1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
39 use chain::{Confirm, ChannelMonitorUpdateErr, Watch, BestBlock};
40 use chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator};
41 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
42 use chain::transaction::{OutPoint, TransactionData};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
46 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
47 use ln::features::{InitFeatures, NodeFeatures};
48 use routing::router::{Route, RouteHop};
50 use ln::msgs::NetAddress;
52 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
53 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
54 use util::config::UserConfig;
55 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
56 use util::{byte_utils, events};
57 use util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
58 use util::chacha20::{ChaCha20, ChaChaReader};
59 use util::logger::{Logger, Level};
60 use util::errors::APIError;
65 use core::cell::RefCell;
66 use io::{Cursor, Read};
67 use sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
68 use core::sync::atomic::{AtomicUsize, Ordering};
69 use core::time::Duration;
70 #[cfg(any(test, feature = "allow_wallclock_use"))]
71 use std::time::Instant;
74 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
77 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
78 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
81 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
82 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
83 // before we forward it.
85 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
86 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
87 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
88 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
89 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
92 enum PendingHTLCRouting {
94 onion_packet: msgs::OnionPacket,
95 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
98 payment_data: msgs::FinalOnionHopData,
99 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
102 payment_preimage: PaymentPreimage,
103 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
107 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
108 pub(super) struct PendingHTLCInfo {
109 routing: PendingHTLCRouting,
110 incoming_shared_secret: [u8; 32],
111 payment_hash: PaymentHash,
112 pub(super) amt_to_forward: u64,
113 pub(super) outgoing_cltv_value: u32,
116 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
117 pub(super) enum HTLCFailureMsg {
118 Relay(msgs::UpdateFailHTLC),
119 Malformed(msgs::UpdateFailMalformedHTLC),
122 /// Stores whether we can't forward an HTLC or relevant forwarding info
123 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
124 pub(super) enum PendingHTLCStatus {
125 Forward(PendingHTLCInfo),
126 Fail(HTLCFailureMsg),
129 pub(super) enum HTLCForwardInfo {
131 forward_info: PendingHTLCInfo,
133 // These fields are produced in `forward_htlcs()` and consumed in
134 // `process_pending_htlc_forwards()` for constructing the
135 // `HTLCSource::PreviousHopData` for failed and forwarded
137 prev_short_channel_id: u64,
139 prev_funding_outpoint: OutPoint,
143 err_packet: msgs::OnionErrorPacket,
147 /// Tracks the inbound corresponding to an outbound HTLC
148 #[derive(Clone, PartialEq)]
149 pub(crate) struct HTLCPreviousHopData {
150 short_channel_id: u64,
152 incoming_packet_shared_secret: [u8; 32],
154 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
155 // channel with a preimage provided by the forward channel.
160 /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
161 /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
162 /// are part of the same payment.
163 Invoice(msgs::FinalOnionHopData),
164 /// Contains the payer-provided preimage.
165 Spontaneous(PaymentPreimage),
168 struct ClaimableHTLC {
169 prev_hop: HTLCPreviousHopData,
172 onion_payload: OnionPayload,
175 /// A payment identifier used to uniquely identify a payment to LDK.
176 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
177 pub struct PaymentId(pub [u8; 32]);
179 impl Writeable for PaymentId {
180 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
185 impl Readable for PaymentId {
186 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
187 let buf: [u8; 32] = Readable::read(r)?;
191 /// Tracks the inbound corresponding to an outbound HTLC
192 #[derive(Clone, PartialEq)]
193 pub(crate) enum HTLCSource {
194 PreviousHopData(HTLCPreviousHopData),
197 session_priv: SecretKey,
198 /// Technically we can recalculate this from the route, but we cache it here to avoid
199 /// doing a double-pass on route when we get a failure back
200 first_hop_htlc_msat: u64,
201 payment_id: PaymentId,
206 pub fn dummy() -> Self {
207 HTLCSource::OutboundRoute {
209 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
210 first_hop_htlc_msat: 0,
211 payment_id: PaymentId([2; 32]),
216 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
217 pub(super) enum HTLCFailReason {
219 err: msgs::OnionErrorPacket,
227 /// Return value for claim_funds_from_hop
228 enum ClaimFundsFromHop {
230 MonitorUpdateFail(PublicKey, MsgHandleErrInternal, Option<u64>),
235 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
237 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
238 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
239 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
240 /// channel_state lock. We then return the set of things that need to be done outside the lock in
241 /// this struct and call handle_error!() on it.
243 struct MsgHandleErrInternal {
244 err: msgs::LightningError,
245 chan_id: Option<([u8; 32], u64)>, // If Some a channel of ours has been closed
246 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
248 impl MsgHandleErrInternal {
250 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
252 err: LightningError {
254 action: msgs::ErrorAction::SendErrorMessage {
255 msg: msgs::ErrorMessage {
262 shutdown_finish: None,
266 fn ignore_no_close(err: String) -> Self {
268 err: LightningError {
270 action: msgs::ErrorAction::IgnoreError,
273 shutdown_finish: None,
277 fn from_no_close(err: msgs::LightningError) -> Self {
278 Self { err, chan_id: None, shutdown_finish: None }
281 fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u64, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
283 err: LightningError {
285 action: msgs::ErrorAction::SendErrorMessage {
286 msg: msgs::ErrorMessage {
292 chan_id: Some((channel_id, user_channel_id)),
293 shutdown_finish: Some((shutdown_res, channel_update)),
297 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
300 ChannelError::Warn(msg) => LightningError {
302 action: msgs::ErrorAction::IgnoreError,
304 ChannelError::Ignore(msg) => LightningError {
306 action: msgs::ErrorAction::IgnoreError,
308 ChannelError::Close(msg) => LightningError {
310 action: msgs::ErrorAction::SendErrorMessage {
311 msg: msgs::ErrorMessage {
317 ChannelError::CloseDelayBroadcast(msg) => LightningError {
319 action: msgs::ErrorAction::SendErrorMessage {
320 msg: msgs::ErrorMessage {
328 shutdown_finish: None,
333 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
334 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
335 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
336 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
337 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
339 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
340 /// be sent in the order they appear in the return value, however sometimes the order needs to be
341 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
342 /// they were originally sent). In those cases, this enum is also returned.
343 #[derive(Clone, PartialEq)]
344 pub(super) enum RAACommitmentOrder {
345 /// Send the CommitmentUpdate messages first
347 /// Send the RevokeAndACK message first
351 // Note this is only exposed in cfg(test):
352 pub(super) struct ChannelHolder<Signer: Sign> {
353 pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
354 pub(super) short_to_id: HashMap<u64, [u8; 32]>,
355 /// short channel id -> forward infos. Key of 0 means payments received
356 /// Note that while this is held in the same mutex as the channels themselves, no consistency
357 /// guarantees are made about the existence of a channel with the short id here, nor the short
358 /// ids in the PendingHTLCInfo!
359 pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
360 /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
361 /// Note that while this is held in the same mutex as the channels themselves, no consistency
362 /// guarantees are made about the channels given here actually existing anymore by the time you
364 claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
365 /// Messages to send to peers - pushed to in the same lock that they are generated in (except
366 /// for broadcast messages, where ordering isn't as strict).
367 pub(super) pending_msg_events: Vec<MessageSendEvent>,
370 /// Events which we process internally but cannot be procsesed immediately at the generation site
371 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
372 /// quite some time lag.
373 enum BackgroundEvent {
374 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
375 /// commitment transaction.
376 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
379 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
380 /// the latest Init features we heard from the peer.
382 latest_features: InitFeatures,
385 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
386 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
388 /// For users who don't want to bother doing their own payment preimage storage, we also store that
390 struct PendingInboundPayment {
391 /// The payment secret that the sender must use for us to accept this payment
392 payment_secret: PaymentSecret,
393 /// Time at which this HTLC expires - blocks with a header time above this value will result in
394 /// this payment being removed.
396 /// Arbitrary identifier the user specifies (or not)
397 user_payment_id: u64,
398 // Other required attributes of the payment, optionally enforced:
399 payment_preimage: Option<PaymentPreimage>,
400 min_value_msat: Option<u64>,
403 /// Stores the session_priv for each part of a payment that is still pending. For versions 0.0.102
404 /// and later, also stores information for retrying the payment.
405 pub(crate) enum PendingOutboundPayment {
407 session_privs: HashSet<[u8; 32]>,
410 session_privs: HashSet<[u8; 32]>,
411 payment_hash: PaymentHash,
412 payment_secret: Option<PaymentSecret>,
413 pending_amt_msat: u64,
414 /// The total payment amount across all paths, used to verify that a retry is not overpaying.
416 /// Our best known block height at the time this payment was initiated.
417 starting_block_height: u32,
421 impl PendingOutboundPayment {
422 fn remove(&mut self, session_priv: &[u8; 32], part_amt_msat: u64) -> bool {
423 let remove_res = match self {
424 PendingOutboundPayment::Legacy { session_privs } |
425 PendingOutboundPayment::Retryable { session_privs, .. } => {
426 session_privs.remove(session_priv)
430 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, .. } = self {
431 *pending_amt_msat -= part_amt_msat;
437 fn insert(&mut self, session_priv: [u8; 32], part_amt_msat: u64) -> bool {
438 let insert_res = match self {
439 PendingOutboundPayment::Legacy { session_privs } |
440 PendingOutboundPayment::Retryable { session_privs, .. } => {
441 session_privs.insert(session_priv)
445 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, .. } = self {
446 *pending_amt_msat += part_amt_msat;
452 fn remaining_parts(&self) -> usize {
454 PendingOutboundPayment::Legacy { session_privs } |
455 PendingOutboundPayment::Retryable { session_privs, .. } => {
462 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
463 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
464 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
465 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
466 /// issues such as overly long function definitions. Note that the ChannelManager can take any
467 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
468 /// concrete type of the KeysManager.
469 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
471 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
472 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
473 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
474 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
475 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
476 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
477 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
478 /// concrete type of the KeysManager.
479 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
481 /// Manager which keeps track of a number of channels and sends messages to the appropriate
482 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
484 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
485 /// to individual Channels.
487 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
488 /// all peers during write/read (though does not modify this instance, only the instance being
489 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
490 /// called funding_transaction_generated for outbound channels).
492 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
493 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
494 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
495 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
496 /// the serialization process). If the deserialized version is out-of-date compared to the
497 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
498 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
500 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
501 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
502 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
503 /// block_connected() to step towards your best block) upon deserialization before using the
506 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
507 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
508 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
509 /// offline for a full minute. In order to track this, you must call
510 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
512 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
513 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
514 /// essentially you should default to using a SimpleRefChannelManager, and use a
515 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
516 /// you're using lightning-net-tokio.
517 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
518 where M::Target: chain::Watch<Signer>,
519 T::Target: BroadcasterInterface,
520 K::Target: KeysInterface<Signer = Signer>,
521 F::Target: FeeEstimator,
524 default_configuration: UserConfig,
525 genesis_hash: BlockHash,
531 pub(super) best_block: RwLock<BestBlock>,
533 best_block: RwLock<BestBlock>,
534 secp_ctx: Secp256k1<secp256k1::All>,
536 #[cfg(any(test, feature = "_test_utils"))]
537 pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
538 #[cfg(not(any(test, feature = "_test_utils")))]
539 channel_state: Mutex<ChannelHolder<Signer>>,
541 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
542 /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
543 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
544 /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
545 /// Locked *after* channel_state.
546 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
548 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
549 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
550 /// (if the channel has been force-closed), however we track them here to prevent duplicative
551 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
552 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
553 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
554 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
555 /// after reloading from disk while replaying blocks against ChannelMonitors.
557 /// See `PendingOutboundPayment` documentation for more info.
559 /// Locked *after* channel_state.
560 pending_outbound_payments: Mutex<HashMap<PaymentId, PendingOutboundPayment>>,
562 our_network_key: SecretKey,
563 our_network_pubkey: PublicKey,
565 /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
566 /// value increases strictly since we don't assume access to a time source.
567 last_node_announcement_serial: AtomicUsize,
569 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
570 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
571 /// very far in the past, and can only ever be up to two hours in the future.
572 highest_seen_timestamp: AtomicUsize,
574 /// The bulk of our storage will eventually be here (channels and message queues and the like).
575 /// If we are connected to a peer we always at least have an entry here, even if no channels
576 /// are currently open with that peer.
577 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
578 /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
581 /// If also holding `channel_state` lock, must lock `channel_state` prior to `per_peer_state`.
582 per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
584 pending_events: Mutex<Vec<events::Event>>,
585 pending_background_events: Mutex<Vec<BackgroundEvent>>,
586 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
587 /// Essentially just when we're serializing ourselves out.
588 /// Taken first everywhere where we are making changes before any other locks.
589 /// When acquiring this lock in read mode, rather than acquiring it directly, call
590 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
591 /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
592 total_consistency_lock: RwLock<()>,
594 persistence_notifier: PersistenceNotifier,
601 /// Chain-related parameters used to construct a new `ChannelManager`.
603 /// Typically, the block-specific parameters are derived from the best block hash for the network,
604 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
605 /// are not needed when deserializing a previously constructed `ChannelManager`.
606 #[derive(Clone, Copy, PartialEq)]
607 pub struct ChainParameters {
608 /// The network for determining the `chain_hash` in Lightning messages.
609 pub network: Network,
611 /// The hash and height of the latest block successfully connected.
613 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
614 pub best_block: BestBlock,
617 #[derive(Copy, Clone, PartialEq)]
623 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
624 /// desirable to notify any listeners on `await_persistable_update_timeout`/
625 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
626 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
627 /// sending the aforementioned notification (since the lock being released indicates that the
628 /// updates are ready for persistence).
630 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
631 /// notify or not based on whether relevant changes have been made, providing a closure to
632 /// `optionally_notify` which returns a `NotifyOption`.
633 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
634 persistence_notifier: &'a PersistenceNotifier,
636 // We hold onto this result so the lock doesn't get released immediately.
637 _read_guard: RwLockReadGuard<'a, ()>,
640 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
641 fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
642 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
645 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
646 let read_guard = lock.read().unwrap();
648 PersistenceNotifierGuard {
649 persistence_notifier: notifier,
650 should_persist: persist_check,
651 _read_guard: read_guard,
656 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
658 if (self.should_persist)() == NotifyOption::DoPersist {
659 self.persistence_notifier.notify();
664 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
665 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
667 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
669 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
670 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
671 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
672 /// the maximum required amount in lnd as of March 2021.
673 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
675 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
676 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
678 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
680 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
681 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
682 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
683 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
684 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
685 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
686 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
688 /// Minimum CLTV difference between the current block height and received inbound payments.
689 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
691 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
692 // any payments to succeed. Further, we don't want payments to fail if a block was found while
693 // a payment was being routed, so we add an extra block to be safe.
694 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
696 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
697 // ie that if the next-hop peer fails the HTLC within
698 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
699 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
700 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
701 // LATENCY_GRACE_PERIOD_BLOCKS.
704 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
706 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
707 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
710 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
712 /// Information needed for constructing an invoice route hint for this channel.
713 #[derive(Clone, Debug, PartialEq)]
714 pub struct CounterpartyForwardingInfo {
715 /// Base routing fee in millisatoshis.
716 pub fee_base_msat: u32,
717 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
718 pub fee_proportional_millionths: u32,
719 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
720 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
721 /// `cltv_expiry_delta` for more details.
722 pub cltv_expiry_delta: u16,
725 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
726 /// to better separate parameters.
727 #[derive(Clone, Debug, PartialEq)]
728 pub struct ChannelCounterparty {
729 /// The node_id of our counterparty
730 pub node_id: PublicKey,
731 /// The Features the channel counterparty provided upon last connection.
732 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
733 /// many routing-relevant features are present in the init context.
734 pub features: InitFeatures,
735 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
736 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
737 /// claiming at least this value on chain.
739 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
741 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
742 pub unspendable_punishment_reserve: u64,
743 /// Information on the fees and requirements that the counterparty requires when forwarding
744 /// payments to us through this channel.
745 pub forwarding_info: Option<CounterpartyForwardingInfo>,
748 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
749 #[derive(Clone, Debug, PartialEq)]
750 pub struct ChannelDetails {
751 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
752 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
753 /// Note that this means this value is *not* persistent - it can change once during the
754 /// lifetime of the channel.
755 pub channel_id: [u8; 32],
756 /// Parameters which apply to our counterparty. See individual fields for more information.
757 pub counterparty: ChannelCounterparty,
758 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
759 /// our counterparty already.
761 /// Note that, if this has been set, `channel_id` will be equivalent to
762 /// `funding_txo.unwrap().to_channel_id()`.
763 pub funding_txo: Option<OutPoint>,
764 /// The position of the funding transaction in the chain. None if the funding transaction has
765 /// not yet been confirmed and the channel fully opened.
766 pub short_channel_id: Option<u64>,
767 /// The value, in satoshis, of this channel as appears in the funding output
768 pub channel_value_satoshis: u64,
769 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
770 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
771 /// this value on chain.
773 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
775 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
777 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
778 pub unspendable_punishment_reserve: Option<u64>,
779 /// The `user_channel_id` passed in to create_channel, or 0 if the channel was inbound.
780 pub user_channel_id: u64,
781 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
782 /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
783 /// available for inclusion in new outbound HTLCs). This further does not include any pending
784 /// outgoing HTLCs which are awaiting some other resolution to be sent.
786 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
787 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
788 /// should be able to spend nearly this amount.
789 pub outbound_capacity_msat: u64,
790 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
791 /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
792 /// available for inclusion in new inbound HTLCs).
793 /// Note that there are some corner cases not fully handled here, so the actual available
794 /// inbound capacity may be slightly higher than this.
796 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
797 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
798 /// However, our counterparty should be able to spend nearly this amount.
799 pub inbound_capacity_msat: u64,
800 /// The number of required confirmations on the funding transaction before the funding will be
801 /// considered "locked". This number is selected by the channel fundee (i.e. us if
802 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
803 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
804 /// [`ChannelHandshakeLimits::max_minimum_depth`].
806 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
808 /// [`is_outbound`]: ChannelDetails::is_outbound
809 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
810 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
811 pub confirmations_required: Option<u32>,
812 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
813 /// until we can claim our funds after we force-close the channel. During this time our
814 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
815 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
816 /// time to claim our non-HTLC-encumbered funds.
818 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
819 pub force_close_spend_delay: Option<u16>,
820 /// True if the channel was initiated (and thus funded) by us.
821 pub is_outbound: bool,
822 /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
823 /// channel is not currently being shut down. `funding_locked` message exchange implies the
824 /// required confirmation count has been reached (and we were connected to the peer at some
825 /// point after the funding transaction received enough confirmations). The required
826 /// confirmation count is provided in [`confirmations_required`].
828 /// [`confirmations_required`]: ChannelDetails::confirmations_required
829 pub is_funding_locked: bool,
830 /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
831 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
833 /// This is a strict superset of `is_funding_locked`.
835 /// True if this channel is (or will be) publicly-announced.
839 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
840 /// Err() type describing which state the payment is in, see the description of individual enum
842 #[derive(Clone, Debug)]
843 pub enum PaymentSendFailure {
844 /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
845 /// send the payment at all. No channel state has been changed or messages sent to peers, and
846 /// once you've changed the parameter at error, you can freely retry the payment in full.
847 ParameterError(APIError),
848 /// A parameter in a single path which was passed to send_payment was invalid, preventing us
849 /// from attempting to send the payment at all. No channel state has been changed or messages
850 /// sent to peers, and once you've changed the parameter at error, you can freely retry the
853 /// The results here are ordered the same as the paths in the route object which was passed to
855 PathParameterError(Vec<Result<(), APIError>>),
856 /// All paths which were attempted failed to send, with no channel state change taking place.
857 /// You can freely retry the payment in full (though you probably want to do so over different
858 /// paths than the ones selected).
859 AllFailedRetrySafe(Vec<APIError>),
860 /// Some paths which were attempted failed to send, though possibly not all. At least some
861 /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
862 /// in over-/re-payment.
864 /// The results here are ordered the same as the paths in the route object which was passed to
865 /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
866 /// retried (though there is currently no API with which to do so).
868 /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
869 /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
870 /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
871 /// with the latest update_id.
872 PartialFailure(Vec<Result<(), APIError>>),
875 macro_rules! handle_error {
876 ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
879 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
880 #[cfg(debug_assertions)]
882 // In testing, ensure there are no deadlocks where the lock is already held upon
883 // entering the macro.
884 assert!($self.channel_state.try_lock().is_ok());
885 assert!($self.pending_events.try_lock().is_ok());
888 let mut msg_events = Vec::with_capacity(2);
890 if let Some((shutdown_res, update_option)) = shutdown_finish {
891 $self.finish_force_close_channel(shutdown_res);
892 if let Some(update) = update_option {
893 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
897 if let Some((channel_id, user_channel_id)) = chan_id {
898 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
899 channel_id, user_channel_id,
900 reason: ClosureReason::ProcessingError { err: err.err.clone() }
905 log_error!($self.logger, "{}", err.err);
906 if let msgs::ErrorAction::IgnoreError = err.action {
908 msg_events.push(events::MessageSendEvent::HandleError {
909 node_id: $counterparty_node_id,
910 action: err.action.clone()
914 if !msg_events.is_empty() {
915 $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
918 // Return error in case higher-API need one
925 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
926 macro_rules! convert_chan_err {
927 ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
929 ChannelError::Warn(msg) => {
930 //TODO: Once warning messages are merged, we should send a `warning` message to our
932 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
934 ChannelError::Ignore(msg) => {
935 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
937 ChannelError::Close(msg) => {
938 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
939 if let Some(short_id) = $channel.get_short_channel_id() {
940 $short_to_id.remove(&short_id);
942 let shutdown_res = $channel.force_shutdown(true);
943 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
944 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
946 ChannelError::CloseDelayBroadcast(msg) => {
947 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
948 if let Some(short_id) = $channel.get_short_channel_id() {
949 $short_to_id.remove(&short_id);
951 let shutdown_res = $channel.force_shutdown(false);
952 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
953 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
959 macro_rules! break_chan_entry {
960 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
964 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
966 $entry.remove_entry();
974 macro_rules! try_chan_entry {
975 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
979 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
981 $entry.remove_entry();
989 macro_rules! remove_channel {
990 ($channel_state: expr, $entry: expr) => {
992 let channel = $entry.remove_entry().1;
993 if let Some(short_id) = channel.get_short_channel_id() {
994 $channel_state.short_to_id.remove(&short_id);
1001 macro_rules! handle_monitor_err {
1002 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1003 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
1005 ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $chan_id: expr) => {
1007 ChannelMonitorUpdateErr::PermanentFailure => {
1008 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
1009 if let Some(short_id) = $chan.get_short_channel_id() {
1010 $short_to_id.remove(&short_id);
1012 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
1013 // chain in a confused state! We need to move them into the ChannelMonitor which
1014 // will be responsible for failing backwards once things confirm on-chain.
1015 // It's ok that we drop $failed_forwards here - at this point we'd rather they
1016 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
1017 // us bother trying to claim it just to forward on to another peer. If we're
1018 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
1019 // given up the preimage yet, so might as well just wait until the payment is
1020 // retried, avoiding the on-chain fees.
1021 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.get_user_id(),
1022 $chan.force_shutdown(true), $self.get_channel_update_for_broadcast(&$chan).ok() ));
1025 ChannelMonitorUpdateErr::TemporaryFailure => {
1026 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
1027 log_bytes!($chan_id[..]),
1028 if $resend_commitment && $resend_raa {
1029 match $action_type {
1030 RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
1031 RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
1033 } else if $resend_commitment { "commitment" }
1034 else if $resend_raa { "RAA" }
1036 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
1037 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
1038 if !$resend_commitment {
1039 debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
1042 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
1044 $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
1045 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
1049 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { {
1050 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $entry.key());
1052 $entry.remove_entry();
1058 macro_rules! return_monitor_err {
1059 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1060 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
1062 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1063 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
1067 // Does not break in case of TemporaryFailure!
1068 macro_rules! maybe_break_monitor_err {
1069 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1070 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
1071 (e, ChannelMonitorUpdateErr::PermanentFailure) => {
1074 (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
1079 macro_rules! handle_chan_restoration_locked {
1080 ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
1081 $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
1082 $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr) => { {
1083 let mut htlc_forwards = None;
1084 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
1086 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
1087 let chanmon_update_is_none = chanmon_update.is_none();
1089 let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
1090 if !forwards.is_empty() {
1091 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
1092 $channel_entry.get().get_funding_txo().unwrap(), forwards));
1095 if chanmon_update.is_some() {
1096 // On reconnect, we, by definition, only resend a funding_locked if there have been
1097 // no commitment updates, so the only channel monitor update which could also be
1098 // associated with a funding_locked would be the funding_created/funding_signed
1099 // monitor update. That monitor update failing implies that we won't send
1100 // funding_locked until it's been updated, so we can't have a funding_locked and a
1101 // monitor update here (so we don't bother to handle it correctly below).
1102 assert!($funding_locked.is_none());
1103 // A channel monitor update makes no sense without either a funding_locked or a
1104 // commitment update to process after it. Since we can't have a funding_locked, we
1105 // only bother to handle the monitor-update + commitment_update case below.
1106 assert!($commitment_update.is_some());
1109 if let Some(msg) = $funding_locked {
1110 // Similar to the above, this implies that we're letting the funding_locked fly
1111 // before it should be allowed to.
1112 assert!(chanmon_update.is_none());
1113 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
1114 node_id: counterparty_node_id,
1117 if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
1118 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
1119 node_id: counterparty_node_id,
1120 msg: announcement_sigs,
1123 $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
1126 let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
1127 if let Some(monitor_update) = chanmon_update {
1128 // We only ever broadcast a funding transaction in response to a funding_signed
1129 // message and the resulting monitor update. Thus, on channel_reestablish
1130 // message handling we can't have a funding transaction to broadcast. When
1131 // processing a monitor update finishing resulting in a funding broadcast, we
1132 // cannot have a second monitor update, thus this case would indicate a bug.
1133 assert!(funding_broadcastable.is_none());
1134 // Given we were just reconnected or finished updating a channel monitor, the
1135 // only case where we can get a new ChannelMonitorUpdate would be if we also
1136 // have some commitment updates to send as well.
1137 assert!($commitment_update.is_some());
1138 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
1139 // channel_reestablish doesn't guarantee the order it returns is sensical
1140 // for the messages it returns, but if we're setting what messages to
1141 // re-transmit on monitor update success, we need to make sure it is sane.
1142 let mut order = $order;
1144 order = RAACommitmentOrder::CommitmentFirst;
1146 break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
1150 macro_rules! handle_cs { () => {
1151 if let Some(update) = $commitment_update {
1152 $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1153 node_id: counterparty_node_id,
1158 macro_rules! handle_raa { () => {
1159 if let Some(revoke_and_ack) = $raa {
1160 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
1161 node_id: counterparty_node_id,
1162 msg: revoke_and_ack,
1167 RAACommitmentOrder::CommitmentFirst => {
1171 RAACommitmentOrder::RevokeAndACKFirst => {
1176 if let Some(tx) = funding_broadcastable {
1177 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1178 $self.tx_broadcaster.broadcast_transaction(&tx);
1183 if chanmon_update_is_none {
1184 // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1185 // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1186 // should *never* end up calling back to `chain_monitor.update_channel()`.
1187 assert!(res.is_ok());
1190 (htlc_forwards, res, counterparty_node_id)
1194 macro_rules! post_handle_chan_restoration {
1195 ($self: ident, $locked_res: expr) => { {
1196 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1198 let _ = handle_error!($self, res, counterparty_node_id);
1200 if let Some(forwards) = htlc_forwards {
1201 $self.forward_htlcs(&mut [forwards][..]);
1206 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1207 where M::Target: chain::Watch<Signer>,
1208 T::Target: BroadcasterInterface,
1209 K::Target: KeysInterface<Signer = Signer>,
1210 F::Target: FeeEstimator,
1213 /// Constructs a new ChannelManager to hold several channels and route between them.
1215 /// This is the main "logic hub" for all channel-related actions, and implements
1216 /// ChannelMessageHandler.
1218 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1220 /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
1222 /// Users need to notify the new ChannelManager when a new block is connected or
1223 /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1224 /// from after `params.latest_hash`.
1225 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1226 let mut secp_ctx = Secp256k1::new();
1227 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1230 default_configuration: config.clone(),
1231 genesis_hash: genesis_block(params.network).header.block_hash(),
1232 fee_estimator: fee_est,
1236 best_block: RwLock::new(params.best_block),
1238 channel_state: Mutex::new(ChannelHolder{
1239 by_id: HashMap::new(),
1240 short_to_id: HashMap::new(),
1241 forward_htlcs: HashMap::new(),
1242 claimable_htlcs: HashMap::new(),
1243 pending_msg_events: Vec::new(),
1245 pending_inbound_payments: Mutex::new(HashMap::new()),
1246 pending_outbound_payments: Mutex::new(HashMap::new()),
1248 our_network_key: keys_manager.get_node_secret(),
1249 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
1252 last_node_announcement_serial: AtomicUsize::new(0),
1253 highest_seen_timestamp: AtomicUsize::new(0),
1255 per_peer_state: RwLock::new(HashMap::new()),
1257 pending_events: Mutex::new(Vec::new()),
1258 pending_background_events: Mutex::new(Vec::new()),
1259 total_consistency_lock: RwLock::new(()),
1260 persistence_notifier: PersistenceNotifier::new(),
1268 /// Gets the current configuration applied to all new channels, as
1269 pub fn get_current_default_configuration(&self) -> &UserConfig {
1270 &self.default_configuration
1273 /// Creates a new outbound channel to the given remote node and with the given value.
1275 /// `user_channel_id` will be provided back as in
1276 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1277 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to 0
1278 /// for inbound channels, so you may wish to avoid using 0 for `user_channel_id` here.
1279 /// `user_channel_id` has no meaning inside of LDK, it is simply copied to events and otherwise
1282 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1283 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1285 /// Note that we do not check if you are currently connected to the given peer. If no
1286 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1287 /// the channel eventually being silently forgotten (dropped on reload).
1289 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1290 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1291 /// [`ChannelDetails::channel_id`] until after
1292 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1293 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1294 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1296 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1297 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1298 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1299 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u64, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1300 if channel_value_satoshis < 1000 {
1301 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1305 let per_peer_state = self.per_peer_state.read().unwrap();
1306 match per_peer_state.get(&their_network_key) {
1307 Some(peer_state) => {
1308 let peer_state = peer_state.lock().unwrap();
1309 let their_features = &peer_state.latest_features;
1310 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1311 Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, their_features, channel_value_satoshis, push_msat, user_channel_id, config)?
1313 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", their_network_key) }),
1316 let res = channel.get_open_channel(self.genesis_hash.clone());
1318 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1319 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1320 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1322 let temporary_channel_id = channel.channel_id();
1323 let mut channel_state = self.channel_state.lock().unwrap();
1324 match channel_state.by_id.entry(temporary_channel_id) {
1325 hash_map::Entry::Occupied(_) => {
1326 if cfg!(feature = "fuzztarget") {
1327 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1329 panic!("RNG is bad???");
1332 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1334 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1335 node_id: their_network_key,
1338 Ok(temporary_channel_id)
1341 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1342 let mut res = Vec::new();
1344 let channel_state = self.channel_state.lock().unwrap();
1345 res.reserve(channel_state.by_id.len());
1346 for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1347 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1348 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1349 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1350 res.push(ChannelDetails {
1351 channel_id: (*channel_id).clone(),
1352 counterparty: ChannelCounterparty {
1353 node_id: channel.get_counterparty_node_id(),
1354 features: InitFeatures::empty(),
1355 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1356 forwarding_info: channel.counterparty_forwarding_info(),
1358 funding_txo: channel.get_funding_txo(),
1359 short_channel_id: channel.get_short_channel_id(),
1360 channel_value_satoshis: channel.get_value_satoshis(),
1361 unspendable_punishment_reserve: to_self_reserve_satoshis,
1362 inbound_capacity_msat,
1363 outbound_capacity_msat,
1364 user_channel_id: channel.get_user_id(),
1365 confirmations_required: channel.minimum_depth(),
1366 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1367 is_outbound: channel.is_outbound(),
1368 is_funding_locked: channel.is_usable(),
1369 is_usable: channel.is_live(),
1370 is_public: channel.should_announce(),
1374 let per_peer_state = self.per_peer_state.read().unwrap();
1375 for chan in res.iter_mut() {
1376 if let Some(peer_state) = per_peer_state.get(&chan.counterparty.node_id) {
1377 chan.counterparty.features = peer_state.lock().unwrap().latest_features.clone();
1383 /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1384 /// more information.
1385 pub fn list_channels(&self) -> Vec<ChannelDetails> {
1386 self.list_channels_with_filter(|_| true)
1389 /// Gets the list of usable channels, in random order. Useful as an argument to
1390 /// get_route to ensure non-announced channels are used.
1392 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1393 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1395 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1396 // Note we use is_live here instead of usable which leads to somewhat confused
1397 // internal/external nomenclature, but that's ok cause that's probably what the user
1398 // really wanted anyway.
1399 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1402 /// Helper function that issues the channel close events
1403 fn issue_channel_close_events(&self, channel: &Channel<Signer>, closure_reason: ClosureReason) {
1404 let mut pending_events_lock = self.pending_events.lock().unwrap();
1405 match channel.unbroadcasted_funding() {
1406 Some(transaction) => {
1407 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1411 pending_events_lock.push(events::Event::ChannelClosed {
1412 channel_id: channel.channel_id(),
1413 user_channel_id: channel.get_user_id(),
1414 reason: closure_reason
1418 fn close_channel_internal(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1419 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1421 let counterparty_node_id;
1422 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1423 let result: Result<(), _> = loop {
1424 let mut channel_state_lock = self.channel_state.lock().unwrap();
1425 let channel_state = &mut *channel_state_lock;
1426 match channel_state.by_id.entry(channel_id.clone()) {
1427 hash_map::Entry::Occupied(mut chan_entry) => {
1428 counterparty_node_id = chan_entry.get().get_counterparty_node_id();
1429 let per_peer_state = self.per_peer_state.read().unwrap();
1430 let (shutdown_msg, monitor_update, htlcs) = match per_peer_state.get(&counterparty_node_id) {
1431 Some(peer_state) => {
1432 let peer_state = peer_state.lock().unwrap();
1433 let their_features = &peer_state.latest_features;
1434 chan_entry.get_mut().get_shutdown(&self.keys_manager, their_features, target_feerate_sats_per_1000_weight)?
1436 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", counterparty_node_id) }),
1438 failed_htlcs = htlcs;
1440 // Update the monitor with the shutdown script if necessary.
1441 if let Some(monitor_update) = monitor_update {
1442 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
1443 let (result, is_permanent) =
1444 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, false, false, Vec::new(), Vec::new(), chan_entry.key());
1446 remove_channel!(channel_state, chan_entry);
1452 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1453 node_id: counterparty_node_id,
1457 if chan_entry.get().is_shutdown() {
1458 let channel = remove_channel!(channel_state, chan_entry);
1459 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1460 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1464 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1468 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1472 for htlc_source in failed_htlcs.drain(..) {
1473 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1476 let _ = handle_error!(self, result, counterparty_node_id);
1480 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1481 /// will be accepted on the given channel, and after additional timeout/the closing of all
1482 /// pending HTLCs, the channel will be closed on chain.
1484 /// * If we are the channel initiator, we will pay between our [`Background`] and
1485 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1487 /// * If our counterparty is the channel initiator, we will require a channel closing
1488 /// transaction feerate of at least our [`Background`] feerate or the feerate which
1489 /// would appear on a force-closure transaction, whichever is lower. We will allow our
1490 /// counterparty to pay as much fee as they'd like, however.
1492 /// May generate a SendShutdown message event on success, which should be relayed.
1494 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1495 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1496 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1497 pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1498 self.close_channel_internal(channel_id, None)
1501 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1502 /// will be accepted on the given channel, and after additional timeout/the closing of all
1503 /// pending HTLCs, the channel will be closed on chain.
1505 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1506 /// the channel being closed or not:
1507 /// * If we are the channel initiator, we will pay at least this feerate on the closing
1508 /// transaction. The upper-bound is set by
1509 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1510 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1511 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1512 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1513 /// will appear on a force-closure transaction, whichever is lower).
1515 /// May generate a SendShutdown message event on success, which should be relayed.
1517 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1518 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1519 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1520 pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1521 self.close_channel_internal(channel_id, Some(target_feerate_sats_per_1000_weight))
1525 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1526 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1527 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1528 for htlc_source in failed_htlcs.drain(..) {
1529 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1531 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1532 // There isn't anything we can do if we get an update failure - we're already
1533 // force-closing. The monitor update on the required in-memory copy should broadcast
1534 // the latest local state, which is the best we can do anyway. Thus, it is safe to
1535 // ignore the result here.
1536 let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1540 /// `peer_node_id` should be set when we receive a message from a peer, but not set when the
1541 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1542 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>, peer_msg: Option<&String>) -> Result<PublicKey, APIError> {
1544 let mut channel_state_lock = self.channel_state.lock().unwrap();
1545 let channel_state = &mut *channel_state_lock;
1546 if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1547 if let Some(node_id) = peer_node_id {
1548 if chan.get().get_counterparty_node_id() != *node_id {
1549 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1552 if let Some(short_id) = chan.get().get_short_channel_id() {
1553 channel_state.short_to_id.remove(&short_id);
1555 if peer_node_id.is_some() {
1556 if let Some(peer_msg) = peer_msg {
1557 self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
1560 self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
1562 chan.remove_entry().1
1564 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1567 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1568 self.finish_force_close_channel(chan.force_shutdown(true));
1569 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
1570 let mut channel_state = self.channel_state.lock().unwrap();
1571 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1576 Ok(chan.get_counterparty_node_id())
1579 /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1580 /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1581 pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1582 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1583 match self.force_close_channel_with_peer(channel_id, None, None) {
1584 Ok(counterparty_node_id) => {
1585 self.channel_state.lock().unwrap().pending_msg_events.push(
1586 events::MessageSendEvent::HandleError {
1587 node_id: counterparty_node_id,
1588 action: msgs::ErrorAction::SendErrorMessage {
1589 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1599 /// Force close all channels, immediately broadcasting the latest local commitment transaction
1600 /// for each to the chain and rejecting new HTLCs on each.
1601 pub fn force_close_all_channels(&self) {
1602 for chan in self.list_channels() {
1603 let _ = self.force_close_channel(&chan.channel_id);
1607 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1608 macro_rules! return_malformed_err {
1609 ($msg: expr, $err_code: expr) => {
1611 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1612 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1613 channel_id: msg.channel_id,
1614 htlc_id: msg.htlc_id,
1615 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1616 failure_code: $err_code,
1617 })), self.channel_state.lock().unwrap());
1622 if let Err(_) = msg.onion_routing_packet.public_key {
1623 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1626 let shared_secret = {
1627 let mut arr = [0; 32];
1628 arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1631 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1633 if msg.onion_routing_packet.version != 0 {
1634 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1635 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1636 //the hash doesn't really serve any purpose - in the case of hashing all data, the
1637 //receiving node would have to brute force to figure out which version was put in the
1638 //packet by the node that send us the message, in the case of hashing the hop_data, the
1639 //node knows the HMAC matched, so they already know what is there...
1640 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1643 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1644 hmac.input(&msg.onion_routing_packet.hop_data);
1645 hmac.input(&msg.payment_hash.0[..]);
1646 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1647 return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1650 let mut channel_state = None;
1651 macro_rules! return_err {
1652 ($msg: expr, $err_code: expr, $data: expr) => {
1654 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1655 if channel_state.is_none() {
1656 channel_state = Some(self.channel_state.lock().unwrap());
1658 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1659 channel_id: msg.channel_id,
1660 htlc_id: msg.htlc_id,
1661 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1662 })), channel_state.unwrap());
1667 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1668 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1669 let (next_hop_data, next_hop_hmac): (msgs::OnionHopData, _) = {
1670 match <msgs::OnionHopData as Readable>::read(&mut chacha_stream) {
1672 let error_code = match err {
1673 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1674 msgs::DecodeError::UnknownRequiredFeature|
1675 msgs::DecodeError::InvalidValue|
1676 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1677 _ => 0x2000 | 2, // Should never happen
1679 return_err!("Unable to decode our hop data", error_code, &[0;0]);
1682 let mut hmac = [0; 32];
1683 if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1684 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1691 let pending_forward_info = if next_hop_hmac == [0; 32] {
1694 // In tests, make sure that the initial onion pcket data is, at least, non-0.
1695 // We could do some fancy randomness test here, but, ehh, whatever.
1696 // This checks for the issue where you can calculate the path length given the
1697 // onion data as all the path entries that the originator sent will be here
1698 // as-is (and were originally 0s).
1699 // Of course reverse path calculation is still pretty easy given naive routing
1700 // algorithms, but this fixes the most-obvious case.
1701 let mut next_bytes = [0; 32];
1702 chacha_stream.read_exact(&mut next_bytes).unwrap();
1703 assert_ne!(next_bytes[..], [0; 32][..]);
1704 chacha_stream.read_exact(&mut next_bytes).unwrap();
1705 assert_ne!(next_bytes[..], [0; 32][..]);
1709 // final_expiry_too_soon
1710 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
1711 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
1712 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
1713 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
1714 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
1715 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1716 return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1718 // final_incorrect_htlc_amount
1719 if next_hop_data.amt_to_forward > msg.amount_msat {
1720 return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1722 // final_incorrect_cltv_expiry
1723 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1724 return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1727 let routing = match next_hop_data.format {
1728 msgs::OnionHopDataFormat::Legacy { .. } => return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]),
1729 msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1730 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
1731 if payment_data.is_some() && keysend_preimage.is_some() {
1732 return_err!("We don't support MPP keysend payments", 0x4000|22, &[0;0]);
1733 } else if let Some(data) = payment_data {
1734 PendingHTLCRouting::Receive {
1736 incoming_cltv_expiry: msg.cltv_expiry,
1738 } else if let Some(payment_preimage) = keysend_preimage {
1739 // We need to check that the sender knows the keysend preimage before processing this
1740 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
1741 // could discover the final destination of X, by probing the adjacent nodes on the route
1742 // with a keysend payment of identical payment hash to X and observing the processing
1743 // time discrepancies due to a hash collision with X.
1744 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
1745 if hashed_preimage != msg.payment_hash {
1746 return_err!("Payment preimage didn't match payment hash", 0x4000|22, &[0;0]);
1749 PendingHTLCRouting::ReceiveKeysend {
1751 incoming_cltv_expiry: msg.cltv_expiry,
1754 return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1759 // Note that we could obviously respond immediately with an update_fulfill_htlc
1760 // message, however that would leak that we are the recipient of this payment, so
1761 // instead we stay symmetric with the forwarding case, only responding (after a
1762 // delay) once they've send us a commitment_signed!
1764 PendingHTLCStatus::Forward(PendingHTLCInfo {
1766 payment_hash: msg.payment_hash.clone(),
1767 incoming_shared_secret: shared_secret,
1768 amt_to_forward: next_hop_data.amt_to_forward,
1769 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1772 let mut new_packet_data = [0; 20*65];
1773 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1774 #[cfg(debug_assertions)]
1776 // Check two things:
1777 // a) that the behavior of our stream here will return Ok(0) even if the TLV
1778 // read above emptied out our buffer and the unwrap() wont needlessly panic
1779 // b) that we didn't somehow magically end up with extra data.
1781 debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1783 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1784 // fill the onion hop data we'll forward to our next-hop peer.
1785 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1787 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1789 let blinding_factor = {
1790 let mut sha = Sha256::engine();
1791 sha.input(&new_pubkey.serialize()[..]);
1792 sha.input(&shared_secret);
1793 Sha256::from_engine(sha).into_inner()
1796 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1798 } else { Ok(new_pubkey) };
1800 let outgoing_packet = msgs::OnionPacket {
1803 hop_data: new_packet_data,
1804 hmac: next_hop_hmac.clone(),
1807 let short_channel_id = match next_hop_data.format {
1808 msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1809 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1810 msgs::OnionHopDataFormat::FinalNode { .. } => {
1811 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1815 PendingHTLCStatus::Forward(PendingHTLCInfo {
1816 routing: PendingHTLCRouting::Forward {
1817 onion_packet: outgoing_packet,
1820 payment_hash: msg.payment_hash.clone(),
1821 incoming_shared_secret: shared_secret,
1822 amt_to_forward: next_hop_data.amt_to_forward,
1823 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1827 channel_state = Some(self.channel_state.lock().unwrap());
1828 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1829 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1830 // with a short_channel_id of 0. This is important as various things later assume
1831 // short_channel_id is non-0 in any ::Forward.
1832 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1833 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1834 if let Some((err, code, chan_update)) = loop {
1835 let forwarding_id = match id_option {
1836 None => { // unknown_next_peer
1837 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
1839 Some(id) => id.clone(),
1842 let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1844 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
1845 // Note that the behavior here should be identical to the above block - we
1846 // should NOT reveal the existence or non-existence of a private channel if
1847 // we don't allow forwards outbound over them.
1848 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
1851 // Note that we could technically not return an error yet here and just hope
1852 // that the connection is reestablished or monitor updated by the time we get
1853 // around to doing the actual forward, but better to fail early if we can and
1854 // hopefully an attacker trying to path-trace payments cannot make this occur
1855 // on a small/per-node/per-channel scale.
1856 if !chan.is_live() { // channel_disabled
1857 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1859 if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1860 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1862 let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64)
1863 .and_then(|prop_fee| { (prop_fee / 1000000)
1864 .checked_add(chan.get_outbound_forwarding_fee_base_msat() as u64) });
1865 if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1866 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1868 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1869 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1871 let cur_height = self.best_block.read().unwrap().height() + 1;
1872 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1873 // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1874 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1875 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1877 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1878 break Some(("CLTV expiry is too far in the future", 21, None));
1880 // In theory, we would be safe against unintentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1881 // But, to be safe against policy reception, we use a longer delay.
1882 if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1883 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1889 let mut res = Vec::with_capacity(8 + 128);
1890 if let Some(chan_update) = chan_update {
1891 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1892 res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1894 else if code == 0x1000 | 13 {
1895 res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1897 else if code == 0x1000 | 20 {
1898 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1899 res.extend_from_slice(&byte_utils::be16_to_array(0));
1901 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1903 return_err!(err, code, &res[..]);
1908 (pending_forward_info, channel_state.unwrap())
1911 /// Gets the current channel_update for the given channel. This first checks if the channel is
1912 /// public, and thus should be called whenever the result is going to be passed out in a
1913 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
1915 /// May be called with channel_state already locked!
1916 fn get_channel_update_for_broadcast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1917 if !chan.should_announce() {
1918 return Err(LightningError {
1919 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
1920 action: msgs::ErrorAction::IgnoreError
1923 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
1924 self.get_channel_update_for_unicast(chan)
1927 /// Gets the current channel_update for the given channel. This does not check if the channel
1928 /// is public (only returning an Err if the channel does not yet have an assigned short_id),
1929 /// and thus MUST NOT be called unless the recipient of the resulting message has already
1930 /// provided evidence that they know about the existence of the channel.
1931 /// May be called with channel_state already locked!
1932 fn get_channel_update_for_unicast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1933 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
1934 let short_channel_id = match chan.get_short_channel_id() {
1935 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1939 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1941 let unsigned = msgs::UnsignedChannelUpdate {
1942 chain_hash: self.genesis_hash,
1944 timestamp: chan.get_update_time_counter(),
1945 flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1946 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1947 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1948 htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1949 fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
1950 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1951 excess_data: Vec::new(),
1954 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1955 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1957 Ok(msgs::ChannelUpdate {
1963 // Only public for testing, this should otherwise never be called direcly
1964 pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>) -> Result<(), APIError> {
1965 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1966 let prng_seed = self.keys_manager.get_secure_random_bytes();
1967 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
1968 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
1970 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1971 .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1972 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
1973 if onion_utils::route_size_insane(&onion_payloads) {
1974 return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1976 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1978 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1980 let err: Result<(), _> = loop {
1981 let mut channel_lock = self.channel_state.lock().unwrap();
1982 let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1983 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1984 Some(id) => id.clone(),
1987 let channel_state = &mut *channel_lock;
1988 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1990 if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1991 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1993 if !chan.get().is_live() {
1994 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1996 let send_res = break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(
1997 htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1999 session_priv: session_priv.clone(),
2000 first_hop_htlc_msat: htlc_msat,
2002 }, onion_packet, &self.logger),
2003 channel_state, chan);
2005 let mut pending_outbounds = self.pending_outbound_payments.lock().unwrap();
2006 let payment = pending_outbounds.entry(payment_id).or_insert_with(|| PendingOutboundPayment::Retryable {
2007 session_privs: HashSet::new(),
2008 pending_amt_msat: 0,
2009 payment_hash: *payment_hash,
2010 payment_secret: *payment_secret,
2011 starting_block_height: self.best_block.read().unwrap().height(),
2012 total_msat: total_value,
2014 assert!(payment.insert(session_priv_bytes, path.last().unwrap().fee_msat));
2018 Some((update_add, commitment_signed, monitor_update)) => {
2019 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2020 maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
2021 // Note that MonitorUpdateFailed here indicates (per function docs)
2022 // that we will resend the commitment update once monitor updating
2023 // is restored. Therefore, we must return an error indicating that
2024 // it is unsafe to retry the payment wholesale, which we do in the
2025 // send_payment check for MonitorUpdateFailed, below.
2026 return Err(APIError::MonitorUpdateFailed);
2029 log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
2030 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2031 node_id: path.first().unwrap().pubkey,
2032 updates: msgs::CommitmentUpdate {
2033 update_add_htlcs: vec![update_add],
2034 update_fulfill_htlcs: Vec::new(),
2035 update_fail_htlcs: Vec::new(),
2036 update_fail_malformed_htlcs: Vec::new(),
2044 } else { unreachable!(); }
2048 match handle_error!(self, err, path.first().unwrap().pubkey) {
2049 Ok(_) => unreachable!(),
2051 Err(APIError::ChannelUnavailable { err: e.err })
2056 /// Sends a payment along a given route.
2058 /// Value parameters are provided via the last hop in route, see documentation for RouteHop
2059 /// fields for more info.
2061 /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
2062 /// payment), we don't do anything to stop you! We always try to ensure that if the provided
2063 /// next hop knows the preimage to payment_hash they can claim an additional amount as
2064 /// specified in the last hop in the route! Thus, you should probably do your own
2065 /// payment_preimage tracking (which you should already be doing as they represent "proof of
2066 /// payment") and prevent double-sends yourself.
2068 /// May generate SendHTLCs message(s) event on success, which should be relayed.
2070 /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2071 /// each entry matching the corresponding-index entry in the route paths, see
2072 /// PaymentSendFailure for more info.
2074 /// In general, a path may raise:
2075 /// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
2076 /// node public key) is specified.
2077 /// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
2078 /// (including due to previous monitor update failure or new permanent monitor update
2080 /// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
2081 /// relevant updates.
2083 /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2084 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2085 /// different route unless you intend to pay twice!
2087 /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
2088 /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
2089 /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
2090 /// must not contain multiple paths as multi-path payments require a recipient-provided
2092 /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
2093 /// bit set (either as required or as available). If multiple paths are present in the Route,
2094 /// we assume the invoice had the basic_mpp feature set.
2095 pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<PaymentId, PaymentSendFailure> {
2096 self.send_payment_internal(route, payment_hash, payment_secret, None, None, None)
2099 fn send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: Option<PaymentId>, recv_value_msat: Option<u64>) -> Result<PaymentId, PaymentSendFailure> {
2100 if route.paths.len() < 1 {
2101 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
2103 if route.paths.len() > 10 {
2104 // This limit is completely arbitrary - there aren't any real fundamental path-count
2105 // limits. After we support retrying individual paths we should likely bump this, but
2106 // for now more than 10 paths likely carries too much one-path failure.
2107 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
2109 if payment_secret.is_none() && route.paths.len() > 1 {
2110 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError{err: "Payment secret is required for multi-path payments".to_string()}));
2112 let mut total_value = 0;
2113 let our_node_id = self.get_our_node_id();
2114 let mut path_errs = Vec::with_capacity(route.paths.len());
2115 let payment_id = if let Some(id) = payment_id { id } else { PaymentId(self.keys_manager.get_secure_random_bytes()) };
2116 'path_check: for path in route.paths.iter() {
2117 if path.len() < 1 || path.len() > 20 {
2118 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
2119 continue 'path_check;
2121 for (idx, hop) in path.iter().enumerate() {
2122 if idx != path.len() - 1 && hop.pubkey == our_node_id {
2123 path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
2124 continue 'path_check;
2127 total_value += path.last().unwrap().fee_msat;
2128 path_errs.push(Ok(()));
2130 if path_errs.iter().any(|e| e.is_err()) {
2131 return Err(PaymentSendFailure::PathParameterError(path_errs));
2133 if let Some(amt_msat) = recv_value_msat {
2134 debug_assert!(amt_msat >= total_value);
2135 total_value = amt_msat;
2138 let cur_height = self.best_block.read().unwrap().height() + 1;
2139 let mut results = Vec::new();
2140 for path in route.paths.iter() {
2141 results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height, payment_id, &keysend_preimage));
2143 let mut has_ok = false;
2144 let mut has_err = false;
2145 for res in results.iter() {
2146 if res.is_ok() { has_ok = true; }
2147 if res.is_err() { has_err = true; }
2148 if let &Err(APIError::MonitorUpdateFailed) = res {
2149 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
2156 if has_err && has_ok {
2157 Err(PaymentSendFailure::PartialFailure(results))
2159 Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
2165 /// Retries a payment along the given [`Route`].
2167 /// Errors returned are a superset of those returned from [`send_payment`], so see
2168 /// [`send_payment`] documentation for more details on errors. This method will also error if the
2169 /// retry amount puts the payment more than 10% over the payment's total amount, or if the payment
2170 /// for the given `payment_id` cannot be found (likely due to timeout or success).
2172 /// [`send_payment`]: [`ChannelManager::send_payment`]
2173 pub fn retry_payment(&self, route: &Route, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2174 const RETRY_OVERFLOW_PERCENTAGE: u64 = 10;
2175 for path in route.paths.iter() {
2176 if path.len() == 0 {
2177 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2178 err: "length-0 path in route".to_string()
2183 let (total_msat, payment_hash, payment_secret) = {
2184 let outbounds = self.pending_outbound_payments.lock().unwrap();
2185 if let Some(payment) = outbounds.get(&payment_id) {
2187 PendingOutboundPayment::Retryable {
2188 total_msat, payment_hash, payment_secret, pending_amt_msat, ..
2190 let retry_amt_msat: u64 = route.paths.iter().map(|path| path.last().unwrap().fee_msat).sum();
2191 if retry_amt_msat + *pending_amt_msat > *total_msat * (100 + RETRY_OVERFLOW_PERCENTAGE) / 100 {
2192 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2193 err: format!("retry_amt_msat of {} will put pending_amt_msat (currently: {}) more than 10% over total_payment_amt_msat of {}", retry_amt_msat, pending_amt_msat, total_msat).to_string()
2196 (*total_msat, *payment_hash, *payment_secret)
2198 PendingOutboundPayment::Legacy { .. } => {
2199 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2200 err: "Unable to retry payments that were initially sent on LDK versions prior to 0.0.102".to_string()
2205 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2206 err: format!("Payment with ID {} not found", log_bytes!(payment_id.0)),
2210 return self.send_payment_internal(route, payment_hash, &payment_secret, None, Some(payment_id), Some(total_msat)).map(|_| ())
2213 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2214 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2215 /// the preimage, it must be a cryptographically secure random value that no intermediate node
2216 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2217 /// never reach the recipient.
2219 /// See [`send_payment`] documentation for more details on the return value of this function.
2221 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2222 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2224 /// Note that `route` must have exactly one path.
2226 /// [`send_payment`]: Self::send_payment
2227 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2228 let preimage = match payment_preimage {
2230 None => PaymentPreimage(self.keys_manager.get_secure_random_bytes()),
2232 let payment_hash = PaymentHash(Sha256::hash(&preimage.0).into_inner());
2233 match self.send_payment_internal(route, payment_hash, &None, Some(preimage), None, None) {
2234 Ok(payment_id) => Ok((payment_hash, payment_id)),
2239 /// Handles the generation of a funding transaction, optionally (for tests) with a function
2240 /// which checks the correctness of the funding transaction given the associated channel.
2241 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
2242 (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
2244 let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
2246 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2248 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2249 .map_err(|e| if let ChannelError::Close(msg) = e {
2250 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2251 } else { unreachable!(); })
2254 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
2256 match handle_error!(self, res, chan.get_counterparty_node_id()) {
2257 Ok(funding_msg) => {
2260 Err(_) => { return Err(APIError::ChannelUnavailable {
2261 err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
2266 let mut channel_state = self.channel_state.lock().unwrap();
2267 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2268 node_id: chan.get_counterparty_node_id(),
2271 match channel_state.by_id.entry(chan.channel_id()) {
2272 hash_map::Entry::Occupied(_) => {
2273 panic!("Generated duplicate funding txid?");
2275 hash_map::Entry::Vacant(e) => {
2283 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2284 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
2285 Ok(OutPoint { txid: tx.txid(), index: output_index })
2289 /// Call this upon creation of a funding transaction for the given channel.
2291 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2292 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2294 /// Panics if a funding transaction has already been provided for this channel.
2296 /// May panic if the output found in the funding transaction is duplicative with some other
2297 /// channel (note that this should be trivially prevented by using unique funding transaction
2298 /// keys per-channel).
2300 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2301 /// counterparty's signature the funding transaction will automatically be broadcast via the
2302 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2304 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2305 /// not currently support replacing a funding transaction on an existing channel. Instead,
2306 /// create a new channel with a conflicting funding transaction.
2308 /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2309 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
2310 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2312 for inp in funding_transaction.input.iter() {
2313 if inp.witness.is_empty() {
2314 return Err(APIError::APIMisuseError {
2315 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2319 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
2320 let mut output_index = None;
2321 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2322 for (idx, outp) in tx.output.iter().enumerate() {
2323 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2324 if output_index.is_some() {
2325 return Err(APIError::APIMisuseError {
2326 err: "Multiple outputs matched the expected script and value".to_owned()
2329 if idx > u16::max_value() as usize {
2330 return Err(APIError::APIMisuseError {
2331 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2334 output_index = Some(idx as u16);
2337 if output_index.is_none() {
2338 return Err(APIError::APIMisuseError {
2339 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2342 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2346 fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
2347 if !chan.should_announce() {
2348 log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
2352 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
2354 Err(_) => return None, // Only in case of state precondition violations eg channel is closing
2356 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2357 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2359 Some(msgs::AnnouncementSignatures {
2360 channel_id: chan.channel_id(),
2361 short_channel_id: chan.get_short_channel_id().unwrap(),
2362 node_signature: our_node_sig,
2363 bitcoin_signature: our_bitcoin_sig,
2368 // Messages of up to 64KB should never end up more than half full with addresses, as that would
2369 // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
2370 // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2372 const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2375 // ...by failing to compile if the number of addresses that would be half of a message is
2376 // smaller than 500:
2377 const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
2379 /// Regenerates channel_announcements and generates a signed node_announcement from the given
2380 /// arguments, providing them in corresponding events via
2381 /// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
2382 /// on-chain. This effectively re-broadcasts all channel announcements and sends our node
2383 /// announcement to ensure that the lightning P2P network is aware of the channels we have and
2384 /// our network addresses.
2386 /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2387 /// node to humans. They carry no in-protocol meaning.
2389 /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2390 /// accepts incoming connections. These will be included in the node_announcement, publicly
2391 /// tying these addresses together and to this node. If you wish to preserve user privacy,
2392 /// addresses should likely contain only Tor Onion addresses.
2394 /// Panics if `addresses` is absurdly large (more than 500).
2396 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2397 pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2398 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2400 if addresses.len() > 500 {
2401 panic!("More than half the message size was taken up by public addresses!");
2404 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2405 // addresses be sorted for future compatibility.
2406 addresses.sort_by_key(|addr| addr.get_id());
2408 let announcement = msgs::UnsignedNodeAnnouncement {
2409 features: NodeFeatures::known(),
2410 timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
2411 node_id: self.get_our_node_id(),
2412 rgb, alias, addresses,
2413 excess_address_data: Vec::new(),
2414 excess_data: Vec::new(),
2416 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2417 let node_announce_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2419 let mut channel_state_lock = self.channel_state.lock().unwrap();
2420 let channel_state = &mut *channel_state_lock;
2422 let mut announced_chans = false;
2423 for (_, chan) in channel_state.by_id.iter() {
2424 if let Some(msg) = chan.get_signed_channel_announcement(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone()) {
2425 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
2427 update_msg: match self.get_channel_update_for_broadcast(chan) {
2432 announced_chans = true;
2434 // If the channel is not public or has not yet reached funding_locked, check the
2435 // next channel. If we don't yet have any public channels, we'll skip the broadcast
2436 // below as peers may not accept it without channels on chain first.
2440 if announced_chans {
2441 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
2442 msg: msgs::NodeAnnouncement {
2443 signature: node_announce_sig,
2444 contents: announcement
2450 /// Processes HTLCs which are pending waiting on random forward delay.
2452 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2453 /// Will likely generate further events.
2454 pub fn process_pending_htlc_forwards(&self) {
2455 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2457 let mut new_events = Vec::new();
2458 let mut failed_forwards = Vec::new();
2459 let mut handle_errors = Vec::new();
2461 let mut channel_state_lock = self.channel_state.lock().unwrap();
2462 let channel_state = &mut *channel_state_lock;
2464 for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
2465 if short_chan_id != 0 {
2466 let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
2467 Some(chan_id) => chan_id.clone(),
2469 failed_forwards.reserve(pending_forwards.len());
2470 for forward_info in pending_forwards.drain(..) {
2471 match forward_info {
2472 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
2473 prev_funding_outpoint } => {
2474 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2475 short_channel_id: prev_short_channel_id,
2476 outpoint: prev_funding_outpoint,
2477 htlc_id: prev_htlc_id,
2478 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
2480 failed_forwards.push((htlc_source, forward_info.payment_hash,
2481 HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
2484 HTLCForwardInfo::FailHTLC { .. } => {
2485 // Channel went away before we could fail it. This implies
2486 // the channel is now on chain and our counterparty is
2487 // trying to broadcast the HTLC-Timeout, but that's their
2488 // problem, not ours.
2495 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
2496 let mut add_htlc_msgs = Vec::new();
2497 let mut fail_htlc_msgs = Vec::new();
2498 for forward_info in pending_forwards.drain(..) {
2499 match forward_info {
2500 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2501 routing: PendingHTLCRouting::Forward {
2503 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2504 prev_funding_outpoint } => {
2505 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
2506 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2507 short_channel_id: prev_short_channel_id,
2508 outpoint: prev_funding_outpoint,
2509 htlc_id: prev_htlc_id,
2510 incoming_packet_shared_secret: incoming_shared_secret,
2512 match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
2514 if let ChannelError::Ignore(msg) = e {
2515 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
2517 panic!("Stated return value requirements in send_htlc() were not met");
2519 let chan_update = self.get_channel_update_for_unicast(chan.get()).unwrap();
2520 failed_forwards.push((htlc_source, payment_hash,
2521 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
2527 Some(msg) => { add_htlc_msgs.push(msg); },
2529 // Nothing to do here...we're waiting on a remote
2530 // revoke_and_ack before we can add anymore HTLCs. The Channel
2531 // will automatically handle building the update_add_htlc and
2532 // commitment_signed messages when we can.
2533 // TODO: Do some kind of timer to set the channel as !is_live()
2534 // as we don't really want others relying on us relaying through
2535 // this channel currently :/.
2541 HTLCForwardInfo::AddHTLC { .. } => {
2542 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
2544 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
2545 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
2546 match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
2548 if let ChannelError::Ignore(msg) = e {
2549 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
2551 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
2553 // fail-backs are best-effort, we probably already have one
2554 // pending, and if not that's OK, if not, the channel is on
2555 // the chain and sending the HTLC-Timeout is their problem.
2558 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
2560 // Nothing to do here...we're waiting on a remote
2561 // revoke_and_ack before we can update the commitment
2562 // transaction. The Channel will automatically handle
2563 // building the update_fail_htlc and commitment_signed
2564 // messages when we can.
2565 // We don't need any kind of timer here as they should fail
2566 // the channel onto the chain if they can't get our
2567 // update_fail_htlc in time, it's not our problem.
2574 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
2575 let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
2578 // We surely failed send_commitment due to bad keys, in that case
2579 // close channel and then send error message to peer.
2580 let counterparty_node_id = chan.get().get_counterparty_node_id();
2581 let err: Result<(), _> = match e {
2582 ChannelError::Ignore(_) | ChannelError::Warn(_) => {
2583 panic!("Stated return value requirements in send_commitment() were not met");
2585 ChannelError::Close(msg) => {
2586 log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
2587 let (channel_id, mut channel) = chan.remove_entry();
2588 if let Some(short_id) = channel.get_short_channel_id() {
2589 channel_state.short_to_id.remove(&short_id);
2591 // ChannelClosed event is generated by handle_error for us.
2592 Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.get_user_id(), channel.force_shutdown(true), self.get_channel_update_for_broadcast(&channel).ok()))
2594 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
2596 handle_errors.push((counterparty_node_id, err));
2600 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2601 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
2604 log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
2605 add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
2606 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2607 node_id: chan.get().get_counterparty_node_id(),
2608 updates: msgs::CommitmentUpdate {
2609 update_add_htlcs: add_htlc_msgs,
2610 update_fulfill_htlcs: Vec::new(),
2611 update_fail_htlcs: fail_htlc_msgs,
2612 update_fail_malformed_htlcs: Vec::new(),
2614 commitment_signed: commitment_msg,
2622 for forward_info in pending_forwards.drain(..) {
2623 match forward_info {
2624 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2625 routing, incoming_shared_secret, payment_hash, amt_to_forward, .. },
2626 prev_funding_outpoint } => {
2627 let (cltv_expiry, onion_payload) = match routing {
2628 PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry } =>
2629 (incoming_cltv_expiry, OnionPayload::Invoice(payment_data)),
2630 PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
2631 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage)),
2633 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2636 let claimable_htlc = ClaimableHTLC {
2637 prev_hop: HTLCPreviousHopData {
2638 short_channel_id: prev_short_channel_id,
2639 outpoint: prev_funding_outpoint,
2640 htlc_id: prev_htlc_id,
2641 incoming_packet_shared_secret: incoming_shared_secret,
2643 value: amt_to_forward,
2648 macro_rules! fail_htlc {
2650 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
2651 htlc_msat_height_data.extend_from_slice(
2652 &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
2654 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
2655 short_channel_id: $htlc.prev_hop.short_channel_id,
2656 outpoint: prev_funding_outpoint,
2657 htlc_id: $htlc.prev_hop.htlc_id,
2658 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
2660 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2665 // Check that the payment hash and secret are known. Note that we
2666 // MUST take care to handle the "unknown payment hash" and
2667 // "incorrect payment secret" cases here identically or we'd expose
2668 // that we are the ultimate recipient of the given payment hash.
2669 // Further, we must not expose whether we have any other HTLCs
2670 // associated with the same payment_hash pending or not.
2671 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2672 match payment_secrets.entry(payment_hash) {
2673 hash_map::Entry::Vacant(_) => {
2674 match claimable_htlc.onion_payload {
2675 OnionPayload::Invoice(_) => {
2676 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2677 fail_htlc!(claimable_htlc);
2679 OnionPayload::Spontaneous(preimage) => {
2680 match channel_state.claimable_htlcs.entry(payment_hash) {
2681 hash_map::Entry::Vacant(e) => {
2682 e.insert(vec![claimable_htlc]);
2683 new_events.push(events::Event::PaymentReceived {
2685 amt: amt_to_forward,
2686 purpose: events::PaymentPurpose::SpontaneousPayment(preimage),
2689 hash_map::Entry::Occupied(_) => {
2690 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
2691 fail_htlc!(claimable_htlc);
2697 hash_map::Entry::Occupied(inbound_payment) => {
2699 if let OnionPayload::Invoice(ref data) = claimable_htlc.onion_payload {
2702 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
2703 fail_htlc!(claimable_htlc);
2706 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2707 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2708 fail_htlc!(claimable_htlc);
2709 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2710 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2711 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2712 fail_htlc!(claimable_htlc);
2714 let mut total_value = 0;
2715 let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2716 .or_insert(Vec::new());
2717 if htlcs.len() == 1 {
2718 if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
2719 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
2720 fail_htlc!(claimable_htlc);
2724 htlcs.push(claimable_htlc);
2725 for htlc in htlcs.iter() {
2726 total_value += htlc.value;
2727 match &htlc.onion_payload {
2728 OnionPayload::Invoice(htlc_payment_data) => {
2729 if htlc_payment_data.total_msat != payment_data.total_msat {
2730 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2731 log_bytes!(payment_hash.0), payment_data.total_msat, htlc_payment_data.total_msat);
2732 total_value = msgs::MAX_VALUE_MSAT;
2734 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2736 _ => unreachable!(),
2739 if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2740 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2741 log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2742 for htlc in htlcs.iter() {
2745 } else if total_value == payment_data.total_msat {
2746 new_events.push(events::Event::PaymentReceived {
2748 purpose: events::PaymentPurpose::InvoicePayment {
2749 payment_preimage: inbound_payment.get().payment_preimage,
2750 payment_secret: payment_data.payment_secret,
2751 user_payment_id: inbound_payment.get().user_payment_id,
2755 // Only ever generate at most one PaymentReceived
2756 // per registered payment_hash, even if it isn't
2758 inbound_payment.remove_entry();
2760 // Nothing to do - we haven't reached the total
2761 // payment value yet, wait until we receive more
2768 HTLCForwardInfo::FailHTLC { .. } => {
2769 panic!("Got pending fail of our own HTLC");
2777 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2778 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2781 for (counterparty_node_id, err) in handle_errors.drain(..) {
2782 let _ = handle_error!(self, err, counterparty_node_id);
2785 if new_events.is_empty() { return }
2786 let mut events = self.pending_events.lock().unwrap();
2787 events.append(&mut new_events);
2790 /// Free the background events, generally called from timer_tick_occurred.
2792 /// Exposed for testing to allow us to process events quickly without generating accidental
2793 /// BroadcastChannelUpdate events in timer_tick_occurred.
2795 /// Expects the caller to have a total_consistency_lock read lock.
2796 fn process_background_events(&self) -> bool {
2797 let mut background_events = Vec::new();
2798 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2799 if background_events.is_empty() {
2803 for event in background_events.drain(..) {
2805 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2806 // The channel has already been closed, so no use bothering to care about the
2807 // monitor updating completing.
2808 let _ = self.chain_monitor.update_channel(funding_txo, update);
2815 #[cfg(any(test, feature = "_test_utils"))]
2816 /// Process background events, for functional testing
2817 pub fn test_process_background_events(&self) {
2818 self.process_background_events();
2821 fn update_channel_fee(&self, short_to_id: &mut HashMap<u64, [u8; 32]>, pending_msg_events: &mut Vec<events::MessageSendEvent>, chan_id: &[u8; 32], chan: &mut Channel<Signer>, new_feerate: u32) -> (bool, NotifyOption, Result<(), MsgHandleErrInternal>) {
2822 if !chan.is_outbound() { return (true, NotifyOption::SkipPersist, Ok(())); }
2823 // If the feerate has decreased by less than half, don't bother
2824 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
2825 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
2826 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2827 return (true, NotifyOption::SkipPersist, Ok(()));
2829 if !chan.is_live() {
2830 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
2831 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2832 return (true, NotifyOption::SkipPersist, Ok(()));
2834 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
2835 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2837 let mut retain_channel = true;
2838 let res = match chan.send_update_fee_and_commit(new_feerate, &self.logger) {
2841 let (drop, res) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
2842 if drop { retain_channel = false; }
2846 let ret_err = match res {
2847 Ok(Some((update_fee, commitment_signed, monitor_update))) => {
2848 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
2849 let (res, drop) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), chan_id);
2850 if drop { retain_channel = false; }
2853 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2854 node_id: chan.get_counterparty_node_id(),
2855 updates: msgs::CommitmentUpdate {
2856 update_add_htlcs: Vec::new(),
2857 update_fulfill_htlcs: Vec::new(),
2858 update_fail_htlcs: Vec::new(),
2859 update_fail_malformed_htlcs: Vec::new(),
2860 update_fee: Some(update_fee),
2870 (retain_channel, NotifyOption::DoPersist, ret_err)
2874 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
2875 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
2876 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
2877 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
2878 pub fn maybe_update_chan_fees(&self) {
2879 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2880 let mut should_persist = NotifyOption::SkipPersist;
2882 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
2884 let mut handle_errors = Vec::new();
2886 let mut channel_state_lock = self.channel_state.lock().unwrap();
2887 let channel_state = &mut *channel_state_lock;
2888 let pending_msg_events = &mut channel_state.pending_msg_events;
2889 let short_to_id = &mut channel_state.short_to_id;
2890 channel_state.by_id.retain(|chan_id, chan| {
2891 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
2892 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
2894 handle_errors.push(err);
2904 /// Performs actions which should happen on startup and roughly once per minute thereafter.
2906 /// This currently includes:
2907 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
2908 /// * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
2909 /// than a minute, informing the network that they should no longer attempt to route over
2912 /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
2913 /// estimate fetches.
2914 pub fn timer_tick_occurred(&self) {
2915 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2916 let mut should_persist = NotifyOption::SkipPersist;
2917 if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
2919 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
2921 let mut handle_errors = Vec::new();
2923 let mut channel_state_lock = self.channel_state.lock().unwrap();
2924 let channel_state = &mut *channel_state_lock;
2925 let pending_msg_events = &mut channel_state.pending_msg_events;
2926 let short_to_id = &mut channel_state.short_to_id;
2927 channel_state.by_id.retain(|chan_id, chan| {
2928 let counterparty_node_id = chan.get_counterparty_node_id();
2929 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
2930 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
2932 handle_errors.push((err, counterparty_node_id));
2934 if !retain_channel { return false; }
2936 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
2937 let (needs_close, err) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
2938 handle_errors.push((Err(err), chan.get_counterparty_node_id()));
2939 if needs_close { return false; }
2942 match chan.channel_update_status() {
2943 ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
2944 ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
2945 ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
2946 ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
2947 ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
2948 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2949 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2953 should_persist = NotifyOption::DoPersist;
2954 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
2956 ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
2957 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2958 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2962 should_persist = NotifyOption::DoPersist;
2963 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
2972 for (err, counterparty_node_id) in handle_errors.drain(..) {
2973 let _ = handle_error!(self, err, counterparty_node_id);
2979 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2980 /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2981 /// along the path (including in our own channel on which we received it).
2982 /// Returns false if no payment was found to fail backwards, true if the process of failing the
2983 /// HTLC backwards has been started.
2984 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2985 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2987 let mut channel_state = Some(self.channel_state.lock().unwrap());
2988 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2989 if let Some(mut sources) = removed_source {
2990 for htlc in sources.drain(..) {
2991 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2992 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2993 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2994 self.best_block.read().unwrap().height()));
2995 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2996 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2997 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
3003 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3004 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3005 // be surfaced to the user.
3006 fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
3007 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3009 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
3010 let (failure_code, onion_failure_data) =
3011 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
3012 hash_map::Entry::Occupied(chan_entry) => {
3013 if let Ok(upd) = self.get_channel_update_for_unicast(&chan_entry.get()) {
3014 (0x1000|7, upd.encode_with_len())
3016 (0x4000|10, Vec::new())
3019 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3021 let channel_state = self.channel_state.lock().unwrap();
3022 self.fail_htlc_backwards_internal(channel_state,
3023 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
3025 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
3026 let mut session_priv_bytes = [0; 32];
3027 session_priv_bytes.copy_from_slice(&session_priv[..]);
3028 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3029 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3030 if payment.get_mut().remove(&session_priv_bytes, path.last().unwrap().fee_msat) {
3031 self.pending_events.lock().unwrap().push(
3032 events::Event::PaymentPathFailed {
3034 rejected_by_dest: false,
3035 network_update: None,
3036 all_paths_failed: payment.get().remaining_parts() == 0,
3038 short_channel_id: None,
3048 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3055 /// Fails an HTLC backwards to the sender of it to us.
3056 /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
3057 /// There are several callsites that do stupid things like loop over a list of payment_hashes
3058 /// to fail and take the channel_state lock for each iteration (as we take ownership and may
3059 /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
3060 /// still-available channels.
3061 fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
3062 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3063 //identify whether we sent it or not based on the (I presume) very different runtime
3064 //between the branches here. We should make this async and move it into the forward HTLCs
3067 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3068 // from block_connected which may run during initialization prior to the chain_monitor
3069 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3071 HTLCSource::OutboundRoute { ref path, session_priv, payment_id, .. } => {
3072 let mut session_priv_bytes = [0; 32];
3073 session_priv_bytes.copy_from_slice(&session_priv[..]);
3074 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3075 let mut all_paths_failed = false;
3076 if let hash_map::Entry::Occupied(mut sessions) = outbounds.entry(payment_id) {
3077 if !sessions.get_mut().remove(&session_priv_bytes, path.last().unwrap().fee_msat) {
3078 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3081 if sessions.get().remaining_parts() == 0 {
3082 all_paths_failed = true;
3085 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3088 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3089 mem::drop(channel_state_lock);
3090 match &onion_error {
3091 &HTLCFailReason::LightningError { ref err } => {
3093 let (network_update, short_channel_id, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3095 let (network_update, short_channel_id, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3096 // TODO: If we decided to blame ourselves (or one of our channels) in
3097 // process_onion_failure we should close that channel as it implies our
3098 // next-hop is needlessly blaming us!
3099 self.pending_events.lock().unwrap().push(
3100 events::Event::PaymentPathFailed {
3101 payment_hash: payment_hash.clone(),
3102 rejected_by_dest: !payment_retryable,
3109 error_code: onion_error_code,
3111 error_data: onion_error_data
3115 &HTLCFailReason::Reason {
3121 // we get a fail_malformed_htlc from the first hop
3122 // TODO: We'd like to generate a NetworkUpdate for temporary
3123 // failures here, but that would be insufficient as get_route
3124 // generally ignores its view of our own channels as we provide them via
3126 // TODO: For non-temporary failures, we really should be closing the
3127 // channel here as we apparently can't relay through them anyway.
3128 self.pending_events.lock().unwrap().push(
3129 events::Event::PaymentPathFailed {
3130 payment_hash: payment_hash.clone(),
3131 rejected_by_dest: path.len() == 1,
3132 network_update: None,
3135 short_channel_id: Some(path.first().unwrap().short_channel_id),
3138 error_code: Some(*failure_code),
3140 error_data: Some(data.clone()),
3146 HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
3147 let err_packet = match onion_error {
3148 HTLCFailReason::Reason { failure_code, data } => {
3149 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
3150 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
3151 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
3153 HTLCFailReason::LightningError { err } => {
3154 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
3155 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
3159 let mut forward_event = None;
3160 if channel_state_lock.forward_htlcs.is_empty() {
3161 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
3163 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
3164 hash_map::Entry::Occupied(mut entry) => {
3165 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
3167 hash_map::Entry::Vacant(entry) => {
3168 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
3171 mem::drop(channel_state_lock);
3172 if let Some(time) = forward_event {
3173 let mut pending_events = self.pending_events.lock().unwrap();
3174 pending_events.push(events::Event::PendingHTLCsForwardable {
3175 time_forwardable: time
3182 /// Provides a payment preimage in response to a PaymentReceived event, returning true and
3183 /// generating message events for the net layer to claim the payment, if possible. Thus, you
3184 /// should probably kick the net layer to go send messages if this returns true!
3186 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3187 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
3188 /// event matches your expectation. If you fail to do so and call this method, you may provide
3189 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3191 /// May panic if called except in response to a PaymentReceived event.
3193 /// [`create_inbound_payment`]: Self::create_inbound_payment
3194 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3195 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
3196 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3198 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3200 let mut channel_state = Some(self.channel_state.lock().unwrap());
3201 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
3202 if let Some(mut sources) = removed_source {
3203 assert!(!sources.is_empty());
3205 // If we are claiming an MPP payment, we have to take special care to ensure that each
3206 // channel exists before claiming all of the payments (inside one lock).
3207 // Note that channel existance is sufficient as we should always get a monitor update
3208 // which will take care of the real HTLC claim enforcement.
3210 // If we find an HTLC which we would need to claim but for which we do not have a
3211 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3212 // the sender retries the already-failed path(s), it should be a pretty rare case where
3213 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3214 // provide the preimage, so worrying too much about the optimal handling isn't worth
3216 let mut valid_mpp = true;
3217 for htlc in sources.iter() {
3218 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
3224 let mut errs = Vec::new();
3225 let mut claimed_any_htlcs = false;
3226 for htlc in sources.drain(..) {
3228 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
3229 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3230 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3231 self.best_block.read().unwrap().height()));
3232 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
3233 HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
3234 HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
3236 match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
3237 ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) => {
3238 if let msgs::ErrorAction::IgnoreError = err.err.action {
3239 // We got a temporary failure updating monitor, but will claim the
3240 // HTLC when the monitor updating is restored (or on chain).
3241 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
3242 claimed_any_htlcs = true;
3243 } else { errs.push((pk, err)); }
3245 ClaimFundsFromHop::PrevHopForceClosed => unreachable!("We already checked for channel existence, we can't fail here!"),
3246 ClaimFundsFromHop::DuplicateClaim => {
3247 // While we should never get here in most cases, if we do, it likely
3248 // indicates that the HTLC was timed out some time ago and is no longer
3249 // available to be claimed. Thus, it does not make sense to set
3250 // `claimed_any_htlcs`.
3252 ClaimFundsFromHop::Success(_) => claimed_any_htlcs = true,
3257 // Now that we've done the entire above loop in one lock, we can handle any errors
3258 // which were generated.
3259 channel_state.take();
3261 for (counterparty_node_id, err) in errs.drain(..) {
3262 let res: Result<(), _> = Err(err);
3263 let _ = handle_error!(self, res, counterparty_node_id);
3270 fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> ClaimFundsFromHop {
3271 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
3272 let channel_state = &mut **channel_state_lock;
3273 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
3274 Some(chan_id) => chan_id.clone(),
3276 return ClaimFundsFromHop::PrevHopForceClosed
3280 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
3281 match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
3282 Ok(msgs_monitor_option) => {
3283 if let UpdateFulfillCommitFetch::NewClaim { msgs, htlc_value_msat, monitor_update } = msgs_monitor_option {
3284 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3285 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Debug },
3286 "Failed to update channel monitor with preimage {:?}: {:?}",
3287 payment_preimage, e);
3288 return ClaimFundsFromHop::MonitorUpdateFail(
3289 chan.get().get_counterparty_node_id(),
3290 handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err(),
3291 Some(htlc_value_msat)
3294 if let Some((msg, commitment_signed)) = msgs {
3295 log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
3296 log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
3297 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3298 node_id: chan.get().get_counterparty_node_id(),
3299 updates: msgs::CommitmentUpdate {
3300 update_add_htlcs: Vec::new(),
3301 update_fulfill_htlcs: vec![msg],
3302 update_fail_htlcs: Vec::new(),
3303 update_fail_malformed_htlcs: Vec::new(),
3309 return ClaimFundsFromHop::Success(htlc_value_msat);
3311 return ClaimFundsFromHop::DuplicateClaim;
3314 Err((e, monitor_update)) => {
3315 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3316 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Info },
3317 "Failed to update channel monitor with preimage {:?} immediately prior to force-close: {:?}",
3318 payment_preimage, e);
3320 let counterparty_node_id = chan.get().get_counterparty_node_id();
3321 let (drop, res) = convert_chan_err!(self, e, channel_state.short_to_id, chan.get_mut(), &chan_id);
3323 chan.remove_entry();
3325 return ClaimFundsFromHop::MonitorUpdateFail(counterparty_node_id, res, None);
3328 } else { unreachable!(); }
3331 fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool) {
3333 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
3334 mem::drop(channel_state_lock);
3335 let mut session_priv_bytes = [0; 32];
3336 session_priv_bytes.copy_from_slice(&session_priv[..]);
3337 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3338 let found_payment = if let Some(mut sessions) = outbounds.remove(&payment_id) {
3339 sessions.remove(&session_priv_bytes, path.last().unwrap().fee_msat)
3342 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3343 self.pending_events.lock().unwrap().push(
3344 events::Event::PaymentSent {
3346 payment_hash: payment_hash
3350 log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
3353 HTLCSource::PreviousHopData(hop_data) => {
3354 let prev_outpoint = hop_data.outpoint;
3355 let res = self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage);
3356 let claimed_htlc = if let ClaimFundsFromHop::DuplicateClaim = res { false } else { true };
3357 let htlc_claim_value_msat = match res {
3358 ClaimFundsFromHop::MonitorUpdateFail(_, _, amt_opt) => amt_opt,
3359 ClaimFundsFromHop::Success(amt) => Some(amt),
3362 if let ClaimFundsFromHop::PrevHopForceClosed = res {
3363 let preimage_update = ChannelMonitorUpdate {
3364 update_id: CLOSED_CHANNEL_UPDATE_ID,
3365 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
3366 payment_preimage: payment_preimage.clone(),
3369 // We update the ChannelMonitor on the backward link, after
3370 // receiving an offchain preimage event from the forward link (the
3371 // event being update_fulfill_htlc).
3372 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
3373 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
3374 payment_preimage, e);
3376 // Note that we do *not* set `claimed_htlc` to false here. In fact, this
3377 // totally could be a duplicate claim, but we have no way of knowing
3378 // without interrogating the `ChannelMonitor` we've provided the above
3379 // update to. Instead, we simply document in `PaymentForwarded` that this
3382 mem::drop(channel_state_lock);
3383 if let ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) = res {
3384 let result: Result<(), _> = Err(err);
3385 let _ = handle_error!(self, result, pk);
3389 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
3390 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
3391 Some(claimed_htlc_value - forwarded_htlc_value)
3394 let mut pending_events = self.pending_events.lock().unwrap();
3395 pending_events.push(events::Event::PaymentForwarded {
3397 claim_from_onchain_tx: from_onchain,
3405 /// Gets the node_id held by this ChannelManager
3406 pub fn get_our_node_id(&self) -> PublicKey {
3407 self.our_network_pubkey.clone()
3410 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
3411 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3413 let chan_restoration_res;
3414 let mut pending_failures = {
3415 let mut channel_lock = self.channel_state.lock().unwrap();
3416 let channel_state = &mut *channel_lock;
3417 let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
3418 hash_map::Entry::Occupied(chan) => chan,
3419 hash_map::Entry::Vacant(_) => return,
3421 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
3425 let (raa, commitment_update, order, pending_forwards, pending_failures, funding_broadcastable, funding_locked) = channel.get_mut().monitor_updating_restored(&self.logger);
3426 let channel_update = if funding_locked.is_some() && channel.get().is_usable() && !channel.get().should_announce() {
3427 // We only send a channel_update in the case where we are just now sending a
3428 // funding_locked and the channel is in a usable state. Further, we rely on the
3429 // normal announcement_signatures process to send a channel_update for public
3430 // channels, only generating a unicast channel_update if this is a private channel.
3431 Some(events::MessageSendEvent::SendChannelUpdate {
3432 node_id: channel.get().get_counterparty_node_id(),
3433 msg: self.get_channel_update_for_unicast(channel.get()).unwrap(),
3436 chan_restoration_res = handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, raa, commitment_update, order, None, pending_forwards, funding_broadcastable, funding_locked);
3437 if let Some(upd) = channel_update {
3438 channel_state.pending_msg_events.push(upd);
3442 post_handle_chan_restoration!(self, chan_restoration_res);
3443 for failure in pending_failures.drain(..) {
3444 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3448 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
3449 if msg.chain_hash != self.genesis_hash {
3450 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
3453 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), &their_features, msg, 0, &self.default_configuration)
3454 .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
3455 let mut channel_state_lock = self.channel_state.lock().unwrap();
3456 let channel_state = &mut *channel_state_lock;
3457 match channel_state.by_id.entry(channel.channel_id()) {
3458 hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
3459 hash_map::Entry::Vacant(entry) => {
3460 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
3461 node_id: counterparty_node_id.clone(),
3462 msg: channel.get_accept_channel(),
3464 entry.insert(channel);
3470 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
3471 let (value, output_script, user_id) = {
3472 let mut channel_lock = self.channel_state.lock().unwrap();
3473 let channel_state = &mut *channel_lock;
3474 match channel_state.by_id.entry(msg.temporary_channel_id) {
3475 hash_map::Entry::Occupied(mut chan) => {
3476 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3477 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
3479 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, &their_features), channel_state, chan);
3480 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
3482 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
3485 let mut pending_events = self.pending_events.lock().unwrap();
3486 pending_events.push(events::Event::FundingGenerationReady {
3487 temporary_channel_id: msg.temporary_channel_id,
3488 channel_value_satoshis: value,
3490 user_channel_id: user_id,
3495 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
3496 let ((funding_msg, monitor), mut chan) = {
3497 let best_block = *self.best_block.read().unwrap();
3498 let mut channel_lock = self.channel_state.lock().unwrap();
3499 let channel_state = &mut *channel_lock;
3500 match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
3501 hash_map::Entry::Occupied(mut chan) => {
3502 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3503 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
3505 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
3507 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
3510 // Because we have exclusive ownership of the channel here we can release the channel_state
3511 // lock before watch_channel
3512 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
3514 ChannelMonitorUpdateErr::PermanentFailure => {
3515 // Note that we reply with the new channel_id in error messages if we gave up on the
3516 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
3517 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
3518 // any messages referencing a previously-closed channel anyway.
3519 // We do not do a force-close here as that would generate a monitor update for
3520 // a monitor that we didn't manage to store (and that we don't care about - we
3521 // don't respond with the funding_signed so the channel can never go on chain).
3522 let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
3523 assert!(failed_htlcs.is_empty());
3524 return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
3526 ChannelMonitorUpdateErr::TemporaryFailure => {
3527 // There's no problem signing a counterparty's funding transaction if our monitor
3528 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
3529 // accepted payment from yet. We do, however, need to wait to send our funding_locked
3530 // until we have persisted our monitor.
3531 chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
3535 let mut channel_state_lock = self.channel_state.lock().unwrap();
3536 let channel_state = &mut *channel_state_lock;
3537 match channel_state.by_id.entry(funding_msg.channel_id) {
3538 hash_map::Entry::Occupied(_) => {
3539 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
3541 hash_map::Entry::Vacant(e) => {
3542 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
3543 node_id: counterparty_node_id.clone(),
3552 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
3554 let best_block = *self.best_block.read().unwrap();
3555 let mut channel_lock = self.channel_state.lock().unwrap();
3556 let channel_state = &mut *channel_lock;
3557 match channel_state.by_id.entry(msg.channel_id) {
3558 hash_map::Entry::Occupied(mut chan) => {
3559 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3560 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3562 let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
3563 Ok(update) => update,
3564 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
3566 if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
3567 let mut res = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
3568 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
3569 // We weren't able to watch the channel to begin with, so no updates should be made on
3570 // it. Previously, full_stack_target found an (unreachable) panic when the
3571 // monitor update contained within `shutdown_finish` was applied.
3572 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
3573 shutdown_finish.0.take();
3580 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3583 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
3584 self.tx_broadcaster.broadcast_transaction(&funding_tx);
3588 fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
3589 let mut channel_state_lock = self.channel_state.lock().unwrap();
3590 let channel_state = &mut *channel_state_lock;
3591 match channel_state.by_id.entry(msg.channel_id) {
3592 hash_map::Entry::Occupied(mut chan) => {
3593 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3594 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3596 try_chan_entry!(self, chan.get_mut().funding_locked(&msg, &self.logger), channel_state, chan);
3597 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
3598 log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
3599 // If we see locking block before receiving remote funding_locked, we broadcast our
3600 // announcement_sigs at remote funding_locked reception. If we receive remote
3601 // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
3602 // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
3603 // the order of the events but our peer may not receive it due to disconnection. The specs
3604 // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
3605 // connection in the future if simultaneous misses by both peers due to network/hardware
3606 // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
3607 // to be received, from then sigs are going to be flood to the whole network.
3608 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3609 node_id: counterparty_node_id.clone(),
3610 msg: announcement_sigs,
3612 } else if chan.get().is_usable() {
3613 channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3614 node_id: counterparty_node_id.clone(),
3615 msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
3620 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3624 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
3625 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
3626 let result: Result<(), _> = loop {
3627 let mut channel_state_lock = self.channel_state.lock().unwrap();
3628 let channel_state = &mut *channel_state_lock;
3630 match channel_state.by_id.entry(msg.channel_id.clone()) {
3631 hash_map::Entry::Occupied(mut chan_entry) => {
3632 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3633 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3636 if !chan_entry.get().received_shutdown() {
3637 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
3638 log_bytes!(msg.channel_id),
3639 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
3642 let (shutdown, monitor_update, htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.keys_manager, &their_features, &msg), channel_state, chan_entry);
3643 dropped_htlcs = htlcs;
3645 // Update the monitor with the shutdown script if necessary.
3646 if let Some(monitor_update) = monitor_update {
3647 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
3648 let (result, is_permanent) =
3649 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, false, false, Vec::new(), Vec::new(), chan_entry.key());
3651 remove_channel!(channel_state, chan_entry);
3657 if let Some(msg) = shutdown {
3658 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3659 node_id: *counterparty_node_id,
3666 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3669 for htlc_source in dropped_htlcs.drain(..) {
3670 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3673 let _ = handle_error!(self, result, *counterparty_node_id);
3677 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
3678 let (tx, chan_option) = {
3679 let mut channel_state_lock = self.channel_state.lock().unwrap();
3680 let channel_state = &mut *channel_state_lock;
3681 match channel_state.by_id.entry(msg.channel_id.clone()) {
3682 hash_map::Entry::Occupied(mut chan_entry) => {
3683 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3684 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3686 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
3687 if let Some(msg) = closing_signed {
3688 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3689 node_id: counterparty_node_id.clone(),
3694 // We're done with this channel, we've got a signed closing transaction and
3695 // will send the closing_signed back to the remote peer upon return. This
3696 // also implies there are no pending HTLCs left on the channel, so we can
3697 // fully delete it from tracking (the channel monitor is still around to
3698 // watch for old state broadcasts)!
3699 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
3700 channel_state.short_to_id.remove(&short_id);
3702 (tx, Some(chan_entry.remove_entry().1))
3703 } else { (tx, None) }
3705 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3708 if let Some(broadcast_tx) = tx {
3709 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
3710 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
3712 if let Some(chan) = chan_option {
3713 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3714 let mut channel_state = self.channel_state.lock().unwrap();
3715 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3719 self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
3724 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
3725 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
3726 //determine the state of the payment based on our response/if we forward anything/the time
3727 //we take to respond. We should take care to avoid allowing such an attack.
3729 //TODO: There exists a further attack where a node may garble the onion data, forward it to
3730 //us repeatedly garbled in different ways, and compare our error messages, which are
3731 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
3732 //but we should prevent it anyway.
3734 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
3735 let channel_state = &mut *channel_state_lock;
3737 match channel_state.by_id.entry(msg.channel_id) {
3738 hash_map::Entry::Occupied(mut chan) => {
3739 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3740 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3743 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
3744 // If the update_add is completely bogus, the call will Err and we will close,
3745 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
3746 // want to reject the new HTLC and fail it backwards instead of forwarding.
3747 match pending_forward_info {
3748 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
3749 let reason = if (error_code & 0x1000) != 0 {
3750 if let Ok(upd) = self.get_channel_update_for_unicast(chan) {
3751 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
3752 let mut res = Vec::with_capacity(8 + 128);
3753 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
3754 res.extend_from_slice(&byte_utils::be16_to_array(0));
3755 res.extend_from_slice(&upd.encode_with_len()[..]);
3759 // The only case where we'd be unable to
3760 // successfully get a channel update is if the
3761 // channel isn't in the fully-funded state yet,
3762 // implying our counterparty is trying to route
3763 // payments over the channel back to themselves
3764 // (because no one else should know the short_id
3765 // is a lightning channel yet). We should have
3766 // no problem just calling this
3767 // unknown_next_peer (0x4000|10).
3768 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
3771 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &[])
3773 let msg = msgs::UpdateFailHTLC {
3774 channel_id: msg.channel_id,
3775 htlc_id: msg.htlc_id,
3778 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
3780 _ => pending_forward_info
3783 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
3785 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3790 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
3791 let mut channel_lock = self.channel_state.lock().unwrap();
3792 let (htlc_source, forwarded_htlc_value) = {
3793 let channel_state = &mut *channel_lock;
3794 match channel_state.by_id.entry(msg.channel_id) {
3795 hash_map::Entry::Occupied(mut chan) => {
3796 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3797 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3799 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
3801 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3804 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false);
3808 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
3809 let mut channel_lock = self.channel_state.lock().unwrap();
3810 let channel_state = &mut *channel_lock;
3811 match channel_state.by_id.entry(msg.channel_id) {
3812 hash_map::Entry::Occupied(mut chan) => {
3813 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3814 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3816 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
3818 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3823 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
3824 let mut channel_lock = self.channel_state.lock().unwrap();
3825 let channel_state = &mut *channel_lock;
3826 match channel_state.by_id.entry(msg.channel_id) {
3827 hash_map::Entry::Occupied(mut chan) => {
3828 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3829 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3831 if (msg.failure_code & 0x8000) == 0 {
3832 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
3833 try_chan_entry!(self, Err(chan_err), channel_state, chan);
3835 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
3838 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3842 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
3843 let mut channel_state_lock = self.channel_state.lock().unwrap();
3844 let channel_state = &mut *channel_state_lock;
3845 match channel_state.by_id.entry(msg.channel_id) {
3846 hash_map::Entry::Occupied(mut chan) => {
3847 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3848 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3850 let (revoke_and_ack, commitment_signed, monitor_update) =
3851 match chan.get_mut().commitment_signed(&msg, &self.logger) {
3852 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
3853 Err((Some(update), e)) => {
3854 assert!(chan.get().is_awaiting_monitor_update());
3855 let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
3856 try_chan_entry!(self, Err(e), channel_state, chan);
3861 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3862 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
3864 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3865 node_id: counterparty_node_id.clone(),
3866 msg: revoke_and_ack,
3868 if let Some(msg) = commitment_signed {
3869 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3870 node_id: counterparty_node_id.clone(),
3871 updates: msgs::CommitmentUpdate {
3872 update_add_htlcs: Vec::new(),
3873 update_fulfill_htlcs: Vec::new(),
3874 update_fail_htlcs: Vec::new(),
3875 update_fail_malformed_htlcs: Vec::new(),
3877 commitment_signed: msg,
3883 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3888 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3889 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3890 let mut forward_event = None;
3891 if !pending_forwards.is_empty() {
3892 let mut channel_state = self.channel_state.lock().unwrap();
3893 if channel_state.forward_htlcs.is_empty() {
3894 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3896 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3897 match channel_state.forward_htlcs.entry(match forward_info.routing {
3898 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3899 PendingHTLCRouting::Receive { .. } => 0,
3900 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
3902 hash_map::Entry::Occupied(mut entry) => {
3903 entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3904 prev_htlc_id, forward_info });
3906 hash_map::Entry::Vacant(entry) => {
3907 entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3908 prev_htlc_id, forward_info }));
3913 match forward_event {
3915 let mut pending_events = self.pending_events.lock().unwrap();
3916 pending_events.push(events::Event::PendingHTLCsForwardable {
3917 time_forwardable: time
3925 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3926 let mut htlcs_to_fail = Vec::new();
3928 let mut channel_state_lock = self.channel_state.lock().unwrap();
3929 let channel_state = &mut *channel_state_lock;
3930 match channel_state.by_id.entry(msg.channel_id) {
3931 hash_map::Entry::Occupied(mut chan) => {
3932 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3933 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3935 let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3936 let (commitment_update, pending_forwards, pending_failures, monitor_update, htlcs_to_fail_in) =
3937 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), channel_state, chan);
3938 htlcs_to_fail = htlcs_to_fail_in;
3939 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3940 if was_frozen_for_monitor {
3941 assert!(commitment_update.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3942 break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3944 if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3946 } else { unreachable!(); }
3949 if let Some(updates) = commitment_update {
3950 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3951 node_id: counterparty_node_id.clone(),
3955 break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3957 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3960 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3962 Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3963 for failure in pending_failures.drain(..) {
3964 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3966 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3973 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3974 let mut channel_lock = self.channel_state.lock().unwrap();
3975 let channel_state = &mut *channel_lock;
3976 match channel_state.by_id.entry(msg.channel_id) {
3977 hash_map::Entry::Occupied(mut chan) => {
3978 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3979 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3981 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3983 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3988 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3989 let mut channel_state_lock = self.channel_state.lock().unwrap();
3990 let channel_state = &mut *channel_state_lock;
3992 match channel_state.by_id.entry(msg.channel_id) {
3993 hash_map::Entry::Occupied(mut chan) => {
3994 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3995 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3997 if !chan.get().is_usable() {
3998 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
4001 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
4002 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone(), msg), channel_state, chan),
4003 // Note that announcement_signatures fails if the channel cannot be announced,
4004 // so get_channel_update_for_broadcast will never fail by the time we get here.
4005 update_msg: self.get_channel_update_for_broadcast(chan.get()).unwrap(),
4008 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4013 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
4014 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
4015 let mut channel_state_lock = self.channel_state.lock().unwrap();
4016 let channel_state = &mut *channel_state_lock;
4017 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
4018 Some(chan_id) => chan_id.clone(),
4020 // It's not a local channel
4021 return Ok(NotifyOption::SkipPersist)
4024 match channel_state.by_id.entry(chan_id) {
4025 hash_map::Entry::Occupied(mut chan) => {
4026 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4027 if chan.get().should_announce() {
4028 // If the announcement is about a channel of ours which is public, some
4029 // other peer may simply be forwarding all its gossip to us. Don't provide
4030 // a scary-looking error message and return Ok instead.
4031 return Ok(NotifyOption::SkipPersist);
4033 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
4035 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
4036 let msg_from_node_one = msg.contents.flags & 1 == 0;
4037 if were_node_one == msg_from_node_one {
4038 return Ok(NotifyOption::SkipPersist);
4040 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
4043 hash_map::Entry::Vacant(_) => unreachable!()
4045 Ok(NotifyOption::DoPersist)
4048 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
4049 let chan_restoration_res;
4050 let (htlcs_failed_forward, need_lnd_workaround) = {
4051 let mut channel_state_lock = self.channel_state.lock().unwrap();
4052 let channel_state = &mut *channel_state_lock;
4054 match channel_state.by_id.entry(msg.channel_id) {
4055 hash_map::Entry::Occupied(mut chan) => {
4056 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4057 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4059 // Currently, we expect all holding cell update_adds to be dropped on peer
4060 // disconnect, so Channel's reestablish will never hand us any holding cell
4061 // freed HTLCs to fail backwards. If in the future we no longer drop pending
4062 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
4063 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, order, htlcs_failed_forward, shutdown) =
4064 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
4065 let mut channel_update = None;
4066 if let Some(msg) = shutdown {
4067 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4068 node_id: counterparty_node_id.clone(),
4071 } else if chan.get().is_usable() {
4072 // If the channel is in a usable state (ie the channel is not being shut
4073 // down), send a unicast channel_update to our counterparty to make sure
4074 // they have the latest channel parameters.
4075 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
4076 node_id: chan.get().get_counterparty_node_id(),
4077 msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
4080 let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
4081 chan_restoration_res = handle_chan_restoration_locked!(self, channel_state_lock, channel_state, chan, revoke_and_ack, commitment_update, order, monitor_update_opt, Vec::new(), None, funding_locked);
4082 if let Some(upd) = channel_update {
4083 channel_state.pending_msg_events.push(upd);
4085 (htlcs_failed_forward, need_lnd_workaround)
4087 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4090 post_handle_chan_restoration!(self, chan_restoration_res);
4091 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
4093 if let Some(funding_locked_msg) = need_lnd_workaround {
4094 self.internal_funding_locked(counterparty_node_id, &funding_locked_msg)?;
4099 /// Process pending events from the `chain::Watch`, returning whether any events were processed.
4100 fn process_pending_monitor_events(&self) -> bool {
4101 let mut failed_channels = Vec::new();
4102 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
4103 let has_pending_monitor_events = !pending_monitor_events.is_empty();
4104 for monitor_event in pending_monitor_events.drain(..) {
4105 match monitor_event {
4106 MonitorEvent::HTLCEvent(htlc_update) => {
4107 if let Some(preimage) = htlc_update.payment_preimage {
4108 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
4109 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage, htlc_update.onchain_value_satoshis.map(|v| v * 1000), true);
4111 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
4112 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4115 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
4116 MonitorEvent::UpdateFailed(funding_outpoint) => {
4117 let mut channel_lock = self.channel_state.lock().unwrap();
4118 let channel_state = &mut *channel_lock;
4119 let by_id = &mut channel_state.by_id;
4120 let short_to_id = &mut channel_state.short_to_id;
4121 let pending_msg_events = &mut channel_state.pending_msg_events;
4122 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
4123 if let Some(short_id) = chan.get_short_channel_id() {
4124 short_to_id.remove(&short_id);
4126 failed_channels.push(chan.force_shutdown(false));
4127 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4128 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4132 let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
4133 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
4135 ClosureReason::CommitmentTxConfirmed
4137 self.issue_channel_close_events(&chan, reason);
4138 pending_msg_events.push(events::MessageSendEvent::HandleError {
4139 node_id: chan.get_counterparty_node_id(),
4140 action: msgs::ErrorAction::SendErrorMessage {
4141 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
4146 MonitorEvent::UpdateCompleted { funding_txo, monitor_update_id } => {
4147 self.channel_monitor_updated(&funding_txo, monitor_update_id);
4152 for failure in failed_channels.drain(..) {
4153 self.finish_force_close_channel(failure);
4156 has_pending_monitor_events
4159 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
4160 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
4161 /// update events as a separate process method here.
4162 #[cfg(feature = "fuzztarget")]
4163 pub fn process_monitor_events(&self) {
4164 self.process_pending_monitor_events();
4167 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
4168 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
4169 /// update was applied.
4171 /// This should only apply to HTLCs which were added to the holding cell because we were
4172 /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
4173 /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
4174 /// code to inform them of a channel monitor update.
4175 fn check_free_holding_cells(&self) -> bool {
4176 let mut has_monitor_update = false;
4177 let mut failed_htlcs = Vec::new();
4178 let mut handle_errors = Vec::new();
4180 let mut channel_state_lock = self.channel_state.lock().unwrap();
4181 let channel_state = &mut *channel_state_lock;
4182 let by_id = &mut channel_state.by_id;
4183 let short_to_id = &mut channel_state.short_to_id;
4184 let pending_msg_events = &mut channel_state.pending_msg_events;
4186 by_id.retain(|channel_id, chan| {
4187 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
4188 Ok((commitment_opt, holding_cell_failed_htlcs)) => {
4189 if !holding_cell_failed_htlcs.is_empty() {
4190 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
4192 if let Some((commitment_update, monitor_update)) = commitment_opt {
4193 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
4194 has_monitor_update = true;
4195 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), channel_id);
4196 handle_errors.push((chan.get_counterparty_node_id(), res));
4197 if close_channel { return false; }
4199 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4200 node_id: chan.get_counterparty_node_id(),
4201 updates: commitment_update,
4208 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4209 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
4210 // ChannelClosed event is generated by handle_error for us
4217 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
4218 for (failures, channel_id) in failed_htlcs.drain(..) {
4219 self.fail_holding_cell_htlcs(failures, channel_id);
4222 for (counterparty_node_id, err) in handle_errors.drain(..) {
4223 let _ = handle_error!(self, err, counterparty_node_id);
4229 /// Check whether any channels have finished removing all pending updates after a shutdown
4230 /// exchange and can now send a closing_signed.
4231 /// Returns whether any closing_signed messages were generated.
4232 fn maybe_generate_initial_closing_signed(&self) -> bool {
4233 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
4234 let mut has_update = false;
4236 let mut channel_state_lock = self.channel_state.lock().unwrap();
4237 let channel_state = &mut *channel_state_lock;
4238 let by_id = &mut channel_state.by_id;
4239 let short_to_id = &mut channel_state.short_to_id;
4240 let pending_msg_events = &mut channel_state.pending_msg_events;
4242 by_id.retain(|channel_id, chan| {
4243 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
4244 Ok((msg_opt, tx_opt)) => {
4245 if let Some(msg) = msg_opt {
4247 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4248 node_id: chan.get_counterparty_node_id(), msg,
4251 if let Some(tx) = tx_opt {
4252 // We're done with this channel. We got a closing_signed and sent back
4253 // a closing_signed with a closing transaction to broadcast.
4254 if let Some(short_id) = chan.get_short_channel_id() {
4255 short_to_id.remove(&short_id);
4258 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4259 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4264 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
4266 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
4267 self.tx_broadcaster.broadcast_transaction(&tx);
4273 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4274 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
4281 for (counterparty_node_id, err) in handle_errors.drain(..) {
4282 let _ = handle_error!(self, err, counterparty_node_id);
4288 /// Handle a list of channel failures during a block_connected or block_disconnected call,
4289 /// pushing the channel monitor update (if any) to the background events queue and removing the
4291 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
4292 for mut failure in failed_channels.drain(..) {
4293 // Either a commitment transactions has been confirmed on-chain or
4294 // Channel::block_disconnected detected that the funding transaction has been
4295 // reorganized out of the main chain.
4296 // We cannot broadcast our latest local state via monitor update (as
4297 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
4298 // so we track the update internally and handle it when the user next calls
4299 // timer_tick_occurred, guaranteeing we're running normally.
4300 if let Some((funding_txo, update)) = failure.0.take() {
4301 assert_eq!(update.updates.len(), 1);
4302 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
4303 assert!(should_broadcast);
4304 } else { unreachable!(); }
4305 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
4307 self.finish_force_close_channel(failure);
4311 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
4312 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
4314 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
4316 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4317 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4318 match payment_secrets.entry(payment_hash) {
4319 hash_map::Entry::Vacant(e) => {
4320 e.insert(PendingInboundPayment {
4321 payment_secret, min_value_msat, user_payment_id, payment_preimage,
4322 // We assume that highest_seen_timestamp is pretty close to the current time -
4323 // its updated when we receive a new block with the maximum time we've seen in
4324 // a header. It should never be more than two hours in the future.
4325 // Thus, we add two hours here as a buffer to ensure we absolutely
4326 // never fail a payment too early.
4327 // Note that we assume that received blocks have reasonably up-to-date
4329 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
4332 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
4337 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
4340 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
4341 /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
4343 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
4344 /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
4345 /// passed directly to [`claim_funds`].
4347 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
4349 /// [`claim_funds`]: Self::claim_funds
4350 /// [`PaymentReceived`]: events::Event::PaymentReceived
4351 /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
4352 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
4353 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
4354 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
4355 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4358 self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
4359 .expect("RNG Generated Duplicate PaymentHash"))
4362 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
4363 /// stored external to LDK.
4365 /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
4366 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
4367 /// the `min_value_msat` provided here, if one is provided.
4369 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
4370 /// method may return an Err if another payment with the same payment_hash is still pending.
4372 /// `user_payment_id` will be provided back in [`PaymentPurpose::InvoicePayment::user_payment_id`] events to
4373 /// allow tracking of which events correspond with which calls to this and
4374 /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
4375 /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
4376 /// with invoice metadata stored elsewhere.
4378 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
4379 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
4380 /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
4381 /// sender "proof-of-payment" unless they have paid the required amount.
4383 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
4384 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
4385 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
4386 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
4387 /// invoices when no timeout is set.
4389 /// Note that we use block header time to time-out pending inbound payments (with some margin
4390 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
4391 /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
4392 /// If you need exact expiry semantics, you should enforce them upon receipt of
4393 /// [`PaymentReceived`].
4395 /// Pending inbound payments are stored in memory and in serialized versions of this
4396 /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
4397 /// space is limited, you may wish to rate-limit inbound payment creation.
4399 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
4401 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
4402 /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
4404 /// [`create_inbound_payment`]: Self::create_inbound_payment
4405 /// [`PaymentReceived`]: events::Event::PaymentReceived
4406 /// [`PaymentPurpose::InvoicePayment::user_payment_id`]: events::PaymentPurpose::InvoicePayment::user_payment_id
4407 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
4408 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
4411 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
4412 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
4413 let events = core::cell::RefCell::new(Vec::new());
4414 let event_handler = |event: &events::Event| events.borrow_mut().push(event.clone());
4415 self.process_pending_events(&event_handler);
4420 pub fn has_pending_payments(&self) -> bool {
4421 !self.pending_outbound_payments.lock().unwrap().is_empty()
4425 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
4426 where M::Target: chain::Watch<Signer>,
4427 T::Target: BroadcasterInterface,
4428 K::Target: KeysInterface<Signer = Signer>,
4429 F::Target: FeeEstimator,
4432 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
4433 let events = RefCell::new(Vec::new());
4434 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4435 let mut result = NotifyOption::SkipPersist;
4437 // TODO: This behavior should be documented. It's unintuitive that we query
4438 // ChannelMonitors when clearing other events.
4439 if self.process_pending_monitor_events() {
4440 result = NotifyOption::DoPersist;
4443 if self.check_free_holding_cells() {
4444 result = NotifyOption::DoPersist;
4446 if self.maybe_generate_initial_closing_signed() {
4447 result = NotifyOption::DoPersist;
4450 let mut pending_events = Vec::new();
4451 let mut channel_state = self.channel_state.lock().unwrap();
4452 mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
4454 if !pending_events.is_empty() {
4455 events.replace(pending_events);
4464 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
4466 M::Target: chain::Watch<Signer>,
4467 T::Target: BroadcasterInterface,
4468 K::Target: KeysInterface<Signer = Signer>,
4469 F::Target: FeeEstimator,
4472 /// Processes events that must be periodically handled.
4474 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
4475 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
4477 /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
4478 /// when processed, an [`EventHandler`] must be able to handle previously seen events when
4479 /// restarting from an old state.
4480 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
4481 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4482 let mut result = NotifyOption::SkipPersist;
4484 // TODO: This behavior should be documented. It's unintuitive that we query
4485 // ChannelMonitors when clearing other events.
4486 if self.process_pending_monitor_events() {
4487 result = NotifyOption::DoPersist;
4490 let mut pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
4491 if !pending_events.is_empty() {
4492 result = NotifyOption::DoPersist;
4495 for event in pending_events.drain(..) {
4496 handler.handle_event(&event);
4504 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
4506 M::Target: chain::Watch<Signer>,
4507 T::Target: BroadcasterInterface,
4508 K::Target: KeysInterface<Signer = Signer>,
4509 F::Target: FeeEstimator,
4512 fn block_connected(&self, block: &Block, height: u32) {
4514 let best_block = self.best_block.read().unwrap();
4515 assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
4516 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
4517 assert_eq!(best_block.height(), height - 1,
4518 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
4521 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
4522 self.transactions_confirmed(&block.header, &txdata, height);
4523 self.best_block_updated(&block.header, height);
4526 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
4527 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4528 let new_height = height - 1;
4530 let mut best_block = self.best_block.write().unwrap();
4531 assert_eq!(best_block.block_hash(), header.block_hash(),
4532 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
4533 assert_eq!(best_block.height(), height,
4534 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
4535 *best_block = BestBlock::new(header.prev_blockhash, new_height)
4538 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, &self.logger));
4542 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
4544 M::Target: chain::Watch<Signer>,
4545 T::Target: BroadcasterInterface,
4546 K::Target: KeysInterface<Signer = Signer>,
4547 F::Target: FeeEstimator,
4550 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
4551 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4552 // during initialization prior to the chain_monitor being fully configured in some cases.
4553 // See the docs for `ChannelManagerReadArgs` for more.
4555 let block_hash = header.block_hash();
4556 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
4558 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4559 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
4562 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
4563 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4564 // during initialization prior to the chain_monitor being fully configured in some cases.
4565 // See the docs for `ChannelManagerReadArgs` for more.
4567 let block_hash = header.block_hash();
4568 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
4570 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4572 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
4574 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, &self.logger));
4576 macro_rules! max_time {
4577 ($timestamp: expr) => {
4579 // Update $timestamp to be the max of its current value and the block
4580 // timestamp. This should keep us close to the current time without relying on
4581 // having an explicit local time source.
4582 // Just in case we end up in a race, we loop until we either successfully
4583 // update $timestamp or decide we don't need to.
4584 let old_serial = $timestamp.load(Ordering::Acquire);
4585 if old_serial >= header.time as usize { break; }
4586 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
4592 max_time!(self.last_node_announcement_serial);
4593 max_time!(self.highest_seen_timestamp);
4594 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4595 payment_secrets.retain(|_, inbound_payment| {
4596 inbound_payment.expiry_time > header.time as u64
4599 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
4600 outbounds.retain(|_, payment| {
4601 const PAYMENT_EXPIRY_BLOCKS: u32 = 3;
4602 if payment.remaining_parts() != 0 { return true }
4603 if let PendingOutboundPayment::Retryable { starting_block_height, .. } = payment {
4604 return *starting_block_height + PAYMENT_EXPIRY_BLOCKS > height
4610 fn get_relevant_txids(&self) -> Vec<Txid> {
4611 let channel_state = self.channel_state.lock().unwrap();
4612 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
4613 for chan in channel_state.by_id.values() {
4614 if let Some(funding_txo) = chan.get_funding_txo() {
4615 res.push(funding_txo.txid);
4621 fn transaction_unconfirmed(&self, txid: &Txid) {
4622 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4623 self.do_chain_event(None, |channel| {
4624 if let Some(funding_txo) = channel.get_funding_txo() {
4625 if funding_txo.txid == *txid {
4626 channel.funding_transaction_unconfirmed(&self.logger).map(|_| (None, Vec::new()))
4627 } else { Ok((None, Vec::new())) }
4628 } else { Ok((None, Vec::new())) }
4633 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
4635 M::Target: chain::Watch<Signer>,
4636 T::Target: BroadcasterInterface,
4637 K::Target: KeysInterface<Signer = Signer>,
4638 F::Target: FeeEstimator,
4641 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
4642 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
4644 fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
4645 (&self, height_opt: Option<u32>, f: FN) {
4646 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4647 // during initialization prior to the chain_monitor being fully configured in some cases.
4648 // See the docs for `ChannelManagerReadArgs` for more.
4650 let mut failed_channels = Vec::new();
4651 let mut timed_out_htlcs = Vec::new();
4653 let mut channel_lock = self.channel_state.lock().unwrap();
4654 let channel_state = &mut *channel_lock;
4655 let short_to_id = &mut channel_state.short_to_id;
4656 let pending_msg_events = &mut channel_state.pending_msg_events;
4657 channel_state.by_id.retain(|_, channel| {
4658 let res = f(channel);
4659 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
4660 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
4661 let chan_update = self.get_channel_update_for_unicast(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
4662 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
4663 failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
4667 if let Some(funding_locked) = chan_res {
4668 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
4669 node_id: channel.get_counterparty_node_id(),
4670 msg: funding_locked,
4672 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
4673 log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
4674 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4675 node_id: channel.get_counterparty_node_id(),
4676 msg: announcement_sigs,
4678 } else if channel.is_usable() {
4679 log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures but with private channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
4680 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4681 node_id: channel.get_counterparty_node_id(),
4682 msg: self.get_channel_update_for_unicast(channel).unwrap(),
4685 log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
4687 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
4689 } else if let Err(e) = res {
4690 if let Some(short_id) = channel.get_short_channel_id() {
4691 short_to_id.remove(&short_id);
4693 // It looks like our counterparty went on-chain or funding transaction was
4694 // reorged out of the main chain. Close the channel.
4695 failed_channels.push(channel.force_shutdown(true));
4696 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
4697 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4701 self.issue_channel_close_events(channel, ClosureReason::CommitmentTxConfirmed);
4702 pending_msg_events.push(events::MessageSendEvent::HandleError {
4703 node_id: channel.get_counterparty_node_id(),
4704 action: msgs::ErrorAction::SendErrorMessage { msg: e },
4711 if let Some(height) = height_opt {
4712 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
4713 htlcs.retain(|htlc| {
4714 // If height is approaching the number of blocks we think it takes us to get
4715 // our commitment transaction confirmed before the HTLC expires, plus the
4716 // number of blocks we generally consider it to take to do a commitment update,
4717 // just give up on it and fail the HTLC.
4718 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
4719 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
4720 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
4721 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
4722 failure_code: 0x4000 | 15,
4723 data: htlc_msat_height_data
4728 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
4733 self.handle_init_event_channel_failures(failed_channels);
4735 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
4736 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
4740 /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
4741 /// indicating whether persistence is necessary. Only one listener on
4742 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4744 /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
4745 #[cfg(any(test, feature = "allow_wallclock_use"))]
4746 pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
4747 self.persistence_notifier.wait_timeout(max_wait)
4750 /// Blocks until ChannelManager needs to be persisted. Only one listener on
4751 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4753 pub fn await_persistable_update(&self) {
4754 self.persistence_notifier.wait()
4757 #[cfg(any(test, feature = "_test_utils"))]
4758 pub fn get_persistence_condvar_value(&self) -> bool {
4759 let mutcond = &self.persistence_notifier.persistence_lock;
4760 let &(ref mtx, _) = mutcond;
4761 let guard = mtx.lock().unwrap();
4765 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
4766 /// [`chain::Confirm`] interfaces.
4767 pub fn current_best_block(&self) -> BestBlock {
4768 self.best_block.read().unwrap().clone()
4772 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
4773 ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
4774 where M::Target: chain::Watch<Signer>,
4775 T::Target: BroadcasterInterface,
4776 K::Target: KeysInterface<Signer = Signer>,
4777 F::Target: FeeEstimator,
4780 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
4781 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4782 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4785 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
4786 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4787 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4790 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
4791 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4792 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
4795 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
4796 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4797 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
4800 fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
4801 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4802 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
4805 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
4806 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4807 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
4810 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
4811 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4812 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
4815 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
4816 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4817 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
4820 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
4821 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4822 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
4825 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
4826 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4827 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
4830 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
4831 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4832 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
4835 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
4836 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4837 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
4840 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
4841 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4842 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
4845 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
4846 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4847 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
4850 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
4851 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4852 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
4855 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
4856 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4857 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
4860 NotifyOption::SkipPersist
4865 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
4866 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4867 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
4870 fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
4871 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4872 let mut failed_channels = Vec::new();
4873 let mut no_channels_remain = true;
4875 let mut channel_state_lock = self.channel_state.lock().unwrap();
4876 let channel_state = &mut *channel_state_lock;
4877 let short_to_id = &mut channel_state.short_to_id;
4878 let pending_msg_events = &mut channel_state.pending_msg_events;
4879 if no_connection_possible {
4880 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
4881 channel_state.by_id.retain(|_, chan| {
4882 if chan.get_counterparty_node_id() == *counterparty_node_id {
4883 if let Some(short_id) = chan.get_short_channel_id() {
4884 short_to_id.remove(&short_id);
4886 failed_channels.push(chan.force_shutdown(true));
4887 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4888 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4892 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
4899 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
4900 channel_state.by_id.retain(|_, chan| {
4901 if chan.get_counterparty_node_id() == *counterparty_node_id {
4902 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
4903 if chan.is_shutdown() {
4904 if let Some(short_id) = chan.get_short_channel_id() {
4905 short_to_id.remove(&short_id);
4907 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
4910 no_channels_remain = false;
4916 pending_msg_events.retain(|msg| {
4918 &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
4919 &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
4920 &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
4921 &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4922 &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
4923 &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
4924 &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
4925 &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
4926 &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4927 &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
4928 &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
4929 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
4930 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
4931 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
4932 &events::MessageSendEvent::SendChannelUpdate { ref node_id, .. } => node_id != counterparty_node_id,
4933 &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
4934 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
4935 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
4936 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
4940 if no_channels_remain {
4941 self.per_peer_state.write().unwrap().remove(counterparty_node_id);
4944 for failure in failed_channels.drain(..) {
4945 self.finish_force_close_channel(failure);
4949 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
4950 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
4952 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4955 let mut peer_state_lock = self.per_peer_state.write().unwrap();
4956 match peer_state_lock.entry(counterparty_node_id.clone()) {
4957 hash_map::Entry::Vacant(e) => {
4958 e.insert(Mutex::new(PeerState {
4959 latest_features: init_msg.features.clone(),
4962 hash_map::Entry::Occupied(e) => {
4963 e.get().lock().unwrap().latest_features = init_msg.features.clone();
4968 let mut channel_state_lock = self.channel_state.lock().unwrap();
4969 let channel_state = &mut *channel_state_lock;
4970 let pending_msg_events = &mut channel_state.pending_msg_events;
4971 channel_state.by_id.retain(|_, chan| {
4972 if chan.get_counterparty_node_id() == *counterparty_node_id {
4973 if !chan.have_received_message() {
4974 // If we created this (outbound) channel while we were disconnected from the
4975 // peer we probably failed to send the open_channel message, which is now
4976 // lost. We can't have had anything pending related to this channel, so we just
4980 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
4981 node_id: chan.get_counterparty_node_id(),
4982 msg: chan.get_channel_reestablish(&self.logger),
4988 //TODO: Also re-broadcast announcement_signatures
4991 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
4992 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4994 if msg.channel_id == [0; 32] {
4995 for chan in self.list_channels() {
4996 if chan.counterparty.node_id == *counterparty_node_id {
4997 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4998 let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id), Some(&msg.data));
5002 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
5003 let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id), Some(&msg.data));
5008 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
5009 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
5010 struct PersistenceNotifier {
5011 /// Users won't access the persistence_lock directly, but rather wait on its bool using
5012 /// `wait_timeout` and `wait`.
5013 persistence_lock: (Mutex<bool>, Condvar),
5016 impl PersistenceNotifier {
5019 persistence_lock: (Mutex::new(false), Condvar::new()),
5025 let &(ref mtx, ref cvar) = &self.persistence_lock;
5026 let mut guard = mtx.lock().unwrap();
5031 guard = cvar.wait(guard).unwrap();
5032 let result = *guard;
5040 #[cfg(any(test, feature = "allow_wallclock_use"))]
5041 fn wait_timeout(&self, max_wait: Duration) -> bool {
5042 let current_time = Instant::now();
5044 let &(ref mtx, ref cvar) = &self.persistence_lock;
5045 let mut guard = mtx.lock().unwrap();
5050 guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
5051 // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
5052 // desired wait time has actually passed, and if not then restart the loop with a reduced wait
5053 // time. Note that this logic can be highly simplified through the use of
5054 // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
5056 let elapsed = current_time.elapsed();
5057 let result = *guard;
5058 if result || elapsed >= max_wait {
5062 match max_wait.checked_sub(elapsed) {
5063 None => return result,
5069 // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
5071 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
5072 let mut persistence_lock = persist_mtx.lock().unwrap();
5073 *persistence_lock = true;
5074 mem::drop(persistence_lock);
5079 const SERIALIZATION_VERSION: u8 = 1;
5080 const MIN_SERIALIZATION_VERSION: u8 = 1;
5082 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
5084 (0, onion_packet, required),
5085 (2, short_channel_id, required),
5088 (0, payment_data, required),
5089 (2, incoming_cltv_expiry, required),
5091 (2, ReceiveKeysend) => {
5092 (0, payment_preimage, required),
5093 (2, incoming_cltv_expiry, required),
5097 impl_writeable_tlv_based!(PendingHTLCInfo, {
5098 (0, routing, required),
5099 (2, incoming_shared_secret, required),
5100 (4, payment_hash, required),
5101 (6, amt_to_forward, required),
5102 (8, outgoing_cltv_value, required)
5106 impl Writeable for HTLCFailureMsg {
5107 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5109 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
5111 channel_id.write(writer)?;
5112 htlc_id.write(writer)?;
5113 reason.write(writer)?;
5115 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
5116 channel_id, htlc_id, sha256_of_onion, failure_code
5119 channel_id.write(writer)?;
5120 htlc_id.write(writer)?;
5121 sha256_of_onion.write(writer)?;
5122 failure_code.write(writer)?;
5129 impl Readable for HTLCFailureMsg {
5130 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
5131 let id: u8 = Readable::read(reader)?;
5134 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
5135 channel_id: Readable::read(reader)?,
5136 htlc_id: Readable::read(reader)?,
5137 reason: Readable::read(reader)?,
5141 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
5142 channel_id: Readable::read(reader)?,
5143 htlc_id: Readable::read(reader)?,
5144 sha256_of_onion: Readable::read(reader)?,
5145 failure_code: Readable::read(reader)?,
5148 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
5149 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
5150 // messages contained in the variants.
5151 // In version 0.0.101, support for reading the variants with these types was added, and
5152 // we should migrate to writing these variants when UpdateFailHTLC or
5153 // UpdateFailMalformedHTLC get TLV fields.
5155 let length: BigSize = Readable::read(reader)?;
5156 let mut s = FixedLengthReader::new(reader, length.0);
5157 let res = Readable::read(&mut s)?;
5158 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
5159 Ok(HTLCFailureMsg::Relay(res))
5162 let length: BigSize = Readable::read(reader)?;
5163 let mut s = FixedLengthReader::new(reader, length.0);
5164 let res = Readable::read(&mut s)?;
5165 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
5166 Ok(HTLCFailureMsg::Malformed(res))
5168 _ => Err(DecodeError::UnknownRequiredFeature),
5173 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
5178 impl_writeable_tlv_based!(HTLCPreviousHopData, {
5179 (0, short_channel_id, required),
5180 (2, outpoint, required),
5181 (4, htlc_id, required),
5182 (6, incoming_packet_shared_secret, required)
5185 impl Writeable for ClaimableHTLC {
5186 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5187 let payment_data = match &self.onion_payload {
5188 OnionPayload::Invoice(data) => Some(data.clone()),
5191 let keysend_preimage = match self.onion_payload {
5192 OnionPayload::Invoice(_) => None,
5193 OnionPayload::Spontaneous(preimage) => Some(preimage.clone()),
5198 (0, self.prev_hop, required), (2, self.value, required),
5199 (4, payment_data, option), (6, self.cltv_expiry, required),
5200 (8, keysend_preimage, option),
5206 impl Readable for ClaimableHTLC {
5207 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
5208 let mut prev_hop = ::util::ser::OptionDeserWrapper(None);
5210 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
5211 let mut cltv_expiry = 0;
5212 let mut keysend_preimage: Option<PaymentPreimage> = None;
5216 (0, prev_hop, required), (2, value, required),
5217 (4, payment_data, option), (6, cltv_expiry, required),
5218 (8, keysend_preimage, option)
5220 let onion_payload = match keysend_preimage {
5222 if payment_data.is_some() {
5223 return Err(DecodeError::InvalidValue)
5225 OnionPayload::Spontaneous(p)
5228 if payment_data.is_none() {
5229 return Err(DecodeError::InvalidValue)
5231 OnionPayload::Invoice(payment_data.unwrap())
5235 prev_hop: prev_hop.0.unwrap(),
5243 impl Readable for HTLCSource {
5244 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
5245 let id: u8 = Readable::read(reader)?;
5248 let mut session_priv: ::util::ser::OptionDeserWrapper<SecretKey> = ::util::ser::OptionDeserWrapper(None);
5249 let mut first_hop_htlc_msat: u64 = 0;
5250 let mut path = Some(Vec::new());
5251 let mut payment_id = None;
5252 read_tlv_fields!(reader, {
5253 (0, session_priv, required),
5254 (1, payment_id, option),
5255 (2, first_hop_htlc_msat, required),
5256 (4, path, vec_type),
5258 if payment_id.is_none() {
5259 // For backwards compat, if there was no payment_id written, use the session_priv bytes
5261 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
5263 Ok(HTLCSource::OutboundRoute {
5264 session_priv: session_priv.0.unwrap(),
5265 first_hop_htlc_msat: first_hop_htlc_msat,
5266 path: path.unwrap(),
5267 payment_id: payment_id.unwrap(),
5270 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
5271 _ => Err(DecodeError::UnknownRequiredFeature),
5276 impl Writeable for HTLCSource {
5277 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::io::Error> {
5279 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
5281 let payment_id_opt = Some(payment_id);
5282 write_tlv_fields!(writer, {
5283 (0, session_priv, required),
5284 (1, payment_id_opt, option),
5285 (2, first_hop_htlc_msat, required),
5286 (4, path, vec_type),
5289 HTLCSource::PreviousHopData(ref field) => {
5291 field.write(writer)?;
5298 impl_writeable_tlv_based_enum!(HTLCFailReason,
5299 (0, LightningError) => {
5303 (0, failure_code, required),
5304 (2, data, vec_type),
5308 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
5310 (0, forward_info, required),
5311 (2, prev_short_channel_id, required),
5312 (4, prev_htlc_id, required),
5313 (6, prev_funding_outpoint, required),
5316 (0, htlc_id, required),
5317 (2, err_packet, required),
5321 impl_writeable_tlv_based!(PendingInboundPayment, {
5322 (0, payment_secret, required),
5323 (2, expiry_time, required),
5324 (4, user_payment_id, required),
5325 (6, payment_preimage, required),
5326 (8, min_value_msat, required),
5329 impl_writeable_tlv_based_enum!(PendingOutboundPayment,
5331 (0, session_privs, required),
5334 (0, session_privs, required),
5335 (2, payment_hash, required),
5336 (4, payment_secret, option),
5337 (6, total_msat, required),
5338 (8, pending_amt_msat, required),
5339 (10, starting_block_height, required),
5343 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
5344 where M::Target: chain::Watch<Signer>,
5345 T::Target: BroadcasterInterface,
5346 K::Target: KeysInterface<Signer = Signer>,
5347 F::Target: FeeEstimator,
5350 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5351 let _consistency_lock = self.total_consistency_lock.write().unwrap();
5353 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
5355 self.genesis_hash.write(writer)?;
5357 let best_block = self.best_block.read().unwrap();
5358 best_block.height().write(writer)?;
5359 best_block.block_hash().write(writer)?;
5362 let channel_state = self.channel_state.lock().unwrap();
5363 let mut unfunded_channels = 0;
5364 for (_, channel) in channel_state.by_id.iter() {
5365 if !channel.is_funding_initiated() {
5366 unfunded_channels += 1;
5369 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
5370 for (_, channel) in channel_state.by_id.iter() {
5371 if channel.is_funding_initiated() {
5372 channel.write(writer)?;
5376 (channel_state.forward_htlcs.len() as u64).write(writer)?;
5377 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
5378 short_channel_id.write(writer)?;
5379 (pending_forwards.len() as u64).write(writer)?;
5380 for forward in pending_forwards {
5381 forward.write(writer)?;
5385 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
5386 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
5387 payment_hash.write(writer)?;
5388 (previous_hops.len() as u64).write(writer)?;
5389 for htlc in previous_hops.iter() {
5390 htlc.write(writer)?;
5394 let per_peer_state = self.per_peer_state.write().unwrap();
5395 (per_peer_state.len() as u64).write(writer)?;
5396 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
5397 peer_pubkey.write(writer)?;
5398 let peer_state = peer_state_mutex.lock().unwrap();
5399 peer_state.latest_features.write(writer)?;
5402 let events = self.pending_events.lock().unwrap();
5403 (events.len() as u64).write(writer)?;
5404 for event in events.iter() {
5405 event.write(writer)?;
5408 let background_events = self.pending_background_events.lock().unwrap();
5409 (background_events.len() as u64).write(writer)?;
5410 for event in background_events.iter() {
5412 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
5414 funding_txo.write(writer)?;
5415 monitor_update.write(writer)?;
5420 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
5421 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
5423 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
5424 (pending_inbound_payments.len() as u64).write(writer)?;
5425 for (hash, pending_payment) in pending_inbound_payments.iter() {
5426 hash.write(writer)?;
5427 pending_payment.write(writer)?;
5430 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
5431 // For backwards compat, write the session privs and their total length.
5432 let mut num_pending_outbounds_compat: u64 = 0;
5433 for (_, outbound) in pending_outbound_payments.iter() {
5434 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
5436 num_pending_outbounds_compat.write(writer)?;
5437 for (_, outbound) in pending_outbound_payments.iter() {
5439 PendingOutboundPayment::Legacy { session_privs } |
5440 PendingOutboundPayment::Retryable { session_privs, .. } => {
5441 for session_priv in session_privs.iter() {
5442 session_priv.write(writer)?;
5448 // Encode without retry info for 0.0.101 compatibility.
5449 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
5450 for (id, outbound) in pending_outbound_payments.iter() {
5452 PendingOutboundPayment::Legacy { session_privs } |
5453 PendingOutboundPayment::Retryable { session_privs, .. } => {
5454 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
5458 write_tlv_fields!(writer, {
5459 (1, pending_outbound_payments_no_retry, required),
5460 (3, pending_outbound_payments, required),
5467 /// Arguments for the creation of a ChannelManager that are not deserialized.
5469 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
5471 /// 1) Deserialize all stored [`ChannelMonitor`]s.
5472 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
5473 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
5474 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
5475 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
5476 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
5477 /// same way you would handle a [`chain::Filter`] call using
5478 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
5479 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
5480 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
5481 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
5482 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
5483 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
5485 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
5486 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
5488 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
5489 /// call any other methods on the newly-deserialized [`ChannelManager`].
5491 /// Note that because some channels may be closed during deserialization, it is critical that you
5492 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
5493 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
5494 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
5495 /// not force-close the same channels but consider them live), you may end up revoking a state for
5496 /// which you've already broadcasted the transaction.
5498 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
5499 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5500 where M::Target: chain::Watch<Signer>,
5501 T::Target: BroadcasterInterface,
5502 K::Target: KeysInterface<Signer = Signer>,
5503 F::Target: FeeEstimator,
5506 /// The keys provider which will give us relevant keys. Some keys will be loaded during
5507 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
5509 pub keys_manager: K,
5511 /// The fee_estimator for use in the ChannelManager in the future.
5513 /// No calls to the FeeEstimator will be made during deserialization.
5514 pub fee_estimator: F,
5515 /// The chain::Watch for use in the ChannelManager in the future.
5517 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
5518 /// you have deserialized ChannelMonitors separately and will add them to your
5519 /// chain::Watch after deserializing this ChannelManager.
5520 pub chain_monitor: M,
5522 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
5523 /// used to broadcast the latest local commitment transactions of channels which must be
5524 /// force-closed during deserialization.
5525 pub tx_broadcaster: T,
5526 /// The Logger for use in the ChannelManager and which may be used to log information during
5527 /// deserialization.
5529 /// Default settings used for new channels. Any existing channels will continue to use the
5530 /// runtime settings which were stored when the ChannelManager was serialized.
5531 pub default_config: UserConfig,
5533 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
5534 /// value.get_funding_txo() should be the key).
5536 /// If a monitor is inconsistent with the channel state during deserialization the channel will
5537 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
5538 /// is true for missing channels as well. If there is a monitor missing for which we find
5539 /// channel data Err(DecodeError::InvalidValue) will be returned.
5541 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
5544 /// (C-not exported) because we have no HashMap bindings
5545 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
5548 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5549 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
5550 where M::Target: chain::Watch<Signer>,
5551 T::Target: BroadcasterInterface,
5552 K::Target: KeysInterface<Signer = Signer>,
5553 F::Target: FeeEstimator,
5556 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
5557 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
5558 /// populate a HashMap directly from C.
5559 pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
5560 mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
5562 keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
5563 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
5568 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
5569 // SipmleArcChannelManager type:
5570 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5571 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
5572 where M::Target: chain::Watch<Signer>,
5573 T::Target: BroadcasterInterface,
5574 K::Target: KeysInterface<Signer = Signer>,
5575 F::Target: FeeEstimator,
5578 fn read<R: io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
5579 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
5580 Ok((blockhash, Arc::new(chan_manager)))
5584 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5585 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
5586 where M::Target: chain::Watch<Signer>,
5587 T::Target: BroadcasterInterface,
5588 K::Target: KeysInterface<Signer = Signer>,
5589 F::Target: FeeEstimator,
5592 fn read<R: io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
5593 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
5595 let genesis_hash: BlockHash = Readable::read(reader)?;
5596 let best_block_height: u32 = Readable::read(reader)?;
5597 let best_block_hash: BlockHash = Readable::read(reader)?;
5599 let mut failed_htlcs = Vec::new();
5601 let channel_count: u64 = Readable::read(reader)?;
5602 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
5603 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
5604 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
5605 let mut channel_closures = Vec::new();
5606 for _ in 0..channel_count {
5607 let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
5608 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
5609 funding_txo_set.insert(funding_txo.clone());
5610 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
5611 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
5612 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
5613 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
5614 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
5615 // If the channel is ahead of the monitor, return InvalidValue:
5616 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
5617 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
5618 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
5619 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
5620 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
5621 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
5622 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
5623 return Err(DecodeError::InvalidValue);
5624 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
5625 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
5626 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
5627 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
5628 // But if the channel is behind of the monitor, close the channel:
5629 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
5630 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
5631 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
5632 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
5633 let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
5634 failed_htlcs.append(&mut new_failed_htlcs);
5635 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
5636 channel_closures.push(events::Event::ChannelClosed {
5637 channel_id: channel.channel_id(),
5638 user_channel_id: channel.get_user_id(),
5639 reason: ClosureReason::OutdatedChannelManager
5642 if let Some(short_channel_id) = channel.get_short_channel_id() {
5643 short_to_id.insert(short_channel_id, channel.channel_id());
5645 by_id.insert(channel.channel_id(), channel);
5648 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
5649 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
5650 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
5651 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
5652 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
5653 return Err(DecodeError::InvalidValue);
5657 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
5658 if !funding_txo_set.contains(funding_txo) {
5659 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
5663 const MAX_ALLOC_SIZE: usize = 1024 * 64;
5664 let forward_htlcs_count: u64 = Readable::read(reader)?;
5665 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
5666 for _ in 0..forward_htlcs_count {
5667 let short_channel_id = Readable::read(reader)?;
5668 let pending_forwards_count: u64 = Readable::read(reader)?;
5669 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
5670 for _ in 0..pending_forwards_count {
5671 pending_forwards.push(Readable::read(reader)?);
5673 forward_htlcs.insert(short_channel_id, pending_forwards);
5676 let claimable_htlcs_count: u64 = Readable::read(reader)?;
5677 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
5678 for _ in 0..claimable_htlcs_count {
5679 let payment_hash = Readable::read(reader)?;
5680 let previous_hops_len: u64 = Readable::read(reader)?;
5681 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
5682 for _ in 0..previous_hops_len {
5683 previous_hops.push(Readable::read(reader)?);
5685 claimable_htlcs.insert(payment_hash, previous_hops);
5688 let peer_count: u64 = Readable::read(reader)?;
5689 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
5690 for _ in 0..peer_count {
5691 let peer_pubkey = Readable::read(reader)?;
5692 let peer_state = PeerState {
5693 latest_features: Readable::read(reader)?,
5695 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
5698 let event_count: u64 = Readable::read(reader)?;
5699 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
5700 for _ in 0..event_count {
5701 match MaybeReadable::read(reader)? {
5702 Some(event) => pending_events_read.push(event),
5706 if forward_htlcs_count > 0 {
5707 // If we have pending HTLCs to forward, assume we either dropped a
5708 // `PendingHTLCsForwardable` or the user received it but never processed it as they
5709 // shut down before the timer hit. Either way, set the time_forwardable to a small
5710 // constant as enough time has likely passed that we should simply handle the forwards
5711 // now, or at least after the user gets a chance to reconnect to our peers.
5712 pending_events_read.push(events::Event::PendingHTLCsForwardable {
5713 time_forwardable: Duration::from_secs(2),
5717 let background_event_count: u64 = Readable::read(reader)?;
5718 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
5719 for _ in 0..background_event_count {
5720 match <u8 as Readable>::read(reader)? {
5721 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
5722 _ => return Err(DecodeError::InvalidValue),
5726 let last_node_announcement_serial: u32 = Readable::read(reader)?;
5727 let highest_seen_timestamp: u32 = Readable::read(reader)?;
5729 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
5730 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
5731 for _ in 0..pending_inbound_payment_count {
5732 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
5733 return Err(DecodeError::InvalidValue);
5737 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
5738 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
5739 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
5740 for _ in 0..pending_outbound_payments_count_compat {
5741 let session_priv = Readable::read(reader)?;
5742 let payment = PendingOutboundPayment::Legacy {
5743 session_privs: [session_priv].iter().cloned().collect()
5745 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
5746 return Err(DecodeError::InvalidValue)
5750 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
5751 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
5752 let mut pending_outbound_payments = None;
5753 read_tlv_fields!(reader, {
5754 (1, pending_outbound_payments_no_retry, option),
5755 (3, pending_outbound_payments, option),
5757 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
5758 pending_outbound_payments = Some(pending_outbound_payments_compat);
5759 } else if pending_outbound_payments.is_none() {
5760 let mut outbounds = HashMap::new();
5761 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
5762 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
5764 pending_outbound_payments = Some(outbounds);
5767 let mut secp_ctx = Secp256k1::new();
5768 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
5770 if !channel_closures.is_empty() {
5771 pending_events_read.append(&mut channel_closures);
5774 let channel_manager = ChannelManager {
5776 fee_estimator: args.fee_estimator,
5777 chain_monitor: args.chain_monitor,
5778 tx_broadcaster: args.tx_broadcaster,
5780 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
5782 channel_state: Mutex::new(ChannelHolder {
5787 pending_msg_events: Vec::new(),
5789 pending_inbound_payments: Mutex::new(pending_inbound_payments),
5790 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
5792 our_network_key: args.keys_manager.get_node_secret(),
5793 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
5796 last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
5797 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
5799 per_peer_state: RwLock::new(per_peer_state),
5801 pending_events: Mutex::new(pending_events_read),
5802 pending_background_events: Mutex::new(pending_background_events_read),
5803 total_consistency_lock: RwLock::new(()),
5804 persistence_notifier: PersistenceNotifier::new(),
5806 keys_manager: args.keys_manager,
5807 logger: args.logger,
5808 default_configuration: args.default_config,
5811 for htlc_source in failed_htlcs.drain(..) {
5812 channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
5815 //TODO: Broadcast channel update for closed channels, but only after we've made a
5816 //connection or two.
5818 Ok((best_block_hash.clone(), channel_manager))
5824 use bitcoin::hashes::Hash;
5825 use bitcoin::hashes::sha256::Hash as Sha256;
5826 use core::time::Duration;
5827 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
5828 use ln::channelmanager::{PaymentId, PaymentSendFailure};
5829 use ln::features::{InitFeatures, InvoiceFeatures};
5830 use ln::functional_test_utils::*;
5832 use ln::msgs::ChannelMessageHandler;
5833 use routing::router::{Payee, get_keysend_route, get_route};
5834 use routing::scorer::Scorer;
5835 use util::errors::APIError;
5836 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
5837 use util::test_utils;
5839 #[cfg(feature = "std")]
5841 fn test_wait_timeout() {
5842 use ln::channelmanager::PersistenceNotifier;
5844 use core::sync::atomic::{AtomicBool, Ordering};
5847 let persistence_notifier = Arc::new(PersistenceNotifier::new());
5848 let thread_notifier = Arc::clone(&persistence_notifier);
5850 let exit_thread = Arc::new(AtomicBool::new(false));
5851 let exit_thread_clone = exit_thread.clone();
5852 thread::spawn(move || {
5854 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
5855 let mut persistence_lock = persist_mtx.lock().unwrap();
5856 *persistence_lock = true;
5859 if exit_thread_clone.load(Ordering::SeqCst) {
5865 // Check that we can block indefinitely until updates are available.
5866 let _ = persistence_notifier.wait();
5868 // Check that the PersistenceNotifier will return after the given duration if updates are
5871 if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
5876 exit_thread.store(true, Ordering::SeqCst);
5878 // Check that the PersistenceNotifier will return after the given duration even if no updates
5881 if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
5888 fn test_notify_limits() {
5889 // Check that a few cases which don't require the persistence of a new ChannelManager,
5890 // indeed, do not cause the persistence of a new ChannelManager.
5891 let chanmon_cfgs = create_chanmon_cfgs(3);
5892 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
5893 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
5894 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
5896 // All nodes start with a persistable update pending as `create_network` connects each node
5897 // with all other nodes to make most tests simpler.
5898 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5899 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5900 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
5902 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
5904 // We check that the channel info nodes have doesn't change too early, even though we try
5905 // to connect messages with new values
5906 chan.0.contents.fee_base_msat *= 2;
5907 chan.1.contents.fee_base_msat *= 2;
5908 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
5909 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
5911 // The first two nodes (which opened a channel) should now require fresh persistence
5912 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5913 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5914 // ... but the last node should not.
5915 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
5916 // After persisting the first two nodes they should no longer need fresh persistence.
5917 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5918 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5920 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
5921 // about the channel.
5922 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
5923 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
5924 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
5926 // The nodes which are a party to the channel should also ignore messages from unrelated
5928 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
5929 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
5930 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
5931 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
5932 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5933 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5935 // At this point the channel info given by peers should still be the same.
5936 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
5937 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
5939 // An earlier version of handle_channel_update didn't check the directionality of the
5940 // update message and would always update the local fee info, even if our peer was
5941 // (spuriously) forwarding us our own channel_update.
5942 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
5943 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
5944 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
5946 // First deliver each peers' own message, checking that the node doesn't need to be
5947 // persisted and that its channel info remains the same.
5948 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
5949 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
5950 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5951 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5952 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
5953 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
5955 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
5956 // the channel info has updated.
5957 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
5958 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
5959 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
5960 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
5961 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
5962 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
5966 fn test_keysend_dup_hash_partial_mpp() {
5967 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
5969 let chanmon_cfgs = create_chanmon_cfgs(2);
5970 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
5971 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
5972 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
5973 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
5975 // First, send a partial MPP payment.
5976 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
5977 let payment_id = PaymentId([42; 32]);
5978 // Use the utility function send_payment_along_path to send the payment with MPP data which
5979 // indicates there are more HTLCs coming.
5980 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
5981 nodes[0].node.send_payment_along_path(&route.paths[0], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
5982 check_added_monitors!(nodes[0], 1);
5983 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
5984 assert_eq!(events.len(), 1);
5985 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
5987 // Next, send a keysend payment with the same payment_hash and make sure it fails.
5988 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
5989 check_added_monitors!(nodes[0], 1);
5990 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
5991 assert_eq!(events.len(), 1);
5992 let ev = events.drain(..).next().unwrap();
5993 let payment_event = SendEvent::from_event(ev);
5994 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
5995 check_added_monitors!(nodes[1], 0);
5996 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
5997 expect_pending_htlcs_forwardable!(nodes[1]);
5998 expect_pending_htlcs_forwardable!(nodes[1]);
5999 check_added_monitors!(nodes[1], 1);
6000 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6001 assert!(updates.update_add_htlcs.is_empty());
6002 assert!(updates.update_fulfill_htlcs.is_empty());
6003 assert_eq!(updates.update_fail_htlcs.len(), 1);
6004 assert!(updates.update_fail_malformed_htlcs.is_empty());
6005 assert!(updates.update_fee.is_none());
6006 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
6007 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
6008 expect_payment_failed!(nodes[0], our_payment_hash, true);
6010 // Send the second half of the original MPP payment.
6011 nodes[0].node.send_payment_along_path(&route.paths[0], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
6012 check_added_monitors!(nodes[0], 1);
6013 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6014 assert_eq!(events.len(), 1);
6015 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
6017 // Claim the full MPP payment. Note that we can't use a test utility like
6018 // claim_funds_along_route because the ordering of the messages causes the second half of the
6019 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
6020 // lightning messages manually.
6021 assert!(nodes[1].node.claim_funds(payment_preimage));
6022 check_added_monitors!(nodes[1], 2);
6023 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6024 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
6025 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
6026 check_added_monitors!(nodes[0], 1);
6027 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
6028 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
6029 check_added_monitors!(nodes[1], 1);
6030 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6031 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
6032 check_added_monitors!(nodes[1], 1);
6033 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
6034 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
6035 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
6036 check_added_monitors!(nodes[0], 1);
6037 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
6038 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
6039 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
6040 check_added_monitors!(nodes[0], 1);
6041 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
6042 check_added_monitors!(nodes[1], 1);
6043 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
6044 check_added_monitors!(nodes[1], 1);
6045 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
6046 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
6047 check_added_monitors!(nodes[0], 1);
6049 // Note that successful MPP payments will generate 1 event upon the first path's success. No
6050 // further events will be generated for subsequence path successes.
6051 let events = nodes[0].node.get_and_clear_pending_events();
6053 Event::PaymentSent { payment_preimage: ref preimage, payment_hash: ref hash } => {
6054 assert_eq!(payment_preimage, *preimage);
6055 assert_eq!(our_payment_hash, *hash);
6057 _ => panic!("Unexpected event"),
6062 fn test_keysend_dup_payment_hash() {
6063 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
6064 // outbound regular payment fails as expected.
6065 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
6066 // fails as expected.
6067 let chanmon_cfgs = create_chanmon_cfgs(2);
6068 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6069 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6070 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6071 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
6072 let logger = test_utils::TestLogger::new();
6073 let scorer = Scorer::new(0);
6075 // To start (1), send a regular payment but don't claim it.
6076 let expected_route = [&nodes[1]];
6077 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
6079 // Next, attempt a keysend payment and make sure it fails.
6080 let payee = Payee::new(expected_route.last().unwrap().node.get_our_node_id())
6081 .with_features(InvoiceFeatures::known());
6082 let route = get_route(&nodes[0].node.get_our_node_id(), &payee, &nodes[0].net_graph_msg_handler.network_graph, None, 100_000, TEST_FINAL_CLTV, &logger, &scorer).unwrap();
6083 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
6084 check_added_monitors!(nodes[0], 1);
6085 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6086 assert_eq!(events.len(), 1);
6087 let ev = events.drain(..).next().unwrap();
6088 let payment_event = SendEvent::from_event(ev);
6089 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
6090 check_added_monitors!(nodes[1], 0);
6091 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
6092 expect_pending_htlcs_forwardable!(nodes[1]);
6093 expect_pending_htlcs_forwardable!(nodes[1]);
6094 check_added_monitors!(nodes[1], 1);
6095 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6096 assert!(updates.update_add_htlcs.is_empty());
6097 assert!(updates.update_fulfill_htlcs.is_empty());
6098 assert_eq!(updates.update_fail_htlcs.len(), 1);
6099 assert!(updates.update_fail_malformed_htlcs.is_empty());
6100 assert!(updates.update_fee.is_none());
6101 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
6102 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
6103 expect_payment_failed!(nodes[0], payment_hash, true);
6105 // Finally, claim the original payment.
6106 claim_payment(&nodes[0], &expected_route, payment_preimage);
6108 // To start (2), send a keysend payment but don't claim it.
6109 let payment_preimage = PaymentPreimage([42; 32]);
6110 let route = get_route(&nodes[0].node.get_our_node_id(), &payee, &nodes[0].net_graph_msg_handler.network_graph, None, 100_000, TEST_FINAL_CLTV, &logger, &scorer).unwrap();
6111 let (payment_hash, _) = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
6112 check_added_monitors!(nodes[0], 1);
6113 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6114 assert_eq!(events.len(), 1);
6115 let event = events.pop().unwrap();
6116 let path = vec![&nodes[1]];
6117 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
6119 // Next, attempt a regular payment and make sure it fails.
6120 let payment_secret = PaymentSecret([43; 32]);
6121 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
6122 check_added_monitors!(nodes[0], 1);
6123 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6124 assert_eq!(events.len(), 1);
6125 let ev = events.drain(..).next().unwrap();
6126 let payment_event = SendEvent::from_event(ev);
6127 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
6128 check_added_monitors!(nodes[1], 0);
6129 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
6130 expect_pending_htlcs_forwardable!(nodes[1]);
6131 expect_pending_htlcs_forwardable!(nodes[1]);
6132 check_added_monitors!(nodes[1], 1);
6133 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6134 assert!(updates.update_add_htlcs.is_empty());
6135 assert!(updates.update_fulfill_htlcs.is_empty());
6136 assert_eq!(updates.update_fail_htlcs.len(), 1);
6137 assert!(updates.update_fail_malformed_htlcs.is_empty());
6138 assert!(updates.update_fee.is_none());
6139 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
6140 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
6141 expect_payment_failed!(nodes[0], payment_hash, true);
6143 // Finally, succeed the keysend payment.
6144 claim_payment(&nodes[0], &expected_route, payment_preimage);
6148 fn test_keysend_hash_mismatch() {
6149 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
6150 // preimage doesn't match the msg's payment hash.
6151 let chanmon_cfgs = create_chanmon_cfgs(2);
6152 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6153 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6154 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6156 let payer_pubkey = nodes[0].node.get_our_node_id();
6157 let payee_pubkey = nodes[1].node.get_our_node_id();
6158 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() });
6159 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() });
6161 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
6162 let network_graph = &nodes[0].net_graph_msg_handler.network_graph;
6163 let first_hops = nodes[0].node.list_usable_channels();
6164 let scorer = Scorer::new(0);
6165 let route = get_keysend_route(&payer_pubkey, network_graph, &payee_pubkey,
6166 Some(&first_hops.iter().collect::<Vec<_>>()), &vec![], 10000, 40,
6167 nodes[0].logger, &scorer).unwrap();
6169 let test_preimage = PaymentPreimage([42; 32]);
6170 let mismatch_payment_hash = PaymentHash([43; 32]);
6171 let _ = nodes[0].node.send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), None, None).unwrap();
6172 check_added_monitors!(nodes[0], 1);
6174 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
6175 assert_eq!(updates.update_add_htlcs.len(), 1);
6176 assert!(updates.update_fulfill_htlcs.is_empty());
6177 assert!(updates.update_fail_htlcs.is_empty());
6178 assert!(updates.update_fail_malformed_htlcs.is_empty());
6179 assert!(updates.update_fee.is_none());
6180 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
6182 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
6186 fn test_keysend_msg_with_secret_err() {
6187 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
6188 let chanmon_cfgs = create_chanmon_cfgs(2);
6189 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6190 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6191 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6193 let payer_pubkey = nodes[0].node.get_our_node_id();
6194 let payee_pubkey = nodes[1].node.get_our_node_id();
6195 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() });
6196 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() });
6198 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
6199 let network_graph = &nodes[0].net_graph_msg_handler.network_graph;
6200 let first_hops = nodes[0].node.list_usable_channels();
6201 let scorer = Scorer::new(0);
6202 let route = get_keysend_route(&payer_pubkey, network_graph, &payee_pubkey,
6203 Some(&first_hops.iter().collect::<Vec<_>>()), &vec![], 10000, 40,
6204 nodes[0].logger, &scorer).unwrap();
6206 let test_preimage = PaymentPreimage([42; 32]);
6207 let test_secret = PaymentSecret([43; 32]);
6208 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
6209 let _ = nodes[0].node.send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), None, None).unwrap();
6210 check_added_monitors!(nodes[0], 1);
6212 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
6213 assert_eq!(updates.update_add_htlcs.len(), 1);
6214 assert!(updates.update_fulfill_htlcs.is_empty());
6215 assert!(updates.update_fail_htlcs.is_empty());
6216 assert!(updates.update_fail_malformed_htlcs.is_empty());
6217 assert!(updates.update_fee.is_none());
6218 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
6220 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
6224 fn test_multi_hop_missing_secret() {
6225 let chanmon_cfgs = create_chanmon_cfgs(4);
6226 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
6227 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
6228 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
6230 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6231 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6232 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6233 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6235 // Marshall an MPP route.
6236 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
6237 let path = route.paths[0].clone();
6238 route.paths.push(path);
6239 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
6240 route.paths[0][0].short_channel_id = chan_1_id;
6241 route.paths[0][1].short_channel_id = chan_3_id;
6242 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
6243 route.paths[1][0].short_channel_id = chan_2_id;
6244 route.paths[1][1].short_channel_id = chan_4_id;
6246 match nodes[0].node.send_payment(&route, payment_hash, &None).unwrap_err() {
6247 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
6248 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err)) },
6249 _ => panic!("unexpected error")
6254 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
6257 use chain::chainmonitor::{ChainMonitor, Persist};
6258 use chain::keysinterface::{KeysManager, InMemorySigner};
6259 use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
6260 use ln::features::{InitFeatures, InvoiceFeatures};
6261 use ln::functional_test_utils::*;
6262 use ln::msgs::{ChannelMessageHandler, Init};
6263 use routing::network_graph::NetworkGraph;
6264 use routing::router::{Payee, get_route};
6265 use routing::scorer::Scorer;
6266 use util::test_utils;
6267 use util::config::UserConfig;
6268 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider, PaymentPurpose};
6270 use bitcoin::hashes::Hash;
6271 use bitcoin::hashes::sha256::Hash as Sha256;
6272 use bitcoin::{Block, BlockHeader, Transaction, TxOut};
6274 use sync::{Arc, Mutex};
6278 struct NodeHolder<'a, P: Persist<InMemorySigner>> {
6279 node: &'a ChannelManager<InMemorySigner,
6280 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
6281 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
6282 &'a test_utils::TestLogger, &'a P>,
6283 &'a test_utils::TestBroadcaster, &'a KeysManager,
6284 &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
6289 fn bench_sends(bench: &mut Bencher) {
6290 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
6293 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
6294 // Do a simple benchmark of sending a payment back and forth between two nodes.
6295 // Note that this is unrealistic as each payment send will require at least two fsync
6297 let network = bitcoin::Network::Testnet;
6298 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
6300 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
6301 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
6303 let mut config: UserConfig = Default::default();
6304 config.own_channel_config.minimum_depth = 1;
6306 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
6307 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
6308 let seed_a = [1u8; 32];
6309 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
6310 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
6312 best_block: BestBlock::from_genesis(network),
6314 let node_a_holder = NodeHolder { node: &node_a };
6316 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
6317 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
6318 let seed_b = [2u8; 32];
6319 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
6320 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
6322 best_block: BestBlock::from_genesis(network),
6324 let node_b_holder = NodeHolder { node: &node_b };
6326 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: InitFeatures::known() });
6327 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: InitFeatures::known() });
6328 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
6329 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
6330 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
6333 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
6334 tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
6335 value: 8_000_000, script_pubkey: output_script,
6337 node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
6338 } else { panic!(); }
6340 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
6341 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
6343 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
6346 header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
6349 Listen::block_connected(&node_a, &block, 1);
6350 Listen::block_connected(&node_b, &block, 1);
6352 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
6353 let msg_events = node_a.get_and_clear_pending_msg_events();
6354 assert_eq!(msg_events.len(), 2);
6355 match msg_events[0] {
6356 MessageSendEvent::SendFundingLocked { ref msg, .. } => {
6357 node_b.handle_funding_locked(&node_a.get_our_node_id(), msg);
6358 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
6362 match msg_events[1] {
6363 MessageSendEvent::SendChannelUpdate { .. } => {},
6367 let dummy_graph = NetworkGraph::new(genesis_hash);
6369 let mut payment_count: u64 = 0;
6370 macro_rules! send_payment {
6371 ($node_a: expr, $node_b: expr) => {
6372 let usable_channels = $node_a.list_usable_channels();
6373 let payee = Payee::new($node_b.get_our_node_id())
6374 .with_features(InvoiceFeatures::known());
6375 let scorer = Scorer::new(0);
6376 let route = get_route(&$node_a.get_our_node_id(), &payee, &dummy_graph,
6377 Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer).unwrap();
6379 let mut payment_preimage = PaymentPreimage([0; 32]);
6380 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
6382 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
6383 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
6385 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
6386 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
6387 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
6388 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
6389 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
6390 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
6391 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
6392 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
6394 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
6395 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
6396 assert!($node_b.claim_funds(payment_preimage));
6398 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
6399 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
6400 assert_eq!(node_id, $node_a.get_our_node_id());
6401 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
6402 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
6404 _ => panic!("Failed to generate claim event"),
6407 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
6408 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
6409 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
6410 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
6412 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
6417 send_payment!(node_a, node_b);
6418 send_payment!(node_b, node_a);