1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
33 use crate::blinded_path::BlindedPath;
34 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
36 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
37 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
38 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
39 use crate::chain::transaction::{OutPoint, TransactionData};
41 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
42 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
43 // construct one themselves.
44 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
45 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
46 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
47 #[cfg(any(feature = "_test_utils", test))]
48 use crate::ln::features::Bolt11InvoiceFeatures;
49 use crate::routing::gossip::NetworkGraph;
50 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
51 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
53 use crate::ln::onion_utils;
54 use crate::ln::onion_utils::HTLCFailReason;
55 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
57 use crate::ln::outbound_payment;
58 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
59 use crate::ln::wire::Encode;
60 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
61 use crate::offers::invoice_error::InvoiceError;
62 use crate::offers::merkle::SignError;
63 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
64 use crate::offers::parse::Bolt12SemanticError;
65 use crate::offers::refund::{Refund, RefundBuilder};
66 use crate::onion_message::{Destination, OffersMessage, OffersMessageHandler, PendingOnionMessage, new_pending_onion_message};
67 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, WriteableEcdsaChannelSigner};
68 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
69 use crate::util::wakers::{Future, Notifier};
70 use crate::util::scid_utils::fake_scid;
71 use crate::util::string::UntrustedString;
72 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
73 use crate::util::logger::{Level, Logger};
74 use crate::util::errors::APIError;
76 use alloc::collections::{btree_map, BTreeMap};
79 use crate::prelude::*;
81 use core::cell::RefCell;
83 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
84 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
85 use core::time::Duration;
88 // Re-export this for use in the public API.
89 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
90 use crate::ln::script::ShutdownScript;
92 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
94 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
95 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
96 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
98 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
99 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
100 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
101 // before we forward it.
103 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
104 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
105 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
106 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
107 // our payment, which we can use to decode errors or inform the user that the payment was sent.
109 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
110 pub(super) enum PendingHTLCRouting {
112 onion_packet: msgs::OnionPacket,
113 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
114 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
115 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
118 payment_data: msgs::FinalOnionHopData,
119 payment_metadata: Option<Vec<u8>>,
120 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
121 phantom_shared_secret: Option<[u8; 32]>,
122 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
123 custom_tlvs: Vec<(u64, Vec<u8>)>,
126 /// This was added in 0.0.116 and will break deserialization on downgrades.
127 payment_data: Option<msgs::FinalOnionHopData>,
128 payment_preimage: PaymentPreimage,
129 payment_metadata: Option<Vec<u8>>,
130 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
131 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
132 custom_tlvs: Vec<(u64, Vec<u8>)>,
136 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
137 pub(super) struct PendingHTLCInfo {
138 pub(super) routing: PendingHTLCRouting,
139 pub(super) incoming_shared_secret: [u8; 32],
140 payment_hash: PaymentHash,
142 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
143 /// Sender intended amount to forward or receive (actual amount received
144 /// may overshoot this in either case)
145 pub(super) outgoing_amt_msat: u64,
146 pub(super) outgoing_cltv_value: u32,
147 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
148 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
149 pub(super) skimmed_fee_msat: Option<u64>,
152 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
153 pub(super) enum HTLCFailureMsg {
154 Relay(msgs::UpdateFailHTLC),
155 Malformed(msgs::UpdateFailMalformedHTLC),
158 /// Stores whether we can't forward an HTLC or relevant forwarding info
159 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
160 pub(super) enum PendingHTLCStatus {
161 Forward(PendingHTLCInfo),
162 Fail(HTLCFailureMsg),
165 pub(super) struct PendingAddHTLCInfo {
166 pub(super) forward_info: PendingHTLCInfo,
168 // These fields are produced in `forward_htlcs()` and consumed in
169 // `process_pending_htlc_forwards()` for constructing the
170 // `HTLCSource::PreviousHopData` for failed and forwarded
173 // Note that this may be an outbound SCID alias for the associated channel.
174 prev_short_channel_id: u64,
176 prev_funding_outpoint: OutPoint,
177 prev_user_channel_id: u128,
180 pub(super) enum HTLCForwardInfo {
181 AddHTLC(PendingAddHTLCInfo),
184 err_packet: msgs::OnionErrorPacket,
188 /// Tracks the inbound corresponding to an outbound HTLC
189 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
190 pub(crate) struct HTLCPreviousHopData {
191 // Note that this may be an outbound SCID alias for the associated channel.
192 short_channel_id: u64,
193 user_channel_id: Option<u128>,
195 incoming_packet_shared_secret: [u8; 32],
196 phantom_shared_secret: Option<[u8; 32]>,
198 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
199 // channel with a preimage provided by the forward channel.
204 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
206 /// This is only here for backwards-compatibility in serialization, in the future it can be
207 /// removed, breaking clients running 0.0.106 and earlier.
208 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
210 /// Contains the payer-provided preimage.
211 Spontaneous(PaymentPreimage),
214 /// HTLCs that are to us and can be failed/claimed by the user
215 struct ClaimableHTLC {
216 prev_hop: HTLCPreviousHopData,
218 /// The amount (in msats) of this MPP part
220 /// The amount (in msats) that the sender intended to be sent in this MPP
221 /// part (used for validating total MPP amount)
222 sender_intended_value: u64,
223 onion_payload: OnionPayload,
225 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
226 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
227 total_value_received: Option<u64>,
228 /// The sender intended sum total of all MPP parts specified in the onion
230 /// The extra fee our counterparty skimmed off the top of this HTLC.
231 counterparty_skimmed_fee_msat: Option<u64>,
234 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
235 fn from(val: &ClaimableHTLC) -> Self {
236 events::ClaimedHTLC {
237 channel_id: val.prev_hop.outpoint.to_channel_id(),
238 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
239 cltv_expiry: val.cltv_expiry,
240 value_msat: val.value,
241 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
246 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
247 /// a payment and ensure idempotency in LDK.
249 /// This is not exported to bindings users as we just use [u8; 32] directly
250 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
251 pub struct PaymentId(pub [u8; Self::LENGTH]);
254 /// Number of bytes in the id.
255 pub const LENGTH: usize = 32;
258 impl Writeable for PaymentId {
259 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
264 impl Readable for PaymentId {
265 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
266 let buf: [u8; 32] = Readable::read(r)?;
271 impl core::fmt::Display for PaymentId {
272 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
273 crate::util::logger::DebugBytes(&self.0).fmt(f)
277 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
279 /// This is not exported to bindings users as we just use [u8; 32] directly
280 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
281 pub struct InterceptId(pub [u8; 32]);
283 impl Writeable for InterceptId {
284 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
289 impl Readable for InterceptId {
290 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
291 let buf: [u8; 32] = Readable::read(r)?;
296 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
297 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
298 pub(crate) enum SentHTLCId {
299 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
300 OutboundRoute { session_priv: SecretKey },
303 pub(crate) fn from_source(source: &HTLCSource) -> Self {
305 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
306 short_channel_id: hop_data.short_channel_id,
307 htlc_id: hop_data.htlc_id,
309 HTLCSource::OutboundRoute { session_priv, .. } =>
310 Self::OutboundRoute { session_priv: *session_priv },
314 impl_writeable_tlv_based_enum!(SentHTLCId,
315 (0, PreviousHopData) => {
316 (0, short_channel_id, required),
317 (2, htlc_id, required),
319 (2, OutboundRoute) => {
320 (0, session_priv, required),
325 /// Tracks the inbound corresponding to an outbound HTLC
326 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
327 #[derive(Clone, Debug, PartialEq, Eq)]
328 pub(crate) enum HTLCSource {
329 PreviousHopData(HTLCPreviousHopData),
332 session_priv: SecretKey,
333 /// Technically we can recalculate this from the route, but we cache it here to avoid
334 /// doing a double-pass on route when we get a failure back
335 first_hop_htlc_msat: u64,
336 payment_id: PaymentId,
339 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
340 impl core::hash::Hash for HTLCSource {
341 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
343 HTLCSource::PreviousHopData(prev_hop_data) => {
345 prev_hop_data.hash(hasher);
347 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
350 session_priv[..].hash(hasher);
351 payment_id.hash(hasher);
352 first_hop_htlc_msat.hash(hasher);
358 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
360 pub fn dummy() -> Self {
361 HTLCSource::OutboundRoute {
362 path: Path { hops: Vec::new(), blinded_tail: None },
363 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
364 first_hop_htlc_msat: 0,
365 payment_id: PaymentId([2; 32]),
369 #[cfg(debug_assertions)]
370 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
371 /// transaction. Useful to ensure different datastructures match up.
372 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
373 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
374 *first_hop_htlc_msat == htlc.amount_msat
376 // There's nothing we can check for forwarded HTLCs
382 struct InboundOnionErr {
388 /// This enum is used to specify which error data to send to peers when failing back an HTLC
389 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
391 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
392 #[derive(Clone, Copy)]
393 pub enum FailureCode {
394 /// We had a temporary error processing the payment. Useful if no other error codes fit
395 /// and you want to indicate that the payer may want to retry.
396 TemporaryNodeFailure,
397 /// We have a required feature which was not in this onion. For example, you may require
398 /// some additional metadata that was not provided with this payment.
399 RequiredNodeFeatureMissing,
400 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
401 /// the HTLC is too close to the current block height for safe handling.
402 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
403 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
404 IncorrectOrUnknownPaymentDetails,
405 /// We failed to process the payload after the onion was decrypted. You may wish to
406 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
408 /// If available, the tuple data may include the type number and byte offset in the
409 /// decrypted byte stream where the failure occurred.
410 InvalidOnionPayload(Option<(u64, u16)>),
413 impl Into<u16> for FailureCode {
414 fn into(self) -> u16 {
416 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
417 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
418 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
419 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
424 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
425 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
426 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
427 /// peer_state lock. We then return the set of things that need to be done outside the lock in
428 /// this struct and call handle_error!() on it.
430 struct MsgHandleErrInternal {
431 err: msgs::LightningError,
432 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
433 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
434 channel_capacity: Option<u64>,
436 impl MsgHandleErrInternal {
438 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
440 err: LightningError {
442 action: msgs::ErrorAction::SendErrorMessage {
443 msg: msgs::ErrorMessage {
450 shutdown_finish: None,
451 channel_capacity: None,
455 fn from_no_close(err: msgs::LightningError) -> Self {
456 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
459 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
460 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
461 let action = if shutdown_res.monitor_update.is_some() {
462 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
463 // should disconnect our peer such that we force them to broadcast their latest
464 // commitment upon reconnecting.
465 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
467 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
470 err: LightningError { err, action },
471 chan_id: Some((channel_id, user_channel_id)),
472 shutdown_finish: Some((shutdown_res, channel_update)),
473 channel_capacity: Some(channel_capacity)
477 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
480 ChannelError::Warn(msg) => LightningError {
482 action: msgs::ErrorAction::SendWarningMessage {
483 msg: msgs::WarningMessage {
487 log_level: Level::Warn,
490 ChannelError::Ignore(msg) => LightningError {
492 action: msgs::ErrorAction::IgnoreError,
494 ChannelError::Close(msg) => LightningError {
496 action: msgs::ErrorAction::SendErrorMessage {
497 msg: msgs::ErrorMessage {
505 shutdown_finish: None,
506 channel_capacity: None,
510 fn closes_channel(&self) -> bool {
511 self.chan_id.is_some()
515 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
516 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
517 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
518 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
519 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
521 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
522 /// be sent in the order they appear in the return value, however sometimes the order needs to be
523 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
524 /// they were originally sent). In those cases, this enum is also returned.
525 #[derive(Clone, PartialEq)]
526 pub(super) enum RAACommitmentOrder {
527 /// Send the CommitmentUpdate messages first
529 /// Send the RevokeAndACK message first
533 /// Information about a payment which is currently being claimed.
534 struct ClaimingPayment {
536 payment_purpose: events::PaymentPurpose,
537 receiver_node_id: PublicKey,
538 htlcs: Vec<events::ClaimedHTLC>,
539 sender_intended_value: Option<u64>,
541 impl_writeable_tlv_based!(ClaimingPayment, {
542 (0, amount_msat, required),
543 (2, payment_purpose, required),
544 (4, receiver_node_id, required),
545 (5, htlcs, optional_vec),
546 (7, sender_intended_value, option),
549 struct ClaimablePayment {
550 purpose: events::PaymentPurpose,
551 onion_fields: Option<RecipientOnionFields>,
552 htlcs: Vec<ClaimableHTLC>,
555 /// Information about claimable or being-claimed payments
556 struct ClaimablePayments {
557 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
558 /// failed/claimed by the user.
560 /// Note that, no consistency guarantees are made about the channels given here actually
561 /// existing anymore by the time you go to read them!
563 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
564 /// we don't get a duplicate payment.
565 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
567 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
568 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
569 /// as an [`events::Event::PaymentClaimed`].
570 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
573 /// Events which we process internally but cannot be processed immediately at the generation site
574 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
575 /// running normally, and specifically must be processed before any other non-background
576 /// [`ChannelMonitorUpdate`]s are applied.
578 enum BackgroundEvent {
579 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
580 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
581 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
582 /// channel has been force-closed we do not need the counterparty node_id.
584 /// Note that any such events are lost on shutdown, so in general they must be updates which
585 /// are regenerated on startup.
586 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
587 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
588 /// channel to continue normal operation.
590 /// In general this should be used rather than
591 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
592 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
593 /// error the other variant is acceptable.
595 /// Note that any such events are lost on shutdown, so in general they must be updates which
596 /// are regenerated on startup.
597 MonitorUpdateRegeneratedOnStartup {
598 counterparty_node_id: PublicKey,
599 funding_txo: OutPoint,
600 update: ChannelMonitorUpdate
602 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
603 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
605 MonitorUpdatesComplete {
606 counterparty_node_id: PublicKey,
607 channel_id: ChannelId,
612 pub(crate) enum MonitorUpdateCompletionAction {
613 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
614 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
615 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
616 /// event can be generated.
617 PaymentClaimed { payment_hash: PaymentHash },
618 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
619 /// operation of another channel.
621 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
622 /// from completing a monitor update which removes the payment preimage until the inbound edge
623 /// completes a monitor update containing the payment preimage. In that case, after the inbound
624 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
626 EmitEventAndFreeOtherChannel {
627 event: events::Event,
628 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
630 /// Indicates we should immediately resume the operation of another channel, unless there is
631 /// some other reason why the channel is blocked. In practice this simply means immediately
632 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
634 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
635 /// from completing a monitor update which removes the payment preimage until the inbound edge
636 /// completes a monitor update containing the payment preimage. However, we use this variant
637 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
638 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
640 /// This variant should thus never be written to disk, as it is processed inline rather than
641 /// stored for later processing.
642 FreeOtherChannelImmediately {
643 downstream_counterparty_node_id: PublicKey,
644 downstream_funding_outpoint: OutPoint,
645 blocking_action: RAAMonitorUpdateBlockingAction,
649 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
650 (0, PaymentClaimed) => { (0, payment_hash, required) },
651 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
652 // *immediately*. However, for simplicity we implement read/write here.
653 (1, FreeOtherChannelImmediately) => {
654 (0, downstream_counterparty_node_id, required),
655 (2, downstream_funding_outpoint, required),
656 (4, blocking_action, required),
658 (2, EmitEventAndFreeOtherChannel) => {
659 (0, event, upgradable_required),
660 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
661 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
662 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
663 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
664 // downgrades to prior versions.
665 (1, downstream_counterparty_and_funding_outpoint, option),
669 #[derive(Clone, Debug, PartialEq, Eq)]
670 pub(crate) enum EventCompletionAction {
671 ReleaseRAAChannelMonitorUpdate {
672 counterparty_node_id: PublicKey,
673 channel_funding_outpoint: OutPoint,
676 impl_writeable_tlv_based_enum!(EventCompletionAction,
677 (0, ReleaseRAAChannelMonitorUpdate) => {
678 (0, channel_funding_outpoint, required),
679 (2, counterparty_node_id, required),
683 #[derive(Clone, PartialEq, Eq, Debug)]
684 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
685 /// the blocked action here. See enum variants for more info.
686 pub(crate) enum RAAMonitorUpdateBlockingAction {
687 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
688 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
690 ForwardedPaymentInboundClaim {
691 /// The upstream channel ID (i.e. the inbound edge).
692 channel_id: ChannelId,
693 /// The HTLC ID on the inbound edge.
698 impl RAAMonitorUpdateBlockingAction {
699 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
700 Self::ForwardedPaymentInboundClaim {
701 channel_id: prev_hop.outpoint.to_channel_id(),
702 htlc_id: prev_hop.htlc_id,
707 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
708 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
712 /// State we hold per-peer.
713 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
714 /// `channel_id` -> `ChannelPhase`
716 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
717 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
718 /// `temporary_channel_id` -> `InboundChannelRequest`.
720 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
721 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
722 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
723 /// the channel is rejected, then the entry is simply removed.
724 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
725 /// The latest `InitFeatures` we heard from the peer.
726 latest_features: InitFeatures,
727 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
728 /// for broadcast messages, where ordering isn't as strict).
729 pub(super) pending_msg_events: Vec<MessageSendEvent>,
730 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
731 /// user but which have not yet completed.
733 /// Note that the channel may no longer exist. For example if the channel was closed but we
734 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
735 /// for a missing channel.
736 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
737 /// Map from a specific channel to some action(s) that should be taken when all pending
738 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
740 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
741 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
742 /// channels with a peer this will just be one allocation and will amount to a linear list of
743 /// channels to walk, avoiding the whole hashing rigmarole.
745 /// Note that the channel may no longer exist. For example, if a channel was closed but we
746 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
747 /// for a missing channel. While a malicious peer could construct a second channel with the
748 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
749 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
750 /// duplicates do not occur, so such channels should fail without a monitor update completing.
751 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
752 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
753 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
754 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
755 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
756 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
757 /// The peer is currently connected (i.e. we've seen a
758 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
759 /// [`ChannelMessageHandler::peer_disconnected`].
763 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
764 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
765 /// If true is passed for `require_disconnected`, the function will return false if we haven't
766 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
767 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
768 if require_disconnected && self.is_connected {
771 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
772 && self.monitor_update_blocked_actions.is_empty()
773 && self.in_flight_monitor_updates.is_empty()
776 // Returns a count of all channels we have with this peer, including unfunded channels.
777 fn total_channel_count(&self) -> usize {
778 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
781 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
782 fn has_channel(&self, channel_id: &ChannelId) -> bool {
783 self.channel_by_id.contains_key(channel_id) ||
784 self.inbound_channel_request_by_id.contains_key(channel_id)
788 /// A not-yet-accepted inbound (from counterparty) channel. Once
789 /// accepted, the parameters will be used to construct a channel.
790 pub(super) struct InboundChannelRequest {
791 /// The original OpenChannel message.
792 pub open_channel_msg: msgs::OpenChannel,
793 /// The number of ticks remaining before the request expires.
794 pub ticks_remaining: i32,
797 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
798 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
799 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
801 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
802 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
804 /// For users who don't want to bother doing their own payment preimage storage, we also store that
807 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
808 /// and instead encoding it in the payment secret.
809 struct PendingInboundPayment {
810 /// The payment secret that the sender must use for us to accept this payment
811 payment_secret: PaymentSecret,
812 /// Time at which this HTLC expires - blocks with a header time above this value will result in
813 /// this payment being removed.
815 /// Arbitrary identifier the user specifies (or not)
816 user_payment_id: u64,
817 // Other required attributes of the payment, optionally enforced:
818 payment_preimage: Option<PaymentPreimage>,
819 min_value_msat: Option<u64>,
822 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
823 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
824 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
825 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
826 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
827 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
828 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
829 /// of [`KeysManager`] and [`DefaultRouter`].
831 /// This is not exported to bindings users as type aliases aren't supported in most languages.
832 #[cfg(not(c_bindings))]
833 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
841 Arc<NetworkGraph<Arc<L>>>,
843 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
844 ProbabilisticScoringFeeParameters,
845 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
850 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
851 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
852 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
853 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
854 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
855 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
856 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
857 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
858 /// of [`KeysManager`] and [`DefaultRouter`].
860 /// This is not exported to bindings users as type aliases aren't supported in most languages.
861 #[cfg(not(c_bindings))]
862 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
871 &'f NetworkGraph<&'g L>,
873 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
874 ProbabilisticScoringFeeParameters,
875 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
880 /// A trivial trait which describes any [`ChannelManager`].
882 /// This is not exported to bindings users as general cover traits aren't useful in other
884 pub trait AChannelManager {
885 /// A type implementing [`chain::Watch`].
886 type Watch: chain::Watch<Self::Signer> + ?Sized;
887 /// A type that may be dereferenced to [`Self::Watch`].
888 type M: Deref<Target = Self::Watch>;
889 /// A type implementing [`BroadcasterInterface`].
890 type Broadcaster: BroadcasterInterface + ?Sized;
891 /// A type that may be dereferenced to [`Self::Broadcaster`].
892 type T: Deref<Target = Self::Broadcaster>;
893 /// A type implementing [`EntropySource`].
894 type EntropySource: EntropySource + ?Sized;
895 /// A type that may be dereferenced to [`Self::EntropySource`].
896 type ES: Deref<Target = Self::EntropySource>;
897 /// A type implementing [`NodeSigner`].
898 type NodeSigner: NodeSigner + ?Sized;
899 /// A type that may be dereferenced to [`Self::NodeSigner`].
900 type NS: Deref<Target = Self::NodeSigner>;
901 /// A type implementing [`WriteableEcdsaChannelSigner`].
902 type Signer: WriteableEcdsaChannelSigner + Sized;
903 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
904 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
905 /// A type that may be dereferenced to [`Self::SignerProvider`].
906 type SP: Deref<Target = Self::SignerProvider>;
907 /// A type implementing [`FeeEstimator`].
908 type FeeEstimator: FeeEstimator + ?Sized;
909 /// A type that may be dereferenced to [`Self::FeeEstimator`].
910 type F: Deref<Target = Self::FeeEstimator>;
911 /// A type implementing [`Router`].
912 type Router: Router + ?Sized;
913 /// A type that may be dereferenced to [`Self::Router`].
914 type R: Deref<Target = Self::Router>;
915 /// A type implementing [`Logger`].
916 type Logger: Logger + ?Sized;
917 /// A type that may be dereferenced to [`Self::Logger`].
918 type L: Deref<Target = Self::Logger>;
919 /// Returns a reference to the actual [`ChannelManager`] object.
920 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
923 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
924 for ChannelManager<M, T, ES, NS, SP, F, R, L>
926 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
927 T::Target: BroadcasterInterface,
928 ES::Target: EntropySource,
929 NS::Target: NodeSigner,
930 SP::Target: SignerProvider,
931 F::Target: FeeEstimator,
935 type Watch = M::Target;
937 type Broadcaster = T::Target;
939 type EntropySource = ES::Target;
941 type NodeSigner = NS::Target;
943 type Signer = <SP::Target as SignerProvider>::Signer;
944 type SignerProvider = SP::Target;
946 type FeeEstimator = F::Target;
948 type Router = R::Target;
950 type Logger = L::Target;
952 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
955 /// Manager which keeps track of a number of channels and sends messages to the appropriate
956 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
958 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
959 /// to individual Channels.
961 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
962 /// all peers during write/read (though does not modify this instance, only the instance being
963 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
964 /// called [`funding_transaction_generated`] for outbound channels) being closed.
966 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
967 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
968 /// [`ChannelMonitorUpdate`] before returning from
969 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
970 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
971 /// `ChannelManager` operations from occurring during the serialization process). If the
972 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
973 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
974 /// will be lost (modulo on-chain transaction fees).
976 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
977 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
978 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
980 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
981 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
982 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
983 /// offline for a full minute. In order to track this, you must call
984 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
986 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
987 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
988 /// not have a channel with being unable to connect to us or open new channels with us if we have
989 /// many peers with unfunded channels.
991 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
992 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
993 /// never limited. Please ensure you limit the count of such channels yourself.
995 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
996 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
997 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
998 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
999 /// you're using lightning-net-tokio.
1001 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1002 /// [`funding_created`]: msgs::FundingCreated
1003 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1004 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1005 /// [`update_channel`]: chain::Watch::update_channel
1006 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1007 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1008 /// [`read`]: ReadableArgs::read
1011 // The tree structure below illustrates the lock order requirements for the different locks of the
1012 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1013 // and should then be taken in the order of the lowest to the highest level in the tree.
1014 // Note that locks on different branches shall not be taken at the same time, as doing so will
1015 // create a new lock order for those specific locks in the order they were taken.
1019 // `pending_offers_messages`
1021 // `total_consistency_lock`
1023 // |__`forward_htlcs`
1025 // | |__`pending_intercepted_htlcs`
1027 // |__`per_peer_state`
1029 // |__`pending_inbound_payments`
1031 // |__`claimable_payments`
1033 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1039 // |__`short_to_chan_info`
1041 // |__`outbound_scid_aliases`
1045 // |__`pending_events`
1047 // |__`pending_background_events`
1049 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1051 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1052 T::Target: BroadcasterInterface,
1053 ES::Target: EntropySource,
1054 NS::Target: NodeSigner,
1055 SP::Target: SignerProvider,
1056 F::Target: FeeEstimator,
1060 default_configuration: UserConfig,
1061 chain_hash: ChainHash,
1062 fee_estimator: LowerBoundedFeeEstimator<F>,
1068 /// See `ChannelManager` struct-level documentation for lock order requirements.
1070 pub(super) best_block: RwLock<BestBlock>,
1072 best_block: RwLock<BestBlock>,
1073 secp_ctx: Secp256k1<secp256k1::All>,
1075 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1076 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1077 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1078 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1080 /// See `ChannelManager` struct-level documentation for lock order requirements.
1081 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1083 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1084 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1085 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1086 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1087 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1088 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1089 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1090 /// after reloading from disk while replaying blocks against ChannelMonitors.
1092 /// See `PendingOutboundPayment` documentation for more info.
1094 /// See `ChannelManager` struct-level documentation for lock order requirements.
1095 pending_outbound_payments: OutboundPayments,
1097 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1099 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1100 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1101 /// and via the classic SCID.
1103 /// Note that no consistency guarantees are made about the existence of a channel with the
1104 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1106 /// See `ChannelManager` struct-level documentation for lock order requirements.
1108 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1110 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1111 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1112 /// until the user tells us what we should do with them.
1114 /// See `ChannelManager` struct-level documentation for lock order requirements.
1115 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1117 /// The sets of payments which are claimable or currently being claimed. See
1118 /// [`ClaimablePayments`]' individual field docs for more info.
1120 /// See `ChannelManager` struct-level documentation for lock order requirements.
1121 claimable_payments: Mutex<ClaimablePayments>,
1123 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1124 /// and some closed channels which reached a usable state prior to being closed. This is used
1125 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1126 /// active channel list on load.
1128 /// See `ChannelManager` struct-level documentation for lock order requirements.
1129 outbound_scid_aliases: Mutex<HashSet<u64>>,
1131 /// `channel_id` -> `counterparty_node_id`.
1133 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1134 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1135 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1137 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1138 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1139 /// the handling of the events.
1141 /// Note that no consistency guarantees are made about the existence of a peer with the
1142 /// `counterparty_node_id` in our other maps.
1145 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1146 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1147 /// would break backwards compatability.
1148 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1149 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1150 /// required to access the channel with the `counterparty_node_id`.
1152 /// See `ChannelManager` struct-level documentation for lock order requirements.
1153 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1155 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1157 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1158 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1159 /// confirmation depth.
1161 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1162 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1163 /// channel with the `channel_id` in our other maps.
1165 /// See `ChannelManager` struct-level documentation for lock order requirements.
1167 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1169 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1171 our_network_pubkey: PublicKey,
1173 inbound_payment_key: inbound_payment::ExpandedKey,
1175 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1176 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1177 /// we encrypt the namespace identifier using these bytes.
1179 /// [fake scids]: crate::util::scid_utils::fake_scid
1180 fake_scid_rand_bytes: [u8; 32],
1182 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1183 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1184 /// keeping additional state.
1185 probing_cookie_secret: [u8; 32],
1187 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1188 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1189 /// very far in the past, and can only ever be up to two hours in the future.
1190 highest_seen_timestamp: AtomicUsize,
1192 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1193 /// basis, as well as the peer's latest features.
1195 /// If we are connected to a peer we always at least have an entry here, even if no channels
1196 /// are currently open with that peer.
1198 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1199 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1202 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1204 /// See `ChannelManager` struct-level documentation for lock order requirements.
1205 #[cfg(not(any(test, feature = "_test_utils")))]
1206 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1207 #[cfg(any(test, feature = "_test_utils"))]
1208 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1210 /// The set of events which we need to give to the user to handle. In some cases an event may
1211 /// require some further action after the user handles it (currently only blocking a monitor
1212 /// update from being handed to the user to ensure the included changes to the channel state
1213 /// are handled by the user before they're persisted durably to disk). In that case, the second
1214 /// element in the tuple is set to `Some` with further details of the action.
1216 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1217 /// could be in the middle of being processed without the direct mutex held.
1219 /// See `ChannelManager` struct-level documentation for lock order requirements.
1220 #[cfg(not(any(test, feature = "_test_utils")))]
1221 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1222 #[cfg(any(test, feature = "_test_utils"))]
1223 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1225 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1226 pending_events_processor: AtomicBool,
1228 /// If we are running during init (either directly during the deserialization method or in
1229 /// block connection methods which run after deserialization but before normal operation) we
1230 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1231 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1232 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1234 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1236 /// See `ChannelManager` struct-level documentation for lock order requirements.
1238 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1239 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1240 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1241 /// Essentially just when we're serializing ourselves out.
1242 /// Taken first everywhere where we are making changes before any other locks.
1243 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1244 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1245 /// Notifier the lock contains sends out a notification when the lock is released.
1246 total_consistency_lock: RwLock<()>,
1247 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1248 /// received and the monitor has been persisted.
1250 /// This information does not need to be persisted as funding nodes can forget
1251 /// unfunded channels upon disconnection.
1252 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1254 background_events_processed_since_startup: AtomicBool,
1256 event_persist_notifier: Notifier,
1257 needs_persist_flag: AtomicBool,
1259 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1263 signer_provider: SP,
1268 /// Chain-related parameters used to construct a new `ChannelManager`.
1270 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1271 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1272 /// are not needed when deserializing a previously constructed `ChannelManager`.
1273 #[derive(Clone, Copy, PartialEq)]
1274 pub struct ChainParameters {
1275 /// The network for determining the `chain_hash` in Lightning messages.
1276 pub network: Network,
1278 /// The hash and height of the latest block successfully connected.
1280 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1281 pub best_block: BestBlock,
1284 #[derive(Copy, Clone, PartialEq)]
1288 SkipPersistHandleEvents,
1289 SkipPersistNoEvents,
1292 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1293 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1294 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1295 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1296 /// sending the aforementioned notification (since the lock being released indicates that the
1297 /// updates are ready for persistence).
1299 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1300 /// notify or not based on whether relevant changes have been made, providing a closure to
1301 /// `optionally_notify` which returns a `NotifyOption`.
1302 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1303 event_persist_notifier: &'a Notifier,
1304 needs_persist_flag: &'a AtomicBool,
1306 // We hold onto this result so the lock doesn't get released immediately.
1307 _read_guard: RwLockReadGuard<'a, ()>,
1310 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1311 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1312 /// events to handle.
1314 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1315 /// other cases where losing the changes on restart may result in a force-close or otherwise
1317 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1318 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1321 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1322 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1323 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1324 let force_notify = cm.get_cm().process_background_events();
1326 PersistenceNotifierGuard {
1327 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1328 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1329 should_persist: move || {
1330 // Pick the "most" action between `persist_check` and the background events
1331 // processing and return that.
1332 let notify = persist_check();
1333 match (notify, force_notify) {
1334 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1335 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1336 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1337 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1338 _ => NotifyOption::SkipPersistNoEvents,
1341 _read_guard: read_guard,
1345 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1346 /// [`ChannelManager::process_background_events`] MUST be called first (or
1347 /// [`Self::optionally_notify`] used).
1348 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1349 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1350 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1352 PersistenceNotifierGuard {
1353 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1354 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1355 should_persist: persist_check,
1356 _read_guard: read_guard,
1361 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1362 fn drop(&mut self) {
1363 match (self.should_persist)() {
1364 NotifyOption::DoPersist => {
1365 self.needs_persist_flag.store(true, Ordering::Release);
1366 self.event_persist_notifier.notify()
1368 NotifyOption::SkipPersistHandleEvents =>
1369 self.event_persist_notifier.notify(),
1370 NotifyOption::SkipPersistNoEvents => {},
1375 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1376 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1378 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1380 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1381 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1382 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1383 /// the maximum required amount in lnd as of March 2021.
1384 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1386 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1387 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1389 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1391 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1392 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1393 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1394 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1395 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1396 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1397 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1398 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1399 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1400 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1401 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1402 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1403 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1405 /// Minimum CLTV difference between the current block height and received inbound payments.
1406 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1408 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1409 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1410 // a payment was being routed, so we add an extra block to be safe.
1411 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1413 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1414 // ie that if the next-hop peer fails the HTLC within
1415 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1416 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1417 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1418 // LATENCY_GRACE_PERIOD_BLOCKS.
1421 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1423 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1424 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1427 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1429 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1430 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1432 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1433 /// until we mark the channel disabled and gossip the update.
1434 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1436 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1437 /// we mark the channel enabled and gossip the update.
1438 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1440 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1441 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1442 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1443 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1445 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1446 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1447 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1449 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1450 /// many peers we reject new (inbound) connections.
1451 const MAX_NO_CHANNEL_PEERS: usize = 250;
1453 /// Information needed for constructing an invoice route hint for this channel.
1454 #[derive(Clone, Debug, PartialEq)]
1455 pub struct CounterpartyForwardingInfo {
1456 /// Base routing fee in millisatoshis.
1457 pub fee_base_msat: u32,
1458 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1459 pub fee_proportional_millionths: u32,
1460 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1461 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1462 /// `cltv_expiry_delta` for more details.
1463 pub cltv_expiry_delta: u16,
1466 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1467 /// to better separate parameters.
1468 #[derive(Clone, Debug, PartialEq)]
1469 pub struct ChannelCounterparty {
1470 /// The node_id of our counterparty
1471 pub node_id: PublicKey,
1472 /// The Features the channel counterparty provided upon last connection.
1473 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1474 /// many routing-relevant features are present in the init context.
1475 pub features: InitFeatures,
1476 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1477 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1478 /// claiming at least this value on chain.
1480 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1482 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1483 pub unspendable_punishment_reserve: u64,
1484 /// Information on the fees and requirements that the counterparty requires when forwarding
1485 /// payments to us through this channel.
1486 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1487 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1488 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1489 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1490 pub outbound_htlc_minimum_msat: Option<u64>,
1491 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1492 pub outbound_htlc_maximum_msat: Option<u64>,
1495 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1496 #[derive(Clone, Debug, PartialEq)]
1497 pub struct ChannelDetails {
1498 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1499 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1500 /// Note that this means this value is *not* persistent - it can change once during the
1501 /// lifetime of the channel.
1502 pub channel_id: ChannelId,
1503 /// Parameters which apply to our counterparty. See individual fields for more information.
1504 pub counterparty: ChannelCounterparty,
1505 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1506 /// our counterparty already.
1508 /// Note that, if this has been set, `channel_id` will be equivalent to
1509 /// `funding_txo.unwrap().to_channel_id()`.
1510 pub funding_txo: Option<OutPoint>,
1511 /// The features which this channel operates with. See individual features for more info.
1513 /// `None` until negotiation completes and the channel type is finalized.
1514 pub channel_type: Option<ChannelTypeFeatures>,
1515 /// The position of the funding transaction in the chain. None if the funding transaction has
1516 /// not yet been confirmed and the channel fully opened.
1518 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1519 /// payments instead of this. See [`get_inbound_payment_scid`].
1521 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1522 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1524 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1525 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1526 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1527 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1528 /// [`confirmations_required`]: Self::confirmations_required
1529 pub short_channel_id: Option<u64>,
1530 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1531 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1532 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1535 /// This will be `None` as long as the channel is not available for routing outbound payments.
1537 /// [`short_channel_id`]: Self::short_channel_id
1538 /// [`confirmations_required`]: Self::confirmations_required
1539 pub outbound_scid_alias: Option<u64>,
1540 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1541 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1542 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1543 /// when they see a payment to be routed to us.
1545 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1546 /// previous values for inbound payment forwarding.
1548 /// [`short_channel_id`]: Self::short_channel_id
1549 pub inbound_scid_alias: Option<u64>,
1550 /// The value, in satoshis, of this channel as appears in the funding output
1551 pub channel_value_satoshis: u64,
1552 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1553 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1554 /// this value on chain.
1556 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1558 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1560 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1561 pub unspendable_punishment_reserve: Option<u64>,
1562 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1563 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1564 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1565 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1566 /// serialized with LDK versions prior to 0.0.113.
1568 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1569 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1570 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1571 pub user_channel_id: u128,
1572 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1573 /// which is applied to commitment and HTLC transactions.
1575 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1576 pub feerate_sat_per_1000_weight: Option<u32>,
1577 /// Our total balance. This is the amount we would get if we close the channel.
1578 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1579 /// amount is not likely to be recoverable on close.
1581 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1582 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1583 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1584 /// This does not consider any on-chain fees.
1586 /// See also [`ChannelDetails::outbound_capacity_msat`]
1587 pub balance_msat: u64,
1588 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1589 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1590 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1591 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1593 /// See also [`ChannelDetails::balance_msat`]
1595 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1596 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1597 /// should be able to spend nearly this amount.
1598 pub outbound_capacity_msat: u64,
1599 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1600 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1601 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1602 /// to use a limit as close as possible to the HTLC limit we can currently send.
1604 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1605 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1606 pub next_outbound_htlc_limit_msat: u64,
1607 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1608 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1609 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1610 /// route which is valid.
1611 pub next_outbound_htlc_minimum_msat: u64,
1612 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1613 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1614 /// available for inclusion in new inbound HTLCs).
1615 /// Note that there are some corner cases not fully handled here, so the actual available
1616 /// inbound capacity may be slightly higher than this.
1618 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1619 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1620 /// However, our counterparty should be able to spend nearly this amount.
1621 pub inbound_capacity_msat: u64,
1622 /// The number of required confirmations on the funding transaction before the funding will be
1623 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1624 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1625 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1626 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1628 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1630 /// [`is_outbound`]: ChannelDetails::is_outbound
1631 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1632 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1633 pub confirmations_required: Option<u32>,
1634 /// The current number of confirmations on the funding transaction.
1636 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1637 pub confirmations: Option<u32>,
1638 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1639 /// until we can claim our funds after we force-close the channel. During this time our
1640 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1641 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1642 /// time to claim our non-HTLC-encumbered funds.
1644 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1645 pub force_close_spend_delay: Option<u16>,
1646 /// True if the channel was initiated (and thus funded) by us.
1647 pub is_outbound: bool,
1648 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1649 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1650 /// required confirmation count has been reached (and we were connected to the peer at some
1651 /// point after the funding transaction received enough confirmations). The required
1652 /// confirmation count is provided in [`confirmations_required`].
1654 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1655 pub is_channel_ready: bool,
1656 /// The stage of the channel's shutdown.
1657 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1658 pub channel_shutdown_state: Option<ChannelShutdownState>,
1659 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1660 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1662 /// This is a strict superset of `is_channel_ready`.
1663 pub is_usable: bool,
1664 /// True if this channel is (or will be) publicly-announced.
1665 pub is_public: bool,
1666 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1667 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1668 pub inbound_htlc_minimum_msat: Option<u64>,
1669 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1670 pub inbound_htlc_maximum_msat: Option<u64>,
1671 /// Set of configurable parameters that affect channel operation.
1673 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1674 pub config: Option<ChannelConfig>,
1677 impl ChannelDetails {
1678 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1679 /// This should be used for providing invoice hints or in any other context where our
1680 /// counterparty will forward a payment to us.
1682 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1683 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1684 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1685 self.inbound_scid_alias.or(self.short_channel_id)
1688 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1689 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1690 /// we're sending or forwarding a payment outbound over this channel.
1692 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1693 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1694 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1695 self.short_channel_id.or(self.outbound_scid_alias)
1698 fn from_channel_context<SP: Deref, F: Deref>(
1699 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1700 fee_estimator: &LowerBoundedFeeEstimator<F>
1703 SP::Target: SignerProvider,
1704 F::Target: FeeEstimator
1706 let balance = context.get_available_balances(fee_estimator);
1707 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1708 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1710 channel_id: context.channel_id(),
1711 counterparty: ChannelCounterparty {
1712 node_id: context.get_counterparty_node_id(),
1713 features: latest_features,
1714 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1715 forwarding_info: context.counterparty_forwarding_info(),
1716 // Ensures that we have actually received the `htlc_minimum_msat` value
1717 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1718 // message (as they are always the first message from the counterparty).
1719 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1720 // default `0` value set by `Channel::new_outbound`.
1721 outbound_htlc_minimum_msat: if context.have_received_message() {
1722 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1723 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1725 funding_txo: context.get_funding_txo(),
1726 // Note that accept_channel (or open_channel) is always the first message, so
1727 // `have_received_message` indicates that type negotiation has completed.
1728 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1729 short_channel_id: context.get_short_channel_id(),
1730 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1731 inbound_scid_alias: context.latest_inbound_scid_alias(),
1732 channel_value_satoshis: context.get_value_satoshis(),
1733 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1734 unspendable_punishment_reserve: to_self_reserve_satoshis,
1735 balance_msat: balance.balance_msat,
1736 inbound_capacity_msat: balance.inbound_capacity_msat,
1737 outbound_capacity_msat: balance.outbound_capacity_msat,
1738 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1739 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1740 user_channel_id: context.get_user_id(),
1741 confirmations_required: context.minimum_depth(),
1742 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1743 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1744 is_outbound: context.is_outbound(),
1745 is_channel_ready: context.is_usable(),
1746 is_usable: context.is_live(),
1747 is_public: context.should_announce(),
1748 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1749 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1750 config: Some(context.config()),
1751 channel_shutdown_state: Some(context.shutdown_state()),
1756 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1757 /// Further information on the details of the channel shutdown.
1758 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1759 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1760 /// the channel will be removed shortly.
1761 /// Also note, that in normal operation, peers could disconnect at any of these states
1762 /// and require peer re-connection before making progress onto other states
1763 pub enum ChannelShutdownState {
1764 /// Channel has not sent or received a shutdown message.
1766 /// Local node has sent a shutdown message for this channel.
1768 /// Shutdown message exchanges have concluded and the channels are in the midst of
1769 /// resolving all existing open HTLCs before closing can continue.
1771 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1772 NegotiatingClosingFee,
1773 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1774 /// to drop the channel.
1778 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1779 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1780 #[derive(Debug, PartialEq)]
1781 pub enum RecentPaymentDetails {
1782 /// When an invoice was requested and thus a payment has not yet been sent.
1784 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1785 /// a payment and ensure idempotency in LDK.
1786 payment_id: PaymentId,
1788 /// When a payment is still being sent and awaiting successful delivery.
1790 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1791 /// a payment and ensure idempotency in LDK.
1792 payment_id: PaymentId,
1793 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1795 payment_hash: PaymentHash,
1796 /// Total amount (in msat, excluding fees) across all paths for this payment,
1797 /// not just the amount currently inflight.
1800 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1801 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1802 /// payment is removed from tracking.
1804 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1805 /// a payment and ensure idempotency in LDK.
1806 payment_id: PaymentId,
1807 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1808 /// made before LDK version 0.0.104.
1809 payment_hash: Option<PaymentHash>,
1811 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1812 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1813 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1815 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1816 /// a payment and ensure idempotency in LDK.
1817 payment_id: PaymentId,
1818 /// Hash of the payment that we have given up trying to send.
1819 payment_hash: PaymentHash,
1823 /// Route hints used in constructing invoices for [phantom node payents].
1825 /// [phantom node payments]: crate::sign::PhantomKeysManager
1827 pub struct PhantomRouteHints {
1828 /// The list of channels to be included in the invoice route hints.
1829 pub channels: Vec<ChannelDetails>,
1830 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1832 pub phantom_scid: u64,
1833 /// The pubkey of the real backing node that would ultimately receive the payment.
1834 pub real_node_pubkey: PublicKey,
1837 macro_rules! handle_error {
1838 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1839 // In testing, ensure there are no deadlocks where the lock is already held upon
1840 // entering the macro.
1841 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1842 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1846 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1847 let mut msg_events = Vec::with_capacity(2);
1849 if let Some((shutdown_res, update_option)) = shutdown_finish {
1850 $self.finish_close_channel(shutdown_res);
1851 if let Some(update) = update_option {
1852 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1856 if let Some((channel_id, user_channel_id)) = chan_id {
1857 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1858 channel_id, user_channel_id,
1859 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1860 counterparty_node_id: Some($counterparty_node_id),
1861 channel_capacity_sats: channel_capacity,
1866 log_error!($self.logger, "{}", err.err);
1867 if let msgs::ErrorAction::IgnoreError = err.action {
1869 msg_events.push(events::MessageSendEvent::HandleError {
1870 node_id: $counterparty_node_id,
1871 action: err.action.clone()
1875 if !msg_events.is_empty() {
1876 let per_peer_state = $self.per_peer_state.read().unwrap();
1877 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1878 let mut peer_state = peer_state_mutex.lock().unwrap();
1879 peer_state.pending_msg_events.append(&mut msg_events);
1883 // Return error in case higher-API need one
1888 ($self: ident, $internal: expr) => {
1891 Err((chan, msg_handle_err)) => {
1892 let counterparty_node_id = chan.get_counterparty_node_id();
1893 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1899 macro_rules! update_maps_on_chan_removal {
1900 ($self: expr, $channel_context: expr) => {{
1901 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1902 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1903 if let Some(short_id) = $channel_context.get_short_channel_id() {
1904 short_to_chan_info.remove(&short_id);
1906 // If the channel was never confirmed on-chain prior to its closure, remove the
1907 // outbound SCID alias we used for it from the collision-prevention set. While we
1908 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1909 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1910 // opening a million channels with us which are closed before we ever reach the funding
1912 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1913 debug_assert!(alias_removed);
1915 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1919 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1920 macro_rules! convert_chan_phase_err {
1921 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1923 ChannelError::Warn(msg) => {
1924 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1926 ChannelError::Ignore(msg) => {
1927 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1929 ChannelError::Close(msg) => {
1930 log_error!($self.logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1931 update_maps_on_chan_removal!($self, $channel.context);
1932 let shutdown_res = $channel.context.force_shutdown(true);
1933 let user_id = $channel.context.get_user_id();
1934 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1936 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1937 shutdown_res, $channel_update, channel_capacity_satoshis))
1941 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1942 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1944 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1945 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1947 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1948 match $channel_phase {
1949 ChannelPhase::Funded(channel) => {
1950 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
1952 ChannelPhase::UnfundedOutboundV1(channel) => {
1953 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1955 ChannelPhase::UnfundedInboundV1(channel) => {
1956 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1962 macro_rules! break_chan_phase_entry {
1963 ($self: ident, $res: expr, $entry: expr) => {
1967 let key = *$entry.key();
1968 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1970 $entry.remove_entry();
1978 macro_rules! try_chan_phase_entry {
1979 ($self: ident, $res: expr, $entry: expr) => {
1983 let key = *$entry.key();
1984 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1986 $entry.remove_entry();
1994 macro_rules! remove_channel_phase {
1995 ($self: expr, $entry: expr) => {
1997 let channel = $entry.remove_entry().1;
1998 update_maps_on_chan_removal!($self, &channel.context());
2004 macro_rules! send_channel_ready {
2005 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2006 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2007 node_id: $channel.context.get_counterparty_node_id(),
2008 msg: $channel_ready_msg,
2010 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2011 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2012 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2013 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2014 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2015 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2016 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2017 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2018 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2019 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2024 macro_rules! emit_channel_pending_event {
2025 ($locked_events: expr, $channel: expr) => {
2026 if $channel.context.should_emit_channel_pending_event() {
2027 $locked_events.push_back((events::Event::ChannelPending {
2028 channel_id: $channel.context.channel_id(),
2029 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2030 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2031 user_channel_id: $channel.context.get_user_id(),
2032 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2034 $channel.context.set_channel_pending_event_emitted();
2039 macro_rules! emit_channel_ready_event {
2040 ($locked_events: expr, $channel: expr) => {
2041 if $channel.context.should_emit_channel_ready_event() {
2042 debug_assert!($channel.context.channel_pending_event_emitted());
2043 $locked_events.push_back((events::Event::ChannelReady {
2044 channel_id: $channel.context.channel_id(),
2045 user_channel_id: $channel.context.get_user_id(),
2046 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2047 channel_type: $channel.context.get_channel_type().clone(),
2049 $channel.context.set_channel_ready_event_emitted();
2054 macro_rules! handle_monitor_update_completion {
2055 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2056 let mut updates = $chan.monitor_updating_restored(&$self.logger,
2057 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2058 $self.best_block.read().unwrap().height());
2059 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2060 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2061 // We only send a channel_update in the case where we are just now sending a
2062 // channel_ready and the channel is in a usable state. We may re-send a
2063 // channel_update later through the announcement_signatures process for public
2064 // channels, but there's no reason not to just inform our counterparty of our fees
2066 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2067 Some(events::MessageSendEvent::SendChannelUpdate {
2068 node_id: counterparty_node_id,
2074 let update_actions = $peer_state.monitor_update_blocked_actions
2075 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2077 let htlc_forwards = $self.handle_channel_resumption(
2078 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2079 updates.commitment_update, updates.order, updates.accepted_htlcs,
2080 updates.funding_broadcastable, updates.channel_ready,
2081 updates.announcement_sigs);
2082 if let Some(upd) = channel_update {
2083 $peer_state.pending_msg_events.push(upd);
2086 let channel_id = $chan.context.channel_id();
2087 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2088 core::mem::drop($peer_state_lock);
2089 core::mem::drop($per_peer_state_lock);
2091 // If the channel belongs to a batch funding transaction, the progress of the batch
2092 // should be updated as we have received funding_signed and persisted the monitor.
2093 if let Some(txid) = unbroadcasted_batch_funding_txid {
2094 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2095 let mut batch_completed = false;
2096 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2097 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2098 *chan_id == channel_id &&
2099 *pubkey == counterparty_node_id
2101 if let Some(channel_state) = channel_state {
2102 channel_state.2 = true;
2104 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2106 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2108 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2111 // When all channels in a batched funding transaction have become ready, it is not necessary
2112 // to track the progress of the batch anymore and the state of the channels can be updated.
2113 if batch_completed {
2114 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2115 let per_peer_state = $self.per_peer_state.read().unwrap();
2116 let mut batch_funding_tx = None;
2117 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2118 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2119 let mut peer_state = peer_state_mutex.lock().unwrap();
2120 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2121 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2122 chan.set_batch_ready();
2123 let mut pending_events = $self.pending_events.lock().unwrap();
2124 emit_channel_pending_event!(pending_events, chan);
2128 if let Some(tx) = batch_funding_tx {
2129 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2130 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2135 $self.handle_monitor_update_completion_actions(update_actions);
2137 if let Some(forwards) = htlc_forwards {
2138 $self.forward_htlcs(&mut [forwards][..]);
2140 $self.finalize_claims(updates.finalized_claimed_htlcs);
2141 for failure in updates.failed_htlcs.drain(..) {
2142 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2143 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2148 macro_rules! handle_new_monitor_update {
2149 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2150 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2152 ChannelMonitorUpdateStatus::UnrecoverableError => {
2153 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2154 log_error!($self.logger, "{}", err_str);
2155 panic!("{}", err_str);
2157 ChannelMonitorUpdateStatus::InProgress => {
2158 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2159 &$chan.context.channel_id());
2162 ChannelMonitorUpdateStatus::Completed => {
2168 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2169 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2170 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2172 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2173 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2174 .or_insert_with(Vec::new);
2175 // During startup, we push monitor updates as background events through to here in
2176 // order to replay updates that were in-flight when we shut down. Thus, we have to
2177 // filter for uniqueness here.
2178 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2179 .unwrap_or_else(|| {
2180 in_flight_updates.push($update);
2181 in_flight_updates.len() - 1
2183 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2184 handle_new_monitor_update!($self, update_res, $chan, _internal,
2186 let _ = in_flight_updates.remove(idx);
2187 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2188 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2194 macro_rules! process_events_body {
2195 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2196 let mut processed_all_events = false;
2197 while !processed_all_events {
2198 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2205 // We'll acquire our total consistency lock so that we can be sure no other
2206 // persists happen while processing monitor events.
2207 let _read_guard = $self.total_consistency_lock.read().unwrap();
2209 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2210 // ensure any startup-generated background events are handled first.
2211 result = $self.process_background_events();
2213 // TODO: This behavior should be documented. It's unintuitive that we query
2214 // ChannelMonitors when clearing other events.
2215 if $self.process_pending_monitor_events() {
2216 result = NotifyOption::DoPersist;
2220 let pending_events = $self.pending_events.lock().unwrap().clone();
2221 let num_events = pending_events.len();
2222 if !pending_events.is_empty() {
2223 result = NotifyOption::DoPersist;
2226 let mut post_event_actions = Vec::new();
2228 for (event, action_opt) in pending_events {
2229 $event_to_handle = event;
2231 if let Some(action) = action_opt {
2232 post_event_actions.push(action);
2237 let mut pending_events = $self.pending_events.lock().unwrap();
2238 pending_events.drain(..num_events);
2239 processed_all_events = pending_events.is_empty();
2240 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2241 // updated here with the `pending_events` lock acquired.
2242 $self.pending_events_processor.store(false, Ordering::Release);
2245 if !post_event_actions.is_empty() {
2246 $self.handle_post_event_actions(post_event_actions);
2247 // If we had some actions, go around again as we may have more events now
2248 processed_all_events = false;
2252 NotifyOption::DoPersist => {
2253 $self.needs_persist_flag.store(true, Ordering::Release);
2254 $self.event_persist_notifier.notify();
2256 NotifyOption::SkipPersistHandleEvents =>
2257 $self.event_persist_notifier.notify(),
2258 NotifyOption::SkipPersistNoEvents => {},
2264 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2266 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2267 T::Target: BroadcasterInterface,
2268 ES::Target: EntropySource,
2269 NS::Target: NodeSigner,
2270 SP::Target: SignerProvider,
2271 F::Target: FeeEstimator,
2275 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2277 /// The current time or latest block header time can be provided as the `current_timestamp`.
2279 /// This is the main "logic hub" for all channel-related actions, and implements
2280 /// [`ChannelMessageHandler`].
2282 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2284 /// Users need to notify the new `ChannelManager` when a new block is connected or
2285 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2286 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2289 /// [`block_connected`]: chain::Listen::block_connected
2290 /// [`block_disconnected`]: chain::Listen::block_disconnected
2291 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2293 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2294 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2295 current_timestamp: u32,
2297 let mut secp_ctx = Secp256k1::new();
2298 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2299 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2300 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2302 default_configuration: config.clone(),
2303 chain_hash: ChainHash::using_genesis_block(params.network),
2304 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2309 best_block: RwLock::new(params.best_block),
2311 outbound_scid_aliases: Mutex::new(HashSet::new()),
2312 pending_inbound_payments: Mutex::new(HashMap::new()),
2313 pending_outbound_payments: OutboundPayments::new(),
2314 forward_htlcs: Mutex::new(HashMap::new()),
2315 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2316 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2317 id_to_peer: Mutex::new(HashMap::new()),
2318 short_to_chan_info: FairRwLock::new(HashMap::new()),
2320 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2323 inbound_payment_key: expanded_inbound_key,
2324 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2326 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2328 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2330 per_peer_state: FairRwLock::new(HashMap::new()),
2332 pending_events: Mutex::new(VecDeque::new()),
2333 pending_events_processor: AtomicBool::new(false),
2334 pending_background_events: Mutex::new(Vec::new()),
2335 total_consistency_lock: RwLock::new(()),
2336 background_events_processed_since_startup: AtomicBool::new(false),
2337 event_persist_notifier: Notifier::new(),
2338 needs_persist_flag: AtomicBool::new(false),
2339 funding_batch_states: Mutex::new(BTreeMap::new()),
2341 pending_offers_messages: Mutex::new(Vec::new()),
2351 /// Gets the current configuration applied to all new channels.
2352 pub fn get_current_default_configuration(&self) -> &UserConfig {
2353 &self.default_configuration
2356 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2357 let height = self.best_block.read().unwrap().height();
2358 let mut outbound_scid_alias = 0;
2361 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2362 outbound_scid_alias += 1;
2364 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2366 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2370 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2375 /// Creates a new outbound channel to the given remote node and with the given value.
2377 /// `user_channel_id` will be provided back as in
2378 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2379 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2380 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2381 /// is simply copied to events and otherwise ignored.
2383 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2384 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2386 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2387 /// generate a shutdown scriptpubkey or destination script set by
2388 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2390 /// Note that we do not check if you are currently connected to the given peer. If no
2391 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2392 /// the channel eventually being silently forgotten (dropped on reload).
2394 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2395 /// channel. Otherwise, a random one will be generated for you.
2397 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2398 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2399 /// [`ChannelDetails::channel_id`] until after
2400 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2401 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2402 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2404 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2405 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2406 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2407 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2408 if channel_value_satoshis < 1000 {
2409 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2412 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2413 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2414 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2416 let per_peer_state = self.per_peer_state.read().unwrap();
2418 let peer_state_mutex = per_peer_state.get(&their_network_key)
2419 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2421 let mut peer_state = peer_state_mutex.lock().unwrap();
2423 if let Some(temporary_channel_id) = temporary_channel_id {
2424 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2425 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2430 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2431 let their_features = &peer_state.latest_features;
2432 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2433 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2434 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2435 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2439 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2444 let res = channel.get_open_channel(self.chain_hash);
2446 let temporary_channel_id = channel.context.channel_id();
2447 match peer_state.channel_by_id.entry(temporary_channel_id) {
2448 hash_map::Entry::Occupied(_) => {
2450 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2452 panic!("RNG is bad???");
2455 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2458 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2459 node_id: their_network_key,
2462 Ok(temporary_channel_id)
2465 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2466 // Allocate our best estimate of the number of channels we have in the `res`
2467 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2468 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2469 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2470 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2471 // the same channel.
2472 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2474 let best_block_height = self.best_block.read().unwrap().height();
2475 let per_peer_state = self.per_peer_state.read().unwrap();
2476 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2477 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2478 let peer_state = &mut *peer_state_lock;
2479 res.extend(peer_state.channel_by_id.iter()
2480 .filter_map(|(chan_id, phase)| match phase {
2481 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2482 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2486 .map(|(_channel_id, channel)| {
2487 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2488 peer_state.latest_features.clone(), &self.fee_estimator)
2496 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2497 /// more information.
2498 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2499 // Allocate our best estimate of the number of channels we have in the `res`
2500 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2501 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2502 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2503 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2504 // the same channel.
2505 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2507 let best_block_height = self.best_block.read().unwrap().height();
2508 let per_peer_state = self.per_peer_state.read().unwrap();
2509 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2510 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2511 let peer_state = &mut *peer_state_lock;
2512 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2513 let details = ChannelDetails::from_channel_context(context, best_block_height,
2514 peer_state.latest_features.clone(), &self.fee_estimator);
2522 /// Gets the list of usable channels, in random order. Useful as an argument to
2523 /// [`Router::find_route`] to ensure non-announced channels are used.
2525 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2526 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2528 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2529 // Note we use is_live here instead of usable which leads to somewhat confused
2530 // internal/external nomenclature, but that's ok cause that's probably what the user
2531 // really wanted anyway.
2532 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2535 /// Gets the list of channels we have with a given counterparty, in random order.
2536 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2537 let best_block_height = self.best_block.read().unwrap().height();
2538 let per_peer_state = self.per_peer_state.read().unwrap();
2540 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2541 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2542 let peer_state = &mut *peer_state_lock;
2543 let features = &peer_state.latest_features;
2544 let context_to_details = |context| {
2545 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2547 return peer_state.channel_by_id
2549 .map(|(_, phase)| phase.context())
2550 .map(context_to_details)
2556 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2557 /// successful path, or have unresolved HTLCs.
2559 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2560 /// result of a crash. If such a payment exists, is not listed here, and an
2561 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2563 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2564 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2565 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2566 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2567 PendingOutboundPayment::AwaitingInvoice { .. } => {
2568 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2570 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2571 PendingOutboundPayment::InvoiceReceived { .. } => {
2572 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2574 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2575 Some(RecentPaymentDetails::Pending {
2576 payment_id: *payment_id,
2577 payment_hash: *payment_hash,
2578 total_msat: *total_msat,
2581 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2582 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2584 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2585 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2587 PendingOutboundPayment::Legacy { .. } => None
2592 /// Helper function that issues the channel close events
2593 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2594 let mut pending_events_lock = self.pending_events.lock().unwrap();
2595 match context.unbroadcasted_funding() {
2596 Some(transaction) => {
2597 pending_events_lock.push_back((events::Event::DiscardFunding {
2598 channel_id: context.channel_id(), transaction
2603 pending_events_lock.push_back((events::Event::ChannelClosed {
2604 channel_id: context.channel_id(),
2605 user_channel_id: context.get_user_id(),
2606 reason: closure_reason,
2607 counterparty_node_id: Some(context.get_counterparty_node_id()),
2608 channel_capacity_sats: Some(context.get_value_satoshis()),
2612 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2613 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2615 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2616 let shutdown_result;
2618 let per_peer_state = self.per_peer_state.read().unwrap();
2620 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2621 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2623 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2624 let peer_state = &mut *peer_state_lock;
2626 match peer_state.channel_by_id.entry(channel_id.clone()) {
2627 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2628 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2629 let funding_txo_opt = chan.context.get_funding_txo();
2630 let their_features = &peer_state.latest_features;
2631 let (shutdown_msg, mut monitor_update_opt, htlcs, local_shutdown_result) =
2632 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2633 failed_htlcs = htlcs;
2634 shutdown_result = local_shutdown_result;
2635 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
2637 // We can send the `shutdown` message before updating the `ChannelMonitor`
2638 // here as we don't need the monitor update to complete until we send a
2639 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2640 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2641 node_id: *counterparty_node_id,
2645 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2646 "We can't both complete shutdown and generate a monitor update");
2648 // Update the monitor with the shutdown script if necessary.
2649 if let Some(monitor_update) = monitor_update_opt.take() {
2650 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2651 peer_state_lock, peer_state, per_peer_state, chan);
2655 if chan.is_shutdown() {
2656 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2657 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2658 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2662 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2668 hash_map::Entry::Vacant(_) => {
2669 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2670 // it does not exist for this peer. Either way, we can attempt to force-close it.
2672 // An appropriate error will be returned for non-existence of the channel if that's the case.
2673 mem::drop(peer_state_lock);
2674 mem::drop(per_peer_state);
2675 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2680 for htlc_source in failed_htlcs.drain(..) {
2681 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2682 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2683 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2686 if let Some(shutdown_result) = shutdown_result {
2687 self.finish_close_channel(shutdown_result);
2693 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2694 /// will be accepted on the given channel, and after additional timeout/the closing of all
2695 /// pending HTLCs, the channel will be closed on chain.
2697 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2698 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2700 /// * If our counterparty is the channel initiator, we will require a channel closing
2701 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2702 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2703 /// counterparty to pay as much fee as they'd like, however.
2705 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2707 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2708 /// generate a shutdown scriptpubkey or destination script set by
2709 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2712 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2713 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2714 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2715 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2716 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2717 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2720 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2721 /// will be accepted on the given channel, and after additional timeout/the closing of all
2722 /// pending HTLCs, the channel will be closed on chain.
2724 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2725 /// the channel being closed or not:
2726 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2727 /// transaction. The upper-bound is set by
2728 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2729 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2730 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2731 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2732 /// will appear on a force-closure transaction, whichever is lower).
2734 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2735 /// Will fail if a shutdown script has already been set for this channel by
2736 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2737 /// also be compatible with our and the counterparty's features.
2739 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2741 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2742 /// generate a shutdown scriptpubkey or destination script set by
2743 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2746 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2747 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2748 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2749 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2750 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2753 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2754 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2755 #[cfg(debug_assertions)]
2756 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2757 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2760 log_debug!(self.logger, "Finishing closure of channel with {} HTLCs to fail", shutdown_res.dropped_outbound_htlcs.len());
2761 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2762 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2763 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2764 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2765 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2767 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2768 // There isn't anything we can do if we get an update failure - we're already
2769 // force-closing. The monitor update on the required in-memory copy should broadcast
2770 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2771 // ignore the result here.
2772 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2774 let mut shutdown_results = Vec::new();
2775 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2776 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2777 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2778 let per_peer_state = self.per_peer_state.read().unwrap();
2779 let mut has_uncompleted_channel = None;
2780 for (channel_id, counterparty_node_id, state) in affected_channels {
2781 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2782 let mut peer_state = peer_state_mutex.lock().unwrap();
2783 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2784 update_maps_on_chan_removal!(self, &chan.context());
2785 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2786 shutdown_results.push(chan.context_mut().force_shutdown(false));
2789 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2792 has_uncompleted_channel.unwrap_or(true),
2793 "Closing a batch where all channels have completed initial monitor update",
2796 for shutdown_result in shutdown_results.drain(..) {
2797 self.finish_close_channel(shutdown_result);
2801 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2802 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2803 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2804 -> Result<PublicKey, APIError> {
2805 let per_peer_state = self.per_peer_state.read().unwrap();
2806 let peer_state_mutex = per_peer_state.get(peer_node_id)
2807 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2808 let (update_opt, counterparty_node_id) = {
2809 let mut peer_state = peer_state_mutex.lock().unwrap();
2810 let closure_reason = if let Some(peer_msg) = peer_msg {
2811 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2813 ClosureReason::HolderForceClosed
2815 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2816 log_error!(self.logger, "Force-closing channel {}", channel_id);
2817 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2818 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2819 mem::drop(peer_state);
2820 mem::drop(per_peer_state);
2822 ChannelPhase::Funded(mut chan) => {
2823 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2824 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2826 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2827 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2828 // Unfunded channel has no update
2829 (None, chan_phase.context().get_counterparty_node_id())
2832 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2833 log_error!(self.logger, "Force-closing channel {}", &channel_id);
2834 // N.B. that we don't send any channel close event here: we
2835 // don't have a user_channel_id, and we never sent any opening
2837 (None, *peer_node_id)
2839 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2842 if let Some(update) = update_opt {
2843 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2844 // not try to broadcast it via whatever peer we have.
2845 let per_peer_state = self.per_peer_state.read().unwrap();
2846 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2847 .ok_or(per_peer_state.values().next());
2848 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2849 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2850 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2856 Ok(counterparty_node_id)
2859 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2860 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2861 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2862 Ok(counterparty_node_id) => {
2863 let per_peer_state = self.per_peer_state.read().unwrap();
2864 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2865 let mut peer_state = peer_state_mutex.lock().unwrap();
2866 peer_state.pending_msg_events.push(
2867 events::MessageSendEvent::HandleError {
2868 node_id: counterparty_node_id,
2869 action: msgs::ErrorAction::DisconnectPeer {
2870 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2881 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2882 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2883 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2885 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2886 -> Result<(), APIError> {
2887 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2890 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2891 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2892 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2894 /// You can always get the latest local transaction(s) to broadcast from
2895 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2896 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2897 -> Result<(), APIError> {
2898 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2901 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2902 /// for each to the chain and rejecting new HTLCs on each.
2903 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2904 for chan in self.list_channels() {
2905 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2909 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2910 /// local transaction(s).
2911 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2912 for chan in self.list_channels() {
2913 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2917 fn construct_fwd_pending_htlc_info(
2918 &self, msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
2919 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
2920 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
2921 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2922 debug_assert!(next_packet_pubkey_opt.is_some());
2923 let outgoing_packet = msgs::OnionPacket {
2925 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
2926 hop_data: new_packet_bytes,
2930 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
2931 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
2932 (short_channel_id, amt_to_forward, outgoing_cltv_value),
2933 msgs::InboundOnionPayload::Receive { .. } | msgs::InboundOnionPayload::BlindedReceive { .. } =>
2934 return Err(InboundOnionErr {
2935 msg: "Final Node OnionHopData provided for us as an intermediary node",
2936 err_code: 0x4000 | 22,
2937 err_data: Vec::new(),
2941 Ok(PendingHTLCInfo {
2942 routing: PendingHTLCRouting::Forward {
2943 onion_packet: outgoing_packet,
2946 payment_hash: msg.payment_hash,
2947 incoming_shared_secret: shared_secret,
2948 incoming_amt_msat: Some(msg.amount_msat),
2949 outgoing_amt_msat: amt_to_forward,
2950 outgoing_cltv_value,
2951 skimmed_fee_msat: None,
2955 fn construct_recv_pending_htlc_info(
2956 &self, hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
2957 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
2958 counterparty_skimmed_fee_msat: Option<u64>,
2959 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2960 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
2961 msgs::InboundOnionPayload::Receive {
2962 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
2964 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
2965 msgs::InboundOnionPayload::BlindedReceive {
2966 amt_msat, total_msat, outgoing_cltv_value, payment_secret, ..
2968 let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat };
2969 (Some(payment_data), None, Vec::new(), amt_msat, outgoing_cltv_value, None)
2971 msgs::InboundOnionPayload::Forward { .. } => {
2972 return Err(InboundOnionErr {
2973 err_code: 0x4000|22,
2974 err_data: Vec::new(),
2975 msg: "Got non final data with an HMAC of 0",
2979 // final_incorrect_cltv_expiry
2980 if outgoing_cltv_value > cltv_expiry {
2981 return Err(InboundOnionErr {
2982 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2984 err_data: cltv_expiry.to_be_bytes().to_vec()
2987 // final_expiry_too_soon
2988 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2989 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2991 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2992 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2993 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2994 let current_height: u32 = self.best_block.read().unwrap().height();
2995 if cltv_expiry <= current_height + HTLC_FAIL_BACK_BUFFER + 1 {
2996 let mut err_data = Vec::with_capacity(12);
2997 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2998 err_data.extend_from_slice(¤t_height.to_be_bytes());
2999 return Err(InboundOnionErr {
3000 err_code: 0x4000 | 15, err_data,
3001 msg: "The final CLTV expiry is too soon to handle",
3004 if (!allow_underpay && onion_amt_msat > amt_msat) ||
3005 (allow_underpay && onion_amt_msat >
3006 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
3008 return Err(InboundOnionErr {
3010 err_data: amt_msat.to_be_bytes().to_vec(),
3011 msg: "Upstream node sent less than we were supposed to receive in payment",
3015 let routing = if let Some(payment_preimage) = keysend_preimage {
3016 // We need to check that the sender knows the keysend preimage before processing this
3017 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
3018 // could discover the final destination of X, by probing the adjacent nodes on the route
3019 // with a keysend payment of identical payment hash to X and observing the processing
3020 // time discrepancies due to a hash collision with X.
3021 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3022 if hashed_preimage != payment_hash {
3023 return Err(InboundOnionErr {
3024 err_code: 0x4000|22,
3025 err_data: Vec::new(),
3026 msg: "Payment preimage didn't match payment hash",
3029 if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() {
3030 return Err(InboundOnionErr {
3031 err_code: 0x4000|22,
3032 err_data: Vec::new(),
3033 msg: "We don't support MPP keysend payments",
3036 PendingHTLCRouting::ReceiveKeysend {
3040 incoming_cltv_expiry: outgoing_cltv_value,
3043 } else if let Some(data) = payment_data {
3044 PendingHTLCRouting::Receive {
3047 incoming_cltv_expiry: outgoing_cltv_value,
3048 phantom_shared_secret,
3052 return Err(InboundOnionErr {
3053 err_code: 0x4000|0x2000|3,
3054 err_data: Vec::new(),
3055 msg: "We require payment_secrets",
3058 Ok(PendingHTLCInfo {
3061 incoming_shared_secret: shared_secret,
3062 incoming_amt_msat: Some(amt_msat),
3063 outgoing_amt_msat: onion_amt_msat,
3064 outgoing_cltv_value,
3065 skimmed_fee_msat: counterparty_skimmed_fee_msat,
3069 fn decode_update_add_htlc_onion(
3070 &self, msg: &msgs::UpdateAddHTLC
3071 ) -> Result<(onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg> {
3072 macro_rules! return_malformed_err {
3073 ($msg: expr, $err_code: expr) => {
3075 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3076 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3077 channel_id: msg.channel_id,
3078 htlc_id: msg.htlc_id,
3079 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
3080 failure_code: $err_code,
3086 if let Err(_) = msg.onion_routing_packet.public_key {
3087 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
3090 let shared_secret = self.node_signer.ecdh(
3091 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
3092 ).unwrap().secret_bytes();
3094 if msg.onion_routing_packet.version != 0 {
3095 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
3096 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
3097 //the hash doesn't really serve any purpose - in the case of hashing all data, the
3098 //receiving node would have to brute force to figure out which version was put in the
3099 //packet by the node that send us the message, in the case of hashing the hop_data, the
3100 //node knows the HMAC matched, so they already know what is there...
3101 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
3103 macro_rules! return_err {
3104 ($msg: expr, $err_code: expr, $data: expr) => {
3106 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3107 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3108 channel_id: msg.channel_id,
3109 htlc_id: msg.htlc_id,
3110 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3111 .get_encrypted_failure_packet(&shared_secret, &None),
3117 let next_hop = match onion_utils::decode_next_payment_hop(
3118 shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac,
3119 msg.payment_hash, &self.node_signer
3122 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3123 return_malformed_err!(err_msg, err_code);
3125 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3126 return_err!(err_msg, err_code, &[0; 0]);
3129 let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop {
3130 onion_utils::Hop::Forward {
3131 next_hop_data: msgs::InboundOnionPayload::Forward {
3132 short_channel_id, amt_to_forward, outgoing_cltv_value
3135 let next_packet_pk = onion_utils::next_hop_pubkey(&self.secp_ctx,
3136 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
3137 (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_packet_pk))
3139 // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the
3140 // inbound channel's state.
3141 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
3142 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } |
3143 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::BlindedReceive { .. }, .. } =>
3145 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
3149 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3150 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3151 if let Some((err, mut code, chan_update)) = loop {
3152 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3153 let forwarding_chan_info_opt = match id_option {
3154 None => { // unknown_next_peer
3155 // Note that this is likely a timing oracle for detecting whether an scid is a
3156 // phantom or an intercept.
3157 if (self.default_configuration.accept_intercept_htlcs &&
3158 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
3159 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
3163 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3166 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3168 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3169 let per_peer_state = self.per_peer_state.read().unwrap();
3170 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3171 if peer_state_mutex_opt.is_none() {
3172 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3174 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3175 let peer_state = &mut *peer_state_lock;
3176 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3177 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3180 // Channel was removed. The short_to_chan_info and channel_by_id maps
3181 // have no consistency guarantees.
3182 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3186 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3187 // Note that the behavior here should be identical to the above block - we
3188 // should NOT reveal the existence or non-existence of a private channel if
3189 // we don't allow forwards outbound over them.
3190 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3192 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3193 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3194 // "refuse to forward unless the SCID alias was used", so we pretend
3195 // we don't have the channel here.
3196 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3198 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3200 // Note that we could technically not return an error yet here and just hope
3201 // that the connection is reestablished or monitor updated by the time we get
3202 // around to doing the actual forward, but better to fail early if we can and
3203 // hopefully an attacker trying to path-trace payments cannot make this occur
3204 // on a small/per-node/per-channel scale.
3205 if !chan.context.is_live() { // channel_disabled
3206 // If the channel_update we're going to return is disabled (i.e. the
3207 // peer has been disabled for some time), return `channel_disabled`,
3208 // otherwise return `temporary_channel_failure`.
3209 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3210 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3212 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3215 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3216 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3218 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3219 break Some((err, code, chan_update_opt));
3223 if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
3224 // We really should set `incorrect_cltv_expiry` here but as we're not
3225 // forwarding over a real channel we can't generate a channel_update
3226 // for it. Instead we just return a generic temporary_node_failure.
3228 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
3235 let cur_height = self.best_block.read().unwrap().height() + 1;
3236 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
3237 // but we want to be robust wrt to counterparty packet sanitization (see
3238 // HTLC_FAIL_BACK_BUFFER rationale).
3239 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
3240 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
3242 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
3243 break Some(("CLTV expiry is too far in the future", 21, None));
3245 // If the HTLC expires ~now, don't bother trying to forward it to our
3246 // counterparty. They should fail it anyway, but we don't want to bother with
3247 // the round-trips or risk them deciding they definitely want the HTLC and
3248 // force-closing to ensure they get it if we're offline.
3249 // We previously had a much more aggressive check here which tried to ensure
3250 // our counterparty receives an HTLC which has *our* risk threshold met on it,
3251 // but there is no need to do that, and since we're a bit conservative with our
3252 // risk threshold it just results in failing to forward payments.
3253 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
3254 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
3260 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3261 if let Some(chan_update) = chan_update {
3262 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3263 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3265 else if code == 0x1000 | 13 {
3266 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3268 else if code == 0x1000 | 20 {
3269 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3270 0u16.write(&mut res).expect("Writes cannot fail");
3272 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3273 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3274 chan_update.write(&mut res).expect("Writes cannot fail");
3275 } else if code & 0x1000 == 0x1000 {
3276 // If we're trying to return an error that requires a `channel_update` but
3277 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3278 // generate an update), just use the generic "temporary_node_failure"
3282 return_err!(err, code, &res.0[..]);
3284 Ok((next_hop, shared_secret, next_packet_pk_opt))
3287 fn construct_pending_htlc_status<'a>(
3288 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3289 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3290 ) -> PendingHTLCStatus {
3291 macro_rules! return_err {
3292 ($msg: expr, $err_code: expr, $data: expr) => {
3294 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3295 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3296 channel_id: msg.channel_id,
3297 htlc_id: msg.htlc_id,
3298 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3299 .get_encrypted_failure_packet(&shared_secret, &None),
3305 onion_utils::Hop::Receive(next_hop_data) => {
3307 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3308 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat)
3311 // Note that we could obviously respond immediately with an update_fulfill_htlc
3312 // message, however that would leak that we are the recipient of this payment, so
3313 // instead we stay symmetric with the forwarding case, only responding (after a
3314 // delay) once they've send us a commitment_signed!
3315 PendingHTLCStatus::Forward(info)
3317 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3320 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3321 match self.construct_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3322 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3323 Ok(info) => PendingHTLCStatus::Forward(info),
3324 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3330 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3331 /// public, and thus should be called whenever the result is going to be passed out in a
3332 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3334 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3335 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3336 /// storage and the `peer_state` lock has been dropped.
3338 /// [`channel_update`]: msgs::ChannelUpdate
3339 /// [`internal_closing_signed`]: Self::internal_closing_signed
3340 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3341 if !chan.context.should_announce() {
3342 return Err(LightningError {
3343 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3344 action: msgs::ErrorAction::IgnoreError
3347 if chan.context.get_short_channel_id().is_none() {
3348 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3350 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3351 self.get_channel_update_for_unicast(chan)
3354 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3355 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3356 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3357 /// provided evidence that they know about the existence of the channel.
3359 /// Note that through [`internal_closing_signed`], this function is called without the
3360 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3361 /// removed from the storage and the `peer_state` lock has been dropped.
3363 /// [`channel_update`]: msgs::ChannelUpdate
3364 /// [`internal_closing_signed`]: Self::internal_closing_signed
3365 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3366 log_trace!(self.logger, "Attempting to generate channel update for channel {}", &chan.context.channel_id());
3367 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3368 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3372 self.get_channel_update_for_onion(short_channel_id, chan)
3375 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3376 log_trace!(self.logger, "Generating channel update for channel {}", &chan.context.channel_id());
3377 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3379 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3380 ChannelUpdateStatus::Enabled => true,
3381 ChannelUpdateStatus::DisabledStaged(_) => true,
3382 ChannelUpdateStatus::Disabled => false,
3383 ChannelUpdateStatus::EnabledStaged(_) => false,
3386 let unsigned = msgs::UnsignedChannelUpdate {
3387 chain_hash: self.chain_hash,
3389 timestamp: chan.context.get_update_time_counter(),
3390 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3391 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3392 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3393 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3394 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3395 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3396 excess_data: Vec::new(),
3398 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3399 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3400 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3402 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3404 Ok(msgs::ChannelUpdate {
3411 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3412 let _lck = self.total_consistency_lock.read().unwrap();
3413 self.send_payment_along_path(SendAlongPathArgs {
3414 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3419 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3420 let SendAlongPathArgs {
3421 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3424 // The top-level caller should hold the total_consistency_lock read lock.
3425 debug_assert!(self.total_consistency_lock.try_write().is_err());
3427 log_trace!(self.logger,
3428 "Attempting to send payment with payment hash {} along path with next hop {}",
3429 payment_hash, path.hops.first().unwrap().short_channel_id);
3430 let prng_seed = self.entropy_source.get_secure_random_bytes();
3431 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3433 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
3434 .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
3435 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
3437 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash)
3438 .map_err(|_| APIError::InvalidRoute { err: "Route size too large considering onion data".to_owned()})?;
3440 let err: Result<(), _> = loop {
3441 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3442 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3443 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3446 let per_peer_state = self.per_peer_state.read().unwrap();
3447 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3448 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3449 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3450 let peer_state = &mut *peer_state_lock;
3451 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3452 match chan_phase_entry.get_mut() {
3453 ChannelPhase::Funded(chan) => {
3454 if !chan.context.is_live() {
3455 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3457 let funding_txo = chan.context.get_funding_txo().unwrap();
3458 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3459 htlc_cltv, HTLCSource::OutboundRoute {
3461 session_priv: session_priv.clone(),
3462 first_hop_htlc_msat: htlc_msat,
3464 }, onion_packet, None, &self.fee_estimator, &self.logger);
3465 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3466 Some(monitor_update) => {
3467 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3469 // Note that MonitorUpdateInProgress here indicates (per function
3470 // docs) that we will resend the commitment update once monitor
3471 // updating completes. Therefore, we must return an error
3472 // indicating that it is unsafe to retry the payment wholesale,
3473 // which we do in the send_payment check for
3474 // MonitorUpdateInProgress, below.
3475 return Err(APIError::MonitorUpdateInProgress);
3483 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3486 // The channel was likely removed after we fetched the id from the
3487 // `short_to_chan_info` map, but before we successfully locked the
3488 // `channel_by_id` map.
3489 // This can occur as no consistency guarantees exists between the two maps.
3490 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3495 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3496 Ok(_) => unreachable!(),
3498 Err(APIError::ChannelUnavailable { err: e.err })
3503 /// Sends a payment along a given route.
3505 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3506 /// fields for more info.
3508 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3509 /// [`PeerManager::process_events`]).
3511 /// # Avoiding Duplicate Payments
3513 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3514 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3515 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3516 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3517 /// second payment with the same [`PaymentId`].
3519 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3520 /// tracking of payments, including state to indicate once a payment has completed. Because you
3521 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3522 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3523 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3525 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3526 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3527 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3528 /// [`ChannelManager::list_recent_payments`] for more information.
3530 /// # Possible Error States on [`PaymentSendFailure`]
3532 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3533 /// each entry matching the corresponding-index entry in the route paths, see
3534 /// [`PaymentSendFailure`] for more info.
3536 /// In general, a path may raise:
3537 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3538 /// node public key) is specified.
3539 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3540 /// closed, doesn't exist, or the peer is currently disconnected.
3541 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3542 /// relevant updates.
3544 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3545 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3546 /// different route unless you intend to pay twice!
3548 /// [`RouteHop`]: crate::routing::router::RouteHop
3549 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3550 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3551 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3552 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3553 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3554 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3555 let best_block_height = self.best_block.read().unwrap().height();
3556 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3557 self.pending_outbound_payments
3558 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3559 &self.entropy_source, &self.node_signer, best_block_height,
3560 |args| self.send_payment_along_path(args))
3563 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3564 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3565 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3566 let best_block_height = self.best_block.read().unwrap().height();
3567 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3568 self.pending_outbound_payments
3569 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3570 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3571 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3572 &self.pending_events, |args| self.send_payment_along_path(args))
3576 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3577 let best_block_height = self.best_block.read().unwrap().height();
3578 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3579 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3580 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3581 best_block_height, |args| self.send_payment_along_path(args))
3585 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3586 let best_block_height = self.best_block.read().unwrap().height();
3587 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3591 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3592 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3595 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3596 let best_block_height = self.best_block.read().unwrap().height();
3597 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3598 self.pending_outbound_payments
3599 .send_payment_for_bolt12_invoice(
3600 invoice, payment_id, &self.router, self.list_usable_channels(),
3601 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3602 best_block_height, &self.logger, &self.pending_events,
3603 |args| self.send_payment_along_path(args)
3607 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3608 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3609 /// retries are exhausted.
3611 /// # Event Generation
3613 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3614 /// as there are no remaining pending HTLCs for this payment.
3616 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3617 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3618 /// determine the ultimate status of a payment.
3620 /// # Requested Invoices
3622 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3623 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3624 /// and prevent any attempts at paying it once received. The other events may only be generated
3625 /// once the invoice has been received.
3627 /// # Restart Behavior
3629 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3630 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3631 /// [`Event::InvoiceRequestFailed`].
3633 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3634 pub fn abandon_payment(&self, payment_id: PaymentId) {
3635 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3636 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3639 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3640 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3641 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3642 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3643 /// never reach the recipient.
3645 /// See [`send_payment`] documentation for more details on the return value of this function
3646 /// and idempotency guarantees provided by the [`PaymentId`] key.
3648 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3649 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3651 /// [`send_payment`]: Self::send_payment
3652 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3653 let best_block_height = self.best_block.read().unwrap().height();
3654 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3655 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3656 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3657 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3660 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3661 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3663 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3666 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3667 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3668 let best_block_height = self.best_block.read().unwrap().height();
3669 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3670 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3671 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3672 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3673 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3676 /// Send a payment that is probing the given route for liquidity. We calculate the
3677 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3678 /// us to easily discern them from real payments.
3679 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3680 let best_block_height = self.best_block.read().unwrap().height();
3681 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3682 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3683 &self.entropy_source, &self.node_signer, best_block_height,
3684 |args| self.send_payment_along_path(args))
3687 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3690 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3691 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3694 /// Sends payment probes over all paths of a route that would be used to pay the given
3695 /// amount to the given `node_id`.
3697 /// See [`ChannelManager::send_preflight_probes`] for more information.
3698 pub fn send_spontaneous_preflight_probes(
3699 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3700 liquidity_limit_multiplier: Option<u64>,
3701 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3702 let payment_params =
3703 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3705 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3707 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3710 /// Sends payment probes over all paths of a route that would be used to pay a route found
3711 /// according to the given [`RouteParameters`].
3713 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3714 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3715 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3716 /// confirmation in a wallet UI.
3718 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3719 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3720 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3721 /// payment. To mitigate this issue, channels with available liquidity less than the required
3722 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3723 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3724 pub fn send_preflight_probes(
3725 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3726 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3727 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3729 let payer = self.get_our_node_id();
3730 let usable_channels = self.list_usable_channels();
3731 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3732 let inflight_htlcs = self.compute_inflight_htlcs();
3736 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3738 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3739 ProbeSendFailure::RouteNotFound
3742 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3744 let mut res = Vec::new();
3746 for mut path in route.paths {
3747 // If the last hop is probably an unannounced channel we refrain from probing all the
3748 // way through to the end and instead probe up to the second-to-last channel.
3749 while let Some(last_path_hop) = path.hops.last() {
3750 if last_path_hop.maybe_announced_channel {
3751 // We found a potentially announced last hop.
3754 // Drop the last hop, as it's likely unannounced.
3757 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3758 last_path_hop.short_channel_id
3760 let final_value_msat = path.final_value_msat();
3762 if let Some(new_last) = path.hops.last_mut() {
3763 new_last.fee_msat += final_value_msat;
3768 if path.hops.len() < 2 {
3771 "Skipped sending payment probe over path with less than two hops."
3776 if let Some(first_path_hop) = path.hops.first() {
3777 if let Some(first_hop) = first_hops.iter().find(|h| {
3778 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3780 let path_value = path.final_value_msat() + path.fee_msat();
3781 let used_liquidity =
3782 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3784 if first_hop.next_outbound_htlc_limit_msat
3785 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3787 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3790 *used_liquidity += path_value;
3795 res.push(self.send_probe(path).map_err(|e| {
3796 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3797 ProbeSendFailure::SendingFailed(e)
3804 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3805 /// which checks the correctness of the funding transaction given the associated channel.
3806 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3807 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3808 mut find_funding_output: FundingOutput,
3809 ) -> Result<(), APIError> {
3810 let per_peer_state = self.per_peer_state.read().unwrap();
3811 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3812 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3814 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3815 let peer_state = &mut *peer_state_lock;
3816 let (chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3817 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3818 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3820 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &self.logger)
3821 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3822 let channel_id = chan.context.channel_id();
3823 let user_id = chan.context.get_user_id();
3824 let shutdown_res = chan.context.force_shutdown(false);
3825 let channel_capacity = chan.context.get_value_satoshis();
3826 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3827 } else { unreachable!(); });
3829 Ok((chan, funding_msg)) => (chan, funding_msg),
3830 Err((chan, err)) => {
3831 mem::drop(peer_state_lock);
3832 mem::drop(per_peer_state);
3834 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3835 return Err(APIError::ChannelUnavailable {
3836 err: "Signer refused to sign the initial commitment transaction".to_owned()
3842 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3843 return Err(APIError::APIMisuseError {
3845 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3846 temporary_channel_id, counterparty_node_id),
3849 None => return Err(APIError::ChannelUnavailable {err: format!(
3850 "Channel with id {} not found for the passed counterparty node_id {}",
3851 temporary_channel_id, counterparty_node_id),
3855 if let Some(msg) = msg_opt {
3856 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3857 node_id: chan.context.get_counterparty_node_id(),
3861 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3862 hash_map::Entry::Occupied(_) => {
3863 panic!("Generated duplicate funding txid?");
3865 hash_map::Entry::Vacant(e) => {
3866 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3867 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3868 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3870 e.insert(ChannelPhase::Funded(chan));
3877 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3878 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3879 Ok(OutPoint { txid: tx.txid(), index: output_index })
3883 /// Call this upon creation of a funding transaction for the given channel.
3885 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3886 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3888 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3889 /// across the p2p network.
3891 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3892 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3894 /// May panic if the output found in the funding transaction is duplicative with some other
3895 /// channel (note that this should be trivially prevented by using unique funding transaction
3896 /// keys per-channel).
3898 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3899 /// counterparty's signature the funding transaction will automatically be broadcast via the
3900 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3902 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3903 /// not currently support replacing a funding transaction on an existing channel. Instead,
3904 /// create a new channel with a conflicting funding transaction.
3906 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3907 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3908 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3909 /// for more details.
3911 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3912 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3913 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3914 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3917 /// Call this upon creation of a batch funding transaction for the given channels.
3919 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3920 /// each individual channel and transaction output.
3922 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3923 /// will only be broadcast when we have safely received and persisted the counterparty's
3924 /// signature for each channel.
3926 /// If there is an error, all channels in the batch are to be considered closed.
3927 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3928 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3929 let mut result = Ok(());
3931 if !funding_transaction.is_coin_base() {
3932 for inp in funding_transaction.input.iter() {
3933 if inp.witness.is_empty() {
3934 result = result.and(Err(APIError::APIMisuseError {
3935 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3940 if funding_transaction.output.len() > u16::max_value() as usize {
3941 result = result.and(Err(APIError::APIMisuseError {
3942 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3946 let height = self.best_block.read().unwrap().height();
3947 // Transactions are evaluated as final by network mempools if their locktime is strictly
3948 // lower than the next block height. However, the modules constituting our Lightning
3949 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3950 // module is ahead of LDK, only allow one more block of headroom.
3951 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3952 result = result.and(Err(APIError::APIMisuseError {
3953 err: "Funding transaction absolute timelock is non-final".to_owned()
3958 let txid = funding_transaction.txid();
3959 let is_batch_funding = temporary_channels.len() > 1;
3960 let mut funding_batch_states = if is_batch_funding {
3961 Some(self.funding_batch_states.lock().unwrap())
3965 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3966 match states.entry(txid) {
3967 btree_map::Entry::Occupied(_) => {
3968 result = result.clone().and(Err(APIError::APIMisuseError {
3969 err: "Batch funding transaction with the same txid already exists".to_owned()
3973 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3976 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3977 result = result.and_then(|_| self.funding_transaction_generated_intern(
3978 temporary_channel_id,
3979 counterparty_node_id,
3980 funding_transaction.clone(),
3983 let mut output_index = None;
3984 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3985 for (idx, outp) in tx.output.iter().enumerate() {
3986 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3987 if output_index.is_some() {
3988 return Err(APIError::APIMisuseError {
3989 err: "Multiple outputs matched the expected script and value".to_owned()
3992 output_index = Some(idx as u16);
3995 if output_index.is_none() {
3996 return Err(APIError::APIMisuseError {
3997 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
4000 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
4001 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4002 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
4008 if let Err(ref e) = result {
4009 // Remaining channels need to be removed on any error.
4010 let e = format!("Error in transaction funding: {:?}", e);
4011 let mut channels_to_remove = Vec::new();
4012 channels_to_remove.extend(funding_batch_states.as_mut()
4013 .and_then(|states| states.remove(&txid))
4014 .into_iter().flatten()
4015 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4017 channels_to_remove.extend(temporary_channels.iter()
4018 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4020 let mut shutdown_results = Vec::new();
4022 let per_peer_state = self.per_peer_state.read().unwrap();
4023 for (channel_id, counterparty_node_id) in channels_to_remove {
4024 per_peer_state.get(&counterparty_node_id)
4025 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4026 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
4028 update_maps_on_chan_removal!(self, &chan.context());
4029 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
4030 shutdown_results.push(chan.context_mut().force_shutdown(false));
4034 for shutdown_result in shutdown_results.drain(..) {
4035 self.finish_close_channel(shutdown_result);
4041 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4043 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4044 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4045 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4046 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4048 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4049 /// `counterparty_node_id` is provided.
4051 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4052 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4054 /// If an error is returned, none of the updates should be considered applied.
4056 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4057 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4058 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4059 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4060 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4061 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4062 /// [`APIMisuseError`]: APIError::APIMisuseError
4063 pub fn update_partial_channel_config(
4064 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4065 ) -> Result<(), APIError> {
4066 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4067 return Err(APIError::APIMisuseError {
4068 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4072 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4073 let per_peer_state = self.per_peer_state.read().unwrap();
4074 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4075 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4076 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4077 let peer_state = &mut *peer_state_lock;
4078 for channel_id in channel_ids {
4079 if !peer_state.has_channel(channel_id) {
4080 return Err(APIError::ChannelUnavailable {
4081 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4085 for channel_id in channel_ids {
4086 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4087 let mut config = channel_phase.context().config();
4088 config.apply(config_update);
4089 if !channel_phase.context_mut().update_config(&config) {
4092 if let ChannelPhase::Funded(channel) = channel_phase {
4093 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4094 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4095 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4096 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4097 node_id: channel.context.get_counterparty_node_id(),
4104 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4105 debug_assert!(false);
4106 return Err(APIError::ChannelUnavailable {
4108 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4109 channel_id, counterparty_node_id),
4116 /// Atomically updates the [`ChannelConfig`] for the given channels.
4118 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4119 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4120 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4121 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4123 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4124 /// `counterparty_node_id` is provided.
4126 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4127 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4129 /// If an error is returned, none of the updates should be considered applied.
4131 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4132 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4133 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4134 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4135 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4136 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4137 /// [`APIMisuseError`]: APIError::APIMisuseError
4138 pub fn update_channel_config(
4139 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4140 ) -> Result<(), APIError> {
4141 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4144 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4145 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4147 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4148 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4150 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4151 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4152 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4153 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4154 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4156 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4157 /// you from forwarding more than you received. See
4158 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4161 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4164 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4165 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4166 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4167 // TODO: when we move to deciding the best outbound channel at forward time, only take
4168 // `next_node_id` and not `next_hop_channel_id`
4169 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4170 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4172 let next_hop_scid = {
4173 let peer_state_lock = self.per_peer_state.read().unwrap();
4174 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4175 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4176 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4177 let peer_state = &mut *peer_state_lock;
4178 match peer_state.channel_by_id.get(next_hop_channel_id) {
4179 Some(ChannelPhase::Funded(chan)) => {
4180 if !chan.context.is_usable() {
4181 return Err(APIError::ChannelUnavailable {
4182 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4185 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4187 Some(_) => return Err(APIError::ChannelUnavailable {
4188 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4189 next_hop_channel_id, next_node_id)
4191 None => return Err(APIError::ChannelUnavailable {
4192 err: format!("Channel with id {} not found for the passed counterparty node_id {}",
4193 next_hop_channel_id, next_node_id)
4198 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4199 .ok_or_else(|| APIError::APIMisuseError {
4200 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4203 let routing = match payment.forward_info.routing {
4204 PendingHTLCRouting::Forward { onion_packet, .. } => {
4205 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
4207 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4209 let skimmed_fee_msat =
4210 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4211 let pending_htlc_info = PendingHTLCInfo {
4212 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4213 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4216 let mut per_source_pending_forward = [(
4217 payment.prev_short_channel_id,
4218 payment.prev_funding_outpoint,
4219 payment.prev_user_channel_id,
4220 vec![(pending_htlc_info, payment.prev_htlc_id)]
4222 self.forward_htlcs(&mut per_source_pending_forward);
4226 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4227 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4229 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4232 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4233 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4234 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4236 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4237 .ok_or_else(|| APIError::APIMisuseError {
4238 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4241 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4242 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4243 short_channel_id: payment.prev_short_channel_id,
4244 user_channel_id: Some(payment.prev_user_channel_id),
4245 outpoint: payment.prev_funding_outpoint,
4246 htlc_id: payment.prev_htlc_id,
4247 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4248 phantom_shared_secret: None,
4251 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4252 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4253 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4254 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4259 /// Processes HTLCs which are pending waiting on random forward delay.
4261 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4262 /// Will likely generate further events.
4263 pub fn process_pending_htlc_forwards(&self) {
4264 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4266 let mut new_events = VecDeque::new();
4267 let mut failed_forwards = Vec::new();
4268 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4270 let mut forward_htlcs = HashMap::new();
4271 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4273 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4274 if short_chan_id != 0 {
4275 macro_rules! forwarding_channel_not_found {
4277 for forward_info in pending_forwards.drain(..) {
4278 match forward_info {
4279 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4280 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4281 forward_info: PendingHTLCInfo {
4282 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4283 outgoing_cltv_value, ..
4286 macro_rules! failure_handler {
4287 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4288 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4290 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4291 short_channel_id: prev_short_channel_id,
4292 user_channel_id: Some(prev_user_channel_id),
4293 outpoint: prev_funding_outpoint,
4294 htlc_id: prev_htlc_id,
4295 incoming_packet_shared_secret: incoming_shared_secret,
4296 phantom_shared_secret: $phantom_ss,
4299 let reason = if $next_hop_unknown {
4300 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4302 HTLCDestination::FailedPayment{ payment_hash }
4305 failed_forwards.push((htlc_source, payment_hash,
4306 HTLCFailReason::reason($err_code, $err_data),
4312 macro_rules! fail_forward {
4313 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4315 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4319 macro_rules! failed_payment {
4320 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4322 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4326 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
4327 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4328 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4329 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4330 let next_hop = match onion_utils::decode_next_payment_hop(
4331 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4332 payment_hash, &self.node_signer
4335 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4336 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
4337 // In this scenario, the phantom would have sent us an
4338 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4339 // if it came from us (the second-to-last hop) but contains the sha256
4341 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4343 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4344 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4348 onion_utils::Hop::Receive(hop_data) => {
4349 match self.construct_recv_pending_htlc_info(hop_data,
4350 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4351 outgoing_cltv_value, Some(phantom_shared_secret), false, None)
4353 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4354 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4360 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4363 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4366 HTLCForwardInfo::FailHTLC { .. } => {
4367 // Channel went away before we could fail it. This implies
4368 // the channel is now on chain and our counterparty is
4369 // trying to broadcast the HTLC-Timeout, but that's their
4370 // problem, not ours.
4376 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4377 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4378 Some((cp_id, chan_id)) => (cp_id, chan_id),
4380 forwarding_channel_not_found!();
4384 let per_peer_state = self.per_peer_state.read().unwrap();
4385 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4386 if peer_state_mutex_opt.is_none() {
4387 forwarding_channel_not_found!();
4390 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4391 let peer_state = &mut *peer_state_lock;
4392 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4393 for forward_info in pending_forwards.drain(..) {
4394 match forward_info {
4395 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4396 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4397 forward_info: PendingHTLCInfo {
4398 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4399 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
4402 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4403 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4404 short_channel_id: prev_short_channel_id,
4405 user_channel_id: Some(prev_user_channel_id),
4406 outpoint: prev_funding_outpoint,
4407 htlc_id: prev_htlc_id,
4408 incoming_packet_shared_secret: incoming_shared_secret,
4409 // Phantom payments are only PendingHTLCRouting::Receive.
4410 phantom_shared_secret: None,
4412 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4413 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4414 onion_packet, skimmed_fee_msat, &self.fee_estimator,
4417 if let ChannelError::Ignore(msg) = e {
4418 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4420 panic!("Stated return value requirements in send_htlc() were not met");
4422 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4423 failed_forwards.push((htlc_source, payment_hash,
4424 HTLCFailReason::reason(failure_code, data),
4425 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4430 HTLCForwardInfo::AddHTLC { .. } => {
4431 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4433 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4434 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4435 if let Err(e) = chan.queue_fail_htlc(
4436 htlc_id, err_packet, &self.logger
4438 if let ChannelError::Ignore(msg) = e {
4439 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4441 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4443 // fail-backs are best-effort, we probably already have one
4444 // pending, and if not that's OK, if not, the channel is on
4445 // the chain and sending the HTLC-Timeout is their problem.
4452 forwarding_channel_not_found!();
4456 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4457 match forward_info {
4458 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4459 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4460 forward_info: PendingHTLCInfo {
4461 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4462 skimmed_fee_msat, ..
4465 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4466 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4467 let _legacy_hop_data = Some(payment_data.clone());
4468 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4469 payment_metadata, custom_tlvs };
4470 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4471 Some(payment_data), phantom_shared_secret, onion_fields)
4473 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4474 let onion_fields = RecipientOnionFields {
4475 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4479 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4480 payment_data, None, onion_fields)
4483 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4486 let claimable_htlc = ClaimableHTLC {
4487 prev_hop: HTLCPreviousHopData {
4488 short_channel_id: prev_short_channel_id,
4489 user_channel_id: Some(prev_user_channel_id),
4490 outpoint: prev_funding_outpoint,
4491 htlc_id: prev_htlc_id,
4492 incoming_packet_shared_secret: incoming_shared_secret,
4493 phantom_shared_secret,
4495 // We differentiate the received value from the sender intended value
4496 // if possible so that we don't prematurely mark MPP payments complete
4497 // if routing nodes overpay
4498 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4499 sender_intended_value: outgoing_amt_msat,
4501 total_value_received: None,
4502 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4505 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4508 let mut committed_to_claimable = false;
4510 macro_rules! fail_htlc {
4511 ($htlc: expr, $payment_hash: expr) => {
4512 debug_assert!(!committed_to_claimable);
4513 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4514 htlc_msat_height_data.extend_from_slice(
4515 &self.best_block.read().unwrap().height().to_be_bytes(),
4517 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4518 short_channel_id: $htlc.prev_hop.short_channel_id,
4519 user_channel_id: $htlc.prev_hop.user_channel_id,
4520 outpoint: prev_funding_outpoint,
4521 htlc_id: $htlc.prev_hop.htlc_id,
4522 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4523 phantom_shared_secret,
4525 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4526 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4528 continue 'next_forwardable_htlc;
4531 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4532 let mut receiver_node_id = self.our_network_pubkey;
4533 if phantom_shared_secret.is_some() {
4534 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4535 .expect("Failed to get node_id for phantom node recipient");
4538 macro_rules! check_total_value {
4539 ($purpose: expr) => {{
4540 let mut payment_claimable_generated = false;
4541 let is_keysend = match $purpose {
4542 events::PaymentPurpose::SpontaneousPayment(_) => true,
4543 events::PaymentPurpose::InvoicePayment { .. } => false,
4545 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4546 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4547 fail_htlc!(claimable_htlc, payment_hash);
4549 let ref mut claimable_payment = claimable_payments.claimable_payments
4550 .entry(payment_hash)
4551 // Note that if we insert here we MUST NOT fail_htlc!()
4552 .or_insert_with(|| {
4553 committed_to_claimable = true;
4555 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4558 if $purpose != claimable_payment.purpose {
4559 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4560 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4561 fail_htlc!(claimable_htlc, payment_hash);
4563 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4564 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4565 fail_htlc!(claimable_htlc, payment_hash);
4567 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4568 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4569 fail_htlc!(claimable_htlc, payment_hash);
4572 claimable_payment.onion_fields = Some(onion_fields);
4574 let ref mut htlcs = &mut claimable_payment.htlcs;
4575 let mut total_value = claimable_htlc.sender_intended_value;
4576 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4577 for htlc in htlcs.iter() {
4578 total_value += htlc.sender_intended_value;
4579 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4580 if htlc.total_msat != claimable_htlc.total_msat {
4581 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4582 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4583 total_value = msgs::MAX_VALUE_MSAT;
4585 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4587 // The condition determining whether an MPP is complete must
4588 // match exactly the condition used in `timer_tick_occurred`
4589 if total_value >= msgs::MAX_VALUE_MSAT {
4590 fail_htlc!(claimable_htlc, payment_hash);
4591 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4592 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4594 fail_htlc!(claimable_htlc, payment_hash);
4595 } else if total_value >= claimable_htlc.total_msat {
4596 #[allow(unused_assignments)] {
4597 committed_to_claimable = true;
4599 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4600 htlcs.push(claimable_htlc);
4601 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4602 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4603 let counterparty_skimmed_fee_msat = htlcs.iter()
4604 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4605 debug_assert!(total_value.saturating_sub(amount_msat) <=
4606 counterparty_skimmed_fee_msat);
4607 new_events.push_back((events::Event::PaymentClaimable {
4608 receiver_node_id: Some(receiver_node_id),
4612 counterparty_skimmed_fee_msat,
4613 via_channel_id: Some(prev_channel_id),
4614 via_user_channel_id: Some(prev_user_channel_id),
4615 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4616 onion_fields: claimable_payment.onion_fields.clone(),
4618 payment_claimable_generated = true;
4620 // Nothing to do - we haven't reached the total
4621 // payment value yet, wait until we receive more
4623 htlcs.push(claimable_htlc);
4624 #[allow(unused_assignments)] {
4625 committed_to_claimable = true;
4628 payment_claimable_generated
4632 // Check that the payment hash and secret are known. Note that we
4633 // MUST take care to handle the "unknown payment hash" and
4634 // "incorrect payment secret" cases here identically or we'd expose
4635 // that we are the ultimate recipient of the given payment hash.
4636 // Further, we must not expose whether we have any other HTLCs
4637 // associated with the same payment_hash pending or not.
4638 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4639 match payment_secrets.entry(payment_hash) {
4640 hash_map::Entry::Vacant(_) => {
4641 match claimable_htlc.onion_payload {
4642 OnionPayload::Invoice { .. } => {
4643 let payment_data = payment_data.unwrap();
4644 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4645 Ok(result) => result,
4647 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4648 fail_htlc!(claimable_htlc, payment_hash);
4651 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4652 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4653 if (cltv_expiry as u64) < expected_min_expiry_height {
4654 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4655 &payment_hash, cltv_expiry, expected_min_expiry_height);
4656 fail_htlc!(claimable_htlc, payment_hash);
4659 let purpose = events::PaymentPurpose::InvoicePayment {
4660 payment_preimage: payment_preimage.clone(),
4661 payment_secret: payment_data.payment_secret,
4663 check_total_value!(purpose);
4665 OnionPayload::Spontaneous(preimage) => {
4666 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4667 check_total_value!(purpose);
4671 hash_map::Entry::Occupied(inbound_payment) => {
4672 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4673 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4674 fail_htlc!(claimable_htlc, payment_hash);
4676 let payment_data = payment_data.unwrap();
4677 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4678 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4679 fail_htlc!(claimable_htlc, payment_hash);
4680 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4681 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4682 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4683 fail_htlc!(claimable_htlc, payment_hash);
4685 let purpose = events::PaymentPurpose::InvoicePayment {
4686 payment_preimage: inbound_payment.get().payment_preimage,
4687 payment_secret: payment_data.payment_secret,
4689 let payment_claimable_generated = check_total_value!(purpose);
4690 if payment_claimable_generated {
4691 inbound_payment.remove_entry();
4697 HTLCForwardInfo::FailHTLC { .. } => {
4698 panic!("Got pending fail of our own HTLC");
4706 let best_block_height = self.best_block.read().unwrap().height();
4707 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4708 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4709 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4711 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4712 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4714 self.forward_htlcs(&mut phantom_receives);
4716 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4717 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4718 // nice to do the work now if we can rather than while we're trying to get messages in the
4720 self.check_free_holding_cells();
4722 if new_events.is_empty() { return }
4723 let mut events = self.pending_events.lock().unwrap();
4724 events.append(&mut new_events);
4727 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4729 /// Expects the caller to have a total_consistency_lock read lock.
4730 fn process_background_events(&self) -> NotifyOption {
4731 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4733 self.background_events_processed_since_startup.store(true, Ordering::Release);
4735 let mut background_events = Vec::new();
4736 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4737 if background_events.is_empty() {
4738 return NotifyOption::SkipPersistNoEvents;
4741 for event in background_events.drain(..) {
4743 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4744 // The channel has already been closed, so no use bothering to care about the
4745 // monitor updating completing.
4746 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4748 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4749 let mut updated_chan = false;
4751 let per_peer_state = self.per_peer_state.read().unwrap();
4752 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4753 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4754 let peer_state = &mut *peer_state_lock;
4755 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4756 hash_map::Entry::Occupied(mut chan_phase) => {
4757 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4758 updated_chan = true;
4759 handle_new_monitor_update!(self, funding_txo, update.clone(),
4760 peer_state_lock, peer_state, per_peer_state, chan);
4762 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4765 hash_map::Entry::Vacant(_) => {},
4770 // TODO: Track this as in-flight even though the channel is closed.
4771 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4774 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4775 let per_peer_state = self.per_peer_state.read().unwrap();
4776 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4777 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4778 let peer_state = &mut *peer_state_lock;
4779 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4780 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4782 let update_actions = peer_state.monitor_update_blocked_actions
4783 .remove(&channel_id).unwrap_or(Vec::new());
4784 mem::drop(peer_state_lock);
4785 mem::drop(per_peer_state);
4786 self.handle_monitor_update_completion_actions(update_actions);
4792 NotifyOption::DoPersist
4795 #[cfg(any(test, feature = "_test_utils"))]
4796 /// Process background events, for functional testing
4797 pub fn test_process_background_events(&self) {
4798 let _lck = self.total_consistency_lock.read().unwrap();
4799 let _ = self.process_background_events();
4802 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4803 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4804 // If the feerate has decreased by less than half, don't bother
4805 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4806 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4807 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4808 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4810 return NotifyOption::SkipPersistNoEvents;
4812 if !chan.context.is_live() {
4813 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4814 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4815 return NotifyOption::SkipPersistNoEvents;
4817 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4818 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4820 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4821 NotifyOption::DoPersist
4825 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4826 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4827 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4828 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4829 pub fn maybe_update_chan_fees(&self) {
4830 PersistenceNotifierGuard::optionally_notify(self, || {
4831 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4833 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4834 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4836 let per_peer_state = self.per_peer_state.read().unwrap();
4837 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4838 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4839 let peer_state = &mut *peer_state_lock;
4840 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4841 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4843 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4848 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4849 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4857 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4859 /// This currently includes:
4860 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4861 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4862 /// than a minute, informing the network that they should no longer attempt to route over
4864 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4865 /// with the current [`ChannelConfig`].
4866 /// * Removing peers which have disconnected but and no longer have any channels.
4867 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4868 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4869 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4870 /// The latter is determined using the system clock in `std` and the highest seen block time
4871 /// minus two hours in `no-std`.
4873 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4874 /// estimate fetches.
4876 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4877 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4878 pub fn timer_tick_occurred(&self) {
4879 PersistenceNotifierGuard::optionally_notify(self, || {
4880 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4882 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4883 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4885 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4886 let mut timed_out_mpp_htlcs = Vec::new();
4887 let mut pending_peers_awaiting_removal = Vec::new();
4888 let mut shutdown_channels = Vec::new();
4890 let mut process_unfunded_channel_tick = |
4891 chan_id: &ChannelId,
4892 context: &mut ChannelContext<SP>,
4893 unfunded_context: &mut UnfundedChannelContext,
4894 pending_msg_events: &mut Vec<MessageSendEvent>,
4895 counterparty_node_id: PublicKey,
4897 context.maybe_expire_prev_config();
4898 if unfunded_context.should_expire_unfunded_channel() {
4899 log_error!(self.logger,
4900 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4901 update_maps_on_chan_removal!(self, &context);
4902 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4903 shutdown_channels.push(context.force_shutdown(false));
4904 pending_msg_events.push(MessageSendEvent::HandleError {
4905 node_id: counterparty_node_id,
4906 action: msgs::ErrorAction::SendErrorMessage {
4907 msg: msgs::ErrorMessage {
4908 channel_id: *chan_id,
4909 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4920 let per_peer_state = self.per_peer_state.read().unwrap();
4921 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4922 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4923 let peer_state = &mut *peer_state_lock;
4924 let pending_msg_events = &mut peer_state.pending_msg_events;
4925 let counterparty_node_id = *counterparty_node_id;
4926 peer_state.channel_by_id.retain(|chan_id, phase| {
4928 ChannelPhase::Funded(chan) => {
4929 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4934 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4935 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4937 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4938 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4939 handle_errors.push((Err(err), counterparty_node_id));
4940 if needs_close { return false; }
4943 match chan.channel_update_status() {
4944 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4945 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4946 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4947 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4948 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4949 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4950 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4952 if n >= DISABLE_GOSSIP_TICKS {
4953 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4954 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4955 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4959 should_persist = NotifyOption::DoPersist;
4961 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4964 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4966 if n >= ENABLE_GOSSIP_TICKS {
4967 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4968 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4969 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4973 should_persist = NotifyOption::DoPersist;
4975 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4981 chan.context.maybe_expire_prev_config();
4983 if chan.should_disconnect_peer_awaiting_response() {
4984 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4985 counterparty_node_id, chan_id);
4986 pending_msg_events.push(MessageSendEvent::HandleError {
4987 node_id: counterparty_node_id,
4988 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4989 msg: msgs::WarningMessage {
4990 channel_id: *chan_id,
4991 data: "Disconnecting due to timeout awaiting response".to_owned(),
4999 ChannelPhase::UnfundedInboundV1(chan) => {
5000 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5001 pending_msg_events, counterparty_node_id)
5003 ChannelPhase::UnfundedOutboundV1(chan) => {
5004 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5005 pending_msg_events, counterparty_node_id)
5010 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5011 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5012 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5013 peer_state.pending_msg_events.push(
5014 events::MessageSendEvent::HandleError {
5015 node_id: counterparty_node_id,
5016 action: msgs::ErrorAction::SendErrorMessage {
5017 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5023 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5025 if peer_state.ok_to_remove(true) {
5026 pending_peers_awaiting_removal.push(counterparty_node_id);
5031 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5032 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5033 // of to that peer is later closed while still being disconnected (i.e. force closed),
5034 // we therefore need to remove the peer from `peer_state` separately.
5035 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5036 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5037 // negative effects on parallelism as much as possible.
5038 if pending_peers_awaiting_removal.len() > 0 {
5039 let mut per_peer_state = self.per_peer_state.write().unwrap();
5040 for counterparty_node_id in pending_peers_awaiting_removal {
5041 match per_peer_state.entry(counterparty_node_id) {
5042 hash_map::Entry::Occupied(entry) => {
5043 // Remove the entry if the peer is still disconnected and we still
5044 // have no channels to the peer.
5045 let remove_entry = {
5046 let peer_state = entry.get().lock().unwrap();
5047 peer_state.ok_to_remove(true)
5050 entry.remove_entry();
5053 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5058 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5059 if payment.htlcs.is_empty() {
5060 // This should be unreachable
5061 debug_assert!(false);
5064 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5065 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5066 // In this case we're not going to handle any timeouts of the parts here.
5067 // This condition determining whether the MPP is complete here must match
5068 // exactly the condition used in `process_pending_htlc_forwards`.
5069 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5070 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5073 } else if payment.htlcs.iter_mut().any(|htlc| {
5074 htlc.timer_ticks += 1;
5075 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5077 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5078 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5085 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5086 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5087 let reason = HTLCFailReason::from_failure_code(23);
5088 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5089 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5092 for (err, counterparty_node_id) in handle_errors.drain(..) {
5093 let _ = handle_error!(self, err, counterparty_node_id);
5096 for shutdown_res in shutdown_channels {
5097 self.finish_close_channel(shutdown_res);
5100 #[cfg(feature = "std")]
5101 let duration_since_epoch = std::time::SystemTime::now()
5102 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5103 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5104 #[cfg(not(feature = "std"))]
5105 let duration_since_epoch = Duration::from_secs(
5106 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5109 self.pending_outbound_payments.remove_stale_payments(
5110 duration_since_epoch, &self.pending_events
5113 // Technically we don't need to do this here, but if we have holding cell entries in a
5114 // channel that need freeing, it's better to do that here and block a background task
5115 // than block the message queueing pipeline.
5116 if self.check_free_holding_cells() {
5117 should_persist = NotifyOption::DoPersist;
5124 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5125 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5126 /// along the path (including in our own channel on which we received it).
5128 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5129 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5130 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5131 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5133 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5134 /// [`ChannelManager::claim_funds`]), you should still monitor for
5135 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5136 /// startup during which time claims that were in-progress at shutdown may be replayed.
5137 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5138 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5141 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5142 /// reason for the failure.
5144 /// See [`FailureCode`] for valid failure codes.
5145 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5146 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5148 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5149 if let Some(payment) = removed_source {
5150 for htlc in payment.htlcs {
5151 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5152 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5153 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5154 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5159 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5160 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5161 match failure_code {
5162 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5163 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5164 FailureCode::IncorrectOrUnknownPaymentDetails => {
5165 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5166 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5167 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5169 FailureCode::InvalidOnionPayload(data) => {
5170 let fail_data = match data {
5171 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5174 HTLCFailReason::reason(failure_code.into(), fail_data)
5179 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5180 /// that we want to return and a channel.
5182 /// This is for failures on the channel on which the HTLC was *received*, not failures
5184 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5185 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5186 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5187 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5188 // an inbound SCID alias before the real SCID.
5189 let scid_pref = if chan.context.should_announce() {
5190 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5192 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5194 if let Some(scid) = scid_pref {
5195 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5197 (0x4000|10, Vec::new())
5202 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5203 /// that we want to return and a channel.
5204 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5205 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5206 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5207 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5208 if desired_err_code == 0x1000 | 20 {
5209 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5210 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5211 0u16.write(&mut enc).expect("Writes cannot fail");
5213 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5214 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5215 upd.write(&mut enc).expect("Writes cannot fail");
5216 (desired_err_code, enc.0)
5218 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5219 // which means we really shouldn't have gotten a payment to be forwarded over this
5220 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5221 // PERM|no_such_channel should be fine.
5222 (0x4000|10, Vec::new())
5226 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5227 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5228 // be surfaced to the user.
5229 fn fail_holding_cell_htlcs(
5230 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5231 counterparty_node_id: &PublicKey
5233 let (failure_code, onion_failure_data) = {
5234 let per_peer_state = self.per_peer_state.read().unwrap();
5235 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5236 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5237 let peer_state = &mut *peer_state_lock;
5238 match peer_state.channel_by_id.entry(channel_id) {
5239 hash_map::Entry::Occupied(chan_phase_entry) => {
5240 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5241 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5243 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5244 debug_assert!(false);
5245 (0x4000|10, Vec::new())
5248 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5250 } else { (0x4000|10, Vec::new()) }
5253 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5254 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5255 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5256 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5260 /// Fails an HTLC backwards to the sender of it to us.
5261 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5262 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5263 // Ensure that no peer state channel storage lock is held when calling this function.
5264 // This ensures that future code doesn't introduce a lock-order requirement for
5265 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5266 // this function with any `per_peer_state` peer lock acquired would.
5267 #[cfg(debug_assertions)]
5268 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5269 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5272 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5273 //identify whether we sent it or not based on the (I presume) very different runtime
5274 //between the branches here. We should make this async and move it into the forward HTLCs
5277 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5278 // from block_connected which may run during initialization prior to the chain_monitor
5279 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5281 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5282 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5283 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5284 &self.pending_events, &self.logger)
5285 { self.push_pending_forwards_ev(); }
5287 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
5288 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
5289 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
5291 let mut push_forward_ev = false;
5292 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5293 if forward_htlcs.is_empty() {
5294 push_forward_ev = true;
5296 match forward_htlcs.entry(*short_channel_id) {
5297 hash_map::Entry::Occupied(mut entry) => {
5298 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5300 hash_map::Entry::Vacant(entry) => {
5301 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5304 mem::drop(forward_htlcs);
5305 if push_forward_ev { self.push_pending_forwards_ev(); }
5306 let mut pending_events = self.pending_events.lock().unwrap();
5307 pending_events.push_back((events::Event::HTLCHandlingFailed {
5308 prev_channel_id: outpoint.to_channel_id(),
5309 failed_next_destination: destination,
5315 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5316 /// [`MessageSendEvent`]s needed to claim the payment.
5318 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5319 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5320 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5321 /// successful. It will generally be available in the next [`process_pending_events`] call.
5323 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5324 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5325 /// event matches your expectation. If you fail to do so and call this method, you may provide
5326 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5328 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5329 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5330 /// [`claim_funds_with_known_custom_tlvs`].
5332 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5333 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5334 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5335 /// [`process_pending_events`]: EventsProvider::process_pending_events
5336 /// [`create_inbound_payment`]: Self::create_inbound_payment
5337 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5338 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5339 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5340 self.claim_payment_internal(payment_preimage, false);
5343 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5344 /// even type numbers.
5348 /// You MUST check you've understood all even TLVs before using this to
5349 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5351 /// [`claim_funds`]: Self::claim_funds
5352 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5353 self.claim_payment_internal(payment_preimage, true);
5356 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5357 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5359 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5362 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5363 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5364 let mut receiver_node_id = self.our_network_pubkey;
5365 for htlc in payment.htlcs.iter() {
5366 if htlc.prev_hop.phantom_shared_secret.is_some() {
5367 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5368 .expect("Failed to get node_id for phantom node recipient");
5369 receiver_node_id = phantom_pubkey;
5374 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5375 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5376 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5377 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5378 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5380 if dup_purpose.is_some() {
5381 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5382 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5386 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5387 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5388 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5389 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5390 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5391 mem::drop(claimable_payments);
5392 for htlc in payment.htlcs {
5393 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5394 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5395 let receiver = HTLCDestination::FailedPayment { payment_hash };
5396 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5405 debug_assert!(!sources.is_empty());
5407 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5408 // and when we got here we need to check that the amount we're about to claim matches the
5409 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5410 // the MPP parts all have the same `total_msat`.
5411 let mut claimable_amt_msat = 0;
5412 let mut prev_total_msat = None;
5413 let mut expected_amt_msat = None;
5414 let mut valid_mpp = true;
5415 let mut errs = Vec::new();
5416 let per_peer_state = self.per_peer_state.read().unwrap();
5417 for htlc in sources.iter() {
5418 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5419 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5420 debug_assert!(false);
5424 prev_total_msat = Some(htlc.total_msat);
5426 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5427 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5428 debug_assert!(false);
5432 expected_amt_msat = htlc.total_value_received;
5433 claimable_amt_msat += htlc.value;
5435 mem::drop(per_peer_state);
5436 if sources.is_empty() || expected_amt_msat.is_none() {
5437 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5438 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5441 if claimable_amt_msat != expected_amt_msat.unwrap() {
5442 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5443 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5444 expected_amt_msat.unwrap(), claimable_amt_msat);
5448 for htlc in sources.drain(..) {
5449 if let Err((pk, err)) = self.claim_funds_from_hop(
5450 htlc.prev_hop, payment_preimage,
5451 |_, definitely_duplicate| {
5452 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5453 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5456 if let msgs::ErrorAction::IgnoreError = err.err.action {
5457 // We got a temporary failure updating monitor, but will claim the
5458 // HTLC when the monitor updating is restored (or on chain).
5459 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5460 } else { errs.push((pk, err)); }
5465 for htlc in sources.drain(..) {
5466 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5467 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5468 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5469 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5470 let receiver = HTLCDestination::FailedPayment { payment_hash };
5471 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5473 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5476 // Now we can handle any errors which were generated.
5477 for (counterparty_node_id, err) in errs.drain(..) {
5478 let res: Result<(), _> = Err(err);
5479 let _ = handle_error!(self, res, counterparty_node_id);
5483 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5484 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5485 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5486 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5488 // If we haven't yet run background events assume we're still deserializing and shouldn't
5489 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5490 // `BackgroundEvent`s.
5491 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5493 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5494 // the required mutexes are not held before we start.
5495 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5496 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5499 let per_peer_state = self.per_peer_state.read().unwrap();
5500 let chan_id = prev_hop.outpoint.to_channel_id();
5501 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5502 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5506 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5507 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5508 .map(|peer_mutex| peer_mutex.lock().unwrap())
5511 if peer_state_opt.is_some() {
5512 let mut peer_state_lock = peer_state_opt.unwrap();
5513 let peer_state = &mut *peer_state_lock;
5514 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5515 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5516 let counterparty_node_id = chan.context.get_counterparty_node_id();
5517 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5520 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5521 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5522 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5524 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5527 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5528 peer_state, per_peer_state, chan);
5530 // If we're running during init we cannot update a monitor directly -
5531 // they probably haven't actually been loaded yet. Instead, push the
5532 // monitor update as a background event.
5533 self.pending_background_events.lock().unwrap().push(
5534 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5535 counterparty_node_id,
5536 funding_txo: prev_hop.outpoint,
5537 update: monitor_update.clone(),
5541 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5542 let action = if let Some(action) = completion_action(None, true) {
5547 mem::drop(peer_state_lock);
5549 log_trace!(self.logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5551 let (node_id, funding_outpoint, blocker) =
5552 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5553 downstream_counterparty_node_id: node_id,
5554 downstream_funding_outpoint: funding_outpoint,
5555 blocking_action: blocker,
5557 (node_id, funding_outpoint, blocker)
5559 debug_assert!(false,
5560 "Duplicate claims should always free another channel immediately");
5563 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5564 let mut peer_state = peer_state_mtx.lock().unwrap();
5565 if let Some(blockers) = peer_state
5566 .actions_blocking_raa_monitor_updates
5567 .get_mut(&funding_outpoint.to_channel_id())
5569 let mut found_blocker = false;
5570 blockers.retain(|iter| {
5571 // Note that we could actually be blocked, in
5572 // which case we need to only remove the one
5573 // blocker which was added duplicatively.
5574 let first_blocker = !found_blocker;
5575 if *iter == blocker { found_blocker = true; }
5576 *iter != blocker || !first_blocker
5578 debug_assert!(found_blocker);
5581 debug_assert!(false);
5590 let preimage_update = ChannelMonitorUpdate {
5591 update_id: CLOSED_CHANNEL_UPDATE_ID,
5592 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5598 // We update the ChannelMonitor on the backward link, after
5599 // receiving an `update_fulfill_htlc` from the forward link.
5600 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5601 if update_res != ChannelMonitorUpdateStatus::Completed {
5602 // TODO: This needs to be handled somehow - if we receive a monitor update
5603 // with a preimage we *must* somehow manage to propagate it to the upstream
5604 // channel, or we must have an ability to receive the same event and try
5605 // again on restart.
5606 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5607 payment_preimage, update_res);
5610 // If we're running during init we cannot update a monitor directly - they probably
5611 // haven't actually been loaded yet. Instead, push the monitor update as a background
5613 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5614 // channel is already closed) we need to ultimately handle the monitor update
5615 // completion action only after we've completed the monitor update. This is the only
5616 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5617 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5618 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5619 // complete the monitor update completion action from `completion_action`.
5620 self.pending_background_events.lock().unwrap().push(
5621 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5622 prev_hop.outpoint, preimage_update,
5625 // Note that we do process the completion action here. This totally could be a
5626 // duplicate claim, but we have no way of knowing without interrogating the
5627 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5628 // generally always allowed to be duplicative (and it's specifically noted in
5629 // `PaymentForwarded`).
5630 self.handle_monitor_update_completion_actions(completion_action(None, false));
5634 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5635 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5638 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5639 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5640 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5643 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5644 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5645 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5646 if let Some(pubkey) = next_channel_counterparty_node_id {
5647 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5649 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5650 channel_funding_outpoint: next_channel_outpoint,
5651 counterparty_node_id: path.hops[0].pubkey,
5653 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5654 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5657 HTLCSource::PreviousHopData(hop_data) => {
5658 let prev_outpoint = hop_data.outpoint;
5659 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5660 #[cfg(debug_assertions)]
5661 let claiming_chan_funding_outpoint = hop_data.outpoint;
5662 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5663 |htlc_claim_value_msat, definitely_duplicate| {
5664 let chan_to_release =
5665 if let Some(node_id) = next_channel_counterparty_node_id {
5666 Some((node_id, next_channel_outpoint, completed_blocker))
5668 // We can only get `None` here if we are processing a
5669 // `ChannelMonitor`-originated event, in which case we
5670 // don't care about ensuring we wake the downstream
5671 // channel's monitor updating - the channel is already
5676 if definitely_duplicate && startup_replay {
5677 // On startup we may get redundant claims which are related to
5678 // monitor updates still in flight. In that case, we shouldn't
5679 // immediately free, but instead let that monitor update complete
5680 // in the background.
5681 #[cfg(debug_assertions)] {
5682 let background_events = self.pending_background_events.lock().unwrap();
5683 // There should be a `BackgroundEvent` pending...
5684 assert!(background_events.iter().any(|ev| {
5686 // to apply a monitor update that blocked the claiming channel,
5687 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5688 funding_txo, update, ..
5690 if *funding_txo == claiming_chan_funding_outpoint {
5691 assert!(update.updates.iter().any(|upd|
5692 if let ChannelMonitorUpdateStep::PaymentPreimage {
5693 payment_preimage: update_preimage
5695 payment_preimage == *update_preimage
5701 // or the channel we'd unblock is already closed,
5702 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5703 (funding_txo, monitor_update)
5705 if *funding_txo == next_channel_outpoint {
5706 assert_eq!(monitor_update.updates.len(), 1);
5708 monitor_update.updates[0],
5709 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5714 // or the monitor update has completed and will unblock
5715 // immediately once we get going.
5716 BackgroundEvent::MonitorUpdatesComplete {
5719 *channel_id == claiming_chan_funding_outpoint.to_channel_id(),
5721 }), "{:?}", *background_events);
5724 } else if definitely_duplicate {
5725 if let Some(other_chan) = chan_to_release {
5726 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5727 downstream_counterparty_node_id: other_chan.0,
5728 downstream_funding_outpoint: other_chan.1,
5729 blocking_action: other_chan.2,
5733 let fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5734 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5735 Some(claimed_htlc_value - forwarded_htlc_value)
5738 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5739 event: events::Event::PaymentForwarded {
5741 claim_from_onchain_tx: from_onchain,
5742 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5743 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5744 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5746 downstream_counterparty_and_funding_outpoint: chan_to_release,
5750 if let Err((pk, err)) = res {
5751 let result: Result<(), _> = Err(err);
5752 let _ = handle_error!(self, result, pk);
5758 /// Gets the node_id held by this ChannelManager
5759 pub fn get_our_node_id(&self) -> PublicKey {
5760 self.our_network_pubkey.clone()
5763 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5764 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5765 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5766 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5768 for action in actions.into_iter() {
5770 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5771 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5772 if let Some(ClaimingPayment {
5774 payment_purpose: purpose,
5777 sender_intended_value: sender_intended_total_msat,
5779 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5783 receiver_node_id: Some(receiver_node_id),
5785 sender_intended_total_msat,
5789 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5790 event, downstream_counterparty_and_funding_outpoint
5792 self.pending_events.lock().unwrap().push_back((event, None));
5793 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5794 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5797 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5798 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5800 self.handle_monitor_update_release(
5801 downstream_counterparty_node_id,
5802 downstream_funding_outpoint,
5803 Some(blocking_action),
5810 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5811 /// update completion.
5812 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5813 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5814 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5815 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5816 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5817 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5818 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5819 &channel.context.channel_id(),
5820 if raa.is_some() { "an" } else { "no" },
5821 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5822 if funding_broadcastable.is_some() { "" } else { "not " },
5823 if channel_ready.is_some() { "sending" } else { "without" },
5824 if announcement_sigs.is_some() { "sending" } else { "without" });
5826 let mut htlc_forwards = None;
5828 let counterparty_node_id = channel.context.get_counterparty_node_id();
5829 if !pending_forwards.is_empty() {
5830 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5831 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5834 if let Some(msg) = channel_ready {
5835 send_channel_ready!(self, pending_msg_events, channel, msg);
5837 if let Some(msg) = announcement_sigs {
5838 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5839 node_id: counterparty_node_id,
5844 macro_rules! handle_cs { () => {
5845 if let Some(update) = commitment_update {
5846 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5847 node_id: counterparty_node_id,
5852 macro_rules! handle_raa { () => {
5853 if let Some(revoke_and_ack) = raa {
5854 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5855 node_id: counterparty_node_id,
5856 msg: revoke_and_ack,
5861 RAACommitmentOrder::CommitmentFirst => {
5865 RAACommitmentOrder::RevokeAndACKFirst => {
5871 if let Some(tx) = funding_broadcastable {
5872 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5873 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5877 let mut pending_events = self.pending_events.lock().unwrap();
5878 emit_channel_pending_event!(pending_events, channel);
5879 emit_channel_ready_event!(pending_events, channel);
5885 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5886 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5888 let counterparty_node_id = match counterparty_node_id {
5889 Some(cp_id) => cp_id.clone(),
5891 // TODO: Once we can rely on the counterparty_node_id from the
5892 // monitor event, this and the id_to_peer map should be removed.
5893 let id_to_peer = self.id_to_peer.lock().unwrap();
5894 match id_to_peer.get(&funding_txo.to_channel_id()) {
5895 Some(cp_id) => cp_id.clone(),
5900 let per_peer_state = self.per_peer_state.read().unwrap();
5901 let mut peer_state_lock;
5902 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5903 if peer_state_mutex_opt.is_none() { return }
5904 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5905 let peer_state = &mut *peer_state_lock;
5907 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5910 let update_actions = peer_state.monitor_update_blocked_actions
5911 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5912 mem::drop(peer_state_lock);
5913 mem::drop(per_peer_state);
5914 self.handle_monitor_update_completion_actions(update_actions);
5917 let remaining_in_flight =
5918 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5919 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5922 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5923 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5924 remaining_in_flight);
5925 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5928 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5931 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5933 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5934 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5937 /// The `user_channel_id` parameter will be provided back in
5938 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5939 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5941 /// Note that this method will return an error and reject the channel, if it requires support
5942 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5943 /// used to accept such channels.
5945 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5946 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5947 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5948 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5951 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5952 /// it as confirmed immediately.
5954 /// The `user_channel_id` parameter will be provided back in
5955 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5956 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5958 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5959 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5961 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5962 /// transaction and blindly assumes that it will eventually confirm.
5964 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5965 /// does not pay to the correct script the correct amount, *you will lose funds*.
5967 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5968 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5969 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5970 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5973 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5974 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5976 let peers_without_funded_channels =
5977 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5978 let per_peer_state = self.per_peer_state.read().unwrap();
5979 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5980 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5981 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5982 let peer_state = &mut *peer_state_lock;
5983 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5985 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5986 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5987 // that we can delay allocating the SCID until after we're sure that the checks below will
5989 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5990 Some(unaccepted_channel) => {
5991 let best_block_height = self.best_block.read().unwrap().height();
5992 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5993 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5994 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5995 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5997 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
6001 // This should have been correctly configured by the call to InboundV1Channel::new.
6002 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6003 } else if channel.context.get_channel_type().requires_zero_conf() {
6004 let send_msg_err_event = events::MessageSendEvent::HandleError {
6005 node_id: channel.context.get_counterparty_node_id(),
6006 action: msgs::ErrorAction::SendErrorMessage{
6007 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
6010 peer_state.pending_msg_events.push(send_msg_err_event);
6011 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
6013 // If this peer already has some channels, a new channel won't increase our number of peers
6014 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6015 // channels per-peer we can accept channels from a peer with existing ones.
6016 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
6017 let send_msg_err_event = events::MessageSendEvent::HandleError {
6018 node_id: channel.context.get_counterparty_node_id(),
6019 action: msgs::ErrorAction::SendErrorMessage{
6020 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
6023 peer_state.pending_msg_events.push(send_msg_err_event);
6024 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
6028 // Now that we know we have a channel, assign an outbound SCID alias.
6029 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6030 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6032 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6033 node_id: channel.context.get_counterparty_node_id(),
6034 msg: channel.accept_inbound_channel(),
6037 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
6042 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
6043 /// or 0-conf channels.
6045 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
6046 /// non-0-conf channels we have with the peer.
6047 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
6048 where Filter: Fn(&PeerState<SP>) -> bool {
6049 let mut peers_without_funded_channels = 0;
6050 let best_block_height = self.best_block.read().unwrap().height();
6052 let peer_state_lock = self.per_peer_state.read().unwrap();
6053 for (_, peer_mtx) in peer_state_lock.iter() {
6054 let peer = peer_mtx.lock().unwrap();
6055 if !maybe_count_peer(&*peer) { continue; }
6056 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
6057 if num_unfunded_channels == peer.total_channel_count() {
6058 peers_without_funded_channels += 1;
6062 return peers_without_funded_channels;
6065 fn unfunded_channel_count(
6066 peer: &PeerState<SP>, best_block_height: u32
6068 let mut num_unfunded_channels = 0;
6069 for (_, phase) in peer.channel_by_id.iter() {
6071 ChannelPhase::Funded(chan) => {
6072 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
6073 // which have not yet had any confirmations on-chain.
6074 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
6075 chan.context.get_funding_tx_confirmations(best_block_height) == 0
6077 num_unfunded_channels += 1;
6080 ChannelPhase::UnfundedInboundV1(chan) => {
6081 if chan.context.minimum_depth().unwrap_or(1) != 0 {
6082 num_unfunded_channels += 1;
6085 ChannelPhase::UnfundedOutboundV1(_) => {
6086 // Outbound channels don't contribute to the unfunded count in the DoS context.
6091 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
6094 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
6095 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6096 // likely to be lost on restart!
6097 if msg.chain_hash != self.chain_hash {
6098 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
6101 if !self.default_configuration.accept_inbound_channels {
6102 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6105 // Get the number of peers with channels, but without funded ones. We don't care too much
6106 // about peers that never open a channel, so we filter by peers that have at least one
6107 // channel, and then limit the number of those with unfunded channels.
6108 let channeled_peers_without_funding =
6109 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
6111 let per_peer_state = self.per_peer_state.read().unwrap();
6112 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6114 debug_assert!(false);
6115 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
6117 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6118 let peer_state = &mut *peer_state_lock;
6120 // If this peer already has some channels, a new channel won't increase our number of peers
6121 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6122 // channels per-peer we can accept channels from a peer with existing ones.
6123 if peer_state.total_channel_count() == 0 &&
6124 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
6125 !self.default_configuration.manually_accept_inbound_channels
6127 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6128 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
6129 msg.temporary_channel_id.clone()));
6132 let best_block_height = self.best_block.read().unwrap().height();
6133 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
6134 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6135 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
6136 msg.temporary_channel_id.clone()));
6139 let channel_id = msg.temporary_channel_id;
6140 let channel_exists = peer_state.has_channel(&channel_id);
6142 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
6145 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
6146 if self.default_configuration.manually_accept_inbound_channels {
6147 let mut pending_events = self.pending_events.lock().unwrap();
6148 pending_events.push_back((events::Event::OpenChannelRequest {
6149 temporary_channel_id: msg.temporary_channel_id.clone(),
6150 counterparty_node_id: counterparty_node_id.clone(),
6151 funding_satoshis: msg.funding_satoshis,
6152 push_msat: msg.push_msat,
6153 channel_type: msg.channel_type.clone().unwrap(),
6155 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
6156 open_channel_msg: msg.clone(),
6157 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
6162 // Otherwise create the channel right now.
6163 let mut random_bytes = [0u8; 16];
6164 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
6165 let user_channel_id = u128::from_be_bytes(random_bytes);
6166 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6167 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
6168 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
6171 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
6176 let channel_type = channel.context.get_channel_type();
6177 if channel_type.requires_zero_conf() {
6178 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6180 if channel_type.requires_anchors_zero_fee_htlc_tx() {
6181 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
6184 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6185 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6187 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6188 node_id: counterparty_node_id.clone(),
6189 msg: channel.accept_inbound_channel(),
6191 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6195 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6196 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6197 // likely to be lost on restart!
6198 let (value, output_script, user_id) = {
6199 let per_peer_state = self.per_peer_state.read().unwrap();
6200 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6202 debug_assert!(false);
6203 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6205 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6206 let peer_state = &mut *peer_state_lock;
6207 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6208 hash_map::Entry::Occupied(mut phase) => {
6209 match phase.get_mut() {
6210 ChannelPhase::UnfundedOutboundV1(chan) => {
6211 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6212 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6215 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6219 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6222 let mut pending_events = self.pending_events.lock().unwrap();
6223 pending_events.push_back((events::Event::FundingGenerationReady {
6224 temporary_channel_id: msg.temporary_channel_id,
6225 counterparty_node_id: *counterparty_node_id,
6226 channel_value_satoshis: value,
6228 user_channel_id: user_id,
6233 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6234 let best_block = *self.best_block.read().unwrap();
6236 let per_peer_state = self.per_peer_state.read().unwrap();
6237 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6239 debug_assert!(false);
6240 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6243 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6244 let peer_state = &mut *peer_state_lock;
6245 let (chan, funding_msg_opt, monitor) =
6246 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6247 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6248 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
6250 Err((mut inbound_chan, err)) => {
6251 // We've already removed this inbound channel from the map in `PeerState`
6252 // above so at this point we just need to clean up any lingering entries
6253 // concerning this channel as it is safe to do so.
6254 update_maps_on_chan_removal!(self, &inbound_chan.context);
6255 let user_id = inbound_chan.context.get_user_id();
6256 let shutdown_res = inbound_chan.context.force_shutdown(false);
6257 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6258 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6262 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6263 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6265 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6268 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
6269 hash_map::Entry::Occupied(_) => {
6270 Err(MsgHandleErrInternal::send_err_msg_no_close(
6271 "Already had channel with the new channel_id".to_owned(),
6272 chan.context.channel_id()
6275 hash_map::Entry::Vacant(e) => {
6276 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6277 match id_to_peer_lock.entry(chan.context.channel_id()) {
6278 hash_map::Entry::Occupied(_) => {
6279 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6280 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6281 chan.context.channel_id()))
6283 hash_map::Entry::Vacant(i_e) => {
6284 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6285 if let Ok(persist_state) = monitor_res {
6286 i_e.insert(chan.context.get_counterparty_node_id());
6287 mem::drop(id_to_peer_lock);
6289 // There's no problem signing a counterparty's funding transaction if our monitor
6290 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6291 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6292 // until we have persisted our monitor.
6293 if let Some(msg) = funding_msg_opt {
6294 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6295 node_id: counterparty_node_id.clone(),
6300 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6301 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6302 per_peer_state, chan, INITIAL_MONITOR);
6304 unreachable!("This must be a funded channel as we just inserted it.");
6308 log_error!(self.logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6309 let channel_id = match funding_msg_opt {
6310 Some(msg) => msg.channel_id,
6311 None => chan.context.channel_id(),
6313 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6314 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6323 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6324 let best_block = *self.best_block.read().unwrap();
6325 let per_peer_state = self.per_peer_state.read().unwrap();
6326 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6328 debug_assert!(false);
6329 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6332 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6333 let peer_state = &mut *peer_state_lock;
6334 match peer_state.channel_by_id.entry(msg.channel_id) {
6335 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6336 match chan_phase_entry.get_mut() {
6337 ChannelPhase::Funded(ref mut chan) => {
6338 let monitor = try_chan_phase_entry!(self,
6339 chan.funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan_phase_entry);
6340 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6341 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6344 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
6348 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6352 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6356 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6357 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6358 // closing a channel), so any changes are likely to be lost on restart!
6359 let per_peer_state = self.per_peer_state.read().unwrap();
6360 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6362 debug_assert!(false);
6363 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6365 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6366 let peer_state = &mut *peer_state_lock;
6367 match peer_state.channel_by_id.entry(msg.channel_id) {
6368 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6369 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6370 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6371 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan_phase_entry);
6372 if let Some(announcement_sigs) = announcement_sigs_opt {
6373 log_trace!(self.logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6374 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6375 node_id: counterparty_node_id.clone(),
6376 msg: announcement_sigs,
6378 } else if chan.context.is_usable() {
6379 // If we're sending an announcement_signatures, we'll send the (public)
6380 // channel_update after sending a channel_announcement when we receive our
6381 // counterparty's announcement_signatures. Thus, we only bother to send a
6382 // channel_update here if the channel is not public, i.e. we're not sending an
6383 // announcement_signatures.
6384 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6385 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6386 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6387 node_id: counterparty_node_id.clone(),
6394 let mut pending_events = self.pending_events.lock().unwrap();
6395 emit_channel_ready_event!(pending_events, chan);
6400 try_chan_phase_entry!(self, Err(ChannelError::Close(
6401 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6404 hash_map::Entry::Vacant(_) => {
6405 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6410 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6411 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6412 let mut finish_shutdown = None;
6414 let per_peer_state = self.per_peer_state.read().unwrap();
6415 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6417 debug_assert!(false);
6418 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6420 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6421 let peer_state = &mut *peer_state_lock;
6422 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6423 let phase = chan_phase_entry.get_mut();
6425 ChannelPhase::Funded(chan) => {
6426 if !chan.received_shutdown() {
6427 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
6429 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6432 let funding_txo_opt = chan.context.get_funding_txo();
6433 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6434 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6435 dropped_htlcs = htlcs;
6437 if let Some(msg) = shutdown {
6438 // We can send the `shutdown` message before updating the `ChannelMonitor`
6439 // here as we don't need the monitor update to complete until we send a
6440 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6441 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6442 node_id: *counterparty_node_id,
6446 // Update the monitor with the shutdown script if necessary.
6447 if let Some(monitor_update) = monitor_update_opt {
6448 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6449 peer_state_lock, peer_state, per_peer_state, chan);
6452 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6453 let context = phase.context_mut();
6454 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6455 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6456 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6457 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6461 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6464 for htlc_source in dropped_htlcs.drain(..) {
6465 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6466 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6467 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6469 if let Some(shutdown_res) = finish_shutdown {
6470 self.finish_close_channel(shutdown_res);
6476 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6477 let per_peer_state = self.per_peer_state.read().unwrap();
6478 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6480 debug_assert!(false);
6481 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6483 let (tx, chan_option, shutdown_result) = {
6484 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6485 let peer_state = &mut *peer_state_lock;
6486 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6487 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6488 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6489 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6490 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6491 if let Some(msg) = closing_signed {
6492 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6493 node_id: counterparty_node_id.clone(),
6498 // We're done with this channel, we've got a signed closing transaction and
6499 // will send the closing_signed back to the remote peer upon return. This
6500 // also implies there are no pending HTLCs left on the channel, so we can
6501 // fully delete it from tracking (the channel monitor is still around to
6502 // watch for old state broadcasts)!
6503 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6504 } else { (tx, None, shutdown_result) }
6506 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6507 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6510 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6513 if let Some(broadcast_tx) = tx {
6514 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
6515 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6517 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6518 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6519 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6520 let peer_state = &mut *peer_state_lock;
6521 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6525 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6527 mem::drop(per_peer_state);
6528 if let Some(shutdown_result) = shutdown_result {
6529 self.finish_close_channel(shutdown_result);
6534 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6535 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6536 //determine the state of the payment based on our response/if we forward anything/the time
6537 //we take to respond. We should take care to avoid allowing such an attack.
6539 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6540 //us repeatedly garbled in different ways, and compare our error messages, which are
6541 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6542 //but we should prevent it anyway.
6544 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6545 // closing a channel), so any changes are likely to be lost on restart!
6547 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
6548 let per_peer_state = self.per_peer_state.read().unwrap();
6549 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6551 debug_assert!(false);
6552 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6554 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6555 let peer_state = &mut *peer_state_lock;
6556 match peer_state.channel_by_id.entry(msg.channel_id) {
6557 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6558 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6559 let pending_forward_info = match decoded_hop_res {
6560 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6561 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
6562 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt),
6563 Err(e) => PendingHTLCStatus::Fail(e)
6565 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6566 // If the update_add is completely bogus, the call will Err and we will close,
6567 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6568 // want to reject the new HTLC and fail it backwards instead of forwarding.
6569 match pending_forward_info {
6570 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
6571 let reason = if (error_code & 0x1000) != 0 {
6572 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6573 HTLCFailReason::reason(real_code, error_data)
6575 HTLCFailReason::from_failure_code(error_code)
6576 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6577 let msg = msgs::UpdateFailHTLC {
6578 channel_id: msg.channel_id,
6579 htlc_id: msg.htlc_id,
6582 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6584 _ => pending_forward_info
6587 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan_phase_entry);
6589 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6590 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6593 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6598 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6600 let (htlc_source, forwarded_htlc_value) = {
6601 let per_peer_state = self.per_peer_state.read().unwrap();
6602 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6604 debug_assert!(false);
6605 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6607 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6608 let peer_state = &mut *peer_state_lock;
6609 match peer_state.channel_by_id.entry(msg.channel_id) {
6610 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6611 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6612 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6613 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6614 log_trace!(self.logger,
6615 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6617 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6618 .or_insert_with(Vec::new)
6619 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6621 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6622 // entry here, even though we *do* need to block the next RAA monitor update.
6623 // We do this instead in the `claim_funds_internal` by attaching a
6624 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6625 // outbound HTLC is claimed. This is guaranteed to all complete before we
6626 // process the RAA as messages are processed from single peers serially.
6627 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6630 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6631 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6634 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6637 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6641 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6642 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6643 // closing a channel), so any changes are likely to be lost on restart!
6644 let per_peer_state = self.per_peer_state.read().unwrap();
6645 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6647 debug_assert!(false);
6648 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6650 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6651 let peer_state = &mut *peer_state_lock;
6652 match peer_state.channel_by_id.entry(msg.channel_id) {
6653 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6654 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6655 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6657 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6658 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6661 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6666 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6667 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6668 // closing a channel), so any changes are likely to be lost on restart!
6669 let per_peer_state = self.per_peer_state.read().unwrap();
6670 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6672 debug_assert!(false);
6673 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6675 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6676 let peer_state = &mut *peer_state_lock;
6677 match peer_state.channel_by_id.entry(msg.channel_id) {
6678 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6679 if (msg.failure_code & 0x8000) == 0 {
6680 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6681 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6683 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6684 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6686 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6687 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6691 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6695 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6696 let per_peer_state = self.per_peer_state.read().unwrap();
6697 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6699 debug_assert!(false);
6700 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6702 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6703 let peer_state = &mut *peer_state_lock;
6704 match peer_state.channel_by_id.entry(msg.channel_id) {
6705 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6706 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6707 let funding_txo = chan.context.get_funding_txo();
6708 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &self.logger), chan_phase_entry);
6709 if let Some(monitor_update) = monitor_update_opt {
6710 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6711 peer_state, per_peer_state, chan);
6715 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6716 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6719 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6724 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6725 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6726 let mut push_forward_event = false;
6727 let mut new_intercept_events = VecDeque::new();
6728 let mut failed_intercept_forwards = Vec::new();
6729 if !pending_forwards.is_empty() {
6730 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6731 let scid = match forward_info.routing {
6732 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6733 PendingHTLCRouting::Receive { .. } => 0,
6734 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6736 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6737 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6739 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6740 let forward_htlcs_empty = forward_htlcs.is_empty();
6741 match forward_htlcs.entry(scid) {
6742 hash_map::Entry::Occupied(mut entry) => {
6743 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6744 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6746 hash_map::Entry::Vacant(entry) => {
6747 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6748 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6750 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
6751 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6752 match pending_intercepts.entry(intercept_id) {
6753 hash_map::Entry::Vacant(entry) => {
6754 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6755 requested_next_hop_scid: scid,
6756 payment_hash: forward_info.payment_hash,
6757 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6758 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6761 entry.insert(PendingAddHTLCInfo {
6762 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6764 hash_map::Entry::Occupied(_) => {
6765 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6766 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6767 short_channel_id: prev_short_channel_id,
6768 user_channel_id: Some(prev_user_channel_id),
6769 outpoint: prev_funding_outpoint,
6770 htlc_id: prev_htlc_id,
6771 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6772 phantom_shared_secret: None,
6775 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6776 HTLCFailReason::from_failure_code(0x4000 | 10),
6777 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6782 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6783 // payments are being processed.
6784 if forward_htlcs_empty {
6785 push_forward_event = true;
6787 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6788 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6795 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6796 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6799 if !new_intercept_events.is_empty() {
6800 let mut events = self.pending_events.lock().unwrap();
6801 events.append(&mut new_intercept_events);
6803 if push_forward_event { self.push_pending_forwards_ev() }
6807 fn push_pending_forwards_ev(&self) {
6808 let mut pending_events = self.pending_events.lock().unwrap();
6809 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6810 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6811 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6813 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6814 // events is done in batches and they are not removed until we're done processing each
6815 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6816 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6817 // payments will need an additional forwarding event before being claimed to make them look
6818 // real by taking more time.
6819 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6820 pending_events.push_back((Event::PendingHTLCsForwardable {
6821 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6826 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6827 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6828 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6829 /// the [`ChannelMonitorUpdate`] in question.
6830 fn raa_monitor_updates_held(&self,
6831 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6832 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6834 actions_blocking_raa_monitor_updates
6835 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6836 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6837 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6838 channel_funding_outpoint,
6839 counterparty_node_id,
6844 #[cfg(any(test, feature = "_test_utils"))]
6845 pub(crate) fn test_raa_monitor_updates_held(&self,
6846 counterparty_node_id: PublicKey, channel_id: ChannelId
6848 let per_peer_state = self.per_peer_state.read().unwrap();
6849 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6850 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6851 let peer_state = &mut *peer_state_lck;
6853 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6854 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6855 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6861 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6862 let htlcs_to_fail = {
6863 let per_peer_state = self.per_peer_state.read().unwrap();
6864 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6866 debug_assert!(false);
6867 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6868 }).map(|mtx| mtx.lock().unwrap())?;
6869 let peer_state = &mut *peer_state_lock;
6870 match peer_state.channel_by_id.entry(msg.channel_id) {
6871 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6872 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6873 let funding_txo_opt = chan.context.get_funding_txo();
6874 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6875 self.raa_monitor_updates_held(
6876 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6877 *counterparty_node_id)
6879 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6880 chan.revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan_phase_entry);
6881 if let Some(monitor_update) = monitor_update_opt {
6882 let funding_txo = funding_txo_opt
6883 .expect("Funding outpoint must have been set for RAA handling to succeed");
6884 handle_new_monitor_update!(self, funding_txo, monitor_update,
6885 peer_state_lock, peer_state, per_peer_state, chan);
6889 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6890 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6893 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6896 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6900 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6901 let per_peer_state = self.per_peer_state.read().unwrap();
6902 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6904 debug_assert!(false);
6905 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6907 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6908 let peer_state = &mut *peer_state_lock;
6909 match peer_state.channel_by_id.entry(msg.channel_id) {
6910 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6911 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6912 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &self.logger), chan_phase_entry);
6914 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6915 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6918 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6923 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6924 let per_peer_state = self.per_peer_state.read().unwrap();
6925 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6927 debug_assert!(false);
6928 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6930 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6931 let peer_state = &mut *peer_state_lock;
6932 match peer_state.channel_by_id.entry(msg.channel_id) {
6933 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6934 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6935 if !chan.context.is_usable() {
6936 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6939 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6940 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6941 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
6942 msg, &self.default_configuration
6943 ), chan_phase_entry),
6944 // Note that announcement_signatures fails if the channel cannot be announced,
6945 // so get_channel_update_for_broadcast will never fail by the time we get here.
6946 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6949 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6950 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6953 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6958 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6959 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6960 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6961 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6963 // It's not a local channel
6964 return Ok(NotifyOption::SkipPersistNoEvents)
6967 let per_peer_state = self.per_peer_state.read().unwrap();
6968 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6969 if peer_state_mutex_opt.is_none() {
6970 return Ok(NotifyOption::SkipPersistNoEvents)
6972 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6973 let peer_state = &mut *peer_state_lock;
6974 match peer_state.channel_by_id.entry(chan_id) {
6975 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6976 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6977 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6978 if chan.context.should_announce() {
6979 // If the announcement is about a channel of ours which is public, some
6980 // other peer may simply be forwarding all its gossip to us. Don't provide
6981 // a scary-looking error message and return Ok instead.
6982 return Ok(NotifyOption::SkipPersistNoEvents);
6984 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6986 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6987 let msg_from_node_one = msg.contents.flags & 1 == 0;
6988 if were_node_one == msg_from_node_one {
6989 return Ok(NotifyOption::SkipPersistNoEvents);
6991 log_debug!(self.logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
6992 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6993 // If nothing changed after applying their update, we don't need to bother
6996 return Ok(NotifyOption::SkipPersistNoEvents);
7000 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7001 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
7004 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
7006 Ok(NotifyOption::DoPersist)
7009 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
7011 let need_lnd_workaround = {
7012 let per_peer_state = self.per_peer_state.read().unwrap();
7014 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7016 debug_assert!(false);
7017 MsgHandleErrInternal::send_err_msg_no_close(
7018 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7022 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7023 let peer_state = &mut *peer_state_lock;
7024 match peer_state.channel_by_id.entry(msg.channel_id) {
7025 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7026 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7027 // Currently, we expect all holding cell update_adds to be dropped on peer
7028 // disconnect, so Channel's reestablish will never hand us any holding cell
7029 // freed HTLCs to fail backwards. If in the future we no longer drop pending
7030 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
7031 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
7032 msg, &self.logger, &self.node_signer, self.chain_hash,
7033 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
7034 let mut channel_update = None;
7035 if let Some(msg) = responses.shutdown_msg {
7036 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7037 node_id: counterparty_node_id.clone(),
7040 } else if chan.context.is_usable() {
7041 // If the channel is in a usable state (ie the channel is not being shut
7042 // down), send a unicast channel_update to our counterparty to make sure
7043 // they have the latest channel parameters.
7044 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7045 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
7046 node_id: chan.context.get_counterparty_node_id(),
7051 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
7052 htlc_forwards = self.handle_channel_resumption(
7053 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
7054 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
7055 if let Some(upd) = channel_update {
7056 peer_state.pending_msg_events.push(upd);
7060 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7061 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
7064 hash_map::Entry::Vacant(_) => {
7065 log_debug!(self.logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
7066 log_bytes!(msg.channel_id.0));
7067 // Unfortunately, lnd doesn't force close on errors
7068 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
7069 // One of the few ways to get an lnd counterparty to force close is by
7070 // replicating what they do when restoring static channel backups (SCBs). They
7071 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
7072 // invalid `your_last_per_commitment_secret`.
7074 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
7075 // can assume it's likely the channel closed from our point of view, but it
7076 // remains open on the counterparty's side. By sending this bogus
7077 // `ChannelReestablish` message now as a response to theirs, we trigger them to
7078 // force close broadcasting their latest state. If the closing transaction from
7079 // our point of view remains unconfirmed, it'll enter a race with the
7080 // counterparty's to-be-broadcast latest commitment transaction.
7081 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
7082 node_id: *counterparty_node_id,
7083 msg: msgs::ChannelReestablish {
7084 channel_id: msg.channel_id,
7085 next_local_commitment_number: 0,
7086 next_remote_commitment_number: 0,
7087 your_last_per_commitment_secret: [1u8; 32],
7088 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
7089 next_funding_txid: None,
7092 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7093 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
7094 counterparty_node_id), msg.channel_id)
7100 let mut persist = NotifyOption::SkipPersistHandleEvents;
7101 if let Some(forwards) = htlc_forwards {
7102 self.forward_htlcs(&mut [forwards][..]);
7103 persist = NotifyOption::DoPersist;
7106 if let Some(channel_ready_msg) = need_lnd_workaround {
7107 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
7112 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
7113 fn process_pending_monitor_events(&self) -> bool {
7114 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
7116 let mut failed_channels = Vec::new();
7117 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
7118 let has_pending_monitor_events = !pending_monitor_events.is_empty();
7119 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
7120 for monitor_event in monitor_events.drain(..) {
7121 match monitor_event {
7122 MonitorEvent::HTLCEvent(htlc_update) => {
7123 if let Some(preimage) = htlc_update.payment_preimage {
7124 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", preimage);
7125 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
7127 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
7128 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
7129 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7130 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
7133 MonitorEvent::HolderForceClosed(funding_outpoint) => {
7134 let counterparty_node_id_opt = match counterparty_node_id {
7135 Some(cp_id) => Some(cp_id),
7137 // TODO: Once we can rely on the counterparty_node_id from the
7138 // monitor event, this and the id_to_peer map should be removed.
7139 let id_to_peer = self.id_to_peer.lock().unwrap();
7140 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
7143 if let Some(counterparty_node_id) = counterparty_node_id_opt {
7144 let per_peer_state = self.per_peer_state.read().unwrap();
7145 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7146 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7147 let peer_state = &mut *peer_state_lock;
7148 let pending_msg_events = &mut peer_state.pending_msg_events;
7149 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
7150 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
7151 failed_channels.push(chan.context.force_shutdown(false));
7152 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7153 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7157 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
7158 pending_msg_events.push(events::MessageSendEvent::HandleError {
7159 node_id: chan.context.get_counterparty_node_id(),
7160 action: msgs::ErrorAction::DisconnectPeer {
7161 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
7169 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
7170 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
7176 for failure in failed_channels.drain(..) {
7177 self.finish_close_channel(failure);
7180 has_pending_monitor_events
7183 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
7184 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
7185 /// update events as a separate process method here.
7187 pub fn process_monitor_events(&self) {
7188 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7189 self.process_pending_monitor_events();
7192 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7193 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7194 /// update was applied.
7195 fn check_free_holding_cells(&self) -> bool {
7196 let mut has_monitor_update = false;
7197 let mut failed_htlcs = Vec::new();
7199 // Walk our list of channels and find any that need to update. Note that when we do find an
7200 // update, if it includes actions that must be taken afterwards, we have to drop the
7201 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7202 // manage to go through all our peers without finding a single channel to update.
7204 let per_peer_state = self.per_peer_state.read().unwrap();
7205 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7207 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7208 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7209 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7210 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7212 let counterparty_node_id = chan.context.get_counterparty_node_id();
7213 let funding_txo = chan.context.get_funding_txo();
7214 let (monitor_opt, holding_cell_failed_htlcs) =
7215 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
7216 if !holding_cell_failed_htlcs.is_empty() {
7217 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7219 if let Some(monitor_update) = monitor_opt {
7220 has_monitor_update = true;
7222 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7223 peer_state_lock, peer_state, per_peer_state, chan);
7224 continue 'peer_loop;
7233 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7234 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7235 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7241 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7242 /// is (temporarily) unavailable, and the operation should be retried later.
7244 /// This method allows for that retry - either checking for any signer-pending messages to be
7245 /// attempted in every channel, or in the specifically provided channel.
7247 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7248 #[cfg(test)] // This is only implemented for one signer method, and should be private until we
7249 // actually finish implementing it fully.
7250 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7251 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7253 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7254 let node_id = phase.context().get_counterparty_node_id();
7255 if let ChannelPhase::Funded(chan) = phase {
7256 let msgs = chan.signer_maybe_unblocked(&self.logger);
7257 if let Some(updates) = msgs.commitment_update {
7258 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7263 if let Some(msg) = msgs.funding_signed {
7264 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7269 if let Some(msg) = msgs.funding_created {
7270 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7275 if let Some(msg) = msgs.channel_ready {
7276 send_channel_ready!(self, pending_msg_events, chan, msg);
7281 let per_peer_state = self.per_peer_state.read().unwrap();
7282 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7283 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7284 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7285 let peer_state = &mut *peer_state_lock;
7286 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7287 unblock_chan(chan, &mut peer_state.pending_msg_events);
7291 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7292 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7293 let peer_state = &mut *peer_state_lock;
7294 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7295 unblock_chan(chan, &mut peer_state.pending_msg_events);
7301 /// Check whether any channels have finished removing all pending updates after a shutdown
7302 /// exchange and can now send a closing_signed.
7303 /// Returns whether any closing_signed messages were generated.
7304 fn maybe_generate_initial_closing_signed(&self) -> bool {
7305 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7306 let mut has_update = false;
7307 let mut shutdown_results = Vec::new();
7309 let per_peer_state = self.per_peer_state.read().unwrap();
7311 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7312 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7313 let peer_state = &mut *peer_state_lock;
7314 let pending_msg_events = &mut peer_state.pending_msg_events;
7315 peer_state.channel_by_id.retain(|channel_id, phase| {
7317 ChannelPhase::Funded(chan) => {
7318 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
7319 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7320 if let Some(msg) = msg_opt {
7322 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7323 node_id: chan.context.get_counterparty_node_id(), msg,
7326 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7327 if let Some(shutdown_result) = shutdown_result_opt {
7328 shutdown_results.push(shutdown_result);
7330 if let Some(tx) = tx_opt {
7331 // We're done with this channel. We got a closing_signed and sent back
7332 // a closing_signed with a closing transaction to broadcast.
7333 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7334 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7339 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7341 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
7342 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7343 update_maps_on_chan_removal!(self, &chan.context);
7349 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7350 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7355 _ => true, // Retain unfunded channels if present.
7361 for (counterparty_node_id, err) in handle_errors.drain(..) {
7362 let _ = handle_error!(self, err, counterparty_node_id);
7365 for shutdown_result in shutdown_results.drain(..) {
7366 self.finish_close_channel(shutdown_result);
7372 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7373 /// pushing the channel monitor update (if any) to the background events queue and removing the
7375 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7376 for mut failure in failed_channels.drain(..) {
7377 // Either a commitment transactions has been confirmed on-chain or
7378 // Channel::block_disconnected detected that the funding transaction has been
7379 // reorganized out of the main chain.
7380 // We cannot broadcast our latest local state via monitor update (as
7381 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7382 // so we track the update internally and handle it when the user next calls
7383 // timer_tick_occurred, guaranteeing we're running normally.
7384 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7385 assert_eq!(update.updates.len(), 1);
7386 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7387 assert!(should_broadcast);
7388 } else { unreachable!(); }
7389 self.pending_background_events.lock().unwrap().push(
7390 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7391 counterparty_node_id, funding_txo, update
7394 self.finish_close_channel(failure);
7398 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7399 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7400 /// not have an expiration unless otherwise set on the builder.
7404 /// Uses a one-hop [`BlindedPath`] for the offer with [`ChannelManager::get_our_node_id`] as the
7405 /// introduction node and a derived signing pubkey for recipient privacy. As such, currently,
7406 /// the node must be announced. Otherwise, there is no way to find a path to the introduction
7407 /// node in order to send the [`InvoiceRequest`].
7411 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7414 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7416 /// [`Offer`]: crate::offers::offer::Offer
7417 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7418 pub fn create_offer_builder(
7419 &self, description: String
7420 ) -> OfferBuilder<DerivedMetadata, secp256k1::All> {
7421 let node_id = self.get_our_node_id();
7422 let expanded_key = &self.inbound_payment_key;
7423 let entropy = &*self.entropy_source;
7424 let secp_ctx = &self.secp_ctx;
7425 let path = self.create_one_hop_blinded_path();
7427 OfferBuilder::deriving_signing_pubkey(description, node_id, expanded_key, entropy, secp_ctx)
7428 .chain_hash(self.chain_hash)
7432 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7433 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7437 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7438 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7440 /// The builder will have the provided expiration set. Any changes to the expiration on the
7441 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7442 /// block time minus two hours is used for the current time when determining if the refund has
7445 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7446 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7447 /// with an [`Event::InvoiceRequestFailed`].
7449 /// If `max_total_routing_fee_msat` is not specified, The default from
7450 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7454 /// Uses a one-hop [`BlindedPath`] for the refund with [`ChannelManager::get_our_node_id`] as
7455 /// the introduction node and a derived payer id for payer privacy. As such, currently, the
7456 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7457 /// in order to send the [`Bolt12Invoice`].
7461 /// Requires a direct connection to an introduction node in the responding
7462 /// [`Bolt12Invoice::payment_paths`].
7466 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7467 /// or if `amount_msats` is invalid.
7469 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7471 /// [`Refund`]: crate::offers::refund::Refund
7472 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7473 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7474 pub fn create_refund_builder(
7475 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7476 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7477 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7478 let node_id = self.get_our_node_id();
7479 let expanded_key = &self.inbound_payment_key;
7480 let entropy = &*self.entropy_source;
7481 let secp_ctx = &self.secp_ctx;
7482 let path = self.create_one_hop_blinded_path();
7484 let builder = RefundBuilder::deriving_payer_id(
7485 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7487 .chain_hash(self.chain_hash)
7488 .absolute_expiry(absolute_expiry)
7491 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7492 self.pending_outbound_payments
7493 .add_new_awaiting_invoice(
7494 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7496 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7501 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7502 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7503 /// [`Bolt12Invoice`] once it is received.
7505 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7506 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7507 /// The optional parameters are used in the builder, if `Some`:
7508 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7509 /// [`Offer::expects_quantity`] is `true`.
7510 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7511 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7513 /// If `max_total_routing_fee_msat` is not specified, The default from
7514 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7518 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7519 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7522 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7523 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7524 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7528 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7529 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7530 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7531 /// in order to send the [`Bolt12Invoice`].
7535 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7536 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7537 /// [`Bolt12Invoice::payment_paths`].
7541 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7542 /// or if the provided parameters are invalid for the offer.
7544 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7545 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7546 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7547 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7548 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7549 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7550 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7551 pub fn pay_for_offer(
7552 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7553 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7554 max_total_routing_fee_msat: Option<u64>
7555 ) -> Result<(), Bolt12SemanticError> {
7556 let expanded_key = &self.inbound_payment_key;
7557 let entropy = &*self.entropy_source;
7558 let secp_ctx = &self.secp_ctx;
7561 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7562 .chain_hash(self.chain_hash)?;
7563 let builder = match quantity {
7565 Some(quantity) => builder.quantity(quantity)?,
7567 let builder = match amount_msats {
7569 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7571 let builder = match payer_note {
7573 Some(payer_note) => builder.payer_note(payer_note),
7576 let invoice_request = builder.build_and_sign()?;
7577 let reply_path = self.create_one_hop_blinded_path();
7579 let expiration = StaleExpiration::TimerTicks(1);
7580 self.pending_outbound_payments
7581 .add_new_awaiting_invoice(
7582 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7584 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7586 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7587 if offer.paths().is_empty() {
7588 let message = new_pending_onion_message(
7589 OffersMessage::InvoiceRequest(invoice_request),
7590 Destination::Node(offer.signing_pubkey()),
7593 pending_offers_messages.push(message);
7595 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7596 // Using only one path could result in a failure if the path no longer exists. But only
7597 // one invoice for a given payment id will be paid, even if more than one is received.
7598 const REQUEST_LIMIT: usize = 10;
7599 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7600 let message = new_pending_onion_message(
7601 OffersMessage::InvoiceRequest(invoice_request.clone()),
7602 Destination::BlindedPath(path.clone()),
7603 Some(reply_path.clone()),
7605 pending_offers_messages.push(message);
7612 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7615 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7616 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7617 /// [`PaymentPreimage`].
7621 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7622 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7623 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7624 /// received and no retries will be made.
7626 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7627 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7628 let expanded_key = &self.inbound_payment_key;
7629 let entropy = &*self.entropy_source;
7630 let secp_ctx = &self.secp_ctx;
7632 let amount_msats = refund.amount_msats();
7633 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7635 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7636 Ok((payment_hash, payment_secret)) => {
7637 let payment_paths = vec![
7638 self.create_one_hop_blinded_payment_path(payment_secret),
7640 #[cfg(not(feature = "no-std"))]
7641 let builder = refund.respond_using_derived_keys(
7642 payment_paths, payment_hash, expanded_key, entropy
7644 #[cfg(feature = "no-std")]
7645 let created_at = Duration::from_secs(
7646 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7648 #[cfg(feature = "no-std")]
7649 let builder = refund.respond_using_derived_keys_no_std(
7650 payment_paths, payment_hash, created_at, expanded_key, entropy
7652 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7653 let reply_path = self.create_one_hop_blinded_path();
7655 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7656 if refund.paths().is_empty() {
7657 let message = new_pending_onion_message(
7658 OffersMessage::Invoice(invoice),
7659 Destination::Node(refund.payer_id()),
7662 pending_offers_messages.push(message);
7664 for path in refund.paths() {
7665 let message = new_pending_onion_message(
7666 OffersMessage::Invoice(invoice.clone()),
7667 Destination::BlindedPath(path.clone()),
7668 Some(reply_path.clone()),
7670 pending_offers_messages.push(message);
7676 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7680 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7683 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7684 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7686 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7687 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7688 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7689 /// passed directly to [`claim_funds`].
7691 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7693 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7694 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7698 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7699 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7701 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7703 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7704 /// on versions of LDK prior to 0.0.114.
7706 /// [`claim_funds`]: Self::claim_funds
7707 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7708 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7709 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7710 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7711 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7712 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7713 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7714 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7715 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7716 min_final_cltv_expiry_delta)
7719 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7720 /// stored external to LDK.
7722 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7723 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7724 /// the `min_value_msat` provided here, if one is provided.
7726 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7727 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7730 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7731 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7732 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7733 /// sender "proof-of-payment" unless they have paid the required amount.
7735 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7736 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7737 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7738 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7739 /// invoices when no timeout is set.
7741 /// Note that we use block header time to time-out pending inbound payments (with some margin
7742 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7743 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7744 /// If you need exact expiry semantics, you should enforce them upon receipt of
7745 /// [`PaymentClaimable`].
7747 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7748 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7750 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7751 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7755 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7756 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7758 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7760 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7761 /// on versions of LDK prior to 0.0.114.
7763 /// [`create_inbound_payment`]: Self::create_inbound_payment
7764 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7765 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7766 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7767 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7768 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7769 min_final_cltv_expiry)
7772 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7773 /// previously returned from [`create_inbound_payment`].
7775 /// [`create_inbound_payment`]: Self::create_inbound_payment
7776 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7777 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7780 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7782 fn create_one_hop_blinded_path(&self) -> BlindedPath {
7783 let entropy_source = self.entropy_source.deref();
7784 let secp_ctx = &self.secp_ctx;
7785 BlindedPath::one_hop_for_message(self.get_our_node_id(), entropy_source, secp_ctx).unwrap()
7788 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7790 fn create_one_hop_blinded_payment_path(
7791 &self, payment_secret: PaymentSecret
7792 ) -> (BlindedPayInfo, BlindedPath) {
7793 let entropy_source = self.entropy_source.deref();
7794 let secp_ctx = &self.secp_ctx;
7796 let payee_node_id = self.get_our_node_id();
7797 let max_cltv_expiry = self.best_block.read().unwrap().height() + LATENCY_GRACE_PERIOD_BLOCKS;
7798 let payee_tlvs = ReceiveTlvs {
7800 payment_constraints: PaymentConstraints {
7802 htlc_minimum_msat: 1,
7805 // TODO: Err for overflow?
7806 BlindedPath::one_hop_for_payment(
7807 payee_node_id, payee_tlvs, entropy_source, secp_ctx
7811 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7812 /// are used when constructing the phantom invoice's route hints.
7814 /// [phantom node payments]: crate::sign::PhantomKeysManager
7815 pub fn get_phantom_scid(&self) -> u64 {
7816 let best_block_height = self.best_block.read().unwrap().height();
7817 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7819 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7820 // Ensure the generated scid doesn't conflict with a real channel.
7821 match short_to_chan_info.get(&scid_candidate) {
7822 Some(_) => continue,
7823 None => return scid_candidate
7828 /// Gets route hints for use in receiving [phantom node payments].
7830 /// [phantom node payments]: crate::sign::PhantomKeysManager
7831 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7833 channels: self.list_usable_channels(),
7834 phantom_scid: self.get_phantom_scid(),
7835 real_node_pubkey: self.get_our_node_id(),
7839 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7840 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7841 /// [`ChannelManager::forward_intercepted_htlc`].
7843 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7844 /// times to get a unique scid.
7845 pub fn get_intercept_scid(&self) -> u64 {
7846 let best_block_height = self.best_block.read().unwrap().height();
7847 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7849 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7850 // Ensure the generated scid doesn't conflict with a real channel.
7851 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7852 return scid_candidate
7856 /// Gets inflight HTLC information by processing pending outbound payments that are in
7857 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7858 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7859 let mut inflight_htlcs = InFlightHtlcs::new();
7861 let per_peer_state = self.per_peer_state.read().unwrap();
7862 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7863 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7864 let peer_state = &mut *peer_state_lock;
7865 for chan in peer_state.channel_by_id.values().filter_map(
7866 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7868 for (htlc_source, _) in chan.inflight_htlc_sources() {
7869 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7870 inflight_htlcs.process_path(path, self.get_our_node_id());
7879 #[cfg(any(test, feature = "_test_utils"))]
7880 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7881 let events = core::cell::RefCell::new(Vec::new());
7882 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7883 self.process_pending_events(&event_handler);
7887 #[cfg(feature = "_test_utils")]
7888 pub fn push_pending_event(&self, event: events::Event) {
7889 let mut events = self.pending_events.lock().unwrap();
7890 events.push_back((event, None));
7894 pub fn pop_pending_event(&self) -> Option<events::Event> {
7895 let mut events = self.pending_events.lock().unwrap();
7896 events.pop_front().map(|(e, _)| e)
7900 pub fn has_pending_payments(&self) -> bool {
7901 self.pending_outbound_payments.has_pending_payments()
7905 pub fn clear_pending_payments(&self) {
7906 self.pending_outbound_payments.clear_pending_payments()
7909 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7910 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7911 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7912 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7913 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7915 let per_peer_state = self.per_peer_state.read().unwrap();
7916 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7917 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7918 let peer_state = &mut *peer_state_lck;
7920 if let Some(blocker) = completed_blocker.take() {
7921 // Only do this on the first iteration of the loop.
7922 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7923 .get_mut(&channel_funding_outpoint.to_channel_id())
7925 blockers.retain(|iter| iter != &blocker);
7929 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7930 channel_funding_outpoint, counterparty_node_id) {
7931 // Check that, while holding the peer lock, we don't have anything else
7932 // blocking monitor updates for this channel. If we do, release the monitor
7933 // update(s) when those blockers complete.
7934 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7935 &channel_funding_outpoint.to_channel_id());
7939 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7940 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7941 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7942 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7943 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
7944 channel_funding_outpoint.to_channel_id());
7945 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7946 peer_state_lck, peer_state, per_peer_state, chan);
7947 if further_update_exists {
7948 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7953 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
7954 channel_funding_outpoint.to_channel_id());
7959 log_debug!(self.logger,
7960 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7961 log_pubkey!(counterparty_node_id));
7967 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7968 for action in actions {
7970 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7971 channel_funding_outpoint, counterparty_node_id
7973 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7979 /// Processes any events asynchronously in the order they were generated since the last call
7980 /// using the given event handler.
7982 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7983 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7987 process_events_body!(self, ev, { handler(ev).await });
7991 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7993 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7994 T::Target: BroadcasterInterface,
7995 ES::Target: EntropySource,
7996 NS::Target: NodeSigner,
7997 SP::Target: SignerProvider,
7998 F::Target: FeeEstimator,
8002 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
8003 /// The returned array will contain `MessageSendEvent`s for different peers if
8004 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
8005 /// is always placed next to each other.
8007 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
8008 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
8009 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
8010 /// will randomly be placed first or last in the returned array.
8012 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
8013 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
8014 /// the `MessageSendEvent`s to the specific peer they were generated under.
8015 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
8016 let events = RefCell::new(Vec::new());
8017 PersistenceNotifierGuard::optionally_notify(self, || {
8018 let mut result = NotifyOption::SkipPersistNoEvents;
8020 // TODO: This behavior should be documented. It's unintuitive that we query
8021 // ChannelMonitors when clearing other events.
8022 if self.process_pending_monitor_events() {
8023 result = NotifyOption::DoPersist;
8026 if self.check_free_holding_cells() {
8027 result = NotifyOption::DoPersist;
8029 if self.maybe_generate_initial_closing_signed() {
8030 result = NotifyOption::DoPersist;
8033 let mut pending_events = Vec::new();
8034 let per_peer_state = self.per_peer_state.read().unwrap();
8035 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8036 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8037 let peer_state = &mut *peer_state_lock;
8038 if peer_state.pending_msg_events.len() > 0 {
8039 pending_events.append(&mut peer_state.pending_msg_events);
8043 if !pending_events.is_empty() {
8044 events.replace(pending_events);
8053 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8055 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8056 T::Target: BroadcasterInterface,
8057 ES::Target: EntropySource,
8058 NS::Target: NodeSigner,
8059 SP::Target: SignerProvider,
8060 F::Target: FeeEstimator,
8064 /// Processes events that must be periodically handled.
8066 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8067 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8068 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8070 process_events_body!(self, ev, handler.handle_event(ev));
8074 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8076 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8077 T::Target: BroadcasterInterface,
8078 ES::Target: EntropySource,
8079 NS::Target: NodeSigner,
8080 SP::Target: SignerProvider,
8081 F::Target: FeeEstimator,
8085 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
8087 let best_block = self.best_block.read().unwrap();
8088 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8089 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8090 assert_eq!(best_block.height(), height - 1,
8091 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8094 self.transactions_confirmed(header, txdata, height);
8095 self.best_block_updated(header, height);
8098 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
8099 let _persistence_guard =
8100 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8101 self, || -> NotifyOption { NotifyOption::DoPersist });
8102 let new_height = height - 1;
8104 let mut best_block = self.best_block.write().unwrap();
8105 assert_eq!(best_block.block_hash(), header.block_hash(),
8106 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8107 assert_eq!(best_block.height(), height,
8108 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8109 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8112 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8116 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8118 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8119 T::Target: BroadcasterInterface,
8120 ES::Target: EntropySource,
8121 NS::Target: NodeSigner,
8122 SP::Target: SignerProvider,
8123 F::Target: FeeEstimator,
8127 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
8128 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8129 // during initialization prior to the chain_monitor being fully configured in some cases.
8130 // See the docs for `ChannelManagerReadArgs` for more.
8132 let block_hash = header.block_hash();
8133 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8135 let _persistence_guard =
8136 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8137 self, || -> NotifyOption { NotifyOption::DoPersist });
8138 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger)
8139 .map(|(a, b)| (a, Vec::new(), b)));
8141 let last_best_block_height = self.best_block.read().unwrap().height();
8142 if height < last_best_block_height {
8143 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8144 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8148 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
8149 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8150 // during initialization prior to the chain_monitor being fully configured in some cases.
8151 // See the docs for `ChannelManagerReadArgs` for more.
8153 let block_hash = header.block_hash();
8154 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8156 let _persistence_guard =
8157 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8158 self, || -> NotifyOption { NotifyOption::DoPersist });
8159 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8161 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8163 macro_rules! max_time {
8164 ($timestamp: expr) => {
8166 // Update $timestamp to be the max of its current value and the block
8167 // timestamp. This should keep us close to the current time without relying on
8168 // having an explicit local time source.
8169 // Just in case we end up in a race, we loop until we either successfully
8170 // update $timestamp or decide we don't need to.
8171 let old_serial = $timestamp.load(Ordering::Acquire);
8172 if old_serial >= header.time as usize { break; }
8173 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8179 max_time!(self.highest_seen_timestamp);
8180 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8181 payment_secrets.retain(|_, inbound_payment| {
8182 inbound_payment.expiry_time > header.time as u64
8186 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
8187 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8188 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8189 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8190 let peer_state = &mut *peer_state_lock;
8191 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8192 if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) {
8193 res.push((funding_txo.txid, Some(block_hash)));
8200 fn transaction_unconfirmed(&self, txid: &Txid) {
8201 let _persistence_guard =
8202 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8203 self, || -> NotifyOption { NotifyOption::DoPersist });
8204 self.do_chain_event(None, |channel| {
8205 if let Some(funding_txo) = channel.context.get_funding_txo() {
8206 if funding_txo.txid == *txid {
8207 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
8208 } else { Ok((None, Vec::new(), None)) }
8209 } else { Ok((None, Vec::new(), None)) }
8214 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8216 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8217 T::Target: BroadcasterInterface,
8218 ES::Target: EntropySource,
8219 NS::Target: NodeSigner,
8220 SP::Target: SignerProvider,
8221 F::Target: FeeEstimator,
8225 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8226 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8228 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8229 (&self, height_opt: Option<u32>, f: FN) {
8230 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8231 // during initialization prior to the chain_monitor being fully configured in some cases.
8232 // See the docs for `ChannelManagerReadArgs` for more.
8234 let mut failed_channels = Vec::new();
8235 let mut timed_out_htlcs = Vec::new();
8237 let per_peer_state = self.per_peer_state.read().unwrap();
8238 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8239 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8240 let peer_state = &mut *peer_state_lock;
8241 let pending_msg_events = &mut peer_state.pending_msg_events;
8242 peer_state.channel_by_id.retain(|_, phase| {
8244 // Retain unfunded channels.
8245 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8246 ChannelPhase::Funded(channel) => {
8247 let res = f(channel);
8248 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8249 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8250 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8251 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8252 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8254 if let Some(channel_ready) = channel_ready_opt {
8255 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8256 if channel.context.is_usable() {
8257 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8258 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8259 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8260 node_id: channel.context.get_counterparty_node_id(),
8265 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8270 let mut pending_events = self.pending_events.lock().unwrap();
8271 emit_channel_ready_event!(pending_events, channel);
8274 if let Some(announcement_sigs) = announcement_sigs {
8275 log_trace!(self.logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8276 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8277 node_id: channel.context.get_counterparty_node_id(),
8278 msg: announcement_sigs,
8280 if let Some(height) = height_opt {
8281 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8282 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8284 // Note that announcement_signatures fails if the channel cannot be announced,
8285 // so get_channel_update_for_broadcast will never fail by the time we get here.
8286 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8291 if channel.is_our_channel_ready() {
8292 if let Some(real_scid) = channel.context.get_short_channel_id() {
8293 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8294 // to the short_to_chan_info map here. Note that we check whether we
8295 // can relay using the real SCID at relay-time (i.e.
8296 // enforce option_scid_alias then), and if the funding tx is ever
8297 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8298 // is always consistent.
8299 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8300 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8301 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8302 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8303 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8306 } else if let Err(reason) = res {
8307 update_maps_on_chan_removal!(self, &channel.context);
8308 // It looks like our counterparty went on-chain or funding transaction was
8309 // reorged out of the main chain. Close the channel.
8310 failed_channels.push(channel.context.force_shutdown(true));
8311 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8312 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8316 let reason_message = format!("{}", reason);
8317 self.issue_channel_close_events(&channel.context, reason);
8318 pending_msg_events.push(events::MessageSendEvent::HandleError {
8319 node_id: channel.context.get_counterparty_node_id(),
8320 action: msgs::ErrorAction::DisconnectPeer {
8321 msg: Some(msgs::ErrorMessage {
8322 channel_id: channel.context.channel_id(),
8323 data: reason_message,
8336 if let Some(height) = height_opt {
8337 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8338 payment.htlcs.retain(|htlc| {
8339 // If height is approaching the number of blocks we think it takes us to get
8340 // our commitment transaction confirmed before the HTLC expires, plus the
8341 // number of blocks we generally consider it to take to do a commitment update,
8342 // just give up on it and fail the HTLC.
8343 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8344 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8345 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8347 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8348 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8349 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8353 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8356 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8357 intercepted_htlcs.retain(|_, htlc| {
8358 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8359 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8360 short_channel_id: htlc.prev_short_channel_id,
8361 user_channel_id: Some(htlc.prev_user_channel_id),
8362 htlc_id: htlc.prev_htlc_id,
8363 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8364 phantom_shared_secret: None,
8365 outpoint: htlc.prev_funding_outpoint,
8368 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8369 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8370 _ => unreachable!(),
8372 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8373 HTLCFailReason::from_failure_code(0x2000 | 2),
8374 HTLCDestination::InvalidForward { requested_forward_scid }));
8375 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8381 self.handle_init_event_channel_failures(failed_channels);
8383 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8384 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8388 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8389 /// may have events that need processing.
8391 /// In order to check if this [`ChannelManager`] needs persisting, call
8392 /// [`Self::get_and_clear_needs_persistence`].
8394 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8395 /// [`ChannelManager`] and should instead register actions to be taken later.
8396 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8397 self.event_persist_notifier.get_future()
8400 /// Returns true if this [`ChannelManager`] needs to be persisted.
8401 pub fn get_and_clear_needs_persistence(&self) -> bool {
8402 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8405 #[cfg(any(test, feature = "_test_utils"))]
8406 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8407 self.event_persist_notifier.notify_pending()
8410 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8411 /// [`chain::Confirm`] interfaces.
8412 pub fn current_best_block(&self) -> BestBlock {
8413 self.best_block.read().unwrap().clone()
8416 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8417 /// [`ChannelManager`].
8418 pub fn node_features(&self) -> NodeFeatures {
8419 provided_node_features(&self.default_configuration)
8422 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8423 /// [`ChannelManager`].
8425 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8426 /// or not. Thus, this method is not public.
8427 #[cfg(any(feature = "_test_utils", test))]
8428 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8429 provided_bolt11_invoice_features(&self.default_configuration)
8432 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8433 /// [`ChannelManager`].
8434 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8435 provided_bolt12_invoice_features(&self.default_configuration)
8438 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8439 /// [`ChannelManager`].
8440 pub fn channel_features(&self) -> ChannelFeatures {
8441 provided_channel_features(&self.default_configuration)
8444 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8445 /// [`ChannelManager`].
8446 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8447 provided_channel_type_features(&self.default_configuration)
8450 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8451 /// [`ChannelManager`].
8452 pub fn init_features(&self) -> InitFeatures {
8453 provided_init_features(&self.default_configuration)
8457 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8458 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8460 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8461 T::Target: BroadcasterInterface,
8462 ES::Target: EntropySource,
8463 NS::Target: NodeSigner,
8464 SP::Target: SignerProvider,
8465 F::Target: FeeEstimator,
8469 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8470 // Note that we never need to persist the updated ChannelManager for an inbound
8471 // open_channel message - pre-funded channels are never written so there should be no
8472 // change to the contents.
8473 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8474 let res = self.internal_open_channel(counterparty_node_id, msg);
8475 let persist = match &res {
8476 Err(e) if e.closes_channel() => {
8477 debug_assert!(false, "We shouldn't close a new channel");
8478 NotifyOption::DoPersist
8480 _ => NotifyOption::SkipPersistHandleEvents,
8482 let _ = handle_error!(self, res, *counterparty_node_id);
8487 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8488 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8489 "Dual-funded channels not supported".to_owned(),
8490 msg.temporary_channel_id.clone())), *counterparty_node_id);
8493 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8494 // Note that we never need to persist the updated ChannelManager for an inbound
8495 // accept_channel message - pre-funded channels are never written so there should be no
8496 // change to the contents.
8497 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8498 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8499 NotifyOption::SkipPersistHandleEvents
8503 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8504 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8505 "Dual-funded channels not supported".to_owned(),
8506 msg.temporary_channel_id.clone())), *counterparty_node_id);
8509 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8510 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8511 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8514 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8515 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8516 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8519 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8520 // Note that we never need to persist the updated ChannelManager for an inbound
8521 // channel_ready message - while the channel's state will change, any channel_ready message
8522 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8523 // will not force-close the channel on startup.
8524 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8525 let res = self.internal_channel_ready(counterparty_node_id, msg);
8526 let persist = match &res {
8527 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8528 _ => NotifyOption::SkipPersistHandleEvents,
8530 let _ = handle_error!(self, res, *counterparty_node_id);
8535 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8536 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8537 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8540 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8541 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8542 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8545 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8546 // Note that we never need to persist the updated ChannelManager for an inbound
8547 // update_add_htlc message - the message itself doesn't change our channel state only the
8548 // `commitment_signed` message afterwards will.
8549 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8550 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8551 let persist = match &res {
8552 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8553 Err(_) => NotifyOption::SkipPersistHandleEvents,
8554 Ok(()) => NotifyOption::SkipPersistNoEvents,
8556 let _ = handle_error!(self, res, *counterparty_node_id);
8561 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8562 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8563 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8566 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8567 // Note that we never need to persist the updated ChannelManager for an inbound
8568 // update_fail_htlc message - the message itself doesn't change our channel state only the
8569 // `commitment_signed` message afterwards will.
8570 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8571 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8572 let persist = match &res {
8573 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8574 Err(_) => NotifyOption::SkipPersistHandleEvents,
8575 Ok(()) => NotifyOption::SkipPersistNoEvents,
8577 let _ = handle_error!(self, res, *counterparty_node_id);
8582 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8583 // Note that we never need to persist the updated ChannelManager for an inbound
8584 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8585 // only the `commitment_signed` message afterwards will.
8586 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8587 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8588 let persist = match &res {
8589 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8590 Err(_) => NotifyOption::SkipPersistHandleEvents,
8591 Ok(()) => NotifyOption::SkipPersistNoEvents,
8593 let _ = handle_error!(self, res, *counterparty_node_id);
8598 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8599 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8600 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8603 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8604 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8605 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8608 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8609 // Note that we never need to persist the updated ChannelManager for an inbound
8610 // update_fee message - the message itself doesn't change our channel state only the
8611 // `commitment_signed` message afterwards will.
8612 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8613 let res = self.internal_update_fee(counterparty_node_id, msg);
8614 let persist = match &res {
8615 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8616 Err(_) => NotifyOption::SkipPersistHandleEvents,
8617 Ok(()) => NotifyOption::SkipPersistNoEvents,
8619 let _ = handle_error!(self, res, *counterparty_node_id);
8624 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8625 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8626 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8629 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8630 PersistenceNotifierGuard::optionally_notify(self, || {
8631 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8634 NotifyOption::DoPersist
8639 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8640 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8641 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8642 let persist = match &res {
8643 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8644 Err(_) => NotifyOption::SkipPersistHandleEvents,
8645 Ok(persist) => *persist,
8647 let _ = handle_error!(self, res, *counterparty_node_id);
8652 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8653 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8654 self, || NotifyOption::SkipPersistHandleEvents);
8655 let mut failed_channels = Vec::new();
8656 let mut per_peer_state = self.per_peer_state.write().unwrap();
8658 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
8659 log_pubkey!(counterparty_node_id));
8660 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8661 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8662 let peer_state = &mut *peer_state_lock;
8663 let pending_msg_events = &mut peer_state.pending_msg_events;
8664 peer_state.channel_by_id.retain(|_, phase| {
8665 let context = match phase {
8666 ChannelPhase::Funded(chan) => {
8667 if chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger).is_ok() {
8668 // We only retain funded channels that are not shutdown.
8673 // Unfunded channels will always be removed.
8674 ChannelPhase::UnfundedOutboundV1(chan) => {
8677 ChannelPhase::UnfundedInboundV1(chan) => {
8681 // Clean up for removal.
8682 update_maps_on_chan_removal!(self, &context);
8683 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8684 failed_channels.push(context.force_shutdown(false));
8687 // Note that we don't bother generating any events for pre-accept channels -
8688 // they're not considered "channels" yet from the PoV of our events interface.
8689 peer_state.inbound_channel_request_by_id.clear();
8690 pending_msg_events.retain(|msg| {
8692 // V1 Channel Establishment
8693 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8694 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8695 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8696 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8697 // V2 Channel Establishment
8698 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8699 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8700 // Common Channel Establishment
8701 &events::MessageSendEvent::SendChannelReady { .. } => false,
8702 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8703 // Interactive Transaction Construction
8704 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8705 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8706 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8707 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8708 &events::MessageSendEvent::SendTxComplete { .. } => false,
8709 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8710 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8711 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8712 &events::MessageSendEvent::SendTxAbort { .. } => false,
8713 // Channel Operations
8714 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8715 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8716 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8717 &events::MessageSendEvent::SendShutdown { .. } => false,
8718 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8719 &events::MessageSendEvent::HandleError { .. } => false,
8721 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8722 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8723 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8724 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8725 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8726 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8727 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8728 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8729 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8732 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8733 peer_state.is_connected = false;
8734 peer_state.ok_to_remove(true)
8735 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8738 per_peer_state.remove(counterparty_node_id);
8740 mem::drop(per_peer_state);
8742 for failure in failed_channels.drain(..) {
8743 self.finish_close_channel(failure);
8747 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8748 if !init_msg.features.supports_static_remote_key() {
8749 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8753 let mut res = Ok(());
8755 PersistenceNotifierGuard::optionally_notify(self, || {
8756 // If we have too many peers connected which don't have funded channels, disconnect the
8757 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8758 // unfunded channels taking up space in memory for disconnected peers, we still let new
8759 // peers connect, but we'll reject new channels from them.
8760 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8761 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8764 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8765 match peer_state_lock.entry(counterparty_node_id.clone()) {
8766 hash_map::Entry::Vacant(e) => {
8767 if inbound_peer_limited {
8769 return NotifyOption::SkipPersistNoEvents;
8771 e.insert(Mutex::new(PeerState {
8772 channel_by_id: HashMap::new(),
8773 inbound_channel_request_by_id: HashMap::new(),
8774 latest_features: init_msg.features.clone(),
8775 pending_msg_events: Vec::new(),
8776 in_flight_monitor_updates: BTreeMap::new(),
8777 monitor_update_blocked_actions: BTreeMap::new(),
8778 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8782 hash_map::Entry::Occupied(e) => {
8783 let mut peer_state = e.get().lock().unwrap();
8784 peer_state.latest_features = init_msg.features.clone();
8786 let best_block_height = self.best_block.read().unwrap().height();
8787 if inbound_peer_limited &&
8788 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8789 peer_state.channel_by_id.len()
8792 return NotifyOption::SkipPersistNoEvents;
8795 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8796 peer_state.is_connected = true;
8801 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8803 let per_peer_state = self.per_peer_state.read().unwrap();
8804 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8805 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8806 let peer_state = &mut *peer_state_lock;
8807 let pending_msg_events = &mut peer_state.pending_msg_events;
8809 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8810 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8811 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8812 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8813 // worry about closing and removing them.
8814 debug_assert!(false);
8818 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
8819 node_id: chan.context.get_counterparty_node_id(),
8820 msg: chan.get_channel_reestablish(&self.logger),
8825 return NotifyOption::SkipPersistHandleEvents;
8826 //TODO: Also re-broadcast announcement_signatures
8831 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8832 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8834 match &msg.data as &str {
8835 "cannot co-op close channel w/ active htlcs"|
8836 "link failed to shutdown" =>
8838 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8839 // send one while HTLCs are still present. The issue is tracked at
8840 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8841 // to fix it but none so far have managed to land upstream. The issue appears to be
8842 // very low priority for the LND team despite being marked "P1".
8843 // We're not going to bother handling this in a sensible way, instead simply
8844 // repeating the Shutdown message on repeat until morale improves.
8845 if !msg.channel_id.is_zero() {
8846 let per_peer_state = self.per_peer_state.read().unwrap();
8847 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8848 if peer_state_mutex_opt.is_none() { return; }
8849 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8850 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8851 if let Some(msg) = chan.get_outbound_shutdown() {
8852 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8853 node_id: *counterparty_node_id,
8857 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8858 node_id: *counterparty_node_id,
8859 action: msgs::ErrorAction::SendWarningMessage {
8860 msg: msgs::WarningMessage {
8861 channel_id: msg.channel_id,
8862 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8864 log_level: Level::Trace,
8874 if msg.channel_id.is_zero() {
8875 let channel_ids: Vec<ChannelId> = {
8876 let per_peer_state = self.per_peer_state.read().unwrap();
8877 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8878 if peer_state_mutex_opt.is_none() { return; }
8879 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8880 let peer_state = &mut *peer_state_lock;
8881 // Note that we don't bother generating any events for pre-accept channels -
8882 // they're not considered "channels" yet from the PoV of our events interface.
8883 peer_state.inbound_channel_request_by_id.clear();
8884 peer_state.channel_by_id.keys().cloned().collect()
8886 for channel_id in channel_ids {
8887 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8888 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8892 // First check if we can advance the channel type and try again.
8893 let per_peer_state = self.per_peer_state.read().unwrap();
8894 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8895 if peer_state_mutex_opt.is_none() { return; }
8896 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8897 let peer_state = &mut *peer_state_lock;
8898 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8899 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
8900 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8901 node_id: *counterparty_node_id,
8909 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8910 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8914 fn provided_node_features(&self) -> NodeFeatures {
8915 provided_node_features(&self.default_configuration)
8918 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8919 provided_init_features(&self.default_configuration)
8922 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
8923 Some(vec![self.chain_hash])
8926 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8927 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8928 "Dual-funded channels not supported".to_owned(),
8929 msg.channel_id.clone())), *counterparty_node_id);
8932 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
8933 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8934 "Dual-funded channels not supported".to_owned(),
8935 msg.channel_id.clone())), *counterparty_node_id);
8938 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
8939 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8940 "Dual-funded channels not supported".to_owned(),
8941 msg.channel_id.clone())), *counterparty_node_id);
8944 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
8945 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8946 "Dual-funded channels not supported".to_owned(),
8947 msg.channel_id.clone())), *counterparty_node_id);
8950 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
8951 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8952 "Dual-funded channels not supported".to_owned(),
8953 msg.channel_id.clone())), *counterparty_node_id);
8956 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
8957 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8958 "Dual-funded channels not supported".to_owned(),
8959 msg.channel_id.clone())), *counterparty_node_id);
8962 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
8963 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8964 "Dual-funded channels not supported".to_owned(),
8965 msg.channel_id.clone())), *counterparty_node_id);
8968 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
8969 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8970 "Dual-funded channels not supported".to_owned(),
8971 msg.channel_id.clone())), *counterparty_node_id);
8974 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
8975 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8976 "Dual-funded channels not supported".to_owned(),
8977 msg.channel_id.clone())), *counterparty_node_id);
8981 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8982 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8984 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8985 T::Target: BroadcasterInterface,
8986 ES::Target: EntropySource,
8987 NS::Target: NodeSigner,
8988 SP::Target: SignerProvider,
8989 F::Target: FeeEstimator,
8993 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
8994 let secp_ctx = &self.secp_ctx;
8995 let expanded_key = &self.inbound_payment_key;
8998 OffersMessage::InvoiceRequest(invoice_request) => {
8999 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
9002 Ok(amount_msats) => Some(amount_msats),
9003 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9005 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9006 Ok(invoice_request) => invoice_request,
9008 let error = Bolt12SemanticError::InvalidMetadata;
9009 return Some(OffersMessage::InvoiceError(error.into()));
9012 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9014 match self.create_inbound_payment(amount_msats, relative_expiry, None) {
9015 Ok((payment_hash, payment_secret)) if invoice_request.keys.is_some() => {
9016 let payment_paths = vec![
9017 self.create_one_hop_blinded_payment_path(payment_secret),
9019 #[cfg(not(feature = "no-std"))]
9020 let builder = invoice_request.respond_using_derived_keys(
9021 payment_paths, payment_hash
9023 #[cfg(feature = "no-std")]
9024 let created_at = Duration::from_secs(
9025 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9027 #[cfg(feature = "no-std")]
9028 let builder = invoice_request.respond_using_derived_keys_no_std(
9029 payment_paths, payment_hash, created_at
9031 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9032 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9033 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9036 Ok((payment_hash, payment_secret)) => {
9037 let payment_paths = vec![
9038 self.create_one_hop_blinded_payment_path(payment_secret),
9040 #[cfg(not(feature = "no-std"))]
9041 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9042 #[cfg(feature = "no-std")]
9043 let created_at = Duration::from_secs(
9044 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9046 #[cfg(feature = "no-std")]
9047 let builder = invoice_request.respond_with_no_std(
9048 payment_paths, payment_hash, created_at
9050 let response = builder.and_then(|builder| builder.allow_mpp().build())
9051 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9053 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9054 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9055 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9056 InvoiceError::from_string("Failed signing invoice".to_string())
9058 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9059 InvoiceError::from_string("Failed invoice signature verification".to_string())
9063 Ok(invoice) => Some(invoice),
9064 Err(error) => Some(error),
9068 Some(OffersMessage::InvoiceError(Bolt12SemanticError::InvalidAmount.into()))
9072 OffersMessage::Invoice(invoice) => {
9073 match invoice.verify(expanded_key, secp_ctx) {
9075 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9077 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9078 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9081 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9082 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9083 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9090 OffersMessage::InvoiceError(invoice_error) => {
9091 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9097 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9098 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9102 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9103 /// [`ChannelManager`].
9104 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9105 let mut node_features = provided_init_features(config).to_context();
9106 node_features.set_keysend_optional();
9110 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9111 /// [`ChannelManager`].
9113 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9114 /// or not. Thus, this method is not public.
9115 #[cfg(any(feature = "_test_utils", test))]
9116 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9117 provided_init_features(config).to_context()
9120 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9121 /// [`ChannelManager`].
9122 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9123 provided_init_features(config).to_context()
9126 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9127 /// [`ChannelManager`].
9128 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9129 provided_init_features(config).to_context()
9132 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9133 /// [`ChannelManager`].
9134 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9135 ChannelTypeFeatures::from_init(&provided_init_features(config))
9138 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9139 /// [`ChannelManager`].
9140 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9141 // Note that if new features are added here which other peers may (eventually) require, we
9142 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9143 // [`ErroringMessageHandler`].
9144 let mut features = InitFeatures::empty();
9145 features.set_data_loss_protect_required();
9146 features.set_upfront_shutdown_script_optional();
9147 features.set_variable_length_onion_required();
9148 features.set_static_remote_key_required();
9149 features.set_payment_secret_required();
9150 features.set_basic_mpp_optional();
9151 features.set_wumbo_optional();
9152 features.set_shutdown_any_segwit_optional();
9153 features.set_channel_type_optional();
9154 features.set_scid_privacy_optional();
9155 features.set_zero_conf_optional();
9156 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9157 features.set_anchors_zero_fee_htlc_tx_optional();
9162 const SERIALIZATION_VERSION: u8 = 1;
9163 const MIN_SERIALIZATION_VERSION: u8 = 1;
9165 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9166 (2, fee_base_msat, required),
9167 (4, fee_proportional_millionths, required),
9168 (6, cltv_expiry_delta, required),
9171 impl_writeable_tlv_based!(ChannelCounterparty, {
9172 (2, node_id, required),
9173 (4, features, required),
9174 (6, unspendable_punishment_reserve, required),
9175 (8, forwarding_info, option),
9176 (9, outbound_htlc_minimum_msat, option),
9177 (11, outbound_htlc_maximum_msat, option),
9180 impl Writeable for ChannelDetails {
9181 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9182 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9183 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9184 let user_channel_id_low = self.user_channel_id as u64;
9185 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9186 write_tlv_fields!(writer, {
9187 (1, self.inbound_scid_alias, option),
9188 (2, self.channel_id, required),
9189 (3, self.channel_type, option),
9190 (4, self.counterparty, required),
9191 (5, self.outbound_scid_alias, option),
9192 (6, self.funding_txo, option),
9193 (7, self.config, option),
9194 (8, self.short_channel_id, option),
9195 (9, self.confirmations, option),
9196 (10, self.channel_value_satoshis, required),
9197 (12, self.unspendable_punishment_reserve, option),
9198 (14, user_channel_id_low, required),
9199 (16, self.balance_msat, required),
9200 (18, self.outbound_capacity_msat, required),
9201 (19, self.next_outbound_htlc_limit_msat, required),
9202 (20, self.inbound_capacity_msat, required),
9203 (21, self.next_outbound_htlc_minimum_msat, required),
9204 (22, self.confirmations_required, option),
9205 (24, self.force_close_spend_delay, option),
9206 (26, self.is_outbound, required),
9207 (28, self.is_channel_ready, required),
9208 (30, self.is_usable, required),
9209 (32, self.is_public, required),
9210 (33, self.inbound_htlc_minimum_msat, option),
9211 (35, self.inbound_htlc_maximum_msat, option),
9212 (37, user_channel_id_high_opt, option),
9213 (39, self.feerate_sat_per_1000_weight, option),
9214 (41, self.channel_shutdown_state, option),
9220 impl Readable for ChannelDetails {
9221 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9222 _init_and_read_len_prefixed_tlv_fields!(reader, {
9223 (1, inbound_scid_alias, option),
9224 (2, channel_id, required),
9225 (3, channel_type, option),
9226 (4, counterparty, required),
9227 (5, outbound_scid_alias, option),
9228 (6, funding_txo, option),
9229 (7, config, option),
9230 (8, short_channel_id, option),
9231 (9, confirmations, option),
9232 (10, channel_value_satoshis, required),
9233 (12, unspendable_punishment_reserve, option),
9234 (14, user_channel_id_low, required),
9235 (16, balance_msat, required),
9236 (18, outbound_capacity_msat, required),
9237 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9238 // filled in, so we can safely unwrap it here.
9239 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9240 (20, inbound_capacity_msat, required),
9241 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9242 (22, confirmations_required, option),
9243 (24, force_close_spend_delay, option),
9244 (26, is_outbound, required),
9245 (28, is_channel_ready, required),
9246 (30, is_usable, required),
9247 (32, is_public, required),
9248 (33, inbound_htlc_minimum_msat, option),
9249 (35, inbound_htlc_maximum_msat, option),
9250 (37, user_channel_id_high_opt, option),
9251 (39, feerate_sat_per_1000_weight, option),
9252 (41, channel_shutdown_state, option),
9255 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9256 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9257 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9258 let user_channel_id = user_channel_id_low as u128 +
9259 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9263 channel_id: channel_id.0.unwrap(),
9265 counterparty: counterparty.0.unwrap(),
9266 outbound_scid_alias,
9270 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9271 unspendable_punishment_reserve,
9273 balance_msat: balance_msat.0.unwrap(),
9274 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9275 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9276 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9277 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9278 confirmations_required,
9280 force_close_spend_delay,
9281 is_outbound: is_outbound.0.unwrap(),
9282 is_channel_ready: is_channel_ready.0.unwrap(),
9283 is_usable: is_usable.0.unwrap(),
9284 is_public: is_public.0.unwrap(),
9285 inbound_htlc_minimum_msat,
9286 inbound_htlc_maximum_msat,
9287 feerate_sat_per_1000_weight,
9288 channel_shutdown_state,
9293 impl_writeable_tlv_based!(PhantomRouteHints, {
9294 (2, channels, required_vec),
9295 (4, phantom_scid, required),
9296 (6, real_node_pubkey, required),
9299 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9301 (0, onion_packet, required),
9302 (2, short_channel_id, required),
9305 (0, payment_data, required),
9306 (1, phantom_shared_secret, option),
9307 (2, incoming_cltv_expiry, required),
9308 (3, payment_metadata, option),
9309 (5, custom_tlvs, optional_vec),
9311 (2, ReceiveKeysend) => {
9312 (0, payment_preimage, required),
9313 (2, incoming_cltv_expiry, required),
9314 (3, payment_metadata, option),
9315 (4, payment_data, option), // Added in 0.0.116
9316 (5, custom_tlvs, optional_vec),
9320 impl_writeable_tlv_based!(PendingHTLCInfo, {
9321 (0, routing, required),
9322 (2, incoming_shared_secret, required),
9323 (4, payment_hash, required),
9324 (6, outgoing_amt_msat, required),
9325 (8, outgoing_cltv_value, required),
9326 (9, incoming_amt_msat, option),
9327 (10, skimmed_fee_msat, option),
9331 impl Writeable for HTLCFailureMsg {
9332 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9334 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9336 channel_id.write(writer)?;
9337 htlc_id.write(writer)?;
9338 reason.write(writer)?;
9340 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9341 channel_id, htlc_id, sha256_of_onion, failure_code
9344 channel_id.write(writer)?;
9345 htlc_id.write(writer)?;
9346 sha256_of_onion.write(writer)?;
9347 failure_code.write(writer)?;
9354 impl Readable for HTLCFailureMsg {
9355 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9356 let id: u8 = Readable::read(reader)?;
9359 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9360 channel_id: Readable::read(reader)?,
9361 htlc_id: Readable::read(reader)?,
9362 reason: Readable::read(reader)?,
9366 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9367 channel_id: Readable::read(reader)?,
9368 htlc_id: Readable::read(reader)?,
9369 sha256_of_onion: Readable::read(reader)?,
9370 failure_code: Readable::read(reader)?,
9373 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9374 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9375 // messages contained in the variants.
9376 // In version 0.0.101, support for reading the variants with these types was added, and
9377 // we should migrate to writing these variants when UpdateFailHTLC or
9378 // UpdateFailMalformedHTLC get TLV fields.
9380 let length: BigSize = Readable::read(reader)?;
9381 let mut s = FixedLengthReader::new(reader, length.0);
9382 let res = Readable::read(&mut s)?;
9383 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9384 Ok(HTLCFailureMsg::Relay(res))
9387 let length: BigSize = Readable::read(reader)?;
9388 let mut s = FixedLengthReader::new(reader, length.0);
9389 let res = Readable::read(&mut s)?;
9390 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9391 Ok(HTLCFailureMsg::Malformed(res))
9393 _ => Err(DecodeError::UnknownRequiredFeature),
9398 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9403 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9404 (0, short_channel_id, required),
9405 (1, phantom_shared_secret, option),
9406 (2, outpoint, required),
9407 (4, htlc_id, required),
9408 (6, incoming_packet_shared_secret, required),
9409 (7, user_channel_id, option),
9412 impl Writeable for ClaimableHTLC {
9413 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9414 let (payment_data, keysend_preimage) = match &self.onion_payload {
9415 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9416 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9418 write_tlv_fields!(writer, {
9419 (0, self.prev_hop, required),
9420 (1, self.total_msat, required),
9421 (2, self.value, required),
9422 (3, self.sender_intended_value, required),
9423 (4, payment_data, option),
9424 (5, self.total_value_received, option),
9425 (6, self.cltv_expiry, required),
9426 (8, keysend_preimage, option),
9427 (10, self.counterparty_skimmed_fee_msat, option),
9433 impl Readable for ClaimableHTLC {
9434 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9435 _init_and_read_len_prefixed_tlv_fields!(reader, {
9436 (0, prev_hop, required),
9437 (1, total_msat, option),
9438 (2, value_ser, required),
9439 (3, sender_intended_value, option),
9440 (4, payment_data_opt, option),
9441 (5, total_value_received, option),
9442 (6, cltv_expiry, required),
9443 (8, keysend_preimage, option),
9444 (10, counterparty_skimmed_fee_msat, option),
9446 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9447 let value = value_ser.0.unwrap();
9448 let onion_payload = match keysend_preimage {
9450 if payment_data.is_some() {
9451 return Err(DecodeError::InvalidValue)
9453 if total_msat.is_none() {
9454 total_msat = Some(value);
9456 OnionPayload::Spontaneous(p)
9459 if total_msat.is_none() {
9460 if payment_data.is_none() {
9461 return Err(DecodeError::InvalidValue)
9463 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9465 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9469 prev_hop: prev_hop.0.unwrap(),
9472 sender_intended_value: sender_intended_value.unwrap_or(value),
9473 total_value_received,
9474 total_msat: total_msat.unwrap(),
9476 cltv_expiry: cltv_expiry.0.unwrap(),
9477 counterparty_skimmed_fee_msat,
9482 impl Readable for HTLCSource {
9483 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9484 let id: u8 = Readable::read(reader)?;
9487 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9488 let mut first_hop_htlc_msat: u64 = 0;
9489 let mut path_hops = Vec::new();
9490 let mut payment_id = None;
9491 let mut payment_params: Option<PaymentParameters> = None;
9492 let mut blinded_tail: Option<BlindedTail> = None;
9493 read_tlv_fields!(reader, {
9494 (0, session_priv, required),
9495 (1, payment_id, option),
9496 (2, first_hop_htlc_msat, required),
9497 (4, path_hops, required_vec),
9498 (5, payment_params, (option: ReadableArgs, 0)),
9499 (6, blinded_tail, option),
9501 if payment_id.is_none() {
9502 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9504 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9506 let path = Path { hops: path_hops, blinded_tail };
9507 if path.hops.len() == 0 {
9508 return Err(DecodeError::InvalidValue);
9510 if let Some(params) = payment_params.as_mut() {
9511 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9512 if final_cltv_expiry_delta == &0 {
9513 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9517 Ok(HTLCSource::OutboundRoute {
9518 session_priv: session_priv.0.unwrap(),
9519 first_hop_htlc_msat,
9521 payment_id: payment_id.unwrap(),
9524 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9525 _ => Err(DecodeError::UnknownRequiredFeature),
9530 impl Writeable for HTLCSource {
9531 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9533 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9535 let payment_id_opt = Some(payment_id);
9536 write_tlv_fields!(writer, {
9537 (0, session_priv, required),
9538 (1, payment_id_opt, option),
9539 (2, first_hop_htlc_msat, required),
9540 // 3 was previously used to write a PaymentSecret for the payment.
9541 (4, path.hops, required_vec),
9542 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9543 (6, path.blinded_tail, option),
9546 HTLCSource::PreviousHopData(ref field) => {
9548 field.write(writer)?;
9555 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9556 (0, forward_info, required),
9557 (1, prev_user_channel_id, (default_value, 0)),
9558 (2, prev_short_channel_id, required),
9559 (4, prev_htlc_id, required),
9560 (6, prev_funding_outpoint, required),
9563 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
9565 (0, htlc_id, required),
9566 (2, err_packet, required),
9571 impl_writeable_tlv_based!(PendingInboundPayment, {
9572 (0, payment_secret, required),
9573 (2, expiry_time, required),
9574 (4, user_payment_id, required),
9575 (6, payment_preimage, required),
9576 (8, min_value_msat, required),
9579 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
9581 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9582 T::Target: BroadcasterInterface,
9583 ES::Target: EntropySource,
9584 NS::Target: NodeSigner,
9585 SP::Target: SignerProvider,
9586 F::Target: FeeEstimator,
9590 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9591 let _consistency_lock = self.total_consistency_lock.write().unwrap();
9593 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
9595 self.chain_hash.write(writer)?;
9597 let best_block = self.best_block.read().unwrap();
9598 best_block.height().write(writer)?;
9599 best_block.block_hash().write(writer)?;
9602 let mut serializable_peer_count: u64 = 0;
9604 let per_peer_state = self.per_peer_state.read().unwrap();
9605 let mut number_of_funded_channels = 0;
9606 for (_, peer_state_mutex) in per_peer_state.iter() {
9607 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9608 let peer_state = &mut *peer_state_lock;
9609 if !peer_state.ok_to_remove(false) {
9610 serializable_peer_count += 1;
9613 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
9614 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
9618 (number_of_funded_channels as u64).write(writer)?;
9620 for (_, peer_state_mutex) in per_peer_state.iter() {
9621 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9622 let peer_state = &mut *peer_state_lock;
9623 for channel in peer_state.channel_by_id.iter().filter_map(
9624 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
9625 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
9628 channel.write(writer)?;
9634 let forward_htlcs = self.forward_htlcs.lock().unwrap();
9635 (forward_htlcs.len() as u64).write(writer)?;
9636 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
9637 short_channel_id.write(writer)?;
9638 (pending_forwards.len() as u64).write(writer)?;
9639 for forward in pending_forwards {
9640 forward.write(writer)?;
9645 let per_peer_state = self.per_peer_state.write().unwrap();
9647 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9648 let claimable_payments = self.claimable_payments.lock().unwrap();
9649 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9651 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9652 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9653 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9654 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9655 payment_hash.write(writer)?;
9656 (payment.htlcs.len() as u64).write(writer)?;
9657 for htlc in payment.htlcs.iter() {
9658 htlc.write(writer)?;
9660 htlc_purposes.push(&payment.purpose);
9661 htlc_onion_fields.push(&payment.onion_fields);
9664 let mut monitor_update_blocked_actions_per_peer = None;
9665 let mut peer_states = Vec::new();
9666 for (_, peer_state_mutex) in per_peer_state.iter() {
9667 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9668 // of a lockorder violation deadlock - no other thread can be holding any
9669 // per_peer_state lock at all.
9670 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9673 (serializable_peer_count).write(writer)?;
9674 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9675 // Peers which we have no channels to should be dropped once disconnected. As we
9676 // disconnect all peers when shutting down and serializing the ChannelManager, we
9677 // consider all peers as disconnected here. There's therefore no need write peers with
9679 if !peer_state.ok_to_remove(false) {
9680 peer_pubkey.write(writer)?;
9681 peer_state.latest_features.write(writer)?;
9682 if !peer_state.monitor_update_blocked_actions.is_empty() {
9683 monitor_update_blocked_actions_per_peer
9684 .get_or_insert_with(Vec::new)
9685 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9690 let events = self.pending_events.lock().unwrap();
9691 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9692 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9693 // refuse to read the new ChannelManager.
9694 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9695 if events_not_backwards_compatible {
9696 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9697 // well save the space and not write any events here.
9698 0u64.write(writer)?;
9700 (events.len() as u64).write(writer)?;
9701 for (event, _) in events.iter() {
9702 event.write(writer)?;
9706 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9707 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9708 // the closing monitor updates were always effectively replayed on startup (either directly
9709 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9710 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9711 0u64.write(writer)?;
9713 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9714 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9715 // likely to be identical.
9716 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9717 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9719 (pending_inbound_payments.len() as u64).write(writer)?;
9720 for (hash, pending_payment) in pending_inbound_payments.iter() {
9721 hash.write(writer)?;
9722 pending_payment.write(writer)?;
9725 // For backwards compat, write the session privs and their total length.
9726 let mut num_pending_outbounds_compat: u64 = 0;
9727 for (_, outbound) in pending_outbound_payments.iter() {
9728 if !outbound.is_fulfilled() && !outbound.abandoned() {
9729 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
9732 num_pending_outbounds_compat.write(writer)?;
9733 for (_, outbound) in pending_outbound_payments.iter() {
9735 PendingOutboundPayment::Legacy { session_privs } |
9736 PendingOutboundPayment::Retryable { session_privs, .. } => {
9737 for session_priv in session_privs.iter() {
9738 session_priv.write(writer)?;
9741 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9742 PendingOutboundPayment::InvoiceReceived { .. } => {},
9743 PendingOutboundPayment::Fulfilled { .. } => {},
9744 PendingOutboundPayment::Abandoned { .. } => {},
9748 // Encode without retry info for 0.0.101 compatibility.
9749 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9750 for (id, outbound) in pending_outbound_payments.iter() {
9752 PendingOutboundPayment::Legacy { session_privs } |
9753 PendingOutboundPayment::Retryable { session_privs, .. } => {
9754 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9760 let mut pending_intercepted_htlcs = None;
9761 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9762 if our_pending_intercepts.len() != 0 {
9763 pending_intercepted_htlcs = Some(our_pending_intercepts);
9766 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9767 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9768 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9769 // map. Thus, if there are no entries we skip writing a TLV for it.
9770 pending_claiming_payments = None;
9773 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9774 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9775 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9776 if !updates.is_empty() {
9777 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9778 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9783 write_tlv_fields!(writer, {
9784 (1, pending_outbound_payments_no_retry, required),
9785 (2, pending_intercepted_htlcs, option),
9786 (3, pending_outbound_payments, required),
9787 (4, pending_claiming_payments, option),
9788 (5, self.our_network_pubkey, required),
9789 (6, monitor_update_blocked_actions_per_peer, option),
9790 (7, self.fake_scid_rand_bytes, required),
9791 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9792 (9, htlc_purposes, required_vec),
9793 (10, in_flight_monitor_updates, option),
9794 (11, self.probing_cookie_secret, required),
9795 (13, htlc_onion_fields, optional_vec),
9802 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9803 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9804 (self.len() as u64).write(w)?;
9805 for (event, action) in self.iter() {
9808 #[cfg(debug_assertions)] {
9809 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9810 // be persisted and are regenerated on restart. However, if such an event has a
9811 // post-event-handling action we'll write nothing for the event and would have to
9812 // either forget the action or fail on deserialization (which we do below). Thus,
9813 // check that the event is sane here.
9814 let event_encoded = event.encode();
9815 let event_read: Option<Event> =
9816 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
9817 if action.is_some() { assert!(event_read.is_some()); }
9823 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
9824 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9825 let len: u64 = Readable::read(reader)?;
9826 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
9827 let mut events: Self = VecDeque::with_capacity(cmp::min(
9828 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
9831 let ev_opt = MaybeReadable::read(reader)?;
9832 let action = Readable::read(reader)?;
9833 if let Some(ev) = ev_opt {
9834 events.push_back((ev, action));
9835 } else if action.is_some() {
9836 return Err(DecodeError::InvalidValue);
9843 impl_writeable_tlv_based_enum!(ChannelShutdownState,
9844 (0, NotShuttingDown) => {},
9845 (2, ShutdownInitiated) => {},
9846 (4, ResolvingHTLCs) => {},
9847 (6, NegotiatingClosingFee) => {},
9848 (8, ShutdownComplete) => {}, ;
9851 /// Arguments for the creation of a ChannelManager that are not deserialized.
9853 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
9855 /// 1) Deserialize all stored [`ChannelMonitor`]s.
9856 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
9857 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
9858 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
9859 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
9860 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
9861 /// same way you would handle a [`chain::Filter`] call using
9862 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
9863 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
9864 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
9865 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
9866 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
9867 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
9869 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
9870 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
9872 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
9873 /// call any other methods on the newly-deserialized [`ChannelManager`].
9875 /// Note that because some channels may be closed during deserialization, it is critical that you
9876 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
9877 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
9878 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
9879 /// not force-close the same channels but consider them live), you may end up revoking a state for
9880 /// which you've already broadcasted the transaction.
9882 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
9883 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9885 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9886 T::Target: BroadcasterInterface,
9887 ES::Target: EntropySource,
9888 NS::Target: NodeSigner,
9889 SP::Target: SignerProvider,
9890 F::Target: FeeEstimator,
9894 /// A cryptographically secure source of entropy.
9895 pub entropy_source: ES,
9897 /// A signer that is able to perform node-scoped cryptographic operations.
9898 pub node_signer: NS,
9900 /// The keys provider which will give us relevant keys. Some keys will be loaded during
9901 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
9903 pub signer_provider: SP,
9905 /// The fee_estimator for use in the ChannelManager in the future.
9907 /// No calls to the FeeEstimator will be made during deserialization.
9908 pub fee_estimator: F,
9909 /// The chain::Watch for use in the ChannelManager in the future.
9911 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
9912 /// you have deserialized ChannelMonitors separately and will add them to your
9913 /// chain::Watch after deserializing this ChannelManager.
9914 pub chain_monitor: M,
9916 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
9917 /// used to broadcast the latest local commitment transactions of channels which must be
9918 /// force-closed during deserialization.
9919 pub tx_broadcaster: T,
9920 /// The router which will be used in the ChannelManager in the future for finding routes
9921 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
9923 /// No calls to the router will be made during deserialization.
9925 /// The Logger for use in the ChannelManager and which may be used to log information during
9926 /// deserialization.
9928 /// Default settings used for new channels. Any existing channels will continue to use the
9929 /// runtime settings which were stored when the ChannelManager was serialized.
9930 pub default_config: UserConfig,
9932 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
9933 /// value.context.get_funding_txo() should be the key).
9935 /// If a monitor is inconsistent with the channel state during deserialization the channel will
9936 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
9937 /// is true for missing channels as well. If there is a monitor missing for which we find
9938 /// channel data Err(DecodeError::InvalidValue) will be returned.
9940 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
9943 /// This is not exported to bindings users because we have no HashMap bindings
9944 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
9947 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9948 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
9950 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9951 T::Target: BroadcasterInterface,
9952 ES::Target: EntropySource,
9953 NS::Target: NodeSigner,
9954 SP::Target: SignerProvider,
9955 F::Target: FeeEstimator,
9959 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
9960 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
9961 /// populate a HashMap directly from C.
9962 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
9963 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
9965 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
9966 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
9971 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
9972 // SipmleArcChannelManager type:
9973 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9974 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
9976 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9977 T::Target: BroadcasterInterface,
9978 ES::Target: EntropySource,
9979 NS::Target: NodeSigner,
9980 SP::Target: SignerProvider,
9981 F::Target: FeeEstimator,
9985 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9986 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
9987 Ok((blockhash, Arc::new(chan_manager)))
9991 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9992 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
9994 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9995 T::Target: BroadcasterInterface,
9996 ES::Target: EntropySource,
9997 NS::Target: NodeSigner,
9998 SP::Target: SignerProvider,
9999 F::Target: FeeEstimator,
10003 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10004 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10006 let chain_hash: ChainHash = Readable::read(reader)?;
10007 let best_block_height: u32 = Readable::read(reader)?;
10008 let best_block_hash: BlockHash = Readable::read(reader)?;
10010 let mut failed_htlcs = Vec::new();
10012 let channel_count: u64 = Readable::read(reader)?;
10013 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
10014 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10015 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10016 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10017 let mut channel_closures = VecDeque::new();
10018 let mut close_background_events = Vec::new();
10019 for _ in 0..channel_count {
10020 let mut channel: Channel<SP> = Channel::read(reader, (
10021 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10023 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10024 funding_txo_set.insert(funding_txo.clone());
10025 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10026 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10027 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10028 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10029 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10030 // But if the channel is behind of the monitor, close the channel:
10031 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10032 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10033 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10034 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10035 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10037 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10038 log_error!(args.logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10039 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10041 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10042 log_error!(args.logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10043 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10045 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10046 log_error!(args.logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10047 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10049 let mut shutdown_result = channel.context.force_shutdown(true);
10050 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10051 return Err(DecodeError::InvalidValue);
10053 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
10054 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10055 counterparty_node_id, funding_txo, update
10058 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10059 channel_closures.push_back((events::Event::ChannelClosed {
10060 channel_id: channel.context.channel_id(),
10061 user_channel_id: channel.context.get_user_id(),
10062 reason: ClosureReason::OutdatedChannelManager,
10063 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10064 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10066 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10067 let mut found_htlc = false;
10068 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10069 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10072 // If we have some HTLCs in the channel which are not present in the newer
10073 // ChannelMonitor, they have been removed and should be failed back to
10074 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10075 // were actually claimed we'd have generated and ensured the previous-hop
10076 // claim update ChannelMonitor updates were persisted prior to persising
10077 // the ChannelMonitor update for the forward leg, so attempting to fail the
10078 // backwards leg of the HTLC will simply be rejected.
10079 log_info!(args.logger,
10080 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10081 &channel.context.channel_id(), &payment_hash);
10082 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10086 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10087 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10088 monitor.get_latest_update_id());
10089 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10090 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10092 if channel.context.is_funding_broadcast() {
10093 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
10095 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10096 hash_map::Entry::Occupied(mut entry) => {
10097 let by_id_map = entry.get_mut();
10098 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10100 hash_map::Entry::Vacant(entry) => {
10101 let mut by_id_map = HashMap::new();
10102 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10103 entry.insert(by_id_map);
10107 } else if channel.is_awaiting_initial_mon_persist() {
10108 // If we were persisted and shut down while the initial ChannelMonitor persistence
10109 // was in-progress, we never broadcasted the funding transaction and can still
10110 // safely discard the channel.
10111 let _ = channel.context.force_shutdown(false);
10112 channel_closures.push_back((events::Event::ChannelClosed {
10113 channel_id: channel.context.channel_id(),
10114 user_channel_id: channel.context.get_user_id(),
10115 reason: ClosureReason::DisconnectedPeer,
10116 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10117 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10120 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10121 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10122 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10123 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10124 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10125 return Err(DecodeError::InvalidValue);
10129 for (funding_txo, _) in args.channel_monitors.iter() {
10130 if !funding_txo_set.contains(funding_txo) {
10131 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
10132 &funding_txo.to_channel_id());
10133 let monitor_update = ChannelMonitorUpdate {
10134 update_id: CLOSED_CHANNEL_UPDATE_ID,
10135 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10137 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
10141 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10142 let forward_htlcs_count: u64 = Readable::read(reader)?;
10143 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10144 for _ in 0..forward_htlcs_count {
10145 let short_channel_id = Readable::read(reader)?;
10146 let pending_forwards_count: u64 = Readable::read(reader)?;
10147 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10148 for _ in 0..pending_forwards_count {
10149 pending_forwards.push(Readable::read(reader)?);
10151 forward_htlcs.insert(short_channel_id, pending_forwards);
10154 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10155 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10156 for _ in 0..claimable_htlcs_count {
10157 let payment_hash = Readable::read(reader)?;
10158 let previous_hops_len: u64 = Readable::read(reader)?;
10159 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10160 for _ in 0..previous_hops_len {
10161 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10163 claimable_htlcs_list.push((payment_hash, previous_hops));
10166 let peer_state_from_chans = |channel_by_id| {
10169 inbound_channel_request_by_id: HashMap::new(),
10170 latest_features: InitFeatures::empty(),
10171 pending_msg_events: Vec::new(),
10172 in_flight_monitor_updates: BTreeMap::new(),
10173 monitor_update_blocked_actions: BTreeMap::new(),
10174 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10175 is_connected: false,
10179 let peer_count: u64 = Readable::read(reader)?;
10180 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10181 for _ in 0..peer_count {
10182 let peer_pubkey = Readable::read(reader)?;
10183 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
10184 let mut peer_state = peer_state_from_chans(peer_chans);
10185 peer_state.latest_features = Readable::read(reader)?;
10186 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10189 let event_count: u64 = Readable::read(reader)?;
10190 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10191 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10192 for _ in 0..event_count {
10193 match MaybeReadable::read(reader)? {
10194 Some(event) => pending_events_read.push_back((event, None)),
10199 let background_event_count: u64 = Readable::read(reader)?;
10200 for _ in 0..background_event_count {
10201 match <u8 as Readable>::read(reader)? {
10203 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10204 // however we really don't (and never did) need them - we regenerate all
10205 // on-startup monitor updates.
10206 let _: OutPoint = Readable::read(reader)?;
10207 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10209 _ => return Err(DecodeError::InvalidValue),
10213 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10214 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10216 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10217 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10218 for _ in 0..pending_inbound_payment_count {
10219 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10220 return Err(DecodeError::InvalidValue);
10224 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10225 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10226 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10227 for _ in 0..pending_outbound_payments_count_compat {
10228 let session_priv = Readable::read(reader)?;
10229 let payment = PendingOutboundPayment::Legacy {
10230 session_privs: [session_priv].iter().cloned().collect()
10232 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10233 return Err(DecodeError::InvalidValue)
10237 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10238 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10239 let mut pending_outbound_payments = None;
10240 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
10241 let mut received_network_pubkey: Option<PublicKey> = None;
10242 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10243 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10244 let mut claimable_htlc_purposes = None;
10245 let mut claimable_htlc_onion_fields = None;
10246 let mut pending_claiming_payments = Some(HashMap::new());
10247 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10248 let mut events_override = None;
10249 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10250 read_tlv_fields!(reader, {
10251 (1, pending_outbound_payments_no_retry, option),
10252 (2, pending_intercepted_htlcs, option),
10253 (3, pending_outbound_payments, option),
10254 (4, pending_claiming_payments, option),
10255 (5, received_network_pubkey, option),
10256 (6, monitor_update_blocked_actions_per_peer, option),
10257 (7, fake_scid_rand_bytes, option),
10258 (8, events_override, option),
10259 (9, claimable_htlc_purposes, optional_vec),
10260 (10, in_flight_monitor_updates, option),
10261 (11, probing_cookie_secret, option),
10262 (13, claimable_htlc_onion_fields, optional_vec),
10264 if fake_scid_rand_bytes.is_none() {
10265 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10268 if probing_cookie_secret.is_none() {
10269 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10272 if let Some(events) = events_override {
10273 pending_events_read = events;
10276 if !channel_closures.is_empty() {
10277 pending_events_read.append(&mut channel_closures);
10280 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10281 pending_outbound_payments = Some(pending_outbound_payments_compat);
10282 } else if pending_outbound_payments.is_none() {
10283 let mut outbounds = HashMap::new();
10284 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10285 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10287 pending_outbound_payments = Some(outbounds);
10289 let pending_outbounds = OutboundPayments {
10290 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10291 retry_lock: Mutex::new(())
10294 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10295 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10296 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10297 // replayed, and for each monitor update we have to replay we have to ensure there's a
10298 // `ChannelMonitor` for it.
10300 // In order to do so we first walk all of our live channels (so that we can check their
10301 // state immediately after doing the update replays, when we have the `update_id`s
10302 // available) and then walk any remaining in-flight updates.
10304 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10305 let mut pending_background_events = Vec::new();
10306 macro_rules! handle_in_flight_updates {
10307 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10308 $monitor: expr, $peer_state: expr, $channel_info_log: expr
10310 let mut max_in_flight_update_id = 0;
10311 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10312 for update in $chan_in_flight_upds.iter() {
10313 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10314 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
10315 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10316 pending_background_events.push(
10317 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10318 counterparty_node_id: $counterparty_node_id,
10319 funding_txo: $funding_txo,
10320 update: update.clone(),
10323 if $chan_in_flight_upds.is_empty() {
10324 // We had some updates to apply, but it turns out they had completed before we
10325 // were serialized, we just weren't notified of that. Thus, we may have to run
10326 // the completion actions for any monitor updates, but otherwise are done.
10327 pending_background_events.push(
10328 BackgroundEvent::MonitorUpdatesComplete {
10329 counterparty_node_id: $counterparty_node_id,
10330 channel_id: $funding_txo.to_channel_id(),
10333 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10334 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
10335 return Err(DecodeError::InvalidValue);
10337 max_in_flight_update_id
10341 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10342 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10343 let peer_state = &mut *peer_state_lock;
10344 for phase in peer_state.channel_by_id.values() {
10345 if let ChannelPhase::Funded(chan) = phase {
10346 // Channels that were persisted have to be funded, otherwise they should have been
10348 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10349 let monitor = args.channel_monitors.get(&funding_txo)
10350 .expect("We already checked for monitor presence when loading channels");
10351 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10352 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10353 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10354 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10355 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10356 funding_txo, monitor, peer_state, ""));
10359 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10360 // If the channel is ahead of the monitor, return InvalidValue:
10361 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10362 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10363 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10364 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10365 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10366 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10367 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10368 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10369 return Err(DecodeError::InvalidValue);
10372 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10373 // created in this `channel_by_id` map.
10374 debug_assert!(false);
10375 return Err(DecodeError::InvalidValue);
10380 if let Some(in_flight_upds) = in_flight_monitor_updates {
10381 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10382 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10383 // Now that we've removed all the in-flight monitor updates for channels that are
10384 // still open, we need to replay any monitor updates that are for closed channels,
10385 // creating the neccessary peer_state entries as we go.
10386 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10387 Mutex::new(peer_state_from_chans(HashMap::new()))
10389 let mut peer_state = peer_state_mutex.lock().unwrap();
10390 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10391 funding_txo, monitor, peer_state, "closed ");
10393 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10394 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
10395 &funding_txo.to_channel_id());
10396 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10397 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10398 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10399 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10400 return Err(DecodeError::InvalidValue);
10405 // Note that we have to do the above replays before we push new monitor updates.
10406 pending_background_events.append(&mut close_background_events);
10408 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10409 // should ensure we try them again on the inbound edge. We put them here and do so after we
10410 // have a fully-constructed `ChannelManager` at the end.
10411 let mut pending_claims_to_replay = Vec::new();
10414 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10415 // ChannelMonitor data for any channels for which we do not have authorative state
10416 // (i.e. those for which we just force-closed above or we otherwise don't have a
10417 // corresponding `Channel` at all).
10418 // This avoids several edge-cases where we would otherwise "forget" about pending
10419 // payments which are still in-flight via their on-chain state.
10420 // We only rebuild the pending payments map if we were most recently serialized by
10422 for (_, monitor) in args.channel_monitors.iter() {
10423 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
10424 if counterparty_opt.is_none() {
10425 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10426 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10427 if path.hops.is_empty() {
10428 log_error!(args.logger, "Got an empty path for a pending payment");
10429 return Err(DecodeError::InvalidValue);
10432 let path_amt = path.final_value_msat();
10433 let mut session_priv_bytes = [0; 32];
10434 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10435 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10436 hash_map::Entry::Occupied(mut entry) => {
10437 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10438 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10439 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
10441 hash_map::Entry::Vacant(entry) => {
10442 let path_fee = path.fee_msat();
10443 entry.insert(PendingOutboundPayment::Retryable {
10444 retry_strategy: None,
10445 attempts: PaymentAttempts::new(),
10446 payment_params: None,
10447 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
10448 payment_hash: htlc.payment_hash,
10449 payment_secret: None, // only used for retries, and we'll never retry on startup
10450 payment_metadata: None, // only used for retries, and we'll never retry on startup
10451 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10452 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10453 pending_amt_msat: path_amt,
10454 pending_fee_msat: Some(path_fee),
10455 total_msat: path_amt,
10456 starting_block_height: best_block_height,
10457 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10459 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10460 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10465 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10466 match htlc_source {
10467 HTLCSource::PreviousHopData(prev_hop_data) => {
10468 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10469 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10470 info.prev_htlc_id == prev_hop_data.htlc_id
10472 // The ChannelMonitor is now responsible for this HTLC's
10473 // failure/success and will let us know what its outcome is. If we
10474 // still have an entry for this HTLC in `forward_htlcs` or
10475 // `pending_intercepted_htlcs`, we were apparently not persisted after
10476 // the monitor was when forwarding the payment.
10477 forward_htlcs.retain(|_, forwards| {
10478 forwards.retain(|forward| {
10479 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10480 if pending_forward_matches_htlc(&htlc_info) {
10481 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10482 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10487 !forwards.is_empty()
10489 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10490 if pending_forward_matches_htlc(&htlc_info) {
10491 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10492 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10493 pending_events_read.retain(|(event, _)| {
10494 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10495 intercepted_id != ev_id
10502 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10503 if let Some(preimage) = preimage_opt {
10504 let pending_events = Mutex::new(pending_events_read);
10505 // Note that we set `from_onchain` to "false" here,
10506 // deliberately keeping the pending payment around forever.
10507 // Given it should only occur when we have a channel we're
10508 // force-closing for being stale that's okay.
10509 // The alternative would be to wipe the state when claiming,
10510 // generating a `PaymentPathSuccessful` event but regenerating
10511 // it and the `PaymentSent` on every restart until the
10512 // `ChannelMonitor` is removed.
10514 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10515 channel_funding_outpoint: monitor.get_funding_txo().0,
10516 counterparty_node_id: path.hops[0].pubkey,
10518 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
10519 path, false, compl_action, &pending_events, &args.logger);
10520 pending_events_read = pending_events.into_inner().unwrap();
10527 // Whether the downstream channel was closed or not, try to re-apply any payment
10528 // preimages from it which may be needed in upstream channels for forwarded
10530 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
10532 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
10533 if let HTLCSource::PreviousHopData(_) = htlc_source {
10534 if let Some(payment_preimage) = preimage_opt {
10535 Some((htlc_source, payment_preimage, htlc.amount_msat,
10536 // Check if `counterparty_opt.is_none()` to see if the
10537 // downstream chan is closed (because we don't have a
10538 // channel_id -> peer map entry).
10539 counterparty_opt.is_none(),
10540 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
10541 monitor.get_funding_txo().0))
10544 // If it was an outbound payment, we've handled it above - if a preimage
10545 // came in and we persisted the `ChannelManager` we either handled it and
10546 // are good to go or the channel force-closed - we don't have to handle the
10547 // channel still live case here.
10551 for tuple in outbound_claimed_htlcs_iter {
10552 pending_claims_to_replay.push(tuple);
10557 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
10558 // If we have pending HTLCs to forward, assume we either dropped a
10559 // `PendingHTLCsForwardable` or the user received it but never processed it as they
10560 // shut down before the timer hit. Either way, set the time_forwardable to a small
10561 // constant as enough time has likely passed that we should simply handle the forwards
10562 // now, or at least after the user gets a chance to reconnect to our peers.
10563 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
10564 time_forwardable: Duration::from_secs(2),
10568 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
10569 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
10571 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
10572 if let Some(purposes) = claimable_htlc_purposes {
10573 if purposes.len() != claimable_htlcs_list.len() {
10574 return Err(DecodeError::InvalidValue);
10576 if let Some(onion_fields) = claimable_htlc_onion_fields {
10577 if onion_fields.len() != claimable_htlcs_list.len() {
10578 return Err(DecodeError::InvalidValue);
10580 for (purpose, (onion, (payment_hash, htlcs))) in
10581 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
10583 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10584 purpose, htlcs, onion_fields: onion,
10586 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10589 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
10590 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10591 purpose, htlcs, onion_fields: None,
10593 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10597 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
10598 // include a `_legacy_hop_data` in the `OnionPayload`.
10599 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
10600 if htlcs.is_empty() {
10601 return Err(DecodeError::InvalidValue);
10603 let purpose = match &htlcs[0].onion_payload {
10604 OnionPayload::Invoice { _legacy_hop_data } => {
10605 if let Some(hop_data) = _legacy_hop_data {
10606 events::PaymentPurpose::InvoicePayment {
10607 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
10608 Some(inbound_payment) => inbound_payment.payment_preimage,
10609 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
10610 Ok((payment_preimage, _)) => payment_preimage,
10612 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
10613 return Err(DecodeError::InvalidValue);
10617 payment_secret: hop_data.payment_secret,
10619 } else { return Err(DecodeError::InvalidValue); }
10621 OnionPayload::Spontaneous(payment_preimage) =>
10622 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
10624 claimable_payments.insert(payment_hash, ClaimablePayment {
10625 purpose, htlcs, onion_fields: None,
10630 let mut secp_ctx = Secp256k1::new();
10631 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
10633 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
10635 Err(()) => return Err(DecodeError::InvalidValue)
10637 if let Some(network_pubkey) = received_network_pubkey {
10638 if network_pubkey != our_network_pubkey {
10639 log_error!(args.logger, "Key that was generated does not match the existing key.");
10640 return Err(DecodeError::InvalidValue);
10644 let mut outbound_scid_aliases = HashSet::new();
10645 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10646 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10647 let peer_state = &mut *peer_state_lock;
10648 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10649 if let ChannelPhase::Funded(chan) = phase {
10650 if chan.context.outbound_scid_alias() == 0 {
10651 let mut outbound_scid_alias;
10653 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10654 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10655 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10657 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10658 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10659 // Note that in rare cases its possible to hit this while reading an older
10660 // channel if we just happened to pick a colliding outbound alias above.
10661 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10662 return Err(DecodeError::InvalidValue);
10664 if chan.context.is_usable() {
10665 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10666 // Note that in rare cases its possible to hit this while reading an older
10667 // channel if we just happened to pick a colliding outbound alias above.
10668 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10669 return Err(DecodeError::InvalidValue);
10673 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10674 // created in this `channel_by_id` map.
10675 debug_assert!(false);
10676 return Err(DecodeError::InvalidValue);
10681 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10683 for (_, monitor) in args.channel_monitors.iter() {
10684 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10685 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10686 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10687 let mut claimable_amt_msat = 0;
10688 let mut receiver_node_id = Some(our_network_pubkey);
10689 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10690 if phantom_shared_secret.is_some() {
10691 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10692 .expect("Failed to get node_id for phantom node recipient");
10693 receiver_node_id = Some(phantom_pubkey)
10695 for claimable_htlc in &payment.htlcs {
10696 claimable_amt_msat += claimable_htlc.value;
10698 // Add a holding-cell claim of the payment to the Channel, which should be
10699 // applied ~immediately on peer reconnection. Because it won't generate a
10700 // new commitment transaction we can just provide the payment preimage to
10701 // the corresponding ChannelMonitor and nothing else.
10703 // We do so directly instead of via the normal ChannelMonitor update
10704 // procedure as the ChainMonitor hasn't yet been initialized, implying
10705 // we're not allowed to call it directly yet. Further, we do the update
10706 // without incrementing the ChannelMonitor update ID as there isn't any
10708 // If we were to generate a new ChannelMonitor update ID here and then
10709 // crash before the user finishes block connect we'd end up force-closing
10710 // this channel as well. On the flip side, there's no harm in restarting
10711 // without the new monitor persisted - we'll end up right back here on
10713 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
10714 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
10715 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
10716 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10717 let peer_state = &mut *peer_state_lock;
10718 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
10719 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
10722 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
10723 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
10726 pending_events_read.push_back((events::Event::PaymentClaimed {
10729 purpose: payment.purpose,
10730 amount_msat: claimable_amt_msat,
10731 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
10732 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10738 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10739 if let Some(peer_state) = per_peer_state.get(&node_id) {
10740 for (_, actions) in monitor_update_blocked_actions.iter() {
10741 for action in actions.iter() {
10742 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10743 downstream_counterparty_and_funding_outpoint:
10744 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10746 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10747 log_trace!(args.logger,
10748 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
10749 blocked_channel_outpoint.to_channel_id());
10750 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10751 .entry(blocked_channel_outpoint.to_channel_id())
10752 .or_insert_with(Vec::new).push(blocking_action.clone());
10754 // If the channel we were blocking has closed, we don't need to
10755 // worry about it - the blocked monitor update should never have
10756 // been released from the `Channel` object so it can't have
10757 // completed, and if the channel closed there's no reason to bother
10761 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
10762 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
10766 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10768 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
10769 return Err(DecodeError::InvalidValue);
10773 let channel_manager = ChannelManager {
10775 fee_estimator: bounded_fee_estimator,
10776 chain_monitor: args.chain_monitor,
10777 tx_broadcaster: args.tx_broadcaster,
10778 router: args.router,
10780 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10782 inbound_payment_key: expanded_inbound_key,
10783 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10784 pending_outbound_payments: pending_outbounds,
10785 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10787 forward_htlcs: Mutex::new(forward_htlcs),
10788 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10789 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10790 id_to_peer: Mutex::new(id_to_peer),
10791 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10792 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10794 probing_cookie_secret: probing_cookie_secret.unwrap(),
10796 our_network_pubkey,
10799 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10801 per_peer_state: FairRwLock::new(per_peer_state),
10803 pending_events: Mutex::new(pending_events_read),
10804 pending_events_processor: AtomicBool::new(false),
10805 pending_background_events: Mutex::new(pending_background_events),
10806 total_consistency_lock: RwLock::new(()),
10807 background_events_processed_since_startup: AtomicBool::new(false),
10809 event_persist_notifier: Notifier::new(),
10810 needs_persist_flag: AtomicBool::new(false),
10812 funding_batch_states: Mutex::new(BTreeMap::new()),
10814 pending_offers_messages: Mutex::new(Vec::new()),
10816 entropy_source: args.entropy_source,
10817 node_signer: args.node_signer,
10818 signer_provider: args.signer_provider,
10820 logger: args.logger,
10821 default_configuration: args.default_config,
10824 for htlc_source in failed_htlcs.drain(..) {
10825 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
10826 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
10827 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
10828 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
10831 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
10832 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
10833 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
10834 // channel is closed we just assume that it probably came from an on-chain claim.
10835 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
10836 downstream_closed, true, downstream_node_id, downstream_funding);
10839 //TODO: Broadcast channel update for closed channels, but only after we've made a
10840 //connection or two.
10842 Ok((best_block_hash.clone(), channel_manager))
10848 use bitcoin::hashes::Hash;
10849 use bitcoin::hashes::sha256::Hash as Sha256;
10850 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
10851 use core::sync::atomic::Ordering;
10852 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
10853 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
10854 use crate::ln::ChannelId;
10855 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
10856 use crate::ln::functional_test_utils::*;
10857 use crate::ln::msgs::{self, ErrorAction};
10858 use crate::ln::msgs::ChannelMessageHandler;
10859 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
10860 use crate::util::errors::APIError;
10861 use crate::util::test_utils;
10862 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
10863 use crate::sign::EntropySource;
10866 fn test_notify_limits() {
10867 // Check that a few cases which don't require the persistence of a new ChannelManager,
10868 // indeed, do not cause the persistence of a new ChannelManager.
10869 let chanmon_cfgs = create_chanmon_cfgs(3);
10870 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10871 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
10872 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10874 // All nodes start with a persistable update pending as `create_network` connects each node
10875 // with all other nodes to make most tests simpler.
10876 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10877 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10878 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10880 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10882 // We check that the channel info nodes have doesn't change too early, even though we try
10883 // to connect messages with new values
10884 chan.0.contents.fee_base_msat *= 2;
10885 chan.1.contents.fee_base_msat *= 2;
10886 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
10887 &nodes[1].node.get_our_node_id()).pop().unwrap();
10888 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
10889 &nodes[0].node.get_our_node_id()).pop().unwrap();
10891 // The first two nodes (which opened a channel) should now require fresh persistence
10892 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10893 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10894 // ... but the last node should not.
10895 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10896 // After persisting the first two nodes they should no longer need fresh persistence.
10897 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10898 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10900 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
10901 // about the channel.
10902 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
10903 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
10904 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10906 // The nodes which are a party to the channel should also ignore messages from unrelated
10908 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10909 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10910 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10911 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10912 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10913 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10915 // At this point the channel info given by peers should still be the same.
10916 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10917 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10919 // An earlier version of handle_channel_update didn't check the directionality of the
10920 // update message and would always update the local fee info, even if our peer was
10921 // (spuriously) forwarding us our own channel_update.
10922 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
10923 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
10924 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
10926 // First deliver each peers' own message, checking that the node doesn't need to be
10927 // persisted and that its channel info remains the same.
10928 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
10929 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
10930 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10931 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10932 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10933 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10935 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
10936 // the channel info has updated.
10937 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
10938 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
10939 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10940 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10941 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
10942 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
10946 fn test_keysend_dup_hash_partial_mpp() {
10947 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
10949 let chanmon_cfgs = create_chanmon_cfgs(2);
10950 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10951 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10952 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10953 create_announced_chan_between_nodes(&nodes, 0, 1);
10955 // First, send a partial MPP payment.
10956 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
10957 let mut mpp_route = route.clone();
10958 mpp_route.paths.push(mpp_route.paths[0].clone());
10960 let payment_id = PaymentId([42; 32]);
10961 // Use the utility function send_payment_along_path to send the payment with MPP data which
10962 // indicates there are more HTLCs coming.
10963 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
10964 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
10965 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
10966 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
10967 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
10968 check_added_monitors!(nodes[0], 1);
10969 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10970 assert_eq!(events.len(), 1);
10971 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
10973 // Next, send a keysend payment with the same payment_hash and make sure it fails.
10974 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10975 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10976 check_added_monitors!(nodes[0], 1);
10977 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10978 assert_eq!(events.len(), 1);
10979 let ev = events.drain(..).next().unwrap();
10980 let payment_event = SendEvent::from_event(ev);
10981 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10982 check_added_monitors!(nodes[1], 0);
10983 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10984 expect_pending_htlcs_forwardable!(nodes[1]);
10985 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
10986 check_added_monitors!(nodes[1], 1);
10987 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10988 assert!(updates.update_add_htlcs.is_empty());
10989 assert!(updates.update_fulfill_htlcs.is_empty());
10990 assert_eq!(updates.update_fail_htlcs.len(), 1);
10991 assert!(updates.update_fail_malformed_htlcs.is_empty());
10992 assert!(updates.update_fee.is_none());
10993 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10994 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10995 expect_payment_failed!(nodes[0], our_payment_hash, true);
10997 // Send the second half of the original MPP payment.
10998 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
10999 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11000 check_added_monitors!(nodes[0], 1);
11001 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11002 assert_eq!(events.len(), 1);
11003 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11005 // Claim the full MPP payment. Note that we can't use a test utility like
11006 // claim_funds_along_route because the ordering of the messages causes the second half of the
11007 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11008 // lightning messages manually.
11009 nodes[1].node.claim_funds(payment_preimage);
11010 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11011 check_added_monitors!(nodes[1], 2);
11013 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11014 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11015 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11016 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11017 check_added_monitors!(nodes[0], 1);
11018 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11019 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11020 check_added_monitors!(nodes[1], 1);
11021 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11022 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11023 check_added_monitors!(nodes[1], 1);
11024 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11025 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11026 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11027 check_added_monitors!(nodes[0], 1);
11028 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11029 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11030 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11031 check_added_monitors!(nodes[0], 1);
11032 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11033 check_added_monitors!(nodes[1], 1);
11034 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11035 check_added_monitors!(nodes[1], 1);
11036 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11037 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11038 check_added_monitors!(nodes[0], 1);
11040 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11041 // path's success and a PaymentPathSuccessful event for each path's success.
11042 let events = nodes[0].node.get_and_clear_pending_events();
11043 assert_eq!(events.len(), 2);
11045 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11046 assert_eq!(payment_id, *actual_payment_id);
11047 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11048 assert_eq!(route.paths[0], *path);
11050 _ => panic!("Unexpected event"),
11053 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11054 assert_eq!(payment_id, *actual_payment_id);
11055 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11056 assert_eq!(route.paths[0], *path);
11058 _ => panic!("Unexpected event"),
11063 fn test_keysend_dup_payment_hash() {
11064 do_test_keysend_dup_payment_hash(false);
11065 do_test_keysend_dup_payment_hash(true);
11068 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11069 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11070 // outbound regular payment fails as expected.
11071 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11072 // fails as expected.
11073 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11074 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11075 // reject MPP keysend payments, since in this case where the payment has no payment
11076 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11077 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11078 // payment secrets and reject otherwise.
11079 let chanmon_cfgs = create_chanmon_cfgs(2);
11080 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11081 let mut mpp_keysend_cfg = test_default_channel_config();
11082 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11083 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11084 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11085 create_announced_chan_between_nodes(&nodes, 0, 1);
11086 let scorer = test_utils::TestScorer::new();
11087 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11089 // To start (1), send a regular payment but don't claim it.
11090 let expected_route = [&nodes[1]];
11091 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11093 // Next, attempt a keysend payment and make sure it fails.
11094 let route_params = RouteParameters::from_payment_params_and_value(
11095 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11096 TEST_FINAL_CLTV, false), 100_000);
11097 let route = find_route(
11098 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11099 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11101 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11102 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11103 check_added_monitors!(nodes[0], 1);
11104 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11105 assert_eq!(events.len(), 1);
11106 let ev = events.drain(..).next().unwrap();
11107 let payment_event = SendEvent::from_event(ev);
11108 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11109 check_added_monitors!(nodes[1], 0);
11110 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11111 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11112 // fails), the second will process the resulting failure and fail the HTLC backward
11113 expect_pending_htlcs_forwardable!(nodes[1]);
11114 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11115 check_added_monitors!(nodes[1], 1);
11116 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11117 assert!(updates.update_add_htlcs.is_empty());
11118 assert!(updates.update_fulfill_htlcs.is_empty());
11119 assert_eq!(updates.update_fail_htlcs.len(), 1);
11120 assert!(updates.update_fail_malformed_htlcs.is_empty());
11121 assert!(updates.update_fee.is_none());
11122 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11123 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11124 expect_payment_failed!(nodes[0], payment_hash, true);
11126 // Finally, claim the original payment.
11127 claim_payment(&nodes[0], &expected_route, payment_preimage);
11129 // To start (2), send a keysend payment but don't claim it.
11130 let payment_preimage = PaymentPreimage([42; 32]);
11131 let route = find_route(
11132 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11133 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11135 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11136 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11137 check_added_monitors!(nodes[0], 1);
11138 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11139 assert_eq!(events.len(), 1);
11140 let event = events.pop().unwrap();
11141 let path = vec![&nodes[1]];
11142 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11144 // Next, attempt a regular payment and make sure it fails.
11145 let payment_secret = PaymentSecret([43; 32]);
11146 nodes[0].node.send_payment_with_route(&route, payment_hash,
11147 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11148 check_added_monitors!(nodes[0], 1);
11149 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11150 assert_eq!(events.len(), 1);
11151 let ev = events.drain(..).next().unwrap();
11152 let payment_event = SendEvent::from_event(ev);
11153 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11154 check_added_monitors!(nodes[1], 0);
11155 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11156 expect_pending_htlcs_forwardable!(nodes[1]);
11157 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11158 check_added_monitors!(nodes[1], 1);
11159 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11160 assert!(updates.update_add_htlcs.is_empty());
11161 assert!(updates.update_fulfill_htlcs.is_empty());
11162 assert_eq!(updates.update_fail_htlcs.len(), 1);
11163 assert!(updates.update_fail_malformed_htlcs.is_empty());
11164 assert!(updates.update_fee.is_none());
11165 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11166 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11167 expect_payment_failed!(nodes[0], payment_hash, true);
11169 // Finally, succeed the keysend payment.
11170 claim_payment(&nodes[0], &expected_route, payment_preimage);
11172 // To start (3), send a keysend payment but don't claim it.
11173 let payment_id_1 = PaymentId([44; 32]);
11174 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11175 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11176 check_added_monitors!(nodes[0], 1);
11177 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11178 assert_eq!(events.len(), 1);
11179 let event = events.pop().unwrap();
11180 let path = vec![&nodes[1]];
11181 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11183 // Next, attempt a keysend payment and make sure it fails.
11184 let route_params = RouteParameters::from_payment_params_and_value(
11185 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11188 let route = find_route(
11189 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11190 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11192 let payment_id_2 = PaymentId([45; 32]);
11193 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11194 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11195 check_added_monitors!(nodes[0], 1);
11196 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11197 assert_eq!(events.len(), 1);
11198 let ev = events.drain(..).next().unwrap();
11199 let payment_event = SendEvent::from_event(ev);
11200 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11201 check_added_monitors!(nodes[1], 0);
11202 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11203 expect_pending_htlcs_forwardable!(nodes[1]);
11204 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11205 check_added_monitors!(nodes[1], 1);
11206 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11207 assert!(updates.update_add_htlcs.is_empty());
11208 assert!(updates.update_fulfill_htlcs.is_empty());
11209 assert_eq!(updates.update_fail_htlcs.len(), 1);
11210 assert!(updates.update_fail_malformed_htlcs.is_empty());
11211 assert!(updates.update_fee.is_none());
11212 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11213 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11214 expect_payment_failed!(nodes[0], payment_hash, true);
11216 // Finally, claim the original payment.
11217 claim_payment(&nodes[0], &expected_route, payment_preimage);
11221 fn test_keysend_hash_mismatch() {
11222 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11223 // preimage doesn't match the msg's payment hash.
11224 let chanmon_cfgs = create_chanmon_cfgs(2);
11225 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11226 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11227 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11229 let payer_pubkey = nodes[0].node.get_our_node_id();
11230 let payee_pubkey = nodes[1].node.get_our_node_id();
11232 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11233 let route_params = RouteParameters::from_payment_params_and_value(
11234 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11235 let network_graph = nodes[0].network_graph.clone();
11236 let first_hops = nodes[0].node.list_usable_channels();
11237 let scorer = test_utils::TestScorer::new();
11238 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11239 let route = find_route(
11240 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11241 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11244 let test_preimage = PaymentPreimage([42; 32]);
11245 let mismatch_payment_hash = PaymentHash([43; 32]);
11246 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11247 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11248 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11249 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11250 check_added_monitors!(nodes[0], 1);
11252 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11253 assert_eq!(updates.update_add_htlcs.len(), 1);
11254 assert!(updates.update_fulfill_htlcs.is_empty());
11255 assert!(updates.update_fail_htlcs.is_empty());
11256 assert!(updates.update_fail_malformed_htlcs.is_empty());
11257 assert!(updates.update_fee.is_none());
11258 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11260 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11264 fn test_keysend_msg_with_secret_err() {
11265 // Test that we error as expected if we receive a keysend payment that includes a payment
11266 // secret when we don't support MPP keysend.
11267 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11268 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11269 let chanmon_cfgs = create_chanmon_cfgs(2);
11270 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11271 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11272 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11274 let payer_pubkey = nodes[0].node.get_our_node_id();
11275 let payee_pubkey = nodes[1].node.get_our_node_id();
11277 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11278 let route_params = RouteParameters::from_payment_params_and_value(
11279 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11280 let network_graph = nodes[0].network_graph.clone();
11281 let first_hops = nodes[0].node.list_usable_channels();
11282 let scorer = test_utils::TestScorer::new();
11283 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11284 let route = find_route(
11285 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11286 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11289 let test_preimage = PaymentPreimage([42; 32]);
11290 let test_secret = PaymentSecret([43; 32]);
11291 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
11292 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11293 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11294 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11295 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11296 PaymentId(payment_hash.0), None, session_privs).unwrap();
11297 check_added_monitors!(nodes[0], 1);
11299 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11300 assert_eq!(updates.update_add_htlcs.len(), 1);
11301 assert!(updates.update_fulfill_htlcs.is_empty());
11302 assert!(updates.update_fail_htlcs.is_empty());
11303 assert!(updates.update_fail_malformed_htlcs.is_empty());
11304 assert!(updates.update_fee.is_none());
11305 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11307 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11311 fn test_multi_hop_missing_secret() {
11312 let chanmon_cfgs = create_chanmon_cfgs(4);
11313 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11314 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11315 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11317 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11318 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11319 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11320 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11322 // Marshall an MPP route.
11323 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11324 let path = route.paths[0].clone();
11325 route.paths.push(path);
11326 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11327 route.paths[0].hops[0].short_channel_id = chan_1_id;
11328 route.paths[0].hops[1].short_channel_id = chan_3_id;
11329 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11330 route.paths[1].hops[0].short_channel_id = chan_2_id;
11331 route.paths[1].hops[1].short_channel_id = chan_4_id;
11333 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11334 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11336 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11337 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11339 _ => panic!("unexpected error")
11344 fn test_drop_disconnected_peers_when_removing_channels() {
11345 let chanmon_cfgs = create_chanmon_cfgs(2);
11346 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11347 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11348 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11350 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11352 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11353 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11355 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11356 check_closed_broadcast!(nodes[0], true);
11357 check_added_monitors!(nodes[0], 1);
11358 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11361 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11362 // disconnected and the channel between has been force closed.
11363 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11364 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11365 assert_eq!(nodes_0_per_peer_state.len(), 1);
11366 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11369 nodes[0].node.timer_tick_occurred();
11372 // Assert that nodes[1] has now been removed.
11373 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11378 fn bad_inbound_payment_hash() {
11379 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11380 let chanmon_cfgs = create_chanmon_cfgs(2);
11381 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11382 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11383 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11385 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11386 let payment_data = msgs::FinalOnionHopData {
11388 total_msat: 100_000,
11391 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11392 // payment verification fails as expected.
11393 let mut bad_payment_hash = payment_hash.clone();
11394 bad_payment_hash.0[0] += 1;
11395 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11396 Ok(_) => panic!("Unexpected ok"),
11398 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11402 // Check that using the original payment hash succeeds.
11403 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11407 fn test_id_to_peer_coverage() {
11408 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
11409 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11410 // the channel is successfully closed.
11411 let chanmon_cfgs = create_chanmon_cfgs(2);
11412 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11413 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11414 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11416 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11417 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11418 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11419 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11420 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11422 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11423 let channel_id = ChannelId::from_bytes(tx.txid().into_inner());
11425 // Ensure that the `id_to_peer` map is empty until either party has received the
11426 // funding transaction, and have the real `channel_id`.
11427 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11428 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11431 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11433 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
11434 // as it has the funding transaction.
11435 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11436 assert_eq!(nodes_0_lock.len(), 1);
11437 assert!(nodes_0_lock.contains_key(&channel_id));
11440 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11442 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11444 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11446 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11447 assert_eq!(nodes_0_lock.len(), 1);
11448 assert!(nodes_0_lock.contains_key(&channel_id));
11450 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11453 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
11454 // as it has the funding transaction.
11455 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11456 assert_eq!(nodes_1_lock.len(), 1);
11457 assert!(nodes_1_lock.contains_key(&channel_id));
11459 check_added_monitors!(nodes[1], 1);
11460 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11461 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11462 check_added_monitors!(nodes[0], 1);
11463 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11464 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11465 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11466 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11468 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11469 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11470 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11471 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11473 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11474 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11476 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
11477 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11478 // fee for the closing transaction has been negotiated and the parties has the other
11479 // party's signature for the fee negotiated closing transaction.)
11480 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11481 assert_eq!(nodes_0_lock.len(), 1);
11482 assert!(nodes_0_lock.contains_key(&channel_id));
11486 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11487 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11488 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11489 // kept in the `nodes[1]`'s `id_to_peer` map.
11490 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11491 assert_eq!(nodes_1_lock.len(), 1);
11492 assert!(nodes_1_lock.contains_key(&channel_id));
11495 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11497 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11498 // therefore has all it needs to fully close the channel (both signatures for the
11499 // closing transaction).
11500 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
11501 // fully closed by `nodes[0]`.
11502 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11504 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
11505 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11506 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11507 assert_eq!(nodes_1_lock.len(), 1);
11508 assert!(nodes_1_lock.contains_key(&channel_id));
11511 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
11513 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
11515 // Assert that the channel has now been removed from both parties `id_to_peer` map once
11516 // they both have everything required to fully close the channel.
11517 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11519 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
11521 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
11522 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
11525 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11526 let expected_message = format!("Not connected to node: {}", expected_public_key);
11527 check_api_error_message(expected_message, res_err)
11530 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11531 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
11532 check_api_error_message(expected_message, res_err)
11535 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
11536 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
11537 check_api_error_message(expected_message, res_err)
11540 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
11541 let expected_message = "No such channel awaiting to be accepted.".to_string();
11542 check_api_error_message(expected_message, res_err)
11545 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
11547 Err(APIError::APIMisuseError { err }) => {
11548 assert_eq!(err, expected_err_message);
11550 Err(APIError::ChannelUnavailable { err }) => {
11551 assert_eq!(err, expected_err_message);
11553 Ok(_) => panic!("Unexpected Ok"),
11554 Err(_) => panic!("Unexpected Error"),
11559 fn test_api_calls_with_unkown_counterparty_node() {
11560 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
11561 // expected if the `counterparty_node_id` is an unkown peer in the
11562 // `ChannelManager::per_peer_state` map.
11563 let chanmon_cfg = create_chanmon_cfgs(2);
11564 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11565 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11566 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11569 let channel_id = ChannelId::from_bytes([4; 32]);
11570 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
11571 let intercept_id = InterceptId([0; 32]);
11573 // Test the API functions.
11574 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
11576 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
11578 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
11580 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
11582 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
11584 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
11586 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
11590 fn test_api_calls_with_unavailable_channel() {
11591 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
11592 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
11593 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
11594 // the given `channel_id`.
11595 let chanmon_cfg = create_chanmon_cfgs(2);
11596 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11597 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11598 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11600 let counterparty_node_id = nodes[1].node.get_our_node_id();
11603 let channel_id = ChannelId::from_bytes([4; 32]);
11605 // Test the API functions.
11606 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
11608 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11610 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11612 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11614 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
11616 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
11620 fn test_connection_limiting() {
11621 // Test that we limit un-channel'd peers and un-funded channels properly.
11622 let chanmon_cfgs = create_chanmon_cfgs(2);
11623 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11624 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11625 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11627 // Note that create_network connects the nodes together for us
11629 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11630 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11632 let mut funding_tx = None;
11633 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11634 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11635 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11638 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11639 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
11640 funding_tx = Some(tx.clone());
11641 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
11642 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11644 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11645 check_added_monitors!(nodes[1], 1);
11646 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11648 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11650 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11651 check_added_monitors!(nodes[0], 1);
11652 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11654 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11657 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11658 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11659 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11660 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11661 open_channel_msg.temporary_channel_id);
11663 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11664 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11666 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11667 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11668 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11669 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11670 peer_pks.push(random_pk);
11671 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11672 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11675 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11676 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11677 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11678 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11679 }, true).unwrap_err();
11681 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11682 // them if we have too many un-channel'd peers.
11683 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11684 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11685 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11686 for ev in chan_closed_events {
11687 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11689 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11690 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11692 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11693 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11694 }, true).unwrap_err();
11696 // but of course if the connection is outbound its allowed...
11697 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11698 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11699 }, false).unwrap();
11700 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11702 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11703 // Even though we accept one more connection from new peers, we won't actually let them
11705 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11706 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11707 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11708 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11709 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11711 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11712 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11713 open_channel_msg.temporary_channel_id);
11715 // Of course, however, outbound channels are always allowed
11716 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
11717 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
11719 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
11720 // "protected" and can connect again.
11721 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
11722 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11723 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11725 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
11727 // Further, because the first channel was funded, we can open another channel with
11729 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11730 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11734 fn test_outbound_chans_unlimited() {
11735 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
11736 let chanmon_cfgs = create_chanmon_cfgs(2);
11737 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11738 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11739 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11741 // Note that create_network connects the nodes together for us
11743 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11744 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11746 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11747 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11748 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11749 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11752 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11754 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11755 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11756 open_channel_msg.temporary_channel_id);
11758 // but we can still open an outbound channel.
11759 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11760 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11762 // but even with such an outbound channel, additional inbound channels will still fail.
11763 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11764 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11765 open_channel_msg.temporary_channel_id);
11769 fn test_0conf_limiting() {
11770 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11771 // flag set and (sometimes) accept channels as 0conf.
11772 let chanmon_cfgs = create_chanmon_cfgs(2);
11773 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11774 let mut settings = test_default_channel_config();
11775 settings.manually_accept_inbound_channels = true;
11776 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11777 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11779 // Note that create_network connects the nodes together for us
11781 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11782 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11784 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11785 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11786 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11787 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11788 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11789 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11792 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11793 let events = nodes[1].node.get_and_clear_pending_events();
11795 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11796 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11798 _ => panic!("Unexpected event"),
11800 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11801 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11804 // If we try to accept a channel from another peer non-0conf it will fail.
11805 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11806 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11807 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11808 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11810 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11811 let events = nodes[1].node.get_and_clear_pending_events();
11813 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11814 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
11815 Err(APIError::APIMisuseError { err }) =>
11816 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
11820 _ => panic!("Unexpected event"),
11822 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11823 open_channel_msg.temporary_channel_id);
11825 // ...however if we accept the same channel 0conf it should work just fine.
11826 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11827 let events = nodes[1].node.get_and_clear_pending_events();
11829 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11830 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
11832 _ => panic!("Unexpected event"),
11834 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11838 fn reject_excessively_underpaying_htlcs() {
11839 let chanmon_cfg = create_chanmon_cfgs(1);
11840 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11841 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11842 let node = create_network(1, &node_cfg, &node_chanmgr);
11843 let sender_intended_amt_msat = 100;
11844 let extra_fee_msat = 10;
11845 let hop_data = msgs::InboundOnionPayload::Receive {
11847 outgoing_cltv_value: 42,
11848 payment_metadata: None,
11849 keysend_preimage: None,
11850 payment_data: Some(msgs::FinalOnionHopData {
11851 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11853 custom_tlvs: Vec::new(),
11855 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
11856 // intended amount, we fail the payment.
11857 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
11858 node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11859 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat))
11861 assert_eq!(err_code, 19);
11862 } else { panic!(); }
11864 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
11865 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
11867 outgoing_cltv_value: 42,
11868 payment_metadata: None,
11869 keysend_preimage: None,
11870 payment_data: Some(msgs::FinalOnionHopData {
11871 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11873 custom_tlvs: Vec::new(),
11875 assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11876 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok());
11880 fn test_final_incorrect_cltv(){
11881 let chanmon_cfg = create_chanmon_cfgs(1);
11882 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11883 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11884 let node = create_network(1, &node_cfg, &node_chanmgr);
11886 let result = node[0].node.construct_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
11888 outgoing_cltv_value: 22,
11889 payment_metadata: None,
11890 keysend_preimage: None,
11891 payment_data: Some(msgs::FinalOnionHopData {
11892 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
11894 custom_tlvs: Vec::new(),
11895 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None);
11897 // Should not return an error as this condition:
11898 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
11899 // is not satisfied.
11900 assert!(result.is_ok());
11904 fn test_inbound_anchors_manual_acceptance() {
11905 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11906 // flag set and (sometimes) accept channels as 0conf.
11907 let mut anchors_cfg = test_default_channel_config();
11908 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11910 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
11911 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
11913 let chanmon_cfgs = create_chanmon_cfgs(3);
11914 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11915 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
11916 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
11917 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11919 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11920 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11922 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11923 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11924 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
11925 match &msg_events[0] {
11926 MessageSendEvent::HandleError { node_id, action } => {
11927 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
11929 ErrorAction::SendErrorMessage { msg } =>
11930 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
11931 _ => panic!("Unexpected error action"),
11934 _ => panic!("Unexpected event"),
11937 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11938 let events = nodes[2].node.get_and_clear_pending_events();
11940 Event::OpenChannelRequest { temporary_channel_id, .. } =>
11941 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
11942 _ => panic!("Unexpected event"),
11944 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11948 fn test_anchors_zero_fee_htlc_tx_fallback() {
11949 // Tests that if both nodes support anchors, but the remote node does not want to accept
11950 // anchor channels at the moment, an error it sent to the local node such that it can retry
11951 // the channel without the anchors feature.
11952 let chanmon_cfgs = create_chanmon_cfgs(2);
11953 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11954 let mut anchors_config = test_default_channel_config();
11955 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11956 anchors_config.manually_accept_inbound_channels = true;
11957 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
11958 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11960 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
11961 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11962 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
11964 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11965 let events = nodes[1].node.get_and_clear_pending_events();
11967 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11968 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
11970 _ => panic!("Unexpected event"),
11973 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
11974 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
11976 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11977 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
11979 // Since nodes[1] should not have accepted the channel, it should
11980 // not have generated any events.
11981 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11985 fn test_update_channel_config() {
11986 let chanmon_cfg = create_chanmon_cfgs(2);
11987 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11988 let mut user_config = test_default_channel_config();
11989 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
11990 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11991 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
11992 let channel = &nodes[0].node.list_channels()[0];
11994 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
11995 let events = nodes[0].node.get_and_clear_pending_msg_events();
11996 assert_eq!(events.len(), 0);
11998 user_config.channel_config.forwarding_fee_base_msat += 10;
11999 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12000 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12001 let events = nodes[0].node.get_and_clear_pending_msg_events();
12002 assert_eq!(events.len(), 1);
12004 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12005 _ => panic!("expected BroadcastChannelUpdate event"),
12008 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12009 let events = nodes[0].node.get_and_clear_pending_msg_events();
12010 assert_eq!(events.len(), 0);
12012 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12013 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12014 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12015 ..Default::default()
12017 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12018 let events = nodes[0].node.get_and_clear_pending_msg_events();
12019 assert_eq!(events.len(), 1);
12021 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12022 _ => panic!("expected BroadcastChannelUpdate event"),
12025 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12026 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12027 forwarding_fee_proportional_millionths: Some(new_fee),
12028 ..Default::default()
12030 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12031 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12032 let events = nodes[0].node.get_and_clear_pending_msg_events();
12033 assert_eq!(events.len(), 1);
12035 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12036 _ => panic!("expected BroadcastChannelUpdate event"),
12039 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12040 // should be applied to ensure update atomicity as specified in the API docs.
12041 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12042 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12043 let new_fee = current_fee + 100;
12046 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12047 forwarding_fee_proportional_millionths: Some(new_fee),
12048 ..Default::default()
12050 Err(APIError::ChannelUnavailable { err: _ }),
12053 // Check that the fee hasn't changed for the channel that exists.
12054 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12055 let events = nodes[0].node.get_and_clear_pending_msg_events();
12056 assert_eq!(events.len(), 0);
12060 fn test_payment_display() {
12061 let payment_id = PaymentId([42; 32]);
12062 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12063 let payment_hash = PaymentHash([42; 32]);
12064 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12065 let payment_preimage = PaymentPreimage([42; 32]);
12066 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12070 fn test_trigger_lnd_force_close() {
12071 let chanmon_cfg = create_chanmon_cfgs(2);
12072 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12073 let user_config = test_default_channel_config();
12074 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12075 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12077 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12078 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12079 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12080 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12081 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12082 check_closed_broadcast(&nodes[0], 1, true);
12083 check_added_monitors(&nodes[0], 1);
12084 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12086 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12087 assert_eq!(txn.len(), 1);
12088 check_spends!(txn[0], funding_tx);
12091 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12092 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12094 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12095 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12097 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12098 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12099 }, false).unwrap();
12100 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12101 let channel_reestablish = get_event_msg!(
12102 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12104 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12106 // Alice should respond with an error since the channel isn't known, but a bogus
12107 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12108 // close even if it was an lnd node.
12109 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12110 assert_eq!(msg_events.len(), 2);
12111 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12112 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12113 assert_eq!(msg.next_local_commitment_number, 0);
12114 assert_eq!(msg.next_remote_commitment_number, 0);
12115 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12116 } else { panic!() };
12117 check_closed_broadcast(&nodes[1], 1, true);
12118 check_added_monitors(&nodes[1], 1);
12119 let expected_close_reason = ClosureReason::ProcessingError {
12120 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12122 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12124 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12125 assert_eq!(txn.len(), 1);
12126 check_spends!(txn[0], funding_tx);
12133 use crate::chain::Listen;
12134 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12135 use crate::sign::{KeysManager, InMemorySigner};
12136 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12137 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12138 use crate::ln::functional_test_utils::*;
12139 use crate::ln::msgs::{ChannelMessageHandler, Init};
12140 use crate::routing::gossip::NetworkGraph;
12141 use crate::routing::router::{PaymentParameters, RouteParameters};
12142 use crate::util::test_utils;
12143 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12145 use bitcoin::hashes::Hash;
12146 use bitcoin::hashes::sha256::Hash as Sha256;
12147 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
12149 use crate::sync::{Arc, Mutex, RwLock};
12151 use criterion::Criterion;
12153 type Manager<'a, P> = ChannelManager<
12154 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12155 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12156 &'a test_utils::TestLogger, &'a P>,
12157 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12158 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12159 &'a test_utils::TestLogger>;
12161 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12162 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12164 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12165 type CM = Manager<'chan_mon_cfg, P>;
12167 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12169 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12172 pub fn bench_sends(bench: &mut Criterion) {
12173 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12176 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12177 // Do a simple benchmark of sending a payment back and forth between two nodes.
12178 // Note that this is unrealistic as each payment send will require at least two fsync
12180 let network = bitcoin::Network::Testnet;
12181 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12183 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12184 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12185 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12186 let scorer = RwLock::new(test_utils::TestScorer::new());
12187 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
12189 let mut config: UserConfig = Default::default();
12190 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12191 config.channel_handshake_config.minimum_depth = 1;
12193 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12194 let seed_a = [1u8; 32];
12195 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12196 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12198 best_block: BestBlock::from_network(network),
12199 }, genesis_block.header.time);
12200 let node_a_holder = ANodeHolder { node: &node_a };
12202 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12203 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12204 let seed_b = [2u8; 32];
12205 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12206 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12208 best_block: BestBlock::from_network(network),
12209 }, genesis_block.header.time);
12210 let node_b_holder = ANodeHolder { node: &node_b };
12212 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12213 features: node_b.init_features(), networks: None, remote_network_address: None
12215 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12216 features: node_a.init_features(), networks: None, remote_network_address: None
12217 }, false).unwrap();
12218 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12219 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12220 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12223 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12224 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12225 value: 8_000_000, script_pubkey: output_script,
12227 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12228 } else { panic!(); }
12230 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12231 let events_b = node_b.get_and_clear_pending_events();
12232 assert_eq!(events_b.len(), 1);
12233 match events_b[0] {
12234 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12235 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12237 _ => panic!("Unexpected event"),
12240 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12241 let events_a = node_a.get_and_clear_pending_events();
12242 assert_eq!(events_a.len(), 1);
12243 match events_a[0] {
12244 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12245 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12247 _ => panic!("Unexpected event"),
12250 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12252 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12253 Listen::block_connected(&node_a, &block, 1);
12254 Listen::block_connected(&node_b, &block, 1);
12256 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12257 let msg_events = node_a.get_and_clear_pending_msg_events();
12258 assert_eq!(msg_events.len(), 2);
12259 match msg_events[0] {
12260 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12261 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12262 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12266 match msg_events[1] {
12267 MessageSendEvent::SendChannelUpdate { .. } => {},
12271 let events_a = node_a.get_and_clear_pending_events();
12272 assert_eq!(events_a.len(), 1);
12273 match events_a[0] {
12274 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12275 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12277 _ => panic!("Unexpected event"),
12280 let events_b = node_b.get_and_clear_pending_events();
12281 assert_eq!(events_b.len(), 1);
12282 match events_b[0] {
12283 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12284 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12286 _ => panic!("Unexpected event"),
12289 let mut payment_count: u64 = 0;
12290 macro_rules! send_payment {
12291 ($node_a: expr, $node_b: expr) => {
12292 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12293 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12294 let mut payment_preimage = PaymentPreimage([0; 32]);
12295 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12296 payment_count += 1;
12297 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
12298 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12300 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12301 PaymentId(payment_hash.0),
12302 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12303 Retry::Attempts(0)).unwrap();
12304 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12305 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12306 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12307 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12308 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12309 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12310 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12312 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12313 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12314 $node_b.claim_funds(payment_preimage);
12315 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12317 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12318 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12319 assert_eq!(node_id, $node_a.get_our_node_id());
12320 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12321 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12323 _ => panic!("Failed to generate claim event"),
12326 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12327 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12328 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12329 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12331 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12335 bench.bench_function(bench_name, |b| b.iter(|| {
12336 send_payment!(node_a, node_b);
12337 send_payment!(node_b, node_a);