1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`find_route`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 //! [`find_route`]: crate::routing::router::find_route
22 use bitcoin::blockdata::block::BlockHeader;
23 use bitcoin::blockdata::transaction::Transaction;
24 use bitcoin::blockdata::constants::genesis_block;
25 use bitcoin::network::constants::Network;
27 use bitcoin::hashes::Hash;
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hash_types::{BlockHash, Txid};
32 use bitcoin::secp256k1::{SecretKey,PublicKey};
33 use bitcoin::secp256k1::Secp256k1;
34 use bitcoin::secp256k1::ecdh::SharedSecret;
35 use bitcoin::{LockTime, secp256k1, Sequence};
38 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
39 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
40 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
41 use crate::chain::transaction::{OutPoint, TransactionData};
42 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
43 // construct one themselves.
44 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
45 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
46 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
47 #[cfg(any(feature = "_test_utils", test))]
48 use crate::ln::features::InvoiceFeatures;
49 use crate::routing::router::{PaymentParameters, Route, RouteHop, RoutePath, RouteParameters};
51 use crate::ln::onion_utils;
52 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
53 use crate::ln::wire::Encode;
54 use crate::chain::keysinterface::{Sign, KeysInterface, KeysManager, Recipient};
55 use crate::util::config::{UserConfig, ChannelConfig};
56 use crate::util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination};
57 use crate::util::{byte_utils, events};
58 use crate::util::wakers::{Future, Notifier};
59 use crate::util::scid_utils::fake_scid;
60 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
61 use crate::util::logger::{Level, Logger};
62 use crate::util::errors::APIError;
65 use crate::prelude::*;
67 use core::cell::RefCell;
69 use crate::sync::{Arc, Mutex, MutexGuard, RwLock, RwLockReadGuard};
70 use core::sync::atomic::{AtomicUsize, Ordering};
71 use core::time::Duration;
74 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
77 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
78 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
81 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
82 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
83 // before we forward it.
85 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
86 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
87 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
88 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
89 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
92 pub(super) enum PendingHTLCRouting {
94 onion_packet: msgs::OnionPacket,
95 /// The SCID from the onion that we should forward to. This could be a "real" SCID, an
96 /// outbound SCID alias, or a phantom node SCID.
97 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
100 payment_data: msgs::FinalOnionHopData,
101 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
102 phantom_shared_secret: Option<[u8; 32]>,
105 payment_preimage: PaymentPreimage,
106 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
110 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
111 pub(super) struct PendingHTLCInfo {
112 pub(super) routing: PendingHTLCRouting,
113 pub(super) incoming_shared_secret: [u8; 32],
114 payment_hash: PaymentHash,
115 pub(super) amt_to_forward: u64,
116 pub(super) outgoing_cltv_value: u32,
119 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
120 pub(super) enum HTLCFailureMsg {
121 Relay(msgs::UpdateFailHTLC),
122 Malformed(msgs::UpdateFailMalformedHTLC),
125 /// Stores whether we can't forward an HTLC or relevant forwarding info
126 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
127 pub(super) enum PendingHTLCStatus {
128 Forward(PendingHTLCInfo),
129 Fail(HTLCFailureMsg),
132 pub(super) enum HTLCForwardInfo {
134 forward_info: PendingHTLCInfo,
136 // These fields are produced in `forward_htlcs()` and consumed in
137 // `process_pending_htlc_forwards()` for constructing the
138 // `HTLCSource::PreviousHopData` for failed and forwarded
141 // Note that this may be an outbound SCID alias for the associated channel.
142 prev_short_channel_id: u64,
144 prev_funding_outpoint: OutPoint,
148 err_packet: msgs::OnionErrorPacket,
152 /// Tracks the inbound corresponding to an outbound HTLC
153 #[derive(Clone, Hash, PartialEq, Eq)]
154 pub(crate) struct HTLCPreviousHopData {
155 // Note that this may be an outbound SCID alias for the associated channel.
156 short_channel_id: u64,
158 incoming_packet_shared_secret: [u8; 32],
159 phantom_shared_secret: Option<[u8; 32]>,
161 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
162 // channel with a preimage provided by the forward channel.
167 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
169 /// This is only here for backwards-compatibility in serialization, in the future it can be
170 /// removed, breaking clients running 0.0.106 and earlier.
171 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
173 /// Contains the payer-provided preimage.
174 Spontaneous(PaymentPreimage),
177 /// HTLCs that are to us and can be failed/claimed by the user
178 struct ClaimableHTLC {
179 prev_hop: HTLCPreviousHopData,
181 /// The amount (in msats) of this MPP part
183 onion_payload: OnionPayload,
185 /// The sum total of all MPP parts
189 /// A payment identifier used to uniquely identify a payment to LDK.
190 /// (C-not exported) as we just use [u8; 32] directly
191 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
192 pub struct PaymentId(pub [u8; 32]);
194 impl Writeable for PaymentId {
195 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
200 impl Readable for PaymentId {
201 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
202 let buf: [u8; 32] = Readable::read(r)?;
206 /// Tracks the inbound corresponding to an outbound HTLC
207 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
208 #[derive(Clone, PartialEq, Eq)]
209 pub(crate) enum HTLCSource {
210 PreviousHopData(HTLCPreviousHopData),
213 session_priv: SecretKey,
214 /// Technically we can recalculate this from the route, but we cache it here to avoid
215 /// doing a double-pass on route when we get a failure back
216 first_hop_htlc_msat: u64,
217 payment_id: PaymentId,
218 payment_secret: Option<PaymentSecret>,
219 payment_params: Option<PaymentParameters>,
222 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
223 impl core::hash::Hash for HTLCSource {
224 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
226 HTLCSource::PreviousHopData(prev_hop_data) => {
228 prev_hop_data.hash(hasher);
230 HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payment_params } => {
233 session_priv[..].hash(hasher);
234 payment_id.hash(hasher);
235 payment_secret.hash(hasher);
236 first_hop_htlc_msat.hash(hasher);
237 payment_params.hash(hasher);
242 #[cfg(not(feature = "grind_signatures"))]
245 pub fn dummy() -> Self {
246 HTLCSource::OutboundRoute {
248 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
249 first_hop_htlc_msat: 0,
250 payment_id: PaymentId([2; 32]),
251 payment_secret: None,
252 payment_params: None,
257 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
258 pub(super) enum HTLCFailReason {
260 err: msgs::OnionErrorPacket,
268 struct ReceiveError {
274 /// Return value for claim_funds_from_hop
275 enum ClaimFundsFromHop {
277 MonitorUpdateFail(PublicKey, MsgHandleErrInternal, Option<u64>),
282 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
284 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
285 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
286 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
287 /// channel_state lock. We then return the set of things that need to be done outside the lock in
288 /// this struct and call handle_error!() on it.
290 struct MsgHandleErrInternal {
291 err: msgs::LightningError,
292 chan_id: Option<([u8; 32], u64)>, // If Some a channel of ours has been closed
293 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
295 impl MsgHandleErrInternal {
297 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
299 err: LightningError {
301 action: msgs::ErrorAction::SendErrorMessage {
302 msg: msgs::ErrorMessage {
309 shutdown_finish: None,
313 fn ignore_no_close(err: String) -> Self {
315 err: LightningError {
317 action: msgs::ErrorAction::IgnoreError,
320 shutdown_finish: None,
324 fn from_no_close(err: msgs::LightningError) -> Self {
325 Self { err, chan_id: None, shutdown_finish: None }
328 fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u64, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
330 err: LightningError {
332 action: msgs::ErrorAction::SendErrorMessage {
333 msg: msgs::ErrorMessage {
339 chan_id: Some((channel_id, user_channel_id)),
340 shutdown_finish: Some((shutdown_res, channel_update)),
344 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
347 ChannelError::Warn(msg) => LightningError {
349 action: msgs::ErrorAction::SendWarningMessage {
350 msg: msgs::WarningMessage {
354 log_level: Level::Warn,
357 ChannelError::Ignore(msg) => LightningError {
359 action: msgs::ErrorAction::IgnoreError,
361 ChannelError::Close(msg) => LightningError {
363 action: msgs::ErrorAction::SendErrorMessage {
364 msg: msgs::ErrorMessage {
372 shutdown_finish: None,
377 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
378 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
379 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
380 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
381 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
383 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
384 /// be sent in the order they appear in the return value, however sometimes the order needs to be
385 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
386 /// they were originally sent). In those cases, this enum is also returned.
387 #[derive(Clone, PartialEq)]
388 pub(super) enum RAACommitmentOrder {
389 /// Send the CommitmentUpdate messages first
391 /// Send the RevokeAndACK message first
395 // Note this is only exposed in cfg(test):
396 pub(super) struct ChannelHolder<Signer: Sign> {
397 pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
398 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
400 /// Outbound SCID aliases are added here once the channel is available for normal use, with
401 /// SCIDs being added once the funding transaction is confirmed at the channel's required
402 /// confirmation depth.
403 pub(super) short_to_chan_info: HashMap<u64, (PublicKey, [u8; 32])>,
404 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
405 /// failed/claimed by the user.
407 /// Note that while this is held in the same mutex as the channels themselves, no consistency
408 /// guarantees are made about the channels given here actually existing anymore by the time you
410 claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
411 /// Messages to send to peers - pushed to in the same lock that they are generated in (except
412 /// for broadcast messages, where ordering isn't as strict).
413 pub(super) pending_msg_events: Vec<MessageSendEvent>,
416 /// Events which we process internally but cannot be procsesed immediately at the generation site
417 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
418 /// quite some time lag.
419 enum BackgroundEvent {
420 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
421 /// commitment transaction.
422 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
425 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
426 /// the latest Init features we heard from the peer.
428 latest_features: InitFeatures,
431 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
432 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
434 /// For users who don't want to bother doing their own payment preimage storage, we also store that
437 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
438 /// and instead encoding it in the payment secret.
439 struct PendingInboundPayment {
440 /// The payment secret that the sender must use for us to accept this payment
441 payment_secret: PaymentSecret,
442 /// Time at which this HTLC expires - blocks with a header time above this value will result in
443 /// this payment being removed.
445 /// Arbitrary identifier the user specifies (or not)
446 user_payment_id: u64,
447 // Other required attributes of the payment, optionally enforced:
448 payment_preimage: Option<PaymentPreimage>,
449 min_value_msat: Option<u64>,
452 /// Stores the session_priv for each part of a payment that is still pending. For versions 0.0.102
453 /// and later, also stores information for retrying the payment.
454 pub(crate) enum PendingOutboundPayment {
456 session_privs: HashSet<[u8; 32]>,
459 session_privs: HashSet<[u8; 32]>,
460 payment_hash: PaymentHash,
461 payment_secret: Option<PaymentSecret>,
462 pending_amt_msat: u64,
463 /// Used to track the fee paid. Only present if the payment was serialized on 0.0.103+.
464 pending_fee_msat: Option<u64>,
465 /// The total payment amount across all paths, used to verify that a retry is not overpaying.
467 /// Our best known block height at the time this payment was initiated.
468 starting_block_height: u32,
470 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
471 /// been resolved. This ensures we don't look up pending payments in ChannelMonitors on restart
472 /// and add a pending payment that was already fulfilled.
474 session_privs: HashSet<[u8; 32]>,
475 payment_hash: Option<PaymentHash>,
476 timer_ticks_without_htlcs: u8,
478 /// When a payer gives up trying to retry a payment, they inform us, letting us generate a
479 /// `PaymentFailed` event when all HTLCs have irrevocably failed. This avoids a number of race
480 /// conditions in MPP-aware payment retriers (1), where the possibility of multiple
481 /// `PaymentPathFailed` events with `all_paths_failed` can be pending at once, confusing a
482 /// downstream event handler as to when a payment has actually failed.
484 /// (1) https://github.com/lightningdevkit/rust-lightning/issues/1164
486 session_privs: HashSet<[u8; 32]>,
487 payment_hash: PaymentHash,
491 impl PendingOutboundPayment {
492 fn is_fulfilled(&self) -> bool {
494 PendingOutboundPayment::Fulfilled { .. } => true,
498 fn abandoned(&self) -> bool {
500 PendingOutboundPayment::Abandoned { .. } => true,
504 fn get_pending_fee_msat(&self) -> Option<u64> {
506 PendingOutboundPayment::Retryable { pending_fee_msat, .. } => pending_fee_msat.clone(),
511 fn payment_hash(&self) -> Option<PaymentHash> {
513 PendingOutboundPayment::Legacy { .. } => None,
514 PendingOutboundPayment::Retryable { payment_hash, .. } => Some(*payment_hash),
515 PendingOutboundPayment::Fulfilled { payment_hash, .. } => *payment_hash,
516 PendingOutboundPayment::Abandoned { payment_hash, .. } => Some(*payment_hash),
520 fn mark_fulfilled(&mut self) {
521 let mut session_privs = HashSet::new();
522 core::mem::swap(&mut session_privs, match self {
523 PendingOutboundPayment::Legacy { session_privs } |
524 PendingOutboundPayment::Retryable { session_privs, .. } |
525 PendingOutboundPayment::Fulfilled { session_privs, .. } |
526 PendingOutboundPayment::Abandoned { session_privs, .. }
529 let payment_hash = self.payment_hash();
530 *self = PendingOutboundPayment::Fulfilled { session_privs, payment_hash, timer_ticks_without_htlcs: 0 };
533 fn mark_abandoned(&mut self) -> Result<(), ()> {
534 let mut session_privs = HashSet::new();
535 let our_payment_hash;
536 core::mem::swap(&mut session_privs, match self {
537 PendingOutboundPayment::Legacy { .. } |
538 PendingOutboundPayment::Fulfilled { .. } =>
540 PendingOutboundPayment::Retryable { session_privs, payment_hash, .. } |
541 PendingOutboundPayment::Abandoned { session_privs, payment_hash, .. } => {
542 our_payment_hash = *payment_hash;
546 *self = PendingOutboundPayment::Abandoned { session_privs, payment_hash: our_payment_hash };
550 /// panics if path is None and !self.is_fulfilled
551 fn remove(&mut self, session_priv: &[u8; 32], path: Option<&Vec<RouteHop>>) -> bool {
552 let remove_res = match self {
553 PendingOutboundPayment::Legacy { session_privs } |
554 PendingOutboundPayment::Retryable { session_privs, .. } |
555 PendingOutboundPayment::Fulfilled { session_privs, .. } |
556 PendingOutboundPayment::Abandoned { session_privs, .. } => {
557 session_privs.remove(session_priv)
561 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
562 let path = path.expect("Fulfilling a payment should always come with a path");
563 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
564 *pending_amt_msat -= path_last_hop.fee_msat;
565 if let Some(fee_msat) = pending_fee_msat.as_mut() {
566 *fee_msat -= path.get_path_fees();
573 fn insert(&mut self, session_priv: [u8; 32], path: &Vec<RouteHop>) -> bool {
574 let insert_res = match self {
575 PendingOutboundPayment::Legacy { session_privs } |
576 PendingOutboundPayment::Retryable { session_privs, .. } => {
577 session_privs.insert(session_priv)
579 PendingOutboundPayment::Fulfilled { .. } => false,
580 PendingOutboundPayment::Abandoned { .. } => false,
583 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
584 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
585 *pending_amt_msat += path_last_hop.fee_msat;
586 if let Some(fee_msat) = pending_fee_msat.as_mut() {
587 *fee_msat += path.get_path_fees();
594 fn remaining_parts(&self) -> usize {
596 PendingOutboundPayment::Legacy { session_privs } |
597 PendingOutboundPayment::Retryable { session_privs, .. } |
598 PendingOutboundPayment::Fulfilled { session_privs, .. } |
599 PendingOutboundPayment::Abandoned { session_privs, .. } => {
606 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
607 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
608 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
609 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
610 /// issues such as overly long function definitions. Note that the ChannelManager can take any
611 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
612 /// concrete type of the KeysManager.
614 /// (C-not exported) as Arcs don't make sense in bindings
615 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
617 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
618 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
619 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
620 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
621 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
622 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
623 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
624 /// concrete type of the KeysManager.
626 /// (C-not exported) as Arcs don't make sense in bindings
627 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
629 /// Manager which keeps track of a number of channels and sends messages to the appropriate
630 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
632 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
633 /// to individual Channels.
635 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
636 /// all peers during write/read (though does not modify this instance, only the instance being
637 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
638 /// called funding_transaction_generated for outbound channels).
640 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
641 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
642 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
643 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
644 /// the serialization process). If the deserialized version is out-of-date compared to the
645 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
646 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
648 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
649 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
650 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
651 /// block_connected() to step towards your best block) upon deserialization before using the
654 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
655 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
656 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
657 /// offline for a full minute. In order to track this, you must call
658 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
660 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
661 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
662 /// essentially you should default to using a SimpleRefChannelManager, and use a
663 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
664 /// you're using lightning-net-tokio.
667 // The tree structure below illustrates the lock order requirements for the different locks of the
668 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
669 // and should then be taken in the order of the lowest to the highest level in the tree.
670 // Note that locks on different branches shall not be taken at the same time, as doing so will
671 // create a new lock order for those specific locks in the order they were taken.
675 // `total_consistency_lock`
677 // |__`forward_htlcs`
679 // |__`channel_state`
683 // | |__`per_peer_state`
685 // | |__`outbound_scid_aliases`
687 // | |__`pending_inbound_payments`
689 // | |__`pending_outbound_payments`
693 // | |__`pending_events`
695 // | |__`pending_background_events`
697 pub struct ChannelManager<M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
698 where M::Target: chain::Watch<<K::Target as KeysInterface>::Signer>,
699 T::Target: BroadcasterInterface,
700 K::Target: KeysInterface,
701 F::Target: FeeEstimator,
704 default_configuration: UserConfig,
705 genesis_hash: BlockHash,
706 fee_estimator: LowerBoundedFeeEstimator<F>,
710 /// See `ChannelManager` struct-level documentation for lock order requirements.
712 pub(super) best_block: RwLock<BestBlock>,
714 best_block: RwLock<BestBlock>,
715 secp_ctx: Secp256k1<secp256k1::All>,
717 /// See `ChannelManager` struct-level documentation for lock order requirements.
718 #[cfg(any(test, feature = "_test_utils"))]
719 pub(super) channel_state: Mutex<ChannelHolder<<K::Target as KeysInterface>::Signer>>,
720 #[cfg(not(any(test, feature = "_test_utils")))]
721 channel_state: Mutex<ChannelHolder<<K::Target as KeysInterface>::Signer>>,
723 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
724 /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
725 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
726 /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
728 /// See `ChannelManager` struct-level documentation for lock order requirements.
729 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
731 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
732 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
733 /// (if the channel has been force-closed), however we track them here to prevent duplicative
734 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
735 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
736 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
737 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
738 /// after reloading from disk while replaying blocks against ChannelMonitors.
740 /// See `PendingOutboundPayment` documentation for more info.
742 /// See `ChannelManager` struct-level documentation for lock order requirements.
743 pending_outbound_payments: Mutex<HashMap<PaymentId, PendingOutboundPayment>>,
745 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
747 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
748 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
749 /// and via the classic SCID.
751 /// Note that no consistency guarantees are made about the existence of a channel with the
752 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
754 /// See `ChannelManager` struct-level documentation for lock order requirements.
756 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
758 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
760 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
761 /// and some closed channels which reached a usable state prior to being closed. This is used
762 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
763 /// active channel list on load.
765 /// See `ChannelManager` struct-level documentation for lock order requirements.
766 outbound_scid_aliases: Mutex<HashSet<u64>>,
768 /// `channel_id` -> `counterparty_node_id`.
770 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
771 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
772 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
774 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
775 /// the corresponding channel for the event, as we only have access to the `channel_id` during
776 /// the handling of the events.
779 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
780 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
781 /// would break backwards compatability.
782 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
783 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
784 /// required to access the channel with the `counterparty_node_id`.
786 /// See `ChannelManager` struct-level documentation for lock order requirements.
787 id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
789 our_network_key: SecretKey,
790 our_network_pubkey: PublicKey,
792 inbound_payment_key: inbound_payment::ExpandedKey,
794 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
795 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
796 /// we encrypt the namespace identifier using these bytes.
798 /// [fake scids]: crate::util::scid_utils::fake_scid
799 fake_scid_rand_bytes: [u8; 32],
801 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
802 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
803 /// keeping additional state.
804 probing_cookie_secret: [u8; 32],
806 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
807 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
808 /// very far in the past, and can only ever be up to two hours in the future.
809 highest_seen_timestamp: AtomicUsize,
811 /// The bulk of our storage will eventually be here (channels and message queues and the like).
812 /// If we are connected to a peer we always at least have an entry here, even if no channels
813 /// are currently open with that peer.
814 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
815 /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
818 /// See `ChannelManager` struct-level documentation for lock order requirements.
819 per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
821 /// See `ChannelManager` struct-level documentation for lock order requirements.
822 pending_events: Mutex<Vec<events::Event>>,
823 /// See `ChannelManager` struct-level documentation for lock order requirements.
824 pending_background_events: Mutex<Vec<BackgroundEvent>>,
825 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
826 /// Essentially just when we're serializing ourselves out.
827 /// Taken first everywhere where we are making changes before any other locks.
828 /// When acquiring this lock in read mode, rather than acquiring it directly, call
829 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
830 /// Notifier the lock contains sends out a notification when the lock is released.
831 total_consistency_lock: RwLock<()>,
833 persistence_notifier: Notifier,
840 /// Chain-related parameters used to construct a new `ChannelManager`.
842 /// Typically, the block-specific parameters are derived from the best block hash for the network,
843 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
844 /// are not needed when deserializing a previously constructed `ChannelManager`.
845 #[derive(Clone, Copy, PartialEq)]
846 pub struct ChainParameters {
847 /// The network for determining the `chain_hash` in Lightning messages.
848 pub network: Network,
850 /// The hash and height of the latest block successfully connected.
852 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
853 pub best_block: BestBlock,
856 #[derive(Copy, Clone, PartialEq)]
862 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
863 /// desirable to notify any listeners on `await_persistable_update_timeout`/
864 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
865 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
866 /// sending the aforementioned notification (since the lock being released indicates that the
867 /// updates are ready for persistence).
869 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
870 /// notify or not based on whether relevant changes have been made, providing a closure to
871 /// `optionally_notify` which returns a `NotifyOption`.
872 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
873 persistence_notifier: &'a Notifier,
875 // We hold onto this result so the lock doesn't get released immediately.
876 _read_guard: RwLockReadGuard<'a, ()>,
879 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
880 fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
881 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
884 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
885 let read_guard = lock.read().unwrap();
887 PersistenceNotifierGuard {
888 persistence_notifier: notifier,
889 should_persist: persist_check,
890 _read_guard: read_guard,
895 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
897 if (self.should_persist)() == NotifyOption::DoPersist {
898 self.persistence_notifier.notify();
903 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
904 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
906 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
908 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
909 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
910 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
911 /// the maximum required amount in lnd as of March 2021.
912 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
914 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
915 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
917 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
919 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
920 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
921 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
922 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
923 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
924 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
925 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
926 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
927 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
928 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
929 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
930 // routing failure for any HTLC sender picking up an LDK node among the first hops.
931 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
933 /// Minimum CLTV difference between the current block height and received inbound payments.
934 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
936 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
937 // any payments to succeed. Further, we don't want payments to fail if a block was found while
938 // a payment was being routed, so we add an extra block to be safe.
939 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
941 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
942 // ie that if the next-hop peer fails the HTLC within
943 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
944 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
945 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
946 // LATENCY_GRACE_PERIOD_BLOCKS.
949 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
951 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
952 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
955 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
957 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
958 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
960 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
961 /// idempotency of payments by [`PaymentId`]. See
962 /// [`ChannelManager::remove_stale_resolved_payments`].
963 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
965 /// Information needed for constructing an invoice route hint for this channel.
966 #[derive(Clone, Debug, PartialEq)]
967 pub struct CounterpartyForwardingInfo {
968 /// Base routing fee in millisatoshis.
969 pub fee_base_msat: u32,
970 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
971 pub fee_proportional_millionths: u32,
972 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
973 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
974 /// `cltv_expiry_delta` for more details.
975 pub cltv_expiry_delta: u16,
978 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
979 /// to better separate parameters.
980 #[derive(Clone, Debug, PartialEq)]
981 pub struct ChannelCounterparty {
982 /// The node_id of our counterparty
983 pub node_id: PublicKey,
984 /// The Features the channel counterparty provided upon last connection.
985 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
986 /// many routing-relevant features are present in the init context.
987 pub features: InitFeatures,
988 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
989 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
990 /// claiming at least this value on chain.
992 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
994 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
995 pub unspendable_punishment_reserve: u64,
996 /// Information on the fees and requirements that the counterparty requires when forwarding
997 /// payments to us through this channel.
998 pub forwarding_info: Option<CounterpartyForwardingInfo>,
999 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1000 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1001 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1002 pub outbound_htlc_minimum_msat: Option<u64>,
1003 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1004 pub outbound_htlc_maximum_msat: Option<u64>,
1007 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
1008 #[derive(Clone, Debug, PartialEq)]
1009 pub struct ChannelDetails {
1010 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1011 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1012 /// Note that this means this value is *not* persistent - it can change once during the
1013 /// lifetime of the channel.
1014 pub channel_id: [u8; 32],
1015 /// Parameters which apply to our counterparty. See individual fields for more information.
1016 pub counterparty: ChannelCounterparty,
1017 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1018 /// our counterparty already.
1020 /// Note that, if this has been set, `channel_id` will be equivalent to
1021 /// `funding_txo.unwrap().to_channel_id()`.
1022 pub funding_txo: Option<OutPoint>,
1023 /// The features which this channel operates with. See individual features for more info.
1025 /// `None` until negotiation completes and the channel type is finalized.
1026 pub channel_type: Option<ChannelTypeFeatures>,
1027 /// The position of the funding transaction in the chain. None if the funding transaction has
1028 /// not yet been confirmed and the channel fully opened.
1030 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1031 /// payments instead of this. See [`get_inbound_payment_scid`].
1033 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1034 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1036 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1037 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1038 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1039 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1040 /// [`confirmations_required`]: Self::confirmations_required
1041 pub short_channel_id: Option<u64>,
1042 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1043 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1044 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1047 /// This will be `None` as long as the channel is not available for routing outbound payments.
1049 /// [`short_channel_id`]: Self::short_channel_id
1050 /// [`confirmations_required`]: Self::confirmations_required
1051 pub outbound_scid_alias: Option<u64>,
1052 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1053 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1054 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1055 /// when they see a payment to be routed to us.
1057 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1058 /// previous values for inbound payment forwarding.
1060 /// [`short_channel_id`]: Self::short_channel_id
1061 pub inbound_scid_alias: Option<u64>,
1062 /// The value, in satoshis, of this channel as appears in the funding output
1063 pub channel_value_satoshis: u64,
1064 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1065 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1066 /// this value on chain.
1068 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1070 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1072 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1073 pub unspendable_punishment_reserve: Option<u64>,
1074 /// The `user_channel_id` passed in to create_channel, or 0 if the channel was inbound.
1075 pub user_channel_id: u64,
1076 /// Our total balance. This is the amount we would get if we close the channel.
1077 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1078 /// amount is not likely to be recoverable on close.
1080 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1081 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1082 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1083 /// This does not consider any on-chain fees.
1085 /// See also [`ChannelDetails::outbound_capacity_msat`]
1086 pub balance_msat: u64,
1087 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1088 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1089 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1090 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1092 /// See also [`ChannelDetails::balance_msat`]
1094 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1095 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1096 /// should be able to spend nearly this amount.
1097 pub outbound_capacity_msat: u64,
1098 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1099 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1100 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1101 /// to use a limit as close as possible to the HTLC limit we can currently send.
1103 /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1104 pub next_outbound_htlc_limit_msat: u64,
1105 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1106 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1107 /// available for inclusion in new inbound HTLCs).
1108 /// Note that there are some corner cases not fully handled here, so the actual available
1109 /// inbound capacity may be slightly higher than this.
1111 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1112 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1113 /// However, our counterparty should be able to spend nearly this amount.
1114 pub inbound_capacity_msat: u64,
1115 /// The number of required confirmations on the funding transaction before the funding will be
1116 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1117 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1118 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1119 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1121 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1123 /// [`is_outbound`]: ChannelDetails::is_outbound
1124 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1125 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1126 pub confirmations_required: Option<u32>,
1127 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1128 /// until we can claim our funds after we force-close the channel. During this time our
1129 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1130 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1131 /// time to claim our non-HTLC-encumbered funds.
1133 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1134 pub force_close_spend_delay: Option<u16>,
1135 /// True if the channel was initiated (and thus funded) by us.
1136 pub is_outbound: bool,
1137 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1138 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1139 /// required confirmation count has been reached (and we were connected to the peer at some
1140 /// point after the funding transaction received enough confirmations). The required
1141 /// confirmation count is provided in [`confirmations_required`].
1143 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1144 pub is_channel_ready: bool,
1145 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1146 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1148 /// This is a strict superset of `is_channel_ready`.
1149 pub is_usable: bool,
1150 /// True if this channel is (or will be) publicly-announced.
1151 pub is_public: bool,
1152 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1153 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1154 pub inbound_htlc_minimum_msat: Option<u64>,
1155 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1156 pub inbound_htlc_maximum_msat: Option<u64>,
1157 /// Set of configurable parameters that affect channel operation.
1159 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1160 pub config: Option<ChannelConfig>,
1163 impl ChannelDetails {
1164 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1165 /// This should be used for providing invoice hints or in any other context where our
1166 /// counterparty will forward a payment to us.
1168 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1169 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1170 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1171 self.inbound_scid_alias.or(self.short_channel_id)
1174 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1175 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1176 /// we're sending or forwarding a payment outbound over this channel.
1178 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1179 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1180 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1181 self.short_channel_id.or(self.outbound_scid_alias)
1185 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
1186 /// Err() type describing which state the payment is in, see the description of individual enum
1187 /// states for more.
1188 #[derive(Clone, Debug)]
1189 pub enum PaymentSendFailure {
1190 /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
1191 /// send the payment at all. No channel state has been changed or messages sent to peers, and
1192 /// once you've changed the parameter at error, you can freely retry the payment in full.
1193 ParameterError(APIError),
1194 /// A parameter in a single path which was passed to send_payment was invalid, preventing us
1195 /// from attempting to send the payment at all. No channel state has been changed or messages
1196 /// sent to peers, and once you've changed the parameter at error, you can freely retry the
1197 /// payment in full.
1199 /// The results here are ordered the same as the paths in the route object which was passed to
1201 PathParameterError(Vec<Result<(), APIError>>),
1202 /// All paths which were attempted failed to send, with no channel state change taking place.
1203 /// You can freely retry the payment in full (though you probably want to do so over different
1204 /// paths than the ones selected).
1206 /// [`ChannelManager::abandon_payment`] does *not* need to be called for this payment and
1207 /// [`ChannelManager::retry_payment`] will *not* work for this payment.
1208 AllFailedRetrySafe(Vec<APIError>),
1209 /// Some paths which were attempted failed to send, though possibly not all. At least some
1210 /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
1211 /// in over-/re-payment.
1213 /// The results here are ordered the same as the paths in the route object which was passed to
1214 /// send_payment, and any `Err`s which are not [`APIError::MonitorUpdateInProgress`] can be
1215 /// safely retried via [`ChannelManager::retry_payment`].
1217 /// Any entries which contain `Err(APIError::MonitorUpdateInprogress)` or `Ok(())` MUST NOT be
1218 /// retried as they will result in over-/re-payment. These HTLCs all either successfully sent
1219 /// (in the case of `Ok(())`) or will send once a [`MonitorEvent::Completed`] is provided for
1220 /// the next-hop channel with the latest update_id.
1222 /// The errors themselves, in the same order as the route hops.
1223 results: Vec<Result<(), APIError>>,
1224 /// If some paths failed without irrevocably committing to the new HTLC(s), this will
1225 /// contain a [`RouteParameters`] object which can be used to calculate a new route that
1226 /// will pay all remaining unpaid balance.
1227 failed_paths_retry: Option<RouteParameters>,
1228 /// The payment id for the payment, which is now at least partially pending.
1229 payment_id: PaymentId,
1233 /// Route hints used in constructing invoices for [phantom node payents].
1235 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1237 pub struct PhantomRouteHints {
1238 /// The list of channels to be included in the invoice route hints.
1239 pub channels: Vec<ChannelDetails>,
1240 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1242 pub phantom_scid: u64,
1243 /// The pubkey of the real backing node that would ultimately receive the payment.
1244 pub real_node_pubkey: PublicKey,
1247 macro_rules! handle_error {
1248 ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1251 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1252 #[cfg(debug_assertions)]
1254 // In testing, ensure there are no deadlocks where the lock is already held upon
1255 // entering the macro.
1256 assert!($self.channel_state.try_lock().is_ok());
1257 assert!($self.pending_events.try_lock().is_ok());
1260 let mut msg_events = Vec::with_capacity(2);
1262 if let Some((shutdown_res, update_option)) = shutdown_finish {
1263 $self.finish_force_close_channel(shutdown_res);
1264 if let Some(update) = update_option {
1265 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1269 if let Some((channel_id, user_channel_id)) = chan_id {
1270 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1271 channel_id, user_channel_id,
1272 reason: ClosureReason::ProcessingError { err: err.err.clone() }
1277 log_error!($self.logger, "{}", err.err);
1278 if let msgs::ErrorAction::IgnoreError = err.action {
1280 msg_events.push(events::MessageSendEvent::HandleError {
1281 node_id: $counterparty_node_id,
1282 action: err.action.clone()
1286 if !msg_events.is_empty() {
1287 $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
1290 // Return error in case higher-API need one
1297 macro_rules! update_maps_on_chan_removal {
1298 ($self: expr, $short_to_chan_info: expr, $channel: expr) => {
1299 if let Some(short_id) = $channel.get_short_channel_id() {
1300 $short_to_chan_info.remove(&short_id);
1302 // If the channel was never confirmed on-chain prior to its closure, remove the
1303 // outbound SCID alias we used for it from the collision-prevention set. While we
1304 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1305 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1306 // opening a million channels with us which are closed before we ever reach the funding
1308 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1309 debug_assert!(alias_removed);
1311 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1312 $short_to_chan_info.remove(&$channel.outbound_scid_alias());
1316 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1317 macro_rules! convert_chan_err {
1318 ($self: ident, $err: expr, $short_to_chan_info: expr, $channel: expr, $channel_id: expr) => {
1320 ChannelError::Warn(msg) => {
1321 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1323 ChannelError::Ignore(msg) => {
1324 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1326 ChannelError::Close(msg) => {
1327 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1328 update_maps_on_chan_removal!($self, $short_to_chan_info, $channel);
1329 let shutdown_res = $channel.force_shutdown(true);
1330 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1331 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1337 macro_rules! break_chan_entry {
1338 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
1342 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_chan_info, $entry.get_mut(), $entry.key());
1344 $entry.remove_entry();
1352 macro_rules! try_chan_entry {
1353 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
1357 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_chan_info, $entry.get_mut(), $entry.key());
1359 $entry.remove_entry();
1367 macro_rules! remove_channel {
1368 ($self: expr, $channel_state: expr, $entry: expr) => {
1370 let channel = $entry.remove_entry().1;
1371 update_maps_on_chan_removal!($self, $channel_state.short_to_chan_info, channel);
1377 macro_rules! handle_monitor_update_res {
1378 ($self: ident, $err: expr, $short_to_chan_info: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $resend_channel_ready: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr, $chan_id: expr) => {
1380 ChannelMonitorUpdateStatus::PermanentFailure => {
1381 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure", log_bytes!($chan_id[..]));
1382 update_maps_on_chan_removal!($self, $short_to_chan_info, $chan);
1383 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
1384 // chain in a confused state! We need to move them into the ChannelMonitor which
1385 // will be responsible for failing backwards once things confirm on-chain.
1386 // It's ok that we drop $failed_forwards here - at this point we'd rather they
1387 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
1388 // us bother trying to claim it just to forward on to another peer. If we're
1389 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
1390 // given up the preimage yet, so might as well just wait until the payment is
1391 // retried, avoiding the on-chain fees.
1392 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.get_user_id(),
1393 $chan.force_shutdown(false), $self.get_channel_update_for_broadcast(&$chan).ok() ));
1396 ChannelMonitorUpdateStatus::InProgress => {
1397 log_info!($self.logger, "Disabling channel {} due to monitor update in progress. On restore will send {} and process {} forwards, {} fails, and {} fulfill finalizations",
1398 log_bytes!($chan_id[..]),
1399 if $resend_commitment && $resend_raa {
1400 match $action_type {
1401 RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
1402 RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
1404 } else if $resend_commitment { "commitment" }
1405 else if $resend_raa { "RAA" }
1407 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
1408 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len(),
1409 (&$failed_finalized_fulfills as &Vec<HTLCSource>).len());
1410 if !$resend_commitment {
1411 debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
1414 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
1416 $chan.monitor_updating_paused($resend_raa, $resend_commitment, $resend_channel_ready, $failed_forwards, $failed_fails, $failed_finalized_fulfills);
1417 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
1419 ChannelMonitorUpdateStatus::Completed => {
1424 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $resend_channel_ready: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr) => { {
1425 let (res, drop) = handle_monitor_update_res!($self, $err, $channel_state.short_to_chan_info, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $resend_channel_ready, $failed_forwards, $failed_fails, $failed_finalized_fulfills, $entry.key());
1427 $entry.remove_entry();
1431 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $chan_id: expr, COMMITMENT_UPDATE_ONLY) => { {
1432 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst);
1433 handle_monitor_update_res!($self, $err, $channel_state, $entry, $action_type, false, true, false, Vec::new(), Vec::new(), Vec::new(), $chan_id)
1435 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $chan_id: expr, NO_UPDATE) => {
1436 handle_monitor_update_res!($self, $err, $channel_state, $entry, $action_type, false, false, false, Vec::new(), Vec::new(), Vec::new(), $chan_id)
1438 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_channel_ready: expr, OPTIONALLY_RESEND_FUNDING_LOCKED) => {
1439 handle_monitor_update_res!($self, $err, $channel_state, $entry, $action_type, false, false, $resend_channel_ready, Vec::new(), Vec::new(), Vec::new())
1441 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1442 handle_monitor_update_res!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, false, Vec::new(), Vec::new(), Vec::new())
1444 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1445 handle_monitor_update_res!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, false, $failed_forwards, $failed_fails, Vec::new())
1449 macro_rules! send_channel_ready {
1450 ($short_to_chan_info: expr, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {
1451 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1452 node_id: $channel.get_counterparty_node_id(),
1453 msg: $channel_ready_msg,
1455 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1456 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1457 let outbound_alias_insert = $short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1458 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1459 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1460 if let Some(real_scid) = $channel.get_short_channel_id() {
1461 let scid_insert = $short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1462 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1463 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1468 macro_rules! emit_channel_ready_event {
1469 ($self: expr, $channel: expr) => {
1470 if $channel.should_emit_channel_ready_event() {
1472 let mut pending_events = $self.pending_events.lock().unwrap();
1473 pending_events.push(events::Event::ChannelReady {
1474 channel_id: $channel.channel_id(),
1475 user_channel_id: $channel.get_user_id(),
1476 counterparty_node_id: $channel.get_counterparty_node_id(),
1477 channel_type: $channel.get_channel_type().clone(),
1480 $channel.set_channel_ready_event_emitted();
1485 macro_rules! handle_chan_restoration_locked {
1486 ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
1487 $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
1488 $pending_forwards: expr, $funding_broadcastable: expr, $channel_ready: expr, $announcement_sigs: expr) => { {
1489 let mut htlc_forwards = None;
1491 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
1492 let chanmon_update_is_none = chanmon_update.is_none();
1493 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
1495 let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
1496 if !forwards.is_empty() {
1497 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().unwrap_or($channel_entry.get().outbound_scid_alias()),
1498 $channel_entry.get().get_funding_txo().unwrap(), forwards));
1501 if chanmon_update.is_some() {
1502 // On reconnect, we, by definition, only resend a channel_ready if there have been
1503 // no commitment updates, so the only channel monitor update which could also be
1504 // associated with a channel_ready would be the funding_created/funding_signed
1505 // monitor update. That monitor update failing implies that we won't send
1506 // channel_ready until it's been updated, so we can't have a channel_ready and a
1507 // monitor update here (so we don't bother to handle it correctly below).
1508 assert!($channel_ready.is_none());
1509 // A channel monitor update makes no sense without either a channel_ready or a
1510 // commitment update to process after it. Since we can't have a channel_ready, we
1511 // only bother to handle the monitor-update + commitment_update case below.
1512 assert!($commitment_update.is_some());
1515 if let Some(msg) = $channel_ready {
1516 // Similar to the above, this implies that we're letting the channel_ready fly
1517 // before it should be allowed to.
1518 assert!(chanmon_update.is_none());
1519 send_channel_ready!($channel_state.short_to_chan_info, $channel_state.pending_msg_events, $channel_entry.get(), msg);
1521 if let Some(msg) = $announcement_sigs {
1522 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
1523 node_id: counterparty_node_id,
1528 emit_channel_ready_event!($self, $channel_entry.get_mut());
1530 let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
1531 if let Some(monitor_update) = chanmon_update {
1532 // We only ever broadcast a funding transaction in response to a funding_signed
1533 // message and the resulting monitor update. Thus, on channel_reestablish
1534 // message handling we can't have a funding transaction to broadcast. When
1535 // processing a monitor update finishing resulting in a funding broadcast, we
1536 // cannot have a second monitor update, thus this case would indicate a bug.
1537 assert!(funding_broadcastable.is_none());
1538 // Given we were just reconnected or finished updating a channel monitor, the
1539 // only case where we can get a new ChannelMonitorUpdate would be if we also
1540 // have some commitment updates to send as well.
1541 assert!($commitment_update.is_some());
1542 match $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
1543 ChannelMonitorUpdateStatus::Completed => {},
1545 // channel_reestablish doesn't guarantee the order it returns is sensical
1546 // for the messages it returns, but if we're setting what messages to
1547 // re-transmit on monitor update success, we need to make sure it is sane.
1548 let mut order = $order;
1550 order = RAACommitmentOrder::CommitmentFirst;
1552 break handle_monitor_update_res!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
1557 macro_rules! handle_cs { () => {
1558 if let Some(update) = $commitment_update {
1559 $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1560 node_id: counterparty_node_id,
1565 macro_rules! handle_raa { () => {
1566 if let Some(revoke_and_ack) = $raa {
1567 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
1568 node_id: counterparty_node_id,
1569 msg: revoke_and_ack,
1574 RAACommitmentOrder::CommitmentFirst => {
1578 RAACommitmentOrder::RevokeAndACKFirst => {
1583 if let Some(tx) = funding_broadcastable {
1584 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1585 $self.tx_broadcaster.broadcast_transaction(&tx);
1590 if chanmon_update_is_none {
1591 // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1592 // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1593 // should *never* end up calling back to `chain_monitor.update_channel()`.
1594 assert!(res.is_ok());
1597 (htlc_forwards, res, counterparty_node_id)
1601 macro_rules! post_handle_chan_restoration {
1602 ($self: ident, $locked_res: expr) => { {
1603 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1605 let _ = handle_error!($self, res, counterparty_node_id);
1607 if let Some(forwards) = htlc_forwards {
1608 $self.forward_htlcs(&mut [forwards][..]);
1613 impl<M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<M, T, K, F, L>
1614 where M::Target: chain::Watch<<K::Target as KeysInterface>::Signer>,
1615 T::Target: BroadcasterInterface,
1616 K::Target: KeysInterface,
1617 F::Target: FeeEstimator,
1620 /// Constructs a new ChannelManager to hold several channels and route between them.
1622 /// This is the main "logic hub" for all channel-related actions, and implements
1623 /// ChannelMessageHandler.
1625 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1627 /// Users need to notify the new ChannelManager when a new block is connected or
1628 /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1629 /// from after `params.latest_hash`.
1630 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1631 let mut secp_ctx = Secp256k1::new();
1632 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1633 let inbound_pmt_key_material = keys_manager.get_inbound_payment_key_material();
1634 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1636 default_configuration: config.clone(),
1637 genesis_hash: genesis_block(params.network).header.block_hash(),
1638 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1642 best_block: RwLock::new(params.best_block),
1644 channel_state: Mutex::new(ChannelHolder{
1645 by_id: HashMap::new(),
1646 short_to_chan_info: HashMap::new(),
1647 claimable_htlcs: HashMap::new(),
1648 pending_msg_events: Vec::new(),
1650 outbound_scid_aliases: Mutex::new(HashSet::new()),
1651 pending_inbound_payments: Mutex::new(HashMap::new()),
1652 pending_outbound_payments: Mutex::new(HashMap::new()),
1653 forward_htlcs: Mutex::new(HashMap::new()),
1654 id_to_peer: Mutex::new(HashMap::new()),
1656 our_network_key: keys_manager.get_node_secret(Recipient::Node).unwrap(),
1657 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret(Recipient::Node).unwrap()),
1660 inbound_payment_key: expanded_inbound_key,
1661 fake_scid_rand_bytes: keys_manager.get_secure_random_bytes(),
1663 probing_cookie_secret: keys_manager.get_secure_random_bytes(),
1665 highest_seen_timestamp: AtomicUsize::new(0),
1667 per_peer_state: RwLock::new(HashMap::new()),
1669 pending_events: Mutex::new(Vec::new()),
1670 pending_background_events: Mutex::new(Vec::new()),
1671 total_consistency_lock: RwLock::new(()),
1672 persistence_notifier: Notifier::new(),
1680 /// Gets the current configuration applied to all new channels.
1681 pub fn get_current_default_configuration(&self) -> &UserConfig {
1682 &self.default_configuration
1685 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1686 let height = self.best_block.read().unwrap().height();
1687 let mut outbound_scid_alias = 0;
1690 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1691 outbound_scid_alias += 1;
1693 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.keys_manager);
1695 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1699 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1704 /// Creates a new outbound channel to the given remote node and with the given value.
1706 /// `user_channel_id` will be provided back as in
1707 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1708 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to 0
1709 /// for inbound channels, so you may wish to avoid using 0 for `user_channel_id` here.
1710 /// `user_channel_id` has no meaning inside of LDK, it is simply copied to events and otherwise
1713 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1714 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1716 /// Note that we do not check if you are currently connected to the given peer. If no
1717 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1718 /// the channel eventually being silently forgotten (dropped on reload).
1720 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1721 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1722 /// [`ChannelDetails::channel_id`] until after
1723 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1724 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1725 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1727 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1728 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1729 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1730 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u64, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1731 if channel_value_satoshis < 1000 {
1732 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1736 let per_peer_state = self.per_peer_state.read().unwrap();
1737 match per_peer_state.get(&their_network_key) {
1738 Some(peer_state) => {
1739 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1740 let peer_state = peer_state.lock().unwrap();
1741 let their_features = &peer_state.latest_features;
1742 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1743 match Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key,
1744 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1745 self.best_block.read().unwrap().height(), outbound_scid_alias)
1749 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1754 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", their_network_key) }),
1757 let res = channel.get_open_channel(self.genesis_hash.clone());
1759 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1760 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1761 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1763 let temporary_channel_id = channel.channel_id();
1764 let mut channel_state = self.channel_state.lock().unwrap();
1765 match channel_state.by_id.entry(temporary_channel_id) {
1766 hash_map::Entry::Occupied(_) => {
1768 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1770 panic!("RNG is bad???");
1773 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1775 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1776 node_id: their_network_key,
1779 Ok(temporary_channel_id)
1782 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<K::Target as KeysInterface>::Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1783 let mut res = Vec::new();
1785 let channel_state = self.channel_state.lock().unwrap();
1786 res.reserve(channel_state.by_id.len());
1787 for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1788 let balance = channel.get_available_balances();
1789 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1790 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1791 res.push(ChannelDetails {
1792 channel_id: (*channel_id).clone(),
1793 counterparty: ChannelCounterparty {
1794 node_id: channel.get_counterparty_node_id(),
1795 features: InitFeatures::empty(),
1796 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1797 forwarding_info: channel.counterparty_forwarding_info(),
1798 // Ensures that we have actually received the `htlc_minimum_msat` value
1799 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1800 // message (as they are always the first message from the counterparty).
1801 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1802 // default `0` value set by `Channel::new_outbound`.
1803 outbound_htlc_minimum_msat: if channel.have_received_message() {
1804 Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1805 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1807 funding_txo: channel.get_funding_txo(),
1808 // Note that accept_channel (or open_channel) is always the first message, so
1809 // `have_received_message` indicates that type negotiation has completed.
1810 channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1811 short_channel_id: channel.get_short_channel_id(),
1812 outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1813 inbound_scid_alias: channel.latest_inbound_scid_alias(),
1814 channel_value_satoshis: channel.get_value_satoshis(),
1815 unspendable_punishment_reserve: to_self_reserve_satoshis,
1816 balance_msat: balance.balance_msat,
1817 inbound_capacity_msat: balance.inbound_capacity_msat,
1818 outbound_capacity_msat: balance.outbound_capacity_msat,
1819 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1820 user_channel_id: channel.get_user_id(),
1821 confirmations_required: channel.minimum_depth(),
1822 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1823 is_outbound: channel.is_outbound(),
1824 is_channel_ready: channel.is_usable(),
1825 is_usable: channel.is_live(),
1826 is_public: channel.should_announce(),
1827 inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1828 inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1829 config: Some(channel.config()),
1833 let per_peer_state = self.per_peer_state.read().unwrap();
1834 for chan in res.iter_mut() {
1835 if let Some(peer_state) = per_peer_state.get(&chan.counterparty.node_id) {
1836 chan.counterparty.features = peer_state.lock().unwrap().latest_features.clone();
1842 /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1843 /// more information.
1844 pub fn list_channels(&self) -> Vec<ChannelDetails> {
1845 self.list_channels_with_filter(|_| true)
1848 /// Gets the list of usable channels, in random order. Useful as an argument to [`find_route`]
1849 /// to ensure non-announced channels are used.
1851 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1852 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1855 /// [`find_route`]: crate::routing::router::find_route
1856 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1857 // Note we use is_live here instead of usable which leads to somewhat confused
1858 // internal/external nomenclature, but that's ok cause that's probably what the user
1859 // really wanted anyway.
1860 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1863 /// Helper function that issues the channel close events
1864 fn issue_channel_close_events(&self, channel: &Channel<<K::Target as KeysInterface>::Signer>, closure_reason: ClosureReason) {
1865 let mut pending_events_lock = self.pending_events.lock().unwrap();
1866 match channel.unbroadcasted_funding() {
1867 Some(transaction) => {
1868 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1872 pending_events_lock.push(events::Event::ChannelClosed {
1873 channel_id: channel.channel_id(),
1874 user_channel_id: channel.get_user_id(),
1875 reason: closure_reason
1879 fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1880 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1882 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1883 let result: Result<(), _> = loop {
1884 let mut channel_state_lock = self.channel_state.lock().unwrap();
1885 let channel_state = &mut *channel_state_lock;
1886 match channel_state.by_id.entry(channel_id.clone()) {
1887 hash_map::Entry::Occupied(mut chan_entry) => {
1888 if *counterparty_node_id != chan_entry.get().get_counterparty_node_id(){
1889 return Err(APIError::APIMisuseError { err: "The passed counterparty_node_id doesn't match the channel's counterparty node_id".to_owned() });
1891 let per_peer_state = self.per_peer_state.read().unwrap();
1892 let (shutdown_msg, monitor_update, htlcs) = match per_peer_state.get(&counterparty_node_id) {
1893 Some(peer_state) => {
1894 let peer_state = peer_state.lock().unwrap();
1895 let their_features = &peer_state.latest_features;
1896 chan_entry.get_mut().get_shutdown(&self.keys_manager, their_features, target_feerate_sats_per_1000_weight)?
1898 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", counterparty_node_id) }),
1900 failed_htlcs = htlcs;
1902 // Update the monitor with the shutdown script if necessary.
1903 if let Some(monitor_update) = monitor_update {
1904 let update_res = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update);
1905 let (result, is_permanent) =
1906 handle_monitor_update_res!(self, update_res, channel_state.short_to_chan_info, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, chan_entry.key(), NO_UPDATE);
1908 remove_channel!(self, channel_state, chan_entry);
1913 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1914 node_id: *counterparty_node_id,
1918 if chan_entry.get().is_shutdown() {
1919 let channel = remove_channel!(self, channel_state, chan_entry);
1920 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1921 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1925 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1929 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1933 for htlc_source in failed_htlcs.drain(..) {
1934 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
1935 self.fail_htlc_backwards_internal(htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }, receiver);
1938 let _ = handle_error!(self, result, *counterparty_node_id);
1942 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1943 /// will be accepted on the given channel, and after additional timeout/the closing of all
1944 /// pending HTLCs, the channel will be closed on chain.
1946 /// * If we are the channel initiator, we will pay between our [`Background`] and
1947 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1949 /// * If our counterparty is the channel initiator, we will require a channel closing
1950 /// transaction feerate of at least our [`Background`] feerate or the feerate which
1951 /// would appear on a force-closure transaction, whichever is lower. We will allow our
1952 /// counterparty to pay as much fee as they'd like, however.
1954 /// May generate a SendShutdown message event on success, which should be relayed.
1956 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1957 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1958 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1959 pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1960 self.close_channel_internal(channel_id, counterparty_node_id, None)
1963 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1964 /// will be accepted on the given channel, and after additional timeout/the closing of all
1965 /// pending HTLCs, the channel will be closed on chain.
1967 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1968 /// the channel being closed or not:
1969 /// * If we are the channel initiator, we will pay at least this feerate on the closing
1970 /// transaction. The upper-bound is set by
1971 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1972 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1973 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1974 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1975 /// will appear on a force-closure transaction, whichever is lower).
1977 /// May generate a SendShutdown message event on success, which should be relayed.
1979 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1980 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1981 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1982 pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1983 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
1987 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1988 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1989 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1990 for htlc_source in failed_htlcs.drain(..) {
1991 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
1992 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1993 self.fail_htlc_backwards_internal(source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }, receiver);
1995 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1996 // There isn't anything we can do if we get an update failure - we're already
1997 // force-closing. The monitor update on the required in-memory copy should broadcast
1998 // the latest local state, which is the best we can do anyway. Thus, it is safe to
1999 // ignore the result here.
2000 let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
2004 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2005 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2006 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2007 -> Result<PublicKey, APIError> {
2009 let mut channel_state_lock = self.channel_state.lock().unwrap();
2010 let channel_state = &mut *channel_state_lock;
2011 if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
2012 if chan.get().get_counterparty_node_id() != *peer_node_id {
2013 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
2015 if let Some(peer_msg) = peer_msg {
2016 self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
2018 self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
2020 remove_channel!(self, channel_state, chan)
2022 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
2025 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2026 self.finish_force_close_channel(chan.force_shutdown(broadcast));
2027 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2028 let mut channel_state = self.channel_state.lock().unwrap();
2029 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2034 Ok(chan.get_counterparty_node_id())
2037 fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2038 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2039 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2040 Ok(counterparty_node_id) => {
2041 self.channel_state.lock().unwrap().pending_msg_events.push(
2042 events::MessageSendEvent::HandleError {
2043 node_id: counterparty_node_id,
2044 action: msgs::ErrorAction::SendErrorMessage {
2045 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2055 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2056 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2057 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2059 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2060 -> Result<(), APIError> {
2061 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2064 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2065 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2066 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2068 /// You can always get the latest local transaction(s) to broadcast from
2069 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2070 pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2071 -> Result<(), APIError> {
2072 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2075 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2076 /// for each to the chain and rejecting new HTLCs on each.
2077 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2078 for chan in self.list_channels() {
2079 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2083 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2084 /// local transaction(s).
2085 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2086 for chan in self.list_channels() {
2087 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2091 fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2092 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2094 // final_incorrect_cltv_expiry
2095 if hop_data.outgoing_cltv_value != cltv_expiry {
2096 return Err(ReceiveError {
2097 msg: "Upstream node set CLTV to the wrong value",
2099 err_data: byte_utils::be32_to_array(cltv_expiry).to_vec()
2102 // final_expiry_too_soon
2103 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2104 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2105 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2106 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2107 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2108 if (hop_data.outgoing_cltv_value as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2109 return Err(ReceiveError {
2111 err_data: Vec::new(),
2112 msg: "The final CLTV expiry is too soon to handle",
2115 if hop_data.amt_to_forward > amt_msat {
2116 return Err(ReceiveError {
2118 err_data: byte_utils::be64_to_array(amt_msat).to_vec(),
2119 msg: "Upstream node sent less than we were supposed to receive in payment",
2123 let routing = match hop_data.format {
2124 msgs::OnionHopDataFormat::Legacy { .. } => {
2125 return Err(ReceiveError {
2126 err_code: 0x4000|0x2000|3,
2127 err_data: Vec::new(),
2128 msg: "We require payment_secrets",
2131 msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2132 return Err(ReceiveError {
2133 err_code: 0x4000|22,
2134 err_data: Vec::new(),
2135 msg: "Got non final data with an HMAC of 0",
2138 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2139 if payment_data.is_some() && keysend_preimage.is_some() {
2140 return Err(ReceiveError {
2141 err_code: 0x4000|22,
2142 err_data: Vec::new(),
2143 msg: "We don't support MPP keysend payments",
2145 } else if let Some(data) = payment_data {
2146 PendingHTLCRouting::Receive {
2148 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2149 phantom_shared_secret,
2151 } else if let Some(payment_preimage) = keysend_preimage {
2152 // We need to check that the sender knows the keysend preimage before processing this
2153 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2154 // could discover the final destination of X, by probing the adjacent nodes on the route
2155 // with a keysend payment of identical payment hash to X and observing the processing
2156 // time discrepancies due to a hash collision with X.
2157 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2158 if hashed_preimage != payment_hash {
2159 return Err(ReceiveError {
2160 err_code: 0x4000|22,
2161 err_data: Vec::new(),
2162 msg: "Payment preimage didn't match payment hash",
2166 PendingHTLCRouting::ReceiveKeysend {
2168 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2171 return Err(ReceiveError {
2172 err_code: 0x4000|0x2000|3,
2173 err_data: Vec::new(),
2174 msg: "We require payment_secrets",
2179 Ok(PendingHTLCInfo {
2182 incoming_shared_secret: shared_secret,
2183 amt_to_forward: amt_msat,
2184 outgoing_cltv_value: hop_data.outgoing_cltv_value,
2188 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2189 macro_rules! return_malformed_err {
2190 ($msg: expr, $err_code: expr) => {
2192 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2193 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2194 channel_id: msg.channel_id,
2195 htlc_id: msg.htlc_id,
2196 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2197 failure_code: $err_code,
2203 if let Err(_) = msg.onion_routing_packet.public_key {
2204 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2207 let shared_secret = SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key).secret_bytes();
2209 if msg.onion_routing_packet.version != 0 {
2210 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2211 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2212 //the hash doesn't really serve any purpose - in the case of hashing all data, the
2213 //receiving node would have to brute force to figure out which version was put in the
2214 //packet by the node that send us the message, in the case of hashing the hop_data, the
2215 //node knows the HMAC matched, so they already know what is there...
2216 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2218 macro_rules! return_err {
2219 ($msg: expr, $err_code: expr, $data: expr) => {
2221 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2222 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2223 channel_id: msg.channel_id,
2224 htlc_id: msg.htlc_id,
2225 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
2231 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2233 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2234 return_malformed_err!(err_msg, err_code);
2236 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2237 return_err!(err_msg, err_code, &[0; 0]);
2241 let pending_forward_info = match next_hop {
2242 onion_utils::Hop::Receive(next_hop_data) => {
2244 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2246 // Note that we could obviously respond immediately with an update_fulfill_htlc
2247 // message, however that would leak that we are the recipient of this payment, so
2248 // instead we stay symmetric with the forwarding case, only responding (after a
2249 // delay) once they've send us a commitment_signed!
2250 PendingHTLCStatus::Forward(info)
2252 Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2255 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2256 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2257 let outgoing_packet = msgs::OnionPacket {
2259 public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2260 hop_data: new_packet_bytes,
2261 hmac: next_hop_hmac.clone(),
2264 let short_channel_id = match next_hop_data.format {
2265 msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
2266 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2267 msgs::OnionHopDataFormat::FinalNode { .. } => {
2268 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2272 PendingHTLCStatus::Forward(PendingHTLCInfo {
2273 routing: PendingHTLCRouting::Forward {
2274 onion_packet: outgoing_packet,
2277 payment_hash: msg.payment_hash.clone(),
2278 incoming_shared_secret: shared_secret,
2279 amt_to_forward: next_hop_data.amt_to_forward,
2280 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2285 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2286 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2287 // with a short_channel_id of 0. This is important as various things later assume
2288 // short_channel_id is non-0 in any ::Forward.
2289 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2290 if let Some((err, code, chan_update)) = loop {
2291 let mut channel_state = self.channel_state.lock().unwrap();
2292 let id_option = channel_state.short_to_chan_info.get(&short_channel_id).cloned();
2293 let forwarding_id_opt = match id_option {
2294 None => { // unknown_next_peer
2295 // Note that this is likely a timing oracle for detecting whether an scid is a
2297 if fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id) {
2300 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2303 Some((_cp_id, chan_id)) => Some(chan_id.clone()),
2305 let chan_update_opt = if let Some(forwarding_id) = forwarding_id_opt {
2306 let chan = channel_state.by_id.get_mut(&forwarding_id).unwrap();
2307 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2308 // Note that the behavior here should be identical to the above block - we
2309 // should NOT reveal the existence or non-existence of a private channel if
2310 // we don't allow forwards outbound over them.
2311 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2313 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2314 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2315 // "refuse to forward unless the SCID alias was used", so we pretend
2316 // we don't have the channel here.
2317 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2319 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2321 // Note that we could technically not return an error yet here and just hope
2322 // that the connection is reestablished or monitor updated by the time we get
2323 // around to doing the actual forward, but better to fail early if we can and
2324 // hopefully an attacker trying to path-trace payments cannot make this occur
2325 // on a small/per-node/per-channel scale.
2326 if !chan.is_live() { // channel_disabled
2327 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2329 if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2330 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2332 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *amt_to_forward, *outgoing_cltv_value) {
2333 break Some((err, code, chan_update_opt));
2337 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 { // incorrect_cltv_expiry
2339 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2346 let cur_height = self.best_block.read().unwrap().height() + 1;
2347 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2348 // but we want to be robust wrt to counterparty packet sanitization (see
2349 // HTLC_FAIL_BACK_BUFFER rationale).
2350 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2351 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2353 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2354 break Some(("CLTV expiry is too far in the future", 21, None));
2356 // If the HTLC expires ~now, don't bother trying to forward it to our
2357 // counterparty. They should fail it anyway, but we don't want to bother with
2358 // the round-trips or risk them deciding they definitely want the HTLC and
2359 // force-closing to ensure they get it if we're offline.
2360 // We previously had a much more aggressive check here which tried to ensure
2361 // our counterparty receives an HTLC which has *our* risk threshold met on it,
2362 // but there is no need to do that, and since we're a bit conservative with our
2363 // risk threshold it just results in failing to forward payments.
2364 if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2365 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2371 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2372 if let Some(chan_update) = chan_update {
2373 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2374 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2376 else if code == 0x1000 | 13 {
2377 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2379 else if code == 0x1000 | 20 {
2380 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2381 0u16.write(&mut res).expect("Writes cannot fail");
2383 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2384 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2385 chan_update.write(&mut res).expect("Writes cannot fail");
2387 return_err!(err, code, &res.0[..]);
2392 pending_forward_info
2395 /// Gets the current channel_update for the given channel. This first checks if the channel is
2396 /// public, and thus should be called whenever the result is going to be passed out in a
2397 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2399 /// May be called with channel_state already locked!
2400 fn get_channel_update_for_broadcast(&self, chan: &Channel<<K::Target as KeysInterface>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2401 if !chan.should_announce() {
2402 return Err(LightningError {
2403 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2404 action: msgs::ErrorAction::IgnoreError
2407 if chan.get_short_channel_id().is_none() {
2408 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2410 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2411 self.get_channel_update_for_unicast(chan)
2414 /// Gets the current channel_update for the given channel. This does not check if the channel
2415 /// is public (only returning an Err if the channel does not yet have an assigned short_id),
2416 /// and thus MUST NOT be called unless the recipient of the resulting message has already
2417 /// provided evidence that they know about the existence of the channel.
2418 /// May be called with channel_state already locked!
2419 fn get_channel_update_for_unicast(&self, chan: &Channel<<K::Target as KeysInterface>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2420 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2421 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2422 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2426 self.get_channel_update_for_onion(short_channel_id, chan)
2428 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<K::Target as KeysInterface>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2429 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2430 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2432 let unsigned = msgs::UnsignedChannelUpdate {
2433 chain_hash: self.genesis_hash,
2435 timestamp: chan.get_update_time_counter(),
2436 flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2437 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2438 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2439 htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2440 fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2441 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2442 excess_data: Vec::new(),
2445 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
2446 let sig = self.secp_ctx.sign_ecdsa(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
2448 Ok(msgs::ChannelUpdate {
2454 // Only public for testing, this should otherwise never be called direcly
2455 pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2456 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2457 let prng_seed = self.keys_manager.get_secure_random_bytes();
2458 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2460 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2461 .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
2462 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2463 if onion_utils::route_size_insane(&onion_payloads) {
2464 return Err(APIError::RouteError{err: "Route size too large considering onion data"});
2466 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2468 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2470 let err: Result<(), _> = loop {
2471 let mut channel_lock = self.channel_state.lock().unwrap();
2473 let id = match channel_lock.short_to_chan_info.get(&path.first().unwrap().short_channel_id) {
2474 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2475 Some((_cp_id, chan_id)) => chan_id.clone(),
2478 let channel_state = &mut *channel_lock;
2479 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
2481 if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
2482 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
2484 if !chan.get().is_live() {
2485 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
2487 break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(
2488 htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
2490 session_priv: session_priv.clone(),
2491 first_hop_htlc_msat: htlc_msat,
2493 payment_secret: payment_secret.clone(),
2494 payment_params: payment_params.clone(),
2495 }, onion_packet, &self.logger),
2496 channel_state, chan)
2498 Some((update_add, commitment_signed, monitor_update)) => {
2499 let update_err = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update);
2500 let chan_id = chan.get().channel_id();
2502 handle_monitor_update_res!(self, update_err, channel_state, chan,
2503 RAACommitmentOrder::CommitmentFirst, false, true))
2505 (ChannelMonitorUpdateStatus::PermanentFailure, Err(e)) => break Err(e),
2506 (ChannelMonitorUpdateStatus::Completed, Ok(())) => {},
2507 (ChannelMonitorUpdateStatus::InProgress, Err(_)) => {
2508 // Note that MonitorUpdateInProgress here indicates (per function
2509 // docs) that we will resend the commitment update once monitor
2510 // updating completes. Therefore, we must return an error
2511 // indicating that it is unsafe to retry the payment wholesale,
2512 // which we do in the send_payment check for
2513 // MonitorUpdateInProgress, below.
2514 return Err(APIError::MonitorUpdateInProgress);
2516 _ => unreachable!(),
2519 log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan_id));
2520 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2521 node_id: path.first().unwrap().pubkey,
2522 updates: msgs::CommitmentUpdate {
2523 update_add_htlcs: vec![update_add],
2524 update_fulfill_htlcs: Vec::new(),
2525 update_fail_htlcs: Vec::new(),
2526 update_fail_malformed_htlcs: Vec::new(),
2534 } else { unreachable!(); }
2538 match handle_error!(self, err, path.first().unwrap().pubkey) {
2539 Ok(_) => unreachable!(),
2541 Err(APIError::ChannelUnavailable { err: e.err })
2546 /// Sends a payment along a given route.
2548 /// Value parameters are provided via the last hop in route, see documentation for RouteHop
2549 /// fields for more info.
2551 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2552 /// method will error with an [`APIError::RouteError`]. Note, however, that once a payment
2553 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2554 /// [`Event::PaymentSent`]) LDK will not stop you from sending a second payment with the same
2557 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2558 /// tracking of payments, including state to indicate once a payment has completed. Because you
2559 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2560 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2561 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2563 /// May generate SendHTLCs message(s) event on success, which should be relayed (e.g. via
2564 /// [`PeerManager::process_events`]).
2566 /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2567 /// each entry matching the corresponding-index entry in the route paths, see
2568 /// PaymentSendFailure for more info.
2570 /// In general, a path may raise:
2571 /// * [`APIError::RouteError`] when an invalid route or forwarding parameter (cltv_delta, fee,
2572 /// node public key) is specified.
2573 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2574 /// (including due to previous monitor update failure or new permanent monitor update
2576 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2577 /// relevant updates.
2579 /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2580 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2581 /// different route unless you intend to pay twice!
2583 /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
2584 /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
2585 /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
2586 /// must not contain multiple paths as multi-path payments require a recipient-provided
2589 /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
2590 /// bit set (either as required or as available). If multiple paths are present in the Route,
2591 /// we assume the invoice had the basic_mpp feature set.
2593 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2594 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2595 pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2596 let onion_session_privs = self.add_new_pending_payment(payment_hash, *payment_secret, payment_id, route)?;
2597 self.send_payment_internal(route, payment_hash, payment_secret, None, payment_id, None, onion_session_privs)
2601 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, payment_secret: Option<PaymentSecret>, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2602 self.add_new_pending_payment(payment_hash, payment_secret, payment_id, route)
2605 fn add_new_pending_payment(&self, payment_hash: PaymentHash, payment_secret: Option<PaymentSecret>, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2606 let mut onion_session_privs = Vec::with_capacity(route.paths.len());
2607 for _ in 0..route.paths.len() {
2608 onion_session_privs.push(self.keys_manager.get_secure_random_bytes());
2611 let mut pending_outbounds = self.pending_outbound_payments.lock().unwrap();
2612 match pending_outbounds.entry(payment_id) {
2613 hash_map::Entry::Occupied(_) => Err(PaymentSendFailure::ParameterError(APIError::RouteError {
2614 err: "Payment already in progress"
2616 hash_map::Entry::Vacant(entry) => {
2617 let payment = entry.insert(PendingOutboundPayment::Retryable {
2618 session_privs: HashSet::new(),
2619 pending_amt_msat: 0,
2620 pending_fee_msat: Some(0),
2623 starting_block_height: self.best_block.read().unwrap().height(),
2624 total_msat: route.get_total_amount(),
2627 for (path, session_priv_bytes) in route.paths.iter().zip(onion_session_privs.iter()) {
2628 assert!(payment.insert(*session_priv_bytes, path));
2631 Ok(onion_session_privs)
2636 fn send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2637 if route.paths.len() < 1 {
2638 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
2640 if payment_secret.is_none() && route.paths.len() > 1 {
2641 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError{err: "Payment secret is required for multi-path payments".to_string()}));
2643 let mut total_value = 0;
2644 let our_node_id = self.get_our_node_id();
2645 let mut path_errs = Vec::with_capacity(route.paths.len());
2646 'path_check: for path in route.paths.iter() {
2647 if path.len() < 1 || path.len() > 20 {
2648 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
2649 continue 'path_check;
2651 for (idx, hop) in path.iter().enumerate() {
2652 if idx != path.len() - 1 && hop.pubkey == our_node_id {
2653 path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
2654 continue 'path_check;
2657 total_value += path.last().unwrap().fee_msat;
2658 path_errs.push(Ok(()));
2660 if path_errs.iter().any(|e| e.is_err()) {
2661 return Err(PaymentSendFailure::PathParameterError(path_errs));
2663 if let Some(amt_msat) = recv_value_msat {
2664 debug_assert!(amt_msat >= total_value);
2665 total_value = amt_msat;
2668 let cur_height = self.best_block.read().unwrap().height() + 1;
2669 let mut results = Vec::new();
2670 debug_assert_eq!(route.paths.len(), onion_session_privs.len());
2671 for (path, session_priv) in route.paths.iter().zip(onion_session_privs.into_iter()) {
2672 let mut path_res = self.send_payment_along_path(&path, &route.payment_params, &payment_hash, payment_secret, total_value, cur_height, payment_id, &keysend_preimage, session_priv);
2675 Err(APIError::MonitorUpdateInProgress) => {
2676 // While a MonitorUpdateInProgress is an Err(_), the payment is still
2677 // considered "in flight" and we shouldn't remove it from the
2678 // PendingOutboundPayment set.
2681 let mut pending_outbounds = self.pending_outbound_payments.lock().unwrap();
2682 if let Some(payment) = pending_outbounds.get_mut(&payment_id) {
2683 let removed = payment.remove(&session_priv, Some(path));
2684 debug_assert!(removed, "This can't happen as the payment has an entry for this path added by callers");
2686 debug_assert!(false, "This can't happen as the payment was added by callers");
2687 path_res = Err(APIError::APIMisuseError { err: "Internal error: payment disappeared during processing. Please report this bug!".to_owned() });
2691 results.push(path_res);
2693 let mut has_ok = false;
2694 let mut has_err = false;
2695 let mut pending_amt_unsent = 0;
2696 let mut max_unsent_cltv_delta = 0;
2697 for (res, path) in results.iter().zip(route.paths.iter()) {
2698 if res.is_ok() { has_ok = true; }
2699 if res.is_err() { has_err = true; }
2700 if let &Err(APIError::MonitorUpdateInProgress) = res {
2701 // MonitorUpdateInProgress is inherently unsafe to retry, so we call it a
2705 } else if res.is_err() {
2706 pending_amt_unsent += path.last().unwrap().fee_msat;
2707 max_unsent_cltv_delta = cmp::max(max_unsent_cltv_delta, path.last().unwrap().cltv_expiry_delta);
2710 if has_err && has_ok {
2711 Err(PaymentSendFailure::PartialFailure {
2714 failed_paths_retry: if pending_amt_unsent != 0 {
2715 if let Some(payment_params) = &route.payment_params {
2716 Some(RouteParameters {
2717 payment_params: payment_params.clone(),
2718 final_value_msat: pending_amt_unsent,
2719 final_cltv_expiry_delta: max_unsent_cltv_delta,
2725 // If we failed to send any paths, we should remove the new PaymentId from the
2726 // `pending_outbound_payments` map, as the user isn't expected to `abandon_payment`.
2727 let removed = self.pending_outbound_payments.lock().unwrap().remove(&payment_id).is_some();
2728 debug_assert!(removed, "We should always have a pending payment to remove here");
2729 Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
2735 /// Retries a payment along the given [`Route`].
2737 /// Errors returned are a superset of those returned from [`send_payment`], so see
2738 /// [`send_payment`] documentation for more details on errors. This method will also error if the
2739 /// retry amount puts the payment more than 10% over the payment's total amount, if the payment
2740 /// for the given `payment_id` cannot be found (likely due to timeout or success), or if
2741 /// further retries have been disabled with [`abandon_payment`].
2743 /// [`send_payment`]: [`ChannelManager::send_payment`]
2744 /// [`abandon_payment`]: [`ChannelManager::abandon_payment`]
2745 pub fn retry_payment(&self, route: &Route, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2746 const RETRY_OVERFLOW_PERCENTAGE: u64 = 10;
2747 for path in route.paths.iter() {
2748 if path.len() == 0 {
2749 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2750 err: "length-0 path in route".to_string()
2755 let mut onion_session_privs = Vec::with_capacity(route.paths.len());
2756 for _ in 0..route.paths.len() {
2757 onion_session_privs.push(self.keys_manager.get_secure_random_bytes());
2760 let (total_msat, payment_hash, payment_secret) = {
2761 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
2762 match outbounds.get_mut(&payment_id) {
2764 let res = match payment {
2765 PendingOutboundPayment::Retryable {
2766 total_msat, payment_hash, payment_secret, pending_amt_msat, ..
2768 let retry_amt_msat: u64 = route.paths.iter().map(|path| path.last().unwrap().fee_msat).sum();
2769 if retry_amt_msat + *pending_amt_msat > *total_msat * (100 + RETRY_OVERFLOW_PERCENTAGE) / 100 {
2770 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2771 err: format!("retry_amt_msat of {} will put pending_amt_msat (currently: {}) more than 10% over total_payment_amt_msat of {}", retry_amt_msat, pending_amt_msat, total_msat).to_string()
2774 (*total_msat, *payment_hash, *payment_secret)
2776 PendingOutboundPayment::Legacy { .. } => {
2777 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2778 err: "Unable to retry payments that were initially sent on LDK versions prior to 0.0.102".to_string()
2781 PendingOutboundPayment::Fulfilled { .. } => {
2782 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2783 err: "Payment already completed".to_owned()
2786 PendingOutboundPayment::Abandoned { .. } => {
2787 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2788 err: "Payment already abandoned (with some HTLCs still pending)".to_owned()
2792 for (path, session_priv_bytes) in route.paths.iter().zip(onion_session_privs.iter()) {
2793 assert!(payment.insert(*session_priv_bytes, path));
2798 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2799 err: format!("Payment with ID {} not found", log_bytes!(payment_id.0)),
2803 self.send_payment_internal(route, payment_hash, &payment_secret, None, payment_id, Some(total_msat), onion_session_privs)
2806 /// Signals that no further retries for the given payment will occur.
2808 /// After this method returns, any future calls to [`retry_payment`] for the given `payment_id`
2809 /// will fail with [`PaymentSendFailure::ParameterError`]. If no such event has been generated,
2810 /// an [`Event::PaymentFailed`] event will be generated as soon as there are no remaining
2811 /// pending HTLCs for this payment.
2813 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2814 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2815 /// determine the ultimate status of a payment.
2817 /// [`retry_payment`]: Self::retry_payment
2818 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2819 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2820 pub fn abandon_payment(&self, payment_id: PaymentId) {
2821 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2823 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
2824 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
2825 if let Ok(()) = payment.get_mut().mark_abandoned() {
2826 if payment.get().remaining_parts() == 0 {
2827 self.pending_events.lock().unwrap().push(events::Event::PaymentFailed {
2829 payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
2837 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2838 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2839 /// the preimage, it must be a cryptographically secure random value that no intermediate node
2840 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2841 /// never reach the recipient.
2843 /// See [`send_payment`] documentation for more details on the return value of this function
2844 /// and idempotency guarantees provided by the [`PaymentId`] key.
2846 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2847 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2849 /// Note that `route` must have exactly one path.
2851 /// [`send_payment`]: Self::send_payment
2852 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2853 let preimage = match payment_preimage {
2855 None => PaymentPreimage(self.keys_manager.get_secure_random_bytes()),
2857 let payment_hash = PaymentHash(Sha256::hash(&preimage.0).into_inner());
2858 let onion_session_privs = self.add_new_pending_payment(payment_hash, None, payment_id, &route)?;
2860 match self.send_payment_internal(route, payment_hash, &None, Some(preimage), payment_id, None, onion_session_privs) {
2861 Ok(()) => Ok(payment_hash),
2866 /// Send a payment that is probing the given route for liquidity. We calculate the
2867 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2868 /// us to easily discern them from real payments.
2869 pub fn send_probe(&self, hops: Vec<RouteHop>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2870 let payment_id = PaymentId(self.keys_manager.get_secure_random_bytes());
2872 let payment_hash = self.probing_cookie_from_id(&payment_id);
2875 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2876 err: "No need probing a path with less than two hops".to_string()
2880 let route = Route { paths: vec![hops], payment_params: None };
2881 let onion_session_privs = self.add_new_pending_payment(payment_hash, None, payment_id, &route)?;
2883 match self.send_payment_internal(&route, payment_hash, &None, None, payment_id, None, onion_session_privs) {
2884 Ok(()) => Ok((payment_hash, payment_id)),
2889 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2891 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2892 let target_payment_hash = self.probing_cookie_from_id(payment_id);
2893 target_payment_hash == *payment_hash
2896 /// Returns the 'probing cookie' for the given [`PaymentId`].
2897 fn probing_cookie_from_id(&self, payment_id: &PaymentId) -> PaymentHash {
2898 let mut preimage = [0u8; 64];
2899 preimage[..32].copy_from_slice(&self.probing_cookie_secret);
2900 preimage[32..].copy_from_slice(&payment_id.0);
2901 PaymentHash(Sha256::hash(&preimage).into_inner())
2904 /// Handles the generation of a funding transaction, optionally (for tests) with a function
2905 /// which checks the correctness of the funding transaction given the associated channel.
2906 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<K::Target as KeysInterface>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2907 &self, temporary_channel_id: &[u8; 32], _counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2908 ) -> Result<(), APIError> {
2910 let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
2912 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2914 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2915 .map_err(|e| if let ChannelError::Close(msg) = e {
2916 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2917 } else { unreachable!(); })
2920 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
2922 match handle_error!(self, res, chan.get_counterparty_node_id()) {
2923 Ok(funding_msg) => {
2926 Err(_) => { return Err(APIError::ChannelUnavailable {
2927 err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
2932 let mut channel_state = self.channel_state.lock().unwrap();
2933 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2934 node_id: chan.get_counterparty_node_id(),
2937 match channel_state.by_id.entry(chan.channel_id()) {
2938 hash_map::Entry::Occupied(_) => {
2939 panic!("Generated duplicate funding txid?");
2941 hash_map::Entry::Vacant(e) => {
2942 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2943 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2944 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2953 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2954 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2955 Ok(OutPoint { txid: tx.txid(), index: output_index })
2959 /// Call this upon creation of a funding transaction for the given channel.
2961 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2962 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2964 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2965 /// across the p2p network.
2967 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2968 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2970 /// May panic if the output found in the funding transaction is duplicative with some other
2971 /// channel (note that this should be trivially prevented by using unique funding transaction
2972 /// keys per-channel).
2974 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2975 /// counterparty's signature the funding transaction will automatically be broadcast via the
2976 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2978 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2979 /// not currently support replacing a funding transaction on an existing channel. Instead,
2980 /// create a new channel with a conflicting funding transaction.
2982 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
2983 /// the wallet software generating the funding transaction to apply anti-fee sniping as
2984 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
2985 /// for more details.
2987 /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2988 /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
2989 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2990 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2992 for inp in funding_transaction.input.iter() {
2993 if inp.witness.is_empty() {
2994 return Err(APIError::APIMisuseError {
2995 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3000 let height = self.best_block.read().unwrap().height();
3001 // Transactions are evaluated as final by network mempools at the next block. However, the modules
3002 // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
3003 // the wallet module is in advance on the LDK view, allow one more block of headroom.
3004 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 2 {
3005 return Err(APIError::APIMisuseError {
3006 err: "Funding transaction absolute timelock is non-final".to_owned()
3010 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
3011 let mut output_index = None;
3012 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
3013 for (idx, outp) in tx.output.iter().enumerate() {
3014 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
3015 if output_index.is_some() {
3016 return Err(APIError::APIMisuseError {
3017 err: "Multiple outputs matched the expected script and value".to_owned()
3020 if idx > u16::max_value() as usize {
3021 return Err(APIError::APIMisuseError {
3022 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3025 output_index = Some(idx as u16);
3028 if output_index.is_none() {
3029 return Err(APIError::APIMisuseError {
3030 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3033 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
3037 /// Atomically updates the [`ChannelConfig`] for the given channels.
3039 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3040 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3041 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3042 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3044 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3045 /// `counterparty_node_id` is provided.
3047 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3048 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3050 /// If an error is returned, none of the updates should be considered applied.
3052 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3053 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3054 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3055 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3056 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3057 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3058 /// [`APIMisuseError`]: APIError::APIMisuseError
3059 pub fn update_channel_config(
3060 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
3061 ) -> Result<(), APIError> {
3062 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
3063 return Err(APIError::APIMisuseError {
3064 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3068 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
3069 &self.total_consistency_lock, &self.persistence_notifier,
3072 let mut channel_state_lock = self.channel_state.lock().unwrap();
3073 let channel_state = &mut *channel_state_lock;
3074 for channel_id in channel_ids {
3075 let channel_counterparty_node_id = channel_state.by_id.get(channel_id)
3076 .ok_or(APIError::ChannelUnavailable {
3077 err: format!("Channel with ID {} was not found", log_bytes!(*channel_id)),
3079 .get_counterparty_node_id();
3080 if channel_counterparty_node_id != *counterparty_node_id {
3081 return Err(APIError::APIMisuseError {
3082 err: "counterparty node id mismatch".to_owned(),
3086 for channel_id in channel_ids {
3087 let channel = channel_state.by_id.get_mut(channel_id).unwrap();
3088 if !channel.update_config(config) {
3091 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3092 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3093 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3094 channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3095 node_id: channel.get_counterparty_node_id(),
3104 /// Processes HTLCs which are pending waiting on random forward delay.
3106 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3107 /// Will likely generate further events.
3108 pub fn process_pending_htlc_forwards(&self) {
3109 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3111 let mut new_events = Vec::new();
3112 let mut failed_forwards = Vec::new();
3113 let mut phantom_receives: Vec<(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3114 let mut handle_errors = Vec::new();
3116 let mut forward_htlcs = HashMap::new();
3117 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3119 for (short_chan_id, mut pending_forwards) in forward_htlcs {
3120 let mut channel_state_lock = self.channel_state.lock().unwrap();
3121 let channel_state = &mut *channel_state_lock;
3122 if short_chan_id != 0 {
3123 let forward_chan_id = match channel_state.short_to_chan_info.get(&short_chan_id) {
3124 Some((_cp_id, chan_id)) => chan_id.clone(),
3126 for forward_info in pending_forwards.drain(..) {
3127 match forward_info {
3128 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
3129 routing, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
3130 prev_funding_outpoint } => {
3131 macro_rules! failure_handler {
3132 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3133 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3135 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3136 short_channel_id: prev_short_channel_id,
3137 outpoint: prev_funding_outpoint,
3138 htlc_id: prev_htlc_id,
3139 incoming_packet_shared_secret: incoming_shared_secret,
3140 phantom_shared_secret: $phantom_ss,
3143 let reason = if $next_hop_unknown {
3144 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3146 HTLCDestination::FailedPayment{ payment_hash }
3149 failed_forwards.push((htlc_source, payment_hash,
3150 HTLCFailReason::Reason { failure_code: $err_code, data: $err_data },
3156 macro_rules! fail_forward {
3157 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3159 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3163 macro_rules! failed_payment {
3164 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3166 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3170 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3171 let phantom_secret_res = self.keys_manager.get_node_secret(Recipient::PhantomNode);
3172 if phantom_secret_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id) {
3173 let phantom_shared_secret = SharedSecret::new(&onion_packet.public_key.unwrap(), &phantom_secret_res.unwrap()).secret_bytes();
3174 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3176 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3177 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3178 // In this scenario, the phantom would have sent us an
3179 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3180 // if it came from us (the second-to-last hop) but contains the sha256
3182 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3184 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3185 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3189 onion_utils::Hop::Receive(hop_data) => {
3190 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value, Some(phantom_shared_secret)) {
3191 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, vec![(info, prev_htlc_id)])),
3192 Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3198 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3201 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3204 HTLCForwardInfo::FailHTLC { .. } => {
3205 // Channel went away before we could fail it. This implies
3206 // the channel is now on chain and our counterparty is
3207 // trying to broadcast the HTLC-Timeout, but that's their
3208 // problem, not ours.
3215 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
3216 let mut add_htlc_msgs = Vec::new();
3217 let mut fail_htlc_msgs = Vec::new();
3218 for forward_info in pending_forwards.drain(..) {
3219 match forward_info {
3220 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
3221 routing: PendingHTLCRouting::Forward {
3223 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
3224 prev_funding_outpoint } => {
3225 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3226 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3227 short_channel_id: prev_short_channel_id,
3228 outpoint: prev_funding_outpoint,
3229 htlc_id: prev_htlc_id,
3230 incoming_packet_shared_secret: incoming_shared_secret,
3231 // Phantom payments are only PendingHTLCRouting::Receive.
3232 phantom_shared_secret: None,
3234 match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet, &self.logger) {
3236 if let ChannelError::Ignore(msg) = e {
3237 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3239 panic!("Stated return value requirements in send_htlc() were not met");
3241 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3242 failed_forwards.push((htlc_source, payment_hash,
3243 HTLCFailReason::Reason { failure_code, data },
3244 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3250 Some(msg) => { add_htlc_msgs.push(msg); },
3252 // Nothing to do here...we're waiting on a remote
3253 // revoke_and_ack before we can add anymore HTLCs. The Channel
3254 // will automatically handle building the update_add_htlc and
3255 // commitment_signed messages when we can.
3256 // TODO: Do some kind of timer to set the channel as !is_live()
3257 // as we don't really want others relying on us relaying through
3258 // this channel currently :/.
3264 HTLCForwardInfo::AddHTLC { .. } => {
3265 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3267 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3268 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3269 match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
3271 if let ChannelError::Ignore(msg) = e {
3272 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3274 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
3276 // fail-backs are best-effort, we probably already have one
3277 // pending, and if not that's OK, if not, the channel is on
3278 // the chain and sending the HTLC-Timeout is their problem.
3281 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
3283 // Nothing to do here...we're waiting on a remote
3284 // revoke_and_ack before we can update the commitment
3285 // transaction. The Channel will automatically handle
3286 // building the update_fail_htlc and commitment_signed
3287 // messages when we can.
3288 // We don't need any kind of timer here as they should fail
3289 // the channel onto the chain if they can't get our
3290 // update_fail_htlc in time, it's not our problem.
3297 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
3298 let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
3301 // We surely failed send_commitment due to bad keys, in that case
3302 // close channel and then send error message to peer.
3303 let counterparty_node_id = chan.get().get_counterparty_node_id();
3304 let err: Result<(), _> = match e {
3305 ChannelError::Ignore(_) | ChannelError::Warn(_) => {
3306 panic!("Stated return value requirements in send_commitment() were not met");
3308 ChannelError::Close(msg) => {
3309 log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
3310 let mut channel = remove_channel!(self, channel_state, chan);
3311 // ChannelClosed event is generated by handle_error for us.
3312 Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel.channel_id(), channel.get_user_id(), channel.force_shutdown(true), self.get_channel_update_for_broadcast(&channel).ok()))
3315 handle_errors.push((counterparty_node_id, err));
3319 match self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3320 ChannelMonitorUpdateStatus::Completed => {},
3322 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_update_res!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
3326 log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
3327 add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
3328 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3329 node_id: chan.get().get_counterparty_node_id(),
3330 updates: msgs::CommitmentUpdate {
3331 update_add_htlcs: add_htlc_msgs,
3332 update_fulfill_htlcs: Vec::new(),
3333 update_fail_htlcs: fail_htlc_msgs,
3334 update_fail_malformed_htlcs: Vec::new(),
3336 commitment_signed: commitment_msg,
3344 for forward_info in pending_forwards.drain(..) {
3345 match forward_info {
3346 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
3347 routing, incoming_shared_secret, payment_hash, amt_to_forward, .. },
3348 prev_funding_outpoint } => {
3349 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3350 PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3351 let _legacy_hop_data = Some(payment_data.clone());
3352 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3354 PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3355 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3357 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3360 let claimable_htlc = ClaimableHTLC {
3361 prev_hop: HTLCPreviousHopData {
3362 short_channel_id: prev_short_channel_id,
3363 outpoint: prev_funding_outpoint,
3364 htlc_id: prev_htlc_id,
3365 incoming_packet_shared_secret: incoming_shared_secret,
3366 phantom_shared_secret,
3368 value: amt_to_forward,
3370 total_msat: if let Some(data) = &payment_data { data.total_msat } else { amt_to_forward },
3375 macro_rules! fail_htlc {
3376 ($htlc: expr, $payment_hash: expr) => {
3377 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
3378 htlc_msat_height_data.extend_from_slice(
3379 &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
3381 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3382 short_channel_id: $htlc.prev_hop.short_channel_id,
3383 outpoint: prev_funding_outpoint,
3384 htlc_id: $htlc.prev_hop.htlc_id,
3385 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3386 phantom_shared_secret,
3388 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data },
3389 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3394 macro_rules! check_total_value {
3395 ($payment_data: expr, $payment_preimage: expr) => {{
3396 let mut payment_received_generated = false;
3398 events::PaymentPurpose::InvoicePayment {
3399 payment_preimage: $payment_preimage,
3400 payment_secret: $payment_data.payment_secret,
3403 let (_, htlcs) = channel_state.claimable_htlcs.entry(payment_hash)
3404 .or_insert_with(|| (purpose(), Vec::new()));
3405 if htlcs.len() == 1 {
3406 if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3407 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3408 fail_htlc!(claimable_htlc, payment_hash);
3412 let mut total_value = claimable_htlc.value;
3413 for htlc in htlcs.iter() {
3414 total_value += htlc.value;
3415 match &htlc.onion_payload {
3416 OnionPayload::Invoice { .. } => {
3417 if htlc.total_msat != $payment_data.total_msat {
3418 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3419 log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3420 total_value = msgs::MAX_VALUE_MSAT;
3422 if total_value >= msgs::MAX_VALUE_MSAT { break; }
3424 _ => unreachable!(),
3427 if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data.total_msat {
3428 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
3429 log_bytes!(payment_hash.0), total_value, $payment_data.total_msat);
3430 fail_htlc!(claimable_htlc, payment_hash);
3431 } else if total_value == $payment_data.total_msat {
3432 htlcs.push(claimable_htlc);
3433 new_events.push(events::Event::PaymentReceived {
3436 amount_msat: total_value,
3438 payment_received_generated = true;
3440 // Nothing to do - we haven't reached the total
3441 // payment value yet, wait until we receive more
3443 htlcs.push(claimable_htlc);
3445 payment_received_generated
3449 // Check that the payment hash and secret are known. Note that we
3450 // MUST take care to handle the "unknown payment hash" and
3451 // "incorrect payment secret" cases here identically or we'd expose
3452 // that we are the ultimate recipient of the given payment hash.
3453 // Further, we must not expose whether we have any other HTLCs
3454 // associated with the same payment_hash pending or not.
3455 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3456 match payment_secrets.entry(payment_hash) {
3457 hash_map::Entry::Vacant(_) => {
3458 match claimable_htlc.onion_payload {
3459 OnionPayload::Invoice { .. } => {
3460 let payment_data = payment_data.unwrap();
3461 let payment_preimage = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3462 Ok(payment_preimage) => payment_preimage,
3464 fail_htlc!(claimable_htlc, payment_hash);
3468 check_total_value!(payment_data, payment_preimage);
3470 OnionPayload::Spontaneous(preimage) => {
3471 match channel_state.claimable_htlcs.entry(payment_hash) {
3472 hash_map::Entry::Vacant(e) => {
3473 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3474 e.insert((purpose.clone(), vec![claimable_htlc]));
3475 new_events.push(events::Event::PaymentReceived {
3477 amount_msat: amt_to_forward,
3481 hash_map::Entry::Occupied(_) => {
3482 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3483 fail_htlc!(claimable_htlc, payment_hash);
3489 hash_map::Entry::Occupied(inbound_payment) => {
3490 if payment_data.is_none() {
3491 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3492 fail_htlc!(claimable_htlc, payment_hash);
3495 let payment_data = payment_data.unwrap();
3496 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3497 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3498 fail_htlc!(claimable_htlc, payment_hash);
3499 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3500 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3501 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3502 fail_htlc!(claimable_htlc, payment_hash);
3504 let payment_received_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3505 if payment_received_generated {
3506 inbound_payment.remove_entry();
3512 HTLCForwardInfo::FailHTLC { .. } => {
3513 panic!("Got pending fail of our own HTLC");
3521 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3522 self.fail_htlc_backwards_internal(htlc_source, &payment_hash, failure_reason, destination);
3524 self.forward_htlcs(&mut phantom_receives);
3526 for (counterparty_node_id, err) in handle_errors.drain(..) {
3527 let _ = handle_error!(self, err, counterparty_node_id);
3530 if new_events.is_empty() { return }
3531 let mut events = self.pending_events.lock().unwrap();
3532 events.append(&mut new_events);
3535 /// Free the background events, generally called from timer_tick_occurred.
3537 /// Exposed for testing to allow us to process events quickly without generating accidental
3538 /// BroadcastChannelUpdate events in timer_tick_occurred.
3540 /// Expects the caller to have a total_consistency_lock read lock.
3541 fn process_background_events(&self) -> bool {
3542 let mut background_events = Vec::new();
3543 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3544 if background_events.is_empty() {
3548 for event in background_events.drain(..) {
3550 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3551 // The channel has already been closed, so no use bothering to care about the
3552 // monitor updating completing.
3553 let _ = self.chain_monitor.update_channel(funding_txo, update);
3560 #[cfg(any(test, feature = "_test_utils"))]
3561 /// Process background events, for functional testing
3562 pub fn test_process_background_events(&self) {
3563 self.process_background_events();
3566 fn update_channel_fee(&self, short_to_chan_info: &mut HashMap<u64, (PublicKey, [u8; 32])>, pending_msg_events: &mut Vec<events::MessageSendEvent>, chan_id: &[u8; 32], chan: &mut Channel<<K::Target as KeysInterface>::Signer>, new_feerate: u32) -> (bool, NotifyOption, Result<(), MsgHandleErrInternal>) {
3567 if !chan.is_outbound() { return (true, NotifyOption::SkipPersist, Ok(())); }
3568 // If the feerate has decreased by less than half, don't bother
3569 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
3570 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3571 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3572 return (true, NotifyOption::SkipPersist, Ok(()));
3574 if !chan.is_live() {
3575 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3576 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3577 return (true, NotifyOption::SkipPersist, Ok(()));
3579 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3580 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3582 let mut retain_channel = true;
3583 let res = match chan.send_update_fee_and_commit(new_feerate, &self.logger) {
3586 let (drop, res) = convert_chan_err!(self, e, short_to_chan_info, chan, chan_id);
3587 if drop { retain_channel = false; }
3591 let ret_err = match res {
3592 Ok(Some((update_fee, commitment_signed, monitor_update))) => {
3593 match self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
3594 ChannelMonitorUpdateStatus::Completed => {
3595 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3596 node_id: chan.get_counterparty_node_id(),
3597 updates: msgs::CommitmentUpdate {
3598 update_add_htlcs: Vec::new(),
3599 update_fulfill_htlcs: Vec::new(),
3600 update_fail_htlcs: Vec::new(),
3601 update_fail_malformed_htlcs: Vec::new(),
3602 update_fee: Some(update_fee),
3609 let (res, drop) = handle_monitor_update_res!(self, e, short_to_chan_info, chan, RAACommitmentOrder::CommitmentFirst, chan_id, COMMITMENT_UPDATE_ONLY);
3610 if drop { retain_channel = false; }
3618 (retain_channel, NotifyOption::DoPersist, ret_err)
3622 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3623 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3624 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3625 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3626 pub fn maybe_update_chan_fees(&self) {
3627 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3628 let mut should_persist = NotifyOption::SkipPersist;
3630 let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3632 let mut handle_errors = Vec::new();
3634 let mut channel_state_lock = self.channel_state.lock().unwrap();
3635 let channel_state = &mut *channel_state_lock;
3636 let pending_msg_events = &mut channel_state.pending_msg_events;
3637 let short_to_chan_info = &mut channel_state.short_to_chan_info;
3638 channel_state.by_id.retain(|chan_id, chan| {
3639 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_chan_info, pending_msg_events, chan_id, chan, new_feerate);
3640 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3642 handle_errors.push(err);
3652 fn remove_stale_resolved_payments(&self) {
3653 // If an outbound payment was completed, and no pending HTLCs remain, we should remove it
3654 // from the map. However, if we did that immediately when the last payment HTLC is claimed,
3655 // this could race the user making a duplicate send_payment call and our idempotency
3656 // guarantees would be violated. Instead, we wait a few timer ticks to do the actual
3657 // removal. This should be more than sufficient to ensure the idempotency of any
3658 // `send_payment` calls that were made at the same time the `PaymentSent` event was being
3660 let mut pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
3661 let pending_events = self.pending_events.lock().unwrap();
3662 pending_outbound_payments.retain(|payment_id, payment| {
3663 if let PendingOutboundPayment::Fulfilled { session_privs, timer_ticks_without_htlcs, .. } = payment {
3664 let mut no_remaining_entries = session_privs.is_empty();
3665 if no_remaining_entries {
3666 for ev in pending_events.iter() {
3668 events::Event::PaymentSent { payment_id: Some(ev_payment_id), .. } |
3669 events::Event::PaymentPathSuccessful { payment_id: ev_payment_id, .. } |
3670 events::Event::PaymentPathFailed { payment_id: Some(ev_payment_id), .. } => {
3671 if payment_id == ev_payment_id {
3672 no_remaining_entries = false;
3680 if no_remaining_entries {
3681 *timer_ticks_without_htlcs += 1;
3682 *timer_ticks_without_htlcs <= IDEMPOTENCY_TIMEOUT_TICKS
3684 *timer_ticks_without_htlcs = 0;
3691 /// Performs actions which should happen on startup and roughly once per minute thereafter.
3693 /// This currently includes:
3694 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3695 /// * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
3696 /// than a minute, informing the network that they should no longer attempt to route over
3698 /// * Expiring a channel's previous `ChannelConfig` if necessary to only allow forwarding HTLCs
3699 /// with the current `ChannelConfig`.
3701 /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
3702 /// estimate fetches.
3703 pub fn timer_tick_occurred(&self) {
3704 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3705 let mut should_persist = NotifyOption::SkipPersist;
3706 if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3708 let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3710 let mut handle_errors = Vec::new();
3711 let mut timed_out_mpp_htlcs = Vec::new();
3713 let mut channel_state_lock = self.channel_state.lock().unwrap();
3714 let channel_state = &mut *channel_state_lock;
3715 let pending_msg_events = &mut channel_state.pending_msg_events;
3716 let short_to_chan_info = &mut channel_state.short_to_chan_info;
3717 channel_state.by_id.retain(|chan_id, chan| {
3718 let counterparty_node_id = chan.get_counterparty_node_id();
3719 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_chan_info, pending_msg_events, chan_id, chan, new_feerate);
3720 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3722 handle_errors.push((err, counterparty_node_id));
3724 if !retain_channel { return false; }
3726 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3727 let (needs_close, err) = convert_chan_err!(self, e, short_to_chan_info, chan, chan_id);
3728 handle_errors.push((Err(err), chan.get_counterparty_node_id()));
3729 if needs_close { return false; }
3732 match chan.channel_update_status() {
3733 ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3734 ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3735 ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3736 ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3737 ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3738 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3739 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3743 should_persist = NotifyOption::DoPersist;
3744 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3746 ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3747 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3748 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3752 should_persist = NotifyOption::DoPersist;
3753 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3758 chan.maybe_expire_prev_config();
3763 channel_state.claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3764 if htlcs.is_empty() {
3765 // This should be unreachable
3766 debug_assert!(false);
3769 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3770 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3771 // In this case we're not going to handle any timeouts of the parts here.
3772 if htlcs[0].total_msat == htlcs.iter().fold(0, |total, htlc| total + htlc.value) {
3774 } else if htlcs.into_iter().any(|htlc| {
3775 htlc.timer_ticks += 1;
3776 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3778 timed_out_mpp_htlcs.extend(htlcs.into_iter().map(|htlc| (htlc.prev_hop.clone(), payment_hash.clone())));
3786 for htlc_source in timed_out_mpp_htlcs.drain(..) {
3787 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3788 self.fail_htlc_backwards_internal(HTLCSource::PreviousHopData(htlc_source.0.clone()), &htlc_source.1, HTLCFailReason::Reason { failure_code: 23, data: Vec::new() }, receiver );
3791 for (err, counterparty_node_id) in handle_errors.drain(..) {
3792 let _ = handle_error!(self, err, counterparty_node_id);
3795 self.remove_stale_resolved_payments();
3801 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3802 /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
3803 /// along the path (including in our own channel on which we received it).
3805 /// Note that in some cases around unclean shutdown, it is possible the payment may have
3806 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3807 /// second copy of) the [`events::Event::PaymentReceived`] event. Alternatively, the payment
3808 /// may have already been failed automatically by LDK if it was nearing its expiration time.
3810 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3811 /// [`ChannelManager::claim_funds`]), you should still monitor for
3812 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3813 /// startup during which time claims that were in-progress at shutdown may be replayed.
3814 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3815 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3817 let removed_source = {
3818 let mut channel_state = self.channel_state.lock().unwrap();
3819 channel_state.claimable_htlcs.remove(payment_hash)
3821 if let Some((_, mut sources)) = removed_source {
3822 for htlc in sources.drain(..) {
3823 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3824 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3825 self.best_block.read().unwrap().height()));
3826 self.fail_htlc_backwards_internal(
3827 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
3828 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data },
3829 HTLCDestination::FailedPayment { payment_hash: *payment_hash });
3834 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3835 /// that we want to return and a channel.
3837 /// This is for failures on the channel on which the HTLC was *received*, not failures
3839 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<K::Target as KeysInterface>::Signer>) -> (u16, Vec<u8>) {
3840 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3841 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3842 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3843 // an inbound SCID alias before the real SCID.
3844 let scid_pref = if chan.should_announce() {
3845 chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3847 chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3849 if let Some(scid) = scid_pref {
3850 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3852 (0x4000|10, Vec::new())
3857 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3858 /// that we want to return and a channel.
3859 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<K::Target as KeysInterface>::Signer>) -> (u16, Vec<u8>) {
3860 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3861 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3862 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3863 if desired_err_code == 0x1000 | 20 {
3864 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
3865 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
3866 0u16.write(&mut enc).expect("Writes cannot fail");
3868 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3869 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3870 upd.write(&mut enc).expect("Writes cannot fail");
3871 (desired_err_code, enc.0)
3873 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3874 // which means we really shouldn't have gotten a payment to be forwarded over this
3875 // channel yet, or if we did it's from a route hint. Either way, returning an error of
3876 // PERM|no_such_channel should be fine.
3877 (0x4000|10, Vec::new())
3881 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3882 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3883 // be surfaced to the user.
3884 fn fail_holding_cell_htlcs(
3885 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3886 counterparty_node_id: &PublicKey
3888 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3889 let (failure_code, onion_failure_data) =
3890 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
3891 hash_map::Entry::Occupied(chan_entry) => {
3892 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3894 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3897 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
3898 self.fail_htlc_backwards_internal(htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data }, receiver);
3902 /// Fails an HTLC backwards to the sender of it to us.
3903 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
3904 fn fail_htlc_backwards_internal(&self, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason,destination: HTLCDestination) {
3905 #[cfg(debug_assertions)]
3907 // Ensure that the `channel_state` lock is not held when calling this function.
3908 // This ensures that future code doesn't introduce a lock_order requirement for
3909 // `forward_htlcs` to be locked after the `channel_state` lock, which calling this
3910 // function with the `channel_state` locked would.
3911 assert!(self.channel_state.try_lock().is_ok());
3914 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3915 //identify whether we sent it or not based on the (I presume) very different runtime
3916 //between the branches here. We should make this async and move it into the forward HTLCs
3919 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3920 // from block_connected which may run during initialization prior to the chain_monitor
3921 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3923 HTLCSource::OutboundRoute { ref path, session_priv, payment_id, ref payment_params, .. } => {
3924 let mut session_priv_bytes = [0; 32];
3925 session_priv_bytes.copy_from_slice(&session_priv[..]);
3926 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3927 let mut all_paths_failed = false;
3928 let mut full_failure_ev = None;
3929 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3930 if !payment.get_mut().remove(&session_priv_bytes, Some(&path)) {
3931 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3934 if payment.get().is_fulfilled() {
3935 log_trace!(self.logger, "Received failure of HTLC with payment_hash {} after payment completion", log_bytes!(payment_hash.0));
3938 if payment.get().remaining_parts() == 0 {
3939 all_paths_failed = true;
3940 if payment.get().abandoned() {
3941 full_failure_ev = Some(events::Event::PaymentFailed {
3943 payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
3949 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3952 let mut retry = if let Some(payment_params_data) = payment_params {
3953 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
3954 Some(RouteParameters {
3955 payment_params: payment_params_data.clone(),
3956 final_value_msat: path_last_hop.fee_msat,
3957 final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta,
3960 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3962 let path_failure = match &onion_error {
3963 &HTLCFailReason::LightningError { ref err } => {
3965 let (network_update, short_channel_id, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3967 let (network_update, short_channel_id, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3969 if self.payment_is_probe(payment_hash, &payment_id) {
3970 if !payment_retryable {
3971 events::Event::ProbeSuccessful {
3973 payment_hash: payment_hash.clone(),
3977 events::Event::ProbeFailed {
3979 payment_hash: payment_hash.clone(),
3985 // TODO: If we decided to blame ourselves (or one of our channels) in
3986 // process_onion_failure we should close that channel as it implies our
3987 // next-hop is needlessly blaming us!
3988 if let Some(scid) = short_channel_id {
3989 retry.as_mut().map(|r| r.payment_params.previously_failed_channels.push(scid));
3991 events::Event::PaymentPathFailed {
3992 payment_id: Some(payment_id),
3993 payment_hash: payment_hash.clone(),
3994 payment_failed_permanently: !payment_retryable,
4001 error_code: onion_error_code,
4003 error_data: onion_error_data
4007 &HTLCFailReason::Reason {
4013 // we get a fail_malformed_htlc from the first hop
4014 // TODO: We'd like to generate a NetworkUpdate for temporary
4015 // failures here, but that would be insufficient as find_route
4016 // generally ignores its view of our own channels as we provide them via
4018 // TODO: For non-temporary failures, we really should be closing the
4019 // channel here as we apparently can't relay through them anyway.
4020 let scid = path.first().unwrap().short_channel_id;
4021 retry.as_mut().map(|r| r.payment_params.previously_failed_channels.push(scid));
4023 if self.payment_is_probe(payment_hash, &payment_id) {
4024 events::Event::ProbeFailed {
4026 payment_hash: payment_hash.clone(),
4028 short_channel_id: Some(scid),
4031 events::Event::PaymentPathFailed {
4032 payment_id: Some(payment_id),
4033 payment_hash: payment_hash.clone(),
4034 payment_failed_permanently: false,
4035 network_update: None,
4038 short_channel_id: Some(scid),
4041 error_code: Some(*failure_code),
4043 error_data: Some(data.clone()),
4048 let mut pending_events = self.pending_events.lock().unwrap();
4049 pending_events.push(path_failure);
4050 if let Some(ev) = full_failure_ev { pending_events.push(ev); }
4052 HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, phantom_shared_secret, outpoint }) => {
4053 let err_packet = match onion_error {
4054 HTLCFailReason::Reason { failure_code, data } => {
4055 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
4056 if let Some(phantom_ss) = phantom_shared_secret {
4057 let phantom_packet = onion_utils::build_failure_packet(&phantom_ss, failure_code, &data[..]).encode();
4058 let encrypted_phantom_packet = onion_utils::encrypt_failure_packet(&phantom_ss, &phantom_packet);
4059 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &encrypted_phantom_packet.data[..])
4061 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
4062 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
4065 HTLCFailReason::LightningError { err } => {
4066 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
4067 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
4071 let mut forward_event = None;
4072 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4073 if forward_htlcs.is_empty() {
4074 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
4076 match forward_htlcs.entry(short_channel_id) {
4077 hash_map::Entry::Occupied(mut entry) => {
4078 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
4080 hash_map::Entry::Vacant(entry) => {
4081 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
4084 mem::drop(forward_htlcs);
4085 let mut pending_events = self.pending_events.lock().unwrap();
4086 if let Some(time) = forward_event {
4087 pending_events.push(events::Event::PendingHTLCsForwardable {
4088 time_forwardable: time
4091 pending_events.push(events::Event::HTLCHandlingFailed {
4092 prev_channel_id: outpoint.to_channel_id(),
4093 failed_next_destination: destination
4099 /// Provides a payment preimage in response to [`Event::PaymentReceived`], generating any
4100 /// [`MessageSendEvent`]s needed to claim the payment.
4102 /// Note that calling this method does *not* guarantee that the payment has been claimed. You
4103 /// *must* wait for an [`Event::PaymentClaimed`] event which upon a successful claim will be
4104 /// provided to your [`EventHandler`] when [`process_pending_events`] is next called.
4106 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
4107 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
4108 /// event matches your expectation. If you fail to do so and call this method, you may provide
4109 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
4111 /// [`Event::PaymentReceived`]: crate::util::events::Event::PaymentReceived
4112 /// [`Event::PaymentClaimed`]: crate::util::events::Event::PaymentClaimed
4113 /// [`process_pending_events`]: EventsProvider::process_pending_events
4114 /// [`create_inbound_payment`]: Self::create_inbound_payment
4115 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
4116 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
4117 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
4118 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4120 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4122 let removed_source = self.channel_state.lock().unwrap().claimable_htlcs.remove(&payment_hash);
4123 if let Some((payment_purpose, mut sources)) = removed_source {
4124 assert!(!sources.is_empty());
4126 // If we are claiming an MPP payment, we have to take special care to ensure that each
4127 // channel exists before claiming all of the payments (inside one lock).
4128 // Note that channel existance is sufficient as we should always get a monitor update
4129 // which will take care of the real HTLC claim enforcement.
4131 // If we find an HTLC which we would need to claim but for which we do not have a
4132 // channel, we will fail all parts of the MPP payment. While we could wait and see if
4133 // the sender retries the already-failed path(s), it should be a pretty rare case where
4134 // we got all the HTLCs and then a channel closed while we were waiting for the user to
4135 // provide the preimage, so worrying too much about the optimal handling isn't worth
4137 let mut claimable_amt_msat = 0;
4138 let mut expected_amt_msat = None;
4139 let mut valid_mpp = true;
4140 let mut errs = Vec::new();
4141 let mut claimed_any_htlcs = false;
4142 let mut channel_state_lock = self.channel_state.lock().unwrap();
4143 let channel_state = &mut *channel_state_lock;
4144 for htlc in sources.iter() {
4145 if let None = channel_state.short_to_chan_info.get(&htlc.prev_hop.short_channel_id) {
4149 if expected_amt_msat.is_some() && expected_amt_msat != Some(htlc.total_msat) {
4150 log_error!(self.logger, "Somehow ended up with an MPP payment with different total amounts - this should not be reachable!");
4151 debug_assert!(false);
4155 expected_amt_msat = Some(htlc.total_msat);
4156 if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
4157 // We don't currently support MPP for spontaneous payments, so just check
4158 // that there's one payment here and move on.
4159 if sources.len() != 1 {
4160 log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
4161 debug_assert!(false);
4167 claimable_amt_msat += htlc.value;
4169 if sources.is_empty() || expected_amt_msat.is_none() {
4170 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
4173 if claimable_amt_msat != expected_amt_msat.unwrap() {
4174 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
4175 expected_amt_msat.unwrap(), claimable_amt_msat);
4179 for htlc in sources.drain(..) {
4180 match self.claim_funds_from_hop(&mut channel_state_lock, htlc.prev_hop, payment_preimage) {
4181 ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) => {
4182 if let msgs::ErrorAction::IgnoreError = err.err.action {
4183 // We got a temporary failure updating monitor, but will claim the
4184 // HTLC when the monitor updating is restored (or on chain).
4185 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
4186 claimed_any_htlcs = true;
4187 } else { errs.push((pk, err)); }
4189 ClaimFundsFromHop::PrevHopForceClosed => unreachable!("We already checked for channel existence, we can't fail here!"),
4190 ClaimFundsFromHop::DuplicateClaim => {
4191 // While we should never get here in most cases, if we do, it likely
4192 // indicates that the HTLC was timed out some time ago and is no longer
4193 // available to be claimed. Thus, it does not make sense to set
4194 // `claimed_any_htlcs`.
4196 ClaimFundsFromHop::Success(_) => claimed_any_htlcs = true,
4200 mem::drop(channel_state_lock);
4202 for htlc in sources.drain(..) {
4203 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
4204 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
4205 self.best_block.read().unwrap().height()));
4206 self.fail_htlc_backwards_internal(
4207 HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
4208 HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data },
4209 HTLCDestination::FailedPayment { payment_hash } );
4213 if claimed_any_htlcs {
4214 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4216 purpose: payment_purpose,
4217 amount_msat: claimable_amt_msat,
4221 // Now we can handle any errors which were generated.
4222 for (counterparty_node_id, err) in errs.drain(..) {
4223 let res: Result<(), _> = Err(err);
4224 let _ = handle_error!(self, res, counterparty_node_id);
4229 fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<<K::Target as KeysInterface>::Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> ClaimFundsFromHop {
4230 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4231 let channel_state = &mut **channel_state_lock;
4232 let chan_id = match channel_state.short_to_chan_info.get(&prev_hop.short_channel_id) {
4233 Some((_cp_id, chan_id)) => chan_id.clone(),
4235 return ClaimFundsFromHop::PrevHopForceClosed
4239 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
4240 match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
4241 Ok(msgs_monitor_option) => {
4242 if let UpdateFulfillCommitFetch::NewClaim { msgs, htlc_value_msat, monitor_update } = msgs_monitor_option {
4243 match self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
4244 ChannelMonitorUpdateStatus::Completed => {},
4246 log_given_level!(self.logger, if e == ChannelMonitorUpdateStatus::PermanentFailure { Level::Error } else { Level::Debug },
4247 "Failed to update channel monitor with preimage {:?}: {:?}",
4248 payment_preimage, e);
4249 return ClaimFundsFromHop::MonitorUpdateFail(
4250 chan.get().get_counterparty_node_id(),
4251 handle_monitor_update_res!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err(),
4252 Some(htlc_value_msat)
4256 if let Some((msg, commitment_signed)) = msgs {
4257 log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
4258 log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
4259 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4260 node_id: chan.get().get_counterparty_node_id(),
4261 updates: msgs::CommitmentUpdate {
4262 update_add_htlcs: Vec::new(),
4263 update_fulfill_htlcs: vec![msg],
4264 update_fail_htlcs: Vec::new(),
4265 update_fail_malformed_htlcs: Vec::new(),
4271 return ClaimFundsFromHop::Success(htlc_value_msat);
4273 return ClaimFundsFromHop::DuplicateClaim;
4276 Err((e, monitor_update)) => {
4277 match self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
4278 ChannelMonitorUpdateStatus::Completed => {},
4280 log_given_level!(self.logger, if e == ChannelMonitorUpdateStatus::PermanentFailure { Level::Error } else { Level::Info },
4281 "Failed to update channel monitor with preimage {:?} immediately prior to force-close: {:?}",
4282 payment_preimage, e);
4285 let counterparty_node_id = chan.get().get_counterparty_node_id();
4286 let (drop, res) = convert_chan_err!(self, e, channel_state.short_to_chan_info, chan.get_mut(), &chan_id);
4288 chan.remove_entry();
4290 return ClaimFundsFromHop::MonitorUpdateFail(counterparty_node_id, res, None);
4293 } else { unreachable!(); }
4296 fn finalize_claims(&self, mut sources: Vec<HTLCSource>) {
4297 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
4298 let mut pending_events = self.pending_events.lock().unwrap();
4299 for source in sources.drain(..) {
4300 if let HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } = source {
4301 let mut session_priv_bytes = [0; 32];
4302 session_priv_bytes.copy_from_slice(&session_priv[..]);
4303 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
4304 assert!(payment.get().is_fulfilled());
4305 if payment.get_mut().remove(&session_priv_bytes, None) {
4306 pending_events.push(
4307 events::Event::PaymentPathSuccessful {
4309 payment_hash: payment.get().payment_hash(),
4319 fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<<K::Target as KeysInterface>::Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4321 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4322 mem::drop(channel_state_lock);
4323 let mut session_priv_bytes = [0; 32];
4324 session_priv_bytes.copy_from_slice(&session_priv[..]);
4325 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
4326 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
4327 let mut pending_events = self.pending_events.lock().unwrap();
4328 if !payment.get().is_fulfilled() {
4329 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4330 let fee_paid_msat = payment.get().get_pending_fee_msat();
4331 pending_events.push(
4332 events::Event::PaymentSent {
4333 payment_id: Some(payment_id),
4339 payment.get_mut().mark_fulfilled();
4343 // We currently immediately remove HTLCs which were fulfilled on-chain.
4344 // This could potentially lead to removing a pending payment too early,
4345 // with a reorg of one block causing us to re-add the fulfilled payment on
4347 // TODO: We should have a second monitor event that informs us of payments
4348 // irrevocably fulfilled.
4349 if payment.get_mut().remove(&session_priv_bytes, Some(&path)) {
4350 let payment_hash = Some(PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()));
4351 pending_events.push(
4352 events::Event::PaymentPathSuccessful {
4361 log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
4364 HTLCSource::PreviousHopData(hop_data) => {
4365 let prev_outpoint = hop_data.outpoint;
4366 let res = self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage);
4367 let claimed_htlc = if let ClaimFundsFromHop::DuplicateClaim = res { false } else { true };
4368 let htlc_claim_value_msat = match res {
4369 ClaimFundsFromHop::MonitorUpdateFail(_, _, amt_opt) => amt_opt,
4370 ClaimFundsFromHop::Success(amt) => Some(amt),
4373 if let ClaimFundsFromHop::PrevHopForceClosed = res {
4374 let preimage_update = ChannelMonitorUpdate {
4375 update_id: CLOSED_CHANNEL_UPDATE_ID,
4376 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4377 payment_preimage: payment_preimage.clone(),
4380 // We update the ChannelMonitor on the backward link, after
4381 // receiving an offchain preimage event from the forward link (the
4382 // event being update_fulfill_htlc).
4383 let update_res = self.chain_monitor.update_channel(prev_outpoint, preimage_update);
4384 if update_res != ChannelMonitorUpdateStatus::Completed {
4385 // TODO: This needs to be handled somehow - if we receive a monitor update
4386 // with a preimage we *must* somehow manage to propagate it to the upstream
4387 // channel, or we must have an ability to receive the same event and try
4388 // again on restart.
4389 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4390 payment_preimage, update_res);
4392 // Note that we do *not* set `claimed_htlc` to false here. In fact, this
4393 // totally could be a duplicate claim, but we have no way of knowing
4394 // without interrogating the `ChannelMonitor` we've provided the above
4395 // update to. Instead, we simply document in `PaymentForwarded` that this
4398 mem::drop(channel_state_lock);
4399 if let ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) = res {
4400 let result: Result<(), _> = Err(err);
4401 let _ = handle_error!(self, result, pk);
4405 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4406 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4407 Some(claimed_htlc_value - forwarded_htlc_value)
4410 let mut pending_events = self.pending_events.lock().unwrap();
4411 let prev_channel_id = Some(prev_outpoint.to_channel_id());
4412 let next_channel_id = Some(next_channel_id);
4414 pending_events.push(events::Event::PaymentForwarded {
4416 claim_from_onchain_tx: from_onchain,
4426 /// Gets the node_id held by this ChannelManager
4427 pub fn get_our_node_id(&self) -> PublicKey {
4428 self.our_network_pubkey.clone()
4431 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
4432 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4434 let chan_restoration_res;
4435 let (mut pending_failures, finalized_claims, counterparty_node_id) = {
4436 let mut channel_lock = self.channel_state.lock().unwrap();
4437 let channel_state = &mut *channel_lock;
4438 let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
4439 hash_map::Entry::Occupied(chan) => chan,
4440 hash_map::Entry::Vacant(_) => return,
4442 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4446 let counterparty_node_id = channel.get().get_counterparty_node_id();
4447 let updates = channel.get_mut().monitor_updating_restored(&self.logger, self.get_our_node_id(), self.genesis_hash, self.best_block.read().unwrap().height());
4448 let channel_update = if updates.channel_ready.is_some() && channel.get().is_usable() {
4449 // We only send a channel_update in the case where we are just now sending a
4450 // channel_ready and the channel is in a usable state. We may re-send a
4451 // channel_update later through the announcement_signatures process for public
4452 // channels, but there's no reason not to just inform our counterparty of our fees
4454 if let Ok(msg) = self.get_channel_update_for_unicast(channel.get()) {
4455 Some(events::MessageSendEvent::SendChannelUpdate {
4456 node_id: channel.get().get_counterparty_node_id(),
4461 chan_restoration_res = handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, updates.raa, updates.commitment_update, updates.order, None, updates.accepted_htlcs, updates.funding_broadcastable, updates.channel_ready, updates.announcement_sigs);
4462 if let Some(upd) = channel_update {
4463 channel_state.pending_msg_events.push(upd);
4466 (updates.failed_htlcs, updates.finalized_claimed_htlcs, counterparty_node_id)
4468 post_handle_chan_restoration!(self, chan_restoration_res);
4469 self.finalize_claims(finalized_claims);
4470 for failure in pending_failures.drain(..) {
4471 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id: funding_txo.to_channel_id() };
4472 self.fail_htlc_backwards_internal(failure.0, &failure.1, failure.2, receiver);
4476 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4478 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4479 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4482 /// The `user_channel_id` parameter will be provided back in
4483 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4484 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4486 /// Note that this method will return an error and reject the channel, if it requires support
4487 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4488 /// used to accept such channels.
4490 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4491 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4492 pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u64) -> Result<(), APIError> {
4493 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4496 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4497 /// it as confirmed immediately.
4499 /// The `user_channel_id` parameter will be provided back in
4500 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4501 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4503 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4504 /// and (if the counterparty agrees), enables forwarding of payments immediately.
4506 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4507 /// transaction and blindly assumes that it will eventually confirm.
4509 /// If it does not confirm before we decide to close the channel, or if the funding transaction
4510 /// does not pay to the correct script the correct amount, *you will lose funds*.
4512 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4513 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4514 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u64) -> Result<(), APIError> {
4515 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4518 fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u64) -> Result<(), APIError> {
4519 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4521 let mut channel_state_lock = self.channel_state.lock().unwrap();
4522 let channel_state = &mut *channel_state_lock;
4523 match channel_state.by_id.entry(temporary_channel_id.clone()) {
4524 hash_map::Entry::Occupied(mut channel) => {
4525 if !channel.get().inbound_is_awaiting_accept() {
4526 return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4528 if *counterparty_node_id != channel.get().get_counterparty_node_id() {
4529 return Err(APIError::APIMisuseError { err: "The passed counterparty_node_id doesn't match the channel's counterparty node_id".to_owned() });
4532 channel.get_mut().set_0conf();
4533 } else if channel.get().get_channel_type().requires_zero_conf() {
4534 let send_msg_err_event = events::MessageSendEvent::HandleError {
4535 node_id: channel.get().get_counterparty_node_id(),
4536 action: msgs::ErrorAction::SendErrorMessage{
4537 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4540 channel_state.pending_msg_events.push(send_msg_err_event);
4541 let _ = remove_channel!(self, channel_state, channel);
4542 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4545 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4546 node_id: channel.get().get_counterparty_node_id(),
4547 msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4550 hash_map::Entry::Vacant(_) => {
4551 return Err(APIError::ChannelUnavailable { err: "Can't accept a channel that doesn't exist".to_owned() });
4557 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4558 if msg.chain_hash != self.genesis_hash {
4559 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4562 if !self.default_configuration.accept_inbound_channels {
4563 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4566 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4567 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.keys_manager,
4568 counterparty_node_id.clone(), &their_features, msg, 0, &self.default_configuration,
4569 self.best_block.read().unwrap().height(), &self.logger, outbound_scid_alias)
4572 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4573 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4577 let mut channel_state_lock = self.channel_state.lock().unwrap();
4578 let channel_state = &mut *channel_state_lock;
4579 match channel_state.by_id.entry(channel.channel_id()) {
4580 hash_map::Entry::Occupied(_) => {
4581 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4582 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone()))
4584 hash_map::Entry::Vacant(entry) => {
4585 if !self.default_configuration.manually_accept_inbound_channels {
4586 if channel.get_channel_type().requires_zero_conf() {
4587 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4589 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4590 node_id: counterparty_node_id.clone(),
4591 msg: channel.accept_inbound_channel(0),
4594 let mut pending_events = self.pending_events.lock().unwrap();
4595 pending_events.push(
4596 events::Event::OpenChannelRequest {
4597 temporary_channel_id: msg.temporary_channel_id.clone(),
4598 counterparty_node_id: counterparty_node_id.clone(),
4599 funding_satoshis: msg.funding_satoshis,
4600 push_msat: msg.push_msat,
4601 channel_type: channel.get_channel_type().clone(),
4606 entry.insert(channel);
4612 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4613 let (value, output_script, user_id) = {
4614 let mut channel_lock = self.channel_state.lock().unwrap();
4615 let channel_state = &mut *channel_lock;
4616 match channel_state.by_id.entry(msg.temporary_channel_id) {
4617 hash_map::Entry::Occupied(mut chan) => {
4618 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4619 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
4621 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &their_features), channel_state, chan);
4622 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4624 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
4627 let mut pending_events = self.pending_events.lock().unwrap();
4628 pending_events.push(events::Event::FundingGenerationReady {
4629 temporary_channel_id: msg.temporary_channel_id,
4630 counterparty_node_id: *counterparty_node_id,
4631 channel_value_satoshis: value,
4633 user_channel_id: user_id,
4638 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4639 let ((funding_msg, monitor, mut channel_ready), mut chan) = {
4640 let best_block = *self.best_block.read().unwrap();
4641 let mut channel_lock = self.channel_state.lock().unwrap();
4642 let channel_state = &mut *channel_lock;
4643 match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
4644 hash_map::Entry::Occupied(mut chan) => {
4645 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4646 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
4648 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
4650 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
4653 // Because we have exclusive ownership of the channel here we can release the channel_state
4654 // lock before watch_channel
4655 match self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
4656 ChannelMonitorUpdateStatus::Completed => {},
4657 ChannelMonitorUpdateStatus::PermanentFailure => {
4658 // Note that we reply with the new channel_id in error messages if we gave up on the
4659 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4660 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4661 // any messages referencing a previously-closed channel anyway.
4662 // We do not propagate the monitor update to the user as it would be for a monitor
4663 // that we didn't manage to store (and that we don't care about - we don't respond
4664 // with the funding_signed so the channel can never go on chain).
4665 let (_monitor_update, failed_htlcs) = chan.force_shutdown(false);
4666 assert!(failed_htlcs.is_empty());
4667 return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
4669 ChannelMonitorUpdateStatus::InProgress => {
4670 // There's no problem signing a counterparty's funding transaction if our monitor
4671 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4672 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4673 // until we have persisted our monitor.
4674 chan.monitor_updating_paused(false, false, channel_ready.is_some(), Vec::new(), Vec::new(), Vec::new());
4675 channel_ready = None; // Don't send the channel_ready now
4678 let mut channel_state_lock = self.channel_state.lock().unwrap();
4679 let channel_state = &mut *channel_state_lock;
4680 match channel_state.by_id.entry(funding_msg.channel_id) {
4681 hash_map::Entry::Occupied(_) => {
4682 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4684 hash_map::Entry::Vacant(e) => {
4685 let mut id_to_peer = self.id_to_peer.lock().unwrap();
4686 match id_to_peer.entry(chan.channel_id()) {
4687 hash_map::Entry::Occupied(_) => {
4688 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4689 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4690 funding_msg.channel_id))
4692 hash_map::Entry::Vacant(i_e) => {
4693 i_e.insert(chan.get_counterparty_node_id());
4696 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4697 node_id: counterparty_node_id.clone(),
4700 if let Some(msg) = channel_ready {
4701 send_channel_ready!(channel_state.short_to_chan_info, channel_state.pending_msg_events, chan, msg);
4709 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4711 let best_block = *self.best_block.read().unwrap();
4712 let mut channel_lock = self.channel_state.lock().unwrap();
4713 let channel_state = &mut *channel_lock;
4714 match channel_state.by_id.entry(msg.channel_id) {
4715 hash_map::Entry::Occupied(mut chan) => {
4716 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4717 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4719 let (monitor, funding_tx, channel_ready) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
4720 Ok(update) => update,
4721 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
4723 match self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
4724 ChannelMonitorUpdateStatus::Completed => {},
4726 let mut res = handle_monitor_update_res!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, channel_ready.is_some(), OPTIONALLY_RESEND_FUNDING_LOCKED);
4727 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4728 // We weren't able to watch the channel to begin with, so no updates should be made on
4729 // it. Previously, full_stack_target found an (unreachable) panic when the
4730 // monitor update contained within `shutdown_finish` was applied.
4731 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4732 shutdown_finish.0.take();
4738 if let Some(msg) = channel_ready {
4739 send_channel_ready!(channel_state.short_to_chan_info, channel_state.pending_msg_events, chan.get(), msg);
4743 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4746 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
4747 self.tx_broadcaster.broadcast_transaction(&funding_tx);
4751 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4752 let mut channel_state_lock = self.channel_state.lock().unwrap();
4753 let channel_state = &mut *channel_state_lock;
4754 match channel_state.by_id.entry(msg.channel_id) {
4755 hash_map::Entry::Occupied(mut chan) => {
4756 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4757 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4759 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, self.get_our_node_id(),
4760 self.genesis_hash.clone(), &self.best_block.read().unwrap(), &self.logger), channel_state, chan);
4761 if let Some(announcement_sigs) = announcement_sigs_opt {
4762 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4763 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4764 node_id: counterparty_node_id.clone(),
4765 msg: announcement_sigs,
4767 } else if chan.get().is_usable() {
4768 // If we're sending an announcement_signatures, we'll send the (public)
4769 // channel_update after sending a channel_announcement when we receive our
4770 // counterparty's announcement_signatures. Thus, we only bother to send a
4771 // channel_update here if the channel is not public, i.e. we're not sending an
4772 // announcement_signatures.
4773 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4774 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4775 channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4776 node_id: counterparty_node_id.clone(),
4782 emit_channel_ready_event!(self, chan.get_mut());
4786 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4790 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4791 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4792 let result: Result<(), _> = loop {
4793 let mut channel_state_lock = self.channel_state.lock().unwrap();
4794 let channel_state = &mut *channel_state_lock;
4796 match channel_state.by_id.entry(msg.channel_id.clone()) {
4797 hash_map::Entry::Occupied(mut chan_entry) => {
4798 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
4799 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4802 if !chan_entry.get().received_shutdown() {
4803 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4804 log_bytes!(msg.channel_id),
4805 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4808 let (shutdown, monitor_update, htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.keys_manager, &their_features, &msg), channel_state, chan_entry);
4809 dropped_htlcs = htlcs;
4811 // Update the monitor with the shutdown script if necessary.
4812 if let Some(monitor_update) = monitor_update {
4813 let update_res = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update);
4814 let (result, is_permanent) =
4815 handle_monitor_update_res!(self, update_res, channel_state.short_to_chan_info, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, chan_entry.key(), NO_UPDATE);
4817 remove_channel!(self, channel_state, chan_entry);
4822 if let Some(msg) = shutdown {
4823 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4824 node_id: *counterparty_node_id,
4831 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4834 for htlc_source in dropped_htlcs.drain(..) {
4835 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4836 self.fail_htlc_backwards_internal(htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }, receiver);
4839 let _ = handle_error!(self, result, *counterparty_node_id);
4843 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4844 let (tx, chan_option) = {
4845 let mut channel_state_lock = self.channel_state.lock().unwrap();
4846 let channel_state = &mut *channel_state_lock;
4847 match channel_state.by_id.entry(msg.channel_id.clone()) {
4848 hash_map::Entry::Occupied(mut chan_entry) => {
4849 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
4850 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4852 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
4853 if let Some(msg) = closing_signed {
4854 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4855 node_id: counterparty_node_id.clone(),
4860 // We're done with this channel, we've got a signed closing transaction and
4861 // will send the closing_signed back to the remote peer upon return. This
4862 // also implies there are no pending HTLCs left on the channel, so we can
4863 // fully delete it from tracking (the channel monitor is still around to
4864 // watch for old state broadcasts)!
4865 (tx, Some(remove_channel!(self, channel_state, chan_entry)))
4866 } else { (tx, None) }
4868 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4871 if let Some(broadcast_tx) = tx {
4872 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4873 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4875 if let Some(chan) = chan_option {
4876 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4877 let mut channel_state = self.channel_state.lock().unwrap();
4878 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4882 self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4887 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4888 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4889 //determine the state of the payment based on our response/if we forward anything/the time
4890 //we take to respond. We should take care to avoid allowing such an attack.
4892 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4893 //us repeatedly garbled in different ways, and compare our error messages, which are
4894 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4895 //but we should prevent it anyway.
4897 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
4898 let mut channel_state_lock = self.channel_state.lock().unwrap();
4899 let channel_state = &mut *channel_state_lock;
4901 match channel_state.by_id.entry(msg.channel_id) {
4902 hash_map::Entry::Occupied(mut chan) => {
4903 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4904 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4907 let create_pending_htlc_status = |chan: &Channel<<K::Target as KeysInterface>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4908 // If the update_add is completely bogus, the call will Err and we will close,
4909 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4910 // want to reject the new HTLC and fail it backwards instead of forwarding.
4911 match pending_forward_info {
4912 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4913 let reason = if (error_code & 0x1000) != 0 {
4914 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4915 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, real_code, &error_data)
4917 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &[])
4919 let msg = msgs::UpdateFailHTLC {
4920 channel_id: msg.channel_id,
4921 htlc_id: msg.htlc_id,
4924 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4926 _ => pending_forward_info
4929 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
4931 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4936 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4937 let mut channel_lock = self.channel_state.lock().unwrap();
4938 let (htlc_source, forwarded_htlc_value) = {
4939 let channel_state = &mut *channel_lock;
4940 match channel_state.by_id.entry(msg.channel_id) {
4941 hash_map::Entry::Occupied(mut chan) => {
4942 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4943 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4945 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
4947 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4950 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
4954 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4955 let mut channel_lock = self.channel_state.lock().unwrap();
4956 let channel_state = &mut *channel_lock;
4957 match channel_state.by_id.entry(msg.channel_id) {
4958 hash_map::Entry::Occupied(mut chan) => {
4959 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4960 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4962 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
4964 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4969 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4970 let mut channel_lock = self.channel_state.lock().unwrap();
4971 let channel_state = &mut *channel_lock;
4972 match channel_state.by_id.entry(msg.channel_id) {
4973 hash_map::Entry::Occupied(mut chan) => {
4974 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4975 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4977 if (msg.failure_code & 0x8000) == 0 {
4978 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4979 try_chan_entry!(self, Err(chan_err), channel_state, chan);
4981 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
4984 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4988 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4989 let mut channel_state_lock = self.channel_state.lock().unwrap();
4990 let channel_state = &mut *channel_state_lock;
4991 match channel_state.by_id.entry(msg.channel_id) {
4992 hash_map::Entry::Occupied(mut chan) => {
4993 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4994 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4996 let (revoke_and_ack, commitment_signed, monitor_update) =
4997 match chan.get_mut().commitment_signed(&msg, &self.logger) {
4998 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
4999 Err((Some(update), e)) => {
5000 assert!(chan.get().is_awaiting_monitor_update());
5001 let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
5002 try_chan_entry!(self, Err(e), channel_state, chan);
5007 let update_res = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update);
5008 if let Err(e) = handle_monitor_update_res!(self, update_res, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some()) {
5012 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5013 node_id: counterparty_node_id.clone(),
5014 msg: revoke_and_ack,
5016 if let Some(msg) = commitment_signed {
5017 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5018 node_id: counterparty_node_id.clone(),
5019 updates: msgs::CommitmentUpdate {
5020 update_add_htlcs: Vec::new(),
5021 update_fulfill_htlcs: Vec::new(),
5022 update_fail_htlcs: Vec::new(),
5023 update_fail_malformed_htlcs: Vec::new(),
5025 commitment_signed: msg,
5031 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
5036 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
5037 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
5038 let mut forward_event = None;
5039 if !pending_forwards.is_empty() {
5040 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5041 if forward_htlcs.is_empty() {
5042 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
5044 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
5045 match forward_htlcs.entry(match forward_info.routing {
5046 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
5047 PendingHTLCRouting::Receive { .. } => 0,
5048 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
5050 hash_map::Entry::Occupied(mut entry) => {
5051 entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
5052 prev_htlc_id, forward_info });
5054 hash_map::Entry::Vacant(entry) => {
5055 entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
5056 prev_htlc_id, forward_info }));
5061 match forward_event {
5063 let mut pending_events = self.pending_events.lock().unwrap();
5064 pending_events.push(events::Event::PendingHTLCsForwardable {
5065 time_forwardable: time
5073 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
5074 let mut htlcs_to_fail = Vec::new();
5076 let mut channel_state_lock = self.channel_state.lock().unwrap();
5077 let channel_state = &mut *channel_state_lock;
5078 match channel_state.by_id.entry(msg.channel_id) {
5079 hash_map::Entry::Occupied(mut chan) => {
5080 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5081 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
5083 let was_paused_for_mon_update = chan.get().is_awaiting_monitor_update();
5084 let raa_updates = break_chan_entry!(self,
5085 chan.get_mut().revoke_and_ack(&msg, &self.logger), channel_state, chan);
5086 htlcs_to_fail = raa_updates.holding_cell_failed_htlcs;
5087 let update_res = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), raa_updates.monitor_update);
5088 if was_paused_for_mon_update {
5089 assert!(update_res != ChannelMonitorUpdateStatus::Completed);
5090 assert!(raa_updates.commitment_update.is_none());
5091 assert!(raa_updates.accepted_htlcs.is_empty());
5092 assert!(raa_updates.failed_htlcs.is_empty());
5093 assert!(raa_updates.finalized_claimed_htlcs.is_empty());
5094 break Err(MsgHandleErrInternal::ignore_no_close("Existing pending monitor update prevented responses to RAA".to_owned()));
5096 if update_res != ChannelMonitorUpdateStatus::Completed {
5097 if let Err(e) = handle_monitor_update_res!(self, update_res, channel_state, chan,
5098 RAACommitmentOrder::CommitmentFirst, false,
5099 raa_updates.commitment_update.is_some(), false,
5100 raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
5101 raa_updates.finalized_claimed_htlcs) {
5103 } else { unreachable!(); }
5105 if let Some(updates) = raa_updates.commitment_update {
5106 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5107 node_id: counterparty_node_id.clone(),
5111 break Ok((raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
5112 raa_updates.finalized_claimed_htlcs,
5113 chan.get().get_short_channel_id()
5114 .unwrap_or(chan.get().outbound_scid_alias()),
5115 chan.get().get_funding_txo().unwrap()))
5117 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
5120 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
5122 Ok((pending_forwards, mut pending_failures, finalized_claim_htlcs,
5123 short_channel_id, channel_outpoint)) =>
5125 for failure in pending_failures.drain(..) {
5126 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: channel_outpoint.to_channel_id() };
5127 self.fail_htlc_backwards_internal(failure.0, &failure.1, failure.2, receiver);
5129 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
5130 self.finalize_claims(finalized_claim_htlcs);
5137 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
5138 let mut channel_lock = self.channel_state.lock().unwrap();
5139 let channel_state = &mut *channel_lock;
5140 match channel_state.by_id.entry(msg.channel_id) {
5141 hash_map::Entry::Occupied(mut chan) => {
5142 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5143 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
5145 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
5147 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
5152 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5153 let mut channel_state_lock = self.channel_state.lock().unwrap();
5154 let channel_state = &mut *channel_state_lock;
5156 match channel_state.by_id.entry(msg.channel_id) {
5157 hash_map::Entry::Occupied(mut chan) => {
5158 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5159 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
5161 if !chan.get().is_usable() {
5162 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5165 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5166 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5167 self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height(), msg), channel_state, chan),
5168 // Note that announcement_signatures fails if the channel cannot be announced,
5169 // so get_channel_update_for_broadcast will never fail by the time we get here.
5170 update_msg: self.get_channel_update_for_broadcast(chan.get()).unwrap(),
5173 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
5178 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5179 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5180 let mut channel_state_lock = self.channel_state.lock().unwrap();
5181 let channel_state = &mut *channel_state_lock;
5182 let chan_id = match channel_state.short_to_chan_info.get(&msg.contents.short_channel_id) {
5183 Some((_cp_id, chan_id)) => chan_id.clone(),
5185 // It's not a local channel
5186 return Ok(NotifyOption::SkipPersist)
5189 match channel_state.by_id.entry(chan_id) {
5190 hash_map::Entry::Occupied(mut chan) => {
5191 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5192 if chan.get().should_announce() {
5193 // If the announcement is about a channel of ours which is public, some
5194 // other peer may simply be forwarding all its gossip to us. Don't provide
5195 // a scary-looking error message and return Ok instead.
5196 return Ok(NotifyOption::SkipPersist);
5198 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5200 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5201 let msg_from_node_one = msg.contents.flags & 1 == 0;
5202 if were_node_one == msg_from_node_one {
5203 return Ok(NotifyOption::SkipPersist);
5205 log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5206 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
5209 hash_map::Entry::Vacant(_) => unreachable!()
5211 Ok(NotifyOption::DoPersist)
5214 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5215 let chan_restoration_res;
5216 let (htlcs_failed_forward, need_lnd_workaround) = {
5217 let mut channel_state_lock = self.channel_state.lock().unwrap();
5218 let channel_state = &mut *channel_state_lock;
5220 match channel_state.by_id.entry(msg.channel_id) {
5221 hash_map::Entry::Occupied(mut chan) => {
5222 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5223 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
5225 // Currently, we expect all holding cell update_adds to be dropped on peer
5226 // disconnect, so Channel's reestablish will never hand us any holding cell
5227 // freed HTLCs to fail backwards. If in the future we no longer drop pending
5228 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5229 let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5230 msg, &self.logger, self.our_network_pubkey.clone(), self.genesis_hash,
5231 &*self.best_block.read().unwrap()), channel_state, chan);
5232 let mut channel_update = None;
5233 if let Some(msg) = responses.shutdown_msg {
5234 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5235 node_id: counterparty_node_id.clone(),
5238 } else if chan.get().is_usable() {
5239 // If the channel is in a usable state (ie the channel is not being shut
5240 // down), send a unicast channel_update to our counterparty to make sure
5241 // they have the latest channel parameters.
5242 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5243 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5244 node_id: chan.get().get_counterparty_node_id(),
5249 let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5250 chan_restoration_res = handle_chan_restoration_locked!(
5251 self, channel_state_lock, channel_state, chan, responses.raa, responses.commitment_update, responses.order,
5252 responses.mon_update, Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5253 if let Some(upd) = channel_update {
5254 channel_state.pending_msg_events.push(upd);
5256 (responses.holding_cell_failed_htlcs, need_lnd_workaround)
5258 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
5261 post_handle_chan_restoration!(self, chan_restoration_res);
5262 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id, counterparty_node_id);
5264 if let Some(channel_ready_msg) = need_lnd_workaround {
5265 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5270 /// Process pending events from the `chain::Watch`, returning whether any events were processed.
5271 fn process_pending_monitor_events(&self) -> bool {
5272 let mut failed_channels = Vec::new();
5273 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5274 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5275 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5276 for monitor_event in monitor_events.drain(..) {
5277 match monitor_event {
5278 MonitorEvent::HTLCEvent(htlc_update) => {
5279 if let Some(preimage) = htlc_update.payment_preimage {
5280 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5281 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5283 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5284 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5285 self.fail_htlc_backwards_internal(htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }, receiver);
5288 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5289 MonitorEvent::UpdateFailed(funding_outpoint) => {
5290 let mut channel_lock = self.channel_state.lock().unwrap();
5291 let channel_state = &mut *channel_lock;
5292 let by_id = &mut channel_state.by_id;
5293 let pending_msg_events = &mut channel_state.pending_msg_events;
5294 if let hash_map::Entry::Occupied(chan_entry) = by_id.entry(funding_outpoint.to_channel_id()) {
5295 let mut chan = remove_channel!(self, channel_state, chan_entry);
5296 failed_channels.push(chan.force_shutdown(false));
5297 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5298 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5302 let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5303 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5305 ClosureReason::CommitmentTxConfirmed
5307 self.issue_channel_close_events(&chan, reason);
5308 pending_msg_events.push(events::MessageSendEvent::HandleError {
5309 node_id: chan.get_counterparty_node_id(),
5310 action: msgs::ErrorAction::SendErrorMessage {
5311 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5316 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5317 self.channel_monitor_updated(&funding_txo, monitor_update_id);
5323 for failure in failed_channels.drain(..) {
5324 self.finish_force_close_channel(failure);
5327 has_pending_monitor_events
5330 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5331 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5332 /// update events as a separate process method here.
5334 pub fn process_monitor_events(&self) {
5335 self.process_pending_monitor_events();
5338 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5339 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5340 /// update was applied.
5342 /// This should only apply to HTLCs which were added to the holding cell because we were
5343 /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
5344 /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
5345 /// code to inform them of a channel monitor update.
5346 fn check_free_holding_cells(&self) -> bool {
5347 let mut has_monitor_update = false;
5348 let mut failed_htlcs = Vec::new();
5349 let mut handle_errors = Vec::new();
5351 let mut channel_state_lock = self.channel_state.lock().unwrap();
5352 let channel_state = &mut *channel_state_lock;
5353 let by_id = &mut channel_state.by_id;
5354 let short_to_chan_info = &mut channel_state.short_to_chan_info;
5355 let pending_msg_events = &mut channel_state.pending_msg_events;
5357 by_id.retain(|channel_id, chan| {
5358 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
5359 Ok((commitment_opt, holding_cell_failed_htlcs)) => {
5360 if !holding_cell_failed_htlcs.is_empty() {
5362 holding_cell_failed_htlcs,
5364 chan.get_counterparty_node_id()
5367 if let Some((commitment_update, monitor_update)) = commitment_opt {
5368 match self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
5369 ChannelMonitorUpdateStatus::Completed => {
5370 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5371 node_id: chan.get_counterparty_node_id(),
5372 updates: commitment_update,
5376 has_monitor_update = true;
5377 let (res, close_channel) = handle_monitor_update_res!(self, e, short_to_chan_info, chan, RAACommitmentOrder::CommitmentFirst, channel_id, COMMITMENT_UPDATE_ONLY);
5378 handle_errors.push((chan.get_counterparty_node_id(), res));
5379 if close_channel { return false; }
5386 let (close_channel, res) = convert_chan_err!(self, e, short_to_chan_info, chan, channel_id);
5387 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5388 // ChannelClosed event is generated by handle_error for us
5395 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5396 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5397 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5400 for (counterparty_node_id, err) in handle_errors.drain(..) {
5401 let _ = handle_error!(self, err, counterparty_node_id);
5407 /// Check whether any channels have finished removing all pending updates after a shutdown
5408 /// exchange and can now send a closing_signed.
5409 /// Returns whether any closing_signed messages were generated.
5410 fn maybe_generate_initial_closing_signed(&self) -> bool {
5411 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5412 let mut has_update = false;
5414 let mut channel_state_lock = self.channel_state.lock().unwrap();
5415 let channel_state = &mut *channel_state_lock;
5416 let by_id = &mut channel_state.by_id;
5417 let short_to_chan_info = &mut channel_state.short_to_chan_info;
5418 let pending_msg_events = &mut channel_state.pending_msg_events;
5420 by_id.retain(|channel_id, chan| {
5421 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5422 Ok((msg_opt, tx_opt)) => {
5423 if let Some(msg) = msg_opt {
5425 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5426 node_id: chan.get_counterparty_node_id(), msg,
5429 if let Some(tx) = tx_opt {
5430 // We're done with this channel. We got a closing_signed and sent back
5431 // a closing_signed with a closing transaction to broadcast.
5432 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5433 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5438 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5440 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5441 self.tx_broadcaster.broadcast_transaction(&tx);
5442 update_maps_on_chan_removal!(self, short_to_chan_info, chan);
5448 let (close_channel, res) = convert_chan_err!(self, e, short_to_chan_info, chan, channel_id);
5449 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5456 for (counterparty_node_id, err) in handle_errors.drain(..) {
5457 let _ = handle_error!(self, err, counterparty_node_id);
5463 /// Handle a list of channel failures during a block_connected or block_disconnected call,
5464 /// pushing the channel monitor update (if any) to the background events queue and removing the
5466 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5467 for mut failure in failed_channels.drain(..) {
5468 // Either a commitment transactions has been confirmed on-chain or
5469 // Channel::block_disconnected detected that the funding transaction has been
5470 // reorganized out of the main chain.
5471 // We cannot broadcast our latest local state via monitor update (as
5472 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5473 // so we track the update internally and handle it when the user next calls
5474 // timer_tick_occurred, guaranteeing we're running normally.
5475 if let Some((funding_txo, update)) = failure.0.take() {
5476 assert_eq!(update.updates.len(), 1);
5477 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5478 assert!(should_broadcast);
5479 } else { unreachable!(); }
5480 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5482 self.finish_force_close_channel(failure);
5486 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5487 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5489 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5490 return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5493 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
5495 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5496 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5497 match payment_secrets.entry(payment_hash) {
5498 hash_map::Entry::Vacant(e) => {
5499 e.insert(PendingInboundPayment {
5500 payment_secret, min_value_msat, payment_preimage,
5501 user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5502 // We assume that highest_seen_timestamp is pretty close to the current time -
5503 // it's updated when we receive a new block with the maximum time we've seen in
5504 // a header. It should never be more than two hours in the future.
5505 // Thus, we add two hours here as a buffer to ensure we absolutely
5506 // never fail a payment too early.
5507 // Note that we assume that received blocks have reasonably up-to-date
5509 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5512 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5517 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5520 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5521 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5523 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
5524 /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
5525 /// passed directly to [`claim_funds`].
5527 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5529 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5530 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5534 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5535 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5537 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5539 /// [`claim_funds`]: Self::claim_funds
5540 /// [`PaymentReceived`]: events::Event::PaymentReceived
5541 /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
5542 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5543 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), ()> {
5544 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs, &self.keys_manager, self.highest_seen_timestamp.load(Ordering::Acquire) as u64)
5547 /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5548 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5550 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5553 /// This method is deprecated and will be removed soon.
5555 /// [`create_inbound_payment`]: Self::create_inbound_payment
5557 pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5558 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
5559 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5560 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5561 Ok((payment_hash, payment_secret))
5564 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5565 /// stored external to LDK.
5567 /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
5568 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5569 /// the `min_value_msat` provided here, if one is provided.
5571 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5572 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5575 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5576 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5577 /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
5578 /// sender "proof-of-payment" unless they have paid the required amount.
5580 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5581 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5582 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5583 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5584 /// invoices when no timeout is set.
5586 /// Note that we use block header time to time-out pending inbound payments (with some margin
5587 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5588 /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
5589 /// If you need exact expiry semantics, you should enforce them upon receipt of
5590 /// [`PaymentReceived`].
5592 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
5593 /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
5595 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5596 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5600 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5601 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5603 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5605 /// [`create_inbound_payment`]: Self::create_inbound_payment
5606 /// [`PaymentReceived`]: events::Event::PaymentReceived
5607 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, ()> {
5608 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash, invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64)
5611 /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5612 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5614 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5617 /// This method is deprecated and will be removed soon.
5619 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5621 pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5622 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5625 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5626 /// previously returned from [`create_inbound_payment`].
5628 /// [`create_inbound_payment`]: Self::create_inbound_payment
5629 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5630 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5633 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5634 /// are used when constructing the phantom invoice's route hints.
5636 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5637 pub fn get_phantom_scid(&self) -> u64 {
5638 let mut channel_state = self.channel_state.lock().unwrap();
5639 let best_block = self.best_block.read().unwrap();
5641 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block.height(), &self.genesis_hash, &self.fake_scid_rand_bytes, &self.keys_manager);
5642 // Ensure the generated scid doesn't conflict with a real channel.
5643 match channel_state.short_to_chan_info.entry(scid_candidate) {
5644 hash_map::Entry::Occupied(_) => continue,
5645 hash_map::Entry::Vacant(_) => return scid_candidate
5650 /// Gets route hints for use in receiving [phantom node payments].
5652 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5653 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5655 channels: self.list_usable_channels(),
5656 phantom_scid: self.get_phantom_scid(),
5657 real_node_pubkey: self.get_our_node_id(),
5661 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5662 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5663 let events = core::cell::RefCell::new(Vec::new());
5664 let event_handler = |event: &events::Event| events.borrow_mut().push(event.clone());
5665 self.process_pending_events(&event_handler);
5670 pub fn has_pending_payments(&self) -> bool {
5671 !self.pending_outbound_payments.lock().unwrap().is_empty()
5675 pub fn clear_pending_payments(&self) {
5676 self.pending_outbound_payments.lock().unwrap().clear()
5680 impl<M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, K, F, L>
5681 where M::Target: chain::Watch<<K::Target as KeysInterface>::Signer>,
5682 T::Target: BroadcasterInterface,
5683 K::Target: KeysInterface,
5684 F::Target: FeeEstimator,
5687 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5688 let events = RefCell::new(Vec::new());
5689 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5690 let mut result = NotifyOption::SkipPersist;
5692 // TODO: This behavior should be documented. It's unintuitive that we query
5693 // ChannelMonitors when clearing other events.
5694 if self.process_pending_monitor_events() {
5695 result = NotifyOption::DoPersist;
5698 if self.check_free_holding_cells() {
5699 result = NotifyOption::DoPersist;
5701 if self.maybe_generate_initial_closing_signed() {
5702 result = NotifyOption::DoPersist;
5705 let mut pending_events = Vec::new();
5706 let mut channel_state = self.channel_state.lock().unwrap();
5707 mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
5709 if !pending_events.is_empty() {
5710 events.replace(pending_events);
5719 impl<M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<M, T, K, F, L>
5721 M::Target: chain::Watch<<K::Target as KeysInterface>::Signer>,
5722 T::Target: BroadcasterInterface,
5723 K::Target: KeysInterface,
5724 F::Target: FeeEstimator,
5727 /// Processes events that must be periodically handled.
5729 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5730 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5731 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5732 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5733 let mut result = NotifyOption::SkipPersist;
5735 // TODO: This behavior should be documented. It's unintuitive that we query
5736 // ChannelMonitors when clearing other events.
5737 if self.process_pending_monitor_events() {
5738 result = NotifyOption::DoPersist;
5741 let mut pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5742 if !pending_events.is_empty() {
5743 result = NotifyOption::DoPersist;
5746 for event in pending_events.drain(..) {
5747 handler.handle_event(&event);
5755 impl<M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<M, T, K, F, L>
5757 M::Target: chain::Watch<<K::Target as KeysInterface>::Signer>,
5758 T::Target: BroadcasterInterface,
5759 K::Target: KeysInterface,
5760 F::Target: FeeEstimator,
5763 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5765 let best_block = self.best_block.read().unwrap();
5766 assert_eq!(best_block.block_hash(), header.prev_blockhash,
5767 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5768 assert_eq!(best_block.height(), height - 1,
5769 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5772 self.transactions_confirmed(header, txdata, height);
5773 self.best_block_updated(header, height);
5776 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5777 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5778 let new_height = height - 1;
5780 let mut best_block = self.best_block.write().unwrap();
5781 assert_eq!(best_block.block_hash(), header.block_hash(),
5782 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5783 assert_eq!(best_block.height(), height,
5784 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5785 *best_block = BestBlock::new(header.prev_blockhash, new_height)
5788 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5792 impl<M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, K, F, L>
5794 M::Target: chain::Watch<<K::Target as KeysInterface>::Signer>,
5795 T::Target: BroadcasterInterface,
5796 K::Target: KeysInterface,
5797 F::Target: FeeEstimator,
5800 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5801 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5802 // during initialization prior to the chain_monitor being fully configured in some cases.
5803 // See the docs for `ChannelManagerReadArgs` for more.
5805 let block_hash = header.block_hash();
5806 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5808 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5809 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger)
5810 .map(|(a, b)| (a, Vec::new(), b)));
5812 let last_best_block_height = self.best_block.read().unwrap().height();
5813 if height < last_best_block_height {
5814 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5815 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5819 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5820 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5821 // during initialization prior to the chain_monitor being fully configured in some cases.
5822 // See the docs for `ChannelManagerReadArgs` for more.
5824 let block_hash = header.block_hash();
5825 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5827 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5829 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5831 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5833 macro_rules! max_time {
5834 ($timestamp: expr) => {
5836 // Update $timestamp to be the max of its current value and the block
5837 // timestamp. This should keep us close to the current time without relying on
5838 // having an explicit local time source.
5839 // Just in case we end up in a race, we loop until we either successfully
5840 // update $timestamp or decide we don't need to.
5841 let old_serial = $timestamp.load(Ordering::Acquire);
5842 if old_serial >= header.time as usize { break; }
5843 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5849 max_time!(self.highest_seen_timestamp);
5850 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5851 payment_secrets.retain(|_, inbound_payment| {
5852 inbound_payment.expiry_time > header.time as u64
5856 fn get_relevant_txids(&self) -> Vec<Txid> {
5857 let channel_state = self.channel_state.lock().unwrap();
5858 let mut res = Vec::with_capacity(channel_state.short_to_chan_info.len());
5859 for chan in channel_state.by_id.values() {
5860 if let Some(funding_txo) = chan.get_funding_txo() {
5861 res.push(funding_txo.txid);
5867 fn transaction_unconfirmed(&self, txid: &Txid) {
5868 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5869 self.do_chain_event(None, |channel| {
5870 if let Some(funding_txo) = channel.get_funding_txo() {
5871 if funding_txo.txid == *txid {
5872 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
5873 } else { Ok((None, Vec::new(), None)) }
5874 } else { Ok((None, Vec::new(), None)) }
5879 impl<M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<M, T, K, F, L>
5881 M::Target: chain::Watch<<K::Target as KeysInterface>::Signer>,
5882 T::Target: BroadcasterInterface,
5883 K::Target: KeysInterface,
5884 F::Target: FeeEstimator,
5887 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
5888 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
5890 fn do_chain_event<FN: Fn(&mut Channel<<K::Target as KeysInterface>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
5891 (&self, height_opt: Option<u32>, f: FN) {
5892 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5893 // during initialization prior to the chain_monitor being fully configured in some cases.
5894 // See the docs for `ChannelManagerReadArgs` for more.
5896 let mut failed_channels = Vec::new();
5897 let mut timed_out_htlcs = Vec::new();
5899 let mut channel_lock = self.channel_state.lock().unwrap();
5900 let channel_state = &mut *channel_lock;
5901 let short_to_chan_info = &mut channel_state.short_to_chan_info;
5902 let pending_msg_events = &mut channel_state.pending_msg_events;
5903 channel_state.by_id.retain(|_, channel| {
5904 let res = f(channel);
5905 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
5906 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
5907 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
5908 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
5910 }, HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
5912 if let Some(channel_ready) = channel_ready_opt {
5913 send_channel_ready!(short_to_chan_info, pending_msg_events, channel, channel_ready);
5914 if channel.is_usable() {
5915 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
5916 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
5917 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5918 node_id: channel.get_counterparty_node_id(),
5923 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
5927 emit_channel_ready_event!(self, channel);
5929 if let Some(announcement_sigs) = announcement_sigs {
5930 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
5931 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5932 node_id: channel.get_counterparty_node_id(),
5933 msg: announcement_sigs,
5935 if let Some(height) = height_opt {
5936 if let Some(announcement) = channel.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash, height) {
5937 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5939 // Note that announcement_signatures fails if the channel cannot be announced,
5940 // so get_channel_update_for_broadcast will never fail by the time we get here.
5941 update_msg: self.get_channel_update_for_broadcast(channel).unwrap(),
5946 if channel.is_our_channel_ready() {
5947 if let Some(real_scid) = channel.get_short_channel_id() {
5948 // If we sent a 0conf channel_ready, and now have an SCID, we add it
5949 // to the short_to_chan_info map here. Note that we check whether we
5950 // can relay using the real SCID at relay-time (i.e.
5951 // enforce option_scid_alias then), and if the funding tx is ever
5952 // un-confirmed we force-close the channel, ensuring short_to_chan_info
5953 // is always consistent.
5954 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
5955 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
5956 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
5957 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
5960 } else if let Err(reason) = res {
5961 update_maps_on_chan_removal!(self, short_to_chan_info, channel);
5962 // It looks like our counterparty went on-chain or funding transaction was
5963 // reorged out of the main chain. Close the channel.
5964 failed_channels.push(channel.force_shutdown(true));
5965 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
5966 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5970 let reason_message = format!("{}", reason);
5971 self.issue_channel_close_events(channel, reason);
5972 pending_msg_events.push(events::MessageSendEvent::HandleError {
5973 node_id: channel.get_counterparty_node_id(),
5974 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
5975 channel_id: channel.channel_id(),
5976 data: reason_message,
5984 if let Some(height) = height_opt {
5985 channel_state.claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
5986 htlcs.retain(|htlc| {
5987 // If height is approaching the number of blocks we think it takes us to get
5988 // our commitment transaction confirmed before the HTLC expires, plus the
5989 // number of blocks we generally consider it to take to do a commitment update,
5990 // just give up on it and fail the HTLC.
5991 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
5992 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
5993 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
5995 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
5996 failure_code: 0x4000 | 15,
5997 data: htlc_msat_height_data
5998 }, HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6002 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6007 self.handle_init_event_channel_failures(failed_channels);
6009 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6010 self.fail_htlc_backwards_internal(source, &payment_hash, reason, destination);
6014 /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
6015 /// indicating whether persistence is necessary. Only one listener on
6016 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
6019 /// Note that this method is not available with the `no-std` feature.
6020 #[cfg(any(test, feature = "std"))]
6021 pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
6022 self.persistence_notifier.wait_timeout(max_wait)
6025 /// Blocks until ChannelManager needs to be persisted. Only one listener on
6026 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
6028 pub fn await_persistable_update(&self) {
6029 self.persistence_notifier.wait()
6032 /// Gets a [`Future`] that completes when a persistable update is available. Note that
6033 /// callbacks registered on the [`Future`] MUST NOT call back into this [`ChannelManager`] and
6034 /// should instead register actions to be taken later.
6035 pub fn get_persistable_update_future(&self) -> Future {
6036 self.persistence_notifier.get_future()
6039 #[cfg(any(test, feature = "_test_utils"))]
6040 pub fn get_persistence_condvar_value(&self) -> bool {
6041 self.persistence_notifier.notify_pending()
6044 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6045 /// [`chain::Confirm`] interfaces.
6046 pub fn current_best_block(&self) -> BestBlock {
6047 self.best_block.read().unwrap().clone()
6051 impl<M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
6052 ChannelMessageHandler for ChannelManager<M, T, K, F, L>
6053 where M::Target: chain::Watch<<K::Target as KeysInterface>::Signer>,
6054 T::Target: BroadcasterInterface,
6055 K::Target: KeysInterface,
6056 F::Target: FeeEstimator,
6059 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
6060 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6061 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
6064 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
6065 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6066 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
6069 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6070 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6071 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6074 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6075 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6076 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6079 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6080 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6081 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6084 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
6085 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6086 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
6089 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6090 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6091 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6094 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6095 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6096 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6099 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6100 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6101 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6104 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6105 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6106 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6109 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6110 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6111 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6114 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6115 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6116 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6119 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6120 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6121 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6124 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6125 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6126 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6129 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6130 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6131 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6134 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6135 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6136 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6139 NotifyOption::SkipPersist
6144 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6145 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6146 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6149 fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
6150 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6151 let mut failed_channels = Vec::new();
6152 let mut no_channels_remain = true;
6154 let mut channel_state_lock = self.channel_state.lock().unwrap();
6155 let channel_state = &mut *channel_state_lock;
6156 let pending_msg_events = &mut channel_state.pending_msg_events;
6157 let short_to_chan_info = &mut channel_state.short_to_chan_info;
6158 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates. We believe we {} make future connections to this peer.",
6159 log_pubkey!(counterparty_node_id), if no_connection_possible { "cannot" } else { "can" });
6160 channel_state.by_id.retain(|_, chan| {
6161 if chan.get_counterparty_node_id() == *counterparty_node_id {
6162 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6163 if chan.is_shutdown() {
6164 update_maps_on_chan_removal!(self, short_to_chan_info, chan);
6165 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6168 no_channels_remain = false;
6173 pending_msg_events.retain(|msg| {
6175 &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
6176 &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
6177 &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
6178 &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
6179 &events::MessageSendEvent::SendChannelReady { ref node_id, .. } => node_id != counterparty_node_id,
6180 &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
6181 &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
6182 &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
6183 &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
6184 &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
6185 &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
6186 &events::MessageSendEvent::SendChannelAnnouncement { ref node_id, .. } => node_id != counterparty_node_id,
6187 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6188 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6189 &events::MessageSendEvent::SendChannelUpdate { ref node_id, .. } => node_id != counterparty_node_id,
6190 &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
6191 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6192 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6193 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6194 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6198 if no_channels_remain {
6199 self.per_peer_state.write().unwrap().remove(counterparty_node_id);
6202 for failure in failed_channels.drain(..) {
6203 self.finish_force_close_channel(failure);
6207 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) -> Result<(), ()> {
6208 if !init_msg.features.supports_static_remote_key() {
6209 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(counterparty_node_id));
6213 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6215 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6218 let mut peer_state_lock = self.per_peer_state.write().unwrap();
6219 match peer_state_lock.entry(counterparty_node_id.clone()) {
6220 hash_map::Entry::Vacant(e) => {
6221 e.insert(Mutex::new(PeerState {
6222 latest_features: init_msg.features.clone(),
6225 hash_map::Entry::Occupied(e) => {
6226 e.get().lock().unwrap().latest_features = init_msg.features.clone();
6231 let mut channel_state_lock = self.channel_state.lock().unwrap();
6232 let channel_state = &mut *channel_state_lock;
6233 let pending_msg_events = &mut channel_state.pending_msg_events;
6234 channel_state.by_id.retain(|_, chan| {
6235 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6236 if !chan.have_received_message() {
6237 // If we created this (outbound) channel while we were disconnected from the
6238 // peer we probably failed to send the open_channel message, which is now
6239 // lost. We can't have had anything pending related to this channel, so we just
6243 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6244 node_id: chan.get_counterparty_node_id(),
6245 msg: chan.get_channel_reestablish(&self.logger),
6250 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6251 if let Some(msg) = chan.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height()) {
6252 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6253 pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6254 node_id: *counterparty_node_id,
6262 //TODO: Also re-broadcast announcement_signatures
6266 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6267 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6269 if msg.channel_id == [0; 32] {
6270 for chan in self.list_channels() {
6271 if chan.counterparty.node_id == *counterparty_node_id {
6272 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6273 let _ = self.force_close_channel_with_peer(&chan.channel_id, counterparty_node_id, Some(&msg.data), true);
6278 // First check if we can advance the channel type and try again.
6279 let mut channel_state = self.channel_state.lock().unwrap();
6280 if let Some(chan) = channel_state.by_id.get_mut(&msg.channel_id) {
6281 if chan.get_counterparty_node_id() != *counterparty_node_id {
6284 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6285 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6286 node_id: *counterparty_node_id,
6294 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6295 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6299 fn provided_node_features(&self) -> NodeFeatures {
6300 provided_node_features()
6303 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6304 provided_init_features()
6308 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6309 /// [`ChannelManager`].
6310 pub fn provided_node_features() -> NodeFeatures {
6311 provided_init_features().to_context()
6314 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6315 /// [`ChannelManager`].
6317 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6318 /// or not. Thus, this method is not public.
6319 #[cfg(any(feature = "_test_utils", test))]
6320 pub fn provided_invoice_features() -> InvoiceFeatures {
6321 provided_init_features().to_context()
6324 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6325 /// [`ChannelManager`].
6326 pub fn provided_channel_features() -> ChannelFeatures {
6327 provided_init_features().to_context()
6330 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6331 /// [`ChannelManager`].
6332 pub fn provided_init_features() -> InitFeatures {
6333 // Note that if new features are added here which other peers may (eventually) require, we
6334 // should also add the corresponding (optional) bit to the ChannelMessageHandler impl for
6335 // ErroringMessageHandler.
6336 let mut features = InitFeatures::empty();
6337 features.set_data_loss_protect_optional();
6338 features.set_upfront_shutdown_script_optional();
6339 features.set_variable_length_onion_required();
6340 features.set_static_remote_key_required();
6341 features.set_payment_secret_required();
6342 features.set_basic_mpp_optional();
6343 features.set_wumbo_optional();
6344 features.set_shutdown_any_segwit_optional();
6345 features.set_channel_type_optional();
6346 features.set_scid_privacy_optional();
6347 features.set_zero_conf_optional();
6351 const SERIALIZATION_VERSION: u8 = 1;
6352 const MIN_SERIALIZATION_VERSION: u8 = 1;
6354 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6355 (2, fee_base_msat, required),
6356 (4, fee_proportional_millionths, required),
6357 (6, cltv_expiry_delta, required),
6360 impl_writeable_tlv_based!(ChannelCounterparty, {
6361 (2, node_id, required),
6362 (4, features, required),
6363 (6, unspendable_punishment_reserve, required),
6364 (8, forwarding_info, option),
6365 (9, outbound_htlc_minimum_msat, option),
6366 (11, outbound_htlc_maximum_msat, option),
6369 impl_writeable_tlv_based!(ChannelDetails, {
6370 (1, inbound_scid_alias, option),
6371 (2, channel_id, required),
6372 (3, channel_type, option),
6373 (4, counterparty, required),
6374 (5, outbound_scid_alias, option),
6375 (6, funding_txo, option),
6376 (7, config, option),
6377 (8, short_channel_id, option),
6378 (10, channel_value_satoshis, required),
6379 (12, unspendable_punishment_reserve, option),
6380 (14, user_channel_id, required),
6381 (16, balance_msat, required),
6382 (18, outbound_capacity_msat, required),
6383 // Note that by the time we get past the required read above, outbound_capacity_msat will be
6384 // filled in, so we can safely unwrap it here.
6385 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6386 (20, inbound_capacity_msat, required),
6387 (22, confirmations_required, option),
6388 (24, force_close_spend_delay, option),
6389 (26, is_outbound, required),
6390 (28, is_channel_ready, required),
6391 (30, is_usable, required),
6392 (32, is_public, required),
6393 (33, inbound_htlc_minimum_msat, option),
6394 (35, inbound_htlc_maximum_msat, option),
6397 impl_writeable_tlv_based!(PhantomRouteHints, {
6398 (2, channels, vec_type),
6399 (4, phantom_scid, required),
6400 (6, real_node_pubkey, required),
6403 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6405 (0, onion_packet, required),
6406 (2, short_channel_id, required),
6409 (0, payment_data, required),
6410 (1, phantom_shared_secret, option),
6411 (2, incoming_cltv_expiry, required),
6413 (2, ReceiveKeysend) => {
6414 (0, payment_preimage, required),
6415 (2, incoming_cltv_expiry, required),
6419 impl_writeable_tlv_based!(PendingHTLCInfo, {
6420 (0, routing, required),
6421 (2, incoming_shared_secret, required),
6422 (4, payment_hash, required),
6423 (6, amt_to_forward, required),
6424 (8, outgoing_cltv_value, required)
6428 impl Writeable for HTLCFailureMsg {
6429 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6431 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6433 channel_id.write(writer)?;
6434 htlc_id.write(writer)?;
6435 reason.write(writer)?;
6437 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6438 channel_id, htlc_id, sha256_of_onion, failure_code
6441 channel_id.write(writer)?;
6442 htlc_id.write(writer)?;
6443 sha256_of_onion.write(writer)?;
6444 failure_code.write(writer)?;
6451 impl Readable for HTLCFailureMsg {
6452 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6453 let id: u8 = Readable::read(reader)?;
6456 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6457 channel_id: Readable::read(reader)?,
6458 htlc_id: Readable::read(reader)?,
6459 reason: Readable::read(reader)?,
6463 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6464 channel_id: Readable::read(reader)?,
6465 htlc_id: Readable::read(reader)?,
6466 sha256_of_onion: Readable::read(reader)?,
6467 failure_code: Readable::read(reader)?,
6470 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6471 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6472 // messages contained in the variants.
6473 // In version 0.0.101, support for reading the variants with these types was added, and
6474 // we should migrate to writing these variants when UpdateFailHTLC or
6475 // UpdateFailMalformedHTLC get TLV fields.
6477 let length: BigSize = Readable::read(reader)?;
6478 let mut s = FixedLengthReader::new(reader, length.0);
6479 let res = Readable::read(&mut s)?;
6480 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6481 Ok(HTLCFailureMsg::Relay(res))
6484 let length: BigSize = Readable::read(reader)?;
6485 let mut s = FixedLengthReader::new(reader, length.0);
6486 let res = Readable::read(&mut s)?;
6487 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6488 Ok(HTLCFailureMsg::Malformed(res))
6490 _ => Err(DecodeError::UnknownRequiredFeature),
6495 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6500 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6501 (0, short_channel_id, required),
6502 (1, phantom_shared_secret, option),
6503 (2, outpoint, required),
6504 (4, htlc_id, required),
6505 (6, incoming_packet_shared_secret, required)
6508 impl Writeable for ClaimableHTLC {
6509 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6510 let (payment_data, keysend_preimage) = match &self.onion_payload {
6511 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6512 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6514 write_tlv_fields!(writer, {
6515 (0, self.prev_hop, required),
6516 (1, self.total_msat, required),
6517 (2, self.value, required),
6518 (4, payment_data, option),
6519 (6, self.cltv_expiry, required),
6520 (8, keysend_preimage, option),
6526 impl Readable for ClaimableHTLC {
6527 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6528 let mut prev_hop = crate::util::ser::OptionDeserWrapper(None);
6530 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6531 let mut cltv_expiry = 0;
6532 let mut total_msat = None;
6533 let mut keysend_preimage: Option<PaymentPreimage> = None;
6534 read_tlv_fields!(reader, {
6535 (0, prev_hop, required),
6536 (1, total_msat, option),
6537 (2, value, required),
6538 (4, payment_data, option),
6539 (6, cltv_expiry, required),
6540 (8, keysend_preimage, option)
6542 let onion_payload = match keysend_preimage {
6544 if payment_data.is_some() {
6545 return Err(DecodeError::InvalidValue)
6547 if total_msat.is_none() {
6548 total_msat = Some(value);
6550 OnionPayload::Spontaneous(p)
6553 if total_msat.is_none() {
6554 if payment_data.is_none() {
6555 return Err(DecodeError::InvalidValue)
6557 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6559 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6563 prev_hop: prev_hop.0.unwrap(),
6566 total_msat: total_msat.unwrap(),
6573 impl Readable for HTLCSource {
6574 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6575 let id: u8 = Readable::read(reader)?;
6578 let mut session_priv: crate::util::ser::OptionDeserWrapper<SecretKey> = crate::util::ser::OptionDeserWrapper(None);
6579 let mut first_hop_htlc_msat: u64 = 0;
6580 let mut path = Some(Vec::new());
6581 let mut payment_id = None;
6582 let mut payment_secret = None;
6583 let mut payment_params = None;
6584 read_tlv_fields!(reader, {
6585 (0, session_priv, required),
6586 (1, payment_id, option),
6587 (2, first_hop_htlc_msat, required),
6588 (3, payment_secret, option),
6589 (4, path, vec_type),
6590 (5, payment_params, option),
6592 if payment_id.is_none() {
6593 // For backwards compat, if there was no payment_id written, use the session_priv bytes
6595 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6597 Ok(HTLCSource::OutboundRoute {
6598 session_priv: session_priv.0.unwrap(),
6599 first_hop_htlc_msat,
6600 path: path.unwrap(),
6601 payment_id: payment_id.unwrap(),
6606 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6607 _ => Err(DecodeError::UnknownRequiredFeature),
6612 impl Writeable for HTLCSource {
6613 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
6615 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payment_params } => {
6617 let payment_id_opt = Some(payment_id);
6618 write_tlv_fields!(writer, {
6619 (0, session_priv, required),
6620 (1, payment_id_opt, option),
6621 (2, first_hop_htlc_msat, required),
6622 (3, payment_secret, option),
6623 (4, *path, vec_type),
6624 (5, payment_params, option),
6627 HTLCSource::PreviousHopData(ref field) => {
6629 field.write(writer)?;
6636 impl_writeable_tlv_based_enum!(HTLCFailReason,
6637 (0, LightningError) => {
6641 (0, failure_code, required),
6642 (2, data, vec_type),
6646 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6648 (0, forward_info, required),
6649 (2, prev_short_channel_id, required),
6650 (4, prev_htlc_id, required),
6651 (6, prev_funding_outpoint, required),
6654 (0, htlc_id, required),
6655 (2, err_packet, required),
6659 impl_writeable_tlv_based!(PendingInboundPayment, {
6660 (0, payment_secret, required),
6661 (2, expiry_time, required),
6662 (4, user_payment_id, required),
6663 (6, payment_preimage, required),
6664 (8, min_value_msat, required),
6667 impl_writeable_tlv_based_enum_upgradable!(PendingOutboundPayment,
6669 (0, session_privs, required),
6672 (0, session_privs, required),
6673 (1, payment_hash, option),
6674 (3, timer_ticks_without_htlcs, (default_value, 0)),
6677 (0, session_privs, required),
6678 (1, pending_fee_msat, option),
6679 (2, payment_hash, required),
6680 (4, payment_secret, option),
6681 (6, total_msat, required),
6682 (8, pending_amt_msat, required),
6683 (10, starting_block_height, required),
6686 (0, session_privs, required),
6687 (2, payment_hash, required),
6691 impl<M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<M, T, K, F, L>
6692 where M::Target: chain::Watch<<K::Target as KeysInterface>::Signer>,
6693 T::Target: BroadcasterInterface,
6694 K::Target: KeysInterface,
6695 F::Target: FeeEstimator,
6698 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6699 let _consistency_lock = self.total_consistency_lock.write().unwrap();
6701 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
6703 self.genesis_hash.write(writer)?;
6705 let best_block = self.best_block.read().unwrap();
6706 best_block.height().write(writer)?;
6707 best_block.block_hash().write(writer)?;
6711 // Take `channel_state` lock temporarily to avoid creating a lock order that requires
6712 // that the `forward_htlcs` lock is taken after `channel_state`
6713 let channel_state = self.channel_state.lock().unwrap();
6714 let mut unfunded_channels = 0;
6715 for (_, channel) in channel_state.by_id.iter() {
6716 if !channel.is_funding_initiated() {
6717 unfunded_channels += 1;
6720 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
6721 for (_, channel) in channel_state.by_id.iter() {
6722 if channel.is_funding_initiated() {
6723 channel.write(writer)?;
6729 let forward_htlcs = self.forward_htlcs.lock().unwrap();
6730 (forward_htlcs.len() as u64).write(writer)?;
6731 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
6732 short_channel_id.write(writer)?;
6733 (pending_forwards.len() as u64).write(writer)?;
6734 for forward in pending_forwards {
6735 forward.write(writer)?;
6740 let channel_state = self.channel_state.lock().unwrap();
6741 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
6742 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
6743 for (payment_hash, (purpose, previous_hops)) in channel_state.claimable_htlcs.iter() {
6744 payment_hash.write(writer)?;
6745 (previous_hops.len() as u64).write(writer)?;
6746 for htlc in previous_hops.iter() {
6747 htlc.write(writer)?;
6749 htlc_purposes.push(purpose);
6752 let per_peer_state = self.per_peer_state.write().unwrap();
6753 (per_peer_state.len() as u64).write(writer)?;
6754 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
6755 peer_pubkey.write(writer)?;
6756 let peer_state = peer_state_mutex.lock().unwrap();
6757 peer_state.latest_features.write(writer)?;
6760 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
6761 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
6762 let events = self.pending_events.lock().unwrap();
6763 (events.len() as u64).write(writer)?;
6764 for event in events.iter() {
6765 event.write(writer)?;
6768 let background_events = self.pending_background_events.lock().unwrap();
6769 (background_events.len() as u64).write(writer)?;
6770 for event in background_events.iter() {
6772 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
6774 funding_txo.write(writer)?;
6775 monitor_update.write(writer)?;
6780 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
6781 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
6782 // likely to be identical.
6783 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
6784 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
6786 (pending_inbound_payments.len() as u64).write(writer)?;
6787 for (hash, pending_payment) in pending_inbound_payments.iter() {
6788 hash.write(writer)?;
6789 pending_payment.write(writer)?;
6792 // For backwards compat, write the session privs and their total length.
6793 let mut num_pending_outbounds_compat: u64 = 0;
6794 for (_, outbound) in pending_outbound_payments.iter() {
6795 if !outbound.is_fulfilled() && !outbound.abandoned() {
6796 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
6799 num_pending_outbounds_compat.write(writer)?;
6800 for (_, outbound) in pending_outbound_payments.iter() {
6802 PendingOutboundPayment::Legacy { session_privs } |
6803 PendingOutboundPayment::Retryable { session_privs, .. } => {
6804 for session_priv in session_privs.iter() {
6805 session_priv.write(writer)?;
6808 PendingOutboundPayment::Fulfilled { .. } => {},
6809 PendingOutboundPayment::Abandoned { .. } => {},
6813 // Encode without retry info for 0.0.101 compatibility.
6814 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
6815 for (id, outbound) in pending_outbound_payments.iter() {
6817 PendingOutboundPayment::Legacy { session_privs } |
6818 PendingOutboundPayment::Retryable { session_privs, .. } => {
6819 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
6824 write_tlv_fields!(writer, {
6825 (1, pending_outbound_payments_no_retry, required),
6826 (3, pending_outbound_payments, required),
6827 (5, self.our_network_pubkey, required),
6828 (7, self.fake_scid_rand_bytes, required),
6829 (9, htlc_purposes, vec_type),
6830 (11, self.probing_cookie_secret, required),
6837 /// Arguments for the creation of a ChannelManager that are not deserialized.
6839 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
6841 /// 1) Deserialize all stored [`ChannelMonitor`]s.
6842 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
6843 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
6844 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
6845 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
6846 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
6847 /// same way you would handle a [`chain::Filter`] call using
6848 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
6849 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
6850 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
6851 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
6852 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
6853 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
6855 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
6856 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
6858 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
6859 /// call any other methods on the newly-deserialized [`ChannelManager`].
6861 /// Note that because some channels may be closed during deserialization, it is critical that you
6862 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
6863 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
6864 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
6865 /// not force-close the same channels but consider them live), you may end up revoking a state for
6866 /// which you've already broadcasted the transaction.
6868 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
6869 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6870 where M::Target: chain::Watch<Signer>,
6871 T::Target: BroadcasterInterface,
6872 K::Target: KeysInterface<Signer = Signer>,
6873 F::Target: FeeEstimator,
6876 /// The keys provider which will give us relevant keys. Some keys will be loaded during
6877 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
6879 pub keys_manager: K,
6881 /// The fee_estimator for use in the ChannelManager in the future.
6883 /// No calls to the FeeEstimator will be made during deserialization.
6884 pub fee_estimator: F,
6885 /// The chain::Watch for use in the ChannelManager in the future.
6887 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
6888 /// you have deserialized ChannelMonitors separately and will add them to your
6889 /// chain::Watch after deserializing this ChannelManager.
6890 pub chain_monitor: M,
6892 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
6893 /// used to broadcast the latest local commitment transactions of channels which must be
6894 /// force-closed during deserialization.
6895 pub tx_broadcaster: T,
6896 /// The Logger for use in the ChannelManager and which may be used to log information during
6897 /// deserialization.
6899 /// Default settings used for new channels. Any existing channels will continue to use the
6900 /// runtime settings which were stored when the ChannelManager was serialized.
6901 pub default_config: UserConfig,
6903 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
6904 /// value.get_funding_txo() should be the key).
6906 /// If a monitor is inconsistent with the channel state during deserialization the channel will
6907 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
6908 /// is true for missing channels as well. If there is a monitor missing for which we find
6909 /// channel data Err(DecodeError::InvalidValue) will be returned.
6911 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
6914 /// (C-not exported) because we have no HashMap bindings
6915 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
6918 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6919 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
6920 where M::Target: chain::Watch<Signer>,
6921 T::Target: BroadcasterInterface,
6922 K::Target: KeysInterface<Signer = Signer>,
6923 F::Target: FeeEstimator,
6926 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
6927 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
6928 /// populate a HashMap directly from C.
6929 pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
6930 mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
6932 keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
6933 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
6938 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
6939 // SipmleArcChannelManager type:
6940 impl<'a, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6941 ReadableArgs<ChannelManagerReadArgs<'a, <K::Target as KeysInterface>::Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<M, T, K, F, L>>)
6942 where M::Target: chain::Watch<<K::Target as KeysInterface>::Signer>,
6943 T::Target: BroadcasterInterface,
6944 K::Target: KeysInterface,
6945 F::Target: FeeEstimator,
6948 fn read<R: io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, <K::Target as KeysInterface>::Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
6949 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, K, F, L>)>::read(reader, args)?;
6950 Ok((blockhash, Arc::new(chan_manager)))
6954 impl<'a, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6955 ReadableArgs<ChannelManagerReadArgs<'a, <K::Target as KeysInterface>::Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<M, T, K, F, L>)
6956 where M::Target: chain::Watch<<K::Target as KeysInterface>::Signer>,
6957 T::Target: BroadcasterInterface,
6958 K::Target: KeysInterface,
6959 F::Target: FeeEstimator,
6962 fn read<R: io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, <K::Target as KeysInterface>::Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
6963 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
6965 let genesis_hash: BlockHash = Readable::read(reader)?;
6966 let best_block_height: u32 = Readable::read(reader)?;
6967 let best_block_hash: BlockHash = Readable::read(reader)?;
6969 let mut failed_htlcs = Vec::new();
6971 let channel_count: u64 = Readable::read(reader)?;
6972 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
6973 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
6974 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
6975 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
6976 let mut channel_closures = Vec::new();
6977 for _ in 0..channel_count {
6978 let mut channel: Channel<<K::Target as KeysInterface>::Signer> = Channel::read(reader, (&args.keys_manager, best_block_height))?;
6979 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
6980 funding_txo_set.insert(funding_txo.clone());
6981 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
6982 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
6983 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
6984 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
6985 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
6986 // If the channel is ahead of the monitor, return InvalidValue:
6987 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
6988 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
6989 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
6990 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
6991 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
6992 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
6993 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
6994 return Err(DecodeError::InvalidValue);
6995 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
6996 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
6997 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
6998 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
6999 // But if the channel is behind of the monitor, close the channel:
7000 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7001 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7002 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7003 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7004 let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
7005 failed_htlcs.append(&mut new_failed_htlcs);
7006 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7007 channel_closures.push(events::Event::ChannelClosed {
7008 channel_id: channel.channel_id(),
7009 user_channel_id: channel.get_user_id(),
7010 reason: ClosureReason::OutdatedChannelManager
7013 log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7014 if let Some(short_channel_id) = channel.get_short_channel_id() {
7015 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7017 if channel.is_funding_initiated() {
7018 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7020 by_id.insert(channel.channel_id(), channel);
7022 } else if channel.is_awaiting_initial_mon_persist() {
7023 // If we were persisted and shut down while the initial ChannelMonitor persistence
7024 // was in-progress, we never broadcasted the funding transaction and can still
7025 // safely discard the channel.
7026 let _ = channel.force_shutdown(false);
7027 channel_closures.push(events::Event::ChannelClosed {
7028 channel_id: channel.channel_id(),
7029 user_channel_id: channel.get_user_id(),
7030 reason: ClosureReason::DisconnectedPeer,
7033 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7034 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7035 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7036 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7037 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7038 return Err(DecodeError::InvalidValue);
7042 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
7043 if !funding_txo_set.contains(funding_txo) {
7044 log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
7045 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7049 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7050 let forward_htlcs_count: u64 = Readable::read(reader)?;
7051 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7052 for _ in 0..forward_htlcs_count {
7053 let short_channel_id = Readable::read(reader)?;
7054 let pending_forwards_count: u64 = Readable::read(reader)?;
7055 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7056 for _ in 0..pending_forwards_count {
7057 pending_forwards.push(Readable::read(reader)?);
7059 forward_htlcs.insert(short_channel_id, pending_forwards);
7062 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7063 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7064 for _ in 0..claimable_htlcs_count {
7065 let payment_hash = Readable::read(reader)?;
7066 let previous_hops_len: u64 = Readable::read(reader)?;
7067 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7068 for _ in 0..previous_hops_len {
7069 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7071 claimable_htlcs_list.push((payment_hash, previous_hops));
7074 let peer_count: u64 = Readable::read(reader)?;
7075 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
7076 for _ in 0..peer_count {
7077 let peer_pubkey = Readable::read(reader)?;
7078 let peer_state = PeerState {
7079 latest_features: Readable::read(reader)?,
7081 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7084 let event_count: u64 = Readable::read(reader)?;
7085 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7086 for _ in 0..event_count {
7087 match MaybeReadable::read(reader)? {
7088 Some(event) => pending_events_read.push(event),
7092 if forward_htlcs_count > 0 {
7093 // If we have pending HTLCs to forward, assume we either dropped a
7094 // `PendingHTLCsForwardable` or the user received it but never processed it as they
7095 // shut down before the timer hit. Either way, set the time_forwardable to a small
7096 // constant as enough time has likely passed that we should simply handle the forwards
7097 // now, or at least after the user gets a chance to reconnect to our peers.
7098 pending_events_read.push(events::Event::PendingHTLCsForwardable {
7099 time_forwardable: Duration::from_secs(2),
7103 let background_event_count: u64 = Readable::read(reader)?;
7104 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
7105 for _ in 0..background_event_count {
7106 match <u8 as Readable>::read(reader)? {
7107 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
7108 _ => return Err(DecodeError::InvalidValue),
7112 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7113 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7115 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7116 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7117 for _ in 0..pending_inbound_payment_count {
7118 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7119 return Err(DecodeError::InvalidValue);
7123 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7124 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7125 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7126 for _ in 0..pending_outbound_payments_count_compat {
7127 let session_priv = Readable::read(reader)?;
7128 let payment = PendingOutboundPayment::Legacy {
7129 session_privs: [session_priv].iter().cloned().collect()
7131 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7132 return Err(DecodeError::InvalidValue)
7136 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7137 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7138 let mut pending_outbound_payments = None;
7139 let mut received_network_pubkey: Option<PublicKey> = None;
7140 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7141 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7142 let mut claimable_htlc_purposes = None;
7143 read_tlv_fields!(reader, {
7144 (1, pending_outbound_payments_no_retry, option),
7145 (3, pending_outbound_payments, option),
7146 (5, received_network_pubkey, option),
7147 (7, fake_scid_rand_bytes, option),
7148 (9, claimable_htlc_purposes, vec_type),
7149 (11, probing_cookie_secret, option),
7151 if fake_scid_rand_bytes.is_none() {
7152 fake_scid_rand_bytes = Some(args.keys_manager.get_secure_random_bytes());
7155 if probing_cookie_secret.is_none() {
7156 probing_cookie_secret = Some(args.keys_manager.get_secure_random_bytes());
7159 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7160 pending_outbound_payments = Some(pending_outbound_payments_compat);
7161 } else if pending_outbound_payments.is_none() {
7162 let mut outbounds = HashMap::new();
7163 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7164 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7166 pending_outbound_payments = Some(outbounds);
7168 // If we're tracking pending payments, ensure we haven't lost any by looking at the
7169 // ChannelMonitor data for any channels for which we do not have authorative state
7170 // (i.e. those for which we just force-closed above or we otherwise don't have a
7171 // corresponding `Channel` at all).
7172 // This avoids several edge-cases where we would otherwise "forget" about pending
7173 // payments which are still in-flight via their on-chain state.
7174 // We only rebuild the pending payments map if we were most recently serialized by
7176 for (_, monitor) in args.channel_monitors.iter() {
7177 if by_id.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7178 for (htlc_source, htlc) in monitor.get_pending_outbound_htlcs() {
7179 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
7180 if path.is_empty() {
7181 log_error!(args.logger, "Got an empty path for a pending payment");
7182 return Err(DecodeError::InvalidValue);
7184 let path_amt = path.last().unwrap().fee_msat;
7185 let mut session_priv_bytes = [0; 32];
7186 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7187 match pending_outbound_payments.as_mut().unwrap().entry(payment_id) {
7188 hash_map::Entry::Occupied(mut entry) => {
7189 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7190 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7191 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7193 hash_map::Entry::Vacant(entry) => {
7194 let path_fee = path.get_path_fees();
7195 entry.insert(PendingOutboundPayment::Retryable {
7196 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7197 payment_hash: htlc.payment_hash,
7199 pending_amt_msat: path_amt,
7200 pending_fee_msat: Some(path_fee),
7201 total_msat: path_amt,
7202 starting_block_height: best_block_height,
7204 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7205 path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes));
7214 let inbound_pmt_key_material = args.keys_manager.get_inbound_payment_key_material();
7215 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7217 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
7218 if let Some(mut purposes) = claimable_htlc_purposes {
7219 if purposes.len() != claimable_htlcs_list.len() {
7220 return Err(DecodeError::InvalidValue);
7222 for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
7223 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7226 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7227 // include a `_legacy_hop_data` in the `OnionPayload`.
7228 for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
7229 if previous_hops.is_empty() {
7230 return Err(DecodeError::InvalidValue);
7232 let purpose = match &previous_hops[0].onion_payload {
7233 OnionPayload::Invoice { _legacy_hop_data } => {
7234 if let Some(hop_data) = _legacy_hop_data {
7235 events::PaymentPurpose::InvoicePayment {
7236 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7237 Some(inbound_payment) => inbound_payment.payment_preimage,
7238 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7239 Ok(payment_preimage) => payment_preimage,
7241 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7242 return Err(DecodeError::InvalidValue);
7246 payment_secret: hop_data.payment_secret,
7248 } else { return Err(DecodeError::InvalidValue); }
7250 OnionPayload::Spontaneous(payment_preimage) =>
7251 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7253 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7257 let mut secp_ctx = Secp256k1::new();
7258 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
7260 if !channel_closures.is_empty() {
7261 pending_events_read.append(&mut channel_closures);
7264 let our_network_key = match args.keys_manager.get_node_secret(Recipient::Node) {
7266 Err(()) => return Err(DecodeError::InvalidValue)
7268 let our_network_pubkey = PublicKey::from_secret_key(&secp_ctx, &our_network_key);
7269 if let Some(network_pubkey) = received_network_pubkey {
7270 if network_pubkey != our_network_pubkey {
7271 log_error!(args.logger, "Key that was generated does not match the existing key.");
7272 return Err(DecodeError::InvalidValue);
7276 let mut outbound_scid_aliases = HashSet::new();
7277 for (chan_id, chan) in by_id.iter_mut() {
7278 if chan.outbound_scid_alias() == 0 {
7279 let mut outbound_scid_alias;
7281 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7282 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.keys_manager);
7283 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7285 chan.set_outbound_scid_alias(outbound_scid_alias);
7286 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7287 // Note that in rare cases its possible to hit this while reading an older
7288 // channel if we just happened to pick a colliding outbound alias above.
7289 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7290 return Err(DecodeError::InvalidValue);
7292 if chan.is_usable() {
7293 if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7294 // Note that in rare cases its possible to hit this while reading an older
7295 // channel if we just happened to pick a colliding outbound alias above.
7296 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7297 return Err(DecodeError::InvalidValue);
7302 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7304 for (_, monitor) in args.channel_monitors.iter() {
7305 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7306 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7307 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7308 let mut claimable_amt_msat = 0;
7309 for claimable_htlc in claimable_htlcs {
7310 claimable_amt_msat += claimable_htlc.value;
7312 // Add a holding-cell claim of the payment to the Channel, which should be
7313 // applied ~immediately on peer reconnection. Because it won't generate a
7314 // new commitment transaction we can just provide the payment preimage to
7315 // the corresponding ChannelMonitor and nothing else.
7317 // We do so directly instead of via the normal ChannelMonitor update
7318 // procedure as the ChainMonitor hasn't yet been initialized, implying
7319 // we're not allowed to call it directly yet. Further, we do the update
7320 // without incrementing the ChannelMonitor update ID as there isn't any
7322 // If we were to generate a new ChannelMonitor update ID here and then
7323 // crash before the user finishes block connect we'd end up force-closing
7324 // this channel as well. On the flip side, there's no harm in restarting
7325 // without the new monitor persisted - we'll end up right back here on
7327 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7328 if let Some(channel) = by_id.get_mut(&previous_channel_id) {
7329 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7331 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7332 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
7335 pending_events_read.push(events::Event::PaymentClaimed {
7337 purpose: payment_purpose,
7338 amount_msat: claimable_amt_msat,
7344 let channel_manager = ChannelManager {
7346 fee_estimator: bounded_fee_estimator,
7347 chain_monitor: args.chain_monitor,
7348 tx_broadcaster: args.tx_broadcaster,
7350 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7352 channel_state: Mutex::new(ChannelHolder {
7356 pending_msg_events: Vec::new(),
7358 inbound_payment_key: expanded_inbound_key,
7359 pending_inbound_payments: Mutex::new(pending_inbound_payments),
7360 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7362 forward_htlcs: Mutex::new(forward_htlcs),
7363 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7364 id_to_peer: Mutex::new(id_to_peer),
7365 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7367 probing_cookie_secret: probing_cookie_secret.unwrap(),
7373 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7375 per_peer_state: RwLock::new(per_peer_state),
7377 pending_events: Mutex::new(pending_events_read),
7378 pending_background_events: Mutex::new(pending_background_events_read),
7379 total_consistency_lock: RwLock::new(()),
7380 persistence_notifier: Notifier::new(),
7382 keys_manager: args.keys_manager,
7383 logger: args.logger,
7384 default_configuration: args.default_config,
7387 for htlc_source in failed_htlcs.drain(..) {
7388 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
7389 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
7390 channel_manager.fail_htlc_backwards_internal(source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }, receiver);
7393 //TODO: Broadcast channel update for closed channels, but only after we've made a
7394 //connection or two.
7396 Ok((best_block_hash.clone(), channel_manager))
7402 use bitcoin::hashes::Hash;
7403 use bitcoin::hashes::sha256::Hash as Sha256;
7404 use core::time::Duration;
7405 use core::sync::atomic::Ordering;
7406 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7407 use crate::ln::channelmanager::{self, inbound_payment, PaymentId, PaymentSendFailure};
7408 use crate::ln::functional_test_utils::*;
7409 use crate::ln::msgs;
7410 use crate::ln::msgs::ChannelMessageHandler;
7411 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
7412 use crate::util::errors::APIError;
7413 use crate::util::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
7414 use crate::util::test_utils;
7415 use crate::chain::keysinterface::KeysInterface;
7418 fn test_notify_limits() {
7419 // Check that a few cases which don't require the persistence of a new ChannelManager,
7420 // indeed, do not cause the persistence of a new ChannelManager.
7421 let chanmon_cfgs = create_chanmon_cfgs(3);
7422 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
7423 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
7424 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
7426 // All nodes start with a persistable update pending as `create_network` connects each node
7427 // with all other nodes to make most tests simpler.
7428 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7429 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7430 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7432 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
7434 // We check that the channel info nodes have doesn't change too early, even though we try
7435 // to connect messages with new values
7436 chan.0.contents.fee_base_msat *= 2;
7437 chan.1.contents.fee_base_msat *= 2;
7438 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
7439 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
7441 // The first two nodes (which opened a channel) should now require fresh persistence
7442 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7443 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7444 // ... but the last node should not.
7445 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7446 // After persisting the first two nodes they should no longer need fresh persistence.
7447 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7448 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7450 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
7451 // about the channel.
7452 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
7453 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
7454 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7456 // The nodes which are a party to the channel should also ignore messages from unrelated
7458 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7459 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7460 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7461 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7462 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7463 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7465 // At this point the channel info given by peers should still be the same.
7466 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7467 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7469 // An earlier version of handle_channel_update didn't check the directionality of the
7470 // update message and would always update the local fee info, even if our peer was
7471 // (spuriously) forwarding us our own channel_update.
7472 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
7473 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
7474 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
7476 // First deliver each peers' own message, checking that the node doesn't need to be
7477 // persisted and that its channel info remains the same.
7478 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
7479 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
7480 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7481 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7482 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7483 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7485 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
7486 // the channel info has updated.
7487 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
7488 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
7489 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7490 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7491 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
7492 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
7496 fn test_keysend_dup_hash_partial_mpp() {
7497 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
7499 let chanmon_cfgs = create_chanmon_cfgs(2);
7500 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7501 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7502 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7503 create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
7505 // First, send a partial MPP payment.
7506 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
7507 let mut mpp_route = route.clone();
7508 mpp_route.paths.push(mpp_route.paths[0].clone());
7510 let payment_id = PaymentId([42; 32]);
7511 // Use the utility function send_payment_along_path to send the payment with MPP data which
7512 // indicates there are more HTLCs coming.
7513 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
7514 let session_privs = nodes[0].node.add_new_pending_payment(our_payment_hash, Some(payment_secret), payment_id, &mpp_route).unwrap();
7515 nodes[0].node.send_payment_along_path(&mpp_route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
7516 check_added_monitors!(nodes[0], 1);
7517 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7518 assert_eq!(events.len(), 1);
7519 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
7521 // Next, send a keysend payment with the same payment_hash and make sure it fails.
7522 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
7523 check_added_monitors!(nodes[0], 1);
7524 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7525 assert_eq!(events.len(), 1);
7526 let ev = events.drain(..).next().unwrap();
7527 let payment_event = SendEvent::from_event(ev);
7528 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7529 check_added_monitors!(nodes[1], 0);
7530 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7531 expect_pending_htlcs_forwardable!(nodes[1]);
7532 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
7533 check_added_monitors!(nodes[1], 1);
7534 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7535 assert!(updates.update_add_htlcs.is_empty());
7536 assert!(updates.update_fulfill_htlcs.is_empty());
7537 assert_eq!(updates.update_fail_htlcs.len(), 1);
7538 assert!(updates.update_fail_malformed_htlcs.is_empty());
7539 assert!(updates.update_fee.is_none());
7540 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7541 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7542 expect_payment_failed!(nodes[0], our_payment_hash, true);
7544 // Send the second half of the original MPP payment.
7545 nodes[0].node.send_payment_along_path(&mpp_route.paths[1], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
7546 check_added_monitors!(nodes[0], 1);
7547 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7548 assert_eq!(events.len(), 1);
7549 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
7551 // Claim the full MPP payment. Note that we can't use a test utility like
7552 // claim_funds_along_route because the ordering of the messages causes the second half of the
7553 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
7554 // lightning messages manually.
7555 nodes[1].node.claim_funds(payment_preimage);
7556 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
7557 check_added_monitors!(nodes[1], 2);
7559 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7560 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
7561 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
7562 check_added_monitors!(nodes[0], 1);
7563 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7564 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
7565 check_added_monitors!(nodes[1], 1);
7566 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7567 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
7568 check_added_monitors!(nodes[1], 1);
7569 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7570 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
7571 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
7572 check_added_monitors!(nodes[0], 1);
7573 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
7574 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
7575 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7576 check_added_monitors!(nodes[0], 1);
7577 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
7578 check_added_monitors!(nodes[1], 1);
7579 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
7580 check_added_monitors!(nodes[1], 1);
7581 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7582 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
7583 check_added_monitors!(nodes[0], 1);
7585 // Note that successful MPP payments will generate a single PaymentSent event upon the first
7586 // path's success and a PaymentPathSuccessful event for each path's success.
7587 let events = nodes[0].node.get_and_clear_pending_events();
7588 assert_eq!(events.len(), 3);
7590 Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
7591 assert_eq!(Some(payment_id), *id);
7592 assert_eq!(payment_preimage, *preimage);
7593 assert_eq!(our_payment_hash, *hash);
7595 _ => panic!("Unexpected event"),
7598 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7599 assert_eq!(payment_id, *actual_payment_id);
7600 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7601 assert_eq!(route.paths[0], *path);
7603 _ => panic!("Unexpected event"),
7606 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7607 assert_eq!(payment_id, *actual_payment_id);
7608 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7609 assert_eq!(route.paths[0], *path);
7611 _ => panic!("Unexpected event"),
7616 fn test_keysend_dup_payment_hash() {
7617 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
7618 // outbound regular payment fails as expected.
7619 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
7620 // fails as expected.
7621 let chanmon_cfgs = create_chanmon_cfgs(2);
7622 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7623 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7624 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7625 create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
7626 let scorer = test_utils::TestScorer::with_penalty(0);
7627 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7629 // To start (1), send a regular payment but don't claim it.
7630 let expected_route = [&nodes[1]];
7631 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
7633 // Next, attempt a keysend payment and make sure it fails.
7634 let route_params = RouteParameters {
7635 payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id()),
7636 final_value_msat: 100_000,
7637 final_cltv_expiry_delta: TEST_FINAL_CLTV,
7639 let route = find_route(
7640 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
7641 None, nodes[0].logger, &scorer, &random_seed_bytes
7643 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
7644 check_added_monitors!(nodes[0], 1);
7645 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7646 assert_eq!(events.len(), 1);
7647 let ev = events.drain(..).next().unwrap();
7648 let payment_event = SendEvent::from_event(ev);
7649 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7650 check_added_monitors!(nodes[1], 0);
7651 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7652 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
7653 // fails), the second will process the resulting failure and fail the HTLC backward
7654 expect_pending_htlcs_forwardable!(nodes[1]);
7655 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
7656 check_added_monitors!(nodes[1], 1);
7657 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7658 assert!(updates.update_add_htlcs.is_empty());
7659 assert!(updates.update_fulfill_htlcs.is_empty());
7660 assert_eq!(updates.update_fail_htlcs.len(), 1);
7661 assert!(updates.update_fail_malformed_htlcs.is_empty());
7662 assert!(updates.update_fee.is_none());
7663 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7664 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7665 expect_payment_failed!(nodes[0], payment_hash, true);
7667 // Finally, claim the original payment.
7668 claim_payment(&nodes[0], &expected_route, payment_preimage);
7670 // To start (2), send a keysend payment but don't claim it.
7671 let payment_preimage = PaymentPreimage([42; 32]);
7672 let route = find_route(
7673 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
7674 None, nodes[0].logger, &scorer, &random_seed_bytes
7676 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
7677 check_added_monitors!(nodes[0], 1);
7678 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7679 assert_eq!(events.len(), 1);
7680 let event = events.pop().unwrap();
7681 let path = vec![&nodes[1]];
7682 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
7684 // Next, attempt a regular payment and make sure it fails.
7685 let payment_secret = PaymentSecret([43; 32]);
7686 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
7687 check_added_monitors!(nodes[0], 1);
7688 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7689 assert_eq!(events.len(), 1);
7690 let ev = events.drain(..).next().unwrap();
7691 let payment_event = SendEvent::from_event(ev);
7692 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7693 check_added_monitors!(nodes[1], 0);
7694 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7695 expect_pending_htlcs_forwardable!(nodes[1]);
7696 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
7697 check_added_monitors!(nodes[1], 1);
7698 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7699 assert!(updates.update_add_htlcs.is_empty());
7700 assert!(updates.update_fulfill_htlcs.is_empty());
7701 assert_eq!(updates.update_fail_htlcs.len(), 1);
7702 assert!(updates.update_fail_malformed_htlcs.is_empty());
7703 assert!(updates.update_fee.is_none());
7704 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7705 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7706 expect_payment_failed!(nodes[0], payment_hash, true);
7708 // Finally, succeed the keysend payment.
7709 claim_payment(&nodes[0], &expected_route, payment_preimage);
7713 fn test_keysend_hash_mismatch() {
7714 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
7715 // preimage doesn't match the msg's payment hash.
7716 let chanmon_cfgs = create_chanmon_cfgs(2);
7717 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7718 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7719 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7721 let payer_pubkey = nodes[0].node.get_our_node_id();
7722 let payee_pubkey = nodes[1].node.get_our_node_id();
7723 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
7724 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
7726 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], channelmanager::provided_init_features(), channelmanager::provided_init_features());
7727 let route_params = RouteParameters {
7728 payment_params: PaymentParameters::for_keysend(payee_pubkey),
7729 final_value_msat: 10_000,
7730 final_cltv_expiry_delta: 40,
7732 let network_graph = nodes[0].network_graph;
7733 let first_hops = nodes[0].node.list_usable_channels();
7734 let scorer = test_utils::TestScorer::with_penalty(0);
7735 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7736 let route = find_route(
7737 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
7738 nodes[0].logger, &scorer, &random_seed_bytes
7741 let test_preimage = PaymentPreimage([42; 32]);
7742 let mismatch_payment_hash = PaymentHash([43; 32]);
7743 let session_privs = nodes[0].node.add_new_pending_payment(mismatch_payment_hash, None, PaymentId(mismatch_payment_hash.0), &route).unwrap();
7744 nodes[0].node.send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
7745 check_added_monitors!(nodes[0], 1);
7747 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7748 assert_eq!(updates.update_add_htlcs.len(), 1);
7749 assert!(updates.update_fulfill_htlcs.is_empty());
7750 assert!(updates.update_fail_htlcs.is_empty());
7751 assert!(updates.update_fail_malformed_htlcs.is_empty());
7752 assert!(updates.update_fee.is_none());
7753 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
7755 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
7759 fn test_keysend_msg_with_secret_err() {
7760 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
7761 let chanmon_cfgs = create_chanmon_cfgs(2);
7762 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7763 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7764 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7766 let payer_pubkey = nodes[0].node.get_our_node_id();
7767 let payee_pubkey = nodes[1].node.get_our_node_id();
7768 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
7769 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
7771 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], channelmanager::provided_init_features(), channelmanager::provided_init_features());
7772 let route_params = RouteParameters {
7773 payment_params: PaymentParameters::for_keysend(payee_pubkey),
7774 final_value_msat: 10_000,
7775 final_cltv_expiry_delta: 40,
7777 let network_graph = nodes[0].network_graph;
7778 let first_hops = nodes[0].node.list_usable_channels();
7779 let scorer = test_utils::TestScorer::with_penalty(0);
7780 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7781 let route = find_route(
7782 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
7783 nodes[0].logger, &scorer, &random_seed_bytes
7786 let test_preimage = PaymentPreimage([42; 32]);
7787 let test_secret = PaymentSecret([43; 32]);
7788 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
7789 let session_privs = nodes[0].node.add_new_pending_payment(payment_hash, Some(test_secret), PaymentId(payment_hash.0), &route).unwrap();
7790 nodes[0].node.send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), PaymentId(payment_hash.0), None, session_privs).unwrap();
7791 check_added_monitors!(nodes[0], 1);
7793 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7794 assert_eq!(updates.update_add_htlcs.len(), 1);
7795 assert!(updates.update_fulfill_htlcs.is_empty());
7796 assert!(updates.update_fail_htlcs.is_empty());
7797 assert!(updates.update_fail_malformed_htlcs.is_empty());
7798 assert!(updates.update_fee.is_none());
7799 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
7801 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
7805 fn test_multi_hop_missing_secret() {
7806 let chanmon_cfgs = create_chanmon_cfgs(4);
7807 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
7808 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
7809 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
7811 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
7812 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
7813 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
7814 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
7816 // Marshall an MPP route.
7817 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
7818 let path = route.paths[0].clone();
7819 route.paths.push(path);
7820 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
7821 route.paths[0][0].short_channel_id = chan_1_id;
7822 route.paths[0][1].short_channel_id = chan_3_id;
7823 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
7824 route.paths[1][0].short_channel_id = chan_2_id;
7825 route.paths[1][1].short_channel_id = chan_4_id;
7827 match nodes[0].node.send_payment(&route, payment_hash, &None, PaymentId(payment_hash.0)).unwrap_err() {
7828 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
7829 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err)) },
7830 _ => panic!("unexpected error")
7835 fn bad_inbound_payment_hash() {
7836 // Add coverage for checking that a user-provided payment hash matches the payment secret.
7837 let chanmon_cfgs = create_chanmon_cfgs(2);
7838 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7839 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7840 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7842 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
7843 let payment_data = msgs::FinalOnionHopData {
7845 total_msat: 100_000,
7848 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
7849 // payment verification fails as expected.
7850 let mut bad_payment_hash = payment_hash.clone();
7851 bad_payment_hash.0[0] += 1;
7852 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
7853 Ok(_) => panic!("Unexpected ok"),
7855 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
7859 // Check that using the original payment hash succeeds.
7860 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
7864 fn test_id_to_peer_coverage() {
7865 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
7866 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
7867 // the channel is successfully closed.
7868 let chanmon_cfgs = create_chanmon_cfgs(2);
7869 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7870 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7871 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7873 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
7874 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
7875 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), channelmanager::provided_init_features(), &open_channel);
7876 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
7877 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), channelmanager::provided_init_features(), &accept_channel);
7879 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
7880 let channel_id = &tx.txid().into_inner();
7882 // Ensure that the `id_to_peer` map is empty until either party has received the
7883 // funding transaction, and have the real `channel_id`.
7884 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
7885 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
7888 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
7890 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
7891 // as it has the funding transaction.
7892 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
7893 assert_eq!(nodes_0_lock.len(), 1);
7894 assert!(nodes_0_lock.contains_key(channel_id));
7896 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
7899 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
7901 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
7903 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
7904 assert_eq!(nodes_0_lock.len(), 1);
7905 assert!(nodes_0_lock.contains_key(channel_id));
7907 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
7908 // as it has the funding transaction.
7909 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
7910 assert_eq!(nodes_1_lock.len(), 1);
7911 assert!(nodes_1_lock.contains_key(channel_id));
7913 check_added_monitors!(nodes[1], 1);
7914 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
7915 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
7916 check_added_monitors!(nodes[0], 1);
7917 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
7918 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
7919 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
7921 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
7922 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &channelmanager::provided_init_features(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
7923 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
7924 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &channelmanager::provided_init_features(), &nodes_1_shutdown);
7926 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
7927 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
7929 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
7930 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
7931 // fee for the closing transaction has been negotiated and the parties has the other
7932 // party's signature for the fee negotiated closing transaction.)
7933 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
7934 assert_eq!(nodes_0_lock.len(), 1);
7935 assert!(nodes_0_lock.contains_key(channel_id));
7937 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
7938 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
7939 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
7940 // kept in the `nodes[1]`'s `id_to_peer` map.
7941 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
7942 assert_eq!(nodes_1_lock.len(), 1);
7943 assert!(nodes_1_lock.contains_key(channel_id));
7946 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
7948 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
7949 // therefore has all it needs to fully close the channel (both signatures for the
7950 // closing transaction).
7951 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
7952 // fully closed by `nodes[0]`.
7953 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
7955 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
7956 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
7957 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
7958 assert_eq!(nodes_1_lock.len(), 1);
7959 assert!(nodes_1_lock.contains_key(channel_id));
7962 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
7964 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
7966 // Assert that the channel has now been removed from both parties `id_to_peer` map once
7967 // they both have everything required to fully close the channel.
7968 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
7970 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
7972 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
7973 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
7977 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
7979 use crate::chain::Listen;
7980 use crate::chain::chainmonitor::{ChainMonitor, Persist};
7981 use crate::chain::keysinterface::{KeysManager, KeysInterface, InMemorySigner};
7982 use crate::ln::channelmanager::{self, BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId};
7983 use crate::ln::functional_test_utils::*;
7984 use crate::ln::msgs::{ChannelMessageHandler, Init};
7985 use crate::routing::gossip::NetworkGraph;
7986 use crate::routing::router::{PaymentParameters, get_route};
7987 use crate::util::test_utils;
7988 use crate::util::config::UserConfig;
7989 use crate::util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
7991 use bitcoin::hashes::Hash;
7992 use bitcoin::hashes::sha256::Hash as Sha256;
7993 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
7995 use crate::sync::{Arc, Mutex};
7999 struct NodeHolder<'a, P: Persist<InMemorySigner>> {
8000 node: &'a ChannelManager<
8001 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
8002 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
8003 &'a test_utils::TestLogger, &'a P>,
8004 &'a test_utils::TestBroadcaster, &'a KeysManager,
8005 &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>,
8010 fn bench_sends(bench: &mut Bencher) {
8011 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
8014 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
8015 // Do a simple benchmark of sending a payment back and forth between two nodes.
8016 // Note that this is unrealistic as each payment send will require at least two fsync
8018 let network = bitcoin::Network::Testnet;
8019 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
8021 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
8022 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
8024 let mut config: UserConfig = Default::default();
8025 config.channel_handshake_config.minimum_depth = 1;
8027 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
8028 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
8029 let seed_a = [1u8; 32];
8030 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
8031 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
8033 best_block: BestBlock::from_genesis(network),
8035 let node_a_holder = NodeHolder { node: &node_a };
8037 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
8038 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
8039 let seed_b = [2u8; 32];
8040 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
8041 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
8043 best_block: BestBlock::from_genesis(network),
8045 let node_b_holder = NodeHolder { node: &node_b };
8047 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
8048 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
8049 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
8050 node_b.handle_open_channel(&node_a.get_our_node_id(), channelmanager::provided_init_features(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
8051 node_a.handle_accept_channel(&node_b.get_our_node_id(), channelmanager::provided_init_features(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
8054 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
8055 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
8056 value: 8_000_000, script_pubkey: output_script,
8058 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
8059 } else { panic!(); }
8061 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
8062 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
8064 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
8067 header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
8070 Listen::block_connected(&node_a, &block, 1);
8071 Listen::block_connected(&node_b, &block, 1);
8073 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
8074 let msg_events = node_a.get_and_clear_pending_msg_events();
8075 assert_eq!(msg_events.len(), 2);
8076 match msg_events[0] {
8077 MessageSendEvent::SendChannelReady { ref msg, .. } => {
8078 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
8079 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
8083 match msg_events[1] {
8084 MessageSendEvent::SendChannelUpdate { .. } => {},
8088 let events_a = node_a.get_and_clear_pending_events();
8089 assert_eq!(events_a.len(), 1);
8091 Event::ChannelReady{ ref counterparty_node_id, .. } => {
8092 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
8094 _ => panic!("Unexpected event"),
8097 let events_b = node_b.get_and_clear_pending_events();
8098 assert_eq!(events_b.len(), 1);
8100 Event::ChannelReady{ ref counterparty_node_id, .. } => {
8101 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
8103 _ => panic!("Unexpected event"),
8106 let dummy_graph = NetworkGraph::new(genesis_hash, &logger_a);
8108 let mut payment_count: u64 = 0;
8109 macro_rules! send_payment {
8110 ($node_a: expr, $node_b: expr) => {
8111 let usable_channels = $node_a.list_usable_channels();
8112 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id())
8113 .with_features(channelmanager::provided_invoice_features());
8114 let scorer = test_utils::TestScorer::with_penalty(0);
8115 let seed = [3u8; 32];
8116 let keys_manager = KeysManager::new(&seed, 42, 42);
8117 let random_seed_bytes = keys_manager.get_secure_random_bytes();
8118 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
8119 Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
8121 let mut payment_preimage = PaymentPreimage([0; 32]);
8122 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
8124 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
8125 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200).unwrap();
8127 $node_a.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8128 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
8129 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
8130 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
8131 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
8132 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
8133 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
8134 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
8136 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
8137 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
8138 $node_b.claim_funds(payment_preimage);
8139 expect_payment_claimed!(NodeHolder { node: &$node_b }, payment_hash, 10_000);
8141 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
8142 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
8143 assert_eq!(node_id, $node_a.get_our_node_id());
8144 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
8145 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
8147 _ => panic!("Failed to generate claim event"),
8150 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
8151 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
8152 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
8153 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
8155 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
8160 send_payment!(node_a, node_b);
8161 send_payment!(node_b, node_a);