1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 pub use ln::channel::CounterpartyForwardingInfo;
47 use ln::channel::{Channel, ChannelError};
48 use ln::features::{InitFeatures, NodeFeatures};
49 use routing::router::{Route, RouteHop};
51 use ln::msgs::NetAddress;
53 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
54 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
55 use util::config::UserConfig;
56 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
57 use util::{byte_utils, events};
58 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
59 use util::chacha20::{ChaCha20, ChaChaReader};
60 use util::logger::Logger;
61 use util::errors::APIError;
64 use std::collections::{HashMap, hash_map, HashSet};
65 use std::io::{Cursor, Read};
66 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
67 use std::sync::atomic::{AtomicUsize, Ordering};
68 use std::time::Duration;
69 #[cfg(any(test, feature = "allow_wallclock_use"))]
70 use std::time::Instant;
71 use std::marker::{Sync, Send};
73 use bitcoin::hashes::hex::ToHex;
75 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
77 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
78 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
79 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
81 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
82 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
83 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
84 // before we forward it.
86 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
87 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
88 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
89 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
90 // our payment, which we can use to decode errors or inform the user that the payment was sent.
92 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
93 enum PendingHTLCRouting {
95 onion_packet: msgs::OnionPacket,
96 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
99 payment_data: msgs::FinalOnionHopData,
100 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
104 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
105 pub(super) struct PendingHTLCInfo {
106 routing: PendingHTLCRouting,
107 incoming_shared_secret: [u8; 32],
108 payment_hash: PaymentHash,
109 pub(super) amt_to_forward: u64,
110 pub(super) outgoing_cltv_value: u32,
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub(super) enum HTLCFailureMsg {
115 Relay(msgs::UpdateFailHTLC),
116 Malformed(msgs::UpdateFailMalformedHTLC),
119 /// Stores whether we can't forward an HTLC or relevant forwarding info
120 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
121 pub(super) enum PendingHTLCStatus {
122 Forward(PendingHTLCInfo),
123 Fail(HTLCFailureMsg),
126 pub(super) enum HTLCForwardInfo {
128 forward_info: PendingHTLCInfo,
130 // These fields are produced in `forward_htlcs()` and consumed in
131 // `process_pending_htlc_forwards()` for constructing the
132 // `HTLCSource::PreviousHopData` for failed and forwarded
134 prev_short_channel_id: u64,
136 prev_funding_outpoint: OutPoint,
140 err_packet: msgs::OnionErrorPacket,
144 /// Tracks the inbound corresponding to an outbound HTLC
145 #[derive(Clone, PartialEq)]
146 pub(crate) struct HTLCPreviousHopData {
147 short_channel_id: u64,
149 incoming_packet_shared_secret: [u8; 32],
151 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
152 // channel with a preimage provided by the forward channel.
156 struct ClaimableHTLC {
157 prev_hop: HTLCPreviousHopData,
159 /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
160 /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
161 /// are part of the same payment.
162 payment_data: msgs::FinalOnionHopData,
166 /// Tracks the inbound corresponding to an outbound HTLC
167 #[derive(Clone, PartialEq)]
168 pub(crate) enum HTLCSource {
169 PreviousHopData(HTLCPreviousHopData),
172 session_priv: SecretKey,
173 /// Technically we can recalculate this from the route, but we cache it here to avoid
174 /// doing a double-pass on route when we get a failure back
175 first_hop_htlc_msat: u64,
180 pub fn dummy() -> Self {
181 HTLCSource::OutboundRoute {
183 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
184 first_hop_htlc_msat: 0,
189 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
190 pub(super) enum HTLCFailReason {
192 err: msgs::OnionErrorPacket,
200 /// payment_hash type, use to cross-lock hop
201 /// (C-not exported) as we just use [u8; 32] directly
202 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
203 pub struct PaymentHash(pub [u8;32]);
204 /// payment_preimage type, use to route payment between hop
205 /// (C-not exported) as we just use [u8; 32] directly
206 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
207 pub struct PaymentPreimage(pub [u8;32]);
208 /// payment_secret type, use to authenticate sender to the receiver and tie MPP HTLCs together
209 /// (C-not exported) as we just use [u8; 32] directly
210 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
211 pub struct PaymentSecret(pub [u8;32]);
213 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
215 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
216 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
217 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
218 /// channel_state lock. We then return the set of things that need to be done outside the lock in
219 /// this struct and call handle_error!() on it.
221 struct MsgHandleErrInternal {
222 err: msgs::LightningError,
223 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
225 impl MsgHandleErrInternal {
227 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
229 err: LightningError {
231 action: msgs::ErrorAction::SendErrorMessage {
232 msg: msgs::ErrorMessage {
238 shutdown_finish: None,
242 fn ignore_no_close(err: String) -> Self {
244 err: LightningError {
246 action: msgs::ErrorAction::IgnoreError,
248 shutdown_finish: None,
252 fn from_no_close(err: msgs::LightningError) -> Self {
253 Self { err, shutdown_finish: None }
256 fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
258 err: LightningError {
260 action: msgs::ErrorAction::SendErrorMessage {
261 msg: msgs::ErrorMessage {
267 shutdown_finish: Some((shutdown_res, channel_update)),
271 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
274 ChannelError::Ignore(msg) => LightningError {
276 action: msgs::ErrorAction::IgnoreError,
278 ChannelError::Close(msg) => LightningError {
280 action: msgs::ErrorAction::SendErrorMessage {
281 msg: msgs::ErrorMessage {
287 ChannelError::CloseDelayBroadcast(msg) => LightningError {
289 action: msgs::ErrorAction::SendErrorMessage {
290 msg: msgs::ErrorMessage {
297 shutdown_finish: None,
302 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
303 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
304 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
305 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
306 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
308 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
309 /// be sent in the order they appear in the return value, however sometimes the order needs to be
310 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
311 /// they were originally sent). In those cases, this enum is also returned.
312 #[derive(Clone, PartialEq)]
313 pub(super) enum RAACommitmentOrder {
314 /// Send the CommitmentUpdate messages first
316 /// Send the RevokeAndACK message first
320 // Note this is only exposed in cfg(test):
321 pub(super) struct ChannelHolder<Signer: Sign> {
322 pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
323 pub(super) short_to_id: HashMap<u64, [u8; 32]>,
324 /// short channel id -> forward infos. Key of 0 means payments received
325 /// Note that while this is held in the same mutex as the channels themselves, no consistency
326 /// guarantees are made about the existence of a channel with the short id here, nor the short
327 /// ids in the PendingHTLCInfo!
328 pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
329 /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
330 /// Note that while this is held in the same mutex as the channels themselves, no consistency
331 /// guarantees are made about the channels given here actually existing anymore by the time you
333 claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
334 /// Messages to send to peers - pushed to in the same lock that they are generated in (except
335 /// for broadcast messages, where ordering isn't as strict).
336 pub(super) pending_msg_events: Vec<MessageSendEvent>,
339 /// Events which we process internally but cannot be procsesed immediately at the generation site
340 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
341 /// quite some time lag.
342 enum BackgroundEvent {
343 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
344 /// commitment transaction.
345 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
348 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
349 /// the latest Init features we heard from the peer.
351 latest_features: InitFeatures,
354 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
355 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
357 /// For users who don't want to bother doing their own payment preimage storage, we also store that
359 struct PendingInboundPayment {
360 /// The payment secret that the sender must use for us to accept this payment
361 payment_secret: PaymentSecret,
362 /// Time at which this HTLC expires - blocks with a header time above this value will result in
363 /// this payment being removed.
365 /// Arbitrary identifier the user specifies (or not)
366 user_payment_id: u64,
367 // Other required attributes of the payment, optionally enforced:
368 payment_preimage: Option<PaymentPreimage>,
369 min_value_msat: Option<u64>,
372 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
373 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
374 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
375 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
376 /// issues such as overly long function definitions. Note that the ChannelManager can take any
377 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
378 /// concrete type of the KeysManager.
379 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
381 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
382 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
383 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
384 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
385 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
386 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
387 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
388 /// concrete type of the KeysManager.
389 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
391 /// Manager which keeps track of a number of channels and sends messages to the appropriate
392 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
394 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
395 /// to individual Channels.
397 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
398 /// all peers during write/read (though does not modify this instance, only the instance being
399 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
400 /// called funding_transaction_generated for outbound channels).
402 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
403 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
404 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
405 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
406 /// the serialization process). If the deserialized version is out-of-date compared to the
407 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
408 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
410 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
411 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
412 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
413 /// block_connected() to step towards your best block) upon deserialization before using the
416 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
417 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
418 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
419 /// offline for a full minute. In order to track this, you must call
420 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
422 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
423 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
424 /// essentially you should default to using a SimpleRefChannelManager, and use a
425 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
426 /// you're using lightning-net-tokio.
427 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
428 where M::Target: chain::Watch<Signer>,
429 T::Target: BroadcasterInterface,
430 K::Target: KeysInterface<Signer = Signer>,
431 F::Target: FeeEstimator,
434 default_configuration: UserConfig,
435 genesis_hash: BlockHash,
441 pub(super) best_block: RwLock<BestBlock>,
443 best_block: RwLock<BestBlock>,
444 secp_ctx: Secp256k1<secp256k1::All>,
446 #[cfg(any(test, feature = "_test_utils"))]
447 pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
448 #[cfg(not(any(test, feature = "_test_utils")))]
449 channel_state: Mutex<ChannelHolder<Signer>>,
451 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
452 /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
453 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
454 /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
455 /// Locked *after* channel_state.
456 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
458 our_network_key: SecretKey,
459 our_network_pubkey: PublicKey,
461 /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
462 /// value increases strictly since we don't assume access to a time source.
463 last_node_announcement_serial: AtomicUsize,
465 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
466 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
467 /// very far in the past, and can only ever be up to two hours in the future.
468 highest_seen_timestamp: AtomicUsize,
470 /// The bulk of our storage will eventually be here (channels and message queues and the like).
471 /// If we are connected to a peer we always at least have an entry here, even if no channels
472 /// are currently open with that peer.
473 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
474 /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
476 per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
478 pending_events: Mutex<Vec<events::Event>>,
479 pending_background_events: Mutex<Vec<BackgroundEvent>>,
480 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
481 /// Essentially just when we're serializing ourselves out.
482 /// Taken first everywhere where we are making changes before any other locks.
483 /// When acquiring this lock in read mode, rather than acquiring it directly, call
484 /// `PersistenceNotifierGuard::new(..)` and pass the lock to it, to ensure the PersistenceNotifier
485 /// the lock contains sends out a notification when the lock is released.
486 total_consistency_lock: RwLock<()>,
488 persistence_notifier: PersistenceNotifier,
495 /// Chain-related parameters used to construct a new `ChannelManager`.
497 /// Typically, the block-specific parameters are derived from the best block hash for the network,
498 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
499 /// are not needed when deserializing a previously constructed `ChannelManager`.
500 pub struct ChainParameters {
501 /// The network for determining the `chain_hash` in Lightning messages.
502 pub network: Network,
504 /// The hash and height of the latest block successfully connected.
506 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
507 pub best_block: BestBlock,
510 /// The best known block as identified by its hash and height.
511 #[derive(Clone, Copy)]
512 pub struct BestBlock {
513 block_hash: BlockHash,
518 /// Returns the best block from the genesis of the given network.
519 pub fn from_genesis(network: Network) -> Self {
521 block_hash: genesis_block(network).header.block_hash(),
526 /// Returns the best block as identified by the given block hash and height.
527 pub fn new(block_hash: BlockHash, height: u32) -> Self {
528 BestBlock { block_hash, height }
531 /// Returns the best block hash.
532 pub fn block_hash(&self) -> BlockHash { self.block_hash }
534 /// Returns the best block height.
535 pub fn height(&self) -> u32 { self.height }
538 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
539 /// desirable to notify any listeners on `await_persistable_update_timeout`/
540 /// `await_persistable_update` that new updates are available for persistence. Therefore, this
541 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
542 /// sending the aforementioned notification (since the lock being released indicates that the
543 /// updates are ready for persistence).
544 struct PersistenceNotifierGuard<'a> {
545 persistence_notifier: &'a PersistenceNotifier,
546 // We hold onto this result so the lock doesn't get released immediately.
547 _read_guard: RwLockReadGuard<'a, ()>,
550 impl<'a> PersistenceNotifierGuard<'a> {
551 fn new(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> Self {
552 let read_guard = lock.read().unwrap();
555 persistence_notifier: notifier,
556 _read_guard: read_guard,
561 impl<'a> Drop for PersistenceNotifierGuard<'a> {
563 self.persistence_notifier.notify();
567 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
568 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
570 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
572 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
573 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
574 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
575 /// the maximum required amount in lnd as of March 2021.
576 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
578 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
579 /// HTLC's CLTV. The current default represents roughly six hours of blocks at six blocks/hour.
581 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
583 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
584 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
585 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
586 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
587 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
588 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6 * 6;
589 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
591 /// Minimum CLTV difference between the current block height and received inbound payments.
592 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
594 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER;
596 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
597 // ie that if the next-hop peer fails the HTLC within
598 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
599 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
600 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
601 // LATENCY_GRACE_PERIOD_BLOCKS.
604 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
606 // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
607 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
610 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
612 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
614 pub struct ChannelDetails {
615 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
616 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
617 /// Note that this means this value is *not* persistent - it can change once during the
618 /// lifetime of the channel.
619 pub channel_id: [u8; 32],
620 /// The position of the funding transaction in the chain. None if the funding transaction has
621 /// not yet been confirmed and the channel fully opened.
622 pub short_channel_id: Option<u64>,
623 /// The node_id of our counterparty
624 pub remote_network_id: PublicKey,
625 /// The Features the channel counterparty provided upon last connection.
626 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
627 /// many routing-relevant features are present in the init context.
628 pub counterparty_features: InitFeatures,
629 /// The value, in satoshis, of this channel as appears in the funding output
630 pub channel_value_satoshis: u64,
631 /// The user_id passed in to create_channel, or 0 if the channel was inbound.
633 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
634 /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
635 /// available for inclusion in new outbound HTLCs). This further does not include any pending
636 /// outgoing HTLCs which are awaiting some other resolution to be sent.
637 pub outbound_capacity_msat: u64,
638 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
639 /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
640 /// available for inclusion in new inbound HTLCs).
641 /// Note that there are some corner cases not fully handled here, so the actual available
642 /// inbound capacity may be slightly higher than this.
643 pub inbound_capacity_msat: u64,
644 /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
645 /// the peer is connected, and (c) no monitor update failure is pending resolution.
648 /// Information on the fees and requirements that the counterparty requires when forwarding
649 /// payments to us through this channel.
650 pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
653 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
654 /// Err() type describing which state the payment is in, see the description of individual enum
656 #[derive(Clone, Debug)]
657 pub enum PaymentSendFailure {
658 /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
659 /// send the payment at all. No channel state has been changed or messages sent to peers, and
660 /// once you've changed the parameter at error, you can freely retry the payment in full.
661 ParameterError(APIError),
662 /// A parameter in a single path which was passed to send_payment was invalid, preventing us
663 /// from attempting to send the payment at all. No channel state has been changed or messages
664 /// sent to peers, and once you've changed the parameter at error, you can freely retry the
667 /// The results here are ordered the same as the paths in the route object which was passed to
669 PathParameterError(Vec<Result<(), APIError>>),
670 /// All paths which were attempted failed to send, with no channel state change taking place.
671 /// You can freely retry the payment in full (though you probably want to do so over different
672 /// paths than the ones selected).
673 AllFailedRetrySafe(Vec<APIError>),
674 /// Some paths which were attempted failed to send, though possibly not all. At least some
675 /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
676 /// in over-/re-payment.
678 /// The results here are ordered the same as the paths in the route object which was passed to
679 /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
680 /// retried (though there is currently no API with which to do so).
682 /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
683 /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
684 /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
685 /// with the latest update_id.
686 PartialFailure(Vec<Result<(), APIError>>),
689 macro_rules! handle_error {
690 ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
693 Err(MsgHandleErrInternal { err, shutdown_finish }) => {
694 #[cfg(debug_assertions)]
696 // In testing, ensure there are no deadlocks where the lock is already held upon
697 // entering the macro.
698 assert!($self.channel_state.try_lock().is_ok());
701 let mut msg_events = Vec::with_capacity(2);
703 if let Some((shutdown_res, update_option)) = shutdown_finish {
704 $self.finish_force_close_channel(shutdown_res);
705 if let Some(update) = update_option {
706 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
712 log_error!($self.logger, "{}", err.err);
713 if let msgs::ErrorAction::IgnoreError = err.action {
715 msg_events.push(events::MessageSendEvent::HandleError {
716 node_id: $counterparty_node_id,
717 action: err.action.clone()
721 if !msg_events.is_empty() {
722 $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
725 // Return error in case higher-API need one
732 macro_rules! break_chan_entry {
733 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
736 Err(ChannelError::Ignore(msg)) => {
737 break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
739 Err(ChannelError::Close(msg)) => {
740 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
741 let (channel_id, mut chan) = $entry.remove_entry();
742 if let Some(short_id) = chan.get_short_channel_id() {
743 $channel_state.short_to_id.remove(&short_id);
745 break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
747 Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
752 macro_rules! try_chan_entry {
753 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
756 Err(ChannelError::Ignore(msg)) => {
757 return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
759 Err(ChannelError::Close(msg)) => {
760 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
761 let (channel_id, mut chan) = $entry.remove_entry();
762 if let Some(short_id) = chan.get_short_channel_id() {
763 $channel_state.short_to_id.remove(&short_id);
765 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
767 Err(ChannelError::CloseDelayBroadcast(msg)) => {
768 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
769 let (channel_id, mut chan) = $entry.remove_entry();
770 if let Some(short_id) = chan.get_short_channel_id() {
771 $channel_state.short_to_id.remove(&short_id);
773 let shutdown_res = chan.force_shutdown(false);
774 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
780 macro_rules! handle_monitor_err {
781 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
782 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
784 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
786 ChannelMonitorUpdateErr::PermanentFailure => {
787 log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
788 let (channel_id, mut chan) = $entry.remove_entry();
789 if let Some(short_id) = chan.get_short_channel_id() {
790 $channel_state.short_to_id.remove(&short_id);
792 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
793 // chain in a confused state! We need to move them into the ChannelMonitor which
794 // will be responsible for failing backwards once things confirm on-chain.
795 // It's ok that we drop $failed_forwards here - at this point we'd rather they
796 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
797 // us bother trying to claim it just to forward on to another peer. If we're
798 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
799 // given up the preimage yet, so might as well just wait until the payment is
800 // retried, avoiding the on-chain fees.
801 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
804 ChannelMonitorUpdateErr::TemporaryFailure => {
805 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
806 log_bytes!($entry.key()[..]),
807 if $resend_commitment && $resend_raa {
809 RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
810 RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
812 } else if $resend_commitment { "commitment" }
813 else if $resend_raa { "RAA" }
815 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
816 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
817 if !$resend_commitment {
818 debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
821 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
823 $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
824 Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
830 macro_rules! return_monitor_err {
831 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
832 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
834 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
835 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
839 // Does not break in case of TemporaryFailure!
840 macro_rules! maybe_break_monitor_err {
841 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
842 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
843 (e, ChannelMonitorUpdateErr::PermanentFailure) => {
846 (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
851 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
852 where M::Target: chain::Watch<Signer>,
853 T::Target: BroadcasterInterface,
854 K::Target: KeysInterface<Signer = Signer>,
855 F::Target: FeeEstimator,
858 /// Constructs a new ChannelManager to hold several channels and route between them.
860 /// This is the main "logic hub" for all channel-related actions, and implements
861 /// ChannelMessageHandler.
863 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
865 /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
867 /// Users need to notify the new ChannelManager when a new block is connected or
868 /// disconnected using its `block_connected` and `block_disconnected` methods, starting
869 /// from after `params.latest_hash`.
870 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
871 let mut secp_ctx = Secp256k1::new();
872 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
875 default_configuration: config.clone(),
876 genesis_hash: genesis_block(params.network).header.block_hash(),
877 fee_estimator: fee_est,
881 best_block: RwLock::new(params.best_block),
883 channel_state: Mutex::new(ChannelHolder{
884 by_id: HashMap::new(),
885 short_to_id: HashMap::new(),
886 forward_htlcs: HashMap::new(),
887 claimable_htlcs: HashMap::new(),
888 pending_msg_events: Vec::new(),
890 pending_inbound_payments: Mutex::new(HashMap::new()),
892 our_network_key: keys_manager.get_node_secret(),
893 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
896 last_node_announcement_serial: AtomicUsize::new(0),
897 highest_seen_timestamp: AtomicUsize::new(0),
899 per_peer_state: RwLock::new(HashMap::new()),
901 pending_events: Mutex::new(Vec::new()),
902 pending_background_events: Mutex::new(Vec::new()),
903 total_consistency_lock: RwLock::new(()),
904 persistence_notifier: PersistenceNotifier::new(),
912 /// Gets the current configuration applied to all new channels, as
913 pub fn get_current_default_configuration(&self) -> &UserConfig {
914 &self.default_configuration
917 /// Creates a new outbound channel to the given remote node and with the given value.
919 /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
920 /// tracking of which events correspond with which create_channel call. Note that the
921 /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
922 /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
923 /// otherwise ignored.
925 /// If successful, will generate a SendOpenChannel message event, so you should probably poll
926 /// PeerManager::process_events afterwards.
928 /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
929 /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
930 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
931 if channel_value_satoshis < 1000 {
932 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
935 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
936 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
937 let res = channel.get_open_channel(self.genesis_hash.clone());
939 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
940 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
941 debug_assert!(&self.total_consistency_lock.try_write().is_err());
943 let mut channel_state = self.channel_state.lock().unwrap();
944 match channel_state.by_id.entry(channel.channel_id()) {
945 hash_map::Entry::Occupied(_) => {
946 if cfg!(feature = "fuzztarget") {
947 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
949 panic!("RNG is bad???");
952 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
954 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
955 node_id: their_network_key,
961 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
962 let mut res = Vec::new();
964 let channel_state = self.channel_state.lock().unwrap();
965 res.reserve(channel_state.by_id.len());
966 for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
967 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
968 res.push(ChannelDetails {
969 channel_id: (*channel_id).clone(),
970 short_channel_id: channel.get_short_channel_id(),
971 remote_network_id: channel.get_counterparty_node_id(),
972 counterparty_features: InitFeatures::empty(),
973 channel_value_satoshis: channel.get_value_satoshis(),
974 inbound_capacity_msat,
975 outbound_capacity_msat,
976 user_id: channel.get_user_id(),
977 is_live: channel.is_live(),
978 counterparty_forwarding_info: channel.counterparty_forwarding_info(),
982 let per_peer_state = self.per_peer_state.read().unwrap();
983 for chan in res.iter_mut() {
984 if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
985 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
991 /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
992 /// more information.
993 pub fn list_channels(&self) -> Vec<ChannelDetails> {
994 self.list_channels_with_filter(|_| true)
997 /// Gets the list of usable channels, in random order. Useful as an argument to
998 /// get_route to ensure non-announced channels are used.
1000 /// These are guaranteed to have their is_live value set to true, see the documentation for
1001 /// ChannelDetails::is_live for more info on exactly what the criteria are.
1002 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1003 // Note we use is_live here instead of usable which leads to somewhat confused
1004 // internal/external nomenclature, but that's ok cause that's probably what the user
1005 // really wanted anyway.
1006 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1009 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1010 /// will be accepted on the given channel, and after additional timeout/the closing of all
1011 /// pending HTLCs, the channel will be closed on chain.
1013 /// May generate a SendShutdown message event on success, which should be relayed.
1014 pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1015 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1017 let (mut failed_htlcs, chan_option) = {
1018 let mut channel_state_lock = self.channel_state.lock().unwrap();
1019 let channel_state = &mut *channel_state_lock;
1020 match channel_state.by_id.entry(channel_id.clone()) {
1021 hash_map::Entry::Occupied(mut chan_entry) => {
1022 let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1023 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1024 node_id: chan_entry.get().get_counterparty_node_id(),
1027 if chan_entry.get().is_shutdown() {
1028 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1029 channel_state.short_to_id.remove(&short_id);
1031 (failed_htlcs, Some(chan_entry.remove_entry().1))
1032 } else { (failed_htlcs, None) }
1034 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1037 for htlc_source in failed_htlcs.drain(..) {
1038 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1040 let chan_update = if let Some(chan) = chan_option {
1041 if let Ok(update) = self.get_channel_update(&chan) {
1046 if let Some(update) = chan_update {
1047 let mut channel_state = self.channel_state.lock().unwrap();
1048 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1057 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1058 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1059 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1060 for htlc_source in failed_htlcs.drain(..) {
1061 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1063 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1064 // There isn't anything we can do if we get an update failure - we're already
1065 // force-closing. The monitor update on the required in-memory copy should broadcast
1066 // the latest local state, which is the best we can do anyway. Thus, it is safe to
1067 // ignore the result here.
1068 let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1072 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1074 let mut channel_state_lock = self.channel_state.lock().unwrap();
1075 let channel_state = &mut *channel_state_lock;
1076 if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1077 if let Some(node_id) = peer_node_id {
1078 if chan.get().get_counterparty_node_id() != *node_id {
1079 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1082 if let Some(short_id) = chan.get().get_short_channel_id() {
1083 channel_state.short_to_id.remove(&short_id);
1085 chan.remove_entry().1
1087 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1090 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1091 self.finish_force_close_channel(chan.force_shutdown(true));
1092 if let Ok(update) = self.get_channel_update(&chan) {
1093 let mut channel_state = self.channel_state.lock().unwrap();
1094 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1099 Ok(chan.get_counterparty_node_id())
1102 /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1103 /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1104 pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1105 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1106 match self.force_close_channel_with_peer(channel_id, None) {
1107 Ok(counterparty_node_id) => {
1108 self.channel_state.lock().unwrap().pending_msg_events.push(
1109 events::MessageSendEvent::HandleError {
1110 node_id: counterparty_node_id,
1111 action: msgs::ErrorAction::SendErrorMessage {
1112 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1122 /// Force close all channels, immediately broadcasting the latest local commitment transaction
1123 /// for each to the chain and rejecting new HTLCs on each.
1124 pub fn force_close_all_channels(&self) {
1125 for chan in self.list_channels() {
1126 let _ = self.force_close_channel(&chan.channel_id);
1130 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1131 macro_rules! return_malformed_err {
1132 ($msg: expr, $err_code: expr) => {
1134 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1135 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1136 channel_id: msg.channel_id,
1137 htlc_id: msg.htlc_id,
1138 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1139 failure_code: $err_code,
1140 })), self.channel_state.lock().unwrap());
1145 if let Err(_) = msg.onion_routing_packet.public_key {
1146 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1149 let shared_secret = {
1150 let mut arr = [0; 32];
1151 arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1154 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1156 if msg.onion_routing_packet.version != 0 {
1157 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1158 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1159 //the hash doesn't really serve any purpose - in the case of hashing all data, the
1160 //receiving node would have to brute force to figure out which version was put in the
1161 //packet by the node that send us the message, in the case of hashing the hop_data, the
1162 //node knows the HMAC matched, so they already know what is there...
1163 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1166 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1167 hmac.input(&msg.onion_routing_packet.hop_data);
1168 hmac.input(&msg.payment_hash.0[..]);
1169 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1170 return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1173 let mut channel_state = None;
1174 macro_rules! return_err {
1175 ($msg: expr, $err_code: expr, $data: expr) => {
1177 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1178 if channel_state.is_none() {
1179 channel_state = Some(self.channel_state.lock().unwrap());
1181 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1182 channel_id: msg.channel_id,
1183 htlc_id: msg.htlc_id,
1184 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1185 })), channel_state.unwrap());
1190 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1191 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1192 let (next_hop_data, next_hop_hmac) = {
1193 match msgs::OnionHopData::read(&mut chacha_stream) {
1195 let error_code = match err {
1196 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1197 msgs::DecodeError::UnknownRequiredFeature|
1198 msgs::DecodeError::InvalidValue|
1199 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1200 _ => 0x2000 | 2, // Should never happen
1202 return_err!("Unable to decode our hop data", error_code, &[0;0]);
1205 let mut hmac = [0; 32];
1206 if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1207 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1214 let pending_forward_info = if next_hop_hmac == [0; 32] {
1217 // In tests, make sure that the initial onion pcket data is, at least, non-0.
1218 // We could do some fancy randomness test here, but, ehh, whatever.
1219 // This checks for the issue where you can calculate the path length given the
1220 // onion data as all the path entries that the originator sent will be here
1221 // as-is (and were originally 0s).
1222 // Of course reverse path calculation is still pretty easy given naive routing
1223 // algorithms, but this fixes the most-obvious case.
1224 let mut next_bytes = [0; 32];
1225 chacha_stream.read_exact(&mut next_bytes).unwrap();
1226 assert_ne!(next_bytes[..], [0; 32][..]);
1227 chacha_stream.read_exact(&mut next_bytes).unwrap();
1228 assert_ne!(next_bytes[..], [0; 32][..]);
1232 // final_expiry_too_soon
1233 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1234 // HTLC_FAIL_BACK_BUFFER blocks to go.
1235 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1236 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1237 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1238 return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1240 // final_incorrect_htlc_amount
1241 if next_hop_data.amt_to_forward > msg.amount_msat {
1242 return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1244 // final_incorrect_cltv_expiry
1245 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1246 return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1249 let payment_data = match next_hop_data.format {
1250 msgs::OnionHopDataFormat::Legacy { .. } => None,
1251 msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1252 msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1255 if payment_data.is_none() {
1256 return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1259 // Note that we could obviously respond immediately with an update_fulfill_htlc
1260 // message, however that would leak that we are the recipient of this payment, so
1261 // instead we stay symmetric with the forwarding case, only responding (after a
1262 // delay) once they've send us a commitment_signed!
1264 PendingHTLCStatus::Forward(PendingHTLCInfo {
1265 routing: PendingHTLCRouting::Receive {
1266 payment_data: payment_data.unwrap(),
1267 incoming_cltv_expiry: msg.cltv_expiry,
1269 payment_hash: msg.payment_hash.clone(),
1270 incoming_shared_secret: shared_secret,
1271 amt_to_forward: next_hop_data.amt_to_forward,
1272 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1275 let mut new_packet_data = [0; 20*65];
1276 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1277 #[cfg(debug_assertions)]
1279 // Check two things:
1280 // a) that the behavior of our stream here will return Ok(0) even if the TLV
1281 // read above emptied out our buffer and the unwrap() wont needlessly panic
1282 // b) that we didn't somehow magically end up with extra data.
1284 debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1286 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1287 // fill the onion hop data we'll forward to our next-hop peer.
1288 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1290 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1292 let blinding_factor = {
1293 let mut sha = Sha256::engine();
1294 sha.input(&new_pubkey.serialize()[..]);
1295 sha.input(&shared_secret);
1296 Sha256::from_engine(sha).into_inner()
1299 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1301 } else { Ok(new_pubkey) };
1303 let outgoing_packet = msgs::OnionPacket {
1306 hop_data: new_packet_data,
1307 hmac: next_hop_hmac.clone(),
1310 let short_channel_id = match next_hop_data.format {
1311 msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1312 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1313 msgs::OnionHopDataFormat::FinalNode { .. } => {
1314 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1318 PendingHTLCStatus::Forward(PendingHTLCInfo {
1319 routing: PendingHTLCRouting::Forward {
1320 onion_packet: outgoing_packet,
1323 payment_hash: msg.payment_hash.clone(),
1324 incoming_shared_secret: shared_secret,
1325 amt_to_forward: next_hop_data.amt_to_forward,
1326 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1330 channel_state = Some(self.channel_state.lock().unwrap());
1331 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1332 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1333 // with a short_channel_id of 0. This is important as various things later assume
1334 // short_channel_id is non-0 in any ::Forward.
1335 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1336 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1337 let forwarding_id = match id_option {
1338 None => { // unknown_next_peer
1339 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1341 Some(id) => id.clone(),
1343 if let Some((err, code, chan_update)) = loop {
1344 let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1346 // Note that we could technically not return an error yet here and just hope
1347 // that the connection is reestablished or monitor updated by the time we get
1348 // around to doing the actual forward, but better to fail early if we can and
1349 // hopefully an attacker trying to path-trace payments cannot make this occur
1350 // on a small/per-node/per-channel scale.
1351 if !chan.is_live() { // channel_disabled
1352 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1354 if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1355 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1357 let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1358 if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1359 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1361 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1362 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1364 let cur_height = self.best_block.read().unwrap().height() + 1;
1365 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1366 // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1367 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1368 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1370 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1371 break Some(("CLTV expiry is too far in the future", 21, None));
1373 // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1374 // But, to be safe against policy reception, we use a longuer delay.
1375 if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1376 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1382 let mut res = Vec::with_capacity(8 + 128);
1383 if let Some(chan_update) = chan_update {
1384 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1385 res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1387 else if code == 0x1000 | 13 {
1388 res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1390 else if code == 0x1000 | 20 {
1391 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1392 res.extend_from_slice(&byte_utils::be16_to_array(0));
1394 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1396 return_err!(err, code, &res[..]);
1401 (pending_forward_info, channel_state.unwrap())
1404 /// only fails if the channel does not yet have an assigned short_id
1405 /// May be called with channel_state already locked!
1406 fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1407 let short_channel_id = match chan.get_short_channel_id() {
1408 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1412 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1414 let unsigned = msgs::UnsignedChannelUpdate {
1415 chain_hash: self.genesis_hash,
1417 timestamp: chan.get_update_time_counter(),
1418 flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1419 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1420 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1421 htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1422 fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1423 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1424 excess_data: Vec::new(),
1427 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1428 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1430 Ok(msgs::ChannelUpdate {
1436 // Only public for testing, this should otherwise never be called direcly
1437 pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1438 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1439 let prng_seed = self.keys_manager.get_secure_random_bytes();
1440 let session_priv = SecretKey::from_slice(&self.keys_manager.get_secure_random_bytes()[..]).expect("RNG is busted");
1442 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1443 .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1444 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1445 if onion_utils::route_size_insane(&onion_payloads) {
1446 return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1448 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1450 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1452 let err: Result<(), _> = loop {
1453 let mut channel_lock = self.channel_state.lock().unwrap();
1454 let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1455 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1456 Some(id) => id.clone(),
1459 let channel_state = &mut *channel_lock;
1460 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1462 if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1463 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1465 if !chan.get().is_live() {
1466 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1468 break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1470 session_priv: session_priv.clone(),
1471 first_hop_htlc_msat: htlc_msat,
1472 }, onion_packet, &self.logger), channel_state, chan)
1474 Some((update_add, commitment_signed, monitor_update)) => {
1475 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1476 maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1477 // Note that MonitorUpdateFailed here indicates (per function docs)
1478 // that we will resend the commitment update once monitor updating
1479 // is restored. Therefore, we must return an error indicating that
1480 // it is unsafe to retry the payment wholesale, which we do in the
1481 // send_payment check for MonitorUpdateFailed, below.
1482 return Err(APIError::MonitorUpdateFailed);
1485 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1486 node_id: path.first().unwrap().pubkey,
1487 updates: msgs::CommitmentUpdate {
1488 update_add_htlcs: vec![update_add],
1489 update_fulfill_htlcs: Vec::new(),
1490 update_fail_htlcs: Vec::new(),
1491 update_fail_malformed_htlcs: Vec::new(),
1499 } else { unreachable!(); }
1503 match handle_error!(self, err, path.first().unwrap().pubkey) {
1504 Ok(_) => unreachable!(),
1506 Err(APIError::ChannelUnavailable { err: e.err })
1511 /// Sends a payment along a given route.
1513 /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1514 /// fields for more info.
1516 /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1517 /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1518 /// next hop knows the preimage to payment_hash they can claim an additional amount as
1519 /// specified in the last hop in the route! Thus, you should probably do your own
1520 /// payment_preimage tracking (which you should already be doing as they represent "proof of
1521 /// payment") and prevent double-sends yourself.
1523 /// May generate SendHTLCs message(s) event on success, which should be relayed.
1525 /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1526 /// each entry matching the corresponding-index entry in the route paths, see
1527 /// PaymentSendFailure for more info.
1529 /// In general, a path may raise:
1530 /// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1531 /// node public key) is specified.
1532 /// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1533 /// (including due to previous monitor update failure or new permanent monitor update
1535 /// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1536 /// relevant updates.
1538 /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1539 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1540 /// different route unless you intend to pay twice!
1542 /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1543 /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1544 /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1545 /// must not contain multiple paths as multi-path payments require a recipient-provided
1547 /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1548 /// bit set (either as required or as available). If multiple paths are present in the Route,
1549 /// we assume the invoice had the basic_mpp feature set.
1550 pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1551 if route.paths.len() < 1 {
1552 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1554 if route.paths.len() > 10 {
1555 // This limit is completely arbitrary - there aren't any real fundamental path-count
1556 // limits. After we support retrying individual paths we should likely bump this, but
1557 // for now more than 10 paths likely carries too much one-path failure.
1558 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1560 let mut total_value = 0;
1561 let our_node_id = self.get_our_node_id();
1562 let mut path_errs = Vec::with_capacity(route.paths.len());
1563 'path_check: for path in route.paths.iter() {
1564 if path.len() < 1 || path.len() > 20 {
1565 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1566 continue 'path_check;
1568 for (idx, hop) in path.iter().enumerate() {
1569 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1570 path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1571 continue 'path_check;
1574 total_value += path.last().unwrap().fee_msat;
1575 path_errs.push(Ok(()));
1577 if path_errs.iter().any(|e| e.is_err()) {
1578 return Err(PaymentSendFailure::PathParameterError(path_errs));
1581 let cur_height = self.best_block.read().unwrap().height() + 1;
1582 let mut results = Vec::new();
1583 for path in route.paths.iter() {
1584 results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1586 let mut has_ok = false;
1587 let mut has_err = false;
1588 for res in results.iter() {
1589 if res.is_ok() { has_ok = true; }
1590 if res.is_err() { has_err = true; }
1591 if let &Err(APIError::MonitorUpdateFailed) = res {
1592 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1599 if has_err && has_ok {
1600 Err(PaymentSendFailure::PartialFailure(results))
1602 Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1608 /// Handles the generation of a funding transaction, optionally (for tests) with a function
1609 /// which checks the correctness of the funding transaction given the associated channel.
1610 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1611 (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1613 let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1615 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1617 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1618 .map_err(|e| if let ChannelError::Close(msg) = e {
1619 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1620 } else { unreachable!(); })
1623 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1625 match handle_error!(self, res, chan.get_counterparty_node_id()) {
1626 Ok(funding_msg) => {
1629 Err(_) => { return Err(APIError::ChannelUnavailable {
1630 err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1635 let mut channel_state = self.channel_state.lock().unwrap();
1636 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1637 node_id: chan.get_counterparty_node_id(),
1640 match channel_state.by_id.entry(chan.channel_id()) {
1641 hash_map::Entry::Occupied(_) => {
1642 panic!("Generated duplicate funding txid?");
1644 hash_map::Entry::Vacant(e) => {
1652 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1653 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1654 Ok(OutPoint { txid: tx.txid(), index: output_index })
1658 /// Call this upon creation of a funding transaction for the given channel.
1660 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1661 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1663 /// Panics if a funding transaction has already been provided for this channel.
1665 /// May panic if the output found in the funding transaction is duplicative with some other
1666 /// channel (note that this should be trivially prevented by using unique funding transaction
1667 /// keys per-channel).
1669 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1670 /// counterparty's signature the funding transaction will automatically be broadcast via the
1671 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1673 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1674 /// not currently support replacing a funding transaction on an existing channel. Instead,
1675 /// create a new channel with a conflicting funding transaction.
1676 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1677 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1679 for inp in funding_transaction.input.iter() {
1680 if inp.witness.is_empty() {
1681 return Err(APIError::APIMisuseError {
1682 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1686 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1687 let mut output_index = None;
1688 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1689 for (idx, outp) in tx.output.iter().enumerate() {
1690 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1691 if output_index.is_some() {
1692 return Err(APIError::APIMisuseError {
1693 err: "Multiple outputs matched the expected script and value".to_owned()
1696 if idx > u16::max_value() as usize {
1697 return Err(APIError::APIMisuseError {
1698 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1701 output_index = Some(idx as u16);
1704 if output_index.is_none() {
1705 return Err(APIError::APIMisuseError {
1706 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1709 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1713 fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1714 if !chan.should_announce() {
1715 log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1719 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1721 Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1723 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1724 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1726 Some(msgs::AnnouncementSignatures {
1727 channel_id: chan.channel_id(),
1728 short_channel_id: chan.get_short_channel_id().unwrap(),
1729 node_signature: our_node_sig,
1730 bitcoin_signature: our_bitcoin_sig,
1735 // Messages of up to 64KB should never end up more than half full with addresses, as that would
1736 // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1737 // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1739 const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1742 // ...by failing to compile if the number of addresses that would be half of a message is
1743 // smaller than 500:
1744 const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1746 /// Generates a signed node_announcement from the given arguments and creates a
1747 /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1748 /// seen a channel_announcement from us (ie unless we have public channels open).
1750 /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1751 /// to humans. They carry no in-protocol meaning.
1753 /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1754 /// incoming connections. These will be broadcast to the network, publicly tying these
1755 /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1756 /// only Tor Onion addresses.
1758 /// Panics if addresses is absurdly large (more than 500).
1759 pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], addresses: Vec<NetAddress>) {
1760 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1762 if addresses.len() > 500 {
1763 panic!("More than half the message size was taken up by public addresses!");
1766 let announcement = msgs::UnsignedNodeAnnouncement {
1767 features: NodeFeatures::known(),
1768 timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1769 node_id: self.get_our_node_id(),
1770 rgb, alias, addresses,
1771 excess_address_data: Vec::new(),
1772 excess_data: Vec::new(),
1774 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1776 let mut channel_state = self.channel_state.lock().unwrap();
1777 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1778 msg: msgs::NodeAnnouncement {
1779 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1780 contents: announcement
1785 /// Processes HTLCs which are pending waiting on random forward delay.
1787 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1788 /// Will likely generate further events.
1789 pub fn process_pending_htlc_forwards(&self) {
1790 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1792 let mut new_events = Vec::new();
1793 let mut failed_forwards = Vec::new();
1794 let mut handle_errors = Vec::new();
1796 let mut channel_state_lock = self.channel_state.lock().unwrap();
1797 let channel_state = &mut *channel_state_lock;
1799 for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1800 if short_chan_id != 0 {
1801 let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1802 Some(chan_id) => chan_id.clone(),
1804 failed_forwards.reserve(pending_forwards.len());
1805 for forward_info in pending_forwards.drain(..) {
1806 match forward_info {
1807 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
1808 prev_funding_outpoint } => {
1809 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1810 short_channel_id: prev_short_channel_id,
1811 outpoint: prev_funding_outpoint,
1812 htlc_id: prev_htlc_id,
1813 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
1815 failed_forwards.push((htlc_source, forward_info.payment_hash,
1816 HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
1819 HTLCForwardInfo::FailHTLC { .. } => {
1820 // Channel went away before we could fail it. This implies
1821 // the channel is now on chain and our counterparty is
1822 // trying to broadcast the HTLC-Timeout, but that's their
1823 // problem, not ours.
1830 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
1831 let mut add_htlc_msgs = Vec::new();
1832 let mut fail_htlc_msgs = Vec::new();
1833 for forward_info in pending_forwards.drain(..) {
1834 match forward_info {
1835 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1836 routing: PendingHTLCRouting::Forward {
1838 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
1839 prev_funding_outpoint } => {
1840 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
1841 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1842 short_channel_id: prev_short_channel_id,
1843 outpoint: prev_funding_outpoint,
1844 htlc_id: prev_htlc_id,
1845 incoming_packet_shared_secret: incoming_shared_secret,
1847 match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
1849 if let ChannelError::Ignore(msg) = e {
1850 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
1852 panic!("Stated return value requirements in send_htlc() were not met");
1854 let chan_update = self.get_channel_update(chan.get()).unwrap();
1855 failed_forwards.push((htlc_source, payment_hash,
1856 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
1862 Some(msg) => { add_htlc_msgs.push(msg); },
1864 // Nothing to do here...we're waiting on a remote
1865 // revoke_and_ack before we can add anymore HTLCs. The Channel
1866 // will automatically handle building the update_add_htlc and
1867 // commitment_signed messages when we can.
1868 // TODO: Do some kind of timer to set the channel as !is_live()
1869 // as we don't really want others relying on us relaying through
1870 // this channel currently :/.
1876 HTLCForwardInfo::AddHTLC { .. } => {
1877 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
1879 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
1880 log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
1881 match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
1883 if let ChannelError::Ignore(msg) = e {
1884 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
1886 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
1888 // fail-backs are best-effort, we probably already have one
1889 // pending, and if not that's OK, if not, the channel is on
1890 // the chain and sending the HTLC-Timeout is their problem.
1893 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
1895 // Nothing to do here...we're waiting on a remote
1896 // revoke_and_ack before we can update the commitment
1897 // transaction. The Channel will automatically handle
1898 // building the update_fail_htlc and commitment_signed
1899 // messages when we can.
1900 // We don't need any kind of timer here as they should fail
1901 // the channel onto the chain if they can't get our
1902 // update_fail_htlc in time, it's not our problem.
1909 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
1910 let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
1913 // We surely failed send_commitment due to bad keys, in that case
1914 // close channel and then send error message to peer.
1915 let counterparty_node_id = chan.get().get_counterparty_node_id();
1916 let err: Result<(), _> = match e {
1917 ChannelError::Ignore(_) => {
1918 panic!("Stated return value requirements in send_commitment() were not met");
1920 ChannelError::Close(msg) => {
1921 log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
1922 let (channel_id, mut channel) = chan.remove_entry();
1923 if let Some(short_id) = channel.get_short_channel_id() {
1924 channel_state.short_to_id.remove(&short_id);
1926 Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
1928 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
1930 handle_errors.push((counterparty_node_id, err));
1934 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1935 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
1938 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1939 node_id: chan.get().get_counterparty_node_id(),
1940 updates: msgs::CommitmentUpdate {
1941 update_add_htlcs: add_htlc_msgs,
1942 update_fulfill_htlcs: Vec::new(),
1943 update_fail_htlcs: fail_htlc_msgs,
1944 update_fail_malformed_htlcs: Vec::new(),
1946 commitment_signed: commitment_msg,
1954 for forward_info in pending_forwards.drain(..) {
1955 match forward_info {
1956 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1957 routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
1958 incoming_shared_secret, payment_hash, amt_to_forward, .. },
1959 prev_funding_outpoint } => {
1960 let claimable_htlc = ClaimableHTLC {
1961 prev_hop: HTLCPreviousHopData {
1962 short_channel_id: prev_short_channel_id,
1963 outpoint: prev_funding_outpoint,
1964 htlc_id: prev_htlc_id,
1965 incoming_packet_shared_secret: incoming_shared_secret,
1967 value: amt_to_forward,
1968 payment_data: payment_data.clone(),
1969 cltv_expiry: incoming_cltv_expiry,
1972 macro_rules! fail_htlc {
1974 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
1975 htlc_msat_height_data.extend_from_slice(
1976 &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
1978 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
1979 short_channel_id: $htlc.prev_hop.short_channel_id,
1980 outpoint: prev_funding_outpoint,
1981 htlc_id: $htlc.prev_hop.htlc_id,
1982 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
1984 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
1989 // Check that the payment hash and secret are known. Note that we
1990 // MUST take care to handle the "unknown payment hash" and
1991 // "incorrect payment secret" cases here identically or we'd expose
1992 // that we are the ultimate recipient of the given payment hash.
1993 // Further, we must not expose whether we have any other HTLCs
1994 // associated with the same payment_hash pending or not.
1995 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
1996 match payment_secrets.entry(payment_hash) {
1997 hash_map::Entry::Vacant(_) => {
1998 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
1999 fail_htlc!(claimable_htlc);
2001 hash_map::Entry::Occupied(inbound_payment) => {
2002 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2003 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2004 fail_htlc!(claimable_htlc);
2005 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2006 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2007 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2008 fail_htlc!(claimable_htlc);
2010 let mut total_value = 0;
2011 let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2012 .or_insert(Vec::new());
2013 htlcs.push(claimable_htlc);
2014 for htlc in htlcs.iter() {
2015 total_value += htlc.value;
2016 if htlc.payment_data.total_msat != payment_data.total_msat {
2017 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2018 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2019 total_value = msgs::MAX_VALUE_MSAT;
2021 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2023 if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2024 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2025 log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2026 for htlc in htlcs.iter() {
2029 } else if total_value == payment_data.total_msat {
2030 new_events.push(events::Event::PaymentReceived {
2032 payment_preimage: inbound_payment.get().payment_preimage,
2033 payment_secret: payment_data.payment_secret,
2035 user_payment_id: inbound_payment.get().user_payment_id,
2037 // Only ever generate at most one PaymentReceived
2038 // per registered payment_hash, even if it isn't
2040 inbound_payment.remove_entry();
2042 // Nothing to do - we haven't reached the total
2043 // payment value yet, wait until we receive more
2050 HTLCForwardInfo::AddHTLC { .. } => {
2051 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2053 HTLCForwardInfo::FailHTLC { .. } => {
2054 panic!("Got pending fail of our own HTLC");
2062 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2063 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2066 for (counterparty_node_id, err) in handle_errors.drain(..) {
2067 let _ = handle_error!(self, err, counterparty_node_id);
2070 if new_events.is_empty() { return }
2071 let mut events = self.pending_events.lock().unwrap();
2072 events.append(&mut new_events);
2075 /// Free the background events, generally called from timer_tick_occurred.
2077 /// Exposed for testing to allow us to process events quickly without generating accidental
2078 /// BroadcastChannelUpdate events in timer_tick_occurred.
2080 /// Expects the caller to have a total_consistency_lock read lock.
2081 fn process_background_events(&self) {
2082 let mut background_events = Vec::new();
2083 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2084 for event in background_events.drain(..) {
2086 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2087 // The channel has already been closed, so no use bothering to care about the
2088 // monitor updating completing.
2089 let _ = self.chain_monitor.update_channel(funding_txo, update);
2095 #[cfg(any(test, feature = "_test_utils"))]
2096 pub(crate) fn test_process_background_events(&self) {
2097 self.process_background_events();
2100 /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2101 /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2102 /// to inform the network about the uselessness of these channels.
2104 /// This method handles all the details, and must be called roughly once per minute.
2106 /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2107 pub fn timer_tick_occurred(&self) {
2108 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2109 self.process_background_events();
2111 let mut channel_state_lock = self.channel_state.lock().unwrap();
2112 let channel_state = &mut *channel_state_lock;
2113 for (_, chan) in channel_state.by_id.iter_mut() {
2114 if chan.is_disabled_staged() && !chan.is_live() {
2115 if let Ok(update) = self.get_channel_update(&chan) {
2116 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2121 } else if chan.is_disabled_staged() && chan.is_live() {
2123 } else if chan.is_disabled_marked() {
2124 chan.to_disabled_staged();
2129 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2130 /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2131 /// along the path (including in our own channel on which we received it).
2132 /// Returns false if no payment was found to fail backwards, true if the process of failing the
2133 /// HTLC backwards has been started.
2134 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2135 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2137 let mut channel_state = Some(self.channel_state.lock().unwrap());
2138 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2139 if let Some(mut sources) = removed_source {
2140 for htlc in sources.drain(..) {
2141 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2142 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2143 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2144 self.best_block.read().unwrap().height()));
2145 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2146 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2147 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2153 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2154 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2155 // be surfaced to the user.
2156 fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2157 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2159 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2160 let (failure_code, onion_failure_data) =
2161 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2162 hash_map::Entry::Occupied(chan_entry) => {
2163 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2164 (0x1000|7, upd.encode_with_len())
2166 (0x4000|10, Vec::new())
2169 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2171 let channel_state = self.channel_state.lock().unwrap();
2172 self.fail_htlc_backwards_internal(channel_state,
2173 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2175 HTLCSource::OutboundRoute { .. } => {
2176 self.pending_events.lock().unwrap().push(
2177 events::Event::PaymentFailed {
2179 rejected_by_dest: false,
2191 /// Fails an HTLC backwards to the sender of it to us.
2192 /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2193 /// There are several callsites that do stupid things like loop over a list of payment_hashes
2194 /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2195 /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2196 /// still-available channels.
2197 fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2198 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2199 //identify whether we sent it or not based on the (I presume) very different runtime
2200 //between the branches here. We should make this async and move it into the forward HTLCs
2203 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2204 // from block_connected which may run during initialization prior to the chain_monitor
2205 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2207 HTLCSource::OutboundRoute { ref path, .. } => {
2208 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2209 mem::drop(channel_state_lock);
2210 match &onion_error {
2211 &HTLCFailReason::LightningError { ref err } => {
2213 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2215 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2216 // TODO: If we decided to blame ourselves (or one of our channels) in
2217 // process_onion_failure we should close that channel as it implies our
2218 // next-hop is needlessly blaming us!
2219 if let Some(update) = channel_update {
2220 self.channel_state.lock().unwrap().pending_msg_events.push(
2221 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2226 self.pending_events.lock().unwrap().push(
2227 events::Event::PaymentFailed {
2228 payment_hash: payment_hash.clone(),
2229 rejected_by_dest: !payment_retryable,
2231 error_code: onion_error_code,
2233 error_data: onion_error_data
2237 &HTLCFailReason::Reason {
2243 // we get a fail_malformed_htlc from the first hop
2244 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2245 // failures here, but that would be insufficient as get_route
2246 // generally ignores its view of our own channels as we provide them via
2248 // TODO: For non-temporary failures, we really should be closing the
2249 // channel here as we apparently can't relay through them anyway.
2250 self.pending_events.lock().unwrap().push(
2251 events::Event::PaymentFailed {
2252 payment_hash: payment_hash.clone(),
2253 rejected_by_dest: path.len() == 1,
2255 error_code: Some(*failure_code),
2257 error_data: Some(data.clone()),
2263 HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2264 let err_packet = match onion_error {
2265 HTLCFailReason::Reason { failure_code, data } => {
2266 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2267 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2268 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2270 HTLCFailReason::LightningError { err } => {
2271 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2272 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2276 let mut forward_event = None;
2277 if channel_state_lock.forward_htlcs.is_empty() {
2278 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2280 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2281 hash_map::Entry::Occupied(mut entry) => {
2282 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2284 hash_map::Entry::Vacant(entry) => {
2285 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2288 mem::drop(channel_state_lock);
2289 if let Some(time) = forward_event {
2290 let mut pending_events = self.pending_events.lock().unwrap();
2291 pending_events.push(events::Event::PendingHTLCsForwardable {
2292 time_forwardable: time
2299 /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2300 /// generating message events for the net layer to claim the payment, if possible. Thus, you
2301 /// should probably kick the net layer to go send messages if this returns true!
2303 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
2304 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
2305 /// event matches your expectation. If you fail to do so and call this method, you may provide
2306 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
2308 /// May panic if called except in response to a PaymentReceived event.
2310 /// [`create_inbound_payment`]: Self::create_inbound_payment
2311 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
2312 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
2313 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2315 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2317 let mut channel_state = Some(self.channel_state.lock().unwrap());
2318 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2319 if let Some(mut sources) = removed_source {
2320 assert!(!sources.is_empty());
2322 // If we are claiming an MPP payment, we have to take special care to ensure that each
2323 // channel exists before claiming all of the payments (inside one lock).
2324 // Note that channel existance is sufficient as we should always get a monitor update
2325 // which will take care of the real HTLC claim enforcement.
2327 // If we find an HTLC which we would need to claim but for which we do not have a
2328 // channel, we will fail all parts of the MPP payment. While we could wait and see if
2329 // the sender retries the already-failed path(s), it should be a pretty rare case where
2330 // we got all the HTLCs and then a channel closed while we were waiting for the user to
2331 // provide the preimage, so worrying too much about the optimal handling isn't worth
2333 let mut valid_mpp = true;
2334 for htlc in sources.iter() {
2335 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2341 let mut errs = Vec::new();
2342 let mut claimed_any_htlcs = false;
2343 for htlc in sources.drain(..) {
2345 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2346 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2347 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2348 self.best_block.read().unwrap().height()));
2349 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2350 HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2351 HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2353 match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2355 if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2356 // We got a temporary failure updating monitor, but will claim the
2357 // HTLC when the monitor updating is restored (or on chain).
2358 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2359 claimed_any_htlcs = true;
2360 } else { errs.push(e); }
2362 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2363 Ok(()) => claimed_any_htlcs = true,
2368 // Now that we've done the entire above loop in one lock, we can handle any errors
2369 // which were generated.
2370 channel_state.take();
2372 for (counterparty_node_id, err) in errs.drain(..) {
2373 let res: Result<(), _> = Err(err);
2374 let _ = handle_error!(self, res, counterparty_node_id);
2381 fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2382 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2383 let channel_state = &mut **channel_state_lock;
2384 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2385 Some(chan_id) => chan_id.clone(),
2391 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2392 let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2393 match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2394 Ok((msgs, monitor_option)) => {
2395 if let Some(monitor_update) = monitor_option {
2396 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2397 if was_frozen_for_monitor {
2398 assert!(msgs.is_none());
2400 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2404 if let Some((msg, commitment_signed)) = msgs {
2405 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2406 node_id: chan.get().get_counterparty_node_id(),
2407 updates: msgs::CommitmentUpdate {
2408 update_add_htlcs: Vec::new(),
2409 update_fulfill_htlcs: vec![msg],
2410 update_fail_htlcs: Vec::new(),
2411 update_fail_malformed_htlcs: Vec::new(),
2420 // TODO: Do something with e?
2421 // This should only occur if we are claiming an HTLC at the same time as the
2422 // HTLC is being failed (eg because a block is being connected and this caused
2423 // an HTLC to time out). This should, of course, only occur if the user is the
2424 // one doing the claiming (as it being a part of a peer claim would imply we're
2425 // about to lose funds) and only if the lock in claim_funds was dropped as a
2426 // previous HTLC was failed (thus not for an MPP payment).
2427 debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2431 } else { unreachable!(); }
2434 fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2436 HTLCSource::OutboundRoute { .. } => {
2437 mem::drop(channel_state_lock);
2438 let mut pending_events = self.pending_events.lock().unwrap();
2439 pending_events.push(events::Event::PaymentSent {
2443 HTLCSource::PreviousHopData(hop_data) => {
2444 let prev_outpoint = hop_data.outpoint;
2445 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2448 let preimage_update = ChannelMonitorUpdate {
2449 update_id: CLOSED_CHANNEL_UPDATE_ID,
2450 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2451 payment_preimage: payment_preimage.clone(),
2454 // We update the ChannelMonitor on the backward link, after
2455 // receiving an offchain preimage event from the forward link (the
2456 // event being update_fulfill_htlc).
2457 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2458 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2459 payment_preimage, e);
2463 Err(Some(res)) => Err(res),
2465 mem::drop(channel_state_lock);
2466 let res: Result<(), _> = Err(err);
2467 let _ = handle_error!(self, res, counterparty_node_id);
2473 /// Gets the node_id held by this ChannelManager
2474 pub fn get_our_node_id(&self) -> PublicKey {
2475 self.our_network_pubkey.clone()
2478 /// Restores a single, given channel to normal operation after a
2479 /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2482 /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2483 /// fully committed in every copy of the given channels' ChannelMonitors.
2485 /// Note that there is no effect to calling with a highest_applied_update_id other than the
2486 /// current latest ChannelMonitorUpdate and one call to this function after multiple
2487 /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2488 /// exists largely only to prevent races between this and concurrent update_monitor calls.
2490 /// Thus, the anticipated use is, at a high level:
2491 /// 1) You register a chain::Watch with this ChannelManager,
2492 /// 2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2493 /// said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2494 /// any time it cannot do so instantly,
2495 /// 3) update(s) are applied to each remote copy of a ChannelMonitor,
2496 /// 4) once all remote copies are updated, you call this function with the update_id that
2497 /// completed, and once it is the latest the Channel will be re-enabled.
2498 pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2499 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2501 let mut close_results = Vec::new();
2502 let mut htlc_forwards = Vec::new();
2503 let mut htlc_failures = Vec::new();
2504 let mut pending_events = Vec::new();
2507 let mut channel_lock = self.channel_state.lock().unwrap();
2508 let channel_state = &mut *channel_lock;
2509 let short_to_id = &mut channel_state.short_to_id;
2510 let pending_msg_events = &mut channel_state.pending_msg_events;
2511 let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) {
2515 if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id {
2519 let (raa, commitment_update, order, pending_forwards, mut pending_failures, funding_broadcastable, funding_locked) = channel.monitor_updating_restored(&self.logger);
2520 if !pending_forwards.is_empty() {
2521 htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), funding_txo.clone(), pending_forwards));
2523 htlc_failures.append(&mut pending_failures);
2525 macro_rules! handle_cs { () => {
2526 if let Some(update) = commitment_update {
2527 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2528 node_id: channel.get_counterparty_node_id(),
2533 macro_rules! handle_raa { () => {
2534 if let Some(revoke_and_ack) = raa {
2535 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2536 node_id: channel.get_counterparty_node_id(),
2537 msg: revoke_and_ack,
2542 RAACommitmentOrder::CommitmentFirst => {
2546 RAACommitmentOrder::RevokeAndACKFirst => {
2551 if let Some(tx) = funding_broadcastable {
2552 self.tx_broadcaster.broadcast_transaction(&tx);
2554 if let Some(msg) = funding_locked {
2555 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
2556 node_id: channel.get_counterparty_node_id(),
2559 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
2560 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2561 node_id: channel.get_counterparty_node_id(),
2562 msg: announcement_sigs,
2565 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
2569 self.pending_events.lock().unwrap().append(&mut pending_events);
2571 for failure in htlc_failures.drain(..) {
2572 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2574 self.forward_htlcs(&mut htlc_forwards[..]);
2576 for res in close_results.drain(..) {
2577 self.finish_force_close_channel(res);
2581 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2582 if msg.chain_hash != self.genesis_hash {
2583 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2586 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2587 .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2588 let mut channel_state_lock = self.channel_state.lock().unwrap();
2589 let channel_state = &mut *channel_state_lock;
2590 match channel_state.by_id.entry(channel.channel_id()) {
2591 hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2592 hash_map::Entry::Vacant(entry) => {
2593 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2594 node_id: counterparty_node_id.clone(),
2595 msg: channel.get_accept_channel(),
2597 entry.insert(channel);
2603 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2604 let (value, output_script, user_id) = {
2605 let mut channel_lock = self.channel_state.lock().unwrap();
2606 let channel_state = &mut *channel_lock;
2607 match channel_state.by_id.entry(msg.temporary_channel_id) {
2608 hash_map::Entry::Occupied(mut chan) => {
2609 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2610 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2612 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2613 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2615 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2618 let mut pending_events = self.pending_events.lock().unwrap();
2619 pending_events.push(events::Event::FundingGenerationReady {
2620 temporary_channel_id: msg.temporary_channel_id,
2621 channel_value_satoshis: value,
2623 user_channel_id: user_id,
2628 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2629 let ((funding_msg, monitor), mut chan) = {
2630 let best_block = *self.best_block.read().unwrap();
2631 let mut channel_lock = self.channel_state.lock().unwrap();
2632 let channel_state = &mut *channel_lock;
2633 match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2634 hash_map::Entry::Occupied(mut chan) => {
2635 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2636 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2638 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2640 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2643 // Because we have exclusive ownership of the channel here we can release the channel_state
2644 // lock before watch_channel
2645 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2647 ChannelMonitorUpdateErr::PermanentFailure => {
2648 // Note that we reply with the new channel_id in error messages if we gave up on the
2649 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2650 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2651 // any messages referencing a previously-closed channel anyway.
2652 // We do not do a force-close here as that would generate a monitor update for
2653 // a monitor that we didn't manage to store (and that we don't care about - we
2654 // don't respond with the funding_signed so the channel can never go on chain).
2655 let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2656 assert!(failed_htlcs.is_empty());
2657 return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2659 ChannelMonitorUpdateErr::TemporaryFailure => {
2660 // There's no problem signing a counterparty's funding transaction if our monitor
2661 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2662 // accepted payment from yet. We do, however, need to wait to send our funding_locked
2663 // until we have persisted our monitor.
2664 chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2668 let mut channel_state_lock = self.channel_state.lock().unwrap();
2669 let channel_state = &mut *channel_state_lock;
2670 match channel_state.by_id.entry(funding_msg.channel_id) {
2671 hash_map::Entry::Occupied(_) => {
2672 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2674 hash_map::Entry::Vacant(e) => {
2675 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2676 node_id: counterparty_node_id.clone(),
2685 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2687 let best_block = *self.best_block.read().unwrap();
2688 let mut channel_lock = self.channel_state.lock().unwrap();
2689 let channel_state = &mut *channel_lock;
2690 match channel_state.by_id.entry(msg.channel_id) {
2691 hash_map::Entry::Occupied(mut chan) => {
2692 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2693 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2695 let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2696 Ok(update) => update,
2697 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2699 if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2700 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2704 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2707 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2711 fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2712 let mut channel_state_lock = self.channel_state.lock().unwrap();
2713 let channel_state = &mut *channel_state_lock;
2714 match channel_state.by_id.entry(msg.channel_id) {
2715 hash_map::Entry::Occupied(mut chan) => {
2716 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2717 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2719 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2720 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2721 log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2722 // If we see locking block before receiving remote funding_locked, we broadcast our
2723 // announcement_sigs at remote funding_locked reception. If we receive remote
2724 // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2725 // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2726 // the order of the events but our peer may not receive it due to disconnection. The specs
2727 // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2728 // connection in the future if simultaneous misses by both peers due to network/hardware
2729 // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2730 // to be received, from then sigs are going to be flood to the whole network.
2731 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2732 node_id: counterparty_node_id.clone(),
2733 msg: announcement_sigs,
2738 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2742 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2743 let (mut dropped_htlcs, chan_option) = {
2744 let mut channel_state_lock = self.channel_state.lock().unwrap();
2745 let channel_state = &mut *channel_state_lock;
2747 match channel_state.by_id.entry(msg.channel_id.clone()) {
2748 hash_map::Entry::Occupied(mut chan_entry) => {
2749 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2750 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2752 let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2753 if let Some(msg) = shutdown {
2754 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2755 node_id: counterparty_node_id.clone(),
2759 if let Some(msg) = closing_signed {
2760 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2761 node_id: counterparty_node_id.clone(),
2765 if chan_entry.get().is_shutdown() {
2766 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2767 channel_state.short_to_id.remove(&short_id);
2769 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2770 } else { (dropped_htlcs, None) }
2772 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2775 for htlc_source in dropped_htlcs.drain(..) {
2776 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2778 if let Some(chan) = chan_option {
2779 if let Ok(update) = self.get_channel_update(&chan) {
2780 let mut channel_state = self.channel_state.lock().unwrap();
2781 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2789 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2790 let (tx, chan_option) = {
2791 let mut channel_state_lock = self.channel_state.lock().unwrap();
2792 let channel_state = &mut *channel_state_lock;
2793 match channel_state.by_id.entry(msg.channel_id.clone()) {
2794 hash_map::Entry::Occupied(mut chan_entry) => {
2795 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2796 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2798 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2799 if let Some(msg) = closing_signed {
2800 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2801 node_id: counterparty_node_id.clone(),
2806 // We're done with this channel, we've got a signed closing transaction and
2807 // will send the closing_signed back to the remote peer upon return. This
2808 // also implies there are no pending HTLCs left on the channel, so we can
2809 // fully delete it from tracking (the channel monitor is still around to
2810 // watch for old state broadcasts)!
2811 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2812 channel_state.short_to_id.remove(&short_id);
2814 (tx, Some(chan_entry.remove_entry().1))
2815 } else { (tx, None) }
2817 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2820 if let Some(broadcast_tx) = tx {
2821 log_trace!(self.logger, "Broadcast onchain {}", log_tx!(broadcast_tx));
2822 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
2824 if let Some(chan) = chan_option {
2825 if let Ok(update) = self.get_channel_update(&chan) {
2826 let mut channel_state = self.channel_state.lock().unwrap();
2827 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2835 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
2836 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
2837 //determine the state of the payment based on our response/if we forward anything/the time
2838 //we take to respond. We should take care to avoid allowing such an attack.
2840 //TODO: There exists a further attack where a node may garble the onion data, forward it to
2841 //us repeatedly garbled in different ways, and compare our error messages, which are
2842 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
2843 //but we should prevent it anyway.
2845 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
2846 let channel_state = &mut *channel_state_lock;
2848 match channel_state.by_id.entry(msg.channel_id) {
2849 hash_map::Entry::Occupied(mut chan) => {
2850 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2851 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2854 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
2855 // Ensure error_code has the UPDATE flag set, since by default we send a
2856 // channel update along as part of failing the HTLC.
2857 assert!((error_code & 0x1000) != 0);
2858 // If the update_add is completely bogus, the call will Err and we will close,
2859 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
2860 // want to reject the new HTLC and fail it backwards instead of forwarding.
2861 match pending_forward_info {
2862 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
2863 let reason = if let Ok(upd) = self.get_channel_update(chan) {
2864 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
2865 let mut res = Vec::with_capacity(8 + 128);
2866 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2867 res.extend_from_slice(&byte_utils::be16_to_array(0));
2868 res.extend_from_slice(&upd.encode_with_len()[..]);
2872 // The only case where we'd be unable to
2873 // successfully get a channel update is if the
2874 // channel isn't in the fully-funded state yet,
2875 // implying our counterparty is trying to route
2876 // payments over the channel back to themselves
2877 // (cause no one else should know the short_id
2878 // is a lightning channel yet). We should have
2879 // no problem just calling this
2880 // unknown_next_peer (0x4000|10).
2881 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
2883 let msg = msgs::UpdateFailHTLC {
2884 channel_id: msg.channel_id,
2885 htlc_id: msg.htlc_id,
2888 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
2890 _ => pending_forward_info
2893 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
2895 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2900 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
2901 let mut channel_lock = self.channel_state.lock().unwrap();
2903 let channel_state = &mut *channel_lock;
2904 match channel_state.by_id.entry(msg.channel_id) {
2905 hash_map::Entry::Occupied(mut chan) => {
2906 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2907 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2909 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
2911 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2914 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
2918 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
2919 let mut channel_lock = self.channel_state.lock().unwrap();
2920 let channel_state = &mut *channel_lock;
2921 match channel_state.by_id.entry(msg.channel_id) {
2922 hash_map::Entry::Occupied(mut chan) => {
2923 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2924 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2926 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
2928 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2933 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
2934 let mut channel_lock = self.channel_state.lock().unwrap();
2935 let channel_state = &mut *channel_lock;
2936 match channel_state.by_id.entry(msg.channel_id) {
2937 hash_map::Entry::Occupied(mut chan) => {
2938 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2939 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2941 if (msg.failure_code & 0x8000) == 0 {
2942 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
2943 try_chan_entry!(self, Err(chan_err), channel_state, chan);
2945 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
2948 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2952 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
2953 let mut channel_state_lock = self.channel_state.lock().unwrap();
2954 let channel_state = &mut *channel_state_lock;
2955 match channel_state.by_id.entry(msg.channel_id) {
2956 hash_map::Entry::Occupied(mut chan) => {
2957 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2958 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2960 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
2961 match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
2962 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
2963 Err((Some(update), e)) => {
2964 assert!(chan.get().is_awaiting_monitor_update());
2965 let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
2966 try_chan_entry!(self, Err(e), channel_state, chan);
2971 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2972 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
2973 //TODO: Rebroadcast closing_signed if present on monitor update restoration
2975 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2976 node_id: counterparty_node_id.clone(),
2977 msg: revoke_and_ack,
2979 if let Some(msg) = commitment_signed {
2980 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2981 node_id: counterparty_node_id.clone(),
2982 updates: msgs::CommitmentUpdate {
2983 update_add_htlcs: Vec::new(),
2984 update_fulfill_htlcs: Vec::new(),
2985 update_fail_htlcs: Vec::new(),
2986 update_fail_malformed_htlcs: Vec::new(),
2988 commitment_signed: msg,
2992 if let Some(msg) = closing_signed {
2993 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2994 node_id: counterparty_node_id.clone(),
3000 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3005 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3006 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3007 let mut forward_event = None;
3008 if !pending_forwards.is_empty() {
3009 let mut channel_state = self.channel_state.lock().unwrap();
3010 if channel_state.forward_htlcs.is_empty() {
3011 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3013 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3014 match channel_state.forward_htlcs.entry(match forward_info.routing {
3015 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3016 PendingHTLCRouting::Receive { .. } => 0,
3018 hash_map::Entry::Occupied(mut entry) => {
3019 entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3020 prev_htlc_id, forward_info });
3022 hash_map::Entry::Vacant(entry) => {
3023 entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3024 prev_htlc_id, forward_info }));
3029 match forward_event {
3031 let mut pending_events = self.pending_events.lock().unwrap();
3032 pending_events.push(events::Event::PendingHTLCsForwardable {
3033 time_forwardable: time
3041 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3042 let mut htlcs_to_fail = Vec::new();
3044 let mut channel_state_lock = self.channel_state.lock().unwrap();
3045 let channel_state = &mut *channel_state_lock;
3046 match channel_state.by_id.entry(msg.channel_id) {
3047 hash_map::Entry::Occupied(mut chan) => {
3048 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3049 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3051 let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3052 let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3053 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3054 htlcs_to_fail = htlcs_to_fail_in;
3055 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3056 if was_frozen_for_monitor {
3057 assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3058 break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3060 if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3062 } else { unreachable!(); }
3065 if let Some(updates) = commitment_update {
3066 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3067 node_id: counterparty_node_id.clone(),
3071 if let Some(msg) = closing_signed {
3072 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3073 node_id: counterparty_node_id.clone(),
3077 break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3079 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3082 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3084 Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3085 for failure in pending_failures.drain(..) {
3086 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3088 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3095 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3096 let mut channel_lock = self.channel_state.lock().unwrap();
3097 let channel_state = &mut *channel_lock;
3098 match channel_state.by_id.entry(msg.channel_id) {
3099 hash_map::Entry::Occupied(mut chan) => {
3100 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3101 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3103 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3105 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3110 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3111 let mut channel_state_lock = self.channel_state.lock().unwrap();
3112 let channel_state = &mut *channel_state_lock;
3114 match channel_state.by_id.entry(msg.channel_id) {
3115 hash_map::Entry::Occupied(mut chan) => {
3116 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3117 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3119 if !chan.get().is_usable() {
3120 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3123 let our_node_id = self.get_our_node_id();
3124 let (announcement, our_bitcoin_sig) =
3125 try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
3127 let were_node_one = announcement.node_id_1 == our_node_id;
3128 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
3130 let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
3131 let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
3132 match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
3133 self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
3135 let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
3136 try_chan_entry!(self, Err(chan_err), channel_state, chan);
3139 let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
3140 try_chan_entry!(self, Err(chan_err), channel_state, chan);
3146 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
3148 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3149 msg: msgs::ChannelAnnouncement {
3150 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
3151 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
3152 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
3153 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
3154 contents: announcement,
3156 update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3159 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3164 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3165 let mut channel_state_lock = self.channel_state.lock().unwrap();
3166 let channel_state = &mut *channel_state_lock;
3167 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3168 Some(chan_id) => chan_id.clone(),
3170 // It's not a local channel
3174 match channel_state.by_id.entry(chan_id) {
3175 hash_map::Entry::Occupied(mut chan) => {
3176 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3177 // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
3178 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
3180 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3182 hash_map::Entry::Vacant(_) => unreachable!()
3187 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3188 let mut channel_state_lock = self.channel_state.lock().unwrap();
3189 let channel_state = &mut *channel_state_lock;
3191 match channel_state.by_id.entry(msg.channel_id) {
3192 hash_map::Entry::Occupied(mut chan) => {
3193 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3194 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3196 // Currently, we expect all holding cell update_adds to be dropped on peer
3197 // disconnect, so Channel's reestablish will never hand us any holding cell
3198 // freed HTLCs to fail backwards. If in the future we no longer drop pending
3199 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3200 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
3201 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3202 if let Some(monitor_update) = monitor_update_opt {
3203 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3204 // channel_reestablish doesn't guarantee the order it returns is sensical
3205 // for the messages it returns, but if we're setting what messages to
3206 // re-transmit on monitor update success, we need to make sure it is sane.
3207 if revoke_and_ack.is_none() {
3208 order = RAACommitmentOrder::CommitmentFirst;
3210 if commitment_update.is_none() {
3211 order = RAACommitmentOrder::RevokeAndACKFirst;
3213 return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
3214 //TODO: Resend the funding_locked if needed once we get the monitor running again
3217 if let Some(msg) = funding_locked {
3218 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3219 node_id: counterparty_node_id.clone(),
3223 macro_rules! send_raa { () => {
3224 if let Some(msg) = revoke_and_ack {
3225 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3226 node_id: counterparty_node_id.clone(),
3231 macro_rules! send_cu { () => {
3232 if let Some(updates) = commitment_update {
3233 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3234 node_id: counterparty_node_id.clone(),
3240 RAACommitmentOrder::RevokeAndACKFirst => {
3244 RAACommitmentOrder::CommitmentFirst => {
3249 if let Some(msg) = shutdown {
3250 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3251 node_id: counterparty_node_id.clone(),
3257 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3261 /// Begin Update fee process. Allowed only on an outbound channel.
3262 /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3263 /// PeerManager::process_events afterwards.
3264 /// Note: This API is likely to change!
3265 /// (C-not exported) Cause its doc(hidden) anyway
3267 pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3268 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3269 let counterparty_node_id;
3270 let err: Result<(), _> = loop {
3271 let mut channel_state_lock = self.channel_state.lock().unwrap();
3272 let channel_state = &mut *channel_state_lock;
3274 match channel_state.by_id.entry(channel_id) {
3275 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3276 hash_map::Entry::Occupied(mut chan) => {
3277 if !chan.get().is_outbound() {
3278 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3280 if chan.get().is_awaiting_monitor_update() {
3281 return Err(APIError::MonitorUpdateFailed);
3283 if !chan.get().is_live() {
3284 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3286 counterparty_node_id = chan.get().get_counterparty_node_id();
3287 if let Some((update_fee, commitment_signed, monitor_update)) =
3288 break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3290 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3293 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3294 node_id: chan.get().get_counterparty_node_id(),
3295 updates: msgs::CommitmentUpdate {
3296 update_add_htlcs: Vec::new(),
3297 update_fulfill_htlcs: Vec::new(),
3298 update_fail_htlcs: Vec::new(),
3299 update_fail_malformed_htlcs: Vec::new(),
3300 update_fee: Some(update_fee),
3310 match handle_error!(self, err, counterparty_node_id) {
3311 Ok(_) => unreachable!(),
3312 Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3316 /// Process pending events from the `chain::Watch`.
3317 fn process_pending_monitor_events(&self) {
3318 let mut failed_channels = Vec::new();
3320 for monitor_event in self.chain_monitor.release_pending_monitor_events() {
3321 match monitor_event {
3322 MonitorEvent::HTLCEvent(htlc_update) => {
3323 if let Some(preimage) = htlc_update.payment_preimage {
3324 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3325 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3327 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3328 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3331 MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3332 let mut channel_lock = self.channel_state.lock().unwrap();
3333 let channel_state = &mut *channel_lock;
3334 let by_id = &mut channel_state.by_id;
3335 let short_to_id = &mut channel_state.short_to_id;
3336 let pending_msg_events = &mut channel_state.pending_msg_events;
3337 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3338 if let Some(short_id) = chan.get_short_channel_id() {
3339 short_to_id.remove(&short_id);
3341 failed_channels.push(chan.force_shutdown(false));
3342 if let Ok(update) = self.get_channel_update(&chan) {
3343 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3347 pending_msg_events.push(events::MessageSendEvent::HandleError {
3348 node_id: chan.get_counterparty_node_id(),
3349 action: msgs::ErrorAction::SendErrorMessage {
3350 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3359 for failure in failed_channels.drain(..) {
3360 self.finish_force_close_channel(failure);
3364 /// Handle a list of channel failures during a block_connected or block_disconnected call,
3365 /// pushing the channel monitor update (if any) to the background events queue and removing the
3367 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3368 for mut failure in failed_channels.drain(..) {
3369 // Either a commitment transactions has been confirmed on-chain or
3370 // Channel::block_disconnected detected that the funding transaction has been
3371 // reorganized out of the main chain.
3372 // We cannot broadcast our latest local state via monitor update (as
3373 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3374 // so we track the update internally and handle it when the user next calls
3375 // timer_tick_occurred, guaranteeing we're running normally.
3376 if let Some((funding_txo, update)) = failure.0.take() {
3377 assert_eq!(update.updates.len(), 1);
3378 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3379 assert!(should_broadcast);
3380 } else { unreachable!(); }
3381 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3383 self.finish_force_close_channel(failure);
3387 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3388 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3390 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3392 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3393 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3394 match payment_secrets.entry(payment_hash) {
3395 hash_map::Entry::Vacant(e) => {
3396 e.insert(PendingInboundPayment {
3397 payment_secret, min_value_msat, user_payment_id, payment_preimage,
3398 // We assume that highest_seen_timestamp is pretty close to the current time -
3399 // its updated when we receive a new block with the maximum time we've seen in
3400 // a header. It should never be more than two hours in the future.
3401 // Thus, we add two hours here as a buffer to ensure we absolutely
3402 // never fail a payment too early.
3403 // Note that we assume that received blocks have reasonably up-to-date
3405 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3408 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3413 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3416 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3417 /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3419 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
3420 /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
3421 /// passed directly to [`claim_funds`].
3423 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3425 /// [`claim_funds`]: Self::claim_funds
3426 /// [`PaymentReceived`]: events::Event::PaymentReceived
3427 /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
3428 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3429 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
3430 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3431 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3434 self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3435 .expect("RNG Generated Duplicate PaymentHash"))
3438 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3439 /// stored external to LDK.
3441 /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3442 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3443 /// the `min_value_msat` provided here, if one is provided.
3445 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3446 /// method may return an Err if another payment with the same payment_hash is still pending.
3448 /// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
3449 /// allow tracking of which events correspond with which calls to this and
3450 /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
3451 /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
3452 /// with invoice metadata stored elsewhere.
3454 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3455 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3456 /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3457 /// sender "proof-of-payment" unless they have paid the required amount.
3459 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3460 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3461 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3462 /// pay the invoice failing. The BOLT spec suggests 7,200 secs as a default validity time for
3463 /// invoices when no timeout is set.
3465 /// Note that we use block header time to time-out pending inbound payments (with some margin
3466 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3467 /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3468 /// If you need exact expiry semantics, you should enforce them upon receipt of
3469 /// [`PaymentReceived`].
3471 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3473 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
3474 /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
3476 /// [`create_inbound_payment`]: Self::create_inbound_payment
3477 /// [`PaymentReceived`]: events::Event::PaymentReceived
3478 /// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
3479 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3480 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3484 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3485 where M::Target: chain::Watch<Signer>,
3486 T::Target: BroadcasterInterface,
3487 K::Target: KeysInterface<Signer = Signer>,
3488 F::Target: FeeEstimator,
3491 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3492 //TODO: This behavior should be documented. It's non-intuitive that we query
3493 // ChannelMonitors when clearing other events.
3494 self.process_pending_monitor_events();
3496 let mut ret = Vec::new();
3497 let mut channel_state = self.channel_state.lock().unwrap();
3498 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3503 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3504 where M::Target: chain::Watch<Signer>,
3505 T::Target: BroadcasterInterface,
3506 K::Target: KeysInterface<Signer = Signer>,
3507 F::Target: FeeEstimator,
3510 fn get_and_clear_pending_events(&self) -> Vec<Event> {
3511 //TODO: This behavior should be documented. It's non-intuitive that we query
3512 // ChannelMonitors when clearing other events.
3513 self.process_pending_monitor_events();
3515 let mut ret = Vec::new();
3516 let mut pending_events = self.pending_events.lock().unwrap();
3517 mem::swap(&mut ret, &mut *pending_events);
3522 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3524 M::Target: chain::Watch<Signer>,
3525 T::Target: BroadcasterInterface,
3526 K::Target: KeysInterface<Signer = Signer>,
3527 F::Target: FeeEstimator,
3530 fn block_connected(&self, block: &Block, height: u32) {
3532 let best_block = self.best_block.read().unwrap();
3533 assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3534 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3535 assert_eq!(best_block.height(), height - 1,
3536 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3539 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3540 self.transactions_confirmed(&block.header, &txdata, height);
3541 self.best_block_updated(&block.header, height);
3544 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3545 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3546 let new_height = height - 1;
3548 let mut best_block = self.best_block.write().unwrap();
3549 assert_eq!(best_block.block_hash(), header.block_hash(),
3550 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3551 assert_eq!(best_block.height(), height,
3552 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3553 *best_block = BestBlock::new(header.prev_blockhash, new_height)
3556 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
3560 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3562 M::Target: chain::Watch<Signer>,
3563 T::Target: BroadcasterInterface,
3564 K::Target: KeysInterface<Signer = Signer>,
3565 F::Target: FeeEstimator,
3568 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3569 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3570 // during initialization prior to the chain_monitor being fully configured in some cases.
3571 // See the docs for `ChannelManagerReadArgs` for more.
3573 let block_hash = header.block_hash();
3574 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3576 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3577 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3580 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3581 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3582 // during initialization prior to the chain_monitor being fully configured in some cases.
3583 // See the docs for `ChannelManagerReadArgs` for more.
3585 let block_hash = header.block_hash();
3586 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3588 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3590 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3592 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
3594 macro_rules! max_time {
3595 ($timestamp: expr) => {
3597 // Update $timestamp to be the max of its current value and the block
3598 // timestamp. This should keep us close to the current time without relying on
3599 // having an explicit local time source.
3600 // Just in case we end up in a race, we loop until we either successfully
3601 // update $timestamp or decide we don't need to.
3602 let old_serial = $timestamp.load(Ordering::Acquire);
3603 if old_serial >= header.time as usize { break; }
3604 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3610 max_time!(self.last_node_announcement_serial);
3611 max_time!(self.highest_seen_timestamp);
3612 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3613 payment_secrets.retain(|_, inbound_payment| {
3614 inbound_payment.expiry_time > header.time as u64
3618 fn get_relevant_txids(&self) -> Vec<Txid> {
3619 let channel_state = self.channel_state.lock().unwrap();
3620 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3621 for chan in channel_state.by_id.values() {
3622 if let Some(funding_txo) = chan.get_funding_txo() {
3623 res.push(funding_txo.txid);
3629 fn transaction_unconfirmed(&self, txid: &Txid) {
3630 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3631 self.do_chain_event(None, |channel| {
3632 if let Some(funding_txo) = channel.get_funding_txo() {
3633 if funding_txo.txid == *txid {
3634 channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
3635 } else { Ok((None, Vec::new())) }
3636 } else { Ok((None, Vec::new())) }
3641 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3643 M::Target: chain::Watch<Signer>,
3644 T::Target: BroadcasterInterface,
3645 K::Target: KeysInterface<Signer = Signer>,
3646 F::Target: FeeEstimator,
3649 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3650 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3652 fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3653 (&self, height_opt: Option<u32>, f: FN) {
3654 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3655 // during initialization prior to the chain_monitor being fully configured in some cases.
3656 // See the docs for `ChannelManagerReadArgs` for more.
3658 let mut failed_channels = Vec::new();
3659 let mut timed_out_htlcs = Vec::new();
3661 let mut channel_lock = self.channel_state.lock().unwrap();
3662 let channel_state = &mut *channel_lock;
3663 let short_to_id = &mut channel_state.short_to_id;
3664 let pending_msg_events = &mut channel_state.pending_msg_events;
3665 channel_state.by_id.retain(|_, channel| {
3666 let res = f(channel);
3667 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3668 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3669 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3670 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
3671 failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3675 if let Some(funding_locked) = chan_res {
3676 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3677 node_id: channel.get_counterparty_node_id(),
3678 msg: funding_locked,
3680 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3681 log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3682 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3683 node_id: channel.get_counterparty_node_id(),
3684 msg: announcement_sigs,
3687 log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3689 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3691 } else if let Err(e) = res {
3692 if let Some(short_id) = channel.get_short_channel_id() {
3693 short_to_id.remove(&short_id);
3695 // It looks like our counterparty went on-chain or funding transaction was
3696 // reorged out of the main chain. Close the channel.
3697 failed_channels.push(channel.force_shutdown(true));
3698 if let Ok(update) = self.get_channel_update(&channel) {
3699 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3703 pending_msg_events.push(events::MessageSendEvent::HandleError {
3704 node_id: channel.get_counterparty_node_id(),
3705 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3712 if let Some(height) = height_opt {
3713 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3714 htlcs.retain(|htlc| {
3715 // If height is approaching the number of blocks we think it takes us to get
3716 // our commitment transaction confirmed before the HTLC expires, plus the
3717 // number of blocks we generally consider it to take to do a commitment update,
3718 // just give up on it and fail the HTLC.
3719 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3720 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3721 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3722 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3723 failure_code: 0x4000 | 15,
3724 data: htlc_msat_height_data
3729 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3734 self.handle_init_event_channel_failures(failed_channels);
3736 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3737 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3741 /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3742 /// indicating whether persistence is necessary. Only one listener on
3743 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3745 /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3746 #[cfg(any(test, feature = "allow_wallclock_use"))]
3747 pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
3748 self.persistence_notifier.wait_timeout(max_wait)
3751 /// Blocks until ChannelManager needs to be persisted. Only one listener on
3752 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3754 pub fn await_persistable_update(&self) {
3755 self.persistence_notifier.wait()
3758 #[cfg(any(test, feature = "_test_utils"))]
3759 pub fn get_persistence_condvar_value(&self) -> bool {
3760 let mutcond = &self.persistence_notifier.persistence_lock;
3761 let &(ref mtx, _) = mutcond;
3762 let guard = mtx.lock().unwrap();
3767 impl<Signer: Sign, M: Deref + Sync + Send, T: Deref + Sync + Send, K: Deref + Sync + Send, F: Deref + Sync + Send, L: Deref + Sync + Send>
3768 ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3769 where M::Target: chain::Watch<Signer>,
3770 T::Target: BroadcasterInterface,
3771 K::Target: KeysInterface<Signer = Signer>,
3772 F::Target: FeeEstimator,
3775 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3776 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3777 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3780 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
3781 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3782 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3785 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
3786 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3787 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
3790 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
3791 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3792 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
3795 fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
3796 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3797 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
3800 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
3801 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3802 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
3805 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
3806 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3807 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
3810 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
3811 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3812 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
3815 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
3816 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3817 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
3820 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
3821 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3822 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
3825 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
3826 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3827 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
3830 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
3831 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3832 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
3835 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
3836 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3837 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
3840 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
3841 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3842 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
3845 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
3846 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3847 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
3850 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
3851 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3852 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
3855 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
3856 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3857 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
3860 fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
3861 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3862 let mut failed_channels = Vec::new();
3863 let mut failed_payments = Vec::new();
3864 let mut no_channels_remain = true;
3866 let mut channel_state_lock = self.channel_state.lock().unwrap();
3867 let channel_state = &mut *channel_state_lock;
3868 let short_to_id = &mut channel_state.short_to_id;
3869 let pending_msg_events = &mut channel_state.pending_msg_events;
3870 if no_connection_possible {
3871 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
3872 channel_state.by_id.retain(|_, chan| {
3873 if chan.get_counterparty_node_id() == *counterparty_node_id {
3874 if let Some(short_id) = chan.get_short_channel_id() {
3875 short_to_id.remove(&short_id);
3877 failed_channels.push(chan.force_shutdown(true));
3878 if let Ok(update) = self.get_channel_update(&chan) {
3879 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3889 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
3890 channel_state.by_id.retain(|_, chan| {
3891 if chan.get_counterparty_node_id() == *counterparty_node_id {
3892 // Note that currently on channel reestablish we assert that there are no
3893 // holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs
3894 // on peer disconnect here, there will need to be corresponding changes in
3895 // reestablish logic.
3896 let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
3897 chan.to_disabled_marked();
3898 if !failed_adds.is_empty() {
3899 let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3900 failed_payments.push((chan_update, failed_adds));
3902 if chan.is_shutdown() {
3903 if let Some(short_id) = chan.get_short_channel_id() {
3904 short_to_id.remove(&short_id);
3908 no_channels_remain = false;
3914 pending_msg_events.retain(|msg| {
3916 &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
3917 &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
3918 &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
3919 &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3920 &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
3921 &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
3922 &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
3923 &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
3924 &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3925 &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
3926 &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
3927 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
3928 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
3929 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
3930 &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
3931 &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
3932 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
3933 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
3934 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
3938 if no_channels_remain {
3939 self.per_peer_state.write().unwrap().remove(counterparty_node_id);
3942 for failure in failed_channels.drain(..) {
3943 self.finish_force_close_channel(failure);
3945 for (chan_update, mut htlc_sources) in failed_payments {
3946 for (htlc_source, payment_hash) in htlc_sources.drain(..) {
3947 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
3952 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
3953 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
3955 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3958 let mut peer_state_lock = self.per_peer_state.write().unwrap();
3959 match peer_state_lock.entry(counterparty_node_id.clone()) {
3960 hash_map::Entry::Vacant(e) => {
3961 e.insert(Mutex::new(PeerState {
3962 latest_features: init_msg.features.clone(),
3965 hash_map::Entry::Occupied(e) => {
3966 e.get().lock().unwrap().latest_features = init_msg.features.clone();
3971 let mut channel_state_lock = self.channel_state.lock().unwrap();
3972 let channel_state = &mut *channel_state_lock;
3973 let pending_msg_events = &mut channel_state.pending_msg_events;
3974 channel_state.by_id.retain(|_, chan| {
3975 if chan.get_counterparty_node_id() == *counterparty_node_id {
3976 if !chan.have_received_message() {
3977 // If we created this (outbound) channel while we were disconnected from the
3978 // peer we probably failed to send the open_channel message, which is now
3979 // lost. We can't have had anything pending related to this channel, so we just
3983 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
3984 node_id: chan.get_counterparty_node_id(),
3985 msg: chan.get_channel_reestablish(&self.logger),
3991 //TODO: Also re-broadcast announcement_signatures
3994 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
3995 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3997 if msg.channel_id == [0; 32] {
3998 for chan in self.list_channels() {
3999 if chan.remote_network_id == *counterparty_node_id {
4000 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4001 let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
4005 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4006 let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
4011 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4012 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4013 struct PersistenceNotifier {
4014 /// Users won't access the persistence_lock directly, but rather wait on its bool using
4015 /// `wait_timeout` and `wait`.
4016 persistence_lock: (Mutex<bool>, Condvar),
4019 impl PersistenceNotifier {
4022 persistence_lock: (Mutex::new(false), Condvar::new()),
4028 let &(ref mtx, ref cvar) = &self.persistence_lock;
4029 let mut guard = mtx.lock().unwrap();
4030 guard = cvar.wait(guard).unwrap();
4031 let result = *guard;
4039 #[cfg(any(test, feature = "allow_wallclock_use"))]
4040 fn wait_timeout(&self, max_wait: Duration) -> bool {
4041 let current_time = Instant::now();
4043 let &(ref mtx, ref cvar) = &self.persistence_lock;
4044 let mut guard = mtx.lock().unwrap();
4045 guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4046 // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4047 // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4048 // time. Note that this logic can be highly simplified through the use of
4049 // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4051 let elapsed = current_time.elapsed();
4052 let result = *guard;
4053 if result || elapsed >= max_wait {
4057 match max_wait.checked_sub(elapsed) {
4058 None => return result,
4064 // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4066 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4067 let mut persistence_lock = persist_mtx.lock().unwrap();
4068 *persistence_lock = true;
4069 mem::drop(persistence_lock);
4074 const SERIALIZATION_VERSION: u8 = 1;
4075 const MIN_SERIALIZATION_VERSION: u8 = 1;
4077 impl Writeable for PendingHTLCInfo {
4078 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4079 match &self.routing {
4080 &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
4082 onion_packet.write(writer)?;
4083 short_channel_id.write(writer)?;
4085 &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
4087 payment_data.payment_secret.write(writer)?;
4088 payment_data.total_msat.write(writer)?;
4089 incoming_cltv_expiry.write(writer)?;
4092 self.incoming_shared_secret.write(writer)?;
4093 self.payment_hash.write(writer)?;
4094 self.amt_to_forward.write(writer)?;
4095 self.outgoing_cltv_value.write(writer)?;
4100 impl Readable for PendingHTLCInfo {
4101 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
4102 Ok(PendingHTLCInfo {
4103 routing: match Readable::read(reader)? {
4104 0u8 => PendingHTLCRouting::Forward {
4105 onion_packet: Readable::read(reader)?,
4106 short_channel_id: Readable::read(reader)?,
4108 1u8 => PendingHTLCRouting::Receive {
4109 payment_data: msgs::FinalOnionHopData {
4110 payment_secret: Readable::read(reader)?,
4111 total_msat: Readable::read(reader)?,
4113 incoming_cltv_expiry: Readable::read(reader)?,
4115 _ => return Err(DecodeError::InvalidValue),
4117 incoming_shared_secret: Readable::read(reader)?,
4118 payment_hash: Readable::read(reader)?,
4119 amt_to_forward: Readable::read(reader)?,
4120 outgoing_cltv_value: Readable::read(reader)?,
4125 impl Writeable for HTLCFailureMsg {
4126 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4128 &HTLCFailureMsg::Relay(ref fail_msg) => {
4130 fail_msg.write(writer)?;
4132 &HTLCFailureMsg::Malformed(ref fail_msg) => {
4134 fail_msg.write(writer)?;
4141 impl Readable for HTLCFailureMsg {
4142 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
4143 match <u8 as Readable>::read(reader)? {
4144 0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
4145 1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
4146 _ => Err(DecodeError::InvalidValue),
4151 impl Writeable for PendingHTLCStatus {
4152 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4154 &PendingHTLCStatus::Forward(ref forward_info) => {
4156 forward_info.write(writer)?;
4158 &PendingHTLCStatus::Fail(ref fail_msg) => {
4160 fail_msg.write(writer)?;
4167 impl Readable for PendingHTLCStatus {
4168 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
4169 match <u8 as Readable>::read(reader)? {
4170 0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
4171 1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
4172 _ => Err(DecodeError::InvalidValue),
4177 impl_writeable!(HTLCPreviousHopData, 0, {
4181 incoming_packet_shared_secret
4184 impl Writeable for ClaimableHTLC {
4185 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4186 self.prev_hop.write(writer)?;
4187 self.value.write(writer)?;
4188 self.payment_data.payment_secret.write(writer)?;
4189 self.payment_data.total_msat.write(writer)?;
4190 self.cltv_expiry.write(writer)
4194 impl Readable for ClaimableHTLC {
4195 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
4197 prev_hop: Readable::read(reader)?,
4198 value: Readable::read(reader)?,
4199 payment_data: msgs::FinalOnionHopData {
4200 payment_secret: Readable::read(reader)?,
4201 total_msat: Readable::read(reader)?,
4203 cltv_expiry: Readable::read(reader)?,
4208 impl Writeable for HTLCSource {
4209 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4211 &HTLCSource::PreviousHopData(ref hop_data) => {
4213 hop_data.write(writer)?;
4215 &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
4217 path.write(writer)?;
4218 session_priv.write(writer)?;
4219 first_hop_htlc_msat.write(writer)?;
4226 impl Readable for HTLCSource {
4227 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
4228 match <u8 as Readable>::read(reader)? {
4229 0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
4230 1 => Ok(HTLCSource::OutboundRoute {
4231 path: Readable::read(reader)?,
4232 session_priv: Readable::read(reader)?,
4233 first_hop_htlc_msat: Readable::read(reader)?,
4235 _ => Err(DecodeError::InvalidValue),
4240 impl Writeable for HTLCFailReason {
4241 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4243 &HTLCFailReason::LightningError { ref err } => {
4247 &HTLCFailReason::Reason { ref failure_code, ref data } => {
4249 failure_code.write(writer)?;
4250 data.write(writer)?;
4257 impl Readable for HTLCFailReason {
4258 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
4259 match <u8 as Readable>::read(reader)? {
4260 0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
4261 1 => Ok(HTLCFailReason::Reason {
4262 failure_code: Readable::read(reader)?,
4263 data: Readable::read(reader)?,
4265 _ => Err(DecodeError::InvalidValue),
4270 impl Writeable for HTLCForwardInfo {
4271 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4273 &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
4275 prev_short_channel_id.write(writer)?;
4276 prev_funding_outpoint.write(writer)?;
4277 prev_htlc_id.write(writer)?;
4278 forward_info.write(writer)?;
4280 &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
4282 htlc_id.write(writer)?;
4283 err_packet.write(writer)?;
4290 impl Readable for HTLCForwardInfo {
4291 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
4292 match <u8 as Readable>::read(reader)? {
4293 0 => Ok(HTLCForwardInfo::AddHTLC {
4294 prev_short_channel_id: Readable::read(reader)?,
4295 prev_funding_outpoint: Readable::read(reader)?,
4296 prev_htlc_id: Readable::read(reader)?,
4297 forward_info: Readable::read(reader)?,
4299 1 => Ok(HTLCForwardInfo::FailHTLC {
4300 htlc_id: Readable::read(reader)?,
4301 err_packet: Readable::read(reader)?,
4303 _ => Err(DecodeError::InvalidValue),
4308 impl_writeable!(PendingInboundPayment, 0, {
4316 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4317 where M::Target: chain::Watch<Signer>,
4318 T::Target: BroadcasterInterface,
4319 K::Target: KeysInterface<Signer = Signer>,
4320 F::Target: FeeEstimator,
4323 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4324 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4326 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
4327 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
4329 self.genesis_hash.write(writer)?;
4331 let best_block = self.best_block.read().unwrap();
4332 best_block.height().write(writer)?;
4333 best_block.block_hash().write(writer)?;
4336 let channel_state = self.channel_state.lock().unwrap();
4337 let mut unfunded_channels = 0;
4338 for (_, channel) in channel_state.by_id.iter() {
4339 if !channel.is_funding_initiated() {
4340 unfunded_channels += 1;
4343 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4344 for (_, channel) in channel_state.by_id.iter() {
4345 if channel.is_funding_initiated() {
4346 channel.write(writer)?;
4350 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4351 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4352 short_channel_id.write(writer)?;
4353 (pending_forwards.len() as u64).write(writer)?;
4354 for forward in pending_forwards {
4355 forward.write(writer)?;
4359 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4360 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4361 payment_hash.write(writer)?;
4362 (previous_hops.len() as u64).write(writer)?;
4363 for htlc in previous_hops.iter() {
4364 htlc.write(writer)?;
4368 let per_peer_state = self.per_peer_state.write().unwrap();
4369 (per_peer_state.len() as u64).write(writer)?;
4370 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4371 peer_pubkey.write(writer)?;
4372 let peer_state = peer_state_mutex.lock().unwrap();
4373 peer_state.latest_features.write(writer)?;
4376 let events = self.pending_events.lock().unwrap();
4377 (events.len() as u64).write(writer)?;
4378 for event in events.iter() {
4379 event.write(writer)?;
4382 let background_events = self.pending_background_events.lock().unwrap();
4383 (background_events.len() as u64).write(writer)?;
4384 for event in background_events.iter() {
4386 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4388 funding_txo.write(writer)?;
4389 monitor_update.write(writer)?;
4394 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4395 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4397 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4398 (pending_inbound_payments.len() as u64).write(writer)?;
4399 for (hash, pending_payment) in pending_inbound_payments.iter() {
4400 hash.write(writer)?;
4401 pending_payment.write(writer)?;
4408 /// Arguments for the creation of a ChannelManager that are not deserialized.
4410 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4412 /// 1) Deserialize all stored ChannelMonitors.
4413 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4414 /// <(BlockHash, ChannelManager)>::read(reader, args)
4415 /// This may result in closing some Channels if the ChannelMonitor is newer than the stored
4416 /// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4417 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4418 /// way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4419 /// ChannelMonitor::get_funding_txo().
4420 /// 4) Reconnect blocks on your ChannelMonitors.
4421 /// 5) Disconnect/connect blocks on the ChannelManager.
4422 /// 6) Move the ChannelMonitors into your local chain::Watch.
4424 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4425 /// call any other methods on the newly-deserialized ChannelManager.
4427 /// Note that because some channels may be closed during deserialization, it is critical that you
4428 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4429 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4430 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4431 /// not force-close the same channels but consider them live), you may end up revoking a state for
4432 /// which you've already broadcasted the transaction.
4433 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4434 where M::Target: chain::Watch<Signer>,
4435 T::Target: BroadcasterInterface,
4436 K::Target: KeysInterface<Signer = Signer>,
4437 F::Target: FeeEstimator,
4440 /// The keys provider which will give us relevant keys. Some keys will be loaded during
4441 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4443 pub keys_manager: K,
4445 /// The fee_estimator for use in the ChannelManager in the future.
4447 /// No calls to the FeeEstimator will be made during deserialization.
4448 pub fee_estimator: F,
4449 /// The chain::Watch for use in the ChannelManager in the future.
4451 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4452 /// you have deserialized ChannelMonitors separately and will add them to your
4453 /// chain::Watch after deserializing this ChannelManager.
4454 pub chain_monitor: M,
4456 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4457 /// used to broadcast the latest local commitment transactions of channels which must be
4458 /// force-closed during deserialization.
4459 pub tx_broadcaster: T,
4460 /// The Logger for use in the ChannelManager and which may be used to log information during
4461 /// deserialization.
4463 /// Default settings used for new channels. Any existing channels will continue to use the
4464 /// runtime settings which were stored when the ChannelManager was serialized.
4465 pub default_config: UserConfig,
4467 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4468 /// value.get_funding_txo() should be the key).
4470 /// If a monitor is inconsistent with the channel state during deserialization the channel will
4471 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4472 /// is true for missing channels as well. If there is a monitor missing for which we find
4473 /// channel data Err(DecodeError::InvalidValue) will be returned.
4475 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4478 /// (C-not exported) because we have no HashMap bindings
4479 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4482 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4483 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4484 where M::Target: chain::Watch<Signer>,
4485 T::Target: BroadcasterInterface,
4486 K::Target: KeysInterface<Signer = Signer>,
4487 F::Target: FeeEstimator,
4490 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4491 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4492 /// populate a HashMap directly from C.
4493 pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4494 mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4496 keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4497 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4502 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4503 // SipmleArcChannelManager type:
4504 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4505 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4506 where M::Target: chain::Watch<Signer>,
4507 T::Target: BroadcasterInterface,
4508 K::Target: KeysInterface<Signer = Signer>,
4509 F::Target: FeeEstimator,
4512 fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4513 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4514 Ok((blockhash, Arc::new(chan_manager)))
4518 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4519 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4520 where M::Target: chain::Watch<Signer>,
4521 T::Target: BroadcasterInterface,
4522 K::Target: KeysInterface<Signer = Signer>,
4523 F::Target: FeeEstimator,
4526 fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4527 let _ver: u8 = Readable::read(reader)?;
4528 let min_ver: u8 = Readable::read(reader)?;
4529 if min_ver > SERIALIZATION_VERSION {
4530 return Err(DecodeError::UnknownVersion);
4533 let genesis_hash: BlockHash = Readable::read(reader)?;
4534 let best_block_height: u32 = Readable::read(reader)?;
4535 let best_block_hash: BlockHash = Readable::read(reader)?;
4537 let mut failed_htlcs = Vec::new();
4539 let channel_count: u64 = Readable::read(reader)?;
4540 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4541 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4542 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4543 for _ in 0..channel_count {
4544 let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4545 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4546 funding_txo_set.insert(funding_txo.clone());
4547 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4548 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4549 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4550 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4551 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4552 // If the channel is ahead of the monitor, return InvalidValue:
4553 return Err(DecodeError::InvalidValue);
4554 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4555 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4556 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4557 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4558 // But if the channel is behind of the monitor, close the channel:
4559 let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4560 failed_htlcs.append(&mut new_failed_htlcs);
4561 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4563 if let Some(short_channel_id) = channel.get_short_channel_id() {
4564 short_to_id.insert(short_channel_id, channel.channel_id());
4566 by_id.insert(channel.channel_id(), channel);
4569 return Err(DecodeError::InvalidValue);
4573 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4574 if !funding_txo_set.contains(funding_txo) {
4575 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4579 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4580 let forward_htlcs_count: u64 = Readable::read(reader)?;
4581 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4582 for _ in 0..forward_htlcs_count {
4583 let short_channel_id = Readable::read(reader)?;
4584 let pending_forwards_count: u64 = Readable::read(reader)?;
4585 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4586 for _ in 0..pending_forwards_count {
4587 pending_forwards.push(Readable::read(reader)?);
4589 forward_htlcs.insert(short_channel_id, pending_forwards);
4592 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4593 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4594 for _ in 0..claimable_htlcs_count {
4595 let payment_hash = Readable::read(reader)?;
4596 let previous_hops_len: u64 = Readable::read(reader)?;
4597 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4598 for _ in 0..previous_hops_len {
4599 previous_hops.push(Readable::read(reader)?);
4601 claimable_htlcs.insert(payment_hash, previous_hops);
4604 let peer_count: u64 = Readable::read(reader)?;
4605 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4606 for _ in 0..peer_count {
4607 let peer_pubkey = Readable::read(reader)?;
4608 let peer_state = PeerState {
4609 latest_features: Readable::read(reader)?,
4611 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4614 let event_count: u64 = Readable::read(reader)?;
4615 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4616 for _ in 0..event_count {
4617 match MaybeReadable::read(reader)? {
4618 Some(event) => pending_events_read.push(event),
4623 let background_event_count: u64 = Readable::read(reader)?;
4624 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4625 for _ in 0..background_event_count {
4626 match <u8 as Readable>::read(reader)? {
4627 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4628 _ => return Err(DecodeError::InvalidValue),
4632 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4633 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4635 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4636 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4637 for _ in 0..pending_inbound_payment_count {
4638 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4639 return Err(DecodeError::InvalidValue);
4643 let mut secp_ctx = Secp256k1::new();
4644 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4646 let channel_manager = ChannelManager {
4648 fee_estimator: args.fee_estimator,
4649 chain_monitor: args.chain_monitor,
4650 tx_broadcaster: args.tx_broadcaster,
4652 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4654 channel_state: Mutex::new(ChannelHolder {
4659 pending_msg_events: Vec::new(),
4661 pending_inbound_payments: Mutex::new(pending_inbound_payments),
4663 our_network_key: args.keys_manager.get_node_secret(),
4664 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4667 last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4668 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4670 per_peer_state: RwLock::new(per_peer_state),
4672 pending_events: Mutex::new(pending_events_read),
4673 pending_background_events: Mutex::new(pending_background_events_read),
4674 total_consistency_lock: RwLock::new(()),
4675 persistence_notifier: PersistenceNotifier::new(),
4677 keys_manager: args.keys_manager,
4678 logger: args.logger,
4679 default_configuration: args.default_config,
4682 for htlc_source in failed_htlcs.drain(..) {
4683 channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4686 //TODO: Broadcast channel update for closed channels, but only after we've made a
4687 //connection or two.
4689 Ok((best_block_hash.clone(), channel_manager))
4695 use ln::channelmanager::PersistenceNotifier;
4697 use std::sync::atomic::{AtomicBool, Ordering};
4699 use std::time::Duration;
4702 fn test_wait_timeout() {
4703 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4704 let thread_notifier = Arc::clone(&persistence_notifier);
4706 let exit_thread = Arc::new(AtomicBool::new(false));
4707 let exit_thread_clone = exit_thread.clone();
4708 thread::spawn(move || {
4710 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4711 let mut persistence_lock = persist_mtx.lock().unwrap();
4712 *persistence_lock = true;
4715 if exit_thread_clone.load(Ordering::SeqCst) {
4721 // Check that we can block indefinitely until updates are available.
4722 let _ = persistence_notifier.wait();
4724 // Check that the PersistenceNotifier will return after the given duration if updates are
4727 if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4732 exit_thread.store(true, Ordering::SeqCst);
4734 // Check that the PersistenceNotifier will return after the given duration even if no updates
4737 if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4744 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4747 use chain::chainmonitor::ChainMonitor;
4748 use chain::channelmonitor::Persist;
4749 use chain::keysinterface::{KeysManager, InMemorySigner};
4750 use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4751 use ln::features::{InitFeatures, InvoiceFeatures};
4752 use ln::functional_test_utils::*;
4753 use ln::msgs::ChannelMessageHandler;
4754 use routing::network_graph::NetworkGraph;
4755 use routing::router::get_route;
4756 use util::test_utils;
4757 use util::config::UserConfig;
4758 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
4760 use bitcoin::hashes::Hash;
4761 use bitcoin::hashes::sha256::Hash as Sha256;
4762 use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4764 use std::sync::Mutex;
4768 struct NodeHolder<'a, P: Persist<InMemorySigner>> {
4769 node: &'a ChannelManager<InMemorySigner,
4770 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
4771 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
4772 &'a test_utils::TestLogger, &'a P>,
4773 &'a test_utils::TestBroadcaster, &'a KeysManager,
4774 &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
4779 fn bench_sends(bench: &mut Bencher) {
4780 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
4783 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
4784 // Do a simple benchmark of sending a payment back and forth between two nodes.
4785 // Note that this is unrealistic as each payment send will require at least two fsync
4787 let network = bitcoin::Network::Testnet;
4788 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
4790 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())};
4791 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
4793 let mut config: UserConfig = Default::default();
4794 config.own_channel_config.minimum_depth = 1;
4796 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
4797 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
4798 let seed_a = [1u8; 32];
4799 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
4800 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
4802 best_block: BestBlock::from_genesis(network),
4804 let node_a_holder = NodeHolder { node: &node_a };
4806 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
4807 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
4808 let seed_b = [2u8; 32];
4809 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
4810 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
4812 best_block: BestBlock::from_genesis(network),
4814 let node_b_holder = NodeHolder { node: &node_b };
4816 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
4817 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
4818 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
4821 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
4822 tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
4823 value: 8_000_000, script_pubkey: output_script,
4825 node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
4826 } else { panic!(); }
4828 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
4829 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
4831 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
4834 header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
4837 Listen::block_connected(&node_a, &block, 1);
4838 Listen::block_connected(&node_b, &block, 1);
4840 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
4841 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
4843 let dummy_graph = NetworkGraph::new(genesis_hash);
4845 let mut payment_count: u64 = 0;
4846 macro_rules! send_payment {
4847 ($node_a: expr, $node_b: expr) => {
4848 let usable_channels = $node_a.list_usable_channels();
4849 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
4850 Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
4852 let mut payment_preimage = PaymentPreimage([0; 32]);
4853 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
4855 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
4856 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
4858 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
4859 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
4860 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
4861 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
4862 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
4863 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
4864 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
4865 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
4867 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
4868 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
4869 assert!($node_b.claim_funds(payment_preimage));
4871 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
4872 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
4873 assert_eq!(node_id, $node_a.get_our_node_id());
4874 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
4875 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
4877 _ => panic!("Failed to generate claim event"),
4880 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
4881 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
4882 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
4883 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
4885 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
4890 send_payment!(node_a, node_b);
4891 send_payment!(node_b, node_a);