1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
39 use chain::{Confirm, Watch, BestBlock};
40 use chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator};
41 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
42 use chain::transaction::{OutPoint, TransactionData};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
46 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
47 use ln::features::{InitFeatures, NodeFeatures};
48 use routing::router::{Route, RouteHop};
50 use ln::msgs::NetAddress;
52 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
53 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
54 use util::config::UserConfig;
55 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
56 use util::{byte_utils, events};
57 use util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
58 use util::chacha20::{ChaCha20, ChaChaReader};
59 use util::logger::{Logger, Level};
60 use util::errors::APIError;
65 use core::cell::RefCell;
66 use io::{Cursor, Read};
67 use sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
68 use core::sync::atomic::{AtomicUsize, Ordering};
69 use core::time::Duration;
70 #[cfg(any(test, feature = "allow_wallclock_use"))]
71 use std::time::Instant;
74 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
77 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
78 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
81 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
82 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
83 // before we forward it.
85 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
86 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
87 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
88 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
89 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
92 enum PendingHTLCRouting {
94 onion_packet: msgs::OnionPacket,
95 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
98 payment_data: msgs::FinalOnionHopData,
99 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
102 payment_preimage: PaymentPreimage,
103 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
107 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
108 pub(super) struct PendingHTLCInfo {
109 routing: PendingHTLCRouting,
110 incoming_shared_secret: [u8; 32],
111 payment_hash: PaymentHash,
112 pub(super) amt_to_forward: u64,
113 pub(super) outgoing_cltv_value: u32,
116 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
117 pub(super) enum HTLCFailureMsg {
118 Relay(msgs::UpdateFailHTLC),
119 Malformed(msgs::UpdateFailMalformedHTLC),
122 /// Stores whether we can't forward an HTLC or relevant forwarding info
123 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
124 pub(super) enum PendingHTLCStatus {
125 Forward(PendingHTLCInfo),
126 Fail(HTLCFailureMsg),
129 pub(super) enum HTLCForwardInfo {
131 forward_info: PendingHTLCInfo,
133 // These fields are produced in `forward_htlcs()` and consumed in
134 // `process_pending_htlc_forwards()` for constructing the
135 // `HTLCSource::PreviousHopData` for failed and forwarded
137 prev_short_channel_id: u64,
139 prev_funding_outpoint: OutPoint,
143 err_packet: msgs::OnionErrorPacket,
147 /// Tracks the inbound corresponding to an outbound HTLC
148 #[derive(Clone, PartialEq)]
149 pub(crate) struct HTLCPreviousHopData {
150 short_channel_id: u64,
152 incoming_packet_shared_secret: [u8; 32],
154 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
155 // channel with a preimage provided by the forward channel.
160 /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
161 /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
162 /// are part of the same payment.
163 Invoice(msgs::FinalOnionHopData),
164 /// Contains the payer-provided preimage.
165 Spontaneous(PaymentPreimage),
168 struct ClaimableHTLC {
169 prev_hop: HTLCPreviousHopData,
172 onion_payload: OnionPayload,
175 /// A payment identifier used to uniquely identify a payment to LDK.
176 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
177 pub struct PaymentId(pub [u8; 32]);
179 impl Writeable for PaymentId {
180 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
185 impl Readable for PaymentId {
186 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
187 let buf: [u8; 32] = Readable::read(r)?;
191 /// Tracks the inbound corresponding to an outbound HTLC
192 #[derive(Clone, PartialEq)]
193 pub(crate) enum HTLCSource {
194 PreviousHopData(HTLCPreviousHopData),
197 session_priv: SecretKey,
198 /// Technically we can recalculate this from the route, but we cache it here to avoid
199 /// doing a double-pass on route when we get a failure back
200 first_hop_htlc_msat: u64,
201 payment_id: PaymentId,
206 pub fn dummy() -> Self {
207 HTLCSource::OutboundRoute {
209 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
210 first_hop_htlc_msat: 0,
211 payment_id: PaymentId([2; 32]),
216 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
217 pub(super) enum HTLCFailReason {
219 err: msgs::OnionErrorPacket,
227 /// Return value for claim_funds_from_hop
228 enum ClaimFundsFromHop {
230 MonitorUpdateFail(PublicKey, MsgHandleErrInternal, Option<u64>),
235 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
237 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
238 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
239 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
240 /// channel_state lock. We then return the set of things that need to be done outside the lock in
241 /// this struct and call handle_error!() on it.
243 struct MsgHandleErrInternal {
244 err: msgs::LightningError,
245 chan_id: Option<[u8; 32]>, // If Some a channel of ours has been closed
246 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
248 impl MsgHandleErrInternal {
250 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
252 err: LightningError {
254 action: msgs::ErrorAction::SendErrorMessage {
255 msg: msgs::ErrorMessage {
262 shutdown_finish: None,
266 fn ignore_no_close(err: String) -> Self {
268 err: LightningError {
270 action: msgs::ErrorAction::IgnoreError,
273 shutdown_finish: None,
277 fn from_no_close(err: msgs::LightningError) -> Self {
278 Self { err, chan_id: None, shutdown_finish: None }
281 fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
283 err: LightningError {
285 action: msgs::ErrorAction::SendErrorMessage {
286 msg: msgs::ErrorMessage {
292 chan_id: Some(channel_id),
293 shutdown_finish: Some((shutdown_res, channel_update)),
297 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
300 ChannelError::Warn(msg) => LightningError {
302 action: msgs::ErrorAction::IgnoreError,
304 ChannelError::Ignore(msg) => LightningError {
306 action: msgs::ErrorAction::IgnoreError,
308 ChannelError::Close(msg) => LightningError {
310 action: msgs::ErrorAction::SendErrorMessage {
311 msg: msgs::ErrorMessage {
317 ChannelError::CloseDelayBroadcast(msg) => LightningError {
319 action: msgs::ErrorAction::SendErrorMessage {
320 msg: msgs::ErrorMessage {
328 shutdown_finish: None,
333 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
334 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
335 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
336 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
337 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
339 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
340 /// be sent in the order they appear in the return value, however sometimes the order needs to be
341 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
342 /// they were originally sent). In those cases, this enum is also returned.
343 #[derive(Clone, PartialEq)]
344 pub(super) enum RAACommitmentOrder {
345 /// Send the CommitmentUpdate messages first
347 /// Send the RevokeAndACK message first
351 // Note this is only exposed in cfg(test):
352 pub(super) struct ChannelHolder<Signer: Sign> {
353 pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
354 pub(super) short_to_id: HashMap<u64, [u8; 32]>,
355 /// short channel id -> forward infos. Key of 0 means payments received
356 /// Note that while this is held in the same mutex as the channels themselves, no consistency
357 /// guarantees are made about the existence of a channel with the short id here, nor the short
358 /// ids in the PendingHTLCInfo!
359 pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
360 /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
361 /// Note that while this is held in the same mutex as the channels themselves, no consistency
362 /// guarantees are made about the channels given here actually existing anymore by the time you
364 claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
365 /// Messages to send to peers - pushed to in the same lock that they are generated in (except
366 /// for broadcast messages, where ordering isn't as strict).
367 pub(super) pending_msg_events: Vec<MessageSendEvent>,
370 /// Events which we process internally but cannot be procsesed immediately at the generation site
371 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
372 /// quite some time lag.
373 enum BackgroundEvent {
374 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
375 /// commitment transaction.
376 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
379 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
380 /// the latest Init features we heard from the peer.
382 latest_features: InitFeatures,
385 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
386 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
388 /// For users who don't want to bother doing their own payment preimage storage, we also store that
390 struct PendingInboundPayment {
391 /// The payment secret that the sender must use for us to accept this payment
392 payment_secret: PaymentSecret,
393 /// Time at which this HTLC expires - blocks with a header time above this value will result in
394 /// this payment being removed.
396 /// Arbitrary identifier the user specifies (or not)
397 user_payment_id: u64,
398 // Other required attributes of the payment, optionally enforced:
399 payment_preimage: Option<PaymentPreimage>,
400 min_value_msat: Option<u64>,
403 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
404 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
405 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
406 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
407 /// issues such as overly long function definitions. Note that the ChannelManager can take any
408 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
409 /// concrete type of the KeysManager.
410 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
412 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
413 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
414 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
415 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
416 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
417 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
418 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
419 /// concrete type of the KeysManager.
420 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
422 /// Manager which keeps track of a number of channels and sends messages to the appropriate
423 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
425 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
426 /// to individual Channels.
428 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
429 /// all peers during write/read (though does not modify this instance, only the instance being
430 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
431 /// called funding_transaction_generated for outbound channels).
433 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
434 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
435 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
436 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
437 /// the serialization process). If the deserialized version is out-of-date compared to the
438 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
439 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
441 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
442 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
443 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
444 /// block_connected() to step towards your best block) upon deserialization before using the
447 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
448 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
449 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
450 /// offline for a full minute. In order to track this, you must call
451 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
453 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
454 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
455 /// essentially you should default to using a SimpleRefChannelManager, and use a
456 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
457 /// you're using lightning-net-tokio.
458 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
459 where M::Target: chain::Watch<Signer>,
460 T::Target: BroadcasterInterface,
461 K::Target: KeysInterface<Signer = Signer>,
462 F::Target: FeeEstimator,
465 default_configuration: UserConfig,
466 genesis_hash: BlockHash,
472 pub(super) best_block: RwLock<BestBlock>,
474 best_block: RwLock<BestBlock>,
475 secp_ctx: Secp256k1<secp256k1::All>,
477 #[cfg(any(test, feature = "_test_utils"))]
478 pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
479 #[cfg(not(any(test, feature = "_test_utils")))]
480 channel_state: Mutex<ChannelHolder<Signer>>,
482 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
483 /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
484 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
485 /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
486 /// Locked *after* channel_state.
487 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
489 /// The session_priv bytes of outbound payments which are pending resolution.
490 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
491 /// (if the channel has been force-closed), however we track them here to prevent duplicative
492 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
493 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
494 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
495 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
496 /// after reloading from disk while replaying blocks against ChannelMonitors.
498 /// Each payment has each of its MPP part's session_priv bytes in the HashSet of the map (even
499 /// payments over a single path).
501 /// Locked *after* channel_state.
502 pending_outbound_payments: Mutex<HashMap<PaymentId, HashSet<[u8; 32]>>>,
504 our_network_key: SecretKey,
505 our_network_pubkey: PublicKey,
507 /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
508 /// value increases strictly since we don't assume access to a time source.
509 last_node_announcement_serial: AtomicUsize,
511 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
512 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
513 /// very far in the past, and can only ever be up to two hours in the future.
514 highest_seen_timestamp: AtomicUsize,
516 /// The bulk of our storage will eventually be here (channels and message queues and the like).
517 /// If we are connected to a peer we always at least have an entry here, even if no channels
518 /// are currently open with that peer.
519 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
520 /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
523 /// If also holding `channel_state` lock, must lock `channel_state` prior to `per_peer_state`.
524 per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
526 pending_events: Mutex<Vec<events::Event>>,
527 pending_background_events: Mutex<Vec<BackgroundEvent>>,
528 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
529 /// Essentially just when we're serializing ourselves out.
530 /// Taken first everywhere where we are making changes before any other locks.
531 /// When acquiring this lock in read mode, rather than acquiring it directly, call
532 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
533 /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
534 total_consistency_lock: RwLock<()>,
536 persistence_notifier: PersistenceNotifier,
543 /// Chain-related parameters used to construct a new `ChannelManager`.
545 /// Typically, the block-specific parameters are derived from the best block hash for the network,
546 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
547 /// are not needed when deserializing a previously constructed `ChannelManager`.
548 #[derive(Clone, Copy, PartialEq)]
549 pub struct ChainParameters {
550 /// The network for determining the `chain_hash` in Lightning messages.
551 pub network: Network,
553 /// The hash and height of the latest block successfully connected.
555 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
556 pub best_block: BestBlock,
559 #[derive(Copy, Clone, PartialEq)]
565 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
566 /// desirable to notify any listeners on `await_persistable_update_timeout`/
567 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
568 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
569 /// sending the aforementioned notification (since the lock being released indicates that the
570 /// updates are ready for persistence).
572 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
573 /// notify or not based on whether relevant changes have been made, providing a closure to
574 /// `optionally_notify` which returns a `NotifyOption`.
575 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
576 persistence_notifier: &'a PersistenceNotifier,
578 // We hold onto this result so the lock doesn't get released immediately.
579 _read_guard: RwLockReadGuard<'a, ()>,
582 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
583 fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
584 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
587 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
588 let read_guard = lock.read().unwrap();
590 PersistenceNotifierGuard {
591 persistence_notifier: notifier,
592 should_persist: persist_check,
593 _read_guard: read_guard,
598 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
600 if (self.should_persist)() == NotifyOption::DoPersist {
601 self.persistence_notifier.notify();
606 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
607 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
609 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
611 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
612 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
613 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
614 /// the maximum required amount in lnd as of March 2021.
615 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
617 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
618 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
620 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
622 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
623 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
624 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
625 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
626 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
627 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
628 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
630 /// Minimum CLTV difference between the current block height and received inbound payments.
631 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
633 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
634 // any payments to succeed. Further, we don't want payments to fail if a block was found while
635 // a payment was being routed, so we add an extra block to be safe.
636 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
638 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
639 // ie that if the next-hop peer fails the HTLC within
640 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
641 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
642 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
643 // LATENCY_GRACE_PERIOD_BLOCKS.
646 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
648 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
649 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
652 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
654 /// Information needed for constructing an invoice route hint for this channel.
655 #[derive(Clone, Debug, PartialEq)]
656 pub struct CounterpartyForwardingInfo {
657 /// Base routing fee in millisatoshis.
658 pub fee_base_msat: u32,
659 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
660 pub fee_proportional_millionths: u32,
661 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
662 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
663 /// `cltv_expiry_delta` for more details.
664 pub cltv_expiry_delta: u16,
667 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
668 /// to better separate parameters.
669 #[derive(Clone, Debug, PartialEq)]
670 pub struct ChannelCounterparty {
671 /// The node_id of our counterparty
672 pub node_id: PublicKey,
673 /// The Features the channel counterparty provided upon last connection.
674 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
675 /// many routing-relevant features are present in the init context.
676 pub features: InitFeatures,
677 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
678 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
679 /// claiming at least this value on chain.
681 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
683 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
684 pub unspendable_punishment_reserve: u64,
685 /// Information on the fees and requirements that the counterparty requires when forwarding
686 /// payments to us through this channel.
687 pub forwarding_info: Option<CounterpartyForwardingInfo>,
690 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
691 #[derive(Clone, Debug, PartialEq)]
692 pub struct ChannelDetails {
693 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
694 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
695 /// Note that this means this value is *not* persistent - it can change once during the
696 /// lifetime of the channel.
697 pub channel_id: [u8; 32],
698 /// Parameters which apply to our counterparty. See individual fields for more information.
699 pub counterparty: ChannelCounterparty,
700 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
701 /// our counterparty already.
703 /// Note that, if this has been set, `channel_id` will be equivalent to
704 /// `funding_txo.unwrap().to_channel_id()`.
705 pub funding_txo: Option<OutPoint>,
706 /// The position of the funding transaction in the chain. None if the funding transaction has
707 /// not yet been confirmed and the channel fully opened.
708 pub short_channel_id: Option<u64>,
709 /// The value, in satoshis, of this channel as appears in the funding output
710 pub channel_value_satoshis: u64,
711 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
712 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
713 /// this value on chain.
715 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
717 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
719 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
720 pub unspendable_punishment_reserve: Option<u64>,
721 /// The user_id passed in to create_channel, or 0 if the channel was inbound.
723 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
724 /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
725 /// available for inclusion in new outbound HTLCs). This further does not include any pending
726 /// outgoing HTLCs which are awaiting some other resolution to be sent.
728 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
729 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
730 /// should be able to spend nearly this amount.
731 pub outbound_capacity_msat: u64,
732 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
733 /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
734 /// available for inclusion in new inbound HTLCs).
735 /// Note that there are some corner cases not fully handled here, so the actual available
736 /// inbound capacity may be slightly higher than this.
738 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
739 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
740 /// However, our counterparty should be able to spend nearly this amount.
741 pub inbound_capacity_msat: u64,
742 /// The number of required confirmations on the funding transaction before the funding will be
743 /// considered "locked". This number is selected by the channel fundee (i.e. us if
744 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
745 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
746 /// [`ChannelHandshakeLimits::max_minimum_depth`].
748 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
750 /// [`is_outbound`]: ChannelDetails::is_outbound
751 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
752 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
753 pub confirmations_required: Option<u32>,
754 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
755 /// until we can claim our funds after we force-close the channel. During this time our
756 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
757 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
758 /// time to claim our non-HTLC-encumbered funds.
760 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
761 pub force_close_spend_delay: Option<u16>,
762 /// True if the channel was initiated (and thus funded) by us.
763 pub is_outbound: bool,
764 /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
765 /// channel is not currently being shut down. `funding_locked` message exchange implies the
766 /// required confirmation count has been reached (and we were connected to the peer at some
767 /// point after the funding transaction received enough confirmations). The required
768 /// confirmation count is provided in [`confirmations_required`].
770 /// [`confirmations_required`]: ChannelDetails::confirmations_required
771 pub is_funding_locked: bool,
772 /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
773 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
775 /// This is a strict superset of `is_funding_locked`.
777 /// True if this channel is (or will be) publicly-announced.
781 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
782 /// Err() type describing which state the payment is in, see the description of individual enum
784 #[derive(Clone, Debug)]
785 pub enum PaymentSendFailure {
786 /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
787 /// send the payment at all. No channel state has been changed or messages sent to peers, and
788 /// once you've changed the parameter at error, you can freely retry the payment in full.
789 ParameterError(APIError),
790 /// A parameter in a single path which was passed to send_payment was invalid, preventing us
791 /// from attempting to send the payment at all. No channel state has been changed or messages
792 /// sent to peers, and once you've changed the parameter at error, you can freely retry the
795 /// The results here are ordered the same as the paths in the route object which was passed to
797 PathParameterError(Vec<Result<(), APIError>>),
798 /// All paths which were attempted failed to send, with no channel state change taking place.
799 /// You can freely retry the payment in full (though you probably want to do so over different
800 /// paths than the ones selected).
801 AllFailedRetrySafe(Vec<APIError>),
802 /// Some paths which were attempted failed to send, though possibly not all. At least some
803 /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
804 /// in over-/re-payment.
806 /// The results here are ordered the same as the paths in the route object which was passed to
807 /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
808 /// retried (though there is currently no API with which to do so).
810 /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
811 /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
812 /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
813 /// with the latest update_id.
814 PartialFailure(Vec<Result<(), APIError>>),
817 macro_rules! handle_error {
818 ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
821 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
822 #[cfg(debug_assertions)]
824 // In testing, ensure there are no deadlocks where the lock is already held upon
825 // entering the macro.
826 assert!($self.channel_state.try_lock().is_ok());
827 assert!($self.pending_events.try_lock().is_ok());
830 let mut msg_events = Vec::with_capacity(2);
832 if let Some((shutdown_res, update_option)) = shutdown_finish {
833 $self.finish_force_close_channel(shutdown_res);
834 if let Some(update) = update_option {
835 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
839 if let Some(channel_id) = chan_id {
840 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id, reason: ClosureReason::ProcessingError { err: err.err.clone() } });
844 log_error!($self.logger, "{}", err.err);
845 if let msgs::ErrorAction::IgnoreError = err.action {
847 msg_events.push(events::MessageSendEvent::HandleError {
848 node_id: $counterparty_node_id,
849 action: err.action.clone()
853 if !msg_events.is_empty() {
854 $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
857 // Return error in case higher-API need one
864 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
865 macro_rules! convert_chan_err {
866 ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
868 ChannelError::Warn(msg) => {
869 //TODO: Once warning messages are merged, we should send a `warning` message to our
871 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
873 ChannelError::Ignore(msg) => {
874 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
876 ChannelError::Close(msg) => {
877 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
878 if let Some(short_id) = $channel.get_short_channel_id() {
879 $short_to_id.remove(&short_id);
881 let shutdown_res = $channel.force_shutdown(true);
882 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
884 ChannelError::CloseDelayBroadcast(msg) => {
885 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
886 if let Some(short_id) = $channel.get_short_channel_id() {
887 $short_to_id.remove(&short_id);
889 let shutdown_res = $channel.force_shutdown(false);
890 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
896 macro_rules! break_chan_entry {
897 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
901 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
903 $entry.remove_entry();
911 macro_rules! try_chan_entry {
912 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
916 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
918 $entry.remove_entry();
926 macro_rules! remove_channel {
927 ($channel_state: expr, $entry: expr) => {
929 let channel = $entry.remove_entry().1;
930 if let Some(short_id) = channel.get_short_channel_id() {
931 $channel_state.short_to_id.remove(&short_id);
938 macro_rules! handle_monitor_err {
939 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
940 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
942 ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $chan_id: expr) => {
944 ChannelMonitorUpdateErr::PermanentFailure => {
945 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
946 if let Some(short_id) = $chan.get_short_channel_id() {
947 $short_to_id.remove(&short_id);
949 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
950 // chain in a confused state! We need to move them into the ChannelMonitor which
951 // will be responsible for failing backwards once things confirm on-chain.
952 // It's ok that we drop $failed_forwards here - at this point we'd rather they
953 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
954 // us bother trying to claim it just to forward on to another peer. If we're
955 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
956 // given up the preimage yet, so might as well just wait until the payment is
957 // retried, avoiding the on-chain fees.
958 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id,
959 $chan.force_shutdown(true), $self.get_channel_update_for_broadcast(&$chan).ok() ));
962 ChannelMonitorUpdateErr::TemporaryFailure => {
963 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
964 log_bytes!($chan_id[..]),
965 if $resend_commitment && $resend_raa {
967 RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
968 RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
970 } else if $resend_commitment { "commitment" }
971 else if $resend_raa { "RAA" }
973 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
974 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
975 if !$resend_commitment {
976 debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
979 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
981 $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
982 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
986 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { {
987 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $entry.key());
989 $entry.remove_entry();
995 macro_rules! return_monitor_err {
996 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
997 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
999 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1000 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
1004 // Does not break in case of TemporaryFailure!
1005 macro_rules! maybe_break_monitor_err {
1006 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1007 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
1008 (e, ChannelMonitorUpdateErr::PermanentFailure) => {
1011 (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
1016 macro_rules! handle_chan_restoration_locked {
1017 ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
1018 $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
1019 $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr) => { {
1020 let mut htlc_forwards = None;
1021 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
1023 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
1024 let chanmon_update_is_none = chanmon_update.is_none();
1026 let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
1027 if !forwards.is_empty() {
1028 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
1029 $channel_entry.get().get_funding_txo().unwrap(), forwards));
1032 if chanmon_update.is_some() {
1033 // On reconnect, we, by definition, only resend a funding_locked if there have been
1034 // no commitment updates, so the only channel monitor update which could also be
1035 // associated with a funding_locked would be the funding_created/funding_signed
1036 // monitor update. That monitor update failing implies that we won't send
1037 // funding_locked until it's been updated, so we can't have a funding_locked and a
1038 // monitor update here (so we don't bother to handle it correctly below).
1039 assert!($funding_locked.is_none());
1040 // A channel monitor update makes no sense without either a funding_locked or a
1041 // commitment update to process after it. Since we can't have a funding_locked, we
1042 // only bother to handle the monitor-update + commitment_update case below.
1043 assert!($commitment_update.is_some());
1046 if let Some(msg) = $funding_locked {
1047 // Similar to the above, this implies that we're letting the funding_locked fly
1048 // before it should be allowed to.
1049 assert!(chanmon_update.is_none());
1050 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
1051 node_id: counterparty_node_id,
1054 if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
1055 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
1056 node_id: counterparty_node_id,
1057 msg: announcement_sigs,
1060 $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
1063 let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
1064 if let Some(monitor_update) = chanmon_update {
1065 // We only ever broadcast a funding transaction in response to a funding_signed
1066 // message and the resulting monitor update. Thus, on channel_reestablish
1067 // message handling we can't have a funding transaction to broadcast. When
1068 // processing a monitor update finishing resulting in a funding broadcast, we
1069 // cannot have a second monitor update, thus this case would indicate a bug.
1070 assert!(funding_broadcastable.is_none());
1071 // Given we were just reconnected or finished updating a channel monitor, the
1072 // only case where we can get a new ChannelMonitorUpdate would be if we also
1073 // have some commitment updates to send as well.
1074 assert!($commitment_update.is_some());
1075 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
1076 // channel_reestablish doesn't guarantee the order it returns is sensical
1077 // for the messages it returns, but if we're setting what messages to
1078 // re-transmit on monitor update success, we need to make sure it is sane.
1079 let mut order = $order;
1081 order = RAACommitmentOrder::CommitmentFirst;
1083 break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
1087 macro_rules! handle_cs { () => {
1088 if let Some(update) = $commitment_update {
1089 $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1090 node_id: counterparty_node_id,
1095 macro_rules! handle_raa { () => {
1096 if let Some(revoke_and_ack) = $raa {
1097 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
1098 node_id: counterparty_node_id,
1099 msg: revoke_and_ack,
1104 RAACommitmentOrder::CommitmentFirst => {
1108 RAACommitmentOrder::RevokeAndACKFirst => {
1113 if let Some(tx) = funding_broadcastable {
1114 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1115 $self.tx_broadcaster.broadcast_transaction(&tx);
1120 if chanmon_update_is_none {
1121 // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1122 // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1123 // should *never* end up calling back to `chain_monitor.update_channel()`.
1124 assert!(res.is_ok());
1127 (htlc_forwards, res, counterparty_node_id)
1131 macro_rules! post_handle_chan_restoration {
1132 ($self: ident, $locked_res: expr) => { {
1133 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1135 let _ = handle_error!($self, res, counterparty_node_id);
1137 if let Some(forwards) = htlc_forwards {
1138 $self.forward_htlcs(&mut [forwards][..]);
1143 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1144 where M::Target: chain::Watch<Signer>,
1145 T::Target: BroadcasterInterface,
1146 K::Target: KeysInterface<Signer = Signer>,
1147 F::Target: FeeEstimator,
1150 /// Constructs a new ChannelManager to hold several channels and route between them.
1152 /// This is the main "logic hub" for all channel-related actions, and implements
1153 /// ChannelMessageHandler.
1155 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1157 /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
1159 /// Users need to notify the new ChannelManager when a new block is connected or
1160 /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1161 /// from after `params.latest_hash`.
1162 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1163 let mut secp_ctx = Secp256k1::new();
1164 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1167 default_configuration: config.clone(),
1168 genesis_hash: genesis_block(params.network).header.block_hash(),
1169 fee_estimator: fee_est,
1173 best_block: RwLock::new(params.best_block),
1175 channel_state: Mutex::new(ChannelHolder{
1176 by_id: HashMap::new(),
1177 short_to_id: HashMap::new(),
1178 forward_htlcs: HashMap::new(),
1179 claimable_htlcs: HashMap::new(),
1180 pending_msg_events: Vec::new(),
1182 pending_inbound_payments: Mutex::new(HashMap::new()),
1183 pending_outbound_payments: Mutex::new(HashMap::new()),
1185 our_network_key: keys_manager.get_node_secret(),
1186 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
1189 last_node_announcement_serial: AtomicUsize::new(0),
1190 highest_seen_timestamp: AtomicUsize::new(0),
1192 per_peer_state: RwLock::new(HashMap::new()),
1194 pending_events: Mutex::new(Vec::new()),
1195 pending_background_events: Mutex::new(Vec::new()),
1196 total_consistency_lock: RwLock::new(()),
1197 persistence_notifier: PersistenceNotifier::new(),
1205 /// Gets the current configuration applied to all new channels, as
1206 pub fn get_current_default_configuration(&self) -> &UserConfig {
1207 &self.default_configuration
1210 /// Creates a new outbound channel to the given remote node and with the given value.
1212 /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
1213 /// tracking of which events correspond with which create_channel call. Note that the
1214 /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
1215 /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
1216 /// otherwise ignored.
1218 /// If successful, will generate a SendOpenChannel message event, so you should probably poll
1219 /// PeerManager::process_events afterwards.
1221 /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
1222 /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
1224 /// Note that we do not check if you are currently connected to the given peer. If no
1225 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1226 /// the channel eventually being silently forgotten.
1227 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
1228 if channel_value_satoshis < 1000 {
1229 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1233 let per_peer_state = self.per_peer_state.read().unwrap();
1234 match per_peer_state.get(&their_network_key) {
1235 Some(peer_state) => {
1236 let peer_state = peer_state.lock().unwrap();
1237 let their_features = &peer_state.latest_features;
1238 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1239 Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, their_features, channel_value_satoshis, push_msat, user_id, config)?
1241 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", their_network_key) }),
1244 let res = channel.get_open_channel(self.genesis_hash.clone());
1246 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1247 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1248 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1250 let mut channel_state = self.channel_state.lock().unwrap();
1251 match channel_state.by_id.entry(channel.channel_id()) {
1252 hash_map::Entry::Occupied(_) => {
1253 if cfg!(feature = "fuzztarget") {
1254 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1256 panic!("RNG is bad???");
1259 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1261 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1262 node_id: their_network_key,
1268 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1269 let mut res = Vec::new();
1271 let channel_state = self.channel_state.lock().unwrap();
1272 res.reserve(channel_state.by_id.len());
1273 for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1274 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1275 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1276 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1277 res.push(ChannelDetails {
1278 channel_id: (*channel_id).clone(),
1279 counterparty: ChannelCounterparty {
1280 node_id: channel.get_counterparty_node_id(),
1281 features: InitFeatures::empty(),
1282 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1283 forwarding_info: channel.counterparty_forwarding_info(),
1285 funding_txo: channel.get_funding_txo(),
1286 short_channel_id: channel.get_short_channel_id(),
1287 channel_value_satoshis: channel.get_value_satoshis(),
1288 unspendable_punishment_reserve: to_self_reserve_satoshis,
1289 inbound_capacity_msat,
1290 outbound_capacity_msat,
1291 user_id: channel.get_user_id(),
1292 confirmations_required: channel.minimum_depth(),
1293 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1294 is_outbound: channel.is_outbound(),
1295 is_funding_locked: channel.is_usable(),
1296 is_usable: channel.is_live(),
1297 is_public: channel.should_announce(),
1301 let per_peer_state = self.per_peer_state.read().unwrap();
1302 for chan in res.iter_mut() {
1303 if let Some(peer_state) = per_peer_state.get(&chan.counterparty.node_id) {
1304 chan.counterparty.features = peer_state.lock().unwrap().latest_features.clone();
1310 /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1311 /// more information.
1312 pub fn list_channels(&self) -> Vec<ChannelDetails> {
1313 self.list_channels_with_filter(|_| true)
1316 /// Gets the list of usable channels, in random order. Useful as an argument to
1317 /// get_route to ensure non-announced channels are used.
1319 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1320 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1322 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1323 // Note we use is_live here instead of usable which leads to somewhat confused
1324 // internal/external nomenclature, but that's ok cause that's probably what the user
1325 // really wanted anyway.
1326 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1329 fn close_channel_internal(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1330 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1332 let counterparty_node_id;
1333 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1334 let result: Result<(), _> = loop {
1335 let mut channel_state_lock = self.channel_state.lock().unwrap();
1336 let channel_state = &mut *channel_state_lock;
1337 match channel_state.by_id.entry(channel_id.clone()) {
1338 hash_map::Entry::Occupied(mut chan_entry) => {
1339 counterparty_node_id = chan_entry.get().get_counterparty_node_id();
1340 let per_peer_state = self.per_peer_state.read().unwrap();
1341 let (shutdown_msg, monitor_update, htlcs) = match per_peer_state.get(&counterparty_node_id) {
1342 Some(peer_state) => {
1343 let peer_state = peer_state.lock().unwrap();
1344 let their_features = &peer_state.latest_features;
1345 chan_entry.get_mut().get_shutdown(&self.keys_manager, their_features, target_feerate_sats_per_1000_weight)?
1347 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", counterparty_node_id) }),
1349 failed_htlcs = htlcs;
1351 // Update the monitor with the shutdown script if necessary.
1352 if let Some(monitor_update) = monitor_update {
1353 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
1354 let (result, is_permanent) =
1355 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, false, false, Vec::new(), Vec::new(), chan_entry.key());
1357 remove_channel!(channel_state, chan_entry);
1363 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1364 node_id: counterparty_node_id,
1368 if chan_entry.get().is_shutdown() {
1369 let channel = remove_channel!(channel_state, chan_entry);
1370 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1371 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1375 if let Ok(mut pending_events_lock) = self.pending_events.lock() {
1376 pending_events_lock.push(events::Event::ChannelClosed {
1377 channel_id: *channel_id,
1378 reason: ClosureReason::HolderForceClosed
1384 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1388 for htlc_source in failed_htlcs.drain(..) {
1389 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1392 let _ = handle_error!(self, result, counterparty_node_id);
1396 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1397 /// will be accepted on the given channel, and after additional timeout/the closing of all
1398 /// pending HTLCs, the channel will be closed on chain.
1400 /// * If we are the channel initiator, we will pay between our [`Background`] and
1401 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1403 /// * If our counterparty is the channel initiator, we will require a channel closing
1404 /// transaction feerate of at least our [`Background`] feerate or the feerate which
1405 /// would appear on a force-closure transaction, whichever is lower. We will allow our
1406 /// counterparty to pay as much fee as they'd like, however.
1408 /// May generate a SendShutdown message event on success, which should be relayed.
1410 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1411 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1412 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1413 pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1414 self.close_channel_internal(channel_id, None)
1417 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1418 /// will be accepted on the given channel, and after additional timeout/the closing of all
1419 /// pending HTLCs, the channel will be closed on chain.
1421 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1422 /// the channel being closed or not:
1423 /// * If we are the channel initiator, we will pay at least this feerate on the closing
1424 /// transaction. The upper-bound is set by
1425 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1426 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1427 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1428 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1429 /// will appear on a force-closure transaction, whichever is lower).
1431 /// May generate a SendShutdown message event on success, which should be relayed.
1433 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1434 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1435 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1436 pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1437 self.close_channel_internal(channel_id, Some(target_feerate_sats_per_1000_weight))
1441 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1442 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1443 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1444 for htlc_source in failed_htlcs.drain(..) {
1445 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1447 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1448 // There isn't anything we can do if we get an update failure - we're already
1449 // force-closing. The monitor update on the required in-memory copy should broadcast
1450 // the latest local state, which is the best we can do anyway. Thus, it is safe to
1451 // ignore the result here.
1452 let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1456 /// `peer_node_id` should be set when we receive a message from a peer, but not set when the
1457 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1458 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>, peer_msg: Option<&String>) -> Result<PublicKey, APIError> {
1460 let mut channel_state_lock = self.channel_state.lock().unwrap();
1461 let channel_state = &mut *channel_state_lock;
1462 if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1463 if let Some(node_id) = peer_node_id {
1464 if chan.get().get_counterparty_node_id() != *node_id {
1465 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1468 if let Some(short_id) = chan.get().get_short_channel_id() {
1469 channel_state.short_to_id.remove(&short_id);
1471 let mut pending_events_lock = self.pending_events.lock().unwrap();
1472 if peer_node_id.is_some() {
1473 if let Some(peer_msg) = peer_msg {
1474 pending_events_lock.push(events::Event::ChannelClosed { channel_id: *channel_id, reason: ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() } });
1477 pending_events_lock.push(events::Event::ChannelClosed { channel_id: *channel_id, reason: ClosureReason::HolderForceClosed });
1479 chan.remove_entry().1
1481 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1484 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1485 self.finish_force_close_channel(chan.force_shutdown(true));
1486 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
1487 let mut channel_state = self.channel_state.lock().unwrap();
1488 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1493 Ok(chan.get_counterparty_node_id())
1496 /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1497 /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1498 pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1499 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1500 match self.force_close_channel_with_peer(channel_id, None, None) {
1501 Ok(counterparty_node_id) => {
1502 self.channel_state.lock().unwrap().pending_msg_events.push(
1503 events::MessageSendEvent::HandleError {
1504 node_id: counterparty_node_id,
1505 action: msgs::ErrorAction::SendErrorMessage {
1506 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1516 /// Force close all channels, immediately broadcasting the latest local commitment transaction
1517 /// for each to the chain and rejecting new HTLCs on each.
1518 pub fn force_close_all_channels(&self) {
1519 for chan in self.list_channels() {
1520 let _ = self.force_close_channel(&chan.channel_id);
1524 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1525 macro_rules! return_malformed_err {
1526 ($msg: expr, $err_code: expr) => {
1528 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1529 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1530 channel_id: msg.channel_id,
1531 htlc_id: msg.htlc_id,
1532 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1533 failure_code: $err_code,
1534 })), self.channel_state.lock().unwrap());
1539 if let Err(_) = msg.onion_routing_packet.public_key {
1540 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1543 let shared_secret = {
1544 let mut arr = [0; 32];
1545 arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1548 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1550 if msg.onion_routing_packet.version != 0 {
1551 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1552 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1553 //the hash doesn't really serve any purpose - in the case of hashing all data, the
1554 //receiving node would have to brute force to figure out which version was put in the
1555 //packet by the node that send us the message, in the case of hashing the hop_data, the
1556 //node knows the HMAC matched, so they already know what is there...
1557 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1560 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1561 hmac.input(&msg.onion_routing_packet.hop_data);
1562 hmac.input(&msg.payment_hash.0[..]);
1563 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1564 return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1567 let mut channel_state = None;
1568 macro_rules! return_err {
1569 ($msg: expr, $err_code: expr, $data: expr) => {
1571 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1572 if channel_state.is_none() {
1573 channel_state = Some(self.channel_state.lock().unwrap());
1575 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1576 channel_id: msg.channel_id,
1577 htlc_id: msg.htlc_id,
1578 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1579 })), channel_state.unwrap());
1584 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1585 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1586 let (next_hop_data, next_hop_hmac): (msgs::OnionHopData, _) = {
1587 match <msgs::OnionHopData as Readable>::read(&mut chacha_stream) {
1589 let error_code = match err {
1590 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1591 msgs::DecodeError::UnknownRequiredFeature|
1592 msgs::DecodeError::InvalidValue|
1593 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1594 _ => 0x2000 | 2, // Should never happen
1596 return_err!("Unable to decode our hop data", error_code, &[0;0]);
1599 let mut hmac = [0; 32];
1600 if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1601 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1608 let pending_forward_info = if next_hop_hmac == [0; 32] {
1611 // In tests, make sure that the initial onion pcket data is, at least, non-0.
1612 // We could do some fancy randomness test here, but, ehh, whatever.
1613 // This checks for the issue where you can calculate the path length given the
1614 // onion data as all the path entries that the originator sent will be here
1615 // as-is (and were originally 0s).
1616 // Of course reverse path calculation is still pretty easy given naive routing
1617 // algorithms, but this fixes the most-obvious case.
1618 let mut next_bytes = [0; 32];
1619 chacha_stream.read_exact(&mut next_bytes).unwrap();
1620 assert_ne!(next_bytes[..], [0; 32][..]);
1621 chacha_stream.read_exact(&mut next_bytes).unwrap();
1622 assert_ne!(next_bytes[..], [0; 32][..]);
1626 // final_expiry_too_soon
1627 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
1628 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
1629 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
1630 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
1631 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
1632 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1633 return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1635 // final_incorrect_htlc_amount
1636 if next_hop_data.amt_to_forward > msg.amount_msat {
1637 return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1639 // final_incorrect_cltv_expiry
1640 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1641 return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1644 let routing = match next_hop_data.format {
1645 msgs::OnionHopDataFormat::Legacy { .. } => return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]),
1646 msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1647 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
1648 if payment_data.is_some() && keysend_preimage.is_some() {
1649 return_err!("We don't support MPP keysend payments", 0x4000|22, &[0;0]);
1650 } else if let Some(data) = payment_data {
1651 PendingHTLCRouting::Receive {
1653 incoming_cltv_expiry: msg.cltv_expiry,
1655 } else if let Some(payment_preimage) = keysend_preimage {
1656 // We need to check that the sender knows the keysend preimage before processing this
1657 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
1658 // could discover the final destination of X, by probing the adjacent nodes on the route
1659 // with a keysend payment of identical payment hash to X and observing the processing
1660 // time discrepancies due to a hash collision with X.
1661 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
1662 if hashed_preimage != msg.payment_hash {
1663 return_err!("Payment preimage didn't match payment hash", 0x4000|22, &[0;0]);
1666 PendingHTLCRouting::ReceiveKeysend {
1668 incoming_cltv_expiry: msg.cltv_expiry,
1671 return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1676 // Note that we could obviously respond immediately with an update_fulfill_htlc
1677 // message, however that would leak that we are the recipient of this payment, so
1678 // instead we stay symmetric with the forwarding case, only responding (after a
1679 // delay) once they've send us a commitment_signed!
1681 PendingHTLCStatus::Forward(PendingHTLCInfo {
1683 payment_hash: msg.payment_hash.clone(),
1684 incoming_shared_secret: shared_secret,
1685 amt_to_forward: next_hop_data.amt_to_forward,
1686 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1689 let mut new_packet_data = [0; 20*65];
1690 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1691 #[cfg(debug_assertions)]
1693 // Check two things:
1694 // a) that the behavior of our stream here will return Ok(0) even if the TLV
1695 // read above emptied out our buffer and the unwrap() wont needlessly panic
1696 // b) that we didn't somehow magically end up with extra data.
1698 debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1700 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1701 // fill the onion hop data we'll forward to our next-hop peer.
1702 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1704 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1706 let blinding_factor = {
1707 let mut sha = Sha256::engine();
1708 sha.input(&new_pubkey.serialize()[..]);
1709 sha.input(&shared_secret);
1710 Sha256::from_engine(sha).into_inner()
1713 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1715 } else { Ok(new_pubkey) };
1717 let outgoing_packet = msgs::OnionPacket {
1720 hop_data: new_packet_data,
1721 hmac: next_hop_hmac.clone(),
1724 let short_channel_id = match next_hop_data.format {
1725 msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1726 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1727 msgs::OnionHopDataFormat::FinalNode { .. } => {
1728 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1732 PendingHTLCStatus::Forward(PendingHTLCInfo {
1733 routing: PendingHTLCRouting::Forward {
1734 onion_packet: outgoing_packet,
1737 payment_hash: msg.payment_hash.clone(),
1738 incoming_shared_secret: shared_secret,
1739 amt_to_forward: next_hop_data.amt_to_forward,
1740 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1744 channel_state = Some(self.channel_state.lock().unwrap());
1745 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1746 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1747 // with a short_channel_id of 0. This is important as various things later assume
1748 // short_channel_id is non-0 in any ::Forward.
1749 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1750 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1751 if let Some((err, code, chan_update)) = loop {
1752 let forwarding_id = match id_option {
1753 None => { // unknown_next_peer
1754 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
1756 Some(id) => id.clone(),
1759 let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1761 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
1762 // Note that the behavior here should be identical to the above block - we
1763 // should NOT reveal the existence or non-existence of a private channel if
1764 // we don't allow forwards outbound over them.
1765 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
1768 // Note that we could technically not return an error yet here and just hope
1769 // that the connection is reestablished or monitor updated by the time we get
1770 // around to doing the actual forward, but better to fail early if we can and
1771 // hopefully an attacker trying to path-trace payments cannot make this occur
1772 // on a small/per-node/per-channel scale.
1773 if !chan.is_live() { // channel_disabled
1774 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1776 if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1777 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1779 let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64)
1780 .and_then(|prop_fee| { (prop_fee / 1000000)
1781 .checked_add(chan.get_outbound_forwarding_fee_base_msat() as u64) });
1782 if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1783 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1785 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1786 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1788 let cur_height = self.best_block.read().unwrap().height() + 1;
1789 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1790 // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1791 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1792 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1794 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1795 break Some(("CLTV expiry is too far in the future", 21, None));
1797 // In theory, we would be safe against unintentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1798 // But, to be safe against policy reception, we use a longer delay.
1799 if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1800 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1806 let mut res = Vec::with_capacity(8 + 128);
1807 if let Some(chan_update) = chan_update {
1808 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1809 res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1811 else if code == 0x1000 | 13 {
1812 res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1814 else if code == 0x1000 | 20 {
1815 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1816 res.extend_from_slice(&byte_utils::be16_to_array(0));
1818 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1820 return_err!(err, code, &res[..]);
1825 (pending_forward_info, channel_state.unwrap())
1828 /// Gets the current channel_update for the given channel. This first checks if the channel is
1829 /// public, and thus should be called whenever the result is going to be passed out in a
1830 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
1832 /// May be called with channel_state already locked!
1833 fn get_channel_update_for_broadcast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1834 if !chan.should_announce() {
1835 return Err(LightningError {
1836 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
1837 action: msgs::ErrorAction::IgnoreError
1840 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
1841 self.get_channel_update_for_unicast(chan)
1844 /// Gets the current channel_update for the given channel. This does not check if the channel
1845 /// is public (only returning an Err if the channel does not yet have an assigned short_id),
1846 /// and thus MUST NOT be called unless the recipient of the resulting message has already
1847 /// provided evidence that they know about the existence of the channel.
1848 /// May be called with channel_state already locked!
1849 fn get_channel_update_for_unicast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1850 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
1851 let short_channel_id = match chan.get_short_channel_id() {
1852 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1856 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1858 let unsigned = msgs::UnsignedChannelUpdate {
1859 chain_hash: self.genesis_hash,
1861 timestamp: chan.get_update_time_counter(),
1862 flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1863 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1864 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1865 htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1866 fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
1867 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1868 excess_data: Vec::new(),
1871 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1872 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1874 Ok(msgs::ChannelUpdate {
1880 // Only public for testing, this should otherwise never be called direcly
1881 pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>) -> Result<(), APIError> {
1882 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1883 let prng_seed = self.keys_manager.get_secure_random_bytes();
1884 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
1885 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
1887 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1888 .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1889 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
1890 if onion_utils::route_size_insane(&onion_payloads) {
1891 return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1893 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1895 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1896 let mut pending_outbounds = self.pending_outbound_payments.lock().unwrap();
1897 let sessions = pending_outbounds.entry(payment_id).or_insert(HashSet::new());
1898 assert!(sessions.insert(session_priv_bytes));
1900 let err: Result<(), _> = loop {
1901 let mut channel_lock = self.channel_state.lock().unwrap();
1902 let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1903 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1904 Some(id) => id.clone(),
1907 let channel_state = &mut *channel_lock;
1908 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1910 if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1911 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1913 if !chan.get().is_live() {
1914 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1916 break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1918 session_priv: session_priv.clone(),
1919 first_hop_htlc_msat: htlc_msat,
1921 }, onion_packet, &self.logger), channel_state, chan)
1923 Some((update_add, commitment_signed, monitor_update)) => {
1924 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1925 maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1926 // Note that MonitorUpdateFailed here indicates (per function docs)
1927 // that we will resend the commitment update once monitor updating
1928 // is restored. Therefore, we must return an error indicating that
1929 // it is unsafe to retry the payment wholesale, which we do in the
1930 // send_payment check for MonitorUpdateFailed, below.
1931 return Err(APIError::MonitorUpdateFailed);
1934 log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
1935 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1936 node_id: path.first().unwrap().pubkey,
1937 updates: msgs::CommitmentUpdate {
1938 update_add_htlcs: vec![update_add],
1939 update_fulfill_htlcs: Vec::new(),
1940 update_fail_htlcs: Vec::new(),
1941 update_fail_malformed_htlcs: Vec::new(),
1949 } else { unreachable!(); }
1953 match handle_error!(self, err, path.first().unwrap().pubkey) {
1954 Ok(_) => unreachable!(),
1956 Err(APIError::ChannelUnavailable { err: e.err })
1961 /// Sends a payment along a given route.
1963 /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1964 /// fields for more info.
1966 /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1967 /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1968 /// next hop knows the preimage to payment_hash they can claim an additional amount as
1969 /// specified in the last hop in the route! Thus, you should probably do your own
1970 /// payment_preimage tracking (which you should already be doing as they represent "proof of
1971 /// payment") and prevent double-sends yourself.
1973 /// May generate SendHTLCs message(s) event on success, which should be relayed.
1975 /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1976 /// each entry matching the corresponding-index entry in the route paths, see
1977 /// PaymentSendFailure for more info.
1979 /// In general, a path may raise:
1980 /// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1981 /// node public key) is specified.
1982 /// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1983 /// (including due to previous monitor update failure or new permanent monitor update
1985 /// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1986 /// relevant updates.
1988 /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1989 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1990 /// different route unless you intend to pay twice!
1992 /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1993 /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1994 /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1995 /// must not contain multiple paths as multi-path payments require a recipient-provided
1997 /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1998 /// bit set (either as required or as available). If multiple paths are present in the Route,
1999 /// we assume the invoice had the basic_mpp feature set.
2000 pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<PaymentId, PaymentSendFailure> {
2001 self.send_payment_internal(route, payment_hash, payment_secret, None, None)
2004 fn send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: Option<PaymentId>) -> Result<PaymentId, PaymentSendFailure> {
2005 if route.paths.len() < 1 {
2006 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
2008 if route.paths.len() > 10 {
2009 // This limit is completely arbitrary - there aren't any real fundamental path-count
2010 // limits. After we support retrying individual paths we should likely bump this, but
2011 // for now more than 10 paths likely carries too much one-path failure.
2012 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
2014 if payment_secret.is_none() && route.paths.len() > 1 {
2015 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError{err: "Payment secret is required for multi-path payments".to_string()}));
2017 let mut total_value = 0;
2018 let our_node_id = self.get_our_node_id();
2019 let mut path_errs = Vec::with_capacity(route.paths.len());
2020 let payment_id = if let Some(id) = payment_id { id } else { PaymentId(self.keys_manager.get_secure_random_bytes()) };
2021 'path_check: for path in route.paths.iter() {
2022 if path.len() < 1 || path.len() > 20 {
2023 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
2024 continue 'path_check;
2026 for (idx, hop) in path.iter().enumerate() {
2027 if idx != path.len() - 1 && hop.pubkey == our_node_id {
2028 path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
2029 continue 'path_check;
2032 total_value += path.last().unwrap().fee_msat;
2033 path_errs.push(Ok(()));
2035 if path_errs.iter().any(|e| e.is_err()) {
2036 return Err(PaymentSendFailure::PathParameterError(path_errs));
2039 let cur_height = self.best_block.read().unwrap().height() + 1;
2040 let mut results = Vec::new();
2041 for path in route.paths.iter() {
2042 results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height, payment_id, &keysend_preimage));
2044 let mut has_ok = false;
2045 let mut has_err = false;
2046 for res in results.iter() {
2047 if res.is_ok() { has_ok = true; }
2048 if res.is_err() { has_err = true; }
2049 if let &Err(APIError::MonitorUpdateFailed) = res {
2050 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
2057 if has_err && has_ok {
2058 Err(PaymentSendFailure::PartialFailure(results))
2060 Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
2066 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2067 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2068 /// the preimage, it must be a cryptographically secure random value that no intermediate node
2069 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2070 /// never reach the recipient.
2072 /// See [`send_payment`] documentation for more details on the return value of this function.
2074 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2075 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2077 /// Note that `route` must have exactly one path.
2079 /// [`send_payment`]: Self::send_payment
2080 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2081 let preimage = match payment_preimage {
2083 None => PaymentPreimage(self.keys_manager.get_secure_random_bytes()),
2085 let payment_hash = PaymentHash(Sha256::hash(&preimage.0).into_inner());
2086 match self.send_payment_internal(route, payment_hash, &None, Some(preimage), None) {
2087 Ok(payment_id) => Ok((payment_hash, payment_id)),
2092 /// Handles the generation of a funding transaction, optionally (for tests) with a function
2093 /// which checks the correctness of the funding transaction given the associated channel.
2094 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
2095 (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
2097 let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
2099 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2101 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2102 .map_err(|e| if let ChannelError::Close(msg) = e {
2103 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
2104 } else { unreachable!(); })
2107 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
2109 match handle_error!(self, res, chan.get_counterparty_node_id()) {
2110 Ok(funding_msg) => {
2113 Err(_) => { return Err(APIError::ChannelUnavailable {
2114 err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
2119 let mut channel_state = self.channel_state.lock().unwrap();
2120 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2121 node_id: chan.get_counterparty_node_id(),
2124 match channel_state.by_id.entry(chan.channel_id()) {
2125 hash_map::Entry::Occupied(_) => {
2126 panic!("Generated duplicate funding txid?");
2128 hash_map::Entry::Vacant(e) => {
2136 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2137 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
2138 Ok(OutPoint { txid: tx.txid(), index: output_index })
2142 /// Call this upon creation of a funding transaction for the given channel.
2144 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2145 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2147 /// Panics if a funding transaction has already been provided for this channel.
2149 /// May panic if the output found in the funding transaction is duplicative with some other
2150 /// channel (note that this should be trivially prevented by using unique funding transaction
2151 /// keys per-channel).
2153 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2154 /// counterparty's signature the funding transaction will automatically be broadcast via the
2155 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2157 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2158 /// not currently support replacing a funding transaction on an existing channel. Instead,
2159 /// create a new channel with a conflicting funding transaction.
2161 /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2162 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
2163 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2165 for inp in funding_transaction.input.iter() {
2166 if inp.witness.is_empty() {
2167 return Err(APIError::APIMisuseError {
2168 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2172 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
2173 let mut output_index = None;
2174 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2175 for (idx, outp) in tx.output.iter().enumerate() {
2176 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2177 if output_index.is_some() {
2178 return Err(APIError::APIMisuseError {
2179 err: "Multiple outputs matched the expected script and value".to_owned()
2182 if idx > u16::max_value() as usize {
2183 return Err(APIError::APIMisuseError {
2184 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2187 output_index = Some(idx as u16);
2190 if output_index.is_none() {
2191 return Err(APIError::APIMisuseError {
2192 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2195 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2199 fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
2200 if !chan.should_announce() {
2201 log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
2205 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
2207 Err(_) => return None, // Only in case of state precondition violations eg channel is closing
2209 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2210 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2212 Some(msgs::AnnouncementSignatures {
2213 channel_id: chan.channel_id(),
2214 short_channel_id: chan.get_short_channel_id().unwrap(),
2215 node_signature: our_node_sig,
2216 bitcoin_signature: our_bitcoin_sig,
2221 // Messages of up to 64KB should never end up more than half full with addresses, as that would
2222 // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
2223 // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2225 const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2228 // ...by failing to compile if the number of addresses that would be half of a message is
2229 // smaller than 500:
2230 const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
2232 /// Regenerates channel_announcements and generates a signed node_announcement from the given
2233 /// arguments, providing them in corresponding events via
2234 /// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
2235 /// on-chain. This effectively re-broadcasts all channel announcements and sends our node
2236 /// announcement to ensure that the lightning P2P network is aware of the channels we have and
2237 /// our network addresses.
2239 /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2240 /// node to humans. They carry no in-protocol meaning.
2242 /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2243 /// accepts incoming connections. These will be included in the node_announcement, publicly
2244 /// tying these addresses together and to this node. If you wish to preserve user privacy,
2245 /// addresses should likely contain only Tor Onion addresses.
2247 /// Panics if `addresses` is absurdly large (more than 500).
2249 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2250 pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2251 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2253 if addresses.len() > 500 {
2254 panic!("More than half the message size was taken up by public addresses!");
2257 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2258 // addresses be sorted for future compatibility.
2259 addresses.sort_by_key(|addr| addr.get_id());
2261 let announcement = msgs::UnsignedNodeAnnouncement {
2262 features: NodeFeatures::known(),
2263 timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
2264 node_id: self.get_our_node_id(),
2265 rgb, alias, addresses,
2266 excess_address_data: Vec::new(),
2267 excess_data: Vec::new(),
2269 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2270 let node_announce_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2272 let mut channel_state_lock = self.channel_state.lock().unwrap();
2273 let channel_state = &mut *channel_state_lock;
2275 let mut announced_chans = false;
2276 for (_, chan) in channel_state.by_id.iter() {
2277 if let Some(msg) = chan.get_signed_channel_announcement(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone()) {
2278 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
2280 update_msg: match self.get_channel_update_for_broadcast(chan) {
2285 announced_chans = true;
2287 // If the channel is not public or has not yet reached funding_locked, check the
2288 // next channel. If we don't yet have any public channels, we'll skip the broadcast
2289 // below as peers may not accept it without channels on chain first.
2293 if announced_chans {
2294 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
2295 msg: msgs::NodeAnnouncement {
2296 signature: node_announce_sig,
2297 contents: announcement
2303 /// Processes HTLCs which are pending waiting on random forward delay.
2305 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2306 /// Will likely generate further events.
2307 pub fn process_pending_htlc_forwards(&self) {
2308 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2310 let mut new_events = Vec::new();
2311 let mut failed_forwards = Vec::new();
2312 let mut handle_errors = Vec::new();
2314 let mut channel_state_lock = self.channel_state.lock().unwrap();
2315 let channel_state = &mut *channel_state_lock;
2317 for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
2318 if short_chan_id != 0 {
2319 let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
2320 Some(chan_id) => chan_id.clone(),
2322 failed_forwards.reserve(pending_forwards.len());
2323 for forward_info in pending_forwards.drain(..) {
2324 match forward_info {
2325 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
2326 prev_funding_outpoint } => {
2327 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2328 short_channel_id: prev_short_channel_id,
2329 outpoint: prev_funding_outpoint,
2330 htlc_id: prev_htlc_id,
2331 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
2333 failed_forwards.push((htlc_source, forward_info.payment_hash,
2334 HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
2337 HTLCForwardInfo::FailHTLC { .. } => {
2338 // Channel went away before we could fail it. This implies
2339 // the channel is now on chain and our counterparty is
2340 // trying to broadcast the HTLC-Timeout, but that's their
2341 // problem, not ours.
2348 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
2349 let mut add_htlc_msgs = Vec::new();
2350 let mut fail_htlc_msgs = Vec::new();
2351 for forward_info in pending_forwards.drain(..) {
2352 match forward_info {
2353 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2354 routing: PendingHTLCRouting::Forward {
2356 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2357 prev_funding_outpoint } => {
2358 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
2359 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2360 short_channel_id: prev_short_channel_id,
2361 outpoint: prev_funding_outpoint,
2362 htlc_id: prev_htlc_id,
2363 incoming_packet_shared_secret: incoming_shared_secret,
2365 match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
2367 if let ChannelError::Ignore(msg) = e {
2368 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
2370 panic!("Stated return value requirements in send_htlc() were not met");
2372 let chan_update = self.get_channel_update_for_unicast(chan.get()).unwrap();
2373 failed_forwards.push((htlc_source, payment_hash,
2374 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
2380 Some(msg) => { add_htlc_msgs.push(msg); },
2382 // Nothing to do here...we're waiting on a remote
2383 // revoke_and_ack before we can add anymore HTLCs. The Channel
2384 // will automatically handle building the update_add_htlc and
2385 // commitment_signed messages when we can.
2386 // TODO: Do some kind of timer to set the channel as !is_live()
2387 // as we don't really want others relying on us relaying through
2388 // this channel currently :/.
2394 HTLCForwardInfo::AddHTLC { .. } => {
2395 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
2397 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
2398 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
2399 match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
2401 if let ChannelError::Ignore(msg) = e {
2402 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
2404 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
2406 // fail-backs are best-effort, we probably already have one
2407 // pending, and if not that's OK, if not, the channel is on
2408 // the chain and sending the HTLC-Timeout is their problem.
2411 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
2413 // Nothing to do here...we're waiting on a remote
2414 // revoke_and_ack before we can update the commitment
2415 // transaction. The Channel will automatically handle
2416 // building the update_fail_htlc and commitment_signed
2417 // messages when we can.
2418 // We don't need any kind of timer here as they should fail
2419 // the channel onto the chain if they can't get our
2420 // update_fail_htlc in time, it's not our problem.
2427 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
2428 let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
2431 // We surely failed send_commitment due to bad keys, in that case
2432 // close channel and then send error message to peer.
2433 let counterparty_node_id = chan.get().get_counterparty_node_id();
2434 let err: Result<(), _> = match e {
2435 ChannelError::Ignore(_) | ChannelError::Warn(_) => {
2436 panic!("Stated return value requirements in send_commitment() were not met");
2438 ChannelError::Close(msg) => {
2439 log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
2440 let (channel_id, mut channel) = chan.remove_entry();
2441 if let Some(short_id) = channel.get_short_channel_id() {
2442 channel_state.short_to_id.remove(&short_id);
2444 // ChannelClosed event is generated by handle_error for us.
2445 Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update_for_broadcast(&channel).ok()))
2447 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
2449 handle_errors.push((counterparty_node_id, err));
2453 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2454 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
2457 log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
2458 add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
2459 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2460 node_id: chan.get().get_counterparty_node_id(),
2461 updates: msgs::CommitmentUpdate {
2462 update_add_htlcs: add_htlc_msgs,
2463 update_fulfill_htlcs: Vec::new(),
2464 update_fail_htlcs: fail_htlc_msgs,
2465 update_fail_malformed_htlcs: Vec::new(),
2467 commitment_signed: commitment_msg,
2475 for forward_info in pending_forwards.drain(..) {
2476 match forward_info {
2477 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2478 routing, incoming_shared_secret, payment_hash, amt_to_forward, .. },
2479 prev_funding_outpoint } => {
2480 let (cltv_expiry, onion_payload) = match routing {
2481 PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry } =>
2482 (incoming_cltv_expiry, OnionPayload::Invoice(payment_data)),
2483 PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
2484 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage)),
2486 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2489 let claimable_htlc = ClaimableHTLC {
2490 prev_hop: HTLCPreviousHopData {
2491 short_channel_id: prev_short_channel_id,
2492 outpoint: prev_funding_outpoint,
2493 htlc_id: prev_htlc_id,
2494 incoming_packet_shared_secret: incoming_shared_secret,
2496 value: amt_to_forward,
2501 macro_rules! fail_htlc {
2503 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
2504 htlc_msat_height_data.extend_from_slice(
2505 &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
2507 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
2508 short_channel_id: $htlc.prev_hop.short_channel_id,
2509 outpoint: prev_funding_outpoint,
2510 htlc_id: $htlc.prev_hop.htlc_id,
2511 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
2513 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2518 // Check that the payment hash and secret are known. Note that we
2519 // MUST take care to handle the "unknown payment hash" and
2520 // "incorrect payment secret" cases here identically or we'd expose
2521 // that we are the ultimate recipient of the given payment hash.
2522 // Further, we must not expose whether we have any other HTLCs
2523 // associated with the same payment_hash pending or not.
2524 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2525 match payment_secrets.entry(payment_hash) {
2526 hash_map::Entry::Vacant(_) => {
2527 match claimable_htlc.onion_payload {
2528 OnionPayload::Invoice(_) => {
2529 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2530 fail_htlc!(claimable_htlc);
2532 OnionPayload::Spontaneous(preimage) => {
2533 match channel_state.claimable_htlcs.entry(payment_hash) {
2534 hash_map::Entry::Vacant(e) => {
2535 e.insert(vec![claimable_htlc]);
2536 new_events.push(events::Event::PaymentReceived {
2538 amt: amt_to_forward,
2539 purpose: events::PaymentPurpose::SpontaneousPayment(preimage),
2542 hash_map::Entry::Occupied(_) => {
2543 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
2544 fail_htlc!(claimable_htlc);
2550 hash_map::Entry::Occupied(inbound_payment) => {
2552 if let OnionPayload::Invoice(ref data) = claimable_htlc.onion_payload {
2555 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
2556 fail_htlc!(claimable_htlc);
2559 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2560 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2561 fail_htlc!(claimable_htlc);
2562 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2563 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2564 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2565 fail_htlc!(claimable_htlc);
2567 let mut total_value = 0;
2568 let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2569 .or_insert(Vec::new());
2570 if htlcs.len() == 1 {
2571 if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
2572 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
2573 fail_htlc!(claimable_htlc);
2577 htlcs.push(claimable_htlc);
2578 for htlc in htlcs.iter() {
2579 total_value += htlc.value;
2580 match &htlc.onion_payload {
2581 OnionPayload::Invoice(htlc_payment_data) => {
2582 if htlc_payment_data.total_msat != payment_data.total_msat {
2583 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2584 log_bytes!(payment_hash.0), payment_data.total_msat, htlc_payment_data.total_msat);
2585 total_value = msgs::MAX_VALUE_MSAT;
2587 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2589 _ => unreachable!(),
2592 if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2593 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2594 log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2595 for htlc in htlcs.iter() {
2598 } else if total_value == payment_data.total_msat {
2599 new_events.push(events::Event::PaymentReceived {
2601 purpose: events::PaymentPurpose::InvoicePayment {
2602 payment_preimage: inbound_payment.get().payment_preimage,
2603 payment_secret: payment_data.payment_secret,
2604 user_payment_id: inbound_payment.get().user_payment_id,
2608 // Only ever generate at most one PaymentReceived
2609 // per registered payment_hash, even if it isn't
2611 inbound_payment.remove_entry();
2613 // Nothing to do - we haven't reached the total
2614 // payment value yet, wait until we receive more
2621 HTLCForwardInfo::FailHTLC { .. } => {
2622 panic!("Got pending fail of our own HTLC");
2630 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2631 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2634 for (counterparty_node_id, err) in handle_errors.drain(..) {
2635 let _ = handle_error!(self, err, counterparty_node_id);
2638 if new_events.is_empty() { return }
2639 let mut events = self.pending_events.lock().unwrap();
2640 events.append(&mut new_events);
2643 /// Free the background events, generally called from timer_tick_occurred.
2645 /// Exposed for testing to allow us to process events quickly without generating accidental
2646 /// BroadcastChannelUpdate events in timer_tick_occurred.
2648 /// Expects the caller to have a total_consistency_lock read lock.
2649 fn process_background_events(&self) -> bool {
2650 let mut background_events = Vec::new();
2651 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2652 if background_events.is_empty() {
2656 for event in background_events.drain(..) {
2658 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2659 // The channel has already been closed, so no use bothering to care about the
2660 // monitor updating completing.
2661 let _ = self.chain_monitor.update_channel(funding_txo, update);
2668 #[cfg(any(test, feature = "_test_utils"))]
2669 /// Process background events, for functional testing
2670 pub fn test_process_background_events(&self) {
2671 self.process_background_events();
2674 fn update_channel_fee(&self, short_to_id: &mut HashMap<u64, [u8; 32]>, pending_msg_events: &mut Vec<events::MessageSendEvent>, chan_id: &[u8; 32], chan: &mut Channel<Signer>, new_feerate: u32) -> (bool, NotifyOption, Result<(), MsgHandleErrInternal>) {
2675 if !chan.is_outbound() { return (true, NotifyOption::SkipPersist, Ok(())); }
2676 // If the feerate has decreased by less than half, don't bother
2677 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
2678 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
2679 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2680 return (true, NotifyOption::SkipPersist, Ok(()));
2682 if !chan.is_live() {
2683 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
2684 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2685 return (true, NotifyOption::SkipPersist, Ok(()));
2687 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
2688 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2690 let mut retain_channel = true;
2691 let res = match chan.send_update_fee_and_commit(new_feerate, &self.logger) {
2694 let (drop, res) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
2695 if drop { retain_channel = false; }
2699 let ret_err = match res {
2700 Ok(Some((update_fee, commitment_signed, monitor_update))) => {
2701 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
2702 let (res, drop) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), chan_id);
2703 if drop { retain_channel = false; }
2706 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2707 node_id: chan.get_counterparty_node_id(),
2708 updates: msgs::CommitmentUpdate {
2709 update_add_htlcs: Vec::new(),
2710 update_fulfill_htlcs: Vec::new(),
2711 update_fail_htlcs: Vec::new(),
2712 update_fail_malformed_htlcs: Vec::new(),
2713 update_fee: Some(update_fee),
2723 (retain_channel, NotifyOption::DoPersist, ret_err)
2727 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
2728 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
2729 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
2730 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
2731 pub fn maybe_update_chan_fees(&self) {
2732 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2733 let mut should_persist = NotifyOption::SkipPersist;
2735 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
2737 let mut handle_errors = Vec::new();
2739 let mut channel_state_lock = self.channel_state.lock().unwrap();
2740 let channel_state = &mut *channel_state_lock;
2741 let pending_msg_events = &mut channel_state.pending_msg_events;
2742 let short_to_id = &mut channel_state.short_to_id;
2743 channel_state.by_id.retain(|chan_id, chan| {
2744 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
2745 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
2747 handle_errors.push(err);
2757 /// Performs actions which should happen on startup and roughly once per minute thereafter.
2759 /// This currently includes:
2760 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
2761 /// * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
2762 /// than a minute, informing the network that they should no longer attempt to route over
2765 /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
2766 /// estimate fetches.
2767 pub fn timer_tick_occurred(&self) {
2768 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2769 let mut should_persist = NotifyOption::SkipPersist;
2770 if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
2772 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
2774 let mut handle_errors = Vec::new();
2776 let mut channel_state_lock = self.channel_state.lock().unwrap();
2777 let channel_state = &mut *channel_state_lock;
2778 let pending_msg_events = &mut channel_state.pending_msg_events;
2779 let short_to_id = &mut channel_state.short_to_id;
2780 channel_state.by_id.retain(|chan_id, chan| {
2781 let counterparty_node_id = chan.get_counterparty_node_id();
2782 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
2783 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
2785 handle_errors.push((err, counterparty_node_id));
2787 if !retain_channel { return false; }
2789 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
2790 let (needs_close, err) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
2791 handle_errors.push((Err(err), chan.get_counterparty_node_id()));
2792 if needs_close { return false; }
2795 match chan.channel_update_status() {
2796 ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
2797 ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
2798 ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
2799 ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
2800 ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
2801 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2802 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2806 should_persist = NotifyOption::DoPersist;
2807 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
2809 ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
2810 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2811 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2815 should_persist = NotifyOption::DoPersist;
2816 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
2825 for (err, counterparty_node_id) in handle_errors.drain(..) {
2826 let _ = handle_error!(self, err, counterparty_node_id);
2832 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2833 /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2834 /// along the path (including in our own channel on which we received it).
2835 /// Returns false if no payment was found to fail backwards, true if the process of failing the
2836 /// HTLC backwards has been started.
2837 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2838 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2840 let mut channel_state = Some(self.channel_state.lock().unwrap());
2841 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2842 if let Some(mut sources) = removed_source {
2843 for htlc in sources.drain(..) {
2844 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2845 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2846 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2847 self.best_block.read().unwrap().height()));
2848 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2849 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2850 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2856 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2857 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2858 // be surfaced to the user.
2859 fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2860 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2862 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2863 let (failure_code, onion_failure_data) =
2864 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2865 hash_map::Entry::Occupied(chan_entry) => {
2866 if let Ok(upd) = self.get_channel_update_for_unicast(&chan_entry.get()) {
2867 (0x1000|7, upd.encode_with_len())
2869 (0x4000|10, Vec::new())
2872 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2874 let channel_state = self.channel_state.lock().unwrap();
2875 self.fail_htlc_backwards_internal(channel_state,
2876 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2878 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
2879 let mut session_priv_bytes = [0; 32];
2880 session_priv_bytes.copy_from_slice(&session_priv[..]);
2881 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
2882 if let hash_map::Entry::Occupied(mut sessions) = outbounds.entry(payment_id) {
2883 if sessions.get_mut().remove(&session_priv_bytes) {
2884 self.pending_events.lock().unwrap().push(
2885 events::Event::PaymentPathFailed {
2887 rejected_by_dest: false,
2888 network_update: None,
2889 all_paths_failed: sessions.get().len() == 0,
2897 if sessions.get().len() == 0 {
2902 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2909 /// Fails an HTLC backwards to the sender of it to us.
2910 /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2911 /// There are several callsites that do stupid things like loop over a list of payment_hashes
2912 /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2913 /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2914 /// still-available channels.
2915 fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2916 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2917 //identify whether we sent it or not based on the (I presume) very different runtime
2918 //between the branches here. We should make this async and move it into the forward HTLCs
2921 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2922 // from block_connected which may run during initialization prior to the chain_monitor
2923 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2925 HTLCSource::OutboundRoute { ref path, session_priv, payment_id, .. } => {
2926 let mut session_priv_bytes = [0; 32];
2927 session_priv_bytes.copy_from_slice(&session_priv[..]);
2928 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
2929 let mut all_paths_failed = false;
2930 if let hash_map::Entry::Occupied(mut sessions) = outbounds.entry(payment_id) {
2931 if !sessions.get_mut().remove(&session_priv_bytes) {
2932 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2935 if sessions.get().len() == 0 {
2936 all_paths_failed = true;
2940 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2943 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2944 mem::drop(channel_state_lock);
2945 match &onion_error {
2946 &HTLCFailReason::LightningError { ref err } => {
2948 let (network_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2950 let (network_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2951 // TODO: If we decided to blame ourselves (or one of our channels) in
2952 // process_onion_failure we should close that channel as it implies our
2953 // next-hop is needlessly blaming us!
2954 self.pending_events.lock().unwrap().push(
2955 events::Event::PaymentPathFailed {
2956 payment_hash: payment_hash.clone(),
2957 rejected_by_dest: !payment_retryable,
2962 error_code: onion_error_code,
2964 error_data: onion_error_data
2968 &HTLCFailReason::Reason {
2974 // we get a fail_malformed_htlc from the first hop
2975 // TODO: We'd like to generate a NetworkUpdate for temporary
2976 // failures here, but that would be insufficient as get_route
2977 // generally ignores its view of our own channels as we provide them via
2979 // TODO: For non-temporary failures, we really should be closing the
2980 // channel here as we apparently can't relay through them anyway.
2981 self.pending_events.lock().unwrap().push(
2982 events::Event::PaymentPathFailed {
2983 payment_hash: payment_hash.clone(),
2984 rejected_by_dest: path.len() == 1,
2985 network_update: None,
2989 error_code: Some(*failure_code),
2991 error_data: Some(data.clone()),
2997 HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2998 let err_packet = match onion_error {
2999 HTLCFailReason::Reason { failure_code, data } => {
3000 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
3001 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
3002 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
3004 HTLCFailReason::LightningError { err } => {
3005 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
3006 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
3010 let mut forward_event = None;
3011 if channel_state_lock.forward_htlcs.is_empty() {
3012 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
3014 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
3015 hash_map::Entry::Occupied(mut entry) => {
3016 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
3018 hash_map::Entry::Vacant(entry) => {
3019 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
3022 mem::drop(channel_state_lock);
3023 if let Some(time) = forward_event {
3024 let mut pending_events = self.pending_events.lock().unwrap();
3025 pending_events.push(events::Event::PendingHTLCsForwardable {
3026 time_forwardable: time
3033 /// Provides a payment preimage in response to a PaymentReceived event, returning true and
3034 /// generating message events for the net layer to claim the payment, if possible. Thus, you
3035 /// should probably kick the net layer to go send messages if this returns true!
3037 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3038 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
3039 /// event matches your expectation. If you fail to do so and call this method, you may provide
3040 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3042 /// May panic if called except in response to a PaymentReceived event.
3044 /// [`create_inbound_payment`]: Self::create_inbound_payment
3045 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3046 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
3047 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3049 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3051 let mut channel_state = Some(self.channel_state.lock().unwrap());
3052 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
3053 if let Some(mut sources) = removed_source {
3054 assert!(!sources.is_empty());
3056 // If we are claiming an MPP payment, we have to take special care to ensure that each
3057 // channel exists before claiming all of the payments (inside one lock).
3058 // Note that channel existance is sufficient as we should always get a monitor update
3059 // which will take care of the real HTLC claim enforcement.
3061 // If we find an HTLC which we would need to claim but for which we do not have a
3062 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3063 // the sender retries the already-failed path(s), it should be a pretty rare case where
3064 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3065 // provide the preimage, so worrying too much about the optimal handling isn't worth
3067 let mut valid_mpp = true;
3068 for htlc in sources.iter() {
3069 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
3075 let mut errs = Vec::new();
3076 let mut claimed_any_htlcs = false;
3077 for htlc in sources.drain(..) {
3079 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
3080 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3081 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3082 self.best_block.read().unwrap().height()));
3083 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
3084 HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
3085 HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
3087 match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
3088 ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) => {
3089 if let msgs::ErrorAction::IgnoreError = err.err.action {
3090 // We got a temporary failure updating monitor, but will claim the
3091 // HTLC when the monitor updating is restored (or on chain).
3092 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
3093 claimed_any_htlcs = true;
3094 } else { errs.push((pk, err)); }
3096 ClaimFundsFromHop::PrevHopForceClosed => unreachable!("We already checked for channel existence, we can't fail here!"),
3097 ClaimFundsFromHop::DuplicateClaim => {
3098 // While we should never get here in most cases, if we do, it likely
3099 // indicates that the HTLC was timed out some time ago and is no longer
3100 // available to be claimed. Thus, it does not make sense to set
3101 // `claimed_any_htlcs`.
3103 ClaimFundsFromHop::Success(_) => claimed_any_htlcs = true,
3108 // Now that we've done the entire above loop in one lock, we can handle any errors
3109 // which were generated.
3110 channel_state.take();
3112 for (counterparty_node_id, err) in errs.drain(..) {
3113 let res: Result<(), _> = Err(err);
3114 let _ = handle_error!(self, res, counterparty_node_id);
3121 fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> ClaimFundsFromHop {
3122 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
3123 let channel_state = &mut **channel_state_lock;
3124 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
3125 Some(chan_id) => chan_id.clone(),
3127 return ClaimFundsFromHop::PrevHopForceClosed
3131 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
3132 match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
3133 Ok(msgs_monitor_option) => {
3134 if let UpdateFulfillCommitFetch::NewClaim { msgs, htlc_value_msat, monitor_update } = msgs_monitor_option {
3135 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3136 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Debug },
3137 "Failed to update channel monitor with preimage {:?}: {:?}",
3138 payment_preimage, e);
3139 return ClaimFundsFromHop::MonitorUpdateFail(
3140 chan.get().get_counterparty_node_id(),
3141 handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err(),
3142 Some(htlc_value_msat)
3145 if let Some((msg, commitment_signed)) = msgs {
3146 log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
3147 log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
3148 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3149 node_id: chan.get().get_counterparty_node_id(),
3150 updates: msgs::CommitmentUpdate {
3151 update_add_htlcs: Vec::new(),
3152 update_fulfill_htlcs: vec![msg],
3153 update_fail_htlcs: Vec::new(),
3154 update_fail_malformed_htlcs: Vec::new(),
3160 return ClaimFundsFromHop::Success(htlc_value_msat);
3162 return ClaimFundsFromHop::DuplicateClaim;
3165 Err((e, monitor_update)) => {
3166 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3167 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Info },
3168 "Failed to update channel monitor with preimage {:?} immediately prior to force-close: {:?}",
3169 payment_preimage, e);
3171 let counterparty_node_id = chan.get().get_counterparty_node_id();
3172 let (drop, res) = convert_chan_err!(self, e, channel_state.short_to_id, chan.get_mut(), &chan_id);
3174 chan.remove_entry();
3176 return ClaimFundsFromHop::MonitorUpdateFail(counterparty_node_id, res, None);
3179 } else { unreachable!(); }
3182 fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool) {
3184 HTLCSource::OutboundRoute { session_priv, payment_id, .. } => {
3185 mem::drop(channel_state_lock);
3186 let mut session_priv_bytes = [0; 32];
3187 session_priv_bytes.copy_from_slice(&session_priv[..]);
3188 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3189 let found_payment = if let Some(mut sessions) = outbounds.remove(&payment_id) {
3190 sessions.remove(&session_priv_bytes)
3193 self.pending_events.lock().unwrap().push(
3194 events::Event::PaymentSent { payment_preimage }
3197 log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
3200 HTLCSource::PreviousHopData(hop_data) => {
3201 let prev_outpoint = hop_data.outpoint;
3202 let res = self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage);
3203 let claimed_htlc = if let ClaimFundsFromHop::DuplicateClaim = res { false } else { true };
3204 let htlc_claim_value_msat = match res {
3205 ClaimFundsFromHop::MonitorUpdateFail(_, _, amt_opt) => amt_opt,
3206 ClaimFundsFromHop::Success(amt) => Some(amt),
3209 if let ClaimFundsFromHop::PrevHopForceClosed = res {
3210 let preimage_update = ChannelMonitorUpdate {
3211 update_id: CLOSED_CHANNEL_UPDATE_ID,
3212 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
3213 payment_preimage: payment_preimage.clone(),
3216 // We update the ChannelMonitor on the backward link, after
3217 // receiving an offchain preimage event from the forward link (the
3218 // event being update_fulfill_htlc).
3219 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
3220 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
3221 payment_preimage, e);
3223 // Note that we do *not* set `claimed_htlc` to false here. In fact, this
3224 // totally could be a duplicate claim, but we have no way of knowing
3225 // without interrogating the `ChannelMonitor` we've provided the above
3226 // update to. Instead, we simply document in `PaymentForwarded` that this
3229 mem::drop(channel_state_lock);
3230 if let ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) = res {
3231 let result: Result<(), _> = Err(err);
3232 let _ = handle_error!(self, result, pk);
3236 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
3237 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
3238 Some(claimed_htlc_value - forwarded_htlc_value)
3241 let mut pending_events = self.pending_events.lock().unwrap();
3242 pending_events.push(events::Event::PaymentForwarded {
3244 claim_from_onchain_tx: from_onchain,
3252 /// Gets the node_id held by this ChannelManager
3253 pub fn get_our_node_id(&self) -> PublicKey {
3254 self.our_network_pubkey.clone()
3257 /// Restores a single, given channel to normal operation after a
3258 /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
3261 /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
3262 /// fully committed in every copy of the given channels' ChannelMonitors.
3264 /// Note that there is no effect to calling with a highest_applied_update_id other than the
3265 /// current latest ChannelMonitorUpdate and one call to this function after multiple
3266 /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
3267 /// exists largely only to prevent races between this and concurrent update_monitor calls.
3269 /// Thus, the anticipated use is, at a high level:
3270 /// 1) You register a chain::Watch with this ChannelManager,
3271 /// 2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
3272 /// said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
3273 /// any time it cannot do so instantly,
3274 /// 3) update(s) are applied to each remote copy of a ChannelMonitor,
3275 /// 4) once all remote copies are updated, you call this function with the update_id that
3276 /// completed, and once it is the latest the Channel will be re-enabled.
3277 pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
3278 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3280 let chan_restoration_res;
3281 let mut pending_failures = {
3282 let mut channel_lock = self.channel_state.lock().unwrap();
3283 let channel_state = &mut *channel_lock;
3284 let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
3285 hash_map::Entry::Occupied(chan) => chan,
3286 hash_map::Entry::Vacant(_) => return,
3288 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
3292 let (raa, commitment_update, order, pending_forwards, pending_failures, funding_broadcastable, funding_locked) = channel.get_mut().monitor_updating_restored(&self.logger);
3293 let channel_update = if funding_locked.is_some() && channel.get().is_usable() && !channel.get().should_announce() {
3294 // We only send a channel_update in the case where we are just now sending a
3295 // funding_locked and the channel is in a usable state. Further, we rely on the
3296 // normal announcement_signatures process to send a channel_update for public
3297 // channels, only generating a unicast channel_update if this is a private channel.
3298 Some(events::MessageSendEvent::SendChannelUpdate {
3299 node_id: channel.get().get_counterparty_node_id(),
3300 msg: self.get_channel_update_for_unicast(channel.get()).unwrap(),
3303 chan_restoration_res = handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, raa, commitment_update, order, None, pending_forwards, funding_broadcastable, funding_locked);
3304 if let Some(upd) = channel_update {
3305 channel_state.pending_msg_events.push(upd);
3309 post_handle_chan_restoration!(self, chan_restoration_res);
3310 for failure in pending_failures.drain(..) {
3311 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3315 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
3316 if msg.chain_hash != self.genesis_hash {
3317 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
3320 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), &their_features, msg, 0, &self.default_configuration)
3321 .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
3322 let mut channel_state_lock = self.channel_state.lock().unwrap();
3323 let channel_state = &mut *channel_state_lock;
3324 match channel_state.by_id.entry(channel.channel_id()) {
3325 hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
3326 hash_map::Entry::Vacant(entry) => {
3327 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
3328 node_id: counterparty_node_id.clone(),
3329 msg: channel.get_accept_channel(),
3331 entry.insert(channel);
3337 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
3338 let (value, output_script, user_id) = {
3339 let mut channel_lock = self.channel_state.lock().unwrap();
3340 let channel_state = &mut *channel_lock;
3341 match channel_state.by_id.entry(msg.temporary_channel_id) {
3342 hash_map::Entry::Occupied(mut chan) => {
3343 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3344 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
3346 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, &their_features), channel_state, chan);
3347 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
3349 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
3352 let mut pending_events = self.pending_events.lock().unwrap();
3353 pending_events.push(events::Event::FundingGenerationReady {
3354 temporary_channel_id: msg.temporary_channel_id,
3355 channel_value_satoshis: value,
3357 user_channel_id: user_id,
3362 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
3363 let ((funding_msg, monitor), mut chan) = {
3364 let best_block = *self.best_block.read().unwrap();
3365 let mut channel_lock = self.channel_state.lock().unwrap();
3366 let channel_state = &mut *channel_lock;
3367 match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
3368 hash_map::Entry::Occupied(mut chan) => {
3369 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3370 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
3372 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
3374 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
3377 // Because we have exclusive ownership of the channel here we can release the channel_state
3378 // lock before watch_channel
3379 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
3381 ChannelMonitorUpdateErr::PermanentFailure => {
3382 // Note that we reply with the new channel_id in error messages if we gave up on the
3383 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
3384 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
3385 // any messages referencing a previously-closed channel anyway.
3386 // We do not do a force-close here as that would generate a monitor update for
3387 // a monitor that we didn't manage to store (and that we don't care about - we
3388 // don't respond with the funding_signed so the channel can never go on chain).
3389 let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
3390 assert!(failed_htlcs.is_empty());
3391 return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
3393 ChannelMonitorUpdateErr::TemporaryFailure => {
3394 // There's no problem signing a counterparty's funding transaction if our monitor
3395 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
3396 // accepted payment from yet. We do, however, need to wait to send our funding_locked
3397 // until we have persisted our monitor.
3398 chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
3402 let mut channel_state_lock = self.channel_state.lock().unwrap();
3403 let channel_state = &mut *channel_state_lock;
3404 match channel_state.by_id.entry(funding_msg.channel_id) {
3405 hash_map::Entry::Occupied(_) => {
3406 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
3408 hash_map::Entry::Vacant(e) => {
3409 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
3410 node_id: counterparty_node_id.clone(),
3419 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
3421 let best_block = *self.best_block.read().unwrap();
3422 let mut channel_lock = self.channel_state.lock().unwrap();
3423 let channel_state = &mut *channel_lock;
3424 match channel_state.by_id.entry(msg.channel_id) {
3425 hash_map::Entry::Occupied(mut chan) => {
3426 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3427 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3429 let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
3430 Ok(update) => update,
3431 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
3433 if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
3434 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
3438 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3441 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
3442 self.tx_broadcaster.broadcast_transaction(&funding_tx);
3446 fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
3447 let mut channel_state_lock = self.channel_state.lock().unwrap();
3448 let channel_state = &mut *channel_state_lock;
3449 match channel_state.by_id.entry(msg.channel_id) {
3450 hash_map::Entry::Occupied(mut chan) => {
3451 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3452 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3454 try_chan_entry!(self, chan.get_mut().funding_locked(&msg, &self.logger), channel_state, chan);
3455 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
3456 log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
3457 // If we see locking block before receiving remote funding_locked, we broadcast our
3458 // announcement_sigs at remote funding_locked reception. If we receive remote
3459 // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
3460 // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
3461 // the order of the events but our peer may not receive it due to disconnection. The specs
3462 // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
3463 // connection in the future if simultaneous misses by both peers due to network/hardware
3464 // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
3465 // to be received, from then sigs are going to be flood to the whole network.
3466 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3467 node_id: counterparty_node_id.clone(),
3468 msg: announcement_sigs,
3470 } else if chan.get().is_usable() {
3471 channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3472 node_id: counterparty_node_id.clone(),
3473 msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
3478 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3482 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
3483 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
3484 let result: Result<(), _> = loop {
3485 let mut channel_state_lock = self.channel_state.lock().unwrap();
3486 let channel_state = &mut *channel_state_lock;
3488 match channel_state.by_id.entry(msg.channel_id.clone()) {
3489 hash_map::Entry::Occupied(mut chan_entry) => {
3490 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3491 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3494 if !chan_entry.get().received_shutdown() {
3495 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
3496 log_bytes!(msg.channel_id),
3497 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
3500 let (shutdown, monitor_update, htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.keys_manager, &their_features, &msg), channel_state, chan_entry);
3501 dropped_htlcs = htlcs;
3503 // Update the monitor with the shutdown script if necessary.
3504 if let Some(monitor_update) = monitor_update {
3505 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
3506 let (result, is_permanent) =
3507 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, false, false, Vec::new(), Vec::new(), chan_entry.key());
3509 remove_channel!(channel_state, chan_entry);
3515 if let Some(msg) = shutdown {
3516 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3517 node_id: *counterparty_node_id,
3524 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3527 for htlc_source in dropped_htlcs.drain(..) {
3528 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3531 let _ = handle_error!(self, result, *counterparty_node_id);
3535 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
3536 let (tx, chan_option) = {
3537 let mut channel_state_lock = self.channel_state.lock().unwrap();
3538 let channel_state = &mut *channel_state_lock;
3539 match channel_state.by_id.entry(msg.channel_id.clone()) {
3540 hash_map::Entry::Occupied(mut chan_entry) => {
3541 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3542 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3544 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
3545 if let Some(msg) = closing_signed {
3546 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3547 node_id: counterparty_node_id.clone(),
3552 // We're done with this channel, we've got a signed closing transaction and
3553 // will send the closing_signed back to the remote peer upon return. This
3554 // also implies there are no pending HTLCs left on the channel, so we can
3555 // fully delete it from tracking (the channel monitor is still around to
3556 // watch for old state broadcasts)!
3557 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
3558 channel_state.short_to_id.remove(&short_id);
3560 (tx, Some(chan_entry.remove_entry().1))
3561 } else { (tx, None) }
3563 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3566 if let Some(broadcast_tx) = tx {
3567 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
3568 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
3570 if let Some(chan) = chan_option {
3571 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3572 let mut channel_state = self.channel_state.lock().unwrap();
3573 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3577 self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id: msg.channel_id, reason: ClosureReason::CooperativeClosure });
3582 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
3583 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
3584 //determine the state of the payment based on our response/if we forward anything/the time
3585 //we take to respond. We should take care to avoid allowing such an attack.
3587 //TODO: There exists a further attack where a node may garble the onion data, forward it to
3588 //us repeatedly garbled in different ways, and compare our error messages, which are
3589 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
3590 //but we should prevent it anyway.
3592 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
3593 let channel_state = &mut *channel_state_lock;
3595 match channel_state.by_id.entry(msg.channel_id) {
3596 hash_map::Entry::Occupied(mut chan) => {
3597 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3598 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3601 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
3602 // If the update_add is completely bogus, the call will Err and we will close,
3603 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
3604 // want to reject the new HTLC and fail it backwards instead of forwarding.
3605 match pending_forward_info {
3606 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
3607 let reason = if (error_code & 0x1000) != 0 {
3608 if let Ok(upd) = self.get_channel_update_for_unicast(chan) {
3609 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
3610 let mut res = Vec::with_capacity(8 + 128);
3611 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
3612 res.extend_from_slice(&byte_utils::be16_to_array(0));
3613 res.extend_from_slice(&upd.encode_with_len()[..]);
3617 // The only case where we'd be unable to
3618 // successfully get a channel update is if the
3619 // channel isn't in the fully-funded state yet,
3620 // implying our counterparty is trying to route
3621 // payments over the channel back to themselves
3622 // (because no one else should know the short_id
3623 // is a lightning channel yet). We should have
3624 // no problem just calling this
3625 // unknown_next_peer (0x4000|10).
3626 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
3629 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &[])
3631 let msg = msgs::UpdateFailHTLC {
3632 channel_id: msg.channel_id,
3633 htlc_id: msg.htlc_id,
3636 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
3638 _ => pending_forward_info
3641 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
3643 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3648 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
3649 let mut channel_lock = self.channel_state.lock().unwrap();
3650 let (htlc_source, forwarded_htlc_value) = {
3651 let channel_state = &mut *channel_lock;
3652 match channel_state.by_id.entry(msg.channel_id) {
3653 hash_map::Entry::Occupied(mut chan) => {
3654 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3655 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3657 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
3659 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3662 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false);
3666 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
3667 let mut channel_lock = self.channel_state.lock().unwrap();
3668 let channel_state = &mut *channel_lock;
3669 match channel_state.by_id.entry(msg.channel_id) {
3670 hash_map::Entry::Occupied(mut chan) => {
3671 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3672 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3674 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
3676 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3681 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
3682 let mut channel_lock = self.channel_state.lock().unwrap();
3683 let channel_state = &mut *channel_lock;
3684 match channel_state.by_id.entry(msg.channel_id) {
3685 hash_map::Entry::Occupied(mut chan) => {
3686 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3687 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3689 if (msg.failure_code & 0x8000) == 0 {
3690 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
3691 try_chan_entry!(self, Err(chan_err), channel_state, chan);
3693 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
3696 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3700 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
3701 let mut channel_state_lock = self.channel_state.lock().unwrap();
3702 let channel_state = &mut *channel_state_lock;
3703 match channel_state.by_id.entry(msg.channel_id) {
3704 hash_map::Entry::Occupied(mut chan) => {
3705 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3706 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3708 let (revoke_and_ack, commitment_signed, monitor_update) =
3709 match chan.get_mut().commitment_signed(&msg, &self.logger) {
3710 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
3711 Err((Some(update), e)) => {
3712 assert!(chan.get().is_awaiting_monitor_update());
3713 let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
3714 try_chan_entry!(self, Err(e), channel_state, chan);
3719 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3720 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
3722 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3723 node_id: counterparty_node_id.clone(),
3724 msg: revoke_and_ack,
3726 if let Some(msg) = commitment_signed {
3727 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3728 node_id: counterparty_node_id.clone(),
3729 updates: msgs::CommitmentUpdate {
3730 update_add_htlcs: Vec::new(),
3731 update_fulfill_htlcs: Vec::new(),
3732 update_fail_htlcs: Vec::new(),
3733 update_fail_malformed_htlcs: Vec::new(),
3735 commitment_signed: msg,
3741 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3746 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3747 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3748 let mut forward_event = None;
3749 if !pending_forwards.is_empty() {
3750 let mut channel_state = self.channel_state.lock().unwrap();
3751 if channel_state.forward_htlcs.is_empty() {
3752 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3754 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3755 match channel_state.forward_htlcs.entry(match forward_info.routing {
3756 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3757 PendingHTLCRouting::Receive { .. } => 0,
3758 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
3760 hash_map::Entry::Occupied(mut entry) => {
3761 entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3762 prev_htlc_id, forward_info });
3764 hash_map::Entry::Vacant(entry) => {
3765 entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3766 prev_htlc_id, forward_info }));
3771 match forward_event {
3773 let mut pending_events = self.pending_events.lock().unwrap();
3774 pending_events.push(events::Event::PendingHTLCsForwardable {
3775 time_forwardable: time
3783 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3784 let mut htlcs_to_fail = Vec::new();
3786 let mut channel_state_lock = self.channel_state.lock().unwrap();
3787 let channel_state = &mut *channel_state_lock;
3788 match channel_state.by_id.entry(msg.channel_id) {
3789 hash_map::Entry::Occupied(mut chan) => {
3790 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3791 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3793 let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3794 let (commitment_update, pending_forwards, pending_failures, monitor_update, htlcs_to_fail_in) =
3795 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), channel_state, chan);
3796 htlcs_to_fail = htlcs_to_fail_in;
3797 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3798 if was_frozen_for_monitor {
3799 assert!(commitment_update.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3800 break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3802 if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3804 } else { unreachable!(); }
3807 if let Some(updates) = commitment_update {
3808 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3809 node_id: counterparty_node_id.clone(),
3813 break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3815 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3818 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3820 Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3821 for failure in pending_failures.drain(..) {
3822 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3824 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3831 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3832 let mut channel_lock = self.channel_state.lock().unwrap();
3833 let channel_state = &mut *channel_lock;
3834 match channel_state.by_id.entry(msg.channel_id) {
3835 hash_map::Entry::Occupied(mut chan) => {
3836 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3837 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3839 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3841 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3846 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3847 let mut channel_state_lock = self.channel_state.lock().unwrap();
3848 let channel_state = &mut *channel_state_lock;
3850 match channel_state.by_id.entry(msg.channel_id) {
3851 hash_map::Entry::Occupied(mut chan) => {
3852 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3853 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3855 if !chan.get().is_usable() {
3856 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3859 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3860 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone(), msg), channel_state, chan),
3861 // Note that announcement_signatures fails if the channel cannot be announced,
3862 // so get_channel_update_for_broadcast will never fail by the time we get here.
3863 update_msg: self.get_channel_update_for_broadcast(chan.get()).unwrap(),
3866 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3871 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
3872 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
3873 let mut channel_state_lock = self.channel_state.lock().unwrap();
3874 let channel_state = &mut *channel_state_lock;
3875 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3876 Some(chan_id) => chan_id.clone(),
3878 // It's not a local channel
3879 return Ok(NotifyOption::SkipPersist)
3882 match channel_state.by_id.entry(chan_id) {
3883 hash_map::Entry::Occupied(mut chan) => {
3884 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3885 if chan.get().should_announce() {
3886 // If the announcement is about a channel of ours which is public, some
3887 // other peer may simply be forwarding all its gossip to us. Don't provide
3888 // a scary-looking error message and return Ok instead.
3889 return Ok(NotifyOption::SkipPersist);
3891 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
3893 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
3894 let msg_from_node_one = msg.contents.flags & 1 == 0;
3895 if were_node_one == msg_from_node_one {
3896 return Ok(NotifyOption::SkipPersist);
3898 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3901 hash_map::Entry::Vacant(_) => unreachable!()
3903 Ok(NotifyOption::DoPersist)
3906 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3907 let chan_restoration_res;
3908 let (htlcs_failed_forward, need_lnd_workaround) = {
3909 let mut channel_state_lock = self.channel_state.lock().unwrap();
3910 let channel_state = &mut *channel_state_lock;
3912 match channel_state.by_id.entry(msg.channel_id) {
3913 hash_map::Entry::Occupied(mut chan) => {
3914 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3915 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3917 // Currently, we expect all holding cell update_adds to be dropped on peer
3918 // disconnect, so Channel's reestablish will never hand us any holding cell
3919 // freed HTLCs to fail backwards. If in the future we no longer drop pending
3920 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3921 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, order, htlcs_failed_forward, shutdown) =
3922 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3923 let mut channel_update = None;
3924 if let Some(msg) = shutdown {
3925 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3926 node_id: counterparty_node_id.clone(),
3929 } else if chan.get().is_usable() {
3930 // If the channel is in a usable state (ie the channel is not being shut
3931 // down), send a unicast channel_update to our counterparty to make sure
3932 // they have the latest channel parameters.
3933 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
3934 node_id: chan.get().get_counterparty_node_id(),
3935 msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
3938 let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
3939 chan_restoration_res = handle_chan_restoration_locked!(self, channel_state_lock, channel_state, chan, revoke_and_ack, commitment_update, order, monitor_update_opt, Vec::new(), None, funding_locked);
3940 if let Some(upd) = channel_update {
3941 channel_state.pending_msg_events.push(upd);
3943 (htlcs_failed_forward, need_lnd_workaround)
3945 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3948 post_handle_chan_restoration!(self, chan_restoration_res);
3949 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
3951 if let Some(funding_locked_msg) = need_lnd_workaround {
3952 self.internal_funding_locked(counterparty_node_id, &funding_locked_msg)?;
3957 /// Process pending events from the `chain::Watch`, returning whether any events were processed.
3958 fn process_pending_monitor_events(&self) -> bool {
3959 let mut failed_channels = Vec::new();
3960 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
3961 let has_pending_monitor_events = !pending_monitor_events.is_empty();
3962 for monitor_event in pending_monitor_events.drain(..) {
3963 match monitor_event {
3964 MonitorEvent::HTLCEvent(htlc_update) => {
3965 if let Some(preimage) = htlc_update.payment_preimage {
3966 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3967 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage, htlc_update.onchain_value_satoshis.map(|v| v * 1000), true);
3969 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3970 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3973 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) => {
3974 let mut channel_lock = self.channel_state.lock().unwrap();
3975 let channel_state = &mut *channel_lock;
3976 let by_id = &mut channel_state.by_id;
3977 let short_to_id = &mut channel_state.short_to_id;
3978 let pending_msg_events = &mut channel_state.pending_msg_events;
3979 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3980 if let Some(short_id) = chan.get_short_channel_id() {
3981 short_to_id.remove(&short_id);
3983 failed_channels.push(chan.force_shutdown(false));
3984 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3985 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3989 self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id: chan.channel_id(), reason: ClosureReason::CommitmentTxConfirmed });
3990 pending_msg_events.push(events::MessageSendEvent::HandleError {
3991 node_id: chan.get_counterparty_node_id(),
3992 action: msgs::ErrorAction::SendErrorMessage {
3993 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
4001 for failure in failed_channels.drain(..) {
4002 self.finish_force_close_channel(failure);
4005 has_pending_monitor_events
4008 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
4009 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
4010 /// update was applied.
4012 /// This should only apply to HTLCs which were added to the holding cell because we were
4013 /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
4014 /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
4015 /// code to inform them of a channel monitor update.
4016 fn check_free_holding_cells(&self) -> bool {
4017 let mut has_monitor_update = false;
4018 let mut failed_htlcs = Vec::new();
4019 let mut handle_errors = Vec::new();
4021 let mut channel_state_lock = self.channel_state.lock().unwrap();
4022 let channel_state = &mut *channel_state_lock;
4023 let by_id = &mut channel_state.by_id;
4024 let short_to_id = &mut channel_state.short_to_id;
4025 let pending_msg_events = &mut channel_state.pending_msg_events;
4027 by_id.retain(|channel_id, chan| {
4028 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
4029 Ok((commitment_opt, holding_cell_failed_htlcs)) => {
4030 if !holding_cell_failed_htlcs.is_empty() {
4031 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
4033 if let Some((commitment_update, monitor_update)) = commitment_opt {
4034 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
4035 has_monitor_update = true;
4036 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), channel_id);
4037 handle_errors.push((chan.get_counterparty_node_id(), res));
4038 if close_channel { return false; }
4040 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4041 node_id: chan.get_counterparty_node_id(),
4042 updates: commitment_update,
4049 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4050 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
4051 // ChannelClosed event is generated by handle_error for us
4058 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
4059 for (failures, channel_id) in failed_htlcs.drain(..) {
4060 self.fail_holding_cell_htlcs(failures, channel_id);
4063 for (counterparty_node_id, err) in handle_errors.drain(..) {
4064 let _ = handle_error!(self, err, counterparty_node_id);
4070 /// Check whether any channels have finished removing all pending updates after a shutdown
4071 /// exchange and can now send a closing_signed.
4072 /// Returns whether any closing_signed messages were generated.
4073 fn maybe_generate_initial_closing_signed(&self) -> bool {
4074 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
4075 let mut has_update = false;
4077 let mut channel_state_lock = self.channel_state.lock().unwrap();
4078 let channel_state = &mut *channel_state_lock;
4079 let by_id = &mut channel_state.by_id;
4080 let short_to_id = &mut channel_state.short_to_id;
4081 let pending_msg_events = &mut channel_state.pending_msg_events;
4083 by_id.retain(|channel_id, chan| {
4084 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
4085 Ok((msg_opt, tx_opt)) => {
4086 if let Some(msg) = msg_opt {
4088 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4089 node_id: chan.get_counterparty_node_id(), msg,
4092 if let Some(tx) = tx_opt {
4093 // We're done with this channel. We got a closing_signed and sent back
4094 // a closing_signed with a closing transaction to broadcast.
4095 if let Some(short_id) = chan.get_short_channel_id() {
4096 short_to_id.remove(&short_id);
4099 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4100 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4105 if let Ok(mut pending_events_lock) = self.pending_events.lock() {
4106 pending_events_lock.push(events::Event::ChannelClosed {
4107 channel_id: *channel_id,
4108 reason: ClosureReason::CooperativeClosure
4112 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
4113 self.tx_broadcaster.broadcast_transaction(&tx);
4119 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4120 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
4127 for (counterparty_node_id, err) in handle_errors.drain(..) {
4128 let _ = handle_error!(self, err, counterparty_node_id);
4134 /// Handle a list of channel failures during a block_connected or block_disconnected call,
4135 /// pushing the channel monitor update (if any) to the background events queue and removing the
4137 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
4138 for mut failure in failed_channels.drain(..) {
4139 // Either a commitment transactions has been confirmed on-chain or
4140 // Channel::block_disconnected detected that the funding transaction has been
4141 // reorganized out of the main chain.
4142 // We cannot broadcast our latest local state via monitor update (as
4143 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
4144 // so we track the update internally and handle it when the user next calls
4145 // timer_tick_occurred, guaranteeing we're running normally.
4146 if let Some((funding_txo, update)) = failure.0.take() {
4147 assert_eq!(update.updates.len(), 1);
4148 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
4149 assert!(should_broadcast);
4150 } else { unreachable!(); }
4151 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
4153 self.finish_force_close_channel(failure);
4157 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
4158 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
4160 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
4162 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4163 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4164 match payment_secrets.entry(payment_hash) {
4165 hash_map::Entry::Vacant(e) => {
4166 e.insert(PendingInboundPayment {
4167 payment_secret, min_value_msat, user_payment_id, payment_preimage,
4168 // We assume that highest_seen_timestamp is pretty close to the current time -
4169 // its updated when we receive a new block with the maximum time we've seen in
4170 // a header. It should never be more than two hours in the future.
4171 // Thus, we add two hours here as a buffer to ensure we absolutely
4172 // never fail a payment too early.
4173 // Note that we assume that received blocks have reasonably up-to-date
4175 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
4178 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
4183 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
4186 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
4187 /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
4189 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
4190 /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
4191 /// passed directly to [`claim_funds`].
4193 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
4195 /// [`claim_funds`]: Self::claim_funds
4196 /// [`PaymentReceived`]: events::Event::PaymentReceived
4197 /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
4198 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
4199 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
4200 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
4201 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4204 self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
4205 .expect("RNG Generated Duplicate PaymentHash"))
4208 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
4209 /// stored external to LDK.
4211 /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
4212 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
4213 /// the `min_value_msat` provided here, if one is provided.
4215 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
4216 /// method may return an Err if another payment with the same payment_hash is still pending.
4218 /// `user_payment_id` will be provided back in [`PaymentPurpose::InvoicePayment::user_payment_id`] events to
4219 /// allow tracking of which events correspond with which calls to this and
4220 /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
4221 /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
4222 /// with invoice metadata stored elsewhere.
4224 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
4225 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
4226 /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
4227 /// sender "proof-of-payment" unless they have paid the required amount.
4229 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
4230 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
4231 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
4232 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
4233 /// invoices when no timeout is set.
4235 /// Note that we use block header time to time-out pending inbound payments (with some margin
4236 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
4237 /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
4238 /// If you need exact expiry semantics, you should enforce them upon receipt of
4239 /// [`PaymentReceived`].
4241 /// Pending inbound payments are stored in memory and in serialized versions of this
4242 /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
4243 /// space is limited, you may wish to rate-limit inbound payment creation.
4245 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
4247 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
4248 /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
4250 /// [`create_inbound_payment`]: Self::create_inbound_payment
4251 /// [`PaymentReceived`]: events::Event::PaymentReceived
4252 /// [`PaymentPurpose::InvoicePayment::user_payment_id`]: events::PaymentPurpose::InvoicePayment::user_payment_id
4253 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
4254 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
4257 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
4258 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
4259 let events = core::cell::RefCell::new(Vec::new());
4260 let event_handler = |event: &events::Event| events.borrow_mut().push(event.clone());
4261 self.process_pending_events(&event_handler);
4266 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
4267 where M::Target: chain::Watch<Signer>,
4268 T::Target: BroadcasterInterface,
4269 K::Target: KeysInterface<Signer = Signer>,
4270 F::Target: FeeEstimator,
4273 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
4274 let events = RefCell::new(Vec::new());
4275 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4276 let mut result = NotifyOption::SkipPersist;
4278 // TODO: This behavior should be documented. It's unintuitive that we query
4279 // ChannelMonitors when clearing other events.
4280 if self.process_pending_monitor_events() {
4281 result = NotifyOption::DoPersist;
4284 if self.check_free_holding_cells() {
4285 result = NotifyOption::DoPersist;
4287 if self.maybe_generate_initial_closing_signed() {
4288 result = NotifyOption::DoPersist;
4291 let mut pending_events = Vec::new();
4292 let mut channel_state = self.channel_state.lock().unwrap();
4293 mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
4295 if !pending_events.is_empty() {
4296 events.replace(pending_events);
4305 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
4307 M::Target: chain::Watch<Signer>,
4308 T::Target: BroadcasterInterface,
4309 K::Target: KeysInterface<Signer = Signer>,
4310 F::Target: FeeEstimator,
4313 /// Processes events that must be periodically handled.
4315 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
4316 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
4318 /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
4319 /// when processed, an [`EventHandler`] must be able to handle previously seen events when
4320 /// restarting from an old state.
4321 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
4322 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4323 let mut result = NotifyOption::SkipPersist;
4325 // TODO: This behavior should be documented. It's unintuitive that we query
4326 // ChannelMonitors when clearing other events.
4327 if self.process_pending_monitor_events() {
4328 result = NotifyOption::DoPersist;
4331 let mut pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
4332 if !pending_events.is_empty() {
4333 result = NotifyOption::DoPersist;
4336 for event in pending_events.drain(..) {
4337 handler.handle_event(&event);
4345 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
4347 M::Target: chain::Watch<Signer>,
4348 T::Target: BroadcasterInterface,
4349 K::Target: KeysInterface<Signer = Signer>,
4350 F::Target: FeeEstimator,
4353 fn block_connected(&self, block: &Block, height: u32) {
4355 let best_block = self.best_block.read().unwrap();
4356 assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
4357 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
4358 assert_eq!(best_block.height(), height - 1,
4359 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
4362 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
4363 self.transactions_confirmed(&block.header, &txdata, height);
4364 self.best_block_updated(&block.header, height);
4367 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
4368 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4369 let new_height = height - 1;
4371 let mut best_block = self.best_block.write().unwrap();
4372 assert_eq!(best_block.block_hash(), header.block_hash(),
4373 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
4374 assert_eq!(best_block.height(), height,
4375 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
4376 *best_block = BestBlock::new(header.prev_blockhash, new_height)
4379 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, &self.logger));
4383 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
4385 M::Target: chain::Watch<Signer>,
4386 T::Target: BroadcasterInterface,
4387 K::Target: KeysInterface<Signer = Signer>,
4388 F::Target: FeeEstimator,
4391 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
4392 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4393 // during initialization prior to the chain_monitor being fully configured in some cases.
4394 // See the docs for `ChannelManagerReadArgs` for more.
4396 let block_hash = header.block_hash();
4397 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
4399 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4400 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
4403 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
4404 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4405 // during initialization prior to the chain_monitor being fully configured in some cases.
4406 // See the docs for `ChannelManagerReadArgs` for more.
4408 let block_hash = header.block_hash();
4409 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
4411 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4413 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
4415 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, &self.logger));
4417 macro_rules! max_time {
4418 ($timestamp: expr) => {
4420 // Update $timestamp to be the max of its current value and the block
4421 // timestamp. This should keep us close to the current time without relying on
4422 // having an explicit local time source.
4423 // Just in case we end up in a race, we loop until we either successfully
4424 // update $timestamp or decide we don't need to.
4425 let old_serial = $timestamp.load(Ordering::Acquire);
4426 if old_serial >= header.time as usize { break; }
4427 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
4433 max_time!(self.last_node_announcement_serial);
4434 max_time!(self.highest_seen_timestamp);
4435 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4436 payment_secrets.retain(|_, inbound_payment| {
4437 inbound_payment.expiry_time > header.time as u64
4441 fn get_relevant_txids(&self) -> Vec<Txid> {
4442 let channel_state = self.channel_state.lock().unwrap();
4443 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
4444 for chan in channel_state.by_id.values() {
4445 if let Some(funding_txo) = chan.get_funding_txo() {
4446 res.push(funding_txo.txid);
4452 fn transaction_unconfirmed(&self, txid: &Txid) {
4453 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4454 self.do_chain_event(None, |channel| {
4455 if let Some(funding_txo) = channel.get_funding_txo() {
4456 if funding_txo.txid == *txid {
4457 channel.funding_transaction_unconfirmed(&self.logger).map(|_| (None, Vec::new()))
4458 } else { Ok((None, Vec::new())) }
4459 } else { Ok((None, Vec::new())) }
4464 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
4466 M::Target: chain::Watch<Signer>,
4467 T::Target: BroadcasterInterface,
4468 K::Target: KeysInterface<Signer = Signer>,
4469 F::Target: FeeEstimator,
4472 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
4473 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
4475 fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
4476 (&self, height_opt: Option<u32>, f: FN) {
4477 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4478 // during initialization prior to the chain_monitor being fully configured in some cases.
4479 // See the docs for `ChannelManagerReadArgs` for more.
4481 let mut failed_channels = Vec::new();
4482 let mut timed_out_htlcs = Vec::new();
4484 let mut channel_lock = self.channel_state.lock().unwrap();
4485 let channel_state = &mut *channel_lock;
4486 let short_to_id = &mut channel_state.short_to_id;
4487 let pending_msg_events = &mut channel_state.pending_msg_events;
4488 channel_state.by_id.retain(|_, channel| {
4489 let res = f(channel);
4490 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
4491 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
4492 let chan_update = self.get_channel_update_for_unicast(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
4493 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
4494 failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
4498 if let Some(funding_locked) = chan_res {
4499 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
4500 node_id: channel.get_counterparty_node_id(),
4501 msg: funding_locked,
4503 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
4504 log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
4505 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4506 node_id: channel.get_counterparty_node_id(),
4507 msg: announcement_sigs,
4509 } else if channel.is_usable() {
4510 log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures but with private channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
4511 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4512 node_id: channel.get_counterparty_node_id(),
4513 msg: self.get_channel_update_for_unicast(channel).unwrap(),
4516 log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
4518 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
4520 } else if let Err(e) = res {
4521 if let Some(short_id) = channel.get_short_channel_id() {
4522 short_to_id.remove(&short_id);
4524 // It looks like our counterparty went on-chain or funding transaction was
4525 // reorged out of the main chain. Close the channel.
4526 failed_channels.push(channel.force_shutdown(true));
4527 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
4528 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4532 self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id: channel.channel_id(), reason: ClosureReason::CommitmentTxConfirmed });
4533 pending_msg_events.push(events::MessageSendEvent::HandleError {
4534 node_id: channel.get_counterparty_node_id(),
4535 action: msgs::ErrorAction::SendErrorMessage { msg: e },
4542 if let Some(height) = height_opt {
4543 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
4544 htlcs.retain(|htlc| {
4545 // If height is approaching the number of blocks we think it takes us to get
4546 // our commitment transaction confirmed before the HTLC expires, plus the
4547 // number of blocks we generally consider it to take to do a commitment update,
4548 // just give up on it and fail the HTLC.
4549 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
4550 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
4551 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
4552 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
4553 failure_code: 0x4000 | 15,
4554 data: htlc_msat_height_data
4559 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
4564 self.handle_init_event_channel_failures(failed_channels);
4566 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
4567 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
4571 /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
4572 /// indicating whether persistence is necessary. Only one listener on
4573 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4575 /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
4576 #[cfg(any(test, feature = "allow_wallclock_use"))]
4577 pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
4578 self.persistence_notifier.wait_timeout(max_wait)
4581 /// Blocks until ChannelManager needs to be persisted. Only one listener on
4582 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4584 pub fn await_persistable_update(&self) {
4585 self.persistence_notifier.wait()
4588 #[cfg(any(test, feature = "_test_utils"))]
4589 pub fn get_persistence_condvar_value(&self) -> bool {
4590 let mutcond = &self.persistence_notifier.persistence_lock;
4591 let &(ref mtx, _) = mutcond;
4592 let guard = mtx.lock().unwrap();
4596 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
4597 /// [`chain::Confirm`] interfaces.
4598 pub fn current_best_block(&self) -> BestBlock {
4599 self.best_block.read().unwrap().clone()
4603 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
4604 ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
4605 where M::Target: chain::Watch<Signer>,
4606 T::Target: BroadcasterInterface,
4607 K::Target: KeysInterface<Signer = Signer>,
4608 F::Target: FeeEstimator,
4611 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
4612 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4613 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4616 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
4617 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4618 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4621 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
4622 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4623 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
4626 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
4627 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4628 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
4631 fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
4632 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4633 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
4636 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
4637 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4638 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
4641 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
4642 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4643 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
4646 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
4647 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4648 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
4651 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
4652 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4653 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
4656 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
4657 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4658 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
4661 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
4662 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4663 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
4666 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
4667 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4668 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
4671 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
4672 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4673 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
4676 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
4677 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4678 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
4681 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
4682 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4683 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
4686 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
4687 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4688 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
4691 NotifyOption::SkipPersist
4696 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
4697 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4698 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
4701 fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
4702 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4703 let mut failed_channels = Vec::new();
4704 let mut no_channels_remain = true;
4706 let mut channel_state_lock = self.channel_state.lock().unwrap();
4707 let channel_state = &mut *channel_state_lock;
4708 let short_to_id = &mut channel_state.short_to_id;
4709 let pending_msg_events = &mut channel_state.pending_msg_events;
4710 if no_connection_possible {
4711 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
4712 channel_state.by_id.retain(|_, chan| {
4713 if chan.get_counterparty_node_id() == *counterparty_node_id {
4714 if let Some(short_id) = chan.get_short_channel_id() {
4715 short_to_id.remove(&short_id);
4717 failed_channels.push(chan.force_shutdown(true));
4718 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4719 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4723 self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id: chan.channel_id(), reason: ClosureReason::DisconnectedPeer });
4730 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
4731 channel_state.by_id.retain(|_, chan| {
4732 if chan.get_counterparty_node_id() == *counterparty_node_id {
4733 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
4734 if chan.is_shutdown() {
4735 if let Some(short_id) = chan.get_short_channel_id() {
4736 short_to_id.remove(&short_id);
4738 self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id: chan.channel_id(), reason: ClosureReason::DisconnectedPeer });
4741 no_channels_remain = false;
4747 pending_msg_events.retain(|msg| {
4749 &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
4750 &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
4751 &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
4752 &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4753 &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
4754 &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
4755 &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
4756 &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
4757 &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4758 &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
4759 &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
4760 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
4761 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
4762 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
4763 &events::MessageSendEvent::SendChannelUpdate { ref node_id, .. } => node_id != counterparty_node_id,
4764 &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
4765 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
4766 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
4767 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
4771 if no_channels_remain {
4772 self.per_peer_state.write().unwrap().remove(counterparty_node_id);
4775 for failure in failed_channels.drain(..) {
4776 self.finish_force_close_channel(failure);
4780 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
4781 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
4783 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4786 let mut peer_state_lock = self.per_peer_state.write().unwrap();
4787 match peer_state_lock.entry(counterparty_node_id.clone()) {
4788 hash_map::Entry::Vacant(e) => {
4789 e.insert(Mutex::new(PeerState {
4790 latest_features: init_msg.features.clone(),
4793 hash_map::Entry::Occupied(e) => {
4794 e.get().lock().unwrap().latest_features = init_msg.features.clone();
4799 let mut channel_state_lock = self.channel_state.lock().unwrap();
4800 let channel_state = &mut *channel_state_lock;
4801 let pending_msg_events = &mut channel_state.pending_msg_events;
4802 channel_state.by_id.retain(|_, chan| {
4803 if chan.get_counterparty_node_id() == *counterparty_node_id {
4804 if !chan.have_received_message() {
4805 // If we created this (outbound) channel while we were disconnected from the
4806 // peer we probably failed to send the open_channel message, which is now
4807 // lost. We can't have had anything pending related to this channel, so we just
4811 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
4812 node_id: chan.get_counterparty_node_id(),
4813 msg: chan.get_channel_reestablish(&self.logger),
4819 //TODO: Also re-broadcast announcement_signatures
4822 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
4823 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4825 if msg.channel_id == [0; 32] {
4826 for chan in self.list_channels() {
4827 if chan.counterparty.node_id == *counterparty_node_id {
4828 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4829 let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id), Some(&msg.data));
4833 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4834 let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id), Some(&msg.data));
4839 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4840 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4841 struct PersistenceNotifier {
4842 /// Users won't access the persistence_lock directly, but rather wait on its bool using
4843 /// `wait_timeout` and `wait`.
4844 persistence_lock: (Mutex<bool>, Condvar),
4847 impl PersistenceNotifier {
4850 persistence_lock: (Mutex::new(false), Condvar::new()),
4856 let &(ref mtx, ref cvar) = &self.persistence_lock;
4857 let mut guard = mtx.lock().unwrap();
4862 guard = cvar.wait(guard).unwrap();
4863 let result = *guard;
4871 #[cfg(any(test, feature = "allow_wallclock_use"))]
4872 fn wait_timeout(&self, max_wait: Duration) -> bool {
4873 let current_time = Instant::now();
4875 let &(ref mtx, ref cvar) = &self.persistence_lock;
4876 let mut guard = mtx.lock().unwrap();
4881 guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4882 // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4883 // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4884 // time. Note that this logic can be highly simplified through the use of
4885 // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4887 let elapsed = current_time.elapsed();
4888 let result = *guard;
4889 if result || elapsed >= max_wait {
4893 match max_wait.checked_sub(elapsed) {
4894 None => return result,
4900 // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4902 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4903 let mut persistence_lock = persist_mtx.lock().unwrap();
4904 *persistence_lock = true;
4905 mem::drop(persistence_lock);
4910 const SERIALIZATION_VERSION: u8 = 1;
4911 const MIN_SERIALIZATION_VERSION: u8 = 1;
4913 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
4915 (0, onion_packet, required),
4916 (2, short_channel_id, required),
4919 (0, payment_data, required),
4920 (2, incoming_cltv_expiry, required),
4922 (2, ReceiveKeysend) => {
4923 (0, payment_preimage, required),
4924 (2, incoming_cltv_expiry, required),
4928 impl_writeable_tlv_based!(PendingHTLCInfo, {
4929 (0, routing, required),
4930 (2, incoming_shared_secret, required),
4931 (4, payment_hash, required),
4932 (6, amt_to_forward, required),
4933 (8, outgoing_cltv_value, required)
4937 impl Writeable for HTLCFailureMsg {
4938 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
4940 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
4942 channel_id.write(writer)?;
4943 htlc_id.write(writer)?;
4944 reason.write(writer)?;
4946 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
4947 channel_id, htlc_id, sha256_of_onion, failure_code
4950 channel_id.write(writer)?;
4951 htlc_id.write(writer)?;
4952 sha256_of_onion.write(writer)?;
4953 failure_code.write(writer)?;
4960 impl Readable for HTLCFailureMsg {
4961 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
4962 let id: u8 = Readable::read(reader)?;
4965 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
4966 channel_id: Readable::read(reader)?,
4967 htlc_id: Readable::read(reader)?,
4968 reason: Readable::read(reader)?,
4972 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
4973 channel_id: Readable::read(reader)?,
4974 htlc_id: Readable::read(reader)?,
4975 sha256_of_onion: Readable::read(reader)?,
4976 failure_code: Readable::read(reader)?,
4979 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
4980 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
4981 // messages contained in the variants.
4982 // In version 0.0.101, support for reading the variants with these types was added, and
4983 // we should migrate to writing these variants when UpdateFailHTLC or
4984 // UpdateFailMalformedHTLC get TLV fields.
4986 let length: BigSize = Readable::read(reader)?;
4987 let mut s = FixedLengthReader::new(reader, length.0);
4988 let res = Readable::read(&mut s)?;
4989 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
4990 Ok(HTLCFailureMsg::Relay(res))
4993 let length: BigSize = Readable::read(reader)?;
4994 let mut s = FixedLengthReader::new(reader, length.0);
4995 let res = Readable::read(&mut s)?;
4996 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
4997 Ok(HTLCFailureMsg::Malformed(res))
4999 _ => Err(DecodeError::UnknownRequiredFeature),
5004 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
5009 impl_writeable_tlv_based!(HTLCPreviousHopData, {
5010 (0, short_channel_id, required),
5011 (2, outpoint, required),
5012 (4, htlc_id, required),
5013 (6, incoming_packet_shared_secret, required)
5016 impl Writeable for ClaimableHTLC {
5017 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5018 let payment_data = match &self.onion_payload {
5019 OnionPayload::Invoice(data) => Some(data.clone()),
5022 let keysend_preimage = match self.onion_payload {
5023 OnionPayload::Invoice(_) => None,
5024 OnionPayload::Spontaneous(preimage) => Some(preimage.clone()),
5029 (0, self.prev_hop, required), (2, self.value, required),
5030 (4, payment_data, option), (6, self.cltv_expiry, required),
5031 (8, keysend_preimage, option),
5037 impl Readable for ClaimableHTLC {
5038 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
5039 let mut prev_hop = ::util::ser::OptionDeserWrapper(None);
5041 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
5042 let mut cltv_expiry = 0;
5043 let mut keysend_preimage: Option<PaymentPreimage> = None;
5047 (0, prev_hop, required), (2, value, required),
5048 (4, payment_data, option), (6, cltv_expiry, required),
5049 (8, keysend_preimage, option)
5051 let onion_payload = match keysend_preimage {
5053 if payment_data.is_some() {
5054 return Err(DecodeError::InvalidValue)
5056 OnionPayload::Spontaneous(p)
5059 if payment_data.is_none() {
5060 return Err(DecodeError::InvalidValue)
5062 OnionPayload::Invoice(payment_data.unwrap())
5066 prev_hop: prev_hop.0.unwrap(),
5074 impl Readable for HTLCSource {
5075 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
5076 let id: u8 = Readable::read(reader)?;
5079 let mut session_priv: ::util::ser::OptionDeserWrapper<SecretKey> = ::util::ser::OptionDeserWrapper(None);
5080 let mut first_hop_htlc_msat: u64 = 0;
5081 let mut path = Some(Vec::new());
5082 let mut payment_id = None;
5083 read_tlv_fields!(reader, {
5084 (0, session_priv, required),
5085 (1, payment_id, option),
5086 (2, first_hop_htlc_msat, required),
5087 (4, path, vec_type),
5089 if payment_id.is_none() {
5090 // For backwards compat, if there was no payment_id written, use the session_priv bytes
5092 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
5094 Ok(HTLCSource::OutboundRoute {
5095 session_priv: session_priv.0.unwrap(),
5096 first_hop_htlc_msat: first_hop_htlc_msat,
5097 path: path.unwrap(),
5098 payment_id: payment_id.unwrap(),
5101 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
5102 _ => Err(DecodeError::UnknownRequiredFeature),
5107 impl Writeable for HTLCSource {
5108 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::io::Error> {
5110 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
5112 let payment_id_opt = Some(payment_id);
5113 write_tlv_fields!(writer, {
5114 (0, session_priv, required),
5115 (1, payment_id_opt, option),
5116 (2, first_hop_htlc_msat, required),
5117 (4, path, vec_type),
5120 HTLCSource::PreviousHopData(ref field) => {
5122 field.write(writer)?;
5129 impl_writeable_tlv_based_enum!(HTLCFailReason,
5130 (0, LightningError) => {
5134 (0, failure_code, required),
5135 (2, data, vec_type),
5139 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
5141 (0, forward_info, required),
5142 (2, prev_short_channel_id, required),
5143 (4, prev_htlc_id, required),
5144 (6, prev_funding_outpoint, required),
5147 (0, htlc_id, required),
5148 (2, err_packet, required),
5152 impl_writeable_tlv_based!(PendingInboundPayment, {
5153 (0, payment_secret, required),
5154 (2, expiry_time, required),
5155 (4, user_payment_id, required),
5156 (6, payment_preimage, required),
5157 (8, min_value_msat, required),
5160 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
5161 where M::Target: chain::Watch<Signer>,
5162 T::Target: BroadcasterInterface,
5163 K::Target: KeysInterface<Signer = Signer>,
5164 F::Target: FeeEstimator,
5167 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5168 let _consistency_lock = self.total_consistency_lock.write().unwrap();
5170 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
5172 self.genesis_hash.write(writer)?;
5174 let best_block = self.best_block.read().unwrap();
5175 best_block.height().write(writer)?;
5176 best_block.block_hash().write(writer)?;
5179 let channel_state = self.channel_state.lock().unwrap();
5180 let mut unfunded_channels = 0;
5181 for (_, channel) in channel_state.by_id.iter() {
5182 if !channel.is_funding_initiated() {
5183 unfunded_channels += 1;
5186 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
5187 for (_, channel) in channel_state.by_id.iter() {
5188 if channel.is_funding_initiated() {
5189 channel.write(writer)?;
5193 (channel_state.forward_htlcs.len() as u64).write(writer)?;
5194 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
5195 short_channel_id.write(writer)?;
5196 (pending_forwards.len() as u64).write(writer)?;
5197 for forward in pending_forwards {
5198 forward.write(writer)?;
5202 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
5203 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
5204 payment_hash.write(writer)?;
5205 (previous_hops.len() as u64).write(writer)?;
5206 for htlc in previous_hops.iter() {
5207 htlc.write(writer)?;
5211 let per_peer_state = self.per_peer_state.write().unwrap();
5212 (per_peer_state.len() as u64).write(writer)?;
5213 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
5214 peer_pubkey.write(writer)?;
5215 let peer_state = peer_state_mutex.lock().unwrap();
5216 peer_state.latest_features.write(writer)?;
5219 let events = self.pending_events.lock().unwrap();
5220 (events.len() as u64).write(writer)?;
5221 for event in events.iter() {
5222 event.write(writer)?;
5225 let background_events = self.pending_background_events.lock().unwrap();
5226 (background_events.len() as u64).write(writer)?;
5227 for event in background_events.iter() {
5229 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
5231 funding_txo.write(writer)?;
5232 monitor_update.write(writer)?;
5237 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
5238 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
5240 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
5241 (pending_inbound_payments.len() as u64).write(writer)?;
5242 for (hash, pending_payment) in pending_inbound_payments.iter() {
5243 hash.write(writer)?;
5244 pending_payment.write(writer)?;
5247 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
5248 // For backwards compat, write the session privs and their total length.
5249 let mut num_pending_outbounds_compat: u64 = 0;
5250 for (_, outbounds) in pending_outbound_payments.iter() {
5251 num_pending_outbounds_compat += outbounds.len() as u64;
5253 num_pending_outbounds_compat.write(writer)?;
5254 for (_, outbounds) in pending_outbound_payments.iter() {
5255 for outbound in outbounds.iter() {
5256 outbound.write(writer)?;
5260 write_tlv_fields!(writer, {
5261 (1, pending_outbound_payments, required),
5268 /// Arguments for the creation of a ChannelManager that are not deserialized.
5270 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
5272 /// 1) Deserialize all stored ChannelMonitors.
5273 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
5274 /// <(BlockHash, ChannelManager)>::read(reader, args)
5275 /// This may result in closing some Channels if the ChannelMonitor is newer than the stored
5276 /// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
5277 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
5278 /// way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
5279 /// ChannelMonitor::get_funding_txo().
5280 /// 4) Reconnect blocks on your ChannelMonitors.
5281 /// 5) Disconnect/connect blocks on the ChannelManager.
5282 /// 6) Move the ChannelMonitors into your local chain::Watch.
5284 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
5285 /// call any other methods on the newly-deserialized ChannelManager.
5287 /// Note that because some channels may be closed during deserialization, it is critical that you
5288 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
5289 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
5290 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
5291 /// not force-close the same channels but consider them live), you may end up revoking a state for
5292 /// which you've already broadcasted the transaction.
5293 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5294 where M::Target: chain::Watch<Signer>,
5295 T::Target: BroadcasterInterface,
5296 K::Target: KeysInterface<Signer = Signer>,
5297 F::Target: FeeEstimator,
5300 /// The keys provider which will give us relevant keys. Some keys will be loaded during
5301 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
5303 pub keys_manager: K,
5305 /// The fee_estimator for use in the ChannelManager in the future.
5307 /// No calls to the FeeEstimator will be made during deserialization.
5308 pub fee_estimator: F,
5309 /// The chain::Watch for use in the ChannelManager in the future.
5311 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
5312 /// you have deserialized ChannelMonitors separately and will add them to your
5313 /// chain::Watch after deserializing this ChannelManager.
5314 pub chain_monitor: M,
5316 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
5317 /// used to broadcast the latest local commitment transactions of channels which must be
5318 /// force-closed during deserialization.
5319 pub tx_broadcaster: T,
5320 /// The Logger for use in the ChannelManager and which may be used to log information during
5321 /// deserialization.
5323 /// Default settings used for new channels. Any existing channels will continue to use the
5324 /// runtime settings which were stored when the ChannelManager was serialized.
5325 pub default_config: UserConfig,
5327 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
5328 /// value.get_funding_txo() should be the key).
5330 /// If a monitor is inconsistent with the channel state during deserialization the channel will
5331 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
5332 /// is true for missing channels as well. If there is a monitor missing for which we find
5333 /// channel data Err(DecodeError::InvalidValue) will be returned.
5335 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
5338 /// (C-not exported) because we have no HashMap bindings
5339 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
5342 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5343 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
5344 where M::Target: chain::Watch<Signer>,
5345 T::Target: BroadcasterInterface,
5346 K::Target: KeysInterface<Signer = Signer>,
5347 F::Target: FeeEstimator,
5350 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
5351 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
5352 /// populate a HashMap directly from C.
5353 pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
5354 mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
5356 keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
5357 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
5362 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
5363 // SipmleArcChannelManager type:
5364 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5365 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
5366 where M::Target: chain::Watch<Signer>,
5367 T::Target: BroadcasterInterface,
5368 K::Target: KeysInterface<Signer = Signer>,
5369 F::Target: FeeEstimator,
5372 fn read<R: io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
5373 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
5374 Ok((blockhash, Arc::new(chan_manager)))
5378 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5379 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
5380 where M::Target: chain::Watch<Signer>,
5381 T::Target: BroadcasterInterface,
5382 K::Target: KeysInterface<Signer = Signer>,
5383 F::Target: FeeEstimator,
5386 fn read<R: io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
5387 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
5389 let genesis_hash: BlockHash = Readable::read(reader)?;
5390 let best_block_height: u32 = Readable::read(reader)?;
5391 let best_block_hash: BlockHash = Readable::read(reader)?;
5393 let mut failed_htlcs = Vec::new();
5395 let channel_count: u64 = Readable::read(reader)?;
5396 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
5397 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
5398 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
5399 let mut channel_closures = Vec::new();
5400 for _ in 0..channel_count {
5401 let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
5402 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
5403 funding_txo_set.insert(funding_txo.clone());
5404 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
5405 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
5406 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
5407 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
5408 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
5409 // If the channel is ahead of the monitor, return InvalidValue:
5410 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
5411 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
5412 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
5413 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
5414 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
5415 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
5416 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
5417 return Err(DecodeError::InvalidValue);
5418 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
5419 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
5420 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
5421 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
5422 // But if the channel is behind of the monitor, close the channel:
5423 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
5424 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
5425 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
5426 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
5427 let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
5428 failed_htlcs.append(&mut new_failed_htlcs);
5429 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
5430 channel_closures.push(events::Event::ChannelClosed {
5431 channel_id: channel.channel_id(),
5432 reason: ClosureReason::OutdatedChannelManager
5435 if let Some(short_channel_id) = channel.get_short_channel_id() {
5436 short_to_id.insert(short_channel_id, channel.channel_id());
5438 by_id.insert(channel.channel_id(), channel);
5441 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
5442 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
5443 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
5444 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
5445 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
5446 return Err(DecodeError::InvalidValue);
5450 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
5451 if !funding_txo_set.contains(funding_txo) {
5452 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
5456 const MAX_ALLOC_SIZE: usize = 1024 * 64;
5457 let forward_htlcs_count: u64 = Readable::read(reader)?;
5458 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
5459 for _ in 0..forward_htlcs_count {
5460 let short_channel_id = Readable::read(reader)?;
5461 let pending_forwards_count: u64 = Readable::read(reader)?;
5462 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
5463 for _ in 0..pending_forwards_count {
5464 pending_forwards.push(Readable::read(reader)?);
5466 forward_htlcs.insert(short_channel_id, pending_forwards);
5469 let claimable_htlcs_count: u64 = Readable::read(reader)?;
5470 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
5471 for _ in 0..claimable_htlcs_count {
5472 let payment_hash = Readable::read(reader)?;
5473 let previous_hops_len: u64 = Readable::read(reader)?;
5474 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
5475 for _ in 0..previous_hops_len {
5476 previous_hops.push(Readable::read(reader)?);
5478 claimable_htlcs.insert(payment_hash, previous_hops);
5481 let peer_count: u64 = Readable::read(reader)?;
5482 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
5483 for _ in 0..peer_count {
5484 let peer_pubkey = Readable::read(reader)?;
5485 let peer_state = PeerState {
5486 latest_features: Readable::read(reader)?,
5488 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
5491 let event_count: u64 = Readable::read(reader)?;
5492 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
5493 for _ in 0..event_count {
5494 match MaybeReadable::read(reader)? {
5495 Some(event) => pending_events_read.push(event),
5500 let background_event_count: u64 = Readable::read(reader)?;
5501 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
5502 for _ in 0..background_event_count {
5503 match <u8 as Readable>::read(reader)? {
5504 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
5505 _ => return Err(DecodeError::InvalidValue),
5509 let last_node_announcement_serial: u32 = Readable::read(reader)?;
5510 let highest_seen_timestamp: u32 = Readable::read(reader)?;
5512 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
5513 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
5514 for _ in 0..pending_inbound_payment_count {
5515 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
5516 return Err(DecodeError::InvalidValue);
5520 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
5521 let mut pending_outbound_payments_compat: HashMap<PaymentId, HashSet<[u8; 32]>> =
5522 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
5523 for _ in 0..pending_outbound_payments_count_compat {
5524 let session_priv = Readable::read(reader)?;
5525 if pending_outbound_payments_compat.insert(PaymentId(session_priv), [session_priv].iter().cloned().collect()).is_some() {
5526 return Err(DecodeError::InvalidValue)
5530 let mut pending_outbound_payments = None;
5531 read_tlv_fields!(reader, {
5532 (1, pending_outbound_payments, option),
5534 if pending_outbound_payments.is_none() {
5535 pending_outbound_payments = Some(pending_outbound_payments_compat);
5538 let mut secp_ctx = Secp256k1::new();
5539 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
5541 if !channel_closures.is_empty() {
5542 pending_events_read.append(&mut channel_closures);
5545 let channel_manager = ChannelManager {
5547 fee_estimator: args.fee_estimator,
5548 chain_monitor: args.chain_monitor,
5549 tx_broadcaster: args.tx_broadcaster,
5551 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
5553 channel_state: Mutex::new(ChannelHolder {
5558 pending_msg_events: Vec::new(),
5560 pending_inbound_payments: Mutex::new(pending_inbound_payments),
5561 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
5563 our_network_key: args.keys_manager.get_node_secret(),
5564 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
5567 last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
5568 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
5570 per_peer_state: RwLock::new(per_peer_state),
5572 pending_events: Mutex::new(pending_events_read),
5573 pending_background_events: Mutex::new(pending_background_events_read),
5574 total_consistency_lock: RwLock::new(()),
5575 persistence_notifier: PersistenceNotifier::new(),
5577 keys_manager: args.keys_manager,
5578 logger: args.logger,
5579 default_configuration: args.default_config,
5582 for htlc_source in failed_htlcs.drain(..) {
5583 channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
5586 //TODO: Broadcast channel update for closed channels, but only after we've made a
5587 //connection or two.
5589 Ok((best_block_hash.clone(), channel_manager))
5595 use bitcoin::hashes::Hash;
5596 use bitcoin::hashes::sha256::Hash as Sha256;
5597 use core::time::Duration;
5598 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
5599 use ln::channelmanager::{PaymentId, PaymentSendFailure};
5600 use ln::features::{InitFeatures, InvoiceFeatures};
5601 use ln::functional_test_utils::*;
5603 use ln::msgs::ChannelMessageHandler;
5604 use routing::router::{get_keysend_route, get_route};
5605 use util::errors::APIError;
5606 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
5607 use util::test_utils;
5609 #[cfg(feature = "std")]
5611 fn test_wait_timeout() {
5612 use ln::channelmanager::PersistenceNotifier;
5614 use core::sync::atomic::{AtomicBool, Ordering};
5617 let persistence_notifier = Arc::new(PersistenceNotifier::new());
5618 let thread_notifier = Arc::clone(&persistence_notifier);
5620 let exit_thread = Arc::new(AtomicBool::new(false));
5621 let exit_thread_clone = exit_thread.clone();
5622 thread::spawn(move || {
5624 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
5625 let mut persistence_lock = persist_mtx.lock().unwrap();
5626 *persistence_lock = true;
5629 if exit_thread_clone.load(Ordering::SeqCst) {
5635 // Check that we can block indefinitely until updates are available.
5636 let _ = persistence_notifier.wait();
5638 // Check that the PersistenceNotifier will return after the given duration if updates are
5641 if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
5646 exit_thread.store(true, Ordering::SeqCst);
5648 // Check that the PersistenceNotifier will return after the given duration even if no updates
5651 if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
5658 fn test_notify_limits() {
5659 // Check that a few cases which don't require the persistence of a new ChannelManager,
5660 // indeed, do not cause the persistence of a new ChannelManager.
5661 let chanmon_cfgs = create_chanmon_cfgs(3);
5662 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
5663 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
5664 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
5666 // All nodes start with a persistable update pending as `create_network` connects each node
5667 // with all other nodes to make most tests simpler.
5668 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5669 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5670 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
5672 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
5674 // We check that the channel info nodes have doesn't change too early, even though we try
5675 // to connect messages with new values
5676 chan.0.contents.fee_base_msat *= 2;
5677 chan.1.contents.fee_base_msat *= 2;
5678 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
5679 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
5681 // The first two nodes (which opened a channel) should now require fresh persistence
5682 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5683 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5684 // ... but the last node should not.
5685 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
5686 // After persisting the first two nodes they should no longer need fresh persistence.
5687 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5688 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5690 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
5691 // about the channel.
5692 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
5693 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
5694 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
5696 // The nodes which are a party to the channel should also ignore messages from unrelated
5698 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
5699 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
5700 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
5701 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
5702 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5703 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5705 // At this point the channel info given by peers should still be the same.
5706 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
5707 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
5709 // An earlier version of handle_channel_update didn't check the directionality of the
5710 // update message and would always update the local fee info, even if our peer was
5711 // (spuriously) forwarding us our own channel_update.
5712 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
5713 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
5714 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
5716 // First deliver each peers' own message, checking that the node doesn't need to be
5717 // persisted and that its channel info remains the same.
5718 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
5719 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
5720 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5721 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5722 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
5723 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
5725 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
5726 // the channel info has updated.
5727 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
5728 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
5729 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5730 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5731 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
5732 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
5736 fn test_keysend_dup_hash_partial_mpp() {
5737 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
5739 let chanmon_cfgs = create_chanmon_cfgs(2);
5740 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
5741 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
5742 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
5743 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
5744 let logger = test_utils::TestLogger::new();
5746 // First, send a partial MPP payment.
5747 let net_graph_msg_handler = &nodes[0].net_graph_msg_handler;
5748 let route = get_route(&nodes[0].node.get_our_node_id(), &net_graph_msg_handler.network_graph, &nodes[1].node.get_our_node_id(), Some(InvoiceFeatures::known()), None, &Vec::new(), 100_000, TEST_FINAL_CLTV, &logger).unwrap();
5749 let (payment_preimage, our_payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[1]);
5750 let payment_id = PaymentId([42; 32]);
5751 // Use the utility function send_payment_along_path to send the payment with MPP data which
5752 // indicates there are more HTLCs coming.
5753 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
5754 nodes[0].node.send_payment_along_path(&route.paths[0], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
5755 check_added_monitors!(nodes[0], 1);
5756 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
5757 assert_eq!(events.len(), 1);
5758 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
5760 // Next, send a keysend payment with the same payment_hash and make sure it fails.
5761 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
5762 check_added_monitors!(nodes[0], 1);
5763 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
5764 assert_eq!(events.len(), 1);
5765 let ev = events.drain(..).next().unwrap();
5766 let payment_event = SendEvent::from_event(ev);
5767 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
5768 check_added_monitors!(nodes[1], 0);
5769 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
5770 expect_pending_htlcs_forwardable!(nodes[1]);
5771 expect_pending_htlcs_forwardable!(nodes[1]);
5772 check_added_monitors!(nodes[1], 1);
5773 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
5774 assert!(updates.update_add_htlcs.is_empty());
5775 assert!(updates.update_fulfill_htlcs.is_empty());
5776 assert_eq!(updates.update_fail_htlcs.len(), 1);
5777 assert!(updates.update_fail_malformed_htlcs.is_empty());
5778 assert!(updates.update_fee.is_none());
5779 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
5780 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
5781 expect_payment_failed!(nodes[0], our_payment_hash, true);
5783 // Send the second half of the original MPP payment.
5784 nodes[0].node.send_payment_along_path(&route.paths[0], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
5785 check_added_monitors!(nodes[0], 1);
5786 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
5787 assert_eq!(events.len(), 1);
5788 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
5790 // Claim the full MPP payment. Note that we can't use a test utility like
5791 // claim_funds_along_route because the ordering of the messages causes the second half of the
5792 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
5793 // lightning messages manually.
5794 assert!(nodes[1].node.claim_funds(payment_preimage));
5795 check_added_monitors!(nodes[1], 2);
5796 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
5797 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
5798 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
5799 check_added_monitors!(nodes[0], 1);
5800 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
5801 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
5802 check_added_monitors!(nodes[1], 1);
5803 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
5804 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
5805 check_added_monitors!(nodes[1], 1);
5806 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
5807 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
5808 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
5809 check_added_monitors!(nodes[0], 1);
5810 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
5811 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
5812 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
5813 check_added_monitors!(nodes[0], 1);
5814 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
5815 check_added_monitors!(nodes[1], 1);
5816 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
5817 check_added_monitors!(nodes[1], 1);
5818 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
5819 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
5820 check_added_monitors!(nodes[0], 1);
5822 // Note that successful MPP payments will generate 1 event upon the first path's success. No
5823 // further events will be generated for subsequence path successes.
5824 let events = nodes[0].node.get_and_clear_pending_events();
5826 Event::PaymentSent { payment_preimage: ref preimage } => {
5827 assert_eq!(payment_preimage, *preimage);
5829 _ => panic!("Unexpected event"),
5834 fn test_keysend_dup_payment_hash() {
5835 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
5836 // outbound regular payment fails as expected.
5837 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
5838 // fails as expected.
5839 let chanmon_cfgs = create_chanmon_cfgs(2);
5840 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
5841 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
5842 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
5843 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
5844 let logger = test_utils::TestLogger::new();
5846 // To start (1), send a regular payment but don't claim it.
5847 let expected_route = [&nodes[1]];
5848 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
5850 // Next, attempt a keysend payment and make sure it fails.
5851 let route = get_route(&nodes[0].node.get_our_node_id(), &nodes[0].net_graph_msg_handler.network_graph, &expected_route.last().unwrap().node.get_our_node_id(), Some(InvoiceFeatures::known()), None, &Vec::new(), 100_000, TEST_FINAL_CLTV, &logger).unwrap();
5852 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
5853 check_added_monitors!(nodes[0], 1);
5854 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
5855 assert_eq!(events.len(), 1);
5856 let ev = events.drain(..).next().unwrap();
5857 let payment_event = SendEvent::from_event(ev);
5858 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
5859 check_added_monitors!(nodes[1], 0);
5860 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
5861 expect_pending_htlcs_forwardable!(nodes[1]);
5862 expect_pending_htlcs_forwardable!(nodes[1]);
5863 check_added_monitors!(nodes[1], 1);
5864 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
5865 assert!(updates.update_add_htlcs.is_empty());
5866 assert!(updates.update_fulfill_htlcs.is_empty());
5867 assert_eq!(updates.update_fail_htlcs.len(), 1);
5868 assert!(updates.update_fail_malformed_htlcs.is_empty());
5869 assert!(updates.update_fee.is_none());
5870 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
5871 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
5872 expect_payment_failed!(nodes[0], payment_hash, true);
5874 // Finally, claim the original payment.
5875 claim_payment(&nodes[0], &expected_route, payment_preimage);
5877 // To start (2), send a keysend payment but don't claim it.
5878 let payment_preimage = PaymentPreimage([42; 32]);
5879 let route = get_route(&nodes[0].node.get_our_node_id(), &nodes[0].net_graph_msg_handler.network_graph, &expected_route.last().unwrap().node.get_our_node_id(), Some(InvoiceFeatures::known()), None, &Vec::new(), 100_000, TEST_FINAL_CLTV, &logger).unwrap();
5880 let (payment_hash, _) = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
5881 check_added_monitors!(nodes[0], 1);
5882 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
5883 assert_eq!(events.len(), 1);
5884 let event = events.pop().unwrap();
5885 let path = vec![&nodes[1]];
5886 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
5888 // Next, attempt a regular payment and make sure it fails.
5889 let payment_secret = PaymentSecret([43; 32]);
5890 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
5891 check_added_monitors!(nodes[0], 1);
5892 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
5893 assert_eq!(events.len(), 1);
5894 let ev = events.drain(..).next().unwrap();
5895 let payment_event = SendEvent::from_event(ev);
5896 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
5897 check_added_monitors!(nodes[1], 0);
5898 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
5899 expect_pending_htlcs_forwardable!(nodes[1]);
5900 expect_pending_htlcs_forwardable!(nodes[1]);
5901 check_added_monitors!(nodes[1], 1);
5902 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
5903 assert!(updates.update_add_htlcs.is_empty());
5904 assert!(updates.update_fulfill_htlcs.is_empty());
5905 assert_eq!(updates.update_fail_htlcs.len(), 1);
5906 assert!(updates.update_fail_malformed_htlcs.is_empty());
5907 assert!(updates.update_fee.is_none());
5908 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
5909 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
5910 expect_payment_failed!(nodes[0], payment_hash, true);
5912 // Finally, succeed the keysend payment.
5913 claim_payment(&nodes[0], &expected_route, payment_preimage);
5917 fn test_keysend_hash_mismatch() {
5918 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
5919 // preimage doesn't match the msg's payment hash.
5920 let chanmon_cfgs = create_chanmon_cfgs(2);
5921 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
5922 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
5923 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
5925 let payer_pubkey = nodes[0].node.get_our_node_id();
5926 let payee_pubkey = nodes[1].node.get_our_node_id();
5927 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() });
5928 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() });
5930 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
5931 let network_graph = &nodes[0].net_graph_msg_handler.network_graph;
5932 let first_hops = nodes[0].node.list_usable_channels();
5933 let route = get_keysend_route(&payer_pubkey, network_graph, &payee_pubkey,
5934 Some(&first_hops.iter().collect::<Vec<_>>()), &vec![], 10000, 40,
5935 nodes[0].logger).unwrap();
5937 let test_preimage = PaymentPreimage([42; 32]);
5938 let mismatch_payment_hash = PaymentHash([43; 32]);
5939 let _ = nodes[0].node.send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), None).unwrap();
5940 check_added_monitors!(nodes[0], 1);
5942 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
5943 assert_eq!(updates.update_add_htlcs.len(), 1);
5944 assert!(updates.update_fulfill_htlcs.is_empty());
5945 assert!(updates.update_fail_htlcs.is_empty());
5946 assert!(updates.update_fail_malformed_htlcs.is_empty());
5947 assert!(updates.update_fee.is_none());
5948 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
5950 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
5954 fn test_keysend_msg_with_secret_err() {
5955 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
5956 let chanmon_cfgs = create_chanmon_cfgs(2);
5957 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
5958 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
5959 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
5961 let payer_pubkey = nodes[0].node.get_our_node_id();
5962 let payee_pubkey = nodes[1].node.get_our_node_id();
5963 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() });
5964 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() });
5966 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
5967 let network_graph = &nodes[0].net_graph_msg_handler.network_graph;
5968 let first_hops = nodes[0].node.list_usable_channels();
5969 let route = get_keysend_route(&payer_pubkey, network_graph, &payee_pubkey,
5970 Some(&first_hops.iter().collect::<Vec<_>>()), &vec![], 10000, 40,
5971 nodes[0].logger).unwrap();
5973 let test_preimage = PaymentPreimage([42; 32]);
5974 let test_secret = PaymentSecret([43; 32]);
5975 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
5976 let _ = nodes[0].node.send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), None).unwrap();
5977 check_added_monitors!(nodes[0], 1);
5979 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
5980 assert_eq!(updates.update_add_htlcs.len(), 1);
5981 assert!(updates.update_fulfill_htlcs.is_empty());
5982 assert!(updates.update_fail_htlcs.is_empty());
5983 assert!(updates.update_fail_malformed_htlcs.is_empty());
5984 assert!(updates.update_fee.is_none());
5985 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
5987 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
5991 fn test_multi_hop_missing_secret() {
5992 let chanmon_cfgs = create_chanmon_cfgs(4);
5993 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
5994 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
5995 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
5997 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
5998 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
5999 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6000 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6001 let logger = test_utils::TestLogger::new();
6003 // Marshall an MPP route.
6004 let (_, payment_hash, _) = get_payment_preimage_hash!(&nodes[3]);
6005 let net_graph_msg_handler = &nodes[0].net_graph_msg_handler;
6006 let mut route = get_route(&nodes[0].node.get_our_node_id(), &net_graph_msg_handler.network_graph, &nodes[3].node.get_our_node_id(), Some(InvoiceFeatures::known()), None, &[], 100000, TEST_FINAL_CLTV, &logger).unwrap();
6007 let path = route.paths[0].clone();
6008 route.paths.push(path);
6009 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
6010 route.paths[0][0].short_channel_id = chan_1_id;
6011 route.paths[0][1].short_channel_id = chan_3_id;
6012 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
6013 route.paths[1][0].short_channel_id = chan_2_id;
6014 route.paths[1][1].short_channel_id = chan_4_id;
6016 match nodes[0].node.send_payment(&route, payment_hash, &None).unwrap_err() {
6017 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
6018 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err)) },
6019 _ => panic!("unexpected error")
6024 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
6027 use chain::chainmonitor::ChainMonitor;
6028 use chain::channelmonitor::Persist;
6029 use chain::keysinterface::{KeysManager, InMemorySigner};
6030 use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
6031 use ln::features::{InitFeatures, InvoiceFeatures};
6032 use ln::functional_test_utils::*;
6033 use ln::msgs::{ChannelMessageHandler, Init};
6034 use routing::network_graph::NetworkGraph;
6035 use routing::router::get_route;
6036 use util::test_utils;
6037 use util::config::UserConfig;
6038 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider, PaymentPurpose};
6040 use bitcoin::hashes::Hash;
6041 use bitcoin::hashes::sha256::Hash as Sha256;
6042 use bitcoin::{Block, BlockHeader, Transaction, TxOut};
6044 use sync::{Arc, Mutex};
6048 struct NodeHolder<'a, P: Persist<InMemorySigner>> {
6049 node: &'a ChannelManager<InMemorySigner,
6050 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
6051 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
6052 &'a test_utils::TestLogger, &'a P>,
6053 &'a test_utils::TestBroadcaster, &'a KeysManager,
6054 &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
6059 fn bench_sends(bench: &mut Bencher) {
6060 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
6063 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
6064 // Do a simple benchmark of sending a payment back and forth between two nodes.
6065 // Note that this is unrealistic as each payment send will require at least two fsync
6067 let network = bitcoin::Network::Testnet;
6068 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
6070 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
6071 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
6073 let mut config: UserConfig = Default::default();
6074 config.own_channel_config.minimum_depth = 1;
6076 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
6077 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
6078 let seed_a = [1u8; 32];
6079 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
6080 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
6082 best_block: BestBlock::from_genesis(network),
6084 let node_a_holder = NodeHolder { node: &node_a };
6086 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
6087 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
6088 let seed_b = [2u8; 32];
6089 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
6090 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
6092 best_block: BestBlock::from_genesis(network),
6094 let node_b_holder = NodeHolder { node: &node_b };
6096 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: InitFeatures::known() });
6097 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: InitFeatures::known() });
6098 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
6099 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
6100 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
6103 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
6104 tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
6105 value: 8_000_000, script_pubkey: output_script,
6107 node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
6108 } else { panic!(); }
6110 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
6111 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
6113 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
6116 header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
6119 Listen::block_connected(&node_a, &block, 1);
6120 Listen::block_connected(&node_b, &block, 1);
6122 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
6123 let msg_events = node_a.get_and_clear_pending_msg_events();
6124 assert_eq!(msg_events.len(), 2);
6125 match msg_events[0] {
6126 MessageSendEvent::SendFundingLocked { ref msg, .. } => {
6127 node_b.handle_funding_locked(&node_a.get_our_node_id(), msg);
6128 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
6132 match msg_events[1] {
6133 MessageSendEvent::SendChannelUpdate { .. } => {},
6137 let dummy_graph = NetworkGraph::new(genesis_hash);
6139 let mut payment_count: u64 = 0;
6140 macro_rules! send_payment {
6141 ($node_a: expr, $node_b: expr) => {
6142 let usable_channels = $node_a.list_usable_channels();
6143 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
6144 Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
6146 let mut payment_preimage = PaymentPreimage([0; 32]);
6147 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
6149 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
6150 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
6152 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
6153 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
6154 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
6155 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
6156 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
6157 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
6158 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
6159 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
6161 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
6162 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
6163 assert!($node_b.claim_funds(payment_preimage));
6165 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
6166 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
6167 assert_eq!(node_id, $node_a.get_our_node_id());
6168 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
6169 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
6171 _ => panic!("Failed to generate claim event"),
6174 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
6175 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
6176 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
6177 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
6179 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
6184 send_payment!(node_a, node_b);
6185 send_payment!(node_b, node_a);