements for the different locks of the
625 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
626 // and should then be taken in the order of the lowest to the highest level in the tree.
627 // Note that locks on different branches shall not be taken at the same time, as doing so will
628 // create a new lock order for those specific locks in the order they were taken.
629 //
630 // Lock order tree:
631 //
632 // `total_consistency_lock`
633 //  |
634 //  |__`forward_htlcs`
635 //  |   |
636 //  |   |__`pending_intercepted_htlcs`
637 //  |
638 //  |__`per_peer_state`
639 //  |   |
640 //  |   |__`pending_inbound_payments`
641 //  |       |
642 //  |       |__`claimable_payments`
643 //  |       |
644 //  |       |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
645 //  |           |
646 //  |           |__`peer_state`
647 //  |               |
648 //  |               |__`id_to_peer`
649 //  |               |
650 //  |               |__`short_to_chan_info`
651 //  |               |
652 //  |               |__`outbound_scid_aliases`
653 //  |               |
654 //  |               |__`best_block`
655 //  |               |
656 //  |               |__`pending_events`
657 //  |                   |
658 //  |                   |__`pending_background_events`
659 //
660 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
661 where
662         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
663         T::Target: BroadcasterInterface,
664         ES::Target: EntropySource,
665         NS::Target: NodeSigner,
666         SP::Target: SignerProvider,
667         F::Target: FeeEstimator,
668         R::Target: Router,
669         L::Target: Logger,
670 {
671         default_configuration: UserConfig,
672         genesis_hash: BlockHash,
673         fee_estimator: LowerBoundedFeeEstimator<F>,
674         chain_monitor: M,
675         tx_broadcaster: T,
676         #[allow(unused)]
677         router: R,
678
679         /// See `ChannelManager` struct-level documentation for lock order requirements.
680         #[cfg(test)]
681         pub(super) best_block: RwLock<BestBlock>,
682         #[cfg(not(test))]
683         best_block: RwLock<BestBlock>,
684         secp_ctx: Secp256k1<secp256k1::All>,
685
686         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
687         /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
688         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
689         /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
690         ///
691         /// See `ChannelManager` struct-level documentation for lock order requirements.
692         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
693
694         /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
695         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
696         /// (if the channel has been force-closed), however we track them here to prevent duplicative
697         /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
698         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
699         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
700         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
701         /// after reloading from disk while replaying blocks against ChannelMonitors.
702         ///
703         /// See `PendingOutboundPayment` documentation for more info.
704         ///
705         /// See `ChannelManager` struct-level documentation for lock order requirements.
706         pending_outbound_payments: OutboundPayments,
707
708         /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
709         ///
710         /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
711         /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
712         /// and via the classic SCID.
713         ///
714         /// Note that no consistency guarantees are made about the existence of a channel with the
715         /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
716         ///
717         /// See `ChannelManager` struct-level documentation for lock order requirements.
718         #[cfg(test)]
719         pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
720         #[cfg(not(test))]
721         forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
722         /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
723         /// until the user tells us what we should do with them.
724         ///
725         /// See `ChannelManager` struct-level documentation for lock order requirements.
726         pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
727
728         /// The sets of payments which are claimable or currently being claimed. See
729         /// [`ClaimablePayments`]' individual field docs for more info.
730         ///
731         /// See `ChannelManager` struct-level documentation for lock order requirements.
732         claimable_payments: Mutex<ClaimablePayments>,
733
734         /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
735         /// and some closed channels which reached a usable state prior to being closed. This is used
736         /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
737         /// active channel list on load.
738         ///
739         /// See `ChannelManager` struct-level documentation for lock order requirements.
740         outbound_scid_aliases: Mutex<HashSet<u64>>,
741
742         /// `channel_id` -> `counterparty_node_id`.
743         ///
744         /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
745         /// multiple channels with the same `temporary_channel_id` to different peers can exist,
746         /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
747         ///
748         /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
749         /// the corresponding channel for the event, as we only have access to the `channel_id` during
750         /// the handling of the events.
751         ///
752         /// Note that no consistency guarantees are made about the existence of a peer with the
753         /// `counterparty_node_id` in our other maps.
754         ///
755         /// TODO:
756         /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
757         /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
758         /// would break backwards compatability.
759         /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
760         /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
761         /// required to access the channel with the `counterparty_node_id`.
762         ///
763         /// See `ChannelManager` struct-level documentation for lock order requirements.
764         id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
765
766         /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
767         ///
768         /// Outbound SCID aliases are added here once the channel is available for normal use, with
769         /// SCIDs being added once the funding transaction is confirmed at the channel's required
770         /// confirmation depth.
771         ///
772         /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
773         /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
774         /// channel with the `channel_id` in our other maps.
775         ///
776         /// See `ChannelManager` struct-level documentation for lock order requirements.
777         #[cfg(test)]
778         pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
779         #[cfg(not(test))]
780         short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
781
782         our_network_pubkey: PublicKey,
783
784         inbound_payment_key: inbound_payment::ExpandedKey,
785
786         /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
787         /// incoming payment. To make it harder for a third-party to identify the type of a payment,
788         /// we encrypt the namespace identifier using these bytes.
789         ///
790         /// [fake scids]: crate::util::scid_utils::fake_scid
791         fake_scid_rand_bytes: [u8; 32],
792
793         /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
794         /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
795         /// keeping additional state.
796         probing_cookie_secret: [u8; 32],
797
798         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
799         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
800         /// very far in the past, and can only ever be up to two hours in the future.
801         highest_seen_timestamp: AtomicUsize,
802
803         /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
804         /// basis, as well as the peer's latest features.
805         ///
806         /// If we are connected to a peer we always at least have an entry here, even if no channels
807         /// are currently open with that peer.
808         ///
809         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
810         /// operate on the inner value freely. This opens up for parallel per-peer operation for
811         /// channels.
812         ///
813         /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
814         ///
815         /// See `ChannelManager` struct-level documentation for lock order requirements.
816         #[cfg(not(any(test, feature = "_test_utils")))]
817         per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
818         #[cfg(any(test, feature = "_test_utils"))]
819         pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
820
821         /// See `ChannelManager` struct-level documentation for lock order requirements.
822         pending_events: Mutex<Vec<events::Event>>,
823         /// See `ChannelManager` struct-level documentation for lock order requirements.
824         pending_background_events: Mutex<Vec<BackgroundEvent>>,
825         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
826         /// Essentially just when we're serializing ourselves out.
827         /// Taken first everywhere where we are making changes before any other locks.
828         /// When acquiring this lock in read mode, rather than acquiring it directly, call
829         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
830         /// Notifier the lock contains sends out a notification when the lock is released.
831         total_consistency_lock: RwLock<()>,
832
833         persistence_notifier: Notifier,
834
835         entropy_source: ES,
836         node_signer: NS,
837         signer_provider: SP,
838
839         logger: L,
840 }
841
842 /// Chain-related parameters used to construct a new `ChannelManager`.
843 ///
844 /// Typically, the block-specific parameters are derived from the best block hash for the network,
845 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
846 /// are not needed when deserializing a previously constructed `ChannelManager`.
847 #[derive(Clone, Copy, PartialEq)]
848 pub struct ChainParameters {
849         /// The network for determining the `chain_hash` in Lightning messages.
850         pub network: Network,
851
852         /// The hash and height of the latest block successfully connected.
853         ///
854         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
855         pub best_block: BestBlock,
856 }
857
858 #[derive(Copy, Clone, PartialEq)]
859 enum NotifyOption {
860         DoPersist,
861         SkipPersist,
862 }
863
864 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
865 /// desirable to notify any listeners on `await_persistable_update_timeout`/
866 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
867 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
868 /// sending the aforementioned notification (since the lock being released indicates that the
869 /// updates are ready for persistence).
870 ///
871 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
872 /// notify or not based on whether relevant changes have been made, providing a closure to
873 /// `optionally_notify` which returns a `NotifyOption`.
874 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
875         persistence_notifier: &'a Notifier,
876         should_persist: F,
877         // We hold onto this result so the lock doesn't get released immediately.
878         _read_guard: RwLockReadGuard<'a, ()>,
879 }
880
881 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
882         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
883                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
884         }
885
886         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
887                 let read_guard = lock.read().unwrap();
888
889                 PersistenceNotifierGuard {
890                         persistence_notifier: notifier,
891                         should_persist: persist_check,
892                         _read_guard: read_guard,
893                 }
894         }
895 }
896
897 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
898         fn drop(&mut self) {
899                 if (self.should_persist)() == NotifyOption::DoPersist {
900                         self.persistence_notifier.notify();
901                 }
902         }
903 }
904
905 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
906 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
907 ///
908 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
909 ///
910 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
911 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
912 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
913 /// the maximum required amount in lnd as of March 2021.
914 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
915
916 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
917 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
918 ///
919 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
920 ///
921 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
922 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
923 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
924 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
925 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
926 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
927 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
928 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
929 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
930 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
931 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
932 // routing failure for any HTLC sender picking up an LDK node among the first hops.
933 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
934
935 /// Minimum CLTV difference between the current block height and received inbound payments.
936 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
937 /// this value.
938 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
939 // any payments to succeed. Further, we don't want payments to fail if a block was found while
940 // a payment was being routed, so we add an extra block to be safe.
941 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
942
943 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
944 // ie that if the next-hop peer fails the HTLC within
945 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
946 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
947 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
948 // LATENCY_GRACE_PERIOD_BLOCKS.
949 #[deny(const_err)]
950 #[allow(dead_code)]
951 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
952
953 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
954 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
955 #[deny(const_err)]
956 #[allow(dead_code)]
957 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
958
959 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
960 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
961
962 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
963 /// idempotency of payments by [`PaymentId`]. See
964 /// [`OutboundPayments::remove_stale_resolved_payments`].
965 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
966
967 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
968 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
969 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
970 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
971
972 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
973 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
974 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
975
976 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
977 /// many peers we reject new (inbound) connections.
978 const MAX_NO_CHANNEL_PEERS: usize = 250;
979
980 /// Information needed for constructing an invoice route hint for this channel.
981 #[derive(Clone, Debug, PartialEq)]
982 pub struct CounterpartyForwardingInfo {
983         /// Base routing fee in millisatoshis.
984         pub fee_base_msat: u32,
985         /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
986         pub fee_proportional_millionths: u32,
987         /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
988         /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
989         /// `cltv_expiry_delta` for more details.
990         pub cltv_expiry_delta: u16,
991 }
992
993 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
994 /// to better separate parameters.
995 #[derive(Clone, Debug, PartialEq)]
996 pub struct ChannelCounterparty {
997         /// The node_id of our counterparty
998         pub node_id: PublicKey,
999         /// The Features the channel counterparty provided upon last connection.
1000         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1001         /// many routing-relevant features are present in the init context.
1002         pub features: InitFeatures,
1003         /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1004         /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1005         /// claiming at least this value on chain.
1006         ///
1007         /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1008         ///
1009         /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1010         pub unspendable_punishment_reserve: u64,
1011         /// Information on the fees and requirements that the counterparty requires when forwarding
1012         /// payments to us through this channel.
1013         pub forwarding_info: Option<CounterpartyForwardingInfo>,
1014         /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1015         /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1016         /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1017         pub outbound_htlc_minimum_msat: Option<u64>,
1018         /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1019         pub outbound_htlc_maximum_msat: Option<u64>,
1020 }
1021
1022 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
1023 #[derive(Clone, Debug, PartialEq)]
1024 pub struct ChannelDetails {
1025         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1026         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1027         /// Note that this means this value is *not* persistent - it can change once during the
1028         /// lifetime of the channel.
1029         pub channel_id: [u8; 32],
1030         /// Parameters which apply to our counterparty. See individual fields for more information.
1031         pub counterparty: ChannelCounterparty,
1032         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1033         /// our counterparty already.
1034         ///
1035         /// Note that, if this has been set, `channel_id` will be equivalent to
1036         /// `funding_txo.unwrap().to_channel_id()`.
1037         pub funding_txo: Option<OutPoint>,
1038         /// The features which this channel operates with. See individual features for more info.
1039         ///
1040         /// `None` until negotiation completes and the channel type is finalized.
1041         pub channel_type: Option<ChannelTypeFeatures>,
1042         /// The position of the funding transaction in the chain. None if the funding transaction has
1043         /// not yet been confirmed and the channel fully opened.
1044         ///
1045         /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1046         /// payments instead of this. See [`get_inbound_payment_scid`].
1047         ///
1048         /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1049         /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1050         ///
1051         /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1052         /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1053         /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1054         /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1055         /// [`confirmations_required`]: Self::confirmations_required
1056         pub short_channel_id: Option<u64>,
1057         /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1058         /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1059         /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1060         /// `Some(0)`).
1061         ///
1062         /// This will be `None` as long as the channel is not available for routing outbound payments.
1063         ///
1064         /// [`short_channel_id`]: Self::short_channel_id
1065         /// [`confirmations_required`]: Self::confirmations_required
1066         pub outbound_scid_alias: Option<u64>,
1067         /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1068         /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1069         /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1070         /// when they see a payment to be routed to us.
1071         ///
1072         /// Our counterparty may choose to rotate this value at any time, though will always recognize
1073         /// previous values for inbound payment forwarding.
1074         ///
1075         /// [`short_channel_id`]: Self::short_channel_id
1076         pub inbound_scid_alias: Option<u64>,
1077         /// The value, in satoshis, of this channel as appears in the funding output
1078         pub channel_value_satoshis: u64,
1079         /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1080         /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1081         /// this value on chain.
1082         ///
1083         /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1084         ///
1085         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1086         ///
1087         /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1088         pub unspendable_punishment_reserve: Option<u64>,
1089         /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1090         /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1091         /// 0.0.113.
1092         pub user_channel_id: u128,
1093         /// Our total balance.  This is the amount we would get if we close the channel.
1094         /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1095         /// amount is not likely to be recoverable on close.
1096         ///
1097         /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1098         /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1099         /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1100         /// This does not consider any on-chain fees.
1101         ///
1102         /// See also [`ChannelDetails::outbound_capacity_msat`]
1103         pub balance_msat: u64,
1104         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1105         /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1106         /// available for inclusion in new outbound HTLCs). This further does not include any pending
1107         /// outgoing HTLCs which are awaiting some other resolution to be sent.
1108         ///
1109         /// See also [`ChannelDetails::balance_msat`]
1110         ///
1111         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1112         /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1113         /// should be able to spend nearly this amount.
1114         pub outbound_capacity_msat: u64,
1115         /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1116         /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1117         /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1118         /// to use a limit as close as possible to the HTLC limit we can currently send.
1119         ///
1120         /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1121         pub next_outbound_htlc_limit_msat: u64,
1122         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1123         /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1124         /// available for inclusion in new inbound HTLCs).
1125         /// Note that there are some corner cases not fully handled here, so the actual available
1126         /// inbound capacity may be slightly higher than this.
1127         ///
1128         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1129         /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1130         /// However, our counterparty should be able to spend nearly this amount.
1131         pub inbound_capacity_msat: u64,
1132         /// The number of required confirmations on the funding transaction before the funding will be
1133         /// considered "locked". This number is selected by the channel fundee (i.e. us if
1134         /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1135         /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1136         /// [`ChannelHandshakeLimits::max_minimum_depth`].
1137         ///
1138         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1139         ///
1140         /// [`is_outbound`]: ChannelDetails::is_outbound
1141         /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1142         /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1143         pub confirmations_required: Option<u32>,
1144         /// The current number of confirmations on the funding transaction.
1145         ///
1146         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1147         pub confirmations: Option<u32>,
1148         /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1149         /// until we can claim our funds after we force-close the channel. During this time our
1150         /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1151         /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1152         /// time to claim our non-HTLC-encumbered funds.
1153         ///
1154         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1155         pub force_close_spend_delay: Option<u16>,
1156         /// True if the channel was initiated (and thus funded) by us.
1157         pub is_outbound: bool,
1158         /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1159         /// channel is not currently being shut down. `channel_ready` message exchange implies the
1160         /// required confirmation count has been reached (and we were connected to the peer at some
1161         /// point after the funding transaction received enough confirmations). The required
1162         /// confirmation count is provided in [`confirmations_required`].
1163         ///
1164         /// [`confirmations_required`]: ChannelDetails::confirmations_required
1165         pub is_channel_ready: bool,
1166         /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1167         /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1168         ///
1169         /// This is a strict superset of `is_channel_ready`.
1170         pub is_usable: bool,
1171         /// True if this channel is (or will be) publicly-announced.
1172         pub is_public: bool,
1173         /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1174         /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1175         pub inbound_htlc_minimum_msat: Option<u64>,
1176         /// The largest value HTLC (in msat) we currently will accept, for this channel.
1177         pub inbound_htlc_maximum_msat: Option<u64>,
1178         /// Set of configurable parameters that affect channel operation.
1179         ///
1180         /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1181         pub config: Option<ChannelConfig>,
1182 }
1183
1184 impl ChannelDetails {
1185         /// Gets the current SCID which should be used to identify this channel for inbound payments.
1186         /// This should be used for providing invoice hints or in any other context where our
1187         /// counterparty will forward a payment to us.
1188         ///
1189         /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1190         /// [`ChannelDetails::short_channel_id`]. See those for more information.
1191         pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1192                 self.inbound_scid_alias.or(self.short_channel_id)
1193         }
1194
1195         /// Gets the current SCID which should be used to identify this channel for outbound payments.
1196         /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1197         /// we're sending or forwarding a payment outbound over this channel.
1198         ///
1199         /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1200         /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1201         pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1202                 self.short_channel_id.or(self.outbound_scid_alias)
1203         }
1204 }
1205
1206 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1207 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1208 #[derive(Debug, PartialEq)]
1209 pub enum RecentPaymentDetails {
1210         /// When a payment is still being sent and awaiting successful delivery.
1211         Pending {
1212                 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1213                 /// abandoned.
1214                 payment_hash: PaymentHash,
1215                 /// Total amount (in msat, excluding fees) across all paths for this payment,
1216                 /// not just the amount currently inflight.
1217                 total_msat: u64,
1218         },
1219         /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1220         /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1221         /// payment is removed from tracking.
1222         Fulfilled {
1223                 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1224                 /// made before LDK version 0.0.104.
1225                 payment_hash: Option<PaymentHash>,
1226         },
1227         /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1228         /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1229         /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1230         Abandoned {
1231                 /// Hash of the payment that we have given up trying to send.
1232                 payment_hash: PaymentHash,
1233         },
1234 }
1235
1236 /// Route hints used in constructing invoices for [phantom node payents].
1237 ///
1238 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1239 #[derive(Clone)]
1240 pub struct PhantomRouteHints {
1241         /// The list of channels to be included in the invoice route hints.
1242         pub channels: Vec<ChannelDetails>,
1243         /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1244         /// route hints.
1245         pub phantom_scid: u64,
1246         /// The pubkey of the real backing node that would ultimately receive the payment.
1247         pub real_node_pubkey: PublicKey,
1248 }
1249
1250 macro_rules! handle_error {
1251         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1252                 match $internal {
1253                         Ok(msg) => Ok(msg),
1254                         Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1255                                 // In testing, ensure there are no deadlocks where the lock is already held upon
1256                                 // entering the macro.
1257                                 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1258                                 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1259
1260                                 let mut msg_events = Vec::with_capacity(2);
1261
1262                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
1263                                         $self.finish_force_close_channel(shutdown_res);
1264                                         if let Some(update) = update_option {
1265                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1266                                                         msg: update
1267                                                 });
1268                                         }
1269                                         if let Some((channel_id, user_channel_id)) = chan_id {
1270                                                 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1271                                                         channel_id, user_channel_id,
1272                                                         reason: ClosureReason::ProcessingError { err: err.err.clone() }
1273                                                 });
1274                                         }
1275                                 }
1276
1277                                 log_error!($self.logger, "{}", err.err);
1278                                 if let msgs::ErrorAction::IgnoreError = err.action {
1279                                 } else {
1280                                         msg_events.push(events::MessageSendEvent::HandleError {
1281                                                 node_id: $counterparty_node_id,
1282                                                 action: err.action.clone()
1283                                         });
1284                                 }
1285
1286                                 if !msg_events.is_empty() {
1287                                         let per_peer_state = $self.per_peer_state.read().unwrap();
1288                                         if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1289                                                 let mut peer_state = peer_state_mutex.lock().unwrap();
1290                                                 peer_state.pending_msg_events.append(&mut msg_events);
1291                                         }
1292                                 }
1293
1294                                 // Return error in case higher-API need one
1295                                 Err(err)
1296                         },
1297                 }
1298         }
1299 }
1300
1301 macro_rules! update_maps_on_chan_removal {
1302         ($self: expr, $channel: expr) => {{
1303                 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1304                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1305                 if let Some(short_id) = $channel.get_short_channel_id() {
1306                         short_to_chan_info.remove(&short_id);
1307                 } else {
1308                         // If the channel was never confirmed on-chain prior to its closure, remove the
1309                         // outbound SCID alias we used for it from the collision-prevention set. While we
1310                         // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1311                         // also don't want a counterparty to be able to trivially cause a memory leak by simply
1312                         // opening a million channels with us which are closed before we ever reach the funding
1313                         // stage.
1314                         let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1315                         debug_assert!(alias_removed);
1316                 }
1317                 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1318         }}
1319 }
1320
1321 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1322 macro_rules! convert_chan_err {
1323         ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1324                 match $err {
1325                         ChannelError::Warn(msg) => {
1326                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1327                         },
1328                         ChannelError::Ignore(msg) => {
1329                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1330                         },
1331                         ChannelError::Close(msg) => {
1332                                 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1333                                 update_maps_on_chan_removal!($self, $channel);
1334                                 let shutdown_res = $channel.force_shutdown(true);
1335                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1336                                         shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1337                         },
1338                 }
1339         }
1340 }
1341
1342 macro_rules! break_chan_entry {
1343         ($self: ident, $res: expr, $entry: expr) => {
1344                 match $res {
1345                         Ok(res) => res,
1346                         Err(e) => {
1347                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1348                                 if drop {
1349                                         $entry.remove_entry();
1350                                 }
1351                                 break Err(res);
1352                         }
1353                 }
1354         }
1355 }
1356
1357 macro_rules! try_chan_entry {
1358         ($self: ident, $res: expr, $entry: expr) => {
1359                 match $res {
1360                         Ok(res) => res,
1361                         Err(e) => {
1362                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1363                                 if drop {
1364                                         $entry.remove_entry();
1365                                 }
1366                                 return Err(res);
1367                         }
1368                 }
1369         }
1370 }
1371
1372 macro_rules! remove_channel {
1373         ($self: expr, $entry: expr) => {
1374                 {
1375                         let channel = $entry.remove_entry().1;
1376                         update_maps_on_chan_removal!($self, channel);
1377                         channel
1378                 }
1379         }
1380 }
1381
1382 macro_rules! send_channel_ready {
1383         ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1384                 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1385                         node_id: $channel.get_counterparty_node_id(),
1386                         msg: $channel_ready_msg,
1387                 });
1388                 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1389                 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1390                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1391                 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1392                 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1393                         "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1394                 if let Some(real_scid) = $channel.get_short_channel_id() {
1395                         let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1396                         assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1397                                 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1398                 }
1399         }}
1400 }
1401
1402 macro_rules! emit_channel_ready_event {
1403         ($self: expr, $channel: expr) => {
1404                 if $channel.should_emit_channel_ready_event() {
1405                         {
1406                                 let mut pending_events = $self.pending_events.lock().unwrap();
1407                                 pending_events.push(events::Event::ChannelReady {
1408                                         channel_id: $channel.channel_id(),
1409                                         user_channel_id: $channel.get_user_id(),
1410                                         counterparty_node_id: $channel.get_counterparty_node_id(),
1411                                         channel_type: $channel.get_channel_type().clone(),
1412                                 });
1413                         }
1414                         $channel.set_channel_ready_event_emitted();
1415                 }
1416         }
1417 }
1418
1419 macro_rules! handle_monitor_update_completion {
1420         ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $chan: expr) => { {
1421                 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1422                         &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1423                         $self.best_block.read().unwrap().height());
1424                 let counterparty_node_id = $chan.get_counterparty_node_id();
1425                 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1426                         // We only send a channel_update in the case where we are just now sending a
1427                         // channel_ready and the channel is in a usable state. We may re-send a
1428                         // channel_update later through the announcement_signatures process for public
1429                         // channels, but there's no reason not to just inform our counterparty of our fees
1430                         // now.
1431                         if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1432                                 Some(events::MessageSendEvent::SendChannelUpdate {
1433                                         node_id: counterparty_node_id,
1434                                         msg,
1435                                 })
1436                         } else { None }
1437                 } else { None };
1438
1439                 let update_actions = $peer_state.monitor_update_blocked_actions
1440                         .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1441
1442                 let htlc_forwards = $self.handle_channel_resumption(
1443                         &mut $peer_state.pending_msg_events, $chan, updates.raa,
1444                         updates.commitment_update, updates.order, updates.accepted_htlcs,
1445                         updates.funding_broadcastable, updates.channel_ready,
1446                         updates.announcement_sigs);
1447                 if let Some(upd) = channel_update {
1448                         $peer_state.pending_msg_events.push(upd);
1449                 }
1450
1451                 let channel_id = $chan.channel_id();
1452                 core::mem::drop($peer_state_lock);
1453
1454                 $self.handle_monitor_update_completion_actions(update_actions);
1455
1456                 if let Some(forwards) = htlc_forwards {
1457                         $self.forward_htlcs(&mut [forwards][..]);
1458                 }
1459                 $self.finalize_claims(updates.finalized_claimed_htlcs);
1460                 for failure in updates.failed_htlcs.drain(..) {
1461                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1462                         $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1463                 }
1464         } }
1465 }
1466
1467 macro_rules! handle_new_monitor_update {
1468         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1469                 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1470                 // any case so that it won't deadlock.
1471                 debug_assert!($self.id_to_peer.try_lock().is_ok());
1472                 match $update_res {
1473                         ChannelMonitorUpdateStatus::InProgress => {
1474                                 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1475                                         log_bytes!($chan.channel_id()[..]));
1476                                 Ok(())
1477                         },
1478                         ChannelMonitorUpdateStatus::PermanentFailure => {
1479                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1480                                         log_bytes!($chan.channel_id()[..]));
1481                                 update_maps_on_chan_removal!($self, $chan);
1482                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1483                                         "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1484                                         $chan.get_user_id(), $chan.force_shutdown(false),
1485                                         $self.get_channel_update_for_broadcast(&$chan).ok()));
1486                                 $remove;
1487                                 res
1488                         },
1489                         ChannelMonitorUpdateStatus::Completed => {
1490                                 if ($update_id == 0 || $chan.get_next_monitor_update()
1491                                         .expect("We can't be processing a monitor update if it isn't queued")
1492                                         .update_id == $update_id) &&
1493                                         $chan.get_latest_monitor_update_id() == $update_id
1494                                 {
1495                                         handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $chan);
1496                                 }
1497                                 Ok(())
1498                         },
1499                 }
1500         } };
1501         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $chan_entry: expr) => {
1502                 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1503         }
1504 }
1505
1506 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1507 where
1508         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1509         T::Target: BroadcasterInterface,
1510         ES::Target: EntropySource,
1511         NS::Target: NodeSigner,
1512         SP::Target: SignerProvider,
1513         F::Target: FeeEstimator,
1514         R::Target: Router,
1515         L::Target: Logger,
1516 {
1517         /// Constructs a new ChannelManager to hold several channels and route between them.
1518         ///
1519         /// This is the main "logic hub" for all channel-related actions, and implements
1520         /// ChannelMessageHandler.
1521         ///
1522         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1523         ///
1524         /// Users need to notify the new ChannelManager when a new block is connected or
1525         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1526         /// from after `params.latest_hash`.
1527         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1528                 let mut secp_ctx = Secp256k1::new();
1529                 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1530                 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1531                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1532                 ChannelManager {
1533                         default_configuration: config.clone(),
1534                         genesis_hash: genesis_block(params.network).header.block_hash(),
1535                         fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1536                         chain_monitor,
1537                         tx_broadcaster,
1538                         router,
1539
1540                         best_block: RwLock::new(params.best_block),
1541
1542                         outbound_scid_aliases: Mutex::new(HashSet::new()),
1543                         pending_inbound_payments: Mutex::new(HashMap::new()),
1544                         pending_outbound_payments: OutboundPayments::new(),
1545                         forward_htlcs: Mutex::new(HashMap::new()),
1546                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1547                         pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1548                         id_to_peer: Mutex::new(HashMap::new()),
1549                         short_to_chan_info: FairRwLock::new(HashMap::new()),
1550
1551                         our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1552                         secp_ctx,
1553
1554                         inbound_payment_key: expanded_inbound_key,
1555                         fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1556
1557                         probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1558
1559                         highest_seen_timestamp: AtomicUsize::new(0),
1560
1561                         per_peer_state: FairRwLock::new(HashMap::new()),
1562
1563                         pending_events: Mutex::new(Vec::new()),
1564                         pending_background_events: Mutex::new(Vec::new()),
1565                         total_consistency_lock: RwLock::new(()),
1566                         persistence_notifier: Notifier::new(),
1567
1568                         entropy_source,
1569                         node_signer,
1570                         signer_provider,
1571
1572                         logger,
1573                 }
1574         }
1575
1576         /// Gets the current configuration applied to all new channels.
1577         pub fn get_current_default_configuration(&self) -> &UserConfig {
1578                 &self.default_configuration
1579         }
1580
1581         fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1582                 let height = self.best_block.read().unwrap().height();
1583                 let mut outbound_scid_alias = 0;
1584                 let mut i = 0;
1585                 loop {
1586                         if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1587                                 outbound_scid_alias += 1;
1588                         } else {
1589                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1590                         }
1591                         if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1592                                 break;
1593                         }
1594                         i += 1;
1595                         if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1596                 }
1597                 outbound_scid_alias
1598         }
1599
1600         /// Creates a new outbound channel to the given remote node and with the given value.
1601         ///
1602         /// `user_channel_id` will be provided back as in
1603         /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1604         /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1605         /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1606         /// is simply copied to events and otherwise ignored.
1607         ///
1608         /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1609         /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1610         ///
1611         /// Note that we do not check if you are currently connected to the given peer. If no
1612         /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1613         /// the channel eventually being silently forgotten (dropped on reload).
1614         ///
1615         /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1616         /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1617         /// [`ChannelDetails::channel_id`] until after
1618         /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1619         /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1620         /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1621         ///
1622         /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1623         /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1624         /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1625         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1626                 if channel_value_satoshis < 1000 {
1627                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1628                 }
1629
1630                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1631                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1632                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1633
1634                 let per_peer_state = self.per_peer_state.read().unwrap();
1635
1636                 let peer_state_mutex = per_peer_state.get(&their_network_key)
1637                         .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1638
1639                 let mut peer_state = peer_state_mutex.lock().unwrap();
1640                 let channel = {
1641                         let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1642                         let their_features = &peer_state.latest_features;
1643                         let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1644                         match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1645                                 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1646                                 self.best_block.read().unwrap().height(), outbound_scid_alias)
1647                         {
1648                                 Ok(res) => res,
1649                                 Err(e) => {
1650                                         self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1651                                         return Err(e);
1652                                 },
1653                         }
1654                 };
1655                 let res = channel.get_open_channel(self.genesis_hash.clone());
1656
1657                 let temporary_channel_id = channel.channel_id();
1658                 match peer_state.channel_by_id.entry(temporary_channel_id) {
1659                         hash_map::Entry::Occupied(_) => {
1660                                 if cfg!(fuzzing) {
1661                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1662                                 } else {
1663                                         panic!("RNG is bad???");
1664                                 }
1665                         },
1666                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1667                 }
1668
1669                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1670                         node_id: their_network_key,
1671                         msg: res,
1672                 });
1673                 Ok(temporary_channel_id)
1674         }
1675
1676         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1677                 // Allocate our best estimate of the number of channels we have in the `res`
1678                 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1679                 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1680                 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1681                 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1682                 // the same channel.
1683                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1684                 {
1685                         let best_block_height = self.best_block.read().unwrap().height();
1686                         let per_peer_state = self.per_peer_state.read().unwrap();
1687                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1688                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1689                                 let peer_state = &mut *peer_state_lock;
1690                                 for (channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1691                                         let balance = channel.get_available_balances();
1692                                         let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1693                                                 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1694                                         res.push(ChannelDetails {
1695                                                 channel_id: (*channel_id).clone(),
1696                                                 counterparty: ChannelCounterparty {
1697                                                         node_id: channel.get_counterparty_node_id(),
1698                                                         features: peer_state.latest_features.clone(),
1699                                                         unspendable_punishment_reserve: to_remote_reserve_satoshis,
1700                                                         forwarding_info: channel.counterparty_forwarding_info(),
1701                                                         // Ensures that we have actually received the `htlc_minimum_msat` value
1702                                                         // from the counterparty through the `OpenChannel` or `AcceptChannel`
1703                                                         // message (as they are always the first message from the counterparty).
1704                                                         // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1705                                                         // default `0` value set by `Channel::new_outbound`.
1706                                                         outbound_htlc_minimum_msat: if channel.have_received_message() {
1707                                                                 Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1708                                                         outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1709                                                 },
1710                                                 funding_txo: channel.get_funding_txo(),
1711                                                 // Note that accept_channel (or open_channel) is always the first message, so
1712                                                 // `have_received_message` indicates that type negotiation has completed.
1713                                                 channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1714                                                 short_channel_id: channel.get_short_channel_id(),
1715                                                 outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1716                                                 inbound_scid_alias: channel.latest_inbound_scid_alias(),
1717                                                 channel_value_satoshis: channel.get_value_satoshis(),
1718                                                 unspendable_punishment_reserve: to_self_reserve_satoshis,
1719                                                 balance_msat: balance.balance_msat,
1720                                                 inbound_capacity_msat: balance.inbound_capacity_msat,
1721                                                 outbound_capacity_msat: balance.outbound_capacity_msat,
1722                                                 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1723                                                 user_channel_id: channel.get_user_id(),
1724                                                 confirmations_required: channel.minimum_depth(),
1725                                                 confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1726                                                 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1727                                                 is_outbound: channel.is_outbound(),
1728                                                 is_channel_ready: channel.is_usable(),
1729                                                 is_usable: channel.is_live(),
1730                                                 is_public: channel.should_announce(),
1731                                                 inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1732                                                 inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1733                                                 config: Some(channel.config()),
1734                                         });
1735                                 }
1736                         }
1737                 }
1738                 res
1739         }
1740
1741         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1742         /// more information.
1743         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1744                 self.list_channels_with_filter(|_| true)
1745         }
1746
1747         /// Gets the list of usable channels, in random order. Useful as an argument to [`find_route`]
1748         /// to ensure non-announced channels are used.
1749         ///
1750         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1751         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1752         /// are.
1753         ///
1754         /// [`find_route`]: crate::routing::router::find_route
1755         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1756                 // Note we use is_live here instead of usable which leads to somewhat confused
1757                 // internal/external nomenclature, but that's ok cause that's probably what the user
1758                 // really wanted anyway.
1759                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1760         }
1761
1762         /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
1763         /// successful path, or have unresolved HTLCs.
1764         ///
1765         /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
1766         /// result of a crash. If such a payment exists, is not listed here, and an
1767         /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
1768         ///
1769         /// [`Event::PaymentSent`]: events::Event::PaymentSent
1770         pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
1771                 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
1772                         .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
1773                                 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
1774                                         Some(RecentPaymentDetails::Pending {
1775                                                 payment_hash: *payment_hash,
1776                                                 total_msat: *total_msat,
1777                                         })
1778                                 },
1779                                 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
1780                                         Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
1781                                 },
1782                                 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
1783                                         Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
1784                                 },
1785                                 PendingOutboundPayment::Legacy { .. } => None
1786                         })
1787                         .collect()
1788         }
1789
1790         /// Helper function that issues the channel close events
1791         fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
1792                 let mut pending_events_lock = self.pending_events.lock().unwrap();
1793                 match channel.unbroadcasted_funding() {
1794                         Some(transaction) => {
1795                                 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1796                         },
1797                         None => {},
1798                 }
1799                 pending_events_lock.push(events::Event::ChannelClosed {
1800                         channel_id: channel.channel_id(),
1801                         user_channel_id: channel.get_user_id(),
1802                         reason: closure_reason
1803                 });
1804         }
1805
1806         fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1807                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1808
1809                 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1810                 let result: Result<(), _> = loop {
1811                         let per_peer_state = self.per_peer_state.read().unwrap();
1812
1813                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
1814                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
1815
1816                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1817                         let peer_state = &mut *peer_state_lock;
1818                         match peer_state.channel_by_id.entry(channel_id.clone()) {
1819                                 hash_map::Entry::Occupied(mut chan_entry) => {
1820                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
1821                                         let their_features = &peer_state.latest_features;
1822                                         let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
1823                                                 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
1824                                         failed_htlcs = htlcs;
1825
1826                                         // We can send the `shutdown` message before updating the `ChannelMonitor`
1827                                         // here as we don't need the monitor update to complete until we send a
1828                                         // `shutdown_signed`, which we'll delay if we're pending a monitor update.
1829                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1830                                                 node_id: *counterparty_node_id,
1831                                                 msg: shutdown_msg,
1832                                         });
1833
1834                                         // Update the monitor with the shutdown script if necessary.
1835                                         if let Some(monitor_update) = monitor_update_opt.take() {
1836                                                 let update_id = monitor_update.update_id;
1837                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
1838                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, chan_entry);
1839                                         }
1840
1841                                         if chan_entry.get().is_shutdown() {
1842                                                 let channel = remove_channel!(self, chan_entry);
1843                                                 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1844                                                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1845                                                                 msg: channel_update
1846                                                         });
1847                                                 }
1848                                                 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1849                                         }
1850                                         break Ok(());
1851                                 },
1852                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
1853                         }
1854                 };
1855
1856                 for htlc_source in failed_htlcs.drain(..) {
1857                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1858                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
1859                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
1860                 }
1861
1862                 let _ = handle_error!(self, result, *counterparty_node_id);
1863                 Ok(())
1864         }
1865
1866         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1867         /// will be accepted on the given channel, and after additional timeout/the closing of all
1868         /// pending HTLCs, the channel will be closed on chain.
1869         ///
1870         ///  * If we are the channel initiator, we will pay between our [`Background`] and
1871         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1872         ///    estimate.
1873         ///  * If our counterparty is the channel initiator, we will require a channel closing
1874         ///    transaction feerate of at least our [`Background`] feerate or the feerate which
1875         ///    would appear on a force-closure transaction, whichever is lower. We will allow our
1876         ///    counterparty to pay as much fee as they'd like, however.
1877         ///
1878         /// May generate a SendShutdown message event on success, which should be relayed.
1879         ///
1880         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1881         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1882         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1883         pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1884                 self.close_channel_internal(channel_id, counterparty_node_id, None)
1885         }
1886
1887         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1888         /// will be accepted on the given channel, and after additional timeout/the closing of all
1889         /// pending HTLCs, the channel will be closed on chain.
1890         ///
1891         /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1892         /// the channel being closed or not:
1893         ///  * If we are the channel initiator, we will pay at least this feerate on the closing
1894         ///    transaction. The upper-bound is set by
1895         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1896         ///    estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1897         ///  * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1898         ///    transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1899         ///    will appear on a force-closure transaction, whichever is lower).
1900         ///
1901         /// May generate a SendShutdown message event on success, which should be relayed.
1902         ///
1903         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1904         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1905         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1906         pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1907                 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
1908         }
1909
1910         #[inline]
1911         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1912                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1913                 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1914                 for htlc_source in failed_htlcs.drain(..) {
1915                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
1916                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1917                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1918                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
1919                 }
1920                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1921                         // There isn't anything we can do if we get an update failure - we're already
1922                         // force-closing. The monitor update on the required in-memory copy should broadcast
1923                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1924                         // ignore the result here.
1925                         let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
1926                 }
1927         }
1928
1929         /// `peer_msg` should be set when we receive a message from a peer, but not set when the
1930         /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1931         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
1932         -> Result<PublicKey, APIError> {
1933                 let per_peer_state = self.per_peer_state.read().unwrap();
1934                 let peer_state_mutex = per_peer_state.get(peer_node_id)
1935                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
1936                 let mut chan = {
1937                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1938                         let peer_state = &mut *peer_state_lock;
1939                         if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
1940                                 if let Some(peer_msg) = peer_msg {
1941                                         self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
1942                                 } else {
1943                                         self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
1944                                 }
1945                                 remove_channel!(self, chan)
1946                         } else {
1947                                 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
1948                         }
1949                 };
1950                 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1951                 self.finish_force_close_channel(chan.force_shutdown(broadcast));
1952                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
1953                         let mut peer_state = peer_state_mutex.lock().unwrap();
1954                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1955                                 msg: update
1956                         });
1957                 }
1958
1959                 Ok(chan.get_counterparty_node_id())
1960         }
1961
1962         fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
1963                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1964                 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
1965                         Ok(counterparty_node_id) => {
1966                                 let per_peer_state = self.per_peer_state.read().unwrap();
1967                                 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
1968                                         let mut peer_state = peer_state_mutex.lock().unwrap();
1969                                         peer_state.pending_msg_events.push(
1970                                                 events::MessageSendEvent::HandleError {
1971                                                         node_id: counterparty_node_id,
1972                                                         action: msgs::ErrorAction::SendErrorMessage {
1973                                                                 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1974                                                         },
1975                                                 }
1976                                         );
1977                                 }
1978                                 Ok(())
1979                         },
1980                         Err(e) => Err(e)
1981                 }
1982         }
1983
1984         /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
1985         /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
1986         /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
1987         /// channel.
1988         pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
1989         -> Result<(), APIError> {
1990                 self.force_close_sending_error(channel_id, counterparty_node_id, true)
1991         }
1992
1993         /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
1994         /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
1995         /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
1996         ///
1997         /// You can always get the latest local transaction(s) to broadcast from
1998         /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
1999         pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2000         -> Result<(), APIError> {
2001                 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2002         }
2003
2004         /// Force close all channels, immediately broadcasting the latest local commitment transaction
2005         /// for each to the chain and rejecting new HTLCs on each.
2006         pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2007                 for chan in self.list_channels() {
2008                         let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2009                 }
2010         }
2011
2012         /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2013         /// local transaction(s).
2014         pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2015                 for chan in self.list_channels() {
2016                         let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2017                 }
2018         }
2019
2020         fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2021                 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2022         {
2023                 // final_incorrect_cltv_expiry
2024                 if hop_data.outgoing_cltv_value != cltv_expiry {
2025                         return Err(ReceiveError {
2026                                 msg: "Upstream node set CLTV to the wrong value",
2027                                 err_code: 18,
2028                                 err_data: cltv_expiry.to_be_bytes().to_vec()
2029                         })
2030                 }
2031                 // final_expiry_too_soon
2032                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2033                 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2034                 //
2035                 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2036                 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2037                 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2038                 let current_height: u32 = self.best_block.read().unwrap().height();
2039                 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2040                         let mut err_data = Vec::with_capacity(12);
2041                         err_data.extend_from_slice(&amt_msat.to_be_bytes());
2042                         err_data.extend_from_slice(&current_height.to_be_bytes());
2043                         return Err(ReceiveError {
2044                                 err_code: 0x4000 | 15, err_data,
2045                                 msg: "The final CLTV expiry is too soon to handle",
2046                         });
2047                 }
2048                 if hop_data.amt_to_forward > amt_msat {
2049                         return Err(ReceiveError {
2050                                 err_code: 19,
2051                                 err_data: amt_msat.to_be_bytes().to_vec(),
2052                                 msg: "Upstream node sent less than we were supposed to receive in payment",
2053                         });
2054                 }
2055
2056                 let routing = match hop_data.format {
2057                         msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2058                                 return Err(ReceiveError {
2059                                         err_code: 0x4000|22,
2060                                         err_data: Vec::new(),
2061                                         msg: "Got non final data with an HMAC of 0",
2062                                 });
2063                         },
2064                         msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2065                                 if payment_data.is_some() && keysend_preimage.is_some() {
2066                                         return Err(ReceiveError {
2067                                                 err_code: 0x4000|22,
2068                                                 err_data: Vec::new(),
2069                                                 msg: "We don't support MPP keysend payments",
2070                                         });
2071                                 } else if let Some(data) = payment_data {
2072                                         PendingHTLCRouting::Receive {
2073                                                 payment_data: data,
2074                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2075                                                 phantom_shared_secret,
2076                                         }
2077                                 } else if let Some(payment_preimage) = keysend_preimage {
2078                                         // We need to check that the sender knows the keysend preimage before processing this
2079                                         // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2080                                         // could discover the final destination of X, by probing the adjacent nodes on the route
2081                                         // with a keysend payment of identical payment hash to X and observing the processing
2082                                         // time discrepancies due to a hash collision with X.
2083                                         let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2084                                         if hashed_preimage != payment_hash {
2085                                                 return Err(ReceiveError {
2086                                                         err_code: 0x4000|22,
2087                                                         err_data: Vec::new(),
2088                                                         msg: "Payment preimage didn't match payment hash",
2089                                                 });
2090                                         }
2091
2092                                         PendingHTLCRouting::ReceiveKeysend {
2093                                                 payment_preimage,
2094                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2095                                         }
2096                                 } else {
2097                                         return Err(ReceiveError {
2098                                                 err_code: 0x4000|0x2000|3,
2099                                                 err_data: Vec::new(),
2100                                                 msg: "We require payment_secrets",
2101                                         });
2102                                 }
2103                         },
2104                 };
2105                 Ok(PendingHTLCInfo {
2106                         routing,
2107                         payment_hash,
2108                         incoming_shared_secret: shared_secret,
2109                         incoming_amt_msat: Some(amt_msat),
2110                         outgoing_amt_msat: amt_msat,
2111                         outgoing_cltv_value: hop_data.outgoing_cltv_value,
2112                 })
2113         }
2114
2115         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2116                 macro_rules! return_malformed_err {
2117                         ($msg: expr, $err_code: expr) => {
2118                                 {
2119                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2120                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2121                                                 channel_id: msg.channel_id,
2122                                                 htlc_id: msg.htlc_id,
2123                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2124                                                 failure_code: $err_code,
2125                                         }));
2126                                 }
2127                         }
2128                 }
2129
2130                 if let Err(_) = msg.onion_routing_packet.public_key {
2131                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2132                 }
2133
2134                 let shared_secret = self.node_signer.ecdh(
2135                         Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2136                 ).unwrap().secret_bytes();
2137
2138                 if msg.onion_routing_packet.version != 0 {
2139                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2140                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2141                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
2142                         //receiving node would have to brute force to figure out which version was put in the
2143                         //packet by the node that send us the message, in the case of hashing the hop_data, the
2144                         //node knows the HMAC matched, so they already know what is there...
2145                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2146                 }
2147                 macro_rules! return_err {
2148                         ($msg: expr, $err_code: expr, $data: expr) => {
2149                                 {
2150                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2151                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2152                                                 channel_id: msg.channel_id,
2153                                                 htlc_id: msg.htlc_id,
2154                                                 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2155                                                         .get_encrypted_failure_packet(&shared_secret, &None),
2156                                         }));
2157                                 }
2158                         }
2159                 }
2160
2161                 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2162                         Ok(res) => res,
2163                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2164                                 return_malformed_err!(err_msg, err_code);
2165                         },
2166                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2167                                 return_err!(err_msg, err_code, &[0; 0]);
2168                         },
2169                 };
2170
2171                 let pending_forward_info = match next_hop {
2172                         onion_utils::Hop::Receive(next_hop_data) => {
2173                                 // OUR PAYMENT!
2174                                 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2175                                         Ok(info) => {
2176                                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
2177                                                 // message, however that would leak that we are the recipient of this payment, so
2178                                                 // instead we stay symmetric with the forwarding case, only responding (after a
2179                                                 // delay) once they've send us a commitment_signed!
2180                                                 PendingHTLCStatus::Forward(info)
2181                                         },
2182                                         Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2183                                 }
2184                         },
2185                         onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2186                                 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2187                                 let outgoing_packet = msgs::OnionPacket {
2188                                         version: 0,
2189                                         public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2190                                         hop_data: new_packet_bytes,
2191                                         hmac: next_hop_hmac.clone(),
2192                                 };
2193
2194                                 let short_channel_id = match next_hop_data.format {
2195                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2196                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
2197                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2198                                         },
2199                                 };
2200
2201                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
2202                                         routing: PendingHTLCRouting::Forward {
2203                                                 onion_packet: outgoing_packet,
2204                                                 short_channel_id,
2205                                         },
2206                                         payment_hash: msg.payment_hash.clone(),
2207                                         incoming_shared_secret: shared_secret,
2208                                         incoming_amt_msat: Some(msg.amount_msat),
2209                                         outgoing_amt_msat: next_hop_data.amt_to_forward,
2210                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2211                                 })
2212                         }
2213                 };
2214
2215                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2216                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2217                         // with a short_channel_id of 0. This is important as various things later assume
2218                         // short_channel_id is non-0 in any ::Forward.
2219                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2220                                 if let Some((err, mut code, chan_update)) = loop {
2221                                         let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2222                                         let forwarding_chan_info_opt = match id_option {
2223                                                 None => { // unknown_next_peer
2224                                                         // Note that this is likely a timing oracle for detecting whether an scid is a
2225                                                         // phantom or an intercept.
2226                                                         if (self.default_configuration.accept_intercept_htlcs &&
2227                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2228                                                            fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2229                                                         {
2230                                                                 None
2231                                                         } else {
2232                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2233                                                         }
2234                                                 },
2235                                                 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2236                                         };
2237                                         let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2238                                                 let per_peer_state = self.per_peer_state.read().unwrap();
2239                                                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2240                                                 if peer_state_mutex_opt.is_none() {
2241                                                         break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2242                                                 }
2243                                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2244                                                 let peer_state = &mut *peer_state_lock;
2245                                                 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2246                                                         None => {
2247                                                                 // Channel was removed. The short_to_chan_info and channel_by_id maps
2248                                                                 // have no consistency guarantees.
2249                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2250                                                         },
2251                                                         Some(chan) => chan
2252                                                 };
2253                                                 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2254                                                         // Note that the behavior here should be identical to the above block - we
2255                                                         // should NOT reveal the existence or non-existence of a private channel if
2256                                                         // we don't allow forwards outbound over them.
2257                                                         break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2258                                                 }
2259                                                 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2260                                                         // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2261                                                         // "refuse to forward unless the SCID alias was used", so we pretend
2262                                                         // we don't have the channel here.
2263                                                         break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2264                                                 }
2265                                                 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2266
2267                                                 // Note that we could technically not return an error yet here and just hope
2268                                                 // that the connection is reestablished or monitor updated by the time we get
2269                                                 // around to doing the actual forward, but better to fail early if we can and
2270                                                 // hopefully an attacker trying to path-trace payments cannot make this occur
2271                                                 // on a small/per-node/per-channel scale.
2272                                                 if !chan.is_live() { // channel_disabled
2273                                                         break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2274                                                 }
2275                                                 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2276                                                         break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2277                                                 }
2278                                                 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2279                                                         break Some((err, code, chan_update_opt));
2280                                                 }
2281                                                 chan_update_opt
2282                                         } else {
2283                                                 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2284                                                         // We really should set `incorrect_cltv_expiry` here but as we're not
2285                                                         // forwarding over a real channel we can't generate a channel_update
2286                                                         // for it. Instead we just return a generic temporary_node_failure.
2287                                                         break Some((
2288                                                                 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2289                                                                 0x2000 | 2, None,
2290                                                         ));
2291                                                 }
2292                                                 None
2293                                         };
2294
2295                                         let cur_height = self.best_block.read().unwrap().height() + 1;
2296                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2297                                         // but we want to be robust wrt to counterparty packet sanitization (see
2298                                         // HTLC_FAIL_BACK_BUFFER rationale).
2299                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2300                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2301                                         }
2302                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2303                                                 break Some(("CLTV expiry is too far in the future", 21, None));
2304                                         }
2305                                         // If the HTLC expires ~now, don't bother trying to forward it to our
2306                                         // counterparty. They should fail it anyway, but we don't want to bother with
2307                                         // the round-trips or risk them deciding they definitely want the HTLC and
2308                                         // force-closing to ensure they get it if we're offline.
2309                                         // We previously had a much more aggressive check here which tried to ensure
2310                                         // our counterparty receives an HTLC which has *our* risk threshold met on it,
2311                                         // but there is no need to do that, and since we're a bit conservative with our
2312                                         // risk threshold it just results in failing to forward payments.
2313                                         if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2314                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2315                                         }
2316
2317                                         break None;
2318                                 }
2319                                 {
2320                                         let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2321                                         if let Some(chan_update) = chan_update {
2322                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2323                                                         msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2324                                                 }
2325                                                 else if code == 0x1000 | 13 {
2326                                                         msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2327                                                 }
2328                                                 else if code == 0x1000 | 20 {
2329                                                         // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2330                                                         0u16.write(&mut res).expect("Writes cannot fail");
2331                                                 }
2332                                                 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2333                                                 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2334                                                 chan_update.write(&mut res).expect("Writes cannot fail");
2335                                         } else if code & 0x1000 == 0x1000 {
2336                                                 // If we're trying to return an error that requires a `channel_update` but
2337                                                 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2338                                                 // generate an update), just use the generic "temporary_node_failure"
2339                                                 // instead.
2340                                                 code = 0x2000 | 2;
2341                                         }
2342                                         return_err!(err, code, &res.0[..]);
2343                                 }
2344                         }
2345                 }
2346
2347                 pending_forward_info
2348         }
2349
2350         /// Gets the current channel_update for the given channel. This first checks if the channel is
2351         /// public, and thus should be called whenever the result is going to be passed out in a
2352         /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2353         ///
2354         /// Note that in `internal_closing_signed`, this function is called without the `peer_state`
2355         /// corresponding to the channel's counterparty locked, as the channel been removed from the
2356         /// storage and the `peer_state` lock has been dropped.
2357         fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2358                 if !chan.should_announce() {
2359                         return Err(LightningError {
2360                                 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2361                                 action: msgs::ErrorAction::IgnoreError
2362                         });
2363                 }
2364                 if chan.get_short_channel_id().is_none() {
2365                         return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2366                 }
2367                 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2368                 self.get_channel_update_for_unicast(chan)
2369         }
2370
2371         /// Gets the current channel_update for the given channel. This does not check if the channel
2372         /// is public (only returning an Err if the channel does not yet have an assigned short_id),
2373         /// and thus MUST NOT be called unless the recipient of the resulting message has already
2374         /// provided evidence that they know about the existence of the channel.
2375         ///
2376         /// Note that through `internal_closing_signed`, this function is called without the
2377         /// `peer_state`  corresponding to the channel's counterparty locked, as the channel been
2378         /// removed from the storage and the `peer_state` lock has been dropped.
2379         fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2380                 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2381                 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2382                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2383                         Some(id) => id,
2384                 };
2385
2386                 self.get_channel_update_for_onion(short_channel_id, chan)
2387         }
2388         fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2389                 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2390                 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2391
2392                 let unsigned = msgs::UnsignedChannelUpdate {
2393                         chain_hash: self.genesis_hash,
2394                         short_channel_id,
2395                         timestamp: chan.get_update_time_counter(),
2396                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2397                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2398                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2399                         htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2400                         fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2401                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2402                         excess_data: Vec::new(),
2403                 };
2404                 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2405                 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2406                 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2407                 // channel.
2408                 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2409
2410                 Ok(msgs::ChannelUpdate {
2411                         signature: sig,
2412                         contents: unsigned
2413                 })
2414         }
2415
2416         // Only public for testing, this should otherwise never be called direcly
2417         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2418                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2419                 let prng_seed = self.entropy_source.get_secure_random_bytes();
2420                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2421
2422                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2423                         .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2424                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2425                 if onion_utils::route_size_insane(&onion_payloads) {
2426                         return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
2427                 }
2428                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2429
2430                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2431
2432                 let err: Result<(), _> = loop {
2433                         let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.first().unwrap().short_channel_id) {
2434                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2435                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2436                         };
2437
2438                         let per_peer_state = self.per_peer_state.read().unwrap();
2439                         let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2440                                 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2441                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2442                         let peer_state = &mut *peer_state_lock;
2443                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2444                                 if !chan.get().is_live() {
2445                                         return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2446                                 }
2447                                 let funding_txo = chan.get().get_funding_txo().unwrap();
2448                                 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2449                                         htlc_cltv, HTLCSource::OutboundRoute {
2450                                                 path: path.clone(),
2451                                                 session_priv: session_priv.clone(),
2452                                                 first_hop_htlc_msat: htlc_msat,
2453                                                 payment_id,
2454                                                 payment_secret: payment_secret.clone(),
2455                                                 payment_params: payment_params.clone(),
2456                                         }, onion_packet, &self.logger);
2457                                 match break_chan_entry!(self, send_res, chan) {
2458                                         Some(monitor_update) => {
2459                                                 let update_id = monitor_update.update_id;
2460                                                 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2461                                                 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, chan) {
2462                                                         break Err(e);
2463                                                 }
2464                                                 if update_res == ChannelMonitorUpdateStatus::InProgress {
2465                                                         // Note that MonitorUpdateInProgress here indicates (per function
2466                                                         // docs) that we will resend the commitment update once monitor
2467                                                         // updating completes. Therefore, we must return an error
2468                                                         // indicating that it is unsafe to retry the payment wholesale,
2469                                                         // which we do in the send_payment check for
2470                                                         // MonitorUpdateInProgress, below.
2471                                                         return Err(APIError::MonitorUpdateInProgress);
2472                                                 }
2473                                         },
2474                                         None => { },
2475                                 }
2476                         } else {
2477                                 // The channel was likely removed after we fetched the id from the
2478                                 // `short_to_chan_info` map, but before we successfully locked the
2479                                 // `channel_by_id` map.
2480                                 // This can occur as no consistency guarantees exists between the two maps.
2481                                 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2482                         }
2483                         return Ok(());
2484                 };
2485
2486                 match handle_error!(self, err, path.first().unwrap().pubkey) {
2487                         Ok(_) => unreachable!(),
2488                         Err(e) => {
2489                                 Err(APIError::ChannelUnavailable { err: e.err })
2490                         },
2491                 }
2492         }
2493
2494         /// Sends a payment along a given route.
2495         ///
2496         /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2497         /// fields for more info.
2498         ///
2499         /// May generate SendHTLCs message(s) event on success, which should be relayed (e.g. via
2500         /// [`PeerManager::process_events`]).
2501         ///
2502         /// # Avoiding Duplicate Payments
2503         ///
2504         /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2505         /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2506         /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2507         /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2508         /// second payment with the same [`PaymentId`].
2509         ///
2510         /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2511         /// tracking of payments, including state to indicate once a payment has completed. Because you
2512         /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2513         /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2514         /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2515         ///
2516         /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2517         /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2518         /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2519         /// [`ChannelManager::list_recent_payments`] for more information.
2520         ///
2521         /// # Possible Error States on [`PaymentSendFailure`]
2522         ///
2523         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2524         /// each entry matching the corresponding-index entry in the route paths, see
2525         /// [`PaymentSendFailure`] for more info.
2526         ///
2527         /// In general, a path may raise:
2528         ///  * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2529         ///    node public key) is specified.
2530         ///  * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2531         ///    (including due to previous monitor update failure or new permanent monitor update
2532         ///    failure).
2533         ///  * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2534         ///    relevant updates.
2535         ///
2536         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2537         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2538         /// different route unless you intend to pay twice!
2539         ///
2540         /// # A caution on `payment_secret`
2541         ///
2542         /// `payment_secret` is unrelated to `payment_hash` (or [`PaymentPreimage`]) and exists to
2543         /// authenticate the sender to the recipient and prevent payment-probing (deanonymization)
2544         /// attacks. For newer nodes, it will be provided to you in the invoice. If you do not have one,
2545         /// the [`Route`] must not contain multiple paths as multi-path payments require a
2546         /// recipient-provided `payment_secret`.
2547         ///
2548         /// If a `payment_secret` *is* provided, we assume that the invoice had the payment_secret
2549         /// feature bit set (either as required or as available). If multiple paths are present in the
2550         /// [`Route`], we assume the invoice had the basic_mpp feature set.
2551         ///
2552         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2553         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2554         /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2555         /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2556         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2557                 let best_block_height = self.best_block.read().unwrap().height();
2558                 self.pending_outbound_payments
2559                         .send_payment_with_route(route, payment_hash, payment_secret, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2560                                 |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2561                                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2562         }
2563
2564         /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2565         /// `route_params` and retry failed payment paths based on `retry_strategy`.
2566         pub fn send_payment_with_retry(&self, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2567                 let best_block_height = self.best_block.read().unwrap().height();
2568                 self.pending_outbound_payments
2569                         .send_payment(payment_hash, payment_secret, payment_id, retry_strategy, route_params,
2570                                 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2571                                 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2572                                 &self.pending_events,
2573                                 |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2574                                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2575         }
2576
2577         #[cfg(test)]
2578         fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2579                 let best_block_height = self.best_block.read().unwrap().height();
2580                 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, payment_secret, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2581                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2582                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2583         }
2584
2585         #[cfg(test)]
2586         pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, payment_secret: Option<PaymentSecret>, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2587                 let best_block_height = self.best_block.read().unwrap().height();
2588                 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, payment_secret, payment_id, route, None, &self.entropy_source, best_block_height)
2589         }
2590
2591
2592         /// Signals that no further retries for the given payment should occur. Useful if you have a
2593         /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2594         /// retries are exhausted.
2595         ///
2596         /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2597         /// as there are no remaining pending HTLCs for this payment.
2598         ///
2599         /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2600         /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2601         /// determine the ultimate status of a payment.
2602         ///
2603         /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2604         /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2605         ///
2606         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2607         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2608         pub fn abandon_payment(&self, payment_id: PaymentId) {
2609                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2610                 self.pending_outbound_payments.abandon_payment(payment_id, &self.pending_events);
2611         }
2612
2613         /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2614         /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2615         /// the preimage, it must be a cryptographically secure random value that no intermediate node
2616         /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2617         /// never reach the recipient.
2618         ///
2619         /// See [`send_payment`] documentation for more details on the return value of this function
2620         /// and idempotency guarantees provided by the [`PaymentId`] key.
2621         ///
2622         /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2623         /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2624         ///
2625         /// Note that `route` must have exactly one path.
2626         ///
2627         /// [`send_payment`]: Self::send_payment
2628         pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2629                 let best_block_height = self.best_block.read().unwrap().height();
2630                 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2631                         route, payment_preimage, payment_id, &self.entropy_source, &self.node_signer,
2632                         best_block_height,
2633                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2634                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2635         }
2636
2637         /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2638         /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2639         ///
2640         /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2641         /// payments.
2642         ///
2643         /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2644         pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2645                 let best_block_height = self.best_block.read().unwrap().height();
2646                 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, payment_id,
2647                         retry_strategy, route_params, &self.router, self.list_usable_channels(),
2648                         || self.compute_inflight_htlcs(),  &self.entropy_source, &self.node_signer, best_block_height,
2649                         &self.logger, &self.pending_events,
2650                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2651                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2652         }
2653
2654         /// Send a payment that is probing the given route for liquidity. We calculate the
2655         /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2656         /// us to easily discern them from real payments.
2657         pub fn send_probe(&self, hops: Vec<RouteHop>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2658                 let best_block_height = self.best_block.read().unwrap().height();
2659                 self.pending_outbound_payments.send_probe(hops, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2660                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2661                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2662         }
2663
2664         /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2665         /// payment probe.
2666         #[cfg(test)]
2667         pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2668                 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2669         }
2670
2671         /// Handles the generation of a funding transaction, optionally (for tests) with a function
2672         /// which checks the correctness of the funding transaction given the associated channel.
2673         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2674                 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2675         ) -> Result<(), APIError> {
2676                 let per_peer_state = self.per_peer_state.read().unwrap();
2677                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2678                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2679
2680                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2681                 let peer_state = &mut *peer_state_lock;
2682                 let (chan, msg) = {
2683                         let (res, chan) = {
2684                                 match peer_state.channel_by_id.remove(temporary_channel_id) {
2685                                         Some(mut chan) => {
2686                                                 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2687
2688                                                 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2689                                                         .map_err(|e| if let ChannelError::Close(msg) = e {
2690                                                                 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2691                                                         } else { unreachable!(); })
2692                                                 , chan)
2693                                         },
2694                                         None => { return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) }) },
2695                                 }
2696                         };
2697                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
2698                                 Ok(funding_msg) => {
2699                                         (chan, funding_msg)
2700                                 },
2701                                 Err(_) => { return Err(APIError::ChannelUnavailable {
2702                                         err: "Signer refused to sign the initial commitment transaction".to_owned()
2703                                 }) },
2704                         }
2705                 };
2706
2707                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2708                         node_id: chan.get_counterparty_node_id(),
2709                         msg,
2710                 });
2711                 match peer_state.channel_by_id.entry(chan.channel_id()) {
2712                         hash_map::Entry::Occupied(_) => {
2713                                 panic!("Generated duplicate funding txid?");
2714                         },
2715                         hash_map::Entry::Vacant(e) => {
2716                                 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2717                                 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2718                                         panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2719                                 }
2720                                 e.insert(chan);
2721                         }
2722                 }
2723                 Ok(())
2724         }
2725
2726         #[cfg(test)]
2727         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2728                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2729                         Ok(OutPoint { txid: tx.txid(), index: output_index })
2730                 })
2731         }
2732
2733         /// Call this upon creation of a funding transaction for the given channel.
2734         ///
2735         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2736         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2737         ///
2738         /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2739         /// across the p2p network.
2740         ///
2741         /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2742         /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2743         ///
2744         /// May panic if the output found in the funding transaction is duplicative with some other
2745         /// channel (note that this should be trivially prevented by using unique funding transaction
2746         /// keys per-channel).
2747         ///
2748         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2749         /// counterparty's signature the funding transaction will automatically be broadcast via the
2750         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2751         ///
2752         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2753         /// not currently support replacing a funding transaction on an existing channel. Instead,
2754         /// create a new channel with a conflicting funding transaction.
2755         ///
2756         /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
2757         /// the wallet software generating the funding transaction to apply anti-fee sniping as
2758         /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
2759         /// for more details.
2760         ///
2761         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2762         /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
2763         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2764                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2765
2766                 for inp in funding_transaction.input.iter() {
2767                         if inp.witness.is_empty() {
2768                                 return Err(APIError::APIMisuseError {
2769                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2770                                 });
2771                         }
2772                 }
2773                 {
2774                         let height = self.best_block.read().unwrap().height();
2775                         // Transactions are evaluated as final by network mempools at the next block. However, the modules
2776                         // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
2777                         // the wallet module is in advance on the LDK view, allow one more block of headroom.
2778                         if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 2 {
2779                                 return Err(APIError::APIMisuseError {
2780                                         err: "Funding transaction absolute timelock is non-final".to_owned()
2781                                 });
2782                         }
2783                 }
2784                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
2785                         let mut output_index = None;
2786                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2787                         for (idx, outp) in tx.output.iter().enumerate() {
2788                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2789                                         if output_index.is_some() {
2790                                                 return Err(APIError::APIMisuseError {
2791                                                         err: "Multiple outputs matched the expected script and value".to_owned()
2792                                                 });
2793                                         }
2794                                         if idx > u16::max_value() as usize {
2795                                                 return Err(APIError::APIMisuseError {
2796                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2797                                                 });
2798                                         }
2799                                         output_index = Some(idx as u16);
2800                                 }
2801                         }
2802                         if output_index.is_none() {
2803                                 return Err(APIError::APIMisuseError {
2804                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2805                                 });
2806                         }
2807                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2808                 })
2809         }
2810
2811         /// Atomically updates the [`ChannelConfig`] for the given channels.
2812         ///
2813         /// Once the updates are applied, each eligible channel (advertised with a known short channel
2814         /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
2815         /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
2816         /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
2817         ///
2818         /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
2819         /// `counterparty_node_id` is provided.
2820         ///
2821         /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
2822         /// below [`MIN_CLTV_EXPIRY_DELTA`].
2823         ///
2824         /// If an error is returned, none of the updates should be considered applied.
2825         ///
2826         /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
2827         /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
2828         /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
2829         /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
2830         /// [`ChannelUpdate`]: msgs::ChannelUpdate
2831         /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
2832         /// [`APIMisuseError`]: APIError::APIMisuseError
2833         pub fn update_channel_config(
2834                 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
2835         ) -> Result<(), APIError> {
2836                 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
2837                         return Err(APIError::APIMisuseError {
2838                                 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
2839                         });
2840                 }
2841
2842                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
2843                         &self.total_consistency_lock, &self.persistence_notifier,
2844                 );
2845                 let per_peer_state = self.per_peer_state.read().unwrap();
2846                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2847                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2848                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2849                 let peer_state = &mut *peer_state_lock;
2850                 for channel_id in channel_ids {
2851                         if !peer_state.channel_by_id.contains_key(channel_id) {
2852                                 return Err(APIError::ChannelUnavailable {
2853                                         err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
2854                                 });
2855                         }
2856                 }
2857                 for channel_id in channel_ids {
2858                         let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
2859                         if !channel.update_config(config) {
2860                                 continue;
2861                         }
2862                         if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
2863                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
2864                         } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
2865                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
2866                                         node_id: channel.get_counterparty_node_id(),
2867                                         msg,
2868                                 });
2869                         }
2870                 }
2871                 Ok(())
2872         }
2873
2874         /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
2875         /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
2876         ///
2877         /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
2878         /// channel to a receiving node if the node lacks sufficient inbound liquidity.
2879         ///
2880         /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
2881         /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
2882         /// receiver's invoice route hints. These route hints will signal to LDK to generate an
2883         /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
2884         /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
2885         ///
2886         /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
2887         /// you from forwarding more than you received.
2888         ///
2889         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
2890         /// backwards.
2891         ///
2892         /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
2893         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
2894         // TODO: when we move to deciding the best outbound channel at forward time, only take
2895         // `next_node_id` and not `next_hop_channel_id`
2896         pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
2897                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2898
2899                 let next_hop_scid = {
2900                         let peer_state_lock = self.per_peer_state.read().unwrap();
2901                         let peer_state_mutex = peer_state_lock.get(&next_node_id)
2902                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
2903                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2904                         let peer_state = &mut *peer_state_lock;
2905                         match peer_state.channel_by_id.get(next_hop_channel_id) {
2906                                 Some(chan) => {
2907                                         if !chan.is_usable() {
2908                                                 return Err(APIError::ChannelUnavailable {
2909                                                         err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
2910                                                 })
2911                                         }
2912                                         chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
2913                                 },
2914                                 None => return Err(APIError::ChannelUnavailable {
2915                                         err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
2916                                 })
2917                         }
2918                 };
2919
2920                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
2921                         .ok_or_else(|| APIError::APIMisuseError {
2922                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
2923                         })?;
2924
2925                 let routing = match payment.forward_info.routing {
2926                         PendingHTLCRouting::Forward { onion_packet, .. } => {
2927                                 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
2928                         },
2929                         _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
2930                 };
2931                 let pending_htlc_info = PendingHTLCInfo {
2932                         outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
2933                 };
2934
2935                 let mut per_source_pending_forward = [(
2936                         payment.prev_short_channel_id,
2937                         payment.prev_funding_outpoint,
2938                         payment.prev_user_channel_id,
2939                         vec![(pending_htlc_info, payment.prev_htlc_id)]
2940                 )];
2941                 self.forward_htlcs(&mut per_source_pending_forward);
2942                 Ok(())
2943         }
2944
2945         /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
2946         /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
2947         ///
2948         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
2949         /// backwards.
2950         ///
2951         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
2952         pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
2953                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2954
2955                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
2956                         .ok_or_else(|| APIError::APIMisuseError {
2957                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
2958                         })?;
2959
2960                 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
2961                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2962                                 short_channel_id: payment.prev_short_channel_id,
2963                                 outpoint: payment.prev_funding_outpoint,
2964                                 htlc_id: payment.prev_htlc_id,
2965                                 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
2966                                 phantom_shared_secret: None,
2967                         });
2968
2969                         let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
2970                         let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
2971                         self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
2972                 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
2973
2974                 Ok(())
2975         }
2976
2977         /// Processes HTLCs which are pending waiting on random forward delay.
2978         ///
2979         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2980         /// Will likely generate further events.
2981         pub fn process_pending_htlc_forwards(&self) {
2982                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2983
2984                 let mut new_events = Vec::new();
2985                 let mut failed_forwards = Vec::new();
2986                 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
2987                 {
2988                         let mut forward_htlcs = HashMap::new();
2989                         mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
2990
2991                         for (short_chan_id, mut pending_forwards) in forward_htlcs {
2992                                 if short_chan_id != 0 {
2993                                         macro_rules! forwarding_channel_not_found {
2994                                                 () => {
2995                                                         for forward_info in pending_forwards.drain(..) {
2996                                                                 match forward_info {
2997                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
2998                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
2999                                                                                 forward_info: PendingHTLCInfo {
3000                                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3001                                                                                         outgoing_cltv_value, incoming_amt_msat: _
3002                                                                                 }
3003                                                                         }) => {
3004                                                                                 macro_rules! failure_handler {
3005                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3006                                                                                                 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3007
3008                                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3009                                                                                                         short_channel_id: prev_short_channel_id,
3010                                                                                                         outpoint: prev_funding_outpoint,
3011                                                                                                         htlc_id: prev_htlc_id,
3012                                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3013                                                                                                         phantom_shared_secret: $phantom_ss,
3014                                                                                                 });
3015
3016                                                                                                 let reason = if $next_hop_unknown {
3017                                                                                                         HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3018                                                                                                 } else {
3019                                                                                                         HTLCDestination::FailedPayment{ payment_hash }
3020                                                                                                 };
3021
3022                                                                                                 failed_forwards.push((htlc_source, payment_hash,
3023                                                                                                         HTLCFailReason::reason($err_code, $err_data),
3024                                                                                                         reason
3025                                                                                                 ));
3026                                                                                                 continue;
3027                                                                                         }
3028                                                                                 }
3029                                                                                 macro_rules! fail_forward {
3030                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3031                                                                                                 {
3032                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3033                                                                                                 }
3034                                                                                         }
3035                                                                                 }
3036                                                                                 macro_rules! failed_payment {
3037                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3038                                                                                                 {
3039                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3040                                                                                                 }
3041                                                                                         }
3042                                                                                 }
3043                                                                                 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3044                                                                                         let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3045                                                                                         if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3046                                                                                                 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3047                                                                                                 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3048                                                                                                         Ok(res) => res,
3049                                                                                                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3050                                                                                                                 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3051                                                                                                                 // In this scenario, the phantom would have sent us an
3052                                                                                                                 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3053                                                                                                                 // if it came from us (the second-to-last hop) but contains the sha256
3054                                                                                                                 // of the onion.
3055                                                                                                                 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3056                                                                                                         },
3057                                                                                                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3058                                                                                                                 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3059                                                                                                         },
3060                                                                                                 };
3061                                                                                                 match next_hop {
3062                                                                                                         onion_utils::Hop::Receive(hop_data) => {
3063                                                                                                                 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3064                                                                                                                         Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3065                                                                                                                         Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3066                                                                                                                 }
3067                                                                                                         },
3068                                                                                                         _ => panic!(),
3069                                                                                                 }
3070                                                                                         } else {
3071                                                                                                 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3072                                                                                         }
3073                                                                                 } else {
3074                                                                                         fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3075                                                                                 }
3076                                                                         },
3077                                                                         HTLCForwardInfo::FailHTLC { .. } => {
3078                                                                                 // Channel went away before we could fail it. This implies
3079                                                                                 // the channel is now on chain and our counterparty is
3080                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
3081                                                                                 // problem, not ours.
3082                                                                         }
3083                                                                 }
3084                                                         }
3085                                                 }
3086                                         }
3087                                         let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3088                                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3089                                                 None => {
3090                                                         forwarding_channel_not_found!();
3091                                                         continue;
3092                                                 }
3093                                         };
3094                                         let per_peer_state = self.per_peer_state.read().unwrap();
3095                                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3096                                         if peer_state_mutex_opt.is_none() {
3097                                                 forwarding_channel_not_found!();
3098                                                 continue;
3099                                         }
3100                                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3101                                         let peer_state = &mut *peer_state_lock;
3102                                         match peer_state.channel_by_id.entry(forward_chan_id) {
3103                                                 hash_map::Entry::Vacant(_) => {
3104                                                         forwarding_channel_not_found!();
3105                                                         continue;
3106                                                 },
3107                                                 hash_map::Entry::Occupied(mut chan) => {
3108                                                         for forward_info in pending_forwards.drain(..) {
3109                                                                 match forward_info {
3110                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3111                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3112                                                                                 forward_info: PendingHTLCInfo {
3113                                                                                         incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3114                                                                                         routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3115                                                                                 },
3116                                                                         }) => {
3117                                                                                 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3118                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3119                                                                                         short_channel_id: prev_short_channel_id,
3120                                                                                         outpoint: prev_funding_outpoint,
3121                                                                                         htlc_id: prev_htlc_id,
3122                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3123                                                                                         // Phantom payments are only PendingHTLCRouting::Receive.
3124                                                                                         phantom_shared_secret: None,
3125                                                                                 });
3126                                                                                 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3127                                                                                         payment_hash, outgoing_cltv_value, htlc_source.clone(),
3128                                                                                         onion_packet, &self.logger)
3129                                                                                 {
3130                                                                                         if let ChannelError::Ignore(msg) = e {
3131                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3132                                                                                         } else {
3133                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
3134                                                                                         }
3135                                                                                         let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3136                                                                                         failed_forwards.push((htlc_source, payment_hash,
3137                                                                                                 HTLCFailReason::reason(failure_code, data),
3138                                                                                                 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3139                                                                                         ));
3140                                                                                         continue;
3141                                                                                 }
3142                                                                         },
3143                                                                         HTLCForwardInfo::AddHTLC { .. } => {
3144                                                                                 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3145                                                                         },
3146                                                                         HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3147                                                                                 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3148                                                                                 if let Err(e) = chan.get_mut().queue_fail_htlc(
3149                                                                                         htlc_id, err_packet, &self.logger
3150                                                                                 ) {
3151                                                                                         if let ChannelError::Ignore(msg) = e {
3152                                                                                                 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3153                                                                                         } else {
3154                                                                                                 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3155                                                                                         }
3156                                                                                         // fail-backs are best-effort, we probably already have one
3157                                                                                         // pending, and if not that's OK, if not, the channel is on
3158                                                                                         // the chain and sending the HTLC-Timeout is their problem.
3159                                                                                         continue;
3160                                                                                 }
3161                                                                         },
3162                                                                 }
3163                                                         }
3164                                                 }
3165                                         }
3166                                 } else {
3167                                         for forward_info in pending_forwards.drain(..) {
3168                                                 match forward_info {
3169                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3170                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3171                                                                 forward_info: PendingHTLCInfo {
3172                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat, ..
3173                                                                 }
3174                                                         }) => {
3175                                                                 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3176                                                                         PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3177                                                                                 let _legacy_hop_data = Some(payment_data.clone());
3178                                                                                 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3179                                                                         },
3180                                                                         PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3181                                                                                 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3182                                                                         _ => {
3183                                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3184                                                                         }
3185                                                                 };
3186                                                                 let claimable_htlc = ClaimableHTLC {
3187                                                                         prev_hop: HTLCPreviousHopData {
3188                                                                                 short_channel_id: prev_short_channel_id,
3189                                                                                 outpoint: prev_funding_outpoint,
3190                                                                                 htlc_id: prev_htlc_id,
3191                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
3192                                                                                 phantom_shared_secret,
3193                                                                         },
3194                                                                         value: outgoing_amt_msat,
3195                                                                         timer_ticks: 0,
3196                                                                         total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3197                                                                         cltv_expiry,
3198                                                                         onion_payload,
3199                                                                 };
3200
3201                                                                 macro_rules! fail_htlc {
3202                                                                         ($htlc: expr, $payment_hash: expr) => {
3203                                                                                 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3204                                                                                 htlc_msat_height_data.extend_from_slice(
3205                                                                                         &self.best_block.read().unwrap().height().to_be_bytes(),
3206                                                                                 );
3207                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3208                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
3209                                                                                                 outpoint: prev_funding_outpoint,
3210                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
3211                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3212                                                                                                 phantom_shared_secret,
3213                                                                                         }), payment_hash,
3214                                                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3215                                                                                         HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3216                                                                                 ));
3217                                                                         }
3218                                                                 }
3219                                                                 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3220                                                                 let mut receiver_node_id = self.our_network_pubkey;
3221                                                                 if phantom_shared_secret.is_some() {
3222                                                                         receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3223                                                                                 .expect("Failed to get node_id for phantom node recipient");
3224                                                                 }
3225
3226                                                                 macro_rules! check_total_value {
3227                                                                         ($payment_data: expr, $payment_preimage: expr) => {{
3228                                                                                 let mut payment_claimable_generated = false;
3229                                                                                 let purpose = || {
3230                                                                                         events::PaymentPurpose::InvoicePayment {
3231                                                                                                 payment_preimage: $payment_preimage,
3232                                                                                                 payment_secret: $payment_data.payment_secret,
3233                                                                                         }
3234                                                                                 };
3235                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3236                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3237                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3238                                                                                         continue
3239                                                                                 }
3240                                                                                 let (_, htlcs) = claimable_payments.claimable_htlcs.entry(payment_hash)
3241                                                                                         .or_insert_with(|| (purpose(), Vec::new()));
3242                                                                                 if htlcs.len() == 1 {
3243                                                                                         if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3244                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3245                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3246                                                                                                 continue
3247                                                                                         }
3248                                                                                 }
3249                                                                                 let mut total_value = claimable_htlc.value;
3250                                                                                 for htlc in htlcs.iter() {
3251                                                                                         total_value += htlc.value;
3252                                                                                         match &htlc.onion_payload {
3253                                                                                                 OnionPayload::Invoice { .. } => {
3254                                                                                                         if htlc.total_msat != $payment_data.total_msat {
3255                                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3256                                                                                                                         log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3257                                                                                                                 total_value = msgs::MAX_VALUE_MSAT;
3258                                                                                                         }
3259                                                                                                         if total_value >= msgs::MAX_VALUE_MSAT { break; }
3260                                                                                                 },
3261                                                                                                 _ => unreachable!(),
3262                                                                                         }
3263                                                                                 }
3264                                                                                 if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data.total_msat {
3265                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
3266                                                                                                 log_bytes!(payment_hash.0), total_value, $payment_data.total_msat);
3267                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3268                                                                                 } else if total_value == $payment_data.total_msat {
3269                                                                                         let prev_channel_id = prev_funding_outpoint.to_channel_id();
3270                                                                                         htlcs.push(claimable_htlc);
3271                                                                                         new_events.push(events::Event::PaymentClaimable {
3272                                                                                                 receiver_node_id: Some(receiver_node_id),
3273                                                                                                 payment_hash,
3274                                                                                                 purpose: purpose(),
3275                                                                                                 amount_msat: total_value,
3276                                                                                                 via_channel_id: Some(prev_channel_id),
3277                                                                                                 via_user_channel_id: Some(prev_user_channel_id),
3278                                                                                         });
3279                                                                                         payment_claimable_generated = true;
3280                                                                                 } else {
3281                                                                                         // Nothing to do - we haven't reached the total
3282                                                                                         // payment value yet, wait until we receive more
3283                                                                                         // MPP parts.
3284                                                                                         htlcs.push(claimable_htlc);
3285                                                                                 }
3286                                                                                 payment_claimable_generated
3287                                                                         }}
3288                                                                 }
3289
3290                                                                 // Check that the payment hash and secret are known. Note that we
3291                                                                 // MUST take care to handle the "unknown payment hash" and
3292                                                                 // "incorrect payment secret" cases here identically or we'd expose
3293                                                                 // that we are the ultimate recipient of the given payment hash.
3294                                                                 // Further, we must not expose whether we have any other HTLCs
3295                                                                 // associated with the same payment_hash pending or not.
3296                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3297                                                                 match payment_secrets.entry(payment_hash) {
3298                                                                         hash_map::Entry::Vacant(_) => {
3299                                                                                 match claimable_htlc.onion_payload {
3300                                                                                         OnionPayload::Invoice { .. } => {
3301                                                                                                 let payment_data = payment_data.unwrap();
3302                                                                                                 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3303                                                                                                         Ok(result) => result,
3304                                                                                                         Err(()) => {
3305                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3306                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3307                                                                                                                 continue
3308                                                                                                         }
3309                                                                                                 };
3310                                                                                                 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3311                                                                                                         let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3312                                                                                                         if (cltv_expiry as u64) < expected_min_expiry_height {
3313                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3314                                                                                                                         log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3315                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3316                                                                                                                 continue;
3317                                                                                                         }
3318                                                                                                 }
3319                                                                                                 check_total_value!(payment_data, payment_preimage);
3320                                                                                         },
3321                                                                                         OnionPayload::Spontaneous(preimage) => {
3322                                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3323                                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3324                                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3325                                                                                                         continue
3326                                                                                                 }
3327                                                                                                 match claimable_payments.claimable_htlcs.entry(payment_hash) {
3328                                                                                                         hash_map::Entry::Vacant(e) => {
3329                                                                                                                 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3330                                                                                                                 e.insert((purpose.clone(), vec![claimable_htlc]));
3331                                                                                                                 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3332                                                                                                                 new_events.push(events::Event::PaymentClaimable {
3333                                                                                                                         receiver_node_id: Some(receiver_node_id),
3334                                                                                                                         payment_hash,
3335                                                                                                                         amount_msat: outgoing_amt_msat,
3336                                                                                                                         purpose,
3337                                                                                                                         via_channel_id: Some(prev_channel_id),
3338                                                                                                                         via_user_channel_id: Some(prev_user_channel_id),
3339                                                                                                                 });
3340                                                                                                         },
3341                                                                                                         hash_map::Entry::Occupied(_) => {
3342                                                                                                                 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3343                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3344                                                                                                         }
3345                                                                                                 }
3346                                                                                         }
3347                                                                                 }
3348                                                                         },
3349                                                                         hash_map::Entry::Occupied(inbound_payment) => {
3350                                                                                 if payment_data.is_none() {
3351                                                                                         log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3352                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3353                                                                                         continue
3354                                                                                 };
3355                                                                                 let payment_data = payment_data.unwrap();
3356                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3357                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3358                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3359                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3360                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3361                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3362                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3363                                                                                 } else {
3364                                                                                         let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3365                                                                                         if payment_claimable_generated {
3366                                                                                                 inbound_payment.remove_entry();
3367                                                                                         }
3368                                                                                 }
3369                                                                         },
3370                                                                 };
3371                                                         },
3372                                                         HTLCForwardInfo::FailHTLC { .. } => {
3373                                                                 panic!("Got pending fail of our own HTLC");
3374                                                         }
3375                                                 }
3376                                         }
3377                                 }
3378                         }
3379                 }
3380
3381                 let best_block_height = self.best_block.read().unwrap().height();
3382                 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3383                         || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3384                         &self.pending_events, &self.logger,
3385                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3386                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3387
3388                 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3389                         self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3390                 }
3391                 self.forward_htlcs(&mut phantom_receives);
3392
3393                 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3394                 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3395                 // nice to do the work now if we can rather than while we're trying to get messages in the
3396                 // network stack.
3397                 self.check_free_holding_cells();
3398
3399                 if new_events.is_empty() { return }
3400                 let mut events = self.pending_events.lock().unwrap();
3401                 events.append(&mut new_events);
3402         }
3403
3404         /// Free the background events, generally called from timer_tick_occurred.
3405         ///
3406         /// Exposed for testing to allow us to process events quickly without generating accidental
3407         /// BroadcastChannelUpdate events in timer_tick_occurred.
3408         ///
3409         /// Expects the caller to have a total_consistency_lock read lock.
3410         fn process_background_events(&self) -> bool {
3411                 let mut background_events = Vec::new();
3412                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3413                 if background_events.is_empty() {
3414                         return false;
3415                 }
3416
3417                 for event in background_events.drain(..) {
3418                         match event {
3419                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3420                                         // The channel has already been closed, so no use bothering to care about the
3421                                         // monitor updating completing.
3422                                         let _ = self.chain_monitor.update_channel(funding_txo, &update);
3423                                 },
3424                         }
3425                 }
3426                 true
3427         }
3428
3429         #[cfg(any(test, feature = "_test_utils"))]
3430         /// Process background events, for functional testing
3431         pub fn test_process_background_events(&self) {
3432                 self.process_background_events();
3433         }
3434
3435         fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3436                 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3437                 // If the feerate has decreased by less than half, don't bother
3438                 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
3439                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3440                                 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3441                         return NotifyOption::SkipPersist;
3442                 }
3443                 if !chan.is_live() {
3444                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3445                                 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3446                         return NotifyOption::SkipPersist;
3447                 }
3448                 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3449                         log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3450
3451                 chan.queue_update_fee(new_feerate, &self.logger);
3452                 NotifyOption::DoPersist
3453         }
3454
3455         #[cfg(fuzzing)]
3456         /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3457         /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3458         /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3459         /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3460         pub fn maybe_update_chan_fees(&self) {
3461                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3462                         let mut should_persist = NotifyOption::SkipPersist;
3463
3464                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3465
3466                         let per_peer_state = self.per_peer_state.read().unwrap();
3467                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3468                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3469                                 let peer_state = &mut *peer_state_lock;
3470                                 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3471                                         let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3472                                         if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3473                                 }
3474                         }
3475
3476                         should_persist
3477                 });
3478         }
3479
3480         /// Performs actions which should happen on startup and roughly once per minute thereafter.
3481         ///
3482         /// This currently includes:
3483         ///  * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3484         ///  * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
3485         ///    than a minute, informing the network that they should no longer attempt to route over
3486         ///    the channel.
3487         ///  * Expiring a channel's previous `ChannelConfig` if necessary to only allow forwarding HTLCs
3488         ///    with the current `ChannelConfig`.
3489         ///  * Removing peers which have disconnected but and no longer have any channels.
3490         ///
3491         /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
3492         /// estimate fetches.
3493         pub fn timer_tick_occurred(&self) {
3494                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3495                         let mut should_persist = NotifyOption::SkipPersist;
3496                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3497
3498                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3499
3500                         let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3501                         let mut timed_out_mpp_htlcs = Vec::new();
3502                         let mut pending_peers_awaiting_removal = Vec::new();
3503                         {
3504                                 let per_peer_state = self.per_peer_state.read().unwrap();
3505                                 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3506                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3507                                         let peer_state = &mut *peer_state_lock;
3508                                         let pending_msg_events = &mut peer_state.pending_msg_events;
3509                                         let counterparty_node_id = *counterparty_node_id;
3510                                         peer_state.channel_by_id.retain(|chan_id, chan| {
3511                                                 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3512                                                 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3513
3514                                                 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3515                                                         let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3516                                                         handle_errors.push((Err(err), counterparty_node_id));
3517                                                         if needs_close { return false; }
3518                                                 }
3519
3520                                                 match chan.channel_update_status() {
3521                                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3522                                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3523                                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3524                                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3525                                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3526                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3527                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3528                                                                                 msg: update
3529                                                                         });
3530                                                                 }
3531                                                                 should_persist = NotifyOption::DoPersist;
3532                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3533                                                         },
3534                                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3535                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3536                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3537                                                                                 msg: update
3538                                                                         });
3539                                                                 }
3540                                                                 should_persist = NotifyOption::DoPersist;
3541                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3542                                                         },
3543                                                         _ => {},
3544                                                 }
3545
3546                                                 chan.maybe_expire_prev_config();
3547
3548                                                 true
3549                                         });
3550                                         if peer_state.ok_to_remove(true) {
3551                                                 pending_peers_awaiting_removal.push(counterparty_node_id);
3552                                         }
3553                                 }
3554                         }
3555
3556                         // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3557                         // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3558                         // of to that peer is later closed while still being disconnected (i.e. force closed),
3559                         // we therefore need to remove the peer from `peer_state` separately.
3560                         // To avoid having to take the `per_peer_state` `write` lock once the channels are
3561                         // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3562                         // negative effects on parallelism as much as possible.
3563                         if pending_peers_awaiting_removal.len() > 0 {
3564                                 let mut per_peer_state = self.per_peer_state.write().unwrap();
3565                                 for counterparty_node_id in pending_peers_awaiting_removal {
3566                                         match per_peer_state.entry(counterparty_node_id) {
3567                                                 hash_map::Entry::Occupied(entry) => {
3568                                                         // Remove the entry if the peer is still disconnected and we still
3569                                                         // have no channels to the peer.
3570                                                         let remove_entry = {
3571                                                                 let peer_state = entry.get().lock().unwrap();
3572                                                                 peer_state.ok_to_remove(true)
3573                                                         };
3574                                                         if remove_entry {
3575                                                                 entry.remove_entry();
3576                                                         }
3577                                                 },
3578                                                 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3579                                         }
3580                                 }
3581                         }
3582
3583                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3584                                 if htlcs.is_empty() {
3585                                         // This should be unreachable
3586                                         debug_assert!(false);
3587                                         return false;
3588                                 }
3589                                 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3590                                         // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3591                                         // In this case we're not going to handle any timeouts of the parts here.
3592                                         if htlcs[0].total_msat == htlcs.iter().fold(0, |total, htlc| total + htlc.value) {
3593                                                 return true;
3594                                         } else if htlcs.into_iter().any(|htlc| {
3595                                                 htlc.timer_ticks += 1;
3596                                                 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3597                                         }) {
3598                                                 timed_out_mpp_htlcs.extend(htlcs.drain(..).map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3599                                                 return false;
3600                                         }
3601                                 }
3602                                 true
3603                         });
3604
3605                         for htlc_source in timed_out_mpp_htlcs.drain(..) {
3606                                 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3607                                 let reason = HTLCFailReason::from_failure_code(23);
3608                                 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3609                                 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3610                         }
3611
3612                         for (err, counterparty_node_id) in handle_errors.drain(..) {
3613                                 let _ = handle_error!(self, err, counterparty_node_id);
3614                         }
3615
3616                         self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3617
3618                         // Technically we don't need to do this here, but if we have holding cell entries in a
3619                         // channel that need freeing, it's better to do that here and block a background task
3620                         // than block the message queueing pipeline.
3621                         if self.check_free_holding_cells() {
3622                                 should_persist = NotifyOption::DoPersist;
3623                         }
3624
3625                         should_persist
3626                 });
3627         }
3628
3629         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3630         /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
3631         /// along the path (including in our own channel on which we received it).
3632         ///
3633         /// Note that in some cases around unclean shutdown, it is possible the payment may have
3634         /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3635         /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
3636         /// may have already been failed automatically by LDK if it was nearing its expiration time.
3637         ///
3638         /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3639         /// [`ChannelManager::claim_funds`]), you should still monitor for
3640         /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3641         /// startup during which time claims that were in-progress at shutdown may be replayed.
3642         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3643                 self.fail_htlc_backwards_with_reason(payment_hash, &FailureCode::IncorrectOrUnknownPaymentDetails);
3644         }
3645
3646         /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
3647         /// reason for the failure.
3648         ///
3649         /// See [`FailureCode`] for valid failure codes.
3650         pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: &FailureCode) {
3651                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3652
3653                 let removed_source = self.claimable_payments.lock().unwrap().claimable_htlcs.remove(payment_hash);
3654                 if let Some((_, mut sources)) = removed_source {
3655                         for htlc in sources.drain(..) {
3656                                 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
3657                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3658                                 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
3659                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3660                         }
3661                 }
3662         }
3663
3664         /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
3665         fn get_htlc_fail_reason_from_failure_code(&self, failure_code: &FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
3666                 match failure_code {
3667                         FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(*failure_code as u16),
3668                         FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(*failure_code as u16),
3669                         FailureCode::IncorrectOrUnknownPaymentDetails => {
3670                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3671                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3672                                 HTLCFailReason::reason(*failure_code as u16, htlc_msat_height_data)
3673                         }
3674                 }
3675         }
3676
3677         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3678         /// that we want to return and a channel.
3679         ///
3680         /// This is for failures on the channel on which the HTLC was *received*, not failures
3681         /// forwarding
3682         fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3683                 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3684                 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3685                 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3686                 // an inbound SCID alias before the real SCID.
3687                 let scid_pref = if chan.should_announce() {
3688                         chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3689                 } else {
3690                         chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3691                 };
3692                 if let Some(scid) = scid_pref {
3693                         self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3694                 } else {
3695                         (0x4000|10, Vec::new())
3696                 }
3697         }
3698
3699
3700         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3701         /// that we want to return and a channel.
3702         fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3703                 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3704                 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3705                         let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3706                         if desired_err_code == 0x1000 | 20 {
3707                                 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
3708                                 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
3709                                 0u16.write(&mut enc).expect("Writes cannot fail");
3710                         }
3711                         (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3712                         msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3713                         upd.write(&mut enc).expect("Writes cannot fail");
3714                         (desired_err_code, enc.0)
3715                 } else {
3716                         // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3717                         // which means we really shouldn't have gotten a payment to be forwarded over this
3718                         // channel yet, or if we did it's from a route hint. Either way, returning an error of
3719                         // PERM|no_such_channel should be fine.
3720                         (0x4000|10, Vec::new())
3721                 }
3722         }
3723
3724         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3725         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3726         // be surfaced to the user.
3727         fn fail_holding_cell_htlcs(
3728                 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3729                 counterparty_node_id: &PublicKey
3730         ) {
3731                 let (failure_code, onion_failure_data) = {
3732                         let per_peer_state = self.per_peer_state.read().unwrap();
3733                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3734                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3735                                 let peer_state = &mut *peer_state_lock;
3736                                 match peer_state.channel_by_id.entry(channel_id) {
3737                                         hash_map::Entry::Occupied(chan_entry) => {
3738                                                 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3739                                         },
3740                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3741                                 }
3742                         } else { (0x4000|10, Vec::new()) }
3743                 };
3744
3745                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3746                         let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
3747                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
3748                         self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
3749                 }
3750         }
3751
3752         /// Fails an HTLC backwards to the sender of it to us.
3753         /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
3754         fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
3755                 // Ensure that no peer state channel storage lock is held when calling this function.
3756                 // This ensures that future code doesn't introduce a lock-order requirement for
3757                 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
3758                 // this function with any `per_peer_state` peer lock acquired would.
3759                 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3760                         debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3761                 }
3762
3763                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3764                 //identify whether we sent it or not based on the (I presume) very different runtime
3765                 //between the branches here. We should make this async and move it into the forward HTLCs
3766                 //timer handling.
3767
3768                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3769                 // from block_connected which may run during initialization prior to the chain_monitor
3770                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3771                 match source {
3772                         HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, ref payment_params, .. } => {
3773                                 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
3774                                         session_priv, payment_id, payment_params, self.probing_cookie_secret, &self.secp_ctx,
3775                                         &self.pending_events, &self.logger)
3776                                 { self.push_pending_forwards_ev(); }
3777                         },
3778                         HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
3779                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
3780                                 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
3781
3782                                 let mut push_forward_ev = false;
3783                                 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
3784                                 if forward_htlcs.is_empty() {
3785                                         push_forward_ev = true;
3786                                 }
3787                                 match forward_htlcs.entry(*short_channel_id) {
3788                                         hash_map::Entry::Occupied(mut entry) => {
3789                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
3790                                         },
3791                                         hash_map::Entry::Vacant(entry) => {
3792                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
3793                                         }
3794                                 }
3795                                 mem::drop(forward_htlcs);
3796                                 if push_forward_ev { self.push_pending_forwards_ev(); }
3797                                 let mut pending_events = self.pending_events.lock().unwrap();
3798                                 pending_events.push(events::Event::HTLCHandlingFailed {
3799                                         prev_channel_id: outpoint.to_channel_id(),
3800                                         failed_next_destination: destination,
3801                                 });
3802                         },
3803                 }
3804         }
3805
3806         /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
3807         /// [`MessageSendEvent`]s needed to claim the payment.
3808         ///
3809         /// Note that calling this method does *not* guarantee that the payment has been claimed. You
3810         /// *must* wait for an [`Event::PaymentClaimed`] event which upon a successful claim will be
3811         /// provided to your [`EventHandler`] when [`process_pending_events`] is next called.
3812         ///
3813         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3814         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
3815         /// event matches your expectation. If you fail to do so and call this method, you may provide
3816         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3817         ///
3818         /// [`Event::PaymentClaimable`]: crate::util::events::Event::PaymentClaimable
3819         /// [`Event::PaymentClaimed`]: crate::util::events::Event::PaymentClaimed
3820         /// [`process_pending_events`]: EventsProvider::process_pending_events
3821         /// [`create_inbound_payment`]: Self::create_inbound_payment
3822         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3823         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
3824                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3825
3826                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3827
3828                 let mut sources = {
3829                         let mut claimable_payments = self.claimable_payments.lock().unwrap();
3830                         if let Some((payment_purpose, sources)) = claimable_payments.claimable_htlcs.remove(&payment_hash) {
3831                                 let mut receiver_node_id = self.our_network_pubkey;
3832                                 for htlc in sources.iter() {
3833                                         if htlc.prev_hop.phantom_shared_secret.is_some() {
3834                                                 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
3835                                                         .expect("Failed to get node_id for phantom node recipient");
3836                                                 receiver_node_id = phantom_pubkey;
3837                                                 break;
3838                                         }
3839                                 }
3840
3841                                 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
3842                                         ClaimingPayment { amount_msat: sources.iter().map(|source| source.value).sum(),
3843                                         payment_purpose, receiver_node_id,
3844                                 });
3845                                 if dup_purpose.is_some() {
3846                                         debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
3847                                         log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
3848                                                 log_bytes!(payment_hash.0));
3849                                 }
3850                                 sources
3851                         } else { return; }
3852                 };
3853                 debug_assert!(!sources.is_empty());
3854
3855                 // If we are claiming an MPP payment, we check that all channels which contain a claimable
3856                 // HTLC still exist. While this isn't guaranteed to remain true if a channel closes while
3857                 // we're claiming (or even after we claim, before the commitment update dance completes),
3858                 // it should be a relatively rare race, and we'd rather not claim HTLCs that require us to
3859                 // go on-chain (and lose the on-chain fee to do so) than just reject the payment.
3860                 //
3861                 // Note that we'll still always get our funds - as long as the generated
3862                 // `ChannelMonitorUpdate` makes it out to the relevant monitor we can claim on-chain.
3863                 //
3864                 // If we find an HTLC which we would need to claim but for which we do not have a
3865                 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3866                 // the sender retries the already-failed path(s), it should be a pretty rare case where
3867                 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3868                 // provide the preimage, so worrying too much about the optimal handling isn't worth
3869                 // it.
3870                 let mut claimable_amt_msat = 0;
3871                 let mut expected_amt_msat = None;
3872                 let mut valid_mpp = true;
3873                 let mut errs = Vec::new();
3874                 let per_peer_state = self.per_peer_state.read().unwrap();
3875                 for htlc in sources.iter() {
3876                         let (counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&htlc.prev_hop.short_channel_id) {
3877                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3878                                 None => {
3879                                         valid_mpp = false;
3880                                         break;
3881                                 }
3882                         };
3883
3884                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3885                         if peer_state_mutex_opt.is_none() {
3886                                 valid_mpp = false;
3887                                 break;
3888                         }
3889
3890                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3891                         let peer_state = &mut *peer_state_lock;
3892
3893                         if peer_state.channel_by_id.get(&chan_id).is_none() {
3894                                 valid_mpp = false;
3895                                 break;
3896                         }
3897
3898                         if expected_amt_msat.is_some() && expected_amt_msat != Some(htlc.total_msat) {
3899                                 log_error!(self.logger, "Somehow ended up with an MPP payment with different total amounts - this should not be reachable!");
3900                                 debug_assert!(false);
3901                                 valid_mpp = false;
3902                                 break;
3903                         }
3904
3905                         expected_amt_msat = Some(htlc.total_msat);
3906                         if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
3907                                 // We don't currently support MPP for spontaneous payments, so just check
3908                                 // that there's one payment here and move on.
3909                                 if sources.len() != 1 {
3910                                         log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
3911                                         debug_assert!(false);
3912                                         valid_mpp = false;
3913                                         break;
3914                                 }
3915                         }
3916
3917                         claimable_amt_msat += htlc.value;
3918                 }
3919                 mem::drop(per_peer_state);
3920                 if sources.is_empty() || expected_amt_msat.is_none() {
3921                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3922                         log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
3923                         return;
3924                 }
3925                 if claimable_amt_msat != expected_amt_msat.unwrap() {
3926                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3927                         log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
3928                                 expected_amt_msat.unwrap(), claimable_amt_msat);
3929                         return;
3930                 }
3931                 if valid_mpp {
3932                         for htlc in sources.drain(..) {
3933                                 if let Err((pk, err)) = self.claim_funds_from_hop(
3934                                         htlc.prev_hop, payment_preimage,
3935                                         |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
3936                                 {
3937                                         if let msgs::ErrorAction::IgnoreError = err.err.action {
3938                                                 // We got a temporary failure updating monitor, but will claim the
3939                                                 // HTLC when the monitor updating is restored (or on chain).
3940                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
3941                                         } else { errs.push((pk, err)); }
3942                                 }
3943                         }
3944                 }
3945                 if !valid_mpp {
3946                         for htlc in sources.drain(..) {
3947                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3948                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3949                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3950                                 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
3951                                 let receiver = HTLCDestination::FailedPayment { payment_hash };
3952                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3953                         }
3954                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3955                 }
3956
3957                 // Now we can handle any errors which were generated.
3958                 for (counterparty_node_id, err) in errs.drain(..) {
3959                         let res: Result<(), _> = Err(err);
3960                         let _ = handle_error!(self, res, counterparty_node_id);
3961                 }
3962         }
3963
3964         fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
3965                 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
3966         -> Result<(), (PublicKey, MsgHandleErrInternal)> {
3967                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
3968
3969                 let per_peer_state = self.per_peer_state.read().unwrap();
3970                 let chan_id = prev_hop.outpoint.to_channel_id();
3971                 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
3972                         Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
3973                         None => None
3974                 };
3975
3976                 let mut peer_state_opt = counterparty_node_id_opt.as_ref().map(
3977                         |counterparty_node_id| per_peer_state.get(counterparty_node_id).map(
3978                                 |peer_mutex| peer_mutex.lock().unwrap()
3979                         )
3980                 ).unwrap_or(None);
3981
3982                 if let Some(mut peer_state_lock) = peer_state_opt.take() {
3983                         let peer_state = &mut *peer_state_lock;
3984                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
3985                                 let counterparty_node_id = chan.get().get_counterparty_node_id();
3986                                 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
3987
3988                                 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
3989                                         if let Some(action) = completion_action(Some(htlc_value_msat)) {
3990                                                 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
3991                                                         log_bytes!(chan_id), action);
3992                                                 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
3993                                         }
3994                                         let update_id = monitor_update.update_id;
3995                                         let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
3996                                         let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
3997                                                 peer_state, chan);
3998                                         if let Err(e) = res {
3999                                                 // TODO: This is a *critical* error - we probably updated the outbound edge
4000                                                 // of the HTLC's monitor with a preimage. We should retry this monitor
4001                                                 // update over and over again until morale improves.
4002                                                 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4003                                                 return Err((counterparty_node_id, e));
4004                                         }
4005                                 }
4006                                 return Ok(());
4007                         }
4008                 }
4009                 let preimage_update = ChannelMonitorUpdate {
4010                         update_id: CLOSED_CHANNEL_UPDATE_ID,
4011                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4012                                 payment_preimage,
4013                         }],
4014                 };
4015                 // We update the ChannelMonitor on the backward link, after
4016                 // receiving an `update_fulfill_htlc` from the forward link.
4017                 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4018                 if update_res != ChannelMonitorUpdateStatus::Completed {
4019                         // TODO: This needs to be handled somehow - if we receive a monitor update
4020                         // with a preimage we *must* somehow manage to propagate it to the upstream
4021                         // channel, or we must have an ability to receive the same event and try
4022                         // again on restart.
4023                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4024                                 payment_preimage, update_res);
4025                 }
4026                 // Note that we do process the completion action here. This totally could be a
4027                 // duplicate claim, but we have no way of knowing without interrogating the
4028                 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4029                 // generally always allowed to be duplicative (and it's specifically noted in
4030                 // `PaymentForwarded`).
4031                 self.handle_monitor_update_completion_actions(completion_action(None));
4032                 Ok(())
4033         }
4034
4035         fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4036                 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4037         }
4038
4039         fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4040                 match source {
4041                         HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4042                                 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4043                         },
4044                         HTLCSource::PreviousHopData(hop_data) => {
4045                                 let prev_outpoint = hop_data.outpoint;
4046                                 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4047                                         |htlc_claim_value_msat| {
4048                                                 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4049                                                         let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4050                                                                 Some(claimed_htlc_value - forwarded_htlc_value)
4051                                                         } else { None };
4052
4053                                                         let prev_channel_id = Some(prev_outpoint.to_channel_id());
4054                                                         let next_channel_id = Some(next_channel_id);
4055
4056                                                         Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4057                                                                 fee_earned_msat,
4058                                                                 claim_from_onchain_tx: from_onchain,
4059                                                                 prev_channel_id,
4060                                                                 next_channel_id,
4061                                                         }})
4062                                                 } else { None }
4063                                         });
4064                                 if let Err((pk, err)) = res {
4065                                         let result: Result<(), _> = Err(err);
4066                                         let _ = handle_error!(self, result, pk);
4067                                 }
4068                         },
4069                 }
4070         }
4071
4072         /// Gets the node_id held by this ChannelManager
4073         pub fn get_our_node_id(&self) -> PublicKey {
4074                 self.our_network_pubkey.clone()
4075         }
4076
4077         fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4078                 for action in actions.into_iter() {
4079                         match action {
4080                                 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4081                                         let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4082                                         if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4083                                                 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4084                                                         payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4085                                                 });
4086                                         }
4087                                 },
4088                                 MonitorUpdateCompletionAction::EmitEvent { event } => {
4089                                         self.pending_events.lock().unwrap().push(event);
4090                                 },
4091                         }
4092                 }
4093         }
4094
4095         /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4096         /// update completion.
4097         fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4098                 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4099                 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4100                 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4101                 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4102         -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4103                 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4104                         log_bytes!(channel.channel_id()),
4105                         if raa.is_some() { "an" } else { "no" },
4106                         if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4107                         if funding_broadcastable.is_some() { "" } else { "not " },
4108                         if channel_ready.is_some() { "sending" } else { "without" },
4109                         if announcement_sigs.is_some() { "sending" } else { "without" });
4110
4111                 let mut htlc_forwards = None;
4112
4113                 let counterparty_node_id = channel.get_counterparty_node_id();
4114                 if !pending_forwards.is_empty() {
4115                         htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4116                                 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4117                 }
4118
4119                 if let Some(msg) = channel_ready {
4120                         send_channel_ready!(self, pending_msg_events, channel, msg);
4121                 }
4122                 if let Some(msg) = announcement_sigs {
4123                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4124                                 node_id: counterparty_node_id,
4125                                 msg,
4126                         });
4127                 }
4128
4129                 emit_channel_ready_event!(self, channel);
4130
4131                 macro_rules! handle_cs { () => {
4132                         if let Some(update) = commitment_update {
4133                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4134                                         node_id: counterparty_node_id,
4135                                         updates: update,
4136                                 });
4137                         }
4138                 } }
4139                 macro_rules! handle_raa { () => {
4140                         if let Some(revoke_and_ack) = raa {
4141                                 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4142                                         node_id: counterparty_node_id,
4143                                         msg: revoke_and_ack,
4144                                 });
4145                         }
4146                 } }
4147                 match order {
4148                         RAACommitmentOrder::CommitmentFirst => {
4149                                 handle_cs!();
4150                                 handle_raa!();
4151                         },
4152                         RAACommitmentOrder::RevokeAndACKFirst => {
4153                                 handle_raa!();
4154                                 handle_cs!();
4155                         },
4156                 }
4157
4158                 if let Some(tx) = funding_broadcastable {
4159                         log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4160                         self.tx_broadcaster.broadcast_transaction(&tx);
4161                 }
4162
4163                 htlc_forwards
4164         }
4165
4166         fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4167                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4168
4169                 let counterparty_node_id = match counterparty_node_id {
4170                         Some(cp_id) => cp_id.clone(),
4171                         None => {
4172                                 // TODO: Once we can rely on the counterparty_node_id from the
4173                                 // monitor event, this and the id_to_peer map should be removed.
4174                                 let id_to_peer = self.id_to_peer.lock().unwrap();
4175                                 match id_to_peer.get(&funding_txo.to_channel_id()) {
4176                                         Some(cp_id) => cp_id.clone(),
4177                                         None => return,
4178                                 }
4179                         }
4180                 };
4181                 let per_peer_state = self.per_peer_state.read().unwrap();
4182                 let mut peer_state_lock;
4183                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4184                 if peer_state_mutex_opt.is_none() { return }
4185                 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4186                 let peer_state = &mut *peer_state_lock;
4187                 let mut channel = {
4188                         match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4189                                 hash_map::Entry::Occupied(chan) => chan,
4190                                 hash_map::Entry::Vacant(_) => return,
4191                         }
4192                 };
4193                 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4194                         highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4195                 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4196                         return;
4197                 }
4198                 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, channel.get_mut());
4199         }
4200
4201         /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4202         ///
4203         /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4204         /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4205         /// the channel.
4206         ///
4207         /// The `user_channel_id` parameter will be provided back in
4208         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4209         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4210         ///
4211         /// Note that this method will return an error and reject the channel, if it requires support
4212         /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4213         /// used to accept such channels.
4214         ///
4215         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4216         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4217         pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4218                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4219         }
4220
4221         /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4222         /// it as confirmed immediately.
4223         ///
4224         /// The `user_channel_id` parameter will be provided back in
4225         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4226         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4227         ///
4228         /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4229         /// and (if the counterparty agrees), enables forwarding of payments immediately.
4230         ///
4231         /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4232         /// transaction and blindly assumes that it will eventually confirm.
4233         ///
4234         /// If it does not confirm before we decide to close the channel, or if the funding transaction
4235         /// does not pay to the correct script the correct amount, *you will lose funds*.
4236         ///
4237         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4238         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4239         pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4240                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4241         }
4242
4243         fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4244                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4245
4246                 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4247                 let per_peer_state = self.per_peer_state.read().unwrap();
4248                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4249                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4250                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4251                 let peer_state = &mut *peer_state_lock;
4252                 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4253                 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4254                         hash_map::Entry::Occupied(mut channel) => {
4255                                 if !channel.get().inbound_is_awaiting_accept() {
4256                                         return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4257                                 }
4258                                 if accept_0conf {
4259                                         channel.get_mut().set_0conf();
4260                                 } else if channel.get().get_channel_type().requires_zero_conf() {
4261                                         let send_msg_err_event = events::MessageSendEvent::HandleError {
4262                                                 node_id: channel.get().get_counterparty_node_id(),
4263                                                 action: msgs::ErrorAction::SendErrorMessage{
4264                                                         msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4265                                                 }
4266                                         };
4267                                         peer_state.pending_msg_events.push(send_msg_err_event);
4268                                         let _ = remove_channel!(self, channel);
4269                                         return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4270                                 } else {
4271                                         // If this peer already has some channels, a new channel won't increase our number of peers
4272                                         // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4273                                         // channels per-peer we can accept channels from a peer with existing ones.
4274                                         if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4275                                                 let send_msg_err_event = events::MessageSendEvent::HandleError {
4276                                                         node_id: channel.get().get_counterparty_node_id(),
4277                                                         action: msgs::ErrorAction::SendErrorMessage{
4278                                                                 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4279                                                         }
4280                                                 };
4281                                                 peer_state.pending_msg_events.push(send_msg_err_event);
4282                                                 let _ = remove_channel!(self, channel);
4283                                                 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4284                                         }
4285                                 }
4286
4287                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4288                                         node_id: channel.get().get_counterparty_node_id(),
4289                                         msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4290                                 });
4291                         }
4292                         hash_map::Entry::Vacant(_) => {
4293                                 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4294                         }
4295                 }
4296                 Ok(())
4297         }
4298
4299         /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4300         /// or 0-conf channels.
4301         ///
4302         /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4303         /// non-0-conf channels we have with the peer.
4304         fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4305         where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4306                 let mut peers_without_funded_channels = 0;
4307                 let best_block_height = self.best_block.read().unwrap().height();
4308                 {
4309                         let peer_state_lock = self.per_peer_state.read().unwrap();
4310                         for (_, peer_mtx) in peer_state_lock.iter() {
4311                                 let peer = peer_mtx.lock().unwrap();
4312                                 if !maybe_count_peer(&*peer) { continue; }
4313                                 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4314                                 if num_unfunded_channels == peer.channel_by_id.len() {
4315                                         peers_without_funded_channels += 1;
4316                                 }
4317                         }
4318                 }
4319                 return peers_without_funded_channels;
4320         }
4321
4322         fn unfunded_channel_count(
4323                 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4324         ) -> usize {
4325                 let mut num_unfunded_channels = 0;
4326                 for (_, chan) in peer.channel_by_id.iter() {
4327                         if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4328                                 chan.get_funding_tx_confirmations(best_block_height) == 0
4329                         {
4330                                 num_unfunded_channels += 1;
4331                         }
4332                 }
4333                 num_unfunded_channels
4334         }
4335
4336         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4337                 if msg.chain_hash != self.genesis_hash {
4338                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4339                 }
4340
4341                 if !self.default_configuration.accept_inbound_channels {
4342                         return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4343                 }
4344
4345                 let mut random_bytes = [0u8; 16];
4346                 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4347                 let user_channel_id = u128::from_be_bytes(random_bytes);
4348                 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4349
4350                 // Get the number of peers with channels, but without funded ones. We don't care too much
4351                 // about peers that never open a channel, so we filter by peers that have at least one
4352                 // channel, and then limit the number of those with unfunded channels.
4353                 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4354
4355                 let per_peer_state = self.per_peer_state.read().unwrap();
4356                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4357                     .ok_or_else(|| {
4358                                 debug_assert!(false);
4359                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4360                         })?;
4361                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4362                 let peer_state = &mut *peer_state_lock;
4363
4364                 // If this peer already has some channels, a new channel won't increase our number of peers
4365                 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4366                 // channels per-peer we can accept channels from a peer with existing ones.
4367                 if peer_state.channel_by_id.is_empty() &&
4368                         channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4369                         !self.default_configuration.manually_accept_inbound_channels
4370                 {
4371                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4372                                 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4373                                 msg.temporary_channel_id.clone()));
4374                 }
4375
4376                 let best_block_height = self.best_block.read().unwrap().height();
4377                 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4378                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4379                                 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4380                                 msg.temporary_channel_id.clone()));
4381                 }
4382
4383                 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4384                         counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4385                         &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4386                 {
4387                         Err(e) => {
4388                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4389                                 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4390                         },
4391                         Ok(res) => res
4392                 };
4393                 match peer_state.channel_by_id.entry(channel.channel_id()) {
4394                         hash_map::Entry::Occupied(_) => {
4395                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4396                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4397                         },
4398                         hash_map::Entry::Vacant(entry) => {
4399                                 if !self.default_configuration.manually_accept_inbound_channels {
4400                                         if channel.get_channel_type().requires_zero_conf() {
4401                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4402                                         }
4403                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4404                                                 node_id: counterparty_node_id.clone(),
4405                                                 msg: channel.accept_inbound_channel(user_channel_id),
4406                                         });
4407                                 } else {
4408                                         let mut pending_events = self.pending_events.lock().unwrap();
4409                                         pending_events.push(
4410                                                 events::Event::OpenChannelRequest {
4411                                                         temporary_channel_id: msg.temporary_channel_id.clone(),
4412                                                         counterparty_node_id: counterparty_node_id.clone(),
4413                                                         funding_satoshis: msg.funding_satoshis,
4414                                                         push_msat: msg.push_msat,
4415                                                         channel_type: channel.get_channel_type().clone(),
4416                                                 }
4417                                         );
4418                                 }
4419
4420                                 entry.insert(channel);
4421                         }
4422                 }
4423                 Ok(())
4424         }
4425
4426         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4427                 let (value, output_script, user_id) = {
4428                         let per_peer_state = self.per_peer_state.read().unwrap();
4429                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4430                                 .ok_or_else(|| {
4431                                         debug_assert!(false);
4432                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4433                                 })?;
4434                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4435                         let peer_state = &mut *peer_state_lock;
4436                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4437                                 hash_map::Entry::Occupied(mut chan) => {
4438                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4439                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4440                                 },
4441                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4442                         }
4443                 };
4444                 let mut pending_events = self.pending_events.lock().unwrap();
4445                 pending_events.push(events::Event::FundingGenerationReady {
4446                         temporary_channel_id: msg.temporary_channel_id,
4447                         counterparty_node_id: *counterparty_node_id,
4448                         channel_value_satoshis: value,
4449                         output_script,
4450                         user_channel_id: user_id,
4451                 });
4452                 Ok(())
4453         }
4454
4455         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4456                 let best_block = *self.best_block.read().unwrap();
4457
4458                 let per_peer_state = self.per_peer_state.read().unwrap();
4459                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4460                         .ok_or_else(|| {
4461                                 debug_assert!(false);
4462                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4463                         })?;
4464
4465                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4466                 let peer_state = &mut *peer_state_lock;
4467                 let ((funding_msg, monitor), chan) =
4468                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4469                                 hash_map::Entry::Occupied(mut chan) => {
4470                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4471                                 },
4472                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4473                         };
4474
4475                 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4476                         hash_map::Entry::Occupied(_) => {
4477                                 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4478                         },
4479                         hash_map::Entry::Vacant(e) => {
4480                                 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4481                                         hash_map::Entry::Occupied(_) => {
4482                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4483                                                         "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4484                                                         funding_msg.channel_id))
4485                                         },
4486                                         hash_map::Entry::Vacant(i_e) => {
4487                                                 i_e.insert(chan.get_counterparty_node_id());
4488                                         }
4489                                 }
4490
4491                                 // There's no problem signing a counterparty's funding transaction if our monitor
4492                                 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4493                                 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4494                                 // until we have persisted our monitor.
4495                                 let new_channel_id = funding_msg.channel_id;
4496                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4497                                         node_id: counterparty_node_id.clone(),
4498                                         msg: funding_msg,
4499                                 });
4500
4501                                 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4502
4503                                 let chan = e.insert(chan);
4504                                 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4505
4506                                 // Note that we reply with the new channel_id in error messages if we gave up on the
4507                                 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4508                                 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4509                                 // any messages referencing a previously-closed channel anyway.
4510                                 // We do not propagate the monitor update to the user as it would be for a monitor
4511                                 // that we didn't manage to store (and that we don't care about - we don't respond
4512                                 // with the funding_signed so the channel can never go on chain).
4513                                 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4514                                         res.0 = None;
4515                                 }
4516                                 res
4517                         }
4518                 }
4519         }
4520
4521         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4522                 let best_block = *self.best_block.read().unwrap();
4523                 let per_peer_state = self.per_peer_state.read().unwrap();
4524                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4525                         .ok_or_else(|| {
4526                                 debug_assert!(false);
4527                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4528                         })?;
4529
4530                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4531                 let peer_state = &mut *peer_state_lock;
4532                 match peer_state.channel_by_id.entry(msg.channel_id) {
4533                         hash_map::Entry::Occupied(mut chan) => {
4534                                 let monitor = try_chan_entry!(self,
4535                                         chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4536                                 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4537                                 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, chan);
4538                                 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4539                                         // We weren't able to watch the channel to begin with, so no updates should be made on
4540                                         // it. Previously, full_stack_target found an (unreachable) panic when the
4541                                         // monitor update contained within `shutdown_finish` was applied.
4542                                         if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4543                                                 shutdown_finish.0.take();
4544                                         }
4545                                 }
4546                                 res
4547                         },
4548                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4549                 }
4550         }
4551
4552         fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4553                 let per_peer_state = self.per_peer_state.read().unwrap();
4554                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4555                         .ok_or_else(|| {
4556                                 debug_assert!(false);
4557                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4558                         })?;
4559                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4560                 let peer_state = &mut *peer_state_lock;
4561                 match peer_state.channel_by_id.entry(msg.channel_id) {
4562                         hash_map::Entry::Occupied(mut chan) => {
4563                                 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4564                                         self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4565                                 if let Some(announcement_sigs) = announcement_sigs_opt {
4566                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4567                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4568                                                 node_id: counterparty_node_id.clone(),
4569                                                 msg: announcement_sigs,
4570                                         });
4571                                 } else if chan.get().is_usable() {
4572                                         // If we're sending an announcement_signatures, we'll send the (public)
4573                                         // channel_update after sending a channel_announcement when we receive our
4574                                         // counterparty's announcement_signatures. Thus, we only bother to send a
4575                                         // channel_update here if the channel is not public, i.e. we're not sending an
4576                                         // announcement_signatures.
4577                                         log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4578                                         if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4579                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4580                                                         node_id: counterparty_node_id.clone(),
4581                                                         msg,
4582                                                 });
4583                                         }
4584                                 }
4585
4586                                 emit_channel_ready_event!(self, chan.get_mut());
4587
4588                                 Ok(())
4589                         },
4590                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4591                 }
4592         }
4593
4594         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4595                 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4596                 let result: Result<(), _> = loop {
4597                         let per_peer_state = self.per_peer_state.read().unwrap();
4598                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4599                                 .ok_or_else(|| {
4600                                         debug_assert!(false);
4601                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4602                                 })?;
4603                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4604                         let peer_state = &mut *peer_state_lock;
4605                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4606                                 hash_map::Entry::Occupied(mut chan_entry) => {
4607
4608                                         if !chan_entry.get().received_shutdown() {
4609                                                 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4610                                                         log_bytes!(msg.channel_id),
4611                                                         if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4612                                         }
4613
4614                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
4615                                         let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4616                                                 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4617                                         dropped_htlcs = htlcs;
4618
4619                                         if let Some(msg) = shutdown {
4620                                                 // We can send the `shutdown` message before updating the `ChannelMonitor`
4621                                                 // here as we don't need the monitor update to complete until we send a
4622                                                 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4623                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4624                                                         node_id: *counterparty_node_id,
4625                                                         msg,
4626                                                 });
4627                                         }
4628
4629                                         // Update the monitor with the shutdown script if necessary.
4630                                         if let Some(monitor_update) = monitor_update_opt {
4631                                                 let update_id = monitor_update.update_id;
4632                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
4633                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, chan_entry);
4634                                         }
4635                                         break Ok(());
4636                                 },
4637                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4638                         }
4639                 };
4640                 for htlc_source in dropped_htlcs.drain(..) {
4641                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4642                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
4643                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
4644                 }
4645
4646                 result
4647         }
4648
4649         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4650                 let per_peer_state = self.per_peer_state.read().unwrap();
4651                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4652                         .ok_or_else(|| {
4653                                 debug_assert!(false);
4654                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4655                         })?;
4656                 let (tx, chan_option) = {
4657                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4658                         let peer_state = &mut *peer_state_lock;
4659                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4660                                 hash_map::Entry::Occupied(mut chan_entry) => {
4661                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
4662                                         if let Some(msg) = closing_signed {
4663                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4664                                                         node_id: counterparty_node_id.clone(),
4665                                                         msg,
4666                                                 });
4667                                         }
4668                                         if tx.is_some() {
4669                                                 // We're done with this channel, we've got a signed closing transaction and
4670                                                 // will send the closing_signed back to the remote peer upon return. This
4671                                                 // also implies there are no pending HTLCs left on the channel, so we can
4672                                                 // fully delete it from tracking (the channel monitor is still around to
4673                                                 // watch for old state broadcasts)!
4674                                                 (tx, Some(remove_channel!(self, chan_entry)))
4675                                         } else { (tx, None) }
4676                                 },
4677                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4678                         }
4679                 };
4680                 if let Some(broadcast_tx) = tx {
4681                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4682                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4683                 }
4684                 if let Some(chan) = chan_option {
4685                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4686                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4687                                 let peer_state = &mut *peer_state_lock;
4688                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4689                                         msg: update
4690                                 });
4691                         }
4692                         self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4693                 }
4694                 Ok(())
4695         }
4696
4697         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4698                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4699                 //determine the state of the payment based on our response/if we forward anything/the time
4700                 //we take to respond. We should take care to avoid allowing such an attack.
4701                 //
4702                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4703                 //us repeatedly garbled in different ways, and compare our error messages, which are
4704                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4705                 //but we should prevent it anyway.
4706
4707                 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
4708                 let per_peer_state = self.per_peer_state.read().unwrap();
4709                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4710                         .ok_or_else(|| {
4711                                 debug_assert!(false);
4712                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4713                         })?;
4714                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4715                 let peer_state = &mut *peer_state_lock;
4716                 match peer_state.channel_by_id.entry(msg.channel_id) {
4717                         hash_map::Entry::Occupied(mut chan) => {
4718
4719                                 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4720                                         // If the update_add is completely bogus, the call will Err and we will close,
4721                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4722                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
4723                                         match pending_forward_info {
4724                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4725                                                         let reason = if (error_code & 0x1000) != 0 {
4726                                                                 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4727                                                                 HTLCFailReason::reason(real_code, error_data)
4728                                                         } else {
4729                                                                 HTLCFailReason::from_failure_code(error_code)
4730                                                         }.get_encrypted_failure_packet(incoming_shared_secret, &None);
4731                                                         let msg = msgs::UpdateFailHTLC {
4732                                                                 channel_id: msg.channel_id,
4733                                                                 htlc_id: msg.htlc_id,
4734                                                                 reason
4735                                                         };
4736                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4737                                                 },
4738                                                 _ => pending_forward_info
4739                                         }
4740                                 };
4741                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
4742                         },
4743                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4744                 }
4745                 Ok(())
4746         }
4747
4748         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4749                 let (htlc_source, forwarded_htlc_value) = {
4750                         let per_peer_state = self.per_peer_state.read().unwrap();
4751                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4752                                 .ok_or_else(|| {
4753                                         debug_assert!(false);
4754                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4755                                 })?;
4756                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4757                         let peer_state = &mut *peer_state_lock;
4758                         match peer_state.channel_by_id.entry(msg.channel_id) {
4759                                 hash_map::Entry::Occupied(mut chan) => {
4760                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
4761                                 },
4762                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4763                         }
4764                 };
4765                 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
4766                 Ok(())
4767         }
4768
4769         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4770                 let per_peer_state = self.per_peer_state.read().unwrap();
4771                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4772                         .ok_or_else(|| {
4773                                 debug_assert!(false);
4774                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4775                         })?;
4776                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4777                 let peer_state = &mut *peer_state_lock;
4778                 match peer_state.channel_by_id.entry(msg.channel_id) {
4779                         hash_map::Entry::Occupied(mut chan) => {
4780                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
4781                         },
4782                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4783                 }
4784                 Ok(())
4785         }
4786
4787         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4788                 let per_peer_state = self.per_peer_state.read().unwrap();
4789                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4790                         .ok_or_else(|| {
4791                                 debug_assert!(false);
4792                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4793                         })?;
4794                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4795                 let peer_state = &mut *peer_state_lock;
4796                 match peer_state.channel_by_id.entry(msg.channel_id) {
4797                         hash_map::Entry::Occupied(mut chan) => {
4798                                 if (msg.failure_code & 0x8000) == 0 {
4799                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4800                                         try_chan_entry!(self, Err(chan_err), chan);
4801                                 }
4802                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
4803                                 Ok(())
4804                         },
4805                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4806                 }
4807         }
4808
4809         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4810                 let per_peer_state = self.per_peer_state.read().unwrap();
4811                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4812                         .ok_or_else(|| {
4813                                 debug_assert!(false);
4814                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4815                         })?;
4816                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4817                 let peer_state = &mut *peer_state_lock;
4818                 match peer_state.channel_by_id.entry(msg.channel_id) {
4819                         hash_map::Entry::Occupied(mut chan) => {
4820                                 let funding_txo = chan.get().get_funding_txo();
4821                                 let monitor_update = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
4822                                 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4823                                 let update_id = monitor_update.update_id;
4824                                 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4825                                         peer_state, chan)
4826                         },
4827                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4828                 }
4829         }
4830
4831         #[inline]
4832         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
4833                 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
4834                         let mut push_forward_event = false;
4835                         let mut new_intercept_events = Vec::new();
4836                         let mut failed_intercept_forwards = Vec::new();
4837                         if !pending_forwards.is_empty() {
4838                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4839                                         let scid = match forward_info.routing {
4840                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
4841                                                 PendingHTLCRouting::Receive { .. } => 0,
4842                                                 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
4843                                         };
4844                                         // Pull this now to avoid introducing a lock order with `forward_htlcs`.
4845                                         let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
4846
4847                                         let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4848                                         let forward_htlcs_empty = forward_htlcs.is_empty();
4849                                         match forward_htlcs.entry(scid) {
4850                                                 hash_map::Entry::Occupied(mut entry) => {
4851                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4852                                                                 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
4853                                                 },
4854                                                 hash_map::Entry::Vacant(entry) => {
4855                                                         if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
4856                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
4857                                                         {
4858                                                                 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
4859                                                                 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
4860                                                                 match pending_intercepts.entry(intercept_id) {
4861                                                                         hash_map::Entry::Vacant(entry) => {
4862                                                                                 new_intercept_events.push(events::Event::HTLCIntercepted {
4863                                                                                         requested_next_hop_scid: scid,
4864                                                                                         payment_hash: forward_info.payment_hash,
4865                                                                                         inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
4866                                                                                         expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
4867                                                                                         intercept_id
4868                                                                                 });
4869                                                                                 entry.insert(PendingAddHTLCInfo {
4870                                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
4871                                                                         },
4872                                                                         hash_map::Entry::Occupied(_) => {
4873                                                                                 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
4874                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4875                                                                                         short_channel_id: prev_short_channel_id,
4876                                                                                         outpoint: prev_funding_outpoint,
4877                                                                                         htlc_id: prev_htlc_id,
4878                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
4879                                                                                         phantom_shared_secret: None,
4880                                                                                 });
4881
4882                                                                                 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
4883                                                                                                 HTLCFailReason::from_failure_code(0x4000 | 10),
4884                                                                                                 HTLCDestination::InvalidForward { requested_forward_scid: scid },
4885                                                                                 ));
4886                                                                         }
4887                                                                 }
4888                                                         } else {
4889                                                                 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
4890                                                                 // payments are being processed.
4891                                                                 if forward_htlcs_empty {
4892                                                                         push_forward_event = true;
4893                                                                 }
4894                                                                 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4895                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
4896                                                         }
4897                                                 }
4898                                         }
4899                                 }
4900                         }
4901
4902                         for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
4903                                 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4904                         }
4905
4906                         if !new_intercept_events.is_empty() {
4907                                 let mut events = self.pending_events.lock().unwrap();
4908                                 events.append(&mut new_intercept_events);
4909                         }
4910                         if push_forward_event { self.push_pending_forwards_ev() }
4911                 }
4912         }
4913
4914         // We only want to push a PendingHTLCsForwardable event if no others are queued.
4915         fn push_pending_forwards_ev(&self) {
4916                 let mut pending_events = self.pending_events.lock().unwrap();
4917                 let forward_ev_exists = pending_events.iter()
4918                         .find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
4919                         .is_some();
4920                 if !forward_ev_exists {
4921                         pending_events.push(events::Event::PendingHTLCsForwardable {
4922                                 time_forwardable:
4923                                         Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
4924                         });
4925                 }
4926         }
4927
4928         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
4929                 let (htlcs_to_fail, res) = {
4930                         let per_peer_state = self.per_peer_state.read().unwrap();
4931                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4932                                 .ok_or_else(|| {
4933                                         debug_assert!(false);
4934                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4935                                 })?;
4936                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4937                         let peer_state = &mut *peer_state_lock;
4938                         match peer_state.channel_by_id.entry(msg.channel_id) {
4939                                 hash_map::Entry::Occupied(mut chan) => {
4940                                         let funding_txo = chan.get().get_funding_txo();
4941                                         let (htlcs_to_fail, monitor_update) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
4942                                         let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4943                                         let update_id = monitor_update.update_id;
4944                                         let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4945                                                 peer_state, chan);
4946                                         (htlcs_to_fail, res)
4947                                 },
4948                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4949                         }
4950                 };
4951                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
4952                 res
4953         }
4954
4955         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
4956                 let per_peer_state = self.per_peer_state.read().unwrap();
4957                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4958                         .ok_or_else(|| {
4959                                 debug_assert!(false);
4960                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4961                         })?;
4962                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4963                 let peer_state = &mut *peer_state_lock;
4964                 match peer_state.channel_by_id.entry(msg.channel_id) {
4965                         hash_map::Entry::Occupied(mut chan) => {
4966                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
4967                         },
4968                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4969                 }
4970                 Ok(())
4971         }
4972
4973         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
4974                 let per_peer_state = self.per_peer_state.read().unwrap();
4975                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4976                         .ok_or_else(|| {
4977                                 debug_assert!(false);
4978                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4979                         })?;
4980                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4981                 let peer_state = &mut *peer_state_lock;
4982                 match peer_state.channel_by_id.entry(msg.channel_id) {
4983                         hash_map::Entry::Occupied(mut chan) => {
4984                                 if !chan.get().is_usable() {
4985                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
4986                                 }
4987
4988                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
4989                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
4990                                                 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
4991                                                 msg, &self.default_configuration
4992                                         ), chan),
4993                                         // Note that announcement_signatures fails if the channel cannot be announced,
4994                                         // so get_channel_update_for_broadcast will never fail by the time we get here.
4995                                         update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
4996                                 });
4997                         },
4998                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4999                 }
5000                 Ok(())
5001         }
5002
5003         /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5004         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5005                 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5006                         Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5007                         None => {
5008                                 // It's not a local channel
5009                                 return Ok(NotifyOption::SkipPersist)
5010                         }
5011                 };
5012                 let per_peer_state = self.per_peer_state.read().unwrap();
5013                 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5014                 if peer_state_mutex_opt.is_none() {
5015                         return Ok(NotifyOption::SkipPersist)
5016                 }
5017                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5018                 let peer_state = &mut *peer_state_lock;
5019                 match peer_state.channel_by_id.entry(chan_id) {
5020                         hash_map::Entry::Occupied(mut chan) => {
5021                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5022                                         if chan.get().should_announce() {
5023                                                 // If the announcement is about a channel of ours which is public, some
5024                                                 // other peer may simply be forwarding all its gossip to us. Don't provide
5025                                                 // a scary-looking error message and return Ok instead.
5026                                                 return Ok(NotifyOption::SkipPersist);
5027                                         }
5028                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5029                                 }
5030                                 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5031                                 let msg_from_node_one = msg.contents.flags & 1 == 0;
5032                                 if were_node_one == msg_from_node_one {
5033                                         return Ok(NotifyOption::SkipPersist);
5034                                 } else {
5035                                         log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5036                                         try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5037                                 }
5038                         },
5039                         hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5040                 }
5041                 Ok(NotifyOption::DoPersist)
5042         }
5043
5044         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5045                 let htlc_forwards;
5046                 let need_lnd_workaround = {
5047                         let per_peer_state = self.per_peer_state.read().unwrap();
5048
5049                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5050                                 .ok_or_else(|| {
5051                                         debug_assert!(false);
5052                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5053                                 })?;
5054                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5055                         let peer_state = &mut *peer_state_lock;
5056                         match peer_state.channel_by_id.entry(msg.channel_id) {
5057                                 hash_map::Entry::Occupied(mut chan) => {
5058                                         // Currently, we expect all holding cell update_adds to be dropped on peer
5059                                         // disconnect, so Channel's reestablish will never hand us any holding cell
5060                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
5061                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5062                                         let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5063                                                 msg, &self.logger, &self.node_signer, self.genesis_hash,
5064                                                 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5065                                         let mut channel_update = None;
5066                                         if let Some(msg) = responses.shutdown_msg {
5067                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5068                                                         node_id: counterparty_node_id.clone(),
5069                                                         msg,
5070                                                 });
5071                                         } else if chan.get().is_usable() {
5072                                                 // If the channel is in a usable state (ie the channel is not being shut
5073                                                 // down), send a unicast channel_update to our counterparty to make sure
5074                                                 // they have the latest channel parameters.
5075                                                 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5076                                                         channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5077                                                                 node_id: chan.get().get_counterparty_node_id(),
5078                                                                 msg,
5079                                                         });
5080                                                 }
5081                                         }
5082                                         let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5083                                         htlc_forwards = self.handle_channel_resumption(
5084                                                 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5085                                                 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5086                                         if let Some(upd) = channel_update {
5087                                                 peer_state.pending_msg_events.push(upd);
5088                                         }
5089                                         need_lnd_workaround
5090                                 },
5091                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5092                         }
5093                 };
5094
5095                 if let Some(forwards) = htlc_forwards {
5096                         self.forward_htlcs(&mut [forwards][..]);
5097                 }
5098
5099                 if let Some(channel_ready_msg) = need_lnd_workaround {
5100                         self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5101                 }
5102                 Ok(())
5103         }
5104
5105         /// Process pending events from the `chain::Watch`, returning whether any events were processed.
5106         fn process_pending_monitor_events(&self) -> bool {
5107                 let mut failed_channels = Vec::new();
5108                 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5109                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5110                 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5111                         for monitor_event in monitor_events.drain(..) {
5112                                 match monitor_event {
5113                                         MonitorEvent::HTLCEvent(htlc_update) => {
5114                                                 if let Some(preimage) = htlc_update.payment_preimage {
5115                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5116                                                         self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5117                                                 } else {
5118                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5119                                                         let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5120                                                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5121                                                         self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5122                                                 }
5123                                         },
5124                                         MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5125                                         MonitorEvent::UpdateFailed(funding_outpoint) => {
5126                                                 let counterparty_node_id_opt = match counterparty_node_id {
5127                                                         Some(cp_id) => Some(cp_id),
5128                                                         None => {
5129                                                                 // TODO: Once we can rely on the counterparty_node_id from the
5130                                                                 // monitor event, this and the id_to_peer map should be removed.
5131                                                                 let id_to_peer = self.id_to_peer.lock().unwrap();
5132                                                                 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5133                                                         }
5134                                                 };
5135                                                 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5136                                                         let per_peer_state = self.per_peer_state.read().unwrap();
5137                                                         if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5138                                                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5139                                                                 let peer_state = &mut *peer_state_lock;
5140                                                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5141                                                                 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5142                                                                         let mut chan = remove_channel!(self, chan_entry);
5143                                                                         failed_channels.push(chan.force_shutdown(false));
5144                                                                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5145                                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5146                                                                                         msg: update
5147                                                                                 });
5148                                                                         }
5149                                                                         let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5150                                                                                 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5151                                                                         } else {
5152                                                                                 ClosureReason::CommitmentTxConfirmed
5153                                                                         };
5154                                                                         self.issue_channel_close_events(&chan, reason);
5155                                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
5156                                                                                 node_id: chan.get_counterparty_node_id(),
5157                                                                                 action: msgs::ErrorAction::SendErrorMessage {
5158                                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5159                                                                                 },
5160                                                                         });
5161                                                                 }
5162                                                         }
5163                                                 }
5164                                         },
5165                                         MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5166                                                 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5167                                         },
5168                                 }
5169                         }
5170                 }
5171
5172                 for failure in failed_channels.drain(..) {
5173                         self.finish_force_close_channel(failure);
5174                 }
5175
5176                 has_pending_monitor_events
5177         }
5178
5179         /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5180         /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5181         /// update events as a separate process method here.
5182         #[cfg(fuzzing)]
5183         pub fn process_monitor_events(&self) {
5184                 self.process_pending_monitor_events();
5185         }
5186
5187         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5188         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5189         /// update was applied.
5190         fn check_free_holding_cells(&self) -> bool {
5191                 let mut has_monitor_update = false;
5192                 let mut failed_htlcs = Vec::new();
5193                 let mut handle_errors = Vec::new();
5194                 let per_peer_state = self.per_peer_state.read().unwrap();
5195
5196                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5197                         'chan_loop: loop {
5198                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5199                                 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5200                                 for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5201                                         let counterparty_node_id = chan.get_counterparty_node_id();
5202                                         let funding_txo = chan.get_funding_txo();
5203                                         let (monitor_opt, holding_cell_failed_htlcs) =
5204                                                 chan.maybe_free_holding_cell_htlcs(&self.logger);
5205                                         if !holding_cell_failed_htlcs.is_empty() {
5206                                                 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5207                                         }
5208                                         if let Some(monitor_update) = monitor_opt {
5209                                                 has_monitor_update = true;
5210
5211                                                 let update_res = self.chain_monitor.update_channel(
5212                                                         funding_txo.expect("channel is live"), monitor_update);
5213                                                 let update_id = monitor_update.update_id;
5214                                                 let channel_id: [u8; 32] = *channel_id;
5215                                                 let res = handle_new_monitor_update!(self, update_res, update_id,
5216                                                         peer_state_lock, peer_state, chan, MANUALLY_REMOVING,
5217                                                         peer_state.channel_by_id.remove(&channel_id));
5218                                                 if res.is_err() {
5219                                                         handle_errors.push((counterparty_node_id, res));
5220                                                 }
5221                                                 continue 'chan_loop;
5222                                         }
5223                                 }
5224                                 break 'chan_loop;
5225                         }
5226                 }
5227
5228                 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5229                 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5230                         self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5231                 }
5232
5233                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5234                         let _ = handle_error!(self, err, counterparty_node_id);
5235                 }
5236
5237                 has_update
5238         }
5239
5240         /// Check whether any channels have finished removing all pending updates after a shutdown
5241         /// exchange and can now send a closing_signed.
5242         /// Returns whether any closing_signed messages were generated.
5243         fn maybe_generate_initial_closing_signed(&self) -> bool {
5244                 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5245                 let mut has_update = false;
5246                 {
5247                         let per_peer_state = self.per_peer_state.read().unwrap();
5248
5249                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5250                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5251                                 let peer_state = &mut *peer_state_lock;
5252                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5253                                 peer_state.channel_by_id.retain(|channel_id, chan| {
5254                                         match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5255                                                 Ok((msg_opt, tx_opt)) => {
5256                                                         if let Some(msg) = msg_opt {
5257                                                                 has_update = true;
5258                                                                 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5259                                                                         node_id: chan.get_counterparty_node_id(), msg,
5260                                                                 });
5261                                                         }
5262                                                         if let Some(tx) = tx_opt {
5263                                                                 // We're done with this channel. We got a closing_signed and sent back
5264                                                                 // a closing_signed with a closing transaction to broadcast.
5265                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5266                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5267                                                                                 msg: update
5268                                                                         });
5269                                                                 }
5270
5271                                                                 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5272
5273                                                                 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5274                                                                 self.tx_broadcaster.broadcast_transaction(&tx);
5275                                                                 update_maps_on_chan_removal!(self, chan);
5276                                                                 false
5277                                                         } else { true }
5278                                                 },
5279                                                 Err(e) => {
5280                                                         has_update = true;
5281                                                         let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5282                                                         handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5283                                                         !close_channel
5284                                                 }
5285                                         }
5286                                 });
5287                         }
5288                 }
5289
5290                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5291                         let _ = handle_error!(self, err, counterparty_node_id);
5292                 }
5293
5294                 has_update
5295         }
5296
5297         /// Handle a list of channel failures during a block_connected or block_disconnected call,
5298         /// pushing the channel monitor update (if any) to the background events queue and removing the
5299         /// Channel object.
5300         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5301                 for mut failure in failed_channels.drain(..) {
5302                         // Either a commitment transactions has been confirmed on-chain or
5303                         // Channel::block_disconnected detected that the funding transaction has been
5304                         // reorganized out of the main chain.
5305                         // We cannot broadcast our latest local state via monitor update (as
5306                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5307                         // so we track the update internally and handle it when the user next calls
5308                         // timer_tick_occurred, guaranteeing we're running normally.
5309                         if let Some((funding_txo, update)) = failure.0.take() {
5310                                 assert_eq!(update.updates.len(), 1);
5311                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5312                                         assert!(should_broadcast);
5313                                 } else { unreachable!(); }
5314                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5315                         }
5316                         self.finish_force_close_channel(failure);
5317                 }
5318         }
5319
5320         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5321                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5322
5323                 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5324                         return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5325                 }
5326
5327                 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5328
5329                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5330                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5331                 match payment_secrets.entry(payment_hash) {
5332                         hash_map::Entry::Vacant(e) => {
5333                                 e.insert(PendingInboundPayment {
5334                                         payment_secret, min_value_msat, payment_preimage,
5335                                         user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5336                                         // We assume that highest_seen_timestamp is pretty close to the current time -
5337                                         // it's updated when we receive a new block with the maximum time we've seen in
5338                                         // a header. It should never be more than two hours in the future.
5339                                         // Thus, we add two hours here as a buffer to ensure we absolutely
5340                                         // never fail a payment too early.
5341                                         // Note that we assume that received blocks have reasonably up-to-date
5342                                         // timestamps.
5343                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5344                                 });
5345                         },
5346                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5347                 }
5348                 Ok(payment_secret)
5349         }
5350
5351         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5352         /// to pay us.
5353         ///
5354         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5355         /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5356         ///
5357         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5358         /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5359         /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5360         /// passed directly to [`claim_funds`].
5361         ///
5362         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5363         ///
5364         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5365         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5366         ///
5367         /// # Note
5368         ///
5369         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5370         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5371         ///
5372         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5373         ///
5374         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5375         /// on versions of LDK prior to 0.0.114.
5376         ///
5377         /// [`claim_funds`]: Self::claim_funds
5378         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5379         /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5380         /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5381         /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5382         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5383         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5384                 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5385                 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5386                         &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5387                         min_final_cltv_expiry_delta)
5388         }
5389
5390         /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5391         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5392         ///
5393         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5394         ///
5395         /// # Note
5396         /// This method is deprecated and will be removed soon.
5397         ///
5398         /// [`create_inbound_payment`]: Self::create_inbound_payment
5399         #[deprecated]
5400         pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5401                 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5402                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5403                 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5404                 Ok((payment_hash, payment_secret))
5405         }
5406
5407         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5408         /// stored external to LDK.
5409         ///
5410         /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5411         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5412         /// the `min_value_msat` provided here, if one is provided.
5413         ///
5414         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5415         /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5416         /// payments.
5417         ///
5418         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5419         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5420         /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5421         /// sender "proof-of-payment" unless they have paid the required amount.
5422         ///
5423         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5424         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5425         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5426         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5427         /// invoices when no timeout is set.
5428         ///
5429         /// Note that we use block header time to time-out pending inbound payments (with some margin
5430         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5431         /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5432         /// If you need exact expiry semantics, you should enforce them upon receipt of
5433         /// [`PaymentClaimable`].
5434         ///
5435         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5436         /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5437         ///
5438         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5439         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5440         ///
5441         /// # Note
5442         ///
5443         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5444         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5445         ///
5446         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5447         ///
5448         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5449         /// on versions of LDK prior to 0.0.114.
5450         ///
5451         /// [`create_inbound_payment`]: Self::create_inbound_payment
5452         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5453         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5454                 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5455                 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5456                         invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5457                         min_final_cltv_expiry)
5458         }
5459
5460         /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5461         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5462         ///
5463         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5464         ///
5465         /// # Note
5466         /// This method is deprecated and will be removed soon.
5467         ///
5468         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5469         #[deprecated]
5470         pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5471                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5472         }
5473
5474         /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5475         /// previously returned from [`create_inbound_payment`].
5476         ///
5477         /// [`create_inbound_payment`]: Self::create_inbound_payment
5478         pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5479                 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5480         }
5481
5482         /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5483         /// are used when constructing the phantom invoice's route hints.
5484         ///
5485         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5486         pub fn get_phantom_scid(&self) -> u64 {
5487                 let best_block_height = self.best_block.read().unwrap().height();
5488                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5489                 loop {
5490                         let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5491                         // Ensure the generated scid doesn't conflict with a real channel.
5492                         match short_to_chan_info.get(&scid_candidate) {
5493                                 Some(_) => continue,
5494                                 None => return scid_candidate
5495                         }
5496                 }
5497         }
5498
5499         /// Gets route hints for use in receiving [phantom node payments].
5500         ///
5501         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5502         pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5503                 PhantomRouteHints {
5504                         channels: self.list_usable_channels(),
5505                         phantom_scid: self.get_phantom_scid(),
5506                         real_node_pubkey: self.get_our_node_id(),
5507                 }
5508         }
5509
5510         /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5511         /// used when constructing the route hints for HTLCs intended to be intercepted. See
5512         /// [`ChannelManager::forward_intercepted_htlc`].
5513         ///
5514         /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5515         /// times to get a unique scid.
5516         pub fn get_intercept_scid(&self) -> u64 {
5517                 let best_block_height = self.best_block.read().unwrap().height();
5518                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5519                 loop {
5520                         let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5521                         // Ensure the generated scid doesn't conflict with a real channel.
5522                         if short_to_chan_info.contains_key(&scid_candidate) { continue }
5523                         return scid_candidate
5524                 }
5525         }
5526
5527         /// Gets inflight HTLC information by processing pending outbound payments that are in
5528         /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5529         pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5530                 let mut inflight_htlcs = InFlightHtlcs::new();
5531
5532                 let per_peer_state = self.per_peer_state.read().unwrap();
5533                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5534                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5535                         let peer_state = &mut *peer_state_lock;
5536                         for chan in peer_state.channel_by_id.values() {
5537                                 for (htlc_source, _) in chan.inflight_htlc_sources() {
5538                                         if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5539                                                 inflight_htlcs.process_path(path, self.get_our_node_id());
5540                                         }
5541                                 }
5542                         }
5543                 }
5544
5545                 inflight_htlcs
5546         }
5547
5548         #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5549         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5550                 let events = core::cell::RefCell::new(Vec::new());
5551                 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5552                 self.process_pending_events(&event_handler);
5553                 events.into_inner()
5554         }
5555
5556         #[cfg(feature = "_test_utils")]
5557         pub fn push_pending_event(&self, event: events::Event) {
5558                 let mut events = self.pending_events.lock().unwrap();
5559                 events.push(event);
5560         }
5561
5562         #[cfg(test)]
5563         pub fn pop_pending_event(&self) -> Option<events::Event> {
5564                 let mut events = self.pending_events.lock().unwrap();
5565                 if events.is_empty() { None } else { Some(events.remove(0)) }
5566         }
5567
5568         #[cfg(test)]
5569         pub fn has_pending_payments(&self) -> bool {
5570                 self.pending_outbound_payments.has_pending_payments()
5571         }
5572
5573         #[cfg(test)]
5574         pub fn clear_pending_payments(&self) {
5575                 self.pending_outbound_payments.clear_pending_payments()
5576         }
5577
5578         /// Processes any events asynchronously in the order they were generated since the last call
5579         /// using the given event handler.
5580         ///
5581         /// See the trait-level documentation of [`EventsProvider`] for requirements.
5582         pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
5583                 &self, handler: H
5584         ) {
5585                 // We'll acquire our total consistency lock until the returned future completes so that
5586                 // we can be sure no other persists happen while processing events.
5587                 let _read_guard = self.total_consistency_lock.read().unwrap();
5588
5589                 let mut result = NotifyOption::SkipPersist;
5590
5591                 // TODO: This behavior should be documented. It's unintuitive that we query
5592                 // ChannelMonitors when clearing other events.
5593                 if self.process_pending_monitor_events() {
5594                         result = NotifyOption::DoPersist;
5595                 }
5596
5597                 let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5598                 if !pending_events.is_empty() {
5599                         result = NotifyOption::DoPersist;
5600                 }
5601
5602                 for event in pending_events {
5603                         handler(event).await;
5604                 }
5605
5606                 if result == NotifyOption::DoPersist {
5607                         self.persistence_notifier.notify();
5608                 }
5609         }
5610 }
5611
5612 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5613 where
5614         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5615         T::Target: BroadcasterInterface,
5616         ES::Target: EntropySource,
5617         NS::Target: NodeSigner,
5618         SP::Target: SignerProvider,
5619         F::Target: FeeEstimator,
5620         R::Target: Router,
5621         L::Target: Logger,
5622 {
5623         /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
5624         /// The returned array will contain `MessageSendEvent`s for different peers if
5625         /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
5626         /// is always placed next to each other.
5627         ///
5628         /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
5629         /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
5630         /// `MessageSendEvent`s  for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
5631         /// will randomly be placed first or last in the returned array.
5632         ///
5633         /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
5634         /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
5635         /// the `MessageSendEvent`s to the specific peer they were generated under.
5636         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5637                 let events = RefCell::new(Vec::new());
5638                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5639                         let mut result = NotifyOption::SkipPersist;
5640
5641                         // TODO: This behavior should be documented. It's unintuitive that we query
5642                         // ChannelMonitors when clearing other events.
5643                         if self.process_pending_monitor_events() {
5644                                 result = NotifyOption::DoPersist;
5645                         }
5646
5647                         if self.check_free_holding_cells() {
5648                                 result = NotifyOption::DoPersist;
5649                         }
5650                         if self.maybe_generate_initial_closing_signed() {
5651                                 result = NotifyOption::DoPersist;
5652                         }
5653
5654                         let mut pending_events = Vec::new();
5655                         let per_peer_state = self.per_peer_state.read().unwrap();
5656                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5657                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5658                                 let peer_state = &mut *peer_state_lock;
5659                                 if peer_state.pending_msg_events.len() > 0 {
5660                                         pending_events.append(&mut peer_state.pending_msg_events);
5661                                 }
5662                         }
5663
5664                         if !pending_events.is_empty() {
5665                                 events.replace(pending_events);
5666                         }
5667
5668                         result
5669                 });
5670                 events.into_inner()
5671         }
5672 }
5673
5674 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5675 where
5676         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5677         T::Target: BroadcasterInterface,
5678         ES::Target: EntropySource,
5679         NS::Target: NodeSigner,
5680         SP::Target: SignerProvider,
5681         F::Target: FeeEstimator,
5682         R::Target: Router,
5683         L::Target: Logger,
5684 {
5685         /// Processes events that must be periodically handled.
5686         ///
5687         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5688         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5689         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5690                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5691                         let mut result = NotifyOption::SkipPersist;
5692
5693                         // TODO: This behavior should be documented. It's unintuitive that we query
5694                         // ChannelMonitors when clearing other events.
5695                         if self.process_pending_monitor_events() {
5696                                 result = NotifyOption::DoPersist;
5697                         }
5698
5699                         let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5700                         if !pending_events.is_empty() {
5701                                 result = NotifyOption::DoPersist;
5702                         }
5703
5704                         for event in pending_events {
5705                                 handler.handle_event(event);
5706                         }
5707
5708                         result
5709                 });
5710         }
5711 }
5712
5713 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
5714 where
5715         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5716         T::Target: BroadcasterInterface,
5717         ES::Target: EntropySource,
5718         NS::Target: NodeSigner,
5719         SP::Target: SignerProvider,
5720         F::Target: FeeEstimator,
5721         R::Target: Router,
5722         L::Target: Logger,
5723 {
5724         fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5725                 {
5726                         let best_block = self.best_block.read().unwrap();
5727                         assert_eq!(best_block.block_hash(), header.prev_blockhash,
5728                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5729                         assert_eq!(best_block.height(), height - 1,
5730                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5731                 }
5732
5733                 self.transactions_confirmed(header, txdata, height);
5734                 self.best_block_updated(header, height);
5735         }
5736
5737         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5738                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5739                 let new_height = height - 1;
5740                 {
5741                         let mut best_block = self.best_block.write().unwrap();
5742                         assert_eq!(best_block.block_hash(), header.block_hash(),
5743                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5744                         assert_eq!(best_block.height(), height,
5745                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5746                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
5747                 }
5748
5749                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5750         }
5751 }
5752
5753 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
5754 where
5755         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5756         T::Target: BroadcasterInterface,
5757         ES::Target: EntropySource,
5758         NS::Target: NodeSigner,
5759         SP::Target: SignerProvider,
5760         F::Target: FeeEstimator,
5761         R::Target: Router,
5762         L::Target: Logger,
5763 {
5764         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5765                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5766                 // during initialization prior to the chain_monitor being fully configured in some cases.
5767                 // See the docs for `ChannelManagerReadArgs` for more.
5768
5769                 let block_hash = header.block_hash();
5770                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5771
5772                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5773                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
5774                         .map(|(a, b)| (a, Vec::new(), b)));
5775
5776                 let last_best_block_height = self.best_block.read().unwrap().height();
5777                 if height < last_best_block_height {
5778                         let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5779                         self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5780                 }
5781         }
5782
5783         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5784                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5785                 // during initialization prior to the chain_monitor being fully configured in some cases.
5786                 // See the docs for `ChannelManagerReadArgs` for more.
5787
5788                 let block_hash = header.block_hash();
5789                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5790
5791                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5792
5793                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5794
5795                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5796
5797                 macro_rules! max_time {
5798                         ($timestamp: expr) => {
5799                                 loop {
5800                                         // Update $timestamp to be the max of its current value and the block
5801                                         // timestamp. This should keep us close to the current time without relying on
5802                                         // having an explicit local time source.
5803                                         // Just in case we end up in a race, we loop until we either successfully
5804                                         // update $timestamp or decide we don't need to.
5805                                         let old_serial = $timestamp.load(Ordering::Acquire);
5806                                         if old_serial >= header.time as usize { break; }
5807                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5808                                                 break;
5809                                         }
5810                                 }
5811                         }
5812                 }
5813                 max_time!(self.highest_seen_timestamp);
5814                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5815                 payment_secrets.retain(|_, inbound_payment| {
5816                         inbound_payment.expiry_time > header.time as u64
5817                 });
5818         }
5819
5820         fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
5821                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
5822                 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
5823                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5824                         let peer_state = &mut *peer_state_lock;
5825                         for chan in peer_state.channel_by_id.values() {
5826                                 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
5827                                         res.push((funding_txo.txid, Some(block_hash)));
5828                                 }
5829                         }
5830                 }
5831                 res
5832         }
5833
5834         fn transaction_unconfirmed(&self, txid: &Txid) {
5835                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5836                 self.do_chain_event(None, |channel| {
5837                         if let Some(funding_txo) = channel.get_funding_txo() {
5838                                 if funding_txo.txid == *txid {
5839                                         channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
5840                                 } else { Ok((None, Vec::new(), None)) }
5841                         } else { Ok((None, Vec::new(), None)) }
5842                 });
5843         }
5844 }
5845
5846 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
5847 where
5848         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5849         T::Target: BroadcasterInterface,
5850         ES::Target: EntropySource,
5851         NS::Target: NodeSigner,
5852         SP::Target: SignerProvider,
5853         F::Target: FeeEstimator,
5854         R::Target: Router,
5855         L::Target: Logger,
5856 {
5857         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
5858         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
5859         /// the function.
5860         fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
5861                         (&self, height_opt: Option<u32>, f: FN) {
5862                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5863                 // during initialization prior to the chain_monitor being fully configured in some cases.
5864                 // See the docs for `ChannelManagerReadArgs` for more.
5865
5866                 let mut failed_channels = Vec::new();
5867                 let mut timed_out_htlcs = Vec::new();
5868                 {
5869                         let per_peer_state = self.per_peer_state.read().unwrap();
5870                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5871                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5872                                 let peer_state = &mut *peer_state_lock;
5873                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5874                                 peer_state.channel_by_id.retain(|_, channel| {
5875                                         let res = f(channel);
5876                                         if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
5877                                                 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
5878                                                         let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
5879                                                         timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
5880                                                                 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
5881                                                 }
5882                                                 if let Some(channel_ready) = channel_ready_opt {
5883                                                         send_channel_ready!(self, pending_msg_events, channel, channel_ready);
5884                                                         if channel.is_usable() {
5885                                                                 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
5886                                                                 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
5887                                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5888                                                                                 node_id: channel.get_counterparty_node_id(),
5889                                                                                 msg,
5890                                                                         });
5891                                                                 }
5892                                                         } else {
5893                                                                 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
5894                                                         }
5895                                                 }
5896
5897                                                 emit_channel_ready_event!(self, channel);
5898
5899                                                 if let Some(announcement_sigs) = announcement_sigs {
5900                                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
5901                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5902                                                                 node_id: channel.get_counterparty_node_id(),
5903                                                                 msg: announcement_sigs,
5904                                                         });
5905                                                         if let Some(height) = height_opt {
5906                                                                 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
5907                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5908                                                                                 msg: announcement,
5909                                                                                 // Note that announcement_signatures fails if the channel cannot be announced,
5910                                                                                 // so get_channel_update_for_broadcast will never fail by the time we get here.
5911                                                                                 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
5912                                                                         });
5913                                                                 }
5914                                                         }
5915                                                 }
5916                                                 if channel.is_our_channel_ready() {
5917                                                         if let Some(real_scid) = channel.get_short_channel_id() {
5918                                                                 // If we sent a 0conf channel_ready, and now have an SCID, we add it
5919                                                                 // to the short_to_chan_info map here. Note that we check whether we
5920                                                                 // can relay using the real SCID at relay-time (i.e.
5921                                                                 // enforce option_scid_alias then), and if the funding tx is ever
5922                                                                 // un-confirmed we force-close the channel, ensuring short_to_chan_info
5923                                                                 // is always consistent.
5924                                                                 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
5925                                                                 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
5926                                                                 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
5927                                                                         "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
5928                                                                         fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
5929                                                         }
5930                                                 }
5931                                         } else if let Err(reason) = res {
5932                                                 update_maps_on_chan_removal!(self, channel);
5933                                                 // It looks like our counterparty went on-chain or funding transaction was
5934                                                 // reorged out of the main chain. Close the channel.
5935                                                 failed_channels.push(channel.force_shutdown(true));
5936                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
5937                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5938                                                                 msg: update
5939                                                         });
5940                                                 }
5941                                                 let reason_message = format!("{}", reason);
5942                                                 self.issue_channel_close_events(channel, reason);
5943                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
5944                                                         node_id: channel.get_counterparty_node_id(),
5945                                                         action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
5946                                                                 channel_id: channel.channel_id(),
5947                                                                 data: reason_message,
5948                                                         } },
5949                                                 });
5950                                                 return false;
5951                                         }
5952                                         true
5953                                 });
5954                         }
5955                 }
5956
5957                 if let Some(height) = height_opt {
5958                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
5959                                 htlcs.retain(|htlc| {
5960                                         // If height is approaching the number of blocks we think it takes us to get
5961                                         // our commitment transaction confirmed before the HTLC expires, plus the
5962                                         // number of blocks we generally consider it to take to do a commitment update,
5963                                         // just give up on it and fail the HTLC.
5964                                         if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
5965                                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5966                                                 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
5967
5968                                                 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
5969                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
5970                                                         HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
5971                                                 false
5972                                         } else { true }
5973                                 });
5974                                 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
5975                         });
5976
5977                         let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
5978                         intercepted_htlcs.retain(|_, htlc| {
5979                                 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
5980                                         let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5981                                                 short_channel_id: htlc.prev_short_channel_id,
5982                                                 htlc_id: htlc.prev_htlc_id,
5983                                                 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
5984                                                 phantom_shared_secret: None,
5985                                                 outpoint: htlc.prev_funding_outpoint,
5986                                         });
5987
5988                                         let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
5989                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
5990                                                 _ => unreachable!(),
5991                                         };
5992                                         timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
5993                                                         HTLCFailReason::from_failure_code(0x2000 | 2),
5994                                                         HTLCDestination::InvalidForward { requested_forward_scid }));
5995                                         log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
5996                                         false
5997                                 } else { true }
5998                         });
5999                 }
6000
6001                 self.handle_init_event_channel_failures(failed_channels);
6002
6003                 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6004                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6005                 }
6006         }
6007
6008         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
6009         /// indicating whether persistence is necessary. Only one listener on
6010         /// [`await_persistable_update`], [`await_persistable_update_timeout`], or a future returned by
6011         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6012         ///
6013         /// Note that this method is not available with the `no-std` feature.
6014         ///
6015         /// [`await_persistable_update`]: Self::await_persistable_update
6016         /// [`await_persistable_update_timeout`]: Self::await_persistable_update_timeout
6017         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6018         #[cfg(any(test, feature = "std"))]
6019         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
6020                 self.persistence_notifier.wait_timeout(max_wait)
6021         }
6022
6023         /// Blocks until ChannelManager needs to be persisted. Only one listener on
6024         /// [`await_persistable_update`], `await_persistable_update_timeout`, or a future returned by
6025         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6026         ///
6027         /// [`await_persistable_update`]: Self::await_persistable_update
6028         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6029         pub fn await_persistable_update(&self) {
6030                 self.persistence_notifier.wait()
6031         }
6032
6033         /// Gets a [`Future`] that completes when a persistable update is available. Note that
6034         /// callbacks registered on the [`Future`] MUST NOT call back into this [`ChannelManager`] and
6035         /// should instead register actions to be taken later.
6036         pub fn get_persistable_update_future(&self) -> Future {
6037                 self.persistence_notifier.get_future()
6038         }
6039
6040         #[cfg(any(test, feature = "_test_utils"))]
6041         pub fn get_persistence_condvar_value(&self) -> bool {
6042                 self.persistence_notifier.notify_pending()
6043         }
6044
6045         /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6046         /// [`chain::Confirm`] interfaces.
6047         pub fn current_best_block(&self) -> BestBlock {
6048                 self.best_block.read().unwrap().clone()
6049         }
6050
6051         /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6052         /// [`ChannelManager`].
6053         pub fn node_features(&self) -> NodeFeatures {
6054                 provided_node_features(&self.default_configuration)
6055         }
6056
6057         /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6058         /// [`ChannelManager`].
6059         ///
6060         /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6061         /// or not. Thus, this method is not public.
6062         #[cfg(any(feature = "_test_utils", test))]
6063         pub fn invoice_features(&self) -> InvoiceFeatures {
6064                 provided_invoice_features(&self.default_configuration)
6065         }
6066
6067         /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6068         /// [`ChannelManager`].
6069         pub fn channel_features(&self) -> ChannelFeatures {
6070                 provided_channel_features(&self.default_configuration)
6071         }
6072
6073         /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6074         /// [`ChannelManager`].
6075         pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6076                 provided_channel_type_features(&self.default_configuration)
6077         }
6078
6079         /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6080         /// [`ChannelManager`].
6081         pub fn init_features(&self) -> InitFeatures {
6082                 provided_init_features(&self.default_configuration)
6083         }
6084 }
6085
6086 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6087         ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6088 where
6089         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6090         T::Target: BroadcasterInterface,
6091         ES::Target: EntropySource,
6092         NS::Target: NodeSigner,
6093         SP::Target: SignerProvider,
6094         F::Target: FeeEstimator,
6095         R::Target: Router,
6096         L::Target: Logger,
6097 {
6098         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6099                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6100                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6101         }
6102
6103         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6104                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6105                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6106         }
6107
6108         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6109                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6110                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6111         }
6112
6113         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6114                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6115                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6116         }
6117
6118         fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6119                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6120                 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6121         }
6122
6123         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6124                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6125                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6126         }
6127
6128         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6129                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6130                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6131         }
6132
6133         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6134                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6135                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6136         }
6137
6138         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6139                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6140                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6141         }
6142
6143         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6144                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6145                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6146         }
6147
6148         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6149                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6150                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6151         }
6152
6153         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6154                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6155                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6156         }
6157
6158         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6159                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6160                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6161         }
6162
6163         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6164                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6165                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6166         }
6167
6168         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6169                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6170                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6171         }
6172
6173         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6174                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6175                         if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6176                                 persist
6177                         } else {
6178                                 NotifyOption::SkipPersist
6179                         }
6180                 });
6181         }
6182
6183         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6184                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6185                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6186         }
6187
6188         fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6189                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6190                 let mut failed_channels = Vec::new();
6191                 let mut per_peer_state = self.per_peer_state.write().unwrap();
6192                 let remove_peer = {
6193                         log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6194                                 log_pubkey!(counterparty_node_id));
6195                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6196                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6197                                 let peer_state = &mut *peer_state_lock;
6198                                 let pending_msg_events = &mut peer_state.pending_msg_events;
6199                                 peer_state.channel_by_id.retain(|_, chan| {
6200                                         chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6201                                         if chan.is_shutdown() {
6202                                                 update_maps_on_chan_removal!(self, chan);
6203                                                 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6204                                                 return false;
6205                                         }
6206                                         true
6207                                 });
6208                                 pending_msg_events.retain(|msg| {
6209                                         match msg {
6210                                                 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6211                                                 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6212                                                 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6213                                                 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6214                                                 &events::MessageSendEvent::SendChannelReady { .. } => false,
6215                                                 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6216                                                 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6217                                                 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6218                                                 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6219                                                 &events::MessageSendEvent::SendShutdown { .. } => false,
6220                                                 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6221                                                 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6222                                                 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6223                                                 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6224                                                 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6225                                                 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6226                                                 &events::MessageSendEvent::HandleError { .. } => false,
6227                                                 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6228                                                 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6229                                                 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6230                                                 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6231                                         }
6232                                 });
6233                                 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6234                                 peer_state.is_connected = false;
6235                                 peer_state.ok_to_remove(true)
6236                         } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6237                 };
6238                 if remove_peer {
6239                         per_peer_state.remove(counterparty_node_id);
6240                 }
6241                 mem::drop(per_peer_state);
6242
6243                 for failure in failed_channels.drain(..) {
6244                         self.finish_force_close_channel(failure);
6245                 }
6246         }
6247
6248         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6249                 if !init_msg.features.supports_static_remote_key() {
6250                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6251                         return Err(());
6252                 }
6253
6254                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6255
6256                 // If we have too many peers connected which don't have funded channels, disconnect the
6257                 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6258                 // unfunded channels taking up space in memory for disconnected peers, we still let new
6259                 // peers connect, but we'll reject new channels from them.
6260                 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6261                 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6262
6263                 {
6264                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
6265                         match peer_state_lock.entry(counterparty_node_id.clone()) {
6266                                 hash_map::Entry::Vacant(e) => {
6267                                         if inbound_peer_limited {
6268                                                 return Err(());
6269                                         }
6270                                         e.insert(Mutex::new(PeerState {
6271                                                 channel_by_id: HashMap::new(),
6272                                                 latest_features: init_msg.features.clone(),
6273                                                 pending_msg_events: Vec::new(),
6274                                                 monitor_update_blocked_actions: BTreeMap::new(),
6275                                                 is_connected: true,
6276                                         }));
6277                                 },
6278                                 hash_map::Entry::Occupied(e) => {
6279                                         let mut peer_state = e.get().lock().unwrap();
6280                                         peer_state.latest_features = init_msg.features.clone();
6281
6282                                         let best_block_height = self.best_block.read().unwrap().height();
6283                                         if inbound_peer_limited &&
6284                                                 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6285                                                 peer_state.channel_by_id.len()
6286                                         {
6287                                                 return Err(());
6288                                         }
6289
6290                                         debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6291                                         peer_state.is_connected = true;
6292                                 },
6293                         }
6294                 }
6295
6296                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6297
6298                 let per_peer_state = self.per_peer_state.read().unwrap();
6299                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6300                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6301                         let peer_state = &mut *peer_state_lock;
6302                         let pending_msg_events = &mut peer_state.pending_msg_events;
6303                         peer_state.channel_by_id.retain(|_, chan| {
6304                                 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6305                                         if !chan.have_received_message() {
6306                                                 // If we created this (outbound) channel while we were disconnected from the
6307                                                 // peer we probably failed to send the open_channel message, which is now
6308                                                 // lost. We can't have had anything pending related to this channel, so we just
6309                                                 // drop it.
6310                                                 false
6311                                         } else {
6312                                                 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6313                                                         node_id: chan.get_counterparty_node_id(),
6314                                                         msg: chan.get_channel_reestablish(&self.logger),
6315                                                 });
6316                                                 true
6317                                         }
6318                                 } else { true };
6319                                 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6320                                         if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6321                                                 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6322                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6323                                                                 node_id: *counterparty_node_id,
6324                                                                 msg, update_msg,
6325                                                         });
6326                                                 }
6327                                         }
6328                                 }
6329                                 retain
6330                         });
6331                 }
6332                 //TODO: Also re-broadcast announcement_signatures
6333                 Ok(())
6334         }
6335
6336         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6337                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6338
6339                 if msg.channel_id == [0; 32] {
6340                         let channel_ids: Vec<[u8; 32]> = {
6341                                 let per_peer_state = self.per_peer_state.read().unwrap();
6342                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6343                                 if peer_state_mutex_opt.is_none() { return; }
6344                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6345                                 let peer_state = &mut *peer_state_lock;
6346                                 peer_state.channel_by_id.keys().cloned().collect()
6347                         };
6348                         for channel_id in channel_ids {
6349                                 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6350                                 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6351                         }
6352                 } else {
6353                         {
6354                                 // First check if we can advance the channel type and try again.
6355                                 let per_peer_state = self.per_peer_state.read().unwrap();
6356                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6357                                 if peer_state_mutex_opt.is_none() { return; }
6358                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6359                                 let peer_state = &mut *peer_state_lock;
6360                                 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6361                                         if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6362                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6363                                                         node_id: *counterparty_node_id,
6364                                                         msg,
6365                                                 });
6366                                                 return;
6367                                         }
6368                                 }
6369                         }
6370
6371                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6372                         let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6373                 }
6374         }
6375
6376         fn provided_node_features(&self) -> NodeFeatures {
6377                 provided_node_features(&self.default_configuration)
6378         }
6379
6380         fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6381                 provided_init_features(&self.default_configuration)
6382         }
6383 }
6384
6385 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6386 /// [`ChannelManager`].
6387 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6388         provided_init_features(config).to_context()
6389 }
6390
6391 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6392 /// [`ChannelManager`].
6393 ///
6394 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6395 /// or not. Thus, this method is not public.
6396 #[cfg(any(feature = "_test_utils", test))]
6397 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6398         provided_init_features(config).to_context()
6399 }
6400
6401 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6402 /// [`ChannelManager`].
6403 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6404         provided_init_features(config).to_context()
6405 }
6406
6407 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6408 /// [`ChannelManager`].
6409 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6410         ChannelTypeFeatures::from_init(&provided_init_features(config))
6411 }
6412
6413 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6414 /// [`ChannelManager`].
6415 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6416         // Note that if new features are added here which other peers may (eventually) require, we
6417         // should also add the corresponding (optional) bit to the ChannelMessageHandler impl for
6418         // ErroringMessageHandler.
6419         let mut features = InitFeatures::empty();
6420         features.set_data_loss_protect_optional();
6421         features.set_upfront_shutdown_script_optional();
6422         features.set_variable_length_onion_required();
6423         features.set_static_remote_key_required();
6424         features.set_payment_secret_required();
6425         features.set_basic_mpp_optional();
6426         features.set_wumbo_optional();
6427         features.set_shutdown_any_segwit_optional();
6428         features.set_channel_type_optional();
6429         features.set_scid_privacy_optional();
6430         features.set_zero_conf_optional();
6431         #[cfg(anchors)]
6432         { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6433                 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6434                         features.set_anchors_zero_fee_htlc_tx_optional();
6435                 }
6436         }
6437         features
6438 }
6439
6440 const SERIALIZATION_VERSION: u8 = 1;
6441 const MIN_SERIALIZATION_VERSION: u8 = 1;
6442
6443 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6444         (2, fee_base_msat, required),
6445         (4, fee_proportional_millionths, required),
6446         (6, cltv_expiry_delta, required),
6447 });
6448
6449 impl_writeable_tlv_based!(ChannelCounterparty, {
6450         (2, node_id, required),
6451         (4, features, required),
6452         (6, unspendable_punishment_reserve, required),
6453         (8, forwarding_info, option),
6454         (9, outbound_htlc_minimum_msat, option),
6455         (11, outbound_htlc_maximum_msat, option),
6456 });
6457
6458 impl Writeable for ChannelDetails {
6459         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6460                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6461                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6462                 let user_channel_id_low = self.user_channel_id as u64;
6463                 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6464                 write_tlv_fields!(writer, {
6465                         (1, self.inbound_scid_alias, option),
6466                         (2, self.channel_id, required),
6467                         (3, self.channel_type, option),
6468                         (4, self.counterparty, required),
6469                         (5, self.outbound_scid_alias, option),
6470                         (6, self.funding_txo, option),
6471                         (7, self.config, option),
6472                         (8, self.short_channel_id, option),
6473                         (9, self.confirmations, option),
6474                         (10, self.channel_value_satoshis, required),
6475                         (12, self.unspendable_punishment_reserve, option),
6476                         (14, user_channel_id_low, required),
6477                         (16, self.balance_msat, required),
6478                         (18, self.outbound_capacity_msat, required),
6479                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6480                         // filled in, so we can safely unwrap it here.
6481                         (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6482                         (20, self.inbound_capacity_msat, required),
6483                         (22, self.confirmations_required, option),
6484                         (24, self.force_close_spend_delay, option),
6485                         (26, self.is_outbound, required),
6486                         (28, self.is_channel_ready, required),
6487                         (30, self.is_usable, required),
6488                         (32, self.is_public, required),
6489                         (33, self.inbound_htlc_minimum_msat, option),
6490                         (35, self.inbound_htlc_maximum_msat, option),
6491                         (37, user_channel_id_high_opt, option),
6492                 });
6493                 Ok(())
6494         }
6495 }
6496
6497 impl Readable for ChannelDetails {
6498         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6499                 _init_and_read_tlv_fields!(reader, {
6500                         (1, inbound_scid_alias, option),
6501                         (2, channel_id, required),
6502                         (3, channel_type, option),
6503                         (4, counterparty, required),
6504                         (5, outbound_scid_alias, option),
6505                         (6, funding_txo, option),
6506                         (7, config, option),
6507                         (8, short_channel_id, option),
6508                         (9, confirmations, option),
6509                         (10, channel_value_satoshis, required),
6510                         (12, unspendable_punishment_reserve, option),
6511                         (14, user_channel_id_low, required),
6512                         (16, balance_msat, required),
6513                         (18, outbound_capacity_msat, required),
6514                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6515                         // filled in, so we can safely unwrap it here.
6516                         (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6517                         (20, inbound_capacity_msat, required),
6518                         (22, confirmations_required, option),
6519                         (24, force_close_spend_delay, option),
6520                         (26, is_outbound, required),
6521                         (28, is_channel_ready, required),
6522                         (30, is_usable, required),
6523                         (32, is_public, required),
6524                         (33, inbound_htlc_minimum_msat, option),
6525                         (35, inbound_htlc_maximum_msat, option),
6526                         (37, user_channel_id_high_opt, option),
6527                 });
6528
6529                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6530                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6531                 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
6532                 let user_channel_id = user_channel_id_low as u128 +
6533                         ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
6534
6535                 Ok(Self {
6536                         inbound_scid_alias,
6537                         channel_id: channel_id.0.unwrap(),
6538                         channel_type,
6539                         counterparty: counterparty.0.unwrap(),
6540                         outbound_scid_alias,
6541                         funding_txo,
6542                         config,
6543                         short_channel_id,
6544                         channel_value_satoshis: channel_value_satoshis.0.unwrap(),
6545                         unspendable_punishment_reserve,
6546                         user_channel_id,
6547                         balance_msat: balance_msat.0.unwrap(),
6548                         outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
6549                         next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
6550                         inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
6551                         confirmations_required,
6552                         confirmations,
6553                         force_close_spend_delay,
6554                         is_outbound: is_outbound.0.unwrap(),
6555                         is_channel_ready: is_channel_ready.0.unwrap(),
6556                         is_usable: is_usable.0.unwrap(),
6557                         is_public: is_public.0.unwrap(),
6558                         inbound_htlc_minimum_msat,
6559                         inbound_htlc_maximum_msat,
6560                 })
6561         }
6562 }
6563
6564 impl_writeable_tlv_based!(PhantomRouteHints, {
6565         (2, channels, vec_type),
6566         (4, phantom_scid, required),
6567         (6, real_node_pubkey, required),
6568 });
6569
6570 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6571         (0, Forward) => {
6572                 (0, onion_packet, required),
6573                 (2, short_channel_id, required),
6574         },
6575         (1, Receive) => {
6576                 (0, payment_data, required),
6577                 (1, phantom_shared_secret, option),
6578                 (2, incoming_cltv_expiry, required),
6579         },
6580         (2, ReceiveKeysend) => {
6581                 (0, payment_preimage, required),
6582                 (2, incoming_cltv_expiry, required),
6583         },
6584 ;);
6585
6586 impl_writeable_tlv_based!(PendingHTLCInfo, {
6587         (0, routing, required),
6588         (2, incoming_shared_secret, required),
6589         (4, payment_hash, required),
6590         (6, outgoing_amt_msat, required),
6591         (8, outgoing_cltv_value, required),
6592         (9, incoming_amt_msat, option),
6593 });
6594
6595
6596 impl Writeable for HTLCFailureMsg {
6597         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6598                 match self {
6599                         HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6600                                 0u8.write(writer)?;
6601                                 channel_id.write(writer)?;
6602                                 htlc_id.write(writer)?;
6603                                 reason.write(writer)?;
6604                         },
6605                         HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6606                                 channel_id, htlc_id, sha256_of_onion, failure_code
6607                         }) => {
6608                                 1u8.write(writer)?;
6609                                 channel_id.write(writer)?;
6610                                 htlc_id.write(writer)?;
6611                                 sha256_of_onion.write(writer)?;
6612                                 failure_code.write(writer)?;
6613                         },
6614                 }
6615                 Ok(())
6616         }
6617 }
6618
6619 impl Readable for HTLCFailureMsg {
6620         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6621                 let id: u8 = Readable::read(reader)?;
6622                 match id {
6623                         0 => {
6624                                 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6625                                         channel_id: Readable::read(reader)?,
6626                                         htlc_id: Readable::read(reader)?,
6627                                         reason: Readable::read(reader)?,
6628                                 }))
6629                         },
6630                         1 => {
6631                                 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6632                                         channel_id: Readable::read(reader)?,
6633                                         htlc_id: Readable::read(reader)?,
6634                                         sha256_of_onion: Readable::read(reader)?,
6635                                         failure_code: Readable::read(reader)?,
6636                                 }))
6637                         },
6638                         // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6639                         // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6640                         // messages contained in the variants.
6641                         // In version 0.0.101, support for reading the variants with these types was added, and
6642                         // we should migrate to writing these variants when UpdateFailHTLC or
6643                         // UpdateFailMalformedHTLC get TLV fields.
6644                         2 => {
6645                                 let length: BigSize = Readable::read(reader)?;
6646                                 let mut s = FixedLengthReader::new(reader, length.0);
6647                                 let res = Readable::read(&mut s)?;
6648                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6649                                 Ok(HTLCFailureMsg::Relay(res))
6650                         },
6651                         3 => {
6652                                 let length: BigSize = Readable::read(reader)?;
6653                                 let mut s = FixedLengthReader::new(reader, length.0);
6654                                 let res = Readable::read(&mut s)?;
6655                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6656                                 Ok(HTLCFailureMsg::Malformed(res))
6657                         },
6658                         _ => Err(DecodeError::UnknownRequiredFeature),
6659                 }
6660         }
6661 }
6662
6663 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6664         (0, Forward),
6665         (1, Fail),
6666 );
6667
6668 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6669         (0, short_channel_id, required),
6670         (1, phantom_shared_secret, option),
6671         (2, outpoint, required),
6672         (4, htlc_id, required),
6673         (6, incoming_packet_shared_secret, required)
6674 });
6675
6676 impl Writeable for ClaimableHTLC {
6677         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6678                 let (payment_data, keysend_preimage) = match &self.onion_payload {
6679                         OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6680                         OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6681                 };
6682                 write_tlv_fields!(writer, {
6683                         (0, self.prev_hop, required),
6684                         (1, self.total_msat, required),
6685                         (2, self.value, required),
6686                         (4, payment_data, option),
6687                         (6, self.cltv_expiry, required),
6688                         (8, keysend_preimage, option),
6689                 });
6690                 Ok(())
6691         }
6692 }
6693
6694 impl Readable for ClaimableHTLC {
6695         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6696                 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
6697                 let mut value = 0;
6698                 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6699                 let mut cltv_expiry = 0;
6700                 let mut total_msat = None;
6701                 let mut keysend_preimage: Option<PaymentPreimage> = None;
6702                 read_tlv_fields!(reader, {
6703                         (0, prev_hop, required),
6704                         (1, total_msat, option),
6705                         (2, value, required),
6706                         (4, payment_data, option),
6707                         (6, cltv_expiry, required),
6708                         (8, keysend_preimage, option)
6709                 });
6710                 let onion_payload = match keysend_preimage {
6711                         Some(p) => {
6712                                 if payment_data.is_some() {
6713                                         return Err(DecodeError::InvalidValue)
6714                                 }
6715                                 if total_msat.is_none() {
6716                                         total_msat = Some(value);
6717                                 }
6718                                 OnionPayload::Spontaneous(p)
6719                         },
6720                         None => {
6721                                 if total_msat.is_none() {
6722                                         if payment_data.is_none() {
6723                                                 return Err(DecodeError::InvalidValue)
6724                                         }
6725                                         total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6726                                 }
6727                                 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6728                         },
6729                 };
6730                 Ok(Self {
6731                         prev_hop: prev_hop.0.unwrap(),
6732                         timer_ticks: 0,
6733                         value,
6734                         total_msat: total_msat.unwrap(),
6735                         onion_payload,
6736                         cltv_expiry,
6737                 })
6738         }
6739 }
6740
6741 impl Readable for HTLCSource {
6742         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6743                 let id: u8 = Readable::read(reader)?;
6744                 match id {
6745                         0 => {
6746                                 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
6747                                 let mut first_hop_htlc_msat: u64 = 0;
6748                                 let mut path = Some(Vec::new());
6749                                 let mut payment_id = None;
6750                                 let mut payment_secret = None;
6751                                 let mut payment_params = None;
6752                                 read_tlv_fields!(reader, {
6753                                         (0, session_priv, required),
6754                                         (1, payment_id, option),
6755                                         (2, first_hop_htlc_msat, required),
6756                                         (3, payment_secret, option),
6757                                         (4, path, vec_type),
6758                                         (5, payment_params, option),
6759                                 });
6760                                 if payment_id.is_none() {
6761                                         // For backwards compat, if there was no payment_id written, use the session_priv bytes
6762                                         // instead.
6763                                         payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6764                                 }
6765                                 Ok(HTLCSource::OutboundRoute {
6766                                         session_priv: session_priv.0.unwrap(),
6767                                         first_hop_htlc_msat,
6768                                         path: path.unwrap(),
6769                                         payment_id: payment_id.unwrap(),
6770                                         payment_secret,
6771                                         payment_params,
6772                                 })
6773                         }
6774                         1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6775                         _ => Err(DecodeError::UnknownRequiredFeature),
6776                 }
6777         }
6778 }
6779
6780 impl Writeable for HTLCSource {
6781         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
6782                 match self {
6783                         HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payment_params } => {
6784                                 0u8.write(writer)?;
6785                                 let payment_id_opt = Some(payment_id);
6786                                 write_tlv_fields!(writer, {
6787                                         (0, session_priv, required),
6788                                         (1, payment_id_opt, option),
6789                                         (2, first_hop_htlc_msat, required),
6790                                         (3, payment_secret, option),
6791                                         (4, *path, vec_type),
6792                                         (5, payment_params, option),
6793                                  });
6794                         }
6795                         HTLCSource::PreviousHopData(ref field) => {
6796                                 1u8.write(writer)?;
6797                                 field.write(writer)?;
6798                         }
6799                 }
6800                 Ok(())
6801         }
6802 }
6803
6804 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
6805         (0, forward_info, required),
6806         (1, prev_user_channel_id, (default_value, 0)),
6807         (2, prev_short_channel_id, required),
6808         (4, prev_htlc_id, required),
6809         (6, prev_funding_outpoint, required),
6810 });
6811
6812 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6813         (1, FailHTLC) => {
6814                 (0, htlc_id, required),
6815                 (2, err_packet, required),
6816         };
6817         (0, AddHTLC)
6818 );
6819
6820 impl_writeable_tlv_based!(PendingInboundPayment, {
6821         (0, payment_secret, required),
6822         (2, expiry_time, required),
6823         (4, user_payment_id, required),
6824         (6, payment_preimage, required),
6825         (8, min_value_msat, required),
6826 });
6827
6828 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
6829 where
6830         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6831         T::Target: BroadcasterInterface,
6832         ES::Target: EntropySource,
6833         NS::Target: NodeSigner,
6834         SP::Target: SignerProvider,
6835         F::Target: FeeEstimator,
6836         R::Target: Router,
6837         L::Target: Logger,
6838 {
6839         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6840                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
6841
6842                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
6843
6844                 self.genesis_hash.write(writer)?;
6845                 {
6846                         let best_block = self.best_block.read().unwrap();
6847                         best_block.height().write(writer)?;
6848                         best_block.block_hash().write(writer)?;
6849                 }
6850
6851                 let mut serializable_peer_count: u64 = 0;
6852                 {
6853                         let per_peer_state = self.per_peer_state.read().unwrap();
6854                         let mut unfunded_channels = 0;
6855                         let mut number_of_channels = 0;
6856                         for (_, peer_state_mutex) in per_peer_state.iter() {
6857                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6858                                 let peer_state = &mut *peer_state_lock;
6859                                 if !peer_state.ok_to_remove(false) {
6860                                         serializable_peer_count += 1;
6861                                 }
6862                                 number_of_channels += peer_state.channel_by_id.len();
6863                                 for (_, channel) in peer_state.channel_by_id.iter() {
6864                                         if !channel.is_funding_initiated() {
6865                                                 unfunded_channels += 1;
6866                                         }
6867                                 }
6868                         }
6869
6870                         ((number_of_channels - unfunded_channels) as u64).write(writer)?;
6871
6872                         for (_, peer_state_mutex) in per_peer_state.iter() {
6873                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6874                                 let peer_state = &mut *peer_state_lock;
6875                                 for (_, channel) in peer_state.channel_by_id.iter() {
6876                                         if channel.is_funding_initiated() {
6877                                                 channel.write(writer)?;
6878                                         }
6879                                 }
6880                         }
6881                 }
6882
6883                 {
6884                         let forward_htlcs = self.forward_htlcs.lock().unwrap();
6885                         (forward_htlcs.len() as u64).write(writer)?;
6886                         for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
6887                                 short_channel_id.write(writer)?;
6888                                 (pending_forwards.len() as u64).write(writer)?;
6889                                 for forward in pending_forwards {
6890                                         forward.write(writer)?;
6891                                 }
6892                         }
6893                 }
6894
6895                 let per_peer_state = self.per_peer_state.write().unwrap();
6896
6897                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
6898                 let claimable_payments = self.claimable_payments.lock().unwrap();
6899                 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
6900
6901                 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
6902                 (claimable_payments.claimable_htlcs.len() as u64).write(writer)?;
6903                 for (payment_hash, (purpose, previous_hops)) in claimable_payments.claimable_htlcs.iter() {
6904                         payment_hash.write(writer)?;
6905                         (previous_hops.len() as u64).write(writer)?;
6906                         for htlc in previous_hops.iter() {
6907                                 htlc.write(writer)?;
6908                         }
6909                         htlc_purposes.push(purpose);
6910                 }
6911
6912                 let mut monitor_update_blocked_actions_per_peer = None;
6913                 let mut peer_states = Vec::new();
6914                 for (_, peer_state_mutex) in per_peer_state.iter() {
6915                         peer_states.push(peer_state_mutex.lock().unwrap());
6916                 }
6917
6918                 (serializable_peer_count).write(writer)?;
6919                 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
6920                         // Peers which we have no channels to should be dropped once disconnected. As we
6921                         // disconnect all peers when shutting down and serializing the ChannelManager, we
6922                         // consider all peers as disconnected here. There's therefore no need write peers with
6923                         // no channels.
6924                         if !peer_state.ok_to_remove(false) {
6925                                 peer_pubkey.write(writer)?;
6926                                 peer_state.latest_features.write(writer)?;
6927                                 if !peer_state.monitor_update_blocked_actions.is_empty() {
6928                                         monitor_update_blocked_actions_per_peer
6929                                                 .get_or_insert_with(Vec::new)
6930                                                 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
6931                                 }
6932                         }
6933                 }
6934
6935                 let events = self.pending_events.lock().unwrap();
6936                 (events.len() as u64).write(writer)?;
6937                 for event in events.iter() {
6938                         event.write(writer)?;
6939                 }
6940
6941                 let background_events = self.pending_background_events.lock().unwrap();
6942                 (background_events.len() as u64).write(writer)?;
6943                 for event in background_events.iter() {
6944                         match event {
6945                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
6946                                         0u8.write(writer)?;
6947                                         funding_txo.write(writer)?;
6948                                         monitor_update.write(writer)?;
6949                                 },
6950                         }
6951                 }
6952
6953                 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
6954                 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
6955                 // likely to be identical.
6956                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
6957                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
6958
6959                 (pending_inbound_payments.len() as u64).write(writer)?;
6960                 for (hash, pending_payment) in pending_inbound_payments.iter() {
6961                         hash.write(writer)?;
6962                         pending_payment.write(writer)?;
6963                 }
6964
6965                 // For backwards compat, write the session privs and their total length.
6966                 let mut num_pending_outbounds_compat: u64 = 0;
6967                 for (_, outbound) in pending_outbound_payments.iter() {
6968                         if !outbound.is_fulfilled() && !outbound.abandoned() {
6969                                 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
6970                         }
6971                 }
6972                 num_pending_outbounds_compat.write(writer)?;
6973                 for (_, outbound) in pending_outbound_payments.iter() {
6974                         match outbound {
6975                                 PendingOutboundPayment::Legacy { session_privs } |
6976                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
6977                                         for session_priv in session_privs.iter() {
6978                                                 session_priv.write(writer)?;
6979                                         }
6980                                 }
6981                                 PendingOutboundPayment::Fulfilled { .. } => {},
6982                                 PendingOutboundPayment::Abandoned { .. } => {},
6983                         }
6984                 }
6985
6986                 // Encode without retry info for 0.0.101 compatibility.
6987                 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
6988                 for (id, outbound) in pending_outbound_payments.iter() {
6989                         match outbound {
6990                                 PendingOutboundPayment::Legacy { session_privs } |
6991                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
6992                                         pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
6993                                 },
6994                                 _ => {},
6995                         }
6996                 }
6997
6998                 let mut pending_intercepted_htlcs = None;
6999                 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7000                 if our_pending_intercepts.len() != 0 {
7001                         pending_intercepted_htlcs = Some(our_pending_intercepts);
7002                 }
7003
7004                 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7005                 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7006                         // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7007                         // map. Thus, if there are no entries we skip writing a TLV for it.
7008                         pending_claiming_payments = None;
7009                 }
7010
7011                 write_tlv_fields!(writer, {
7012                         (1, pending_outbound_payments_no_retry, required),
7013                         (2, pending_intercepted_htlcs, option),
7014                         (3, pending_outbound_payments, required),
7015                         (4, pending_claiming_payments, option),
7016                         (5, self.our_network_pubkey, required),
7017                         (6, monitor_update_blocked_actions_per_peer, option),
7018                         (7, self.fake_scid_rand_bytes, required),
7019                         (9, htlc_purposes, vec_type),
7020                         (11, self.probing_cookie_secret, required),
7021                 });
7022
7023                 Ok(())
7024         }
7025 }
7026
7027 /// Arguments for the creation of a ChannelManager that are not deserialized.
7028 ///
7029 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7030 /// is:
7031 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7032 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7033 ///    `<(BlockHash, ChannelManager)>::read(reader, args)`
7034 ///    This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7035 ///    [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7036 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7037 ///    same way you would handle a [`chain::Filter`] call using
7038 ///    [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7039 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7040 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7041 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7042 ///    Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7043 ///    will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7044 ///    the next step.
7045 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7046 ///    [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7047 ///
7048 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7049 /// call any other methods on the newly-deserialized [`ChannelManager`].
7050 ///
7051 /// Note that because some channels may be closed during deserialization, it is critical that you
7052 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7053 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7054 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7055 /// not force-close the same channels but consider them live), you may end up revoking a state for
7056 /// which you've already broadcasted the transaction.
7057 ///
7058 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7059 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7060 where
7061         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7062         T::Target: BroadcasterInterface,
7063         ES::Target: EntropySource,
7064         NS::Target: NodeSigner,
7065         SP::Target: SignerProvider,
7066         F::Target: FeeEstimator,
7067         R::Target: Router,
7068         L::Target: Logger,
7069 {
7070         /// A cryptographically secure source of entropy.
7071         pub entropy_source: ES,
7072
7073         /// A signer that is able to perform node-scoped cryptographic operations.
7074         pub node_signer: NS,
7075
7076         /// The keys provider which will give us relevant keys. Some keys will be loaded during
7077         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7078         /// signing data.
7079         pub signer_provider: SP,
7080
7081         /// The fee_estimator for use in the ChannelManager in the future.
7082         ///
7083         /// No calls to the FeeEstimator will be made during deserialization.
7084         pub fee_estimator: F,
7085         /// The chain::Watch for use in the ChannelManager in the future.
7086         ///
7087         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7088         /// you have deserialized ChannelMonitors separately and will add them to your
7089         /// chain::Watch after deserializing this ChannelManager.
7090         pub chain_monitor: M,
7091
7092         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7093         /// used to broadcast the latest local commitment transactions of channels which must be
7094         /// force-closed during deserialization.
7095         pub tx_broadcaster: T,
7096         /// The router which will be used in the ChannelManager in the future for finding routes
7097         /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7098         ///
7099         /// No calls to the router will be made during deserialization.
7100         pub router: R,
7101         /// The Logger for use in the ChannelManager and which may be used to log information during
7102         /// deserialization.
7103         pub logger: L,
7104         /// Default settings used for new channels. Any existing channels will continue to use the
7105         /// runtime settings which were stored when the ChannelManager was serialized.
7106         pub default_config: UserConfig,
7107
7108         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7109         /// value.get_funding_txo() should be the key).
7110         ///
7111         /// If a monitor is inconsistent with the channel state during deserialization the channel will
7112         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7113         /// is true for missing channels as well. If there is a monitor missing for which we find
7114         /// channel data Err(DecodeError::InvalidValue) will be returned.
7115         ///
7116         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7117         /// this struct.
7118         ///
7119         /// (C-not exported) because we have no HashMap bindings
7120         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7121 }
7122
7123 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7124                 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7125 where
7126         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7127         T::Target: BroadcasterInterface,
7128         ES::Target: EntropySource,
7129         NS::Target: NodeSigner,
7130         SP::Target: SignerProvider,
7131         F::Target: FeeEstimator,
7132         R::Target: Router,
7133         L::Target: Logger,
7134 {
7135         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7136         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7137         /// populate a HashMap directly from C.
7138         pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7139                         mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7140                 Self {
7141                         entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7142                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7143                 }
7144         }
7145 }
7146
7147 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7148 // SipmleArcChannelManager type:
7149 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7150         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7151 where
7152         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7153         T::Target: BroadcasterInterface,
7154         ES::Target: EntropySource,
7155         NS::Target: NodeSigner,
7156         SP::Target: SignerProvider,
7157         F::Target: FeeEstimator,
7158         R::Target: Router,
7159         L::Target: Logger,
7160 {
7161         fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7162                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7163                 Ok((blockhash, Arc::new(chan_manager)))
7164         }
7165 }
7166
7167 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7168         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7169 where
7170         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7171         T::Target: BroadcasterInterface,
7172         ES::Target: EntropySource,
7173         NS::Target: NodeSigner,
7174         SP::Target: SignerProvider,
7175         F::Target: FeeEstimator,
7176         R::Target: Router,
7177         L::Target: Logger,
7178 {
7179         fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7180                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7181
7182                 let genesis_hash: BlockHash = Readable::read(reader)?;
7183                 let best_block_height: u32 = Readable::read(reader)?;
7184                 let best_block_hash: BlockHash = Readable::read(reader)?;
7185
7186                 let mut failed_htlcs = Vec::new();
7187
7188                 let channel_count: u64 = Readable::read(reader)?;
7189                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7190                 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7191                 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7192                 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7193                 let mut channel_closures = Vec::new();
7194                 for _ in 0..channel_count {
7195                         let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7196                                 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7197                         ))?;
7198                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7199                         funding_txo_set.insert(funding_txo.clone());
7200                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7201                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
7202                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
7203                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
7204                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
7205                                         // If the channel is ahead of the monitor, return InvalidValue:
7206                                         log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7207                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7208                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7209                                         log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7210                                         log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7211                                         log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7212                                         log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7213                                         return Err(DecodeError::InvalidValue);
7214                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7215                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7216                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7217                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7218                                         // But if the channel is behind of the monitor, close the channel:
7219                                         log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7220                                         log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7221                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7222                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7223                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
7224                                         failed_htlcs.append(&mut new_failed_htlcs);
7225                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7226                                         channel_closures.push(events::Event::ChannelClosed {
7227                                                 channel_id: channel.channel_id(),
7228                                                 user_channel_id: channel.get_user_id(),
7229                                                 reason: ClosureReason::OutdatedChannelManager
7230                                         });
7231                                         for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7232                                                 let mut found_htlc = false;
7233                                                 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7234                                                         if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7235                                                 }
7236                                                 if !found_htlc {
7237                                                         // If we have some HTLCs in the channel which are not present in the newer
7238                                                         // ChannelMonitor, they have been removed and should be failed back to
7239                                                         // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7240                                                         // were actually claimed we'd have generated and ensured the previous-hop
7241                                                         // claim update ChannelMonitor updates were persisted prior to persising
7242                                                         // the ChannelMonitor update for the forward leg, so attempting to fail the
7243                                                         // backwards leg of the HTLC will simply be rejected.
7244                                                         log_info!(args.logger,
7245                                                                 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7246                                                                 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7247                                                         failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7248                                                 }
7249                                         }
7250                                 } else {
7251                                         log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7252                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
7253                                                 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7254                                         }
7255                                         if channel.is_funding_initiated() {
7256                                                 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7257                                         }
7258                                         match peer_channels.entry(channel.get_counterparty_node_id()) {
7259                                                 hash_map::Entry::Occupied(mut entry) => {
7260                                                         let by_id_map = entry.get_mut();
7261                                                         by_id_map.insert(channel.channel_id(), channel);
7262                                                 },
7263                                                 hash_map::Entry::Vacant(entry) => {
7264                                                         let mut by_id_map = HashMap::new();
7265                                                         by_id_map.insert(channel.channel_id(), channel);
7266                                                         entry.insert(by_id_map);
7267                                                 }
7268                                         }
7269                                 }
7270                         } else if channel.is_awaiting_initial_mon_persist() {
7271                                 // If we were persisted and shut down while the initial ChannelMonitor persistence
7272                                 // was in-progress, we never broadcasted the funding transaction and can still
7273                                 // safely discard the channel.
7274                                 let _ = channel.force_shutdown(false);
7275                                 channel_closures.push(events::Event::ChannelClosed {
7276                                         channel_id: channel.channel_id(),
7277                                         user_channel_id: channel.get_user_id(),
7278                                         reason: ClosureReason::DisconnectedPeer,
7279                                 });
7280                         } else {
7281                                 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7282                                 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7283                                 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7284                                 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7285                                 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7286                                 return Err(DecodeError::InvalidValue);
7287                         }
7288                 }
7289
7290                 for (funding_txo, monitor) in args.channel_monitors.iter_mut() {
7291                         if !funding_txo_set.contains(funding_txo) {
7292                                 log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
7293                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7294                         }
7295                 }
7296
7297                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7298                 let forward_htlcs_count: u64 = Readable::read(reader)?;
7299                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7300                 for _ in 0..forward_htlcs_count {
7301                         let short_channel_id = Readable::read(reader)?;
7302                         let pending_forwards_count: u64 = Readable::read(reader)?;
7303                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7304                         for _ in 0..pending_forwards_count {
7305                                 pending_forwards.push(Readable::read(reader)?);
7306                         }
7307                         forward_htlcs.insert(short_channel_id, pending_forwards);
7308                 }
7309
7310                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7311                 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7312                 for _ in 0..claimable_htlcs_count {
7313                         let payment_hash = Readable::read(reader)?;
7314                         let previous_hops_len: u64 = Readable::read(reader)?;
7315                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7316                         for _ in 0..previous_hops_len {
7317                                 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7318                         }
7319                         claimable_htlcs_list.push((payment_hash, previous_hops));
7320                 }
7321
7322                 let peer_count: u64 = Readable::read(reader)?;
7323                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7324                 for _ in 0..peer_count {
7325                         let peer_pubkey = Readable::read(reader)?;
7326                         let peer_state = PeerState {
7327                                 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7328                                 latest_features: Readable::read(reader)?,
7329                                 pending_msg_events: Vec::new(),
7330                                 monitor_update_blocked_actions: BTreeMap::new(),
7331                                 is_connected: false,
7332                         };
7333                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7334                 }
7335
7336                 let event_count: u64 = Readable::read(reader)?;
7337                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7338                 for _ in 0..event_count {
7339                         match MaybeReadable::read(reader)? {
7340                                 Some(event) => pending_events_read.push(event),
7341                                 None => continue,
7342                         }
7343                 }
7344
7345                 let background_event_count: u64 = Readable::read(reader)?;
7346                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
7347                 for _ in 0..background_event_count {
7348                         match <u8 as Readable>::read(reader)? {
7349                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
7350                                 _ => return Err(DecodeError::InvalidValue),
7351                         }
7352                 }
7353
7354                 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7355                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7356
7357                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7358                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7359                 for _ in 0..pending_inbound_payment_count {
7360                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7361                                 return Err(DecodeError::InvalidValue);
7362                         }
7363                 }
7364
7365                 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7366                 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7367                         HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7368                 for _ in 0..pending_outbound_payments_count_compat {
7369                         let session_priv = Readable::read(reader)?;
7370                         let payment = PendingOutboundPayment::Legacy {
7371                                 session_privs: [session_priv].iter().cloned().collect()
7372                         };
7373                         if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7374                                 return Err(DecodeError::InvalidValue)
7375                         };
7376                 }
7377
7378                 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7379                 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7380                 let mut pending_outbound_payments = None;
7381                 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7382                 let mut received_network_pubkey: Option<PublicKey> = None;
7383                 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7384                 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7385                 let mut claimable_htlc_purposes = None;
7386                 let mut pending_claiming_payments = Some(HashMap::new());
7387                 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7388                 read_tlv_fields!(reader, {
7389                         (1, pending_outbound_payments_no_retry, option),
7390                         (2, pending_intercepted_htlcs, option),
7391                         (3, pending_outbound_payments, option),
7392                         (4, pending_claiming_payments, option),
7393                         (5, received_network_pubkey, option),
7394                         (6, monitor_update_blocked_actions_per_peer, option),
7395                         (7, fake_scid_rand_bytes, option),
7396                         (9, claimable_htlc_purposes, vec_type),
7397                         (11, probing_cookie_secret, option),
7398                 });
7399                 if fake_scid_rand_bytes.is_none() {
7400                         fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7401                 }
7402
7403                 if probing_cookie_secret.is_none() {
7404                         probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7405                 }
7406
7407                 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7408                         pending_outbound_payments = Some(pending_outbound_payments_compat);
7409                 } else if pending_outbound_payments.is_none() {
7410                         let mut outbounds = HashMap::new();
7411                         for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7412                                 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7413                         }
7414                         pending_outbound_payments = Some(outbounds);
7415                 } else {
7416                         // If we're tracking pending payments, ensure we haven't lost any by looking at the
7417                         // ChannelMonitor data for any channels for which we do not have authorative state
7418                         // (i.e. those for which we just force-closed above or we otherwise don't have a
7419                         // corresponding `Channel` at all).
7420                         // This avoids several edge-cases where we would otherwise "forget" about pending
7421                         // payments which are still in-flight via their on-chain state.
7422                         // We only rebuild the pending payments map if we were most recently serialized by
7423                         // 0.0.102+
7424                         for (_, monitor) in args.channel_monitors.iter() {
7425                                 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7426                                         for (htlc_source, htlc) in monitor.get_pending_outbound_htlcs() {
7427                                                 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
7428                                                         if path.is_empty() {
7429                                                                 log_error!(args.logger, "Got an empty path for a pending payment");
7430                                                                 return Err(DecodeError::InvalidValue);
7431                                                         }
7432                                                         let path_amt = path.last().unwrap().fee_msat;
7433                                                         let mut session_priv_bytes = [0; 32];
7434                                                         session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7435                                                         match pending_outbound_payments.as_mut().unwrap().entry(payment_id) {
7436                                                                 hash_map::Entry::Occupied(mut entry) => {
7437                                                                         let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7438                                                                         log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7439                                                                                 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7440                                                                 },
7441                                                                 hash_map::Entry::Vacant(entry) => {
7442                                                                         let path_fee = path.get_path_fees();
7443                                                                         entry.insert(PendingOutboundPayment::Retryable {
7444                                                                                 retry_strategy: None,
7445                                                                                 attempts: PaymentAttempts::new(),
7446                                                                                 payment_params: None,
7447                                                                                 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7448                                                                                 payment_hash: htlc.payment_hash,
7449                                                                                 payment_secret,
7450                                                                                 keysend_preimage: None, // only used for retries, and we'll never retry on startup
7451                                                                                 pending_amt_msat: path_amt,
7452                                                                                 pending_fee_msat: Some(path_fee),
7453                                                                                 total_msat: path_amt,
7454                                                                                 starting_block_height: best_block_height,
7455                                                                         });
7456                                                                         log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7457                                                                                 path_amt, log_bytes!(htlc.payment_hash.0),  log_bytes!(session_priv_bytes));
7458                                                                 }
7459                                                         }
7460                                                 }
7461                                         }
7462                                         for (htlc_source, htlc) in monitor.get_all_current_outbound_htlcs() {
7463                                                 if let HTLCSource::PreviousHopData(prev_hop_data) = htlc_source {
7464                                                         let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
7465                                                                 info.prev_funding_outpoint == prev_hop_data.outpoint &&
7466                                                                         info.prev_htlc_id == prev_hop_data.htlc_id
7467                                                         };
7468                                                         // The ChannelMonitor is now responsible for this HTLC's
7469                                                         // failure/success and will let us know what its outcome is. If we
7470                                                         // still have an entry for this HTLC in `forward_htlcs` or
7471                                                         // `pending_intercepted_htlcs`, we were apparently not persisted after
7472                                                         // the monitor was when forwarding the payment.
7473                                                         forward_htlcs.retain(|_, forwards| {
7474                                                                 forwards.retain(|forward| {
7475                                                                         if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
7476                                                                                 if pending_forward_matches_htlc(&htlc_info) {
7477                                                                                         log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
7478                                                                                                 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7479                                                                                         false
7480                                                                                 } else { true }
7481                                                                         } else { true }
7482                                                                 });
7483                                                                 !forwards.is_empty()
7484                                                         });
7485                                                         pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
7486                                                                 if pending_forward_matches_htlc(&htlc_info) {
7487                                                                         log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
7488                                                                                 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7489                                                                         pending_events_read.retain(|event| {
7490                                                                                 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
7491                                                                                         intercepted_id != ev_id
7492                                                                                 } else { true }
7493                                                                         });
7494                                                                         false
7495                                                                 } else { true }
7496                                                         });
7497                                                 }
7498                                         }
7499                                 }
7500                         }
7501                 }
7502
7503                 let pending_outbounds = OutboundPayments { pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()), retry_lock: Mutex::new(()) };
7504                 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
7505                         // If we have pending HTLCs to forward, assume we either dropped a
7506                         // `PendingHTLCsForwardable` or the user received it but never processed it as they
7507                         // shut down before the timer hit. Either way, set the time_forwardable to a small
7508                         // constant as enough time has likely passed that we should simply handle the forwards
7509                         // now, or at least after the user gets a chance to reconnect to our peers.
7510                         pending_events_read.push(events::Event::PendingHTLCsForwardable {
7511                                 time_forwardable: Duration::from_secs(2),
7512                         });
7513                 }
7514
7515                 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
7516                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7517
7518                 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
7519                 if let Some(mut purposes) = claimable_htlc_purposes {
7520                         if purposes.len() != claimable_htlcs_list.len() {
7521                                 return Err(DecodeError::InvalidValue);
7522                         }
7523                         for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
7524                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7525                         }
7526                 } else {
7527                         // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7528                         // include a `_legacy_hop_data` in the `OnionPayload`.
7529                         for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
7530                                 if previous_hops.is_empty() {
7531                                         return Err(DecodeError::InvalidValue);
7532                                 }
7533                                 let purpose = match &previous_hops[0].onion_payload {
7534                                         OnionPayload::Invoice { _legacy_hop_data } => {
7535                                                 if let Some(hop_data) = _legacy_hop_data {
7536                                                         events::PaymentPurpose::InvoicePayment {
7537                                                                 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7538                                                                         Some(inbound_payment) => inbound_payment.payment_preimage,
7539                                                                         None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7540                                                                                 Ok((payment_preimage, _)) => payment_preimage,
7541                                                                                 Err(()) => {
7542                                                                                         log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7543                                                                                         return Err(DecodeError::InvalidValue);
7544                                                                                 }
7545                                                                         }
7546                                                                 },
7547                                                                 payment_secret: hop_data.payment_secret,
7548                                                         }
7549                                                 } else { return Err(DecodeError::InvalidValue); }
7550                                         },
7551                                         OnionPayload::Spontaneous(payment_preimage) =>
7552                                                 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7553                                 };
7554                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7555                         }
7556                 }
7557
7558                 let mut secp_ctx = Secp256k1::new();
7559                 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
7560
7561                 if !channel_closures.is_empty() {
7562                         pending_events_read.append(&mut channel_closures);
7563                 }
7564
7565                 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
7566                         Ok(key) => key,
7567                         Err(()) => return Err(DecodeError::InvalidValue)
7568                 };
7569                 if let Some(network_pubkey) = received_network_pubkey {
7570                         if network_pubkey != our_network_pubkey {
7571                                 log_error!(args.logger, "Key that was generated does not match the existing key.");
7572                                 return Err(DecodeError::InvalidValue);
7573                         }
7574                 }
7575
7576                 let mut outbound_scid_aliases = HashSet::new();
7577                 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
7578                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7579                         let peer_state = &mut *peer_state_lock;
7580                         for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
7581                                 if chan.outbound_scid_alias() == 0 {
7582                                         let mut outbound_scid_alias;
7583                                         loop {
7584                                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7585                                                         .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
7586                                                 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7587                                         }
7588                                         chan.set_outbound_scid_alias(outbound_scid_alias);
7589                                 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7590                                         // Note that in rare cases its possible to hit this while reading an older
7591                                         // channel if we just happened to pick a colliding outbound alias above.
7592                                         log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7593                                         return Err(DecodeError::InvalidValue);
7594                                 }
7595                                 if chan.is_usable() {
7596                                         if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7597                                                 // Note that in rare cases its possible to hit this while reading an older
7598                                                 // channel if we just happened to pick a colliding outbound alias above.
7599                                                 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7600                                                 return Err(DecodeError::InvalidValue);
7601                                         }
7602                                 }
7603                         }
7604                 }
7605
7606                 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7607
7608                 for (_, monitor) in args.channel_monitors.iter() {
7609                         for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7610                                 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7611                                         log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7612                                         let mut claimable_amt_msat = 0;
7613                                         let mut receiver_node_id = Some(our_network_pubkey);
7614                                         let phantom_shared_secret = claimable_htlcs[0].prev_hop.phantom_shared_secret;
7615                                         if phantom_shared_secret.is_some() {
7616                                                 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
7617                                                         .expect("Failed to get node_id for phantom node recipient");
7618                                                 receiver_node_id = Some(phantom_pubkey)
7619                                         }
7620                                         for claimable_htlc in claimable_htlcs {
7621                                                 claimable_amt_msat += claimable_htlc.value;
7622
7623                                                 // Add a holding-cell claim of the payment to the Channel, which should be
7624                                                 // applied ~immediately on peer reconnection. Because it won't generate a
7625                                                 // new commitment transaction we can just provide the payment preimage to
7626                                                 // the corresponding ChannelMonitor and nothing else.
7627                                                 //
7628                                                 // We do so directly instead of via the normal ChannelMonitor update
7629                                                 // procedure as the ChainMonitor hasn't yet been initialized, implying
7630                                                 // we're not allowed to call it directly yet. Further, we do the update
7631                                                 // without incrementing the ChannelMonitor update ID as there isn't any
7632                                                 // reason to.
7633                                                 // If we were to generate a new ChannelMonitor update ID here and then
7634                                                 // crash before the user finishes block connect we'd end up force-closing
7635                                                 // this channel as well. On the flip side, there's no harm in restarting
7636                                                 // without the new monitor persisted - we'll end up right back here on
7637                                                 // restart.
7638                                                 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7639                                                 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
7640                                                         let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
7641                                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7642                                                         let peer_state = &mut *peer_state_lock;
7643                                                         if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
7644                                                                 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7645                                                         }
7646                                                 }
7647                                                 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7648                                                         previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
7649                                                 }
7650                                         }
7651                                         pending_events_read.push(events::Event::PaymentClaimed {
7652                                                 receiver_node_id,
7653                                                 payment_hash,
7654                                                 purpose: payment_purpose,
7655                                                 amount_msat: claimable_amt_msat,
7656                                         });
7657                                 }
7658                         }
7659                 }
7660
7661                 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
7662                         if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
7663                                 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
7664                         } else {
7665                                 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
7666                                 return Err(DecodeError::InvalidValue);
7667                         }
7668                 }
7669
7670                 let channel_manager = ChannelManager {
7671                         genesis_hash,
7672                         fee_estimator: bounded_fee_estimator,
7673                         chain_monitor: args.chain_monitor,
7674                         tx_broadcaster: args.tx_broadcaster,
7675                         router: args.router,
7676
7677                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7678
7679                         inbound_payment_key: expanded_inbound_key,
7680                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
7681                         pending_outbound_payments: pending_outbounds,
7682                         pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
7683
7684                         forward_htlcs: Mutex::new(forward_htlcs),
7685                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs, pending_claiming_payments: pending_claiming_payments.unwrap() }),
7686                         outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7687                         id_to_peer: Mutex::new(id_to_peer),
7688                         short_to_chan_info: FairRwLock::new(short_to_chan_info),
7689                         fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7690
7691                         probing_cookie_secret: probing_cookie_secret.unwrap(),
7692
7693                         our_network_pubkey,
7694                         secp_ctx,
7695
7696                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7697
7698                         per_peer_state: FairRwLock::new(per_peer_state),
7699
7700                         pending_events: Mutex::new(pending_events_read),
7701                         pending_background_events: Mutex::new(pending_background_events_read),
7702                         total_consistency_lock: RwLock::new(()),
7703                         persistence_notifier: Notifier::new(),
7704
7705                         entropy_source: args.entropy_source,
7706                         node_signer: args.node_signer,
7707                         signer_provider: args.signer_provider,
7708
7709                         logger: args.logger,
7710                         default_configuration: args.default_config,
7711                 };
7712
7713                 for htlc_source in failed_htlcs.drain(..) {
7714                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
7715                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
7716                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7717                         channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
7718                 }
7719
7720                 //TODO: Broadcast channel update for closed channels, but only after we've made a
7721                 //connection or two.
7722
7723                 Ok((best_block_hash.clone(), channel_manager))
7724         }
7725 }
7726
7727 #[cfg(test)]
7728 mod tests {
7729         use bitcoin::hashes::Hash;
7730         use bitcoin::hashes::sha256::Hash as Sha256;
7731         use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
7732         use core::time::Duration;
7733         use core::sync::atomic::Ordering;
7734         use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7735         use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, InterceptId};
7736         use crate::ln::functional_test_utils::*;
7737         use crate::ln::msgs;
7738         use crate::ln::msgs::ChannelMessageHandler;
7739         use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
7740         use crate::util::errors::APIError;
7741         use crate::util::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
7742         use crate::util::test_utils;
7743         use crate::util::config::ChannelConfig;
7744         use crate::chain::keysinterface::EntropySource;
7745
7746         #[test]
7747         fn test_notify_limits() {
7748                 // Check that a few cases which don't require the persistence of a new ChannelManager,
7749                 // indeed, do not cause the persistence of a new ChannelManager.
7750                 let chanmon_cfgs = create_chanmon_cfgs(3);
7751                 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
7752                 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
7753                 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
7754
7755                 // All nodes start with a persistable update pending as `create_network` connects each node
7756                 // with all other nodes to make most tests simpler.
7757                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7758                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7759                 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7760
7761                 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
7762
7763                 // We check that the channel info nodes have doesn't change too early, even though we try
7764                 // to connect messages with new values
7765                 chan.0.contents.fee_base_msat *= 2;
7766                 chan.1.contents.fee_base_msat *= 2;
7767                 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
7768                 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
7769
7770                 // The first two nodes (which opened a channel) should now require fresh persistence
7771                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7772                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7773                 // ... but the last node should not.
7774                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7775                 // After persisting the first two nodes they should no longer need fresh persistence.
7776                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7777                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7778
7779                 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
7780                 // about the channel.
7781                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
7782                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
7783                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7784
7785                 // The nodes which are a party to the channel should also ignore messages from unrelated
7786                 // parties.
7787                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7788                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7789                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7790                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7791                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7792                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7793
7794                 // At this point the channel info given by peers should still be the same.
7795                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7796                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7797
7798                 // An earlier version of handle_channel_update didn't check the directionality of the
7799                 // update message and would always update the local fee info, even if our peer was
7800                 // (spuriously) forwarding us our own channel_update.
7801                 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
7802                 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
7803                 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
7804
7805                 // First deliver each peers' own message, checking that the node doesn't need to be
7806                 // persisted and that its channel info remains the same.
7807                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
7808                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
7809                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7810                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7811                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7812                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7813
7814                 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
7815                 // the channel info has updated.
7816                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
7817                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
7818                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7819                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7820                 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
7821                 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
7822         }
7823
7824         #[test]
7825         fn test_keysend_dup_hash_partial_mpp() {
7826                 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
7827                 // expected.
7828                 let chanmon_cfgs = create_chanmon_cfgs(2);
7829                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7830                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7831                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7832                 create_announced_chan_between_nodes(&nodes, 0, 1);
7833
7834                 // First, send a partial MPP payment.
7835                 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
7836                 let mut mpp_route = route.clone();
7837                 mpp_route.paths.push(mpp_route.paths[0].clone());
7838
7839                 let payment_id = PaymentId([42; 32]);
7840                 // Use the utility function send_payment_along_path to send the payment with MPP data which
7841                 // indicates there are more HTLCs coming.
7842                 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
7843                 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash, Some(payment_secret), payment_id, &mpp_route).unwrap();
7844                 nodes[0].node.send_payment_along_path(&mpp_route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
7845                 check_added_monitors!(nodes[0], 1);
7846                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7847                 assert_eq!(events.len(), 1);
7848                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
7849
7850                 // Next, send a keysend payment with the same payment_hash and make sure it fails.
7851                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
7852                 check_added_monitors!(nodes[0], 1);
7853                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7854                 assert_eq!(events.len(), 1);
7855                 let ev = events.drain(..).next().unwrap();
7856                 let payment_event = SendEvent::from_event(ev);
7857                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7858                 check_added_monitors!(nodes[1], 0);
7859                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7860                 expect_pending_htlcs_forwardable!(nodes[1]);
7861                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
7862                 check_added_monitors!(nodes[1], 1);
7863                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7864                 assert!(updates.update_add_htlcs.is_empty());
7865                 assert!(updates.update_fulfill_htlcs.is_empty());
7866                 assert_eq!(updates.update_fail_htlcs.len(), 1);
7867                 assert!(updates.update_fail_malformed_htlcs.is_empty());
7868                 assert!(updates.update_fee.is_none());
7869                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7870                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7871                 expect_payment_failed!(nodes[0], our_payment_hash, true);
7872
7873                 // Send the second half of the original MPP payment.
7874                 nodes[0].node.send_payment_along_path(&mpp_route.paths[1], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
7875                 check_added_monitors!(nodes[0], 1);
7876                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7877                 assert_eq!(events.len(), 1);
7878                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
7879
7880                 // Claim the full MPP payment. Note that we can't use a test utility like
7881                 // claim_funds_along_route because the ordering of the messages causes the second half of the
7882                 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
7883                 // lightning messages manually.
7884                 nodes[1].node.claim_funds(payment_preimage);
7885                 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
7886                 check_added_monitors!(nodes[1], 2);
7887
7888                 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7889                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
7890                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
7891                 check_added_monitors!(nodes[0], 1);
7892                 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7893                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
7894                 check_added_monitors!(nodes[1], 1);
7895                 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7896                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
7897                 check_added_monitors!(nodes[1], 1);
7898                 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7899                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
7900                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
7901                 check_added_monitors!(nodes[0], 1);
7902                 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
7903                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
7904                 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7905                 check_added_monitors!(nodes[0], 1);
7906                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
7907                 check_added_monitors!(nodes[1], 1);
7908                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
7909                 check_added_monitors!(nodes[1], 1);
7910                 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7911                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
7912                 check_added_monitors!(nodes[0], 1);
7913
7914                 // Note that successful MPP payments will generate a single PaymentSent event upon the first
7915                 // path's success and a PaymentPathSuccessful event for each path's success.
7916                 let events = nodes[0].node.get_and_clear_pending_events();
7917                 assert_eq!(events.len(), 3);
7918                 match events[0] {
7919                         Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
7920                                 assert_eq!(Some(payment_id), *id);
7921                                 assert_eq!(payment_preimage, *preimage);
7922                                 assert_eq!(our_payment_hash, *hash);
7923                         },
7924                         _ => panic!("Unexpected event"),
7925                 }
7926                 match events[1] {
7927                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7928                                 assert_eq!(payment_id, *actual_payment_id);
7929                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7930                                 assert_eq!(route.paths[0], *path);
7931                         },
7932                         _ => panic!("Unexpected event"),
7933                 }
7934                 match events[2] {
7935                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7936                                 assert_eq!(payment_id, *actual_payment_id);
7937                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7938                                 assert_eq!(route.paths[0], *path);
7939                         },
7940                         _ => panic!("Unexpected event"),
7941                 }
7942         }
7943
7944         #[test]
7945         fn test_keysend_dup_payment_hash() {
7946                 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
7947                 //      outbound regular payment fails as expected.
7948                 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
7949                 //      fails as expected.
7950                 let chanmon_cfgs = create_chanmon_cfgs(2);
7951                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7952                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7953                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7954                 create_announced_chan_between_nodes(&nodes, 0, 1);
7955                 let scorer = test_utils::TestScorer::new();
7956                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7957
7958                 // To start (1), send a regular payment but don't claim it.
7959                 let expected_route = [&nodes[1]];
7960                 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
7961
7962                 // Next, attempt a keysend payment and make sure it fails.
7963                 let route_params = RouteParameters {
7964                         payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
7965                         final_value_msat: 100_000,
7966                         final_cltv_expiry_delta: TEST_FINAL_CLTV,
7967                 };
7968                 let route = find_route(
7969                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
7970                         None, nodes[0].logger, &scorer, &random_seed_bytes
7971                 ).unwrap();
7972                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
7973                 check_added_monitors!(nodes[0], 1);
7974                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7975                 assert_eq!(events.len(), 1);
7976                 let ev = events.drain(..).next().unwrap();
7977                 let payment_event = SendEvent::from_event(ev);
7978                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7979                 check_added_monitors!(nodes[1], 0);
7980                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7981                 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
7982                 // fails), the second will process the resulting failure and fail the HTLC backward
7983                 expect_pending_htlcs_forwardable!(nodes[1]);
7984                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
7985                 check_added_monitors!(nodes[1], 1);
7986                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7987                 assert!(updates.update_add_htlcs.is_empty());
7988                 assert!(updates.update_fulfill_htlcs.is_empty());
7989                 assert_eq!(updates.update_fail_htlcs.len(), 1);
7990                 assert!(updates.update_fail_malformed_htlcs.is_empty());
7991                 assert!(updates.update_fee.is_none());
7992                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7993                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7994                 expect_payment_failed!(nodes[0], payment_hash, true);
7995
7996                 // Finally, claim the original payment.
7997                 claim_payment(&nodes[0], &expected_route, payment_preimage);
7998
7999                 // To start (2), send a keysend payment but don't claim it.
8000                 let payment_preimage = PaymentPreimage([42; 32]);
8001                 let route = find_route(
8002                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8003                         None, nodes[0].logger, &scorer, &random_seed_bytes
8004                 ).unwrap();
8005                 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8006                 check_added_monitors!(nodes[0], 1);
8007                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8008                 assert_eq!(events.len(), 1);
8009                 let event = events.pop().unwrap();
8010                 let path = vec![&nodes[1]];
8011                 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8012
8013                 // Next, attempt a regular payment and make sure it fails.
8014                 let payment_secret = PaymentSecret([43; 32]);
8015                 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8016                 check_added_monitors!(nodes[0], 1);
8017                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8018                 assert_eq!(events.len(), 1);
8019                 let ev = events.drain(..).next().unwrap();
8020                 let payment_event = SendEvent::from_event(ev);
8021                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8022                 check_added_monitors!(nodes[1], 0);
8023                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8024                 expect_pending_htlcs_forwardable!(nodes[1]);
8025                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8026                 check_added_monitors!(nodes[1], 1);
8027                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8028                 assert!(updates.update_add_htlcs.is_empty());
8029                 assert!(updates.update_fulfill_htlcs.is_empty());
8030                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8031                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8032                 assert!(updates.update_fee.is_none());
8033                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8034                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8035                 expect_payment_failed!(nodes[0], payment_hash, true);
8036
8037                 // Finally, succeed the keysend payment.
8038                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8039         }
8040
8041         #[test]
8042         fn test_keysend_hash_mismatch() {
8043                 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8044                 // preimage doesn't match the msg's payment hash.
8045                 let chanmon_cfgs = create_chanmon_cfgs(2);
8046                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8047                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8048                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8049
8050                 let payer_pubkey = nodes[0].node.get_our_node_id();
8051                 let payee_pubkey = nodes[1].node.get_our_node_id();
8052
8053                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8054                 let route_params = RouteParameters {
8055                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8056                         final_value_msat: 10_000,
8057                         final_cltv_expiry_delta: 40,
8058                 };
8059                 let network_graph = nodes[0].network_graph.clone();
8060                 let first_hops = nodes[0].node.list_usable_channels();
8061                 let scorer = test_utils::TestScorer::new();
8062                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8063                 let route = find_route(
8064                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8065                         nodes[0].logger, &scorer, &random_seed_bytes
8066                 ).unwrap();
8067
8068                 let test_preimage = PaymentPreimage([42; 32]);
8069                 let mismatch_payment_hash = PaymentHash([43; 32]);
8070                 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash, None, PaymentId(mismatch_payment_hash.0), &route).unwrap();
8071                 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8072                 check_added_monitors!(nodes[0], 1);
8073
8074                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8075                 assert_eq!(updates.update_add_htlcs.len(), 1);
8076                 assert!(updates.update_fulfill_htlcs.is_empty());
8077                 assert!(updates.update_fail_htlcs.is_empty());
8078                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8079                 assert!(updates.update_fee.is_none());
8080                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8081
8082                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
8083         }
8084
8085         #[test]
8086         fn test_keysend_msg_with_secret_err() {
8087                 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8088                 let chanmon_cfgs = create_chanmon_cfgs(2);
8089                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8090                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8091                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8092
8093                 let payer_pubkey = nodes[0].node.get_our_node_id();
8094                 let payee_pubkey = nodes[1].node.get_our_node_id();
8095
8096                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8097                 let route_params = RouteParameters {
8098                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8099                         final_value_msat: 10_000,
8100                         final_cltv_expiry_delta: 40,
8101                 };
8102                 let network_graph = nodes[0].network_graph.clone();
8103                 let first_hops = nodes[0].node.list_usable_channels();
8104                 let scorer = test_utils::TestScorer::new();
8105                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8106                 let route = find_route(
8107                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8108                         nodes[0].logger, &scorer, &random_seed_bytes
8109                 ).unwrap();
8110
8111                 let test_preimage = PaymentPreimage([42; 32]);
8112                 let test_secret = PaymentSecret([43; 32]);
8113                 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8114                 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash, Some(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8115                 nodes[0].node.test_send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), PaymentId(payment_hash.0), None, session_privs).unwrap();
8116                 check_added_monitors!(nodes[0], 1);
8117
8118                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8119                 assert_eq!(updates.update_add_htlcs.len(), 1);
8120                 assert!(updates.update_fulfill_htlcs.is_empty());
8121                 assert!(updates.update_fail_htlcs.is_empty());
8122                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8123                 assert!(updates.update_fee.is_none());
8124                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8125
8126                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
8127         }
8128
8129         #[test]
8130         fn test_multi_hop_missing_secret() {
8131                 let chanmon_cfgs = create_chanmon_cfgs(4);
8132                 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8133                 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8134                 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8135
8136                 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8137                 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8138                 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8139                 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8140
8141                 // Marshall an MPP route.
8142                 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8143                 let path = route.paths[0].clone();
8144                 route.paths.push(path);
8145                 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
8146                 route.paths[0][0].short_channel_id = chan_1_id;
8147                 route.paths[0][1].short_channel_id = chan_3_id;
8148                 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
8149                 route.paths[1][0].short_channel_id = chan_2_id;
8150                 route.paths[1][1].short_channel_id = chan_4_id;
8151
8152                 match nodes[0].node.send_payment(&route, payment_hash, &None, PaymentId(payment_hash.0)).unwrap_err() {
8153                         PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8154                                 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))                        },
8155                         _ => panic!("unexpected error")
8156                 }
8157         }
8158
8159         #[test]
8160         fn test_drop_disconnected_peers_when_removing_channels() {
8161                 let chanmon_cfgs = create_chanmon_cfgs(2);
8162                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8163                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8164                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8165
8166                 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8167
8168                 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8169                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8170
8171                 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8172                 check_closed_broadcast!(nodes[0], true);
8173                 check_added_monitors!(nodes[0], 1);
8174                 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8175
8176                 {
8177                         // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8178                         // disconnected and the channel between has been force closed.
8179                         let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8180                         // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8181                         assert_eq!(nodes_0_per_peer_state.len(), 1);
8182                         assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8183                 }
8184
8185                 nodes[0].node.timer_tick_occurred();
8186
8187                 {
8188                         // Assert that nodes[1] has now been removed.
8189                         assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8190                 }
8191         }
8192
8193         #[test]
8194         fn bad_inbound_payment_hash() {
8195                 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8196                 let chanmon_cfgs = create_chanmon_cfgs(2);
8197                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8198                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8199                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8200
8201                 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8202                 let payment_data = msgs::FinalOnionHopData {
8203                         payment_secret,
8204                         total_msat: 100_000,
8205                 };
8206
8207                 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8208                 // payment verification fails as expected.
8209                 let mut bad_payment_hash = payment_hash.clone();
8210                 bad_payment_hash.0[0] += 1;
8211                 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8212                         Ok(_) => panic!("Unexpected ok"),
8213                         Err(()) => {
8214                                 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
8215                         }
8216                 }
8217
8218                 // Check that using the original payment hash succeeds.
8219                 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8220         }
8221
8222         #[test]
8223         fn test_id_to_peer_coverage() {
8224                 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8225                 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8226                 // the channel is successfully closed.
8227                 let chanmon_cfgs = create_chanmon_cfgs(2);
8228                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8229                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8230                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8231
8232                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8233                 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8234                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8235                 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8236                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8237
8238                 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8239                 let channel_id = &tx.txid().into_inner();
8240                 {
8241                         // Ensure that the `id_to_peer` map is empty until either party has received the
8242                         // funding transaction, and have the real `channel_id`.
8243                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8244                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8245                 }
8246
8247                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8248                 {
8249                         // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8250                         // as it has the funding transaction.
8251                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8252                         assert_eq!(nodes_0_lock.len(), 1);
8253                         assert!(nodes_0_lock.contains_key(channel_id));
8254
8255                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8256                 }
8257
8258                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8259
8260                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8261                 {
8262                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8263                         assert_eq!(nodes_0_lock.len(), 1);
8264                         assert!(nodes_0_lock.contains_key(channel_id));
8265
8266                         // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8267                         // as it has the funding transaction.
8268                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8269                         assert_eq!(nodes_1_lock.len(), 1);
8270                         assert!(nodes_1_lock.contains_key(channel_id));
8271                 }
8272                 check_added_monitors!(nodes[1], 1);
8273                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8274                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8275                 check_added_monitors!(nodes[0], 1);
8276                 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8277                 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8278                 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8279
8280                 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8281                 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8282                 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8283                 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8284
8285                 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8286                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8287                 {
8288                         // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8289                         // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8290                         // fee for the closing transaction has been negotiated and the parties has the other
8291                         // party's signature for the fee negotiated closing transaction.)
8292                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8293                         assert_eq!(nodes_0_lock.len(), 1);
8294                         assert!(nodes_0_lock.contains_key(channel_id));
8295
8296                         // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8297                         // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8298                         // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8299                         // kept in the `nodes[1]`'s `id_to_peer` map.
8300                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8301                         assert_eq!(nodes_1_lock.len(), 1);
8302                         assert!(nodes_1_lock.contains_key(channel_id));
8303                 }
8304
8305                 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8306                 {
8307                         // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8308                         // therefore has all it needs to fully close the channel (both signatures for the
8309                         // closing transaction).
8310                         // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8311                         // fully closed by `nodes[0]`.
8312                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8313
8314                         // Assert that the channel is still in `nodes[1]`'s  `id_to_peer` map, as `nodes[1]`
8315                         // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8316                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8317                         assert_eq!(nodes_1_lock.len(), 1);
8318                         assert!(nodes_1_lock.contains_key(channel_id));
8319                 }
8320
8321                 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8322
8323                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8324                 {
8325                         // Assert that the channel has now been removed from both parties `id_to_peer` map once
8326                         // they both have everything required to fully close the channel.
8327                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8328                 }
8329                 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8330
8331                 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8332                 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8333         }
8334
8335         fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8336                 let expected_message = format!("Not connected to node: {}", expected_public_key);
8337                 check_api_error_message(expected_message, res_err)
8338         }
8339
8340         fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8341                 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8342                 check_api_error_message(expected_message, res_err)
8343         }
8344
8345         fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8346                 match res_err {
8347                         Err(APIError::APIMisuseError { err }) => {
8348                                 assert_eq!(err, expected_err_message);
8349                         },
8350                         Err(APIError::ChannelUnavailable { err }) => {
8351                                 assert_eq!(err, expected_err_message);
8352                         },
8353                         Ok(_) => panic!("Unexpected Ok"),
8354                         Err(_) => panic!("Unexpected Error"),
8355                 }
8356         }
8357
8358         #[test]
8359         fn test_api_calls_with_unkown_counterparty_node() {
8360                 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8361                 // expected if the `counterparty_node_id` is an unkown peer in the
8362                 // `ChannelManager::per_peer_state` map.
8363                 let chanmon_cfg = create_chanmon_cfgs(2);
8364                 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8365                 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8366                 let nodes = create_network(2, &node_cfg, &node_chanmgr);
8367
8368                 // Dummy values
8369                 let channel_id = [4; 32];
8370                 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
8371                 let intercept_id = InterceptId([0; 32]);
8372
8373                 // Test the API functions.
8374                 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
8375
8376                 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
8377
8378                 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
8379
8380                 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
8381
8382                 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
8383
8384                 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
8385
8386                 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
8387         }
8388
8389         #[test]
8390         fn test_connection_limiting() {
8391                 // Test that we limit un-channel'd peers and un-funded channels properly.
8392                 let chanmon_cfgs = create_chanmon_cfgs(2);
8393                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8394                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8395                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8396
8397                 // Note that create_network connects the nodes together for us
8398
8399                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8400                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8401
8402                 let mut funding_tx = None;
8403                 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8404                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8405                         let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8406
8407                         if idx == 0 {
8408                                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8409                                 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
8410                                 funding_tx = Some(tx.clone());
8411                                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
8412                                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8413
8414                                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8415                                 check_added_monitors!(nodes[1], 1);
8416                                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8417
8418                                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8419                                 check_added_monitors!(nodes[0], 1);
8420                         }
8421                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8422                 }
8423
8424                 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
8425                 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8426                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8427                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8428                         open_channel_msg.temporary_channel_id);
8429
8430                 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
8431                 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
8432                 // limit.
8433                 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
8434                 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
8435                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8436                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8437                         peer_pks.push(random_pk);
8438                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8439                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8440                 }
8441                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8442                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8443                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8444                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8445
8446                 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
8447                 // them if we have too many un-channel'd peers.
8448                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8449                 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
8450                 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
8451                 for ev in chan_closed_events {
8452                         if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
8453                 }
8454                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8455                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8456                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8457                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8458
8459                 // but of course if the connection is outbound its allowed...
8460                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8461                         features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
8462                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8463
8464                 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
8465                 // Even though we accept one more connection from new peers, we won't actually let them
8466                 // open channels.
8467                 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
8468                 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8469                         nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
8470                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
8471                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8472                 }
8473                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8474                 assert_eq!(get_err_msg!(nodes[1], last_random_pk).channel_id,
8475                         open_channel_msg.temporary_channel_id);
8476
8477                 // Of course, however, outbound channels are always allowed
8478                 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
8479                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
8480
8481                 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
8482                 // "protected" and can connect again.
8483                 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
8484                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8485                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8486                 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
8487
8488                 // Further, because the first channel was funded, we can open another channel with
8489                 // last_random_pk.
8490                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8491                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8492         }
8493
8494         #[test]
8495         fn test_outbound_chans_unlimited() {
8496                 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
8497                 let chanmon_cfgs = create_chanmon_cfgs(2);
8498                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8499                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8500                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8501
8502                 // Note that create_network connects the nodes together for us
8503
8504                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8505                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8506
8507                 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8508                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8509                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8510                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8511                 }
8512
8513                 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
8514                 // rejected.
8515                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8516                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8517                         open_channel_msg.temporary_channel_id);
8518
8519                 // but we can still open an outbound channel.
8520                 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8521                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
8522
8523                 // but even with such an outbound channel, additional inbound channels will still fail.
8524                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8525                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8526                         open_channel_msg.temporary_channel_id);
8527         }
8528
8529         #[test]
8530         fn test_0conf_limiting() {
8531                 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
8532                 // flag set and (sometimes) accept channels as 0conf.
8533                 let chanmon_cfgs = create_chanmon_cfgs(2);
8534                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8535                 let mut settings = test_default_channel_config();
8536                 settings.manually_accept_inbound_channels = true;
8537                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
8538                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8539
8540                 // Note that create_network connects the nodes together for us
8541
8542                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8543                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8544
8545                 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
8546                 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8547                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8548                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8549                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8550                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8551
8552                         nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
8553                         let events = nodes[1].node.get_and_clear_pending_events();
8554                         match events[0] {
8555                                 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8556                                         nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
8557                                 }
8558                                 _ => panic!("Unexpected event"),
8559                         }
8560                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
8561                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8562                 }
8563
8564                 // If we try to accept a channel from another peer non-0conf it will fail.
8565                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8566                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8567                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8568                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8569                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8570                 let events = nodes[1].node.get_and_clear_pending_events();
8571                 match events[0] {
8572                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8573                                 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
8574                                         Err(APIError::APIMisuseError { err }) =>
8575                                                 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
8576                                         _ => panic!(),
8577                                 }
8578                         }
8579                         _ => panic!("Unexpected event"),
8580                 }
8581                 assert_eq!(get_err_msg!(nodes[1], last_random_pk).channel_id,
8582                         open_channel_msg.temporary_channel_id);
8583
8584                 // ...however if we accept the same channel 0conf it should work just fine.
8585                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8586                 let events = nodes[1].node.get_and_clear_pending_events();
8587                 match events[0] {
8588                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8589                                 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
8590                         }
8591                         _ => panic!("Unexpected event"),
8592                 }
8593                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8594         }
8595
8596         #[cfg(anchors)]
8597         #[test]
8598         fn test_anchors_zero_fee_htlc_tx_fallback() {
8599                 // Tests that if both nodes support anchors, but the remote node does not want to accept
8600                 // anchor channels at the moment, an error it sent to the local node such that it can retry
8601                 // the channel without the anchors feature.
8602                 let chanmon_cfgs = create_chanmon_cfgs(2);
8603                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8604                 let mut anchors_config = test_default_channel_config();
8605                 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
8606                 anchors_config.manually_accept_inbound_channels = true;
8607                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
8608                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8609
8610                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
8611                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8612                 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
8613
8614                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8615                 let events = nodes[1].node.get_and_clear_pending_events();
8616                 match events[0] {
8617                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8618                                 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
8619                         }
8620                         _ => panic!("Unexpected event"),
8621                 }
8622
8623                 let error_msg = get_err_msg!(nodes[1], nodes[0].node.get_our_node_id());
8624                 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
8625
8626                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8627                 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
8628
8629                 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
8630         }
8631 }
8632
8633 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
8634 pub mod bench {
8635         use crate::chain::Listen;
8636         use crate::chain::chainmonitor::{ChainMonitor, Persist};
8637         use crate::chain::keysinterface::{EntropySource, KeysManager, InMemorySigner};
8638         use crate::ln::channelmanager::{self, BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId};
8639         use crate::ln::functional_test_utils::*;
8640         use crate::ln::msgs::{ChannelMessageHandler, Init};
8641         use crate::routing::gossip::NetworkGraph;
8642         use crate::routing::router::{PaymentParameters, get_route};
8643         use crate::util::test_utils;
8644         use crate::util::config::UserConfig;
8645         use crate::util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
8646
8647         use bitcoin::hashes::Hash;
8648         use bitcoin::hashes::sha256::Hash as Sha256;
8649         use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
8650
8651         use crate::sync::{Arc, Mutex};
8652
8653         use test::Bencher;
8654
8655         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
8656                 node: &'a ChannelManager<
8657                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
8658                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
8659                                 &'a test_utils::TestLogger, &'a P>,
8660                         &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
8661                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
8662                         &'a test_utils::TestLogger>,
8663         }
8664
8665         #[cfg(test)]
8666         #[bench]
8667         fn bench_sends(bench: &mut Bencher) {
8668                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
8669         }
8670
8671         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
8672                 // Do a simple benchmark of sending a payment back and forth between two nodes.
8673                 // Note that this is unrealistic as each payment send will require at least two fsync
8674                 // calls per node.
8675                 let network = bitcoin::Network::Testnet;
8676                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
8677
8678                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
8679                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
8680                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
8681                 let scorer = Mutex::new(test_utils::TestScorer::new());
8682                 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(genesis_hash, &logger_a)), &scorer);
8683
8684                 let mut config: UserConfig = Default::default();
8685                 config.channel_handshake_config.minimum_depth = 1;
8686
8687                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
8688                 let seed_a = [1u8; 32];
8689                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
8690                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
8691                         network,
8692                         best_block: BestBlock::from_genesis(network),
8693                 });
8694                 let node_a_holder = NodeHolder { node: &node_a };
8695
8696                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
8697                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
8698                 let seed_b = [2u8; 32];
8699                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
8700                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
8701                         network,
8702                         best_block: BestBlock::from_genesis(network),
8703                 });
8704                 let node_b_holder = NodeHolder { node: &node_b };
8705
8706                 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
8707                 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
8708                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
8709                 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
8710                 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
8711
8712                 let tx;
8713                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
8714                         tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
8715                                 value: 8_000_000, script_pubkey: output_script,
8716                         }]};
8717                         node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
8718                 } else { panic!(); }
8719
8720                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
8721                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
8722
8723                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
8724
8725                 let block = Block {
8726                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
8727                         txdata: vec![tx],
8728                 };
8729                 Listen::block_connected(&node_a, &block, 1);
8730                 Listen::block_connected(&node_b, &block, 1);
8731
8732                 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
8733                 let msg_events = node_a.get_and_clear_pending_msg_events();
8734                 assert_eq!(msg_events.len(), 2);
8735                 match msg_events[0] {
8736                         MessageSendEvent::SendChannelReady { ref msg, .. } => {
8737                                 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
8738                                 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
8739                         },
8740                         _ => panic!(),
8741                 }
8742                 match msg_events[1] {
8743                         MessageSendEvent::SendChannelUpdate { .. } => {},
8744                         _ => panic!(),
8745                 }
8746
8747                 let events_a = node_a.get_and_clear_pending_events();
8748                 assert_eq!(events_a.len(), 1);
8749                 match events_a[0] {
8750                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8751                                 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
8752                         },
8753                         _ => panic!("Unexpected event"),
8754                 }
8755
8756                 let events_b = node_b.get_and_clear_pending_events();
8757                 assert_eq!(events_b.len(), 1);
8758                 match events_b[0] {
8759                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8760                                 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
8761                         },
8762                         _ => panic!("Unexpected event"),
8763                 }
8764
8765                 let dummy_graph = NetworkGraph::new(genesis_hash, &logger_a);
8766
8767                 let mut payment_count: u64 = 0;
8768                 macro_rules! send_payment {
8769                         ($node_a: expr, $node_b: expr) => {
8770                                 let usable_channels = $node_a.list_usable_channels();
8771                                 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
8772                                         .with_features($node_b.invoice_features());
8773                                 let scorer = test_utils::TestScorer::new();
8774                                 let seed = [3u8; 32];
8775                                 let keys_manager = KeysManager::new(&seed, 42, 42);
8776                                 let random_seed_bytes = keys_manager.get_secure_random_bytes();
8777                                 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
8778                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
8779
8780                                 let mut payment_preimage = PaymentPreimage([0; 32]);
8781                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
8782                                 payment_count += 1;
8783                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
8784                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
8785
8786                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8787                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
8788                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
8789                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
8790                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
8791                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
8792                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
8793                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
8794
8795                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
8796                                 expect_payment_claimable!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
8797                                 $node_b.claim_funds(payment_preimage);
8798                                 expect_payment_claimed!(NodeHolder { node: &$node_b }, payment_hash, 10_000);
8799
8800                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
8801                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
8802                                                 assert_eq!(node_id, $node_a.get_our_node_id());
8803                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
8804                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
8805                                         },
8806                                         _ => panic!("Failed to generate claim event"),
8807                                 }
8808
8809                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
8810                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
8811                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
8812                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
8813
8814                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
8815                         }
8816                 }
8817
8818                 bench.iter(|| {
8819                         send_payment!(node_a, node_b);
8820                         send_payment!(node_b, node_a);
8821                 });
8822         }
8823 }