1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::BlindedPath;
35 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
47 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
48 #[cfg(any(feature = "_test_utils", test))]
49 use crate::ln::features::Bolt11InvoiceFeatures;
50 use crate::routing::gossip::NetworkGraph;
51 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
54 use crate::ln::onion_utils;
55 use crate::ln::onion_utils::HTLCFailReason;
56 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
58 use crate::ln::outbound_payment;
59 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
60 use crate::ln::wire::Encode;
61 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
62 use crate::offers::invoice_error::InvoiceError;
63 use crate::offers::merkle::SignError;
64 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
65 use crate::offers::parse::Bolt12SemanticError;
66 use crate::offers::refund::{Refund, RefundBuilder};
67 use crate::onion_message::{Destination, OffersMessage, OffersMessageHandler, PendingOnionMessage, new_pending_onion_message};
68 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, WriteableEcdsaChannelSigner};
69 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
70 use crate::util::wakers::{Future, Notifier};
71 use crate::util::scid_utils::fake_scid;
72 use crate::util::string::UntrustedString;
73 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
74 use crate::util::logger::{Level, Logger};
75 use crate::util::errors::APIError;
77 use alloc::collections::{btree_map, BTreeMap};
80 use crate::prelude::*;
82 use core::cell::RefCell;
84 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
85 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
86 use core::time::Duration;
89 // Re-export this for use in the public API.
90 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
91 use crate::ln::script::ShutdownScript;
93 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
95 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
96 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
97 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
99 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
100 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
101 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
102 // before we forward it.
104 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
105 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
106 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
107 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
108 // our payment, which we can use to decode errors or inform the user that the payment was sent.
110 /// Routing info for an inbound HTLC onion.
111 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
112 pub enum PendingHTLCRouting {
113 /// A forwarded HTLC.
115 /// BOLT 4 onion packet.
116 onion_packet: msgs::OnionPacket,
117 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
118 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
119 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
121 /// An HTLC paid to an invoice we generated.
123 /// Payment secret and total msat received.
124 payment_data: msgs::FinalOnionHopData,
125 /// See [`RecipientOnionFields::payment_metadata`] for more info.
126 payment_metadata: Option<Vec<u8>>,
127 /// Used to track when we should expire pending HTLCs that go unclaimed.
128 incoming_cltv_expiry: u32,
129 /// Optional shared secret for phantom node.
130 phantom_shared_secret: Option<[u8; 32]>,
131 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
132 custom_tlvs: Vec<(u64, Vec<u8>)>,
134 /// Incoming keysend (sender provided the preimage in a TLV).
136 /// This was added in 0.0.116 and will break deserialization on downgrades.
137 payment_data: Option<msgs::FinalOnionHopData>,
138 /// Preimage for this onion payment.
139 payment_preimage: PaymentPreimage,
140 /// See [`RecipientOnionFields::payment_metadata`] for more info.
141 payment_metadata: Option<Vec<u8>>,
142 /// CLTV expiry of the incoming HTLC.
143 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
144 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
145 custom_tlvs: Vec<(u64, Vec<u8>)>,
149 /// Full details of an incoming HTLC, including routing info.
150 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
151 pub struct PendingHTLCInfo {
152 /// Further routing details based on whether the HTLC is being forwarded or received.
153 pub routing: PendingHTLCRouting,
154 /// Shared secret from the previous hop.
155 pub incoming_shared_secret: [u8; 32],
156 payment_hash: PaymentHash,
158 pub incoming_amt_msat: Option<u64>, // Added in 0.0.113
159 /// Sender intended amount to forward or receive (actual amount received
160 /// may overshoot this in either case)
161 pub outgoing_amt_msat: u64,
162 /// Outgoing CLTV height.
163 pub outgoing_cltv_value: u32,
164 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
165 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
166 pub skimmed_fee_msat: Option<u64>,
169 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
170 pub(super) enum HTLCFailureMsg {
171 Relay(msgs::UpdateFailHTLC),
172 Malformed(msgs::UpdateFailMalformedHTLC),
175 /// Stores whether we can't forward an HTLC or relevant forwarding info
176 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
177 pub(super) enum PendingHTLCStatus {
178 Forward(PendingHTLCInfo),
179 Fail(HTLCFailureMsg),
182 pub(super) struct PendingAddHTLCInfo {
183 pub(super) forward_info: PendingHTLCInfo,
185 // These fields are produced in `forward_htlcs()` and consumed in
186 // `process_pending_htlc_forwards()` for constructing the
187 // `HTLCSource::PreviousHopData` for failed and forwarded
190 // Note that this may be an outbound SCID alias for the associated channel.
191 prev_short_channel_id: u64,
193 prev_funding_outpoint: OutPoint,
194 prev_user_channel_id: u128,
197 pub(super) enum HTLCForwardInfo {
198 AddHTLC(PendingAddHTLCInfo),
201 err_packet: msgs::OnionErrorPacket,
205 /// Tracks the inbound corresponding to an outbound HTLC
206 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
207 pub(crate) struct HTLCPreviousHopData {
208 // Note that this may be an outbound SCID alias for the associated channel.
209 short_channel_id: u64,
210 user_channel_id: Option<u128>,
212 incoming_packet_shared_secret: [u8; 32],
213 phantom_shared_secret: Option<[u8; 32]>,
215 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
216 // channel with a preimage provided by the forward channel.
221 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
223 /// This is only here for backwards-compatibility in serialization, in the future it can be
224 /// removed, breaking clients running 0.0.106 and earlier.
225 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
227 /// Contains the payer-provided preimage.
228 Spontaneous(PaymentPreimage),
231 /// HTLCs that are to us and can be failed/claimed by the user
232 struct ClaimableHTLC {
233 prev_hop: HTLCPreviousHopData,
235 /// The amount (in msats) of this MPP part
237 /// The amount (in msats) that the sender intended to be sent in this MPP
238 /// part (used for validating total MPP amount)
239 sender_intended_value: u64,
240 onion_payload: OnionPayload,
242 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
243 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
244 total_value_received: Option<u64>,
245 /// The sender intended sum total of all MPP parts specified in the onion
247 /// The extra fee our counterparty skimmed off the top of this HTLC.
248 counterparty_skimmed_fee_msat: Option<u64>,
251 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
252 fn from(val: &ClaimableHTLC) -> Self {
253 events::ClaimedHTLC {
254 channel_id: val.prev_hop.outpoint.to_channel_id(),
255 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
256 cltv_expiry: val.cltv_expiry,
257 value_msat: val.value,
258 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
263 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
264 /// a payment and ensure idempotency in LDK.
266 /// This is not exported to bindings users as we just use [u8; 32] directly
267 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
268 pub struct PaymentId(pub [u8; Self::LENGTH]);
271 /// Number of bytes in the id.
272 pub const LENGTH: usize = 32;
275 impl Writeable for PaymentId {
276 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
281 impl Readable for PaymentId {
282 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
283 let buf: [u8; 32] = Readable::read(r)?;
288 impl core::fmt::Display for PaymentId {
289 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
290 crate::util::logger::DebugBytes(&self.0).fmt(f)
294 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
296 /// This is not exported to bindings users as we just use [u8; 32] directly
297 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
298 pub struct InterceptId(pub [u8; 32]);
300 impl Writeable for InterceptId {
301 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
306 impl Readable for InterceptId {
307 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
308 let buf: [u8; 32] = Readable::read(r)?;
313 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
314 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
315 pub(crate) enum SentHTLCId {
316 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
317 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
320 pub(crate) fn from_source(source: &HTLCSource) -> Self {
322 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
323 short_channel_id: hop_data.short_channel_id,
324 htlc_id: hop_data.htlc_id,
326 HTLCSource::OutboundRoute { session_priv, .. } =>
327 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
331 impl_writeable_tlv_based_enum!(SentHTLCId,
332 (0, PreviousHopData) => {
333 (0, short_channel_id, required),
334 (2, htlc_id, required),
336 (2, OutboundRoute) => {
337 (0, session_priv, required),
342 /// Tracks the inbound corresponding to an outbound HTLC
343 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
344 #[derive(Clone, Debug, PartialEq, Eq)]
345 pub(crate) enum HTLCSource {
346 PreviousHopData(HTLCPreviousHopData),
349 session_priv: SecretKey,
350 /// Technically we can recalculate this from the route, but we cache it here to avoid
351 /// doing a double-pass on route when we get a failure back
352 first_hop_htlc_msat: u64,
353 payment_id: PaymentId,
356 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
357 impl core::hash::Hash for HTLCSource {
358 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
360 HTLCSource::PreviousHopData(prev_hop_data) => {
362 prev_hop_data.hash(hasher);
364 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
367 session_priv[..].hash(hasher);
368 payment_id.hash(hasher);
369 first_hop_htlc_msat.hash(hasher);
375 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
377 pub fn dummy() -> Self {
378 HTLCSource::OutboundRoute {
379 path: Path { hops: Vec::new(), blinded_tail: None },
380 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
381 first_hop_htlc_msat: 0,
382 payment_id: PaymentId([2; 32]),
386 #[cfg(debug_assertions)]
387 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
388 /// transaction. Useful to ensure different datastructures match up.
389 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
390 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
391 *first_hop_htlc_msat == htlc.amount_msat
393 // There's nothing we can check for forwarded HTLCs
399 /// Invalid inbound onion payment.
400 pub struct InboundOnionErr {
401 /// BOLT 4 error code.
403 /// Data attached to this error.
404 pub err_data: Vec<u8>,
405 /// Error message text.
406 pub msg: &'static str,
409 /// This enum is used to specify which error data to send to peers when failing back an HTLC
410 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
412 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
413 #[derive(Clone, Copy)]
414 pub enum FailureCode {
415 /// We had a temporary error processing the payment. Useful if no other error codes fit
416 /// and you want to indicate that the payer may want to retry.
417 TemporaryNodeFailure,
418 /// We have a required feature which was not in this onion. For example, you may require
419 /// some additional metadata that was not provided with this payment.
420 RequiredNodeFeatureMissing,
421 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
422 /// the HTLC is too close to the current block height for safe handling.
423 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
424 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
425 IncorrectOrUnknownPaymentDetails,
426 /// We failed to process the payload after the onion was decrypted. You may wish to
427 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
429 /// If available, the tuple data may include the type number and byte offset in the
430 /// decrypted byte stream where the failure occurred.
431 InvalidOnionPayload(Option<(u64, u16)>),
434 impl Into<u16> for FailureCode {
435 fn into(self) -> u16 {
437 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
438 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
439 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
440 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
445 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
446 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
447 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
448 /// peer_state lock. We then return the set of things that need to be done outside the lock in
449 /// this struct and call handle_error!() on it.
451 struct MsgHandleErrInternal {
452 err: msgs::LightningError,
453 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
454 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
455 channel_capacity: Option<u64>,
457 impl MsgHandleErrInternal {
459 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
461 err: LightningError {
463 action: msgs::ErrorAction::SendErrorMessage {
464 msg: msgs::ErrorMessage {
471 shutdown_finish: None,
472 channel_capacity: None,
476 fn from_no_close(err: msgs::LightningError) -> Self {
477 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
480 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
481 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
482 let action = if shutdown_res.monitor_update.is_some() {
483 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
484 // should disconnect our peer such that we force them to broadcast their latest
485 // commitment upon reconnecting.
486 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
488 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
491 err: LightningError { err, action },
492 chan_id: Some((channel_id, user_channel_id)),
493 shutdown_finish: Some((shutdown_res, channel_update)),
494 channel_capacity: Some(channel_capacity)
498 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
501 ChannelError::Warn(msg) => LightningError {
503 action: msgs::ErrorAction::SendWarningMessage {
504 msg: msgs::WarningMessage {
508 log_level: Level::Warn,
511 ChannelError::Ignore(msg) => LightningError {
513 action: msgs::ErrorAction::IgnoreError,
515 ChannelError::Close(msg) => LightningError {
517 action: msgs::ErrorAction::SendErrorMessage {
518 msg: msgs::ErrorMessage {
526 shutdown_finish: None,
527 channel_capacity: None,
531 fn closes_channel(&self) -> bool {
532 self.chan_id.is_some()
536 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
537 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
538 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
539 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
540 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
542 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
543 /// be sent in the order they appear in the return value, however sometimes the order needs to be
544 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
545 /// they were originally sent). In those cases, this enum is also returned.
546 #[derive(Clone, PartialEq)]
547 pub(super) enum RAACommitmentOrder {
548 /// Send the CommitmentUpdate messages first
550 /// Send the RevokeAndACK message first
554 /// Information about a payment which is currently being claimed.
555 struct ClaimingPayment {
557 payment_purpose: events::PaymentPurpose,
558 receiver_node_id: PublicKey,
559 htlcs: Vec<events::ClaimedHTLC>,
560 sender_intended_value: Option<u64>,
562 impl_writeable_tlv_based!(ClaimingPayment, {
563 (0, amount_msat, required),
564 (2, payment_purpose, required),
565 (4, receiver_node_id, required),
566 (5, htlcs, optional_vec),
567 (7, sender_intended_value, option),
570 struct ClaimablePayment {
571 purpose: events::PaymentPurpose,
572 onion_fields: Option<RecipientOnionFields>,
573 htlcs: Vec<ClaimableHTLC>,
576 /// Information about claimable or being-claimed payments
577 struct ClaimablePayments {
578 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
579 /// failed/claimed by the user.
581 /// Note that, no consistency guarantees are made about the channels given here actually
582 /// existing anymore by the time you go to read them!
584 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
585 /// we don't get a duplicate payment.
586 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
588 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
589 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
590 /// as an [`events::Event::PaymentClaimed`].
591 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
594 /// Events which we process internally but cannot be processed immediately at the generation site
595 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
596 /// running normally, and specifically must be processed before any other non-background
597 /// [`ChannelMonitorUpdate`]s are applied.
599 enum BackgroundEvent {
600 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
601 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
602 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
603 /// channel has been force-closed we do not need the counterparty node_id.
605 /// Note that any such events are lost on shutdown, so in general they must be updates which
606 /// are regenerated on startup.
607 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
608 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
609 /// channel to continue normal operation.
611 /// In general this should be used rather than
612 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
613 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
614 /// error the other variant is acceptable.
616 /// Note that any such events are lost on shutdown, so in general they must be updates which
617 /// are regenerated on startup.
618 MonitorUpdateRegeneratedOnStartup {
619 counterparty_node_id: PublicKey,
620 funding_txo: OutPoint,
621 update: ChannelMonitorUpdate
623 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
624 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
626 MonitorUpdatesComplete {
627 counterparty_node_id: PublicKey,
628 channel_id: ChannelId,
633 pub(crate) enum MonitorUpdateCompletionAction {
634 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
635 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
636 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
637 /// event can be generated.
638 PaymentClaimed { payment_hash: PaymentHash },
639 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
640 /// operation of another channel.
642 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
643 /// from completing a monitor update which removes the payment preimage until the inbound edge
644 /// completes a monitor update containing the payment preimage. In that case, after the inbound
645 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
647 EmitEventAndFreeOtherChannel {
648 event: events::Event,
649 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
651 /// Indicates we should immediately resume the operation of another channel, unless there is
652 /// some other reason why the channel is blocked. In practice this simply means immediately
653 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
655 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
656 /// from completing a monitor update which removes the payment preimage until the inbound edge
657 /// completes a monitor update containing the payment preimage. However, we use this variant
658 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
659 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
661 /// This variant should thus never be written to disk, as it is processed inline rather than
662 /// stored for later processing.
663 FreeOtherChannelImmediately {
664 downstream_counterparty_node_id: PublicKey,
665 downstream_funding_outpoint: OutPoint,
666 blocking_action: RAAMonitorUpdateBlockingAction,
670 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
671 (0, PaymentClaimed) => { (0, payment_hash, required) },
672 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
673 // *immediately*. However, for simplicity we implement read/write here.
674 (1, FreeOtherChannelImmediately) => {
675 (0, downstream_counterparty_node_id, required),
676 (2, downstream_funding_outpoint, required),
677 (4, blocking_action, required),
679 (2, EmitEventAndFreeOtherChannel) => {
680 (0, event, upgradable_required),
681 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
682 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
683 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
684 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
685 // downgrades to prior versions.
686 (1, downstream_counterparty_and_funding_outpoint, option),
690 #[derive(Clone, Debug, PartialEq, Eq)]
691 pub(crate) enum EventCompletionAction {
692 ReleaseRAAChannelMonitorUpdate {
693 counterparty_node_id: PublicKey,
694 channel_funding_outpoint: OutPoint,
697 impl_writeable_tlv_based_enum!(EventCompletionAction,
698 (0, ReleaseRAAChannelMonitorUpdate) => {
699 (0, channel_funding_outpoint, required),
700 (2, counterparty_node_id, required),
704 #[derive(Clone, PartialEq, Eq, Debug)]
705 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
706 /// the blocked action here. See enum variants for more info.
707 pub(crate) enum RAAMonitorUpdateBlockingAction {
708 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
709 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
711 ForwardedPaymentInboundClaim {
712 /// The upstream channel ID (i.e. the inbound edge).
713 channel_id: ChannelId,
714 /// The HTLC ID on the inbound edge.
719 impl RAAMonitorUpdateBlockingAction {
720 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
721 Self::ForwardedPaymentInboundClaim {
722 channel_id: prev_hop.outpoint.to_channel_id(),
723 htlc_id: prev_hop.htlc_id,
728 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
729 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
733 /// State we hold per-peer.
734 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
735 /// `channel_id` -> `ChannelPhase`
737 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
738 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
739 /// `temporary_channel_id` -> `InboundChannelRequest`.
741 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
742 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
743 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
744 /// the channel is rejected, then the entry is simply removed.
745 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
746 /// The latest `InitFeatures` we heard from the peer.
747 latest_features: InitFeatures,
748 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
749 /// for broadcast messages, where ordering isn't as strict).
750 pub(super) pending_msg_events: Vec<MessageSendEvent>,
751 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
752 /// user but which have not yet completed.
754 /// Note that the channel may no longer exist. For example if the channel was closed but we
755 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
756 /// for a missing channel.
757 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
758 /// Map from a specific channel to some action(s) that should be taken when all pending
759 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
761 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
762 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
763 /// channels with a peer this will just be one allocation and will amount to a linear list of
764 /// channels to walk, avoiding the whole hashing rigmarole.
766 /// Note that the channel may no longer exist. For example, if a channel was closed but we
767 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
768 /// for a missing channel. While a malicious peer could construct a second channel with the
769 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
770 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
771 /// duplicates do not occur, so such channels should fail without a monitor update completing.
772 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
773 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
774 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
775 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
776 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
777 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
778 /// The peer is currently connected (i.e. we've seen a
779 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
780 /// [`ChannelMessageHandler::peer_disconnected`].
784 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
785 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
786 /// If true is passed for `require_disconnected`, the function will return false if we haven't
787 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
788 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
789 if require_disconnected && self.is_connected {
792 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
793 && self.monitor_update_blocked_actions.is_empty()
794 && self.in_flight_monitor_updates.is_empty()
797 // Returns a count of all channels we have with this peer, including unfunded channels.
798 fn total_channel_count(&self) -> usize {
799 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
802 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
803 fn has_channel(&self, channel_id: &ChannelId) -> bool {
804 self.channel_by_id.contains_key(channel_id) ||
805 self.inbound_channel_request_by_id.contains_key(channel_id)
809 /// A not-yet-accepted inbound (from counterparty) channel. Once
810 /// accepted, the parameters will be used to construct a channel.
811 pub(super) struct InboundChannelRequest {
812 /// The original OpenChannel message.
813 pub open_channel_msg: msgs::OpenChannel,
814 /// The number of ticks remaining before the request expires.
815 pub ticks_remaining: i32,
818 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
819 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
820 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
822 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
823 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
825 /// For users who don't want to bother doing their own payment preimage storage, we also store that
828 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
829 /// and instead encoding it in the payment secret.
830 struct PendingInboundPayment {
831 /// The payment secret that the sender must use for us to accept this payment
832 payment_secret: PaymentSecret,
833 /// Time at which this HTLC expires - blocks with a header time above this value will result in
834 /// this payment being removed.
836 /// Arbitrary identifier the user specifies (or not)
837 user_payment_id: u64,
838 // Other required attributes of the payment, optionally enforced:
839 payment_preimage: Option<PaymentPreimage>,
840 min_value_msat: Option<u64>,
843 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
844 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
845 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
846 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
847 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
848 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
849 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
850 /// of [`KeysManager`] and [`DefaultRouter`].
852 /// This is not exported to bindings users as type aliases aren't supported in most languages.
853 #[cfg(not(c_bindings))]
854 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
862 Arc<NetworkGraph<Arc<L>>>,
864 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
865 ProbabilisticScoringFeeParameters,
866 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
871 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
872 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
873 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
874 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
875 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
876 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
877 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
878 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
879 /// of [`KeysManager`] and [`DefaultRouter`].
881 /// This is not exported to bindings users as type aliases aren't supported in most languages.
882 #[cfg(not(c_bindings))]
883 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
892 &'f NetworkGraph<&'g L>,
894 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
895 ProbabilisticScoringFeeParameters,
896 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
901 /// A trivial trait which describes any [`ChannelManager`].
903 /// This is not exported to bindings users as general cover traits aren't useful in other
905 pub trait AChannelManager {
906 /// A type implementing [`chain::Watch`].
907 type Watch: chain::Watch<Self::Signer> + ?Sized;
908 /// A type that may be dereferenced to [`Self::Watch`].
909 type M: Deref<Target = Self::Watch>;
910 /// A type implementing [`BroadcasterInterface`].
911 type Broadcaster: BroadcasterInterface + ?Sized;
912 /// A type that may be dereferenced to [`Self::Broadcaster`].
913 type T: Deref<Target = Self::Broadcaster>;
914 /// A type implementing [`EntropySource`].
915 type EntropySource: EntropySource + ?Sized;
916 /// A type that may be dereferenced to [`Self::EntropySource`].
917 type ES: Deref<Target = Self::EntropySource>;
918 /// A type implementing [`NodeSigner`].
919 type NodeSigner: NodeSigner + ?Sized;
920 /// A type that may be dereferenced to [`Self::NodeSigner`].
921 type NS: Deref<Target = Self::NodeSigner>;
922 /// A type implementing [`WriteableEcdsaChannelSigner`].
923 type Signer: WriteableEcdsaChannelSigner + Sized;
924 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
925 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
926 /// A type that may be dereferenced to [`Self::SignerProvider`].
927 type SP: Deref<Target = Self::SignerProvider>;
928 /// A type implementing [`FeeEstimator`].
929 type FeeEstimator: FeeEstimator + ?Sized;
930 /// A type that may be dereferenced to [`Self::FeeEstimator`].
931 type F: Deref<Target = Self::FeeEstimator>;
932 /// A type implementing [`Router`].
933 type Router: Router + ?Sized;
934 /// A type that may be dereferenced to [`Self::Router`].
935 type R: Deref<Target = Self::Router>;
936 /// A type implementing [`Logger`].
937 type Logger: Logger + ?Sized;
938 /// A type that may be dereferenced to [`Self::Logger`].
939 type L: Deref<Target = Self::Logger>;
940 /// Returns a reference to the actual [`ChannelManager`] object.
941 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
944 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
945 for ChannelManager<M, T, ES, NS, SP, F, R, L>
947 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
948 T::Target: BroadcasterInterface,
949 ES::Target: EntropySource,
950 NS::Target: NodeSigner,
951 SP::Target: SignerProvider,
952 F::Target: FeeEstimator,
956 type Watch = M::Target;
958 type Broadcaster = T::Target;
960 type EntropySource = ES::Target;
962 type NodeSigner = NS::Target;
964 type Signer = <SP::Target as SignerProvider>::Signer;
965 type SignerProvider = SP::Target;
967 type FeeEstimator = F::Target;
969 type Router = R::Target;
971 type Logger = L::Target;
973 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
976 /// Manager which keeps track of a number of channels and sends messages to the appropriate
977 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
979 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
980 /// to individual Channels.
982 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
983 /// all peers during write/read (though does not modify this instance, only the instance being
984 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
985 /// called [`funding_transaction_generated`] for outbound channels) being closed.
987 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
988 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
989 /// [`ChannelMonitorUpdate`] before returning from
990 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
991 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
992 /// `ChannelManager` operations from occurring during the serialization process). If the
993 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
994 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
995 /// will be lost (modulo on-chain transaction fees).
997 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
998 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
999 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1001 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1002 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1003 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1004 /// offline for a full minute. In order to track this, you must call
1005 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1007 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1008 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1009 /// not have a channel with being unable to connect to us or open new channels with us if we have
1010 /// many peers with unfunded channels.
1012 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1013 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1014 /// never limited. Please ensure you limit the count of such channels yourself.
1016 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1017 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1018 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1019 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1020 /// you're using lightning-net-tokio.
1022 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1023 /// [`funding_created`]: msgs::FundingCreated
1024 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1025 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1026 /// [`update_channel`]: chain::Watch::update_channel
1027 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1028 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1029 /// [`read`]: ReadableArgs::read
1032 // The tree structure below illustrates the lock order requirements for the different locks of the
1033 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1034 // and should then be taken in the order of the lowest to the highest level in the tree.
1035 // Note that locks on different branches shall not be taken at the same time, as doing so will
1036 // create a new lock order for those specific locks in the order they were taken.
1040 // `pending_offers_messages`
1042 // `total_consistency_lock`
1044 // |__`forward_htlcs`
1046 // | |__`pending_intercepted_htlcs`
1048 // |__`per_peer_state`
1050 // |__`pending_inbound_payments`
1052 // |__`claimable_payments`
1054 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1060 // |__`short_to_chan_info`
1062 // |__`outbound_scid_aliases`
1066 // |__`pending_events`
1068 // |__`pending_background_events`
1070 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1072 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1073 T::Target: BroadcasterInterface,
1074 ES::Target: EntropySource,
1075 NS::Target: NodeSigner,
1076 SP::Target: SignerProvider,
1077 F::Target: FeeEstimator,
1081 default_configuration: UserConfig,
1082 chain_hash: ChainHash,
1083 fee_estimator: LowerBoundedFeeEstimator<F>,
1089 /// See `ChannelManager` struct-level documentation for lock order requirements.
1091 pub(super) best_block: RwLock<BestBlock>,
1093 best_block: RwLock<BestBlock>,
1094 secp_ctx: Secp256k1<secp256k1::All>,
1096 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1097 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1098 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1099 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1101 /// See `ChannelManager` struct-level documentation for lock order requirements.
1102 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1104 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1105 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1106 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1107 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1108 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1109 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1110 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1111 /// after reloading from disk while replaying blocks against ChannelMonitors.
1113 /// See `PendingOutboundPayment` documentation for more info.
1115 /// See `ChannelManager` struct-level documentation for lock order requirements.
1116 pending_outbound_payments: OutboundPayments,
1118 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1120 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1121 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1122 /// and via the classic SCID.
1124 /// Note that no consistency guarantees are made about the existence of a channel with the
1125 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1127 /// See `ChannelManager` struct-level documentation for lock order requirements.
1129 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1131 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1132 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1133 /// until the user tells us what we should do with them.
1135 /// See `ChannelManager` struct-level documentation for lock order requirements.
1136 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1138 /// The sets of payments which are claimable or currently being claimed. See
1139 /// [`ClaimablePayments`]' individual field docs for more info.
1141 /// See `ChannelManager` struct-level documentation for lock order requirements.
1142 claimable_payments: Mutex<ClaimablePayments>,
1144 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1145 /// and some closed channels which reached a usable state prior to being closed. This is used
1146 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1147 /// active channel list on load.
1149 /// See `ChannelManager` struct-level documentation for lock order requirements.
1150 outbound_scid_aliases: Mutex<HashSet<u64>>,
1152 /// `channel_id` -> `counterparty_node_id`.
1154 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1155 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1156 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1158 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1159 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1160 /// the handling of the events.
1162 /// Note that no consistency guarantees are made about the existence of a peer with the
1163 /// `counterparty_node_id` in our other maps.
1166 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1167 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1168 /// would break backwards compatability.
1169 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1170 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1171 /// required to access the channel with the `counterparty_node_id`.
1173 /// See `ChannelManager` struct-level documentation for lock order requirements.
1174 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1176 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1178 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1179 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1180 /// confirmation depth.
1182 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1183 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1184 /// channel with the `channel_id` in our other maps.
1186 /// See `ChannelManager` struct-level documentation for lock order requirements.
1188 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1190 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1192 our_network_pubkey: PublicKey,
1194 inbound_payment_key: inbound_payment::ExpandedKey,
1196 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1197 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1198 /// we encrypt the namespace identifier using these bytes.
1200 /// [fake scids]: crate::util::scid_utils::fake_scid
1201 fake_scid_rand_bytes: [u8; 32],
1203 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1204 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1205 /// keeping additional state.
1206 probing_cookie_secret: [u8; 32],
1208 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1209 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1210 /// very far in the past, and can only ever be up to two hours in the future.
1211 highest_seen_timestamp: AtomicUsize,
1213 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1214 /// basis, as well as the peer's latest features.
1216 /// If we are connected to a peer we always at least have an entry here, even if no channels
1217 /// are currently open with that peer.
1219 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1220 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1223 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1225 /// See `ChannelManager` struct-level documentation for lock order requirements.
1226 #[cfg(not(any(test, feature = "_test_utils")))]
1227 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1228 #[cfg(any(test, feature = "_test_utils"))]
1229 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1231 /// The set of events which we need to give to the user to handle. In some cases an event may
1232 /// require some further action after the user handles it (currently only blocking a monitor
1233 /// update from being handed to the user to ensure the included changes to the channel state
1234 /// are handled by the user before they're persisted durably to disk). In that case, the second
1235 /// element in the tuple is set to `Some` with further details of the action.
1237 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1238 /// could be in the middle of being processed without the direct mutex held.
1240 /// See `ChannelManager` struct-level documentation for lock order requirements.
1241 #[cfg(not(any(test, feature = "_test_utils")))]
1242 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1243 #[cfg(any(test, feature = "_test_utils"))]
1244 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1246 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1247 pending_events_processor: AtomicBool,
1249 /// If we are running during init (either directly during the deserialization method or in
1250 /// block connection methods which run after deserialization but before normal operation) we
1251 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1252 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1253 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1255 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1257 /// See `ChannelManager` struct-level documentation for lock order requirements.
1259 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1260 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1261 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1262 /// Essentially just when we're serializing ourselves out.
1263 /// Taken first everywhere where we are making changes before any other locks.
1264 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1265 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1266 /// Notifier the lock contains sends out a notification when the lock is released.
1267 total_consistency_lock: RwLock<()>,
1268 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1269 /// received and the monitor has been persisted.
1271 /// This information does not need to be persisted as funding nodes can forget
1272 /// unfunded channels upon disconnection.
1273 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1275 background_events_processed_since_startup: AtomicBool,
1277 event_persist_notifier: Notifier,
1278 needs_persist_flag: AtomicBool,
1280 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1284 signer_provider: SP,
1289 /// Chain-related parameters used to construct a new `ChannelManager`.
1291 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1292 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1293 /// are not needed when deserializing a previously constructed `ChannelManager`.
1294 #[derive(Clone, Copy, PartialEq)]
1295 pub struct ChainParameters {
1296 /// The network for determining the `chain_hash` in Lightning messages.
1297 pub network: Network,
1299 /// The hash and height of the latest block successfully connected.
1301 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1302 pub best_block: BestBlock,
1305 #[derive(Copy, Clone, PartialEq)]
1309 SkipPersistHandleEvents,
1310 SkipPersistNoEvents,
1313 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1314 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1315 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1316 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1317 /// sending the aforementioned notification (since the lock being released indicates that the
1318 /// updates are ready for persistence).
1320 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1321 /// notify or not based on whether relevant changes have been made, providing a closure to
1322 /// `optionally_notify` which returns a `NotifyOption`.
1323 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1324 event_persist_notifier: &'a Notifier,
1325 needs_persist_flag: &'a AtomicBool,
1327 // We hold onto this result so the lock doesn't get released immediately.
1328 _read_guard: RwLockReadGuard<'a, ()>,
1331 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1332 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1333 /// events to handle.
1335 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1336 /// other cases where losing the changes on restart may result in a force-close or otherwise
1338 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1339 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1342 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1343 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1344 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1345 let force_notify = cm.get_cm().process_background_events();
1347 PersistenceNotifierGuard {
1348 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1349 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1350 should_persist: move || {
1351 // Pick the "most" action between `persist_check` and the background events
1352 // processing and return that.
1353 let notify = persist_check();
1354 match (notify, force_notify) {
1355 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1356 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1357 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1358 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1359 _ => NotifyOption::SkipPersistNoEvents,
1362 _read_guard: read_guard,
1366 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1367 /// [`ChannelManager::process_background_events`] MUST be called first (or
1368 /// [`Self::optionally_notify`] used).
1369 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1370 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1371 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1373 PersistenceNotifierGuard {
1374 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1375 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1376 should_persist: persist_check,
1377 _read_guard: read_guard,
1382 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1383 fn drop(&mut self) {
1384 match (self.should_persist)() {
1385 NotifyOption::DoPersist => {
1386 self.needs_persist_flag.store(true, Ordering::Release);
1387 self.event_persist_notifier.notify()
1389 NotifyOption::SkipPersistHandleEvents =>
1390 self.event_persist_notifier.notify(),
1391 NotifyOption::SkipPersistNoEvents => {},
1396 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1397 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1399 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1401 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1402 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1403 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1404 /// the maximum required amount in lnd as of March 2021.
1405 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1407 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1408 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1410 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1412 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1413 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1414 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1415 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1416 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1417 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1418 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1419 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1420 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1421 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1422 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1423 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1424 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1426 /// Minimum CLTV difference between the current block height and received inbound payments.
1427 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1429 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1430 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1431 // a payment was being routed, so we add an extra block to be safe.
1432 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1434 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1435 // ie that if the next-hop peer fails the HTLC within
1436 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1437 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1438 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1439 // LATENCY_GRACE_PERIOD_BLOCKS.
1442 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1444 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1445 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1448 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1450 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1451 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1453 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1454 /// until we mark the channel disabled and gossip the update.
1455 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1457 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1458 /// we mark the channel enabled and gossip the update.
1459 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1461 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1462 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1463 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1464 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1466 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1467 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1468 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1470 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1471 /// many peers we reject new (inbound) connections.
1472 const MAX_NO_CHANNEL_PEERS: usize = 250;
1474 /// Information needed for constructing an invoice route hint for this channel.
1475 #[derive(Clone, Debug, PartialEq)]
1476 pub struct CounterpartyForwardingInfo {
1477 /// Base routing fee in millisatoshis.
1478 pub fee_base_msat: u32,
1479 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1480 pub fee_proportional_millionths: u32,
1481 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1482 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1483 /// `cltv_expiry_delta` for more details.
1484 pub cltv_expiry_delta: u16,
1487 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1488 /// to better separate parameters.
1489 #[derive(Clone, Debug, PartialEq)]
1490 pub struct ChannelCounterparty {
1491 /// The node_id of our counterparty
1492 pub node_id: PublicKey,
1493 /// The Features the channel counterparty provided upon last connection.
1494 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1495 /// many routing-relevant features are present in the init context.
1496 pub features: InitFeatures,
1497 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1498 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1499 /// claiming at least this value on chain.
1501 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1503 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1504 pub unspendable_punishment_reserve: u64,
1505 /// Information on the fees and requirements that the counterparty requires when forwarding
1506 /// payments to us through this channel.
1507 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1508 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1509 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1510 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1511 pub outbound_htlc_minimum_msat: Option<u64>,
1512 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1513 pub outbound_htlc_maximum_msat: Option<u64>,
1516 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1517 #[derive(Clone, Debug, PartialEq)]
1518 pub struct ChannelDetails {
1519 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1520 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1521 /// Note that this means this value is *not* persistent - it can change once during the
1522 /// lifetime of the channel.
1523 pub channel_id: ChannelId,
1524 /// Parameters which apply to our counterparty. See individual fields for more information.
1525 pub counterparty: ChannelCounterparty,
1526 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1527 /// our counterparty already.
1529 /// Note that, if this has been set, `channel_id` will be equivalent to
1530 /// `funding_txo.unwrap().to_channel_id()`.
1531 pub funding_txo: Option<OutPoint>,
1532 /// The features which this channel operates with. See individual features for more info.
1534 /// `None` until negotiation completes and the channel type is finalized.
1535 pub channel_type: Option<ChannelTypeFeatures>,
1536 /// The position of the funding transaction in the chain. None if the funding transaction has
1537 /// not yet been confirmed and the channel fully opened.
1539 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1540 /// payments instead of this. See [`get_inbound_payment_scid`].
1542 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1543 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1545 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1546 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1547 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1548 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1549 /// [`confirmations_required`]: Self::confirmations_required
1550 pub short_channel_id: Option<u64>,
1551 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1552 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1553 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1556 /// This will be `None` as long as the channel is not available for routing outbound payments.
1558 /// [`short_channel_id`]: Self::short_channel_id
1559 /// [`confirmations_required`]: Self::confirmations_required
1560 pub outbound_scid_alias: Option<u64>,
1561 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1562 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1563 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1564 /// when they see a payment to be routed to us.
1566 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1567 /// previous values for inbound payment forwarding.
1569 /// [`short_channel_id`]: Self::short_channel_id
1570 pub inbound_scid_alias: Option<u64>,
1571 /// The value, in satoshis, of this channel as appears in the funding output
1572 pub channel_value_satoshis: u64,
1573 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1574 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1575 /// this value on chain.
1577 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1579 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1581 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1582 pub unspendable_punishment_reserve: Option<u64>,
1583 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1584 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1585 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1586 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1587 /// serialized with LDK versions prior to 0.0.113.
1589 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1590 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1591 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1592 pub user_channel_id: u128,
1593 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1594 /// which is applied to commitment and HTLC transactions.
1596 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1597 pub feerate_sat_per_1000_weight: Option<u32>,
1598 /// Our total balance. This is the amount we would get if we close the channel.
1599 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1600 /// amount is not likely to be recoverable on close.
1602 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1603 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1604 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1605 /// This does not consider any on-chain fees.
1607 /// See also [`ChannelDetails::outbound_capacity_msat`]
1608 pub balance_msat: u64,
1609 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1610 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1611 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1612 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1614 /// See also [`ChannelDetails::balance_msat`]
1616 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1617 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1618 /// should be able to spend nearly this amount.
1619 pub outbound_capacity_msat: u64,
1620 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1621 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1622 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1623 /// to use a limit as close as possible to the HTLC limit we can currently send.
1625 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1626 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1627 pub next_outbound_htlc_limit_msat: u64,
1628 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1629 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1630 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1631 /// route which is valid.
1632 pub next_outbound_htlc_minimum_msat: u64,
1633 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1634 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1635 /// available for inclusion in new inbound HTLCs).
1636 /// Note that there are some corner cases not fully handled here, so the actual available
1637 /// inbound capacity may be slightly higher than this.
1639 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1640 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1641 /// However, our counterparty should be able to spend nearly this amount.
1642 pub inbound_capacity_msat: u64,
1643 /// The number of required confirmations on the funding transaction before the funding will be
1644 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1645 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1646 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1647 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1649 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1651 /// [`is_outbound`]: ChannelDetails::is_outbound
1652 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1653 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1654 pub confirmations_required: Option<u32>,
1655 /// The current number of confirmations on the funding transaction.
1657 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1658 pub confirmations: Option<u32>,
1659 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1660 /// until we can claim our funds after we force-close the channel. During this time our
1661 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1662 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1663 /// time to claim our non-HTLC-encumbered funds.
1665 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1666 pub force_close_spend_delay: Option<u16>,
1667 /// True if the channel was initiated (and thus funded) by us.
1668 pub is_outbound: bool,
1669 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1670 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1671 /// required confirmation count has been reached (and we were connected to the peer at some
1672 /// point after the funding transaction received enough confirmations). The required
1673 /// confirmation count is provided in [`confirmations_required`].
1675 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1676 pub is_channel_ready: bool,
1677 /// The stage of the channel's shutdown.
1678 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1679 pub channel_shutdown_state: Option<ChannelShutdownState>,
1680 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1681 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1683 /// This is a strict superset of `is_channel_ready`.
1684 pub is_usable: bool,
1685 /// True if this channel is (or will be) publicly-announced.
1686 pub is_public: bool,
1687 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1688 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1689 pub inbound_htlc_minimum_msat: Option<u64>,
1690 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1691 pub inbound_htlc_maximum_msat: Option<u64>,
1692 /// Set of configurable parameters that affect channel operation.
1694 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1695 pub config: Option<ChannelConfig>,
1698 impl ChannelDetails {
1699 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1700 /// This should be used for providing invoice hints or in any other context where our
1701 /// counterparty will forward a payment to us.
1703 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1704 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1705 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1706 self.inbound_scid_alias.or(self.short_channel_id)
1709 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1710 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1711 /// we're sending or forwarding a payment outbound over this channel.
1713 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1714 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1715 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1716 self.short_channel_id.or(self.outbound_scid_alias)
1719 fn from_channel_context<SP: Deref, F: Deref>(
1720 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1721 fee_estimator: &LowerBoundedFeeEstimator<F>
1724 SP::Target: SignerProvider,
1725 F::Target: FeeEstimator
1727 let balance = context.get_available_balances(fee_estimator);
1728 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1729 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1731 channel_id: context.channel_id(),
1732 counterparty: ChannelCounterparty {
1733 node_id: context.get_counterparty_node_id(),
1734 features: latest_features,
1735 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1736 forwarding_info: context.counterparty_forwarding_info(),
1737 // Ensures that we have actually received the `htlc_minimum_msat` value
1738 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1739 // message (as they are always the first message from the counterparty).
1740 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1741 // default `0` value set by `Channel::new_outbound`.
1742 outbound_htlc_minimum_msat: if context.have_received_message() {
1743 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1744 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1746 funding_txo: context.get_funding_txo(),
1747 // Note that accept_channel (or open_channel) is always the first message, so
1748 // `have_received_message` indicates that type negotiation has completed.
1749 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1750 short_channel_id: context.get_short_channel_id(),
1751 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1752 inbound_scid_alias: context.latest_inbound_scid_alias(),
1753 channel_value_satoshis: context.get_value_satoshis(),
1754 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1755 unspendable_punishment_reserve: to_self_reserve_satoshis,
1756 balance_msat: balance.balance_msat,
1757 inbound_capacity_msat: balance.inbound_capacity_msat,
1758 outbound_capacity_msat: balance.outbound_capacity_msat,
1759 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1760 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1761 user_channel_id: context.get_user_id(),
1762 confirmations_required: context.minimum_depth(),
1763 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1764 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1765 is_outbound: context.is_outbound(),
1766 is_channel_ready: context.is_usable(),
1767 is_usable: context.is_live(),
1768 is_public: context.should_announce(),
1769 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1770 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1771 config: Some(context.config()),
1772 channel_shutdown_state: Some(context.shutdown_state()),
1777 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1778 /// Further information on the details of the channel shutdown.
1779 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1780 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1781 /// the channel will be removed shortly.
1782 /// Also note, that in normal operation, peers could disconnect at any of these states
1783 /// and require peer re-connection before making progress onto other states
1784 pub enum ChannelShutdownState {
1785 /// Channel has not sent or received a shutdown message.
1787 /// Local node has sent a shutdown message for this channel.
1789 /// Shutdown message exchanges have concluded and the channels are in the midst of
1790 /// resolving all existing open HTLCs before closing can continue.
1792 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1793 NegotiatingClosingFee,
1794 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1795 /// to drop the channel.
1799 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1800 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1801 #[derive(Debug, PartialEq)]
1802 pub enum RecentPaymentDetails {
1803 /// When an invoice was requested and thus a payment has not yet been sent.
1805 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1806 /// a payment and ensure idempotency in LDK.
1807 payment_id: PaymentId,
1809 /// When a payment is still being sent and awaiting successful delivery.
1811 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1812 /// a payment and ensure idempotency in LDK.
1813 payment_id: PaymentId,
1814 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1816 payment_hash: PaymentHash,
1817 /// Total amount (in msat, excluding fees) across all paths for this payment,
1818 /// not just the amount currently inflight.
1821 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1822 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1823 /// payment is removed from tracking.
1825 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1826 /// a payment and ensure idempotency in LDK.
1827 payment_id: PaymentId,
1828 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1829 /// made before LDK version 0.0.104.
1830 payment_hash: Option<PaymentHash>,
1832 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1833 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1834 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1836 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1837 /// a payment and ensure idempotency in LDK.
1838 payment_id: PaymentId,
1839 /// Hash of the payment that we have given up trying to send.
1840 payment_hash: PaymentHash,
1844 /// Route hints used in constructing invoices for [phantom node payents].
1846 /// [phantom node payments]: crate::sign::PhantomKeysManager
1848 pub struct PhantomRouteHints {
1849 /// The list of channels to be included in the invoice route hints.
1850 pub channels: Vec<ChannelDetails>,
1851 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1853 pub phantom_scid: u64,
1854 /// The pubkey of the real backing node that would ultimately receive the payment.
1855 pub real_node_pubkey: PublicKey,
1858 macro_rules! handle_error {
1859 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1860 // In testing, ensure there are no deadlocks where the lock is already held upon
1861 // entering the macro.
1862 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1863 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1867 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1868 let mut msg_events = Vec::with_capacity(2);
1870 if let Some((shutdown_res, update_option)) = shutdown_finish {
1871 $self.finish_close_channel(shutdown_res);
1872 if let Some(update) = update_option {
1873 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1877 if let Some((channel_id, user_channel_id)) = chan_id {
1878 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1879 channel_id, user_channel_id,
1880 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1881 counterparty_node_id: Some($counterparty_node_id),
1882 channel_capacity_sats: channel_capacity,
1887 log_error!($self.logger, "{}", err.err);
1888 if let msgs::ErrorAction::IgnoreError = err.action {
1890 msg_events.push(events::MessageSendEvent::HandleError {
1891 node_id: $counterparty_node_id,
1892 action: err.action.clone()
1896 if !msg_events.is_empty() {
1897 let per_peer_state = $self.per_peer_state.read().unwrap();
1898 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1899 let mut peer_state = peer_state_mutex.lock().unwrap();
1900 peer_state.pending_msg_events.append(&mut msg_events);
1904 // Return error in case higher-API need one
1909 ($self: ident, $internal: expr) => {
1912 Err((chan, msg_handle_err)) => {
1913 let counterparty_node_id = chan.get_counterparty_node_id();
1914 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1920 macro_rules! update_maps_on_chan_removal {
1921 ($self: expr, $channel_context: expr) => {{
1922 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1923 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1924 if let Some(short_id) = $channel_context.get_short_channel_id() {
1925 short_to_chan_info.remove(&short_id);
1927 // If the channel was never confirmed on-chain prior to its closure, remove the
1928 // outbound SCID alias we used for it from the collision-prevention set. While we
1929 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1930 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1931 // opening a million channels with us which are closed before we ever reach the funding
1933 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1934 debug_assert!(alias_removed);
1936 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1940 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1941 macro_rules! convert_chan_phase_err {
1942 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1944 ChannelError::Warn(msg) => {
1945 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1947 ChannelError::Ignore(msg) => {
1948 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1950 ChannelError::Close(msg) => {
1951 log_error!($self.logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1952 update_maps_on_chan_removal!($self, $channel.context);
1953 let shutdown_res = $channel.context.force_shutdown(true);
1954 let user_id = $channel.context.get_user_id();
1955 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1957 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1958 shutdown_res, $channel_update, channel_capacity_satoshis))
1962 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1963 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1965 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1966 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1968 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1969 match $channel_phase {
1970 ChannelPhase::Funded(channel) => {
1971 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
1973 ChannelPhase::UnfundedOutboundV1(channel) => {
1974 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1976 ChannelPhase::UnfundedInboundV1(channel) => {
1977 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1983 macro_rules! break_chan_phase_entry {
1984 ($self: ident, $res: expr, $entry: expr) => {
1988 let key = *$entry.key();
1989 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1991 $entry.remove_entry();
1999 macro_rules! try_chan_phase_entry {
2000 ($self: ident, $res: expr, $entry: expr) => {
2004 let key = *$entry.key();
2005 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2007 $entry.remove_entry();
2015 macro_rules! remove_channel_phase {
2016 ($self: expr, $entry: expr) => {
2018 let channel = $entry.remove_entry().1;
2019 update_maps_on_chan_removal!($self, &channel.context());
2025 macro_rules! send_channel_ready {
2026 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2027 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2028 node_id: $channel.context.get_counterparty_node_id(),
2029 msg: $channel_ready_msg,
2031 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2032 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2033 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2034 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2035 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2036 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2037 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2038 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2039 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2040 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2045 macro_rules! emit_channel_pending_event {
2046 ($locked_events: expr, $channel: expr) => {
2047 if $channel.context.should_emit_channel_pending_event() {
2048 $locked_events.push_back((events::Event::ChannelPending {
2049 channel_id: $channel.context.channel_id(),
2050 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2051 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2052 user_channel_id: $channel.context.get_user_id(),
2053 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2055 $channel.context.set_channel_pending_event_emitted();
2060 macro_rules! emit_channel_ready_event {
2061 ($locked_events: expr, $channel: expr) => {
2062 if $channel.context.should_emit_channel_ready_event() {
2063 debug_assert!($channel.context.channel_pending_event_emitted());
2064 $locked_events.push_back((events::Event::ChannelReady {
2065 channel_id: $channel.context.channel_id(),
2066 user_channel_id: $channel.context.get_user_id(),
2067 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2068 channel_type: $channel.context.get_channel_type().clone(),
2070 $channel.context.set_channel_ready_event_emitted();
2075 macro_rules! handle_monitor_update_completion {
2076 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2077 let mut updates = $chan.monitor_updating_restored(&$self.logger,
2078 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2079 $self.best_block.read().unwrap().height());
2080 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2081 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2082 // We only send a channel_update in the case where we are just now sending a
2083 // channel_ready and the channel is in a usable state. We may re-send a
2084 // channel_update later through the announcement_signatures process for public
2085 // channels, but there's no reason not to just inform our counterparty of our fees
2087 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2088 Some(events::MessageSendEvent::SendChannelUpdate {
2089 node_id: counterparty_node_id,
2095 let update_actions = $peer_state.monitor_update_blocked_actions
2096 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2098 let htlc_forwards = $self.handle_channel_resumption(
2099 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2100 updates.commitment_update, updates.order, updates.accepted_htlcs,
2101 updates.funding_broadcastable, updates.channel_ready,
2102 updates.announcement_sigs);
2103 if let Some(upd) = channel_update {
2104 $peer_state.pending_msg_events.push(upd);
2107 let channel_id = $chan.context.channel_id();
2108 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2109 core::mem::drop($peer_state_lock);
2110 core::mem::drop($per_peer_state_lock);
2112 // If the channel belongs to a batch funding transaction, the progress of the batch
2113 // should be updated as we have received funding_signed and persisted the monitor.
2114 if let Some(txid) = unbroadcasted_batch_funding_txid {
2115 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2116 let mut batch_completed = false;
2117 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2118 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2119 *chan_id == channel_id &&
2120 *pubkey == counterparty_node_id
2122 if let Some(channel_state) = channel_state {
2123 channel_state.2 = true;
2125 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2127 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2129 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2132 // When all channels in a batched funding transaction have become ready, it is not necessary
2133 // to track the progress of the batch anymore and the state of the channels can be updated.
2134 if batch_completed {
2135 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2136 let per_peer_state = $self.per_peer_state.read().unwrap();
2137 let mut batch_funding_tx = None;
2138 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2139 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2140 let mut peer_state = peer_state_mutex.lock().unwrap();
2141 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2142 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2143 chan.set_batch_ready();
2144 let mut pending_events = $self.pending_events.lock().unwrap();
2145 emit_channel_pending_event!(pending_events, chan);
2149 if let Some(tx) = batch_funding_tx {
2150 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2151 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2156 $self.handle_monitor_update_completion_actions(update_actions);
2158 if let Some(forwards) = htlc_forwards {
2159 $self.forward_htlcs(&mut [forwards][..]);
2161 $self.finalize_claims(updates.finalized_claimed_htlcs);
2162 for failure in updates.failed_htlcs.drain(..) {
2163 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2164 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2169 macro_rules! handle_new_monitor_update {
2170 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2171 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2173 ChannelMonitorUpdateStatus::UnrecoverableError => {
2174 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2175 log_error!($self.logger, "{}", err_str);
2176 panic!("{}", err_str);
2178 ChannelMonitorUpdateStatus::InProgress => {
2179 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2180 &$chan.context.channel_id());
2183 ChannelMonitorUpdateStatus::Completed => {
2189 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2190 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2191 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2193 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2194 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2195 .or_insert_with(Vec::new);
2196 // During startup, we push monitor updates as background events through to here in
2197 // order to replay updates that were in-flight when we shut down. Thus, we have to
2198 // filter for uniqueness here.
2199 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2200 .unwrap_or_else(|| {
2201 in_flight_updates.push($update);
2202 in_flight_updates.len() - 1
2204 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2205 handle_new_monitor_update!($self, update_res, $chan, _internal,
2207 let _ = in_flight_updates.remove(idx);
2208 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2209 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2215 macro_rules! process_events_body {
2216 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2217 let mut processed_all_events = false;
2218 while !processed_all_events {
2219 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2226 // We'll acquire our total consistency lock so that we can be sure no other
2227 // persists happen while processing monitor events.
2228 let _read_guard = $self.total_consistency_lock.read().unwrap();
2230 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2231 // ensure any startup-generated background events are handled first.
2232 result = $self.process_background_events();
2234 // TODO: This behavior should be documented. It's unintuitive that we query
2235 // ChannelMonitors when clearing other events.
2236 if $self.process_pending_monitor_events() {
2237 result = NotifyOption::DoPersist;
2241 let pending_events = $self.pending_events.lock().unwrap().clone();
2242 let num_events = pending_events.len();
2243 if !pending_events.is_empty() {
2244 result = NotifyOption::DoPersist;
2247 let mut post_event_actions = Vec::new();
2249 for (event, action_opt) in pending_events {
2250 $event_to_handle = event;
2252 if let Some(action) = action_opt {
2253 post_event_actions.push(action);
2258 let mut pending_events = $self.pending_events.lock().unwrap();
2259 pending_events.drain(..num_events);
2260 processed_all_events = pending_events.is_empty();
2261 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2262 // updated here with the `pending_events` lock acquired.
2263 $self.pending_events_processor.store(false, Ordering::Release);
2266 if !post_event_actions.is_empty() {
2267 $self.handle_post_event_actions(post_event_actions);
2268 // If we had some actions, go around again as we may have more events now
2269 processed_all_events = false;
2273 NotifyOption::DoPersist => {
2274 $self.needs_persist_flag.store(true, Ordering::Release);
2275 $self.event_persist_notifier.notify();
2277 NotifyOption::SkipPersistHandleEvents =>
2278 $self.event_persist_notifier.notify(),
2279 NotifyOption::SkipPersistNoEvents => {},
2285 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2287 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2288 T::Target: BroadcasterInterface,
2289 ES::Target: EntropySource,
2290 NS::Target: NodeSigner,
2291 SP::Target: SignerProvider,
2292 F::Target: FeeEstimator,
2296 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2298 /// The current time or latest block header time can be provided as the `current_timestamp`.
2300 /// This is the main "logic hub" for all channel-related actions, and implements
2301 /// [`ChannelMessageHandler`].
2303 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2305 /// Users need to notify the new `ChannelManager` when a new block is connected or
2306 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2307 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2310 /// [`block_connected`]: chain::Listen::block_connected
2311 /// [`block_disconnected`]: chain::Listen::block_disconnected
2312 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2314 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2315 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2316 current_timestamp: u32,
2318 let mut secp_ctx = Secp256k1::new();
2319 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2320 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2321 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2323 default_configuration: config.clone(),
2324 chain_hash: ChainHash::using_genesis_block(params.network),
2325 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2330 best_block: RwLock::new(params.best_block),
2332 outbound_scid_aliases: Mutex::new(HashSet::new()),
2333 pending_inbound_payments: Mutex::new(HashMap::new()),
2334 pending_outbound_payments: OutboundPayments::new(),
2335 forward_htlcs: Mutex::new(HashMap::new()),
2336 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2337 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2338 id_to_peer: Mutex::new(HashMap::new()),
2339 short_to_chan_info: FairRwLock::new(HashMap::new()),
2341 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2344 inbound_payment_key: expanded_inbound_key,
2345 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2347 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2349 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2351 per_peer_state: FairRwLock::new(HashMap::new()),
2353 pending_events: Mutex::new(VecDeque::new()),
2354 pending_events_processor: AtomicBool::new(false),
2355 pending_background_events: Mutex::new(Vec::new()),
2356 total_consistency_lock: RwLock::new(()),
2357 background_events_processed_since_startup: AtomicBool::new(false),
2358 event_persist_notifier: Notifier::new(),
2359 needs_persist_flag: AtomicBool::new(false),
2360 funding_batch_states: Mutex::new(BTreeMap::new()),
2362 pending_offers_messages: Mutex::new(Vec::new()),
2372 /// Gets the current configuration applied to all new channels.
2373 pub fn get_current_default_configuration(&self) -> &UserConfig {
2374 &self.default_configuration
2377 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2378 let height = self.best_block.read().unwrap().height();
2379 let mut outbound_scid_alias = 0;
2382 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2383 outbound_scid_alias += 1;
2385 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2387 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2391 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2396 /// Creates a new outbound channel to the given remote node and with the given value.
2398 /// `user_channel_id` will be provided back as in
2399 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2400 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2401 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2402 /// is simply copied to events and otherwise ignored.
2404 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2405 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2407 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2408 /// generate a shutdown scriptpubkey or destination script set by
2409 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2411 /// Note that we do not check if you are currently connected to the given peer. If no
2412 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2413 /// the channel eventually being silently forgotten (dropped on reload).
2415 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2416 /// channel. Otherwise, a random one will be generated for you.
2418 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2419 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2420 /// [`ChannelDetails::channel_id`] until after
2421 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2422 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2423 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2425 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2426 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2427 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2428 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2429 if channel_value_satoshis < 1000 {
2430 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2433 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2434 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2435 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2437 let per_peer_state = self.per_peer_state.read().unwrap();
2439 let peer_state_mutex = per_peer_state.get(&their_network_key)
2440 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2442 let mut peer_state = peer_state_mutex.lock().unwrap();
2444 if let Some(temporary_channel_id) = temporary_channel_id {
2445 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2446 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2451 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2452 let their_features = &peer_state.latest_features;
2453 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2454 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2455 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2456 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2460 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2465 let res = channel.get_open_channel(self.chain_hash);
2467 let temporary_channel_id = channel.context.channel_id();
2468 match peer_state.channel_by_id.entry(temporary_channel_id) {
2469 hash_map::Entry::Occupied(_) => {
2471 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2473 panic!("RNG is bad???");
2476 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2479 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2480 node_id: their_network_key,
2483 Ok(temporary_channel_id)
2486 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2487 // Allocate our best estimate of the number of channels we have in the `res`
2488 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2489 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2490 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2491 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2492 // the same channel.
2493 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2495 let best_block_height = self.best_block.read().unwrap().height();
2496 let per_peer_state = self.per_peer_state.read().unwrap();
2497 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2498 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2499 let peer_state = &mut *peer_state_lock;
2500 res.extend(peer_state.channel_by_id.iter()
2501 .filter_map(|(chan_id, phase)| match phase {
2502 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2503 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2507 .map(|(_channel_id, channel)| {
2508 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2509 peer_state.latest_features.clone(), &self.fee_estimator)
2517 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2518 /// more information.
2519 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2520 // Allocate our best estimate of the number of channels we have in the `res`
2521 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2522 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2523 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2524 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2525 // the same channel.
2526 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2528 let best_block_height = self.best_block.read().unwrap().height();
2529 let per_peer_state = self.per_peer_state.read().unwrap();
2530 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2531 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2532 let peer_state = &mut *peer_state_lock;
2533 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2534 let details = ChannelDetails::from_channel_context(context, best_block_height,
2535 peer_state.latest_features.clone(), &self.fee_estimator);
2543 /// Gets the list of usable channels, in random order. Useful as an argument to
2544 /// [`Router::find_route`] to ensure non-announced channels are used.
2546 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2547 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2549 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2550 // Note we use is_live here instead of usable which leads to somewhat confused
2551 // internal/external nomenclature, but that's ok cause that's probably what the user
2552 // really wanted anyway.
2553 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2556 /// Gets the list of channels we have with a given counterparty, in random order.
2557 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2558 let best_block_height = self.best_block.read().unwrap().height();
2559 let per_peer_state = self.per_peer_state.read().unwrap();
2561 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2562 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2563 let peer_state = &mut *peer_state_lock;
2564 let features = &peer_state.latest_features;
2565 let context_to_details = |context| {
2566 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2568 return peer_state.channel_by_id
2570 .map(|(_, phase)| phase.context())
2571 .map(context_to_details)
2577 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2578 /// successful path, or have unresolved HTLCs.
2580 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2581 /// result of a crash. If such a payment exists, is not listed here, and an
2582 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2584 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2585 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2586 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2587 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2588 PendingOutboundPayment::AwaitingInvoice { .. } => {
2589 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2591 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2592 PendingOutboundPayment::InvoiceReceived { .. } => {
2593 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2595 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2596 Some(RecentPaymentDetails::Pending {
2597 payment_id: *payment_id,
2598 payment_hash: *payment_hash,
2599 total_msat: *total_msat,
2602 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2603 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2605 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2606 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2608 PendingOutboundPayment::Legacy { .. } => None
2613 /// Helper function that issues the channel close events
2614 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2615 let mut pending_events_lock = self.pending_events.lock().unwrap();
2616 match context.unbroadcasted_funding() {
2617 Some(transaction) => {
2618 pending_events_lock.push_back((events::Event::DiscardFunding {
2619 channel_id: context.channel_id(), transaction
2624 pending_events_lock.push_back((events::Event::ChannelClosed {
2625 channel_id: context.channel_id(),
2626 user_channel_id: context.get_user_id(),
2627 reason: closure_reason,
2628 counterparty_node_id: Some(context.get_counterparty_node_id()),
2629 channel_capacity_sats: Some(context.get_value_satoshis()),
2633 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2634 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2636 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2637 let shutdown_result;
2639 let per_peer_state = self.per_peer_state.read().unwrap();
2641 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2642 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2644 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2645 let peer_state = &mut *peer_state_lock;
2647 match peer_state.channel_by_id.entry(channel_id.clone()) {
2648 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2649 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2650 let funding_txo_opt = chan.context.get_funding_txo();
2651 let their_features = &peer_state.latest_features;
2652 let (shutdown_msg, mut monitor_update_opt, htlcs, local_shutdown_result) =
2653 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2654 failed_htlcs = htlcs;
2655 shutdown_result = local_shutdown_result;
2656 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
2658 // We can send the `shutdown` message before updating the `ChannelMonitor`
2659 // here as we don't need the monitor update to complete until we send a
2660 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2661 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2662 node_id: *counterparty_node_id,
2666 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2667 "We can't both complete shutdown and generate a monitor update");
2669 // Update the monitor with the shutdown script if necessary.
2670 if let Some(monitor_update) = monitor_update_opt.take() {
2671 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2672 peer_state_lock, peer_state, per_peer_state, chan);
2676 if chan.is_shutdown() {
2677 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2678 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2679 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2683 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2689 hash_map::Entry::Vacant(_) => {
2690 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2691 // it does not exist for this peer. Either way, we can attempt to force-close it.
2693 // An appropriate error will be returned for non-existence of the channel if that's the case.
2694 mem::drop(peer_state_lock);
2695 mem::drop(per_peer_state);
2696 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2701 for htlc_source in failed_htlcs.drain(..) {
2702 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2703 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2704 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2707 if let Some(shutdown_result) = shutdown_result {
2708 self.finish_close_channel(shutdown_result);
2714 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2715 /// will be accepted on the given channel, and after additional timeout/the closing of all
2716 /// pending HTLCs, the channel will be closed on chain.
2718 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2719 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2721 /// * If our counterparty is the channel initiator, we will require a channel closing
2722 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2723 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2724 /// counterparty to pay as much fee as they'd like, however.
2726 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2728 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2729 /// generate a shutdown scriptpubkey or destination script set by
2730 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2733 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2734 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2735 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2736 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2737 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2738 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2741 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2742 /// will be accepted on the given channel, and after additional timeout/the closing of all
2743 /// pending HTLCs, the channel will be closed on chain.
2745 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2746 /// the channel being closed or not:
2747 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2748 /// transaction. The upper-bound is set by
2749 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2750 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2751 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2752 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2753 /// will appear on a force-closure transaction, whichever is lower).
2755 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2756 /// Will fail if a shutdown script has already been set for this channel by
2757 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2758 /// also be compatible with our and the counterparty's features.
2760 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2762 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2763 /// generate a shutdown scriptpubkey or destination script set by
2764 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2767 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2768 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2769 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2770 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2771 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2774 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2775 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2776 #[cfg(debug_assertions)]
2777 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2778 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2781 log_debug!(self.logger, "Finishing closure of channel with {} HTLCs to fail", shutdown_res.dropped_outbound_htlcs.len());
2782 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2783 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2784 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2785 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2786 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2788 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2789 // There isn't anything we can do if we get an update failure - we're already
2790 // force-closing. The monitor update on the required in-memory copy should broadcast
2791 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2792 // ignore the result here.
2793 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2795 let mut shutdown_results = Vec::new();
2796 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2797 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2798 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2799 let per_peer_state = self.per_peer_state.read().unwrap();
2800 let mut has_uncompleted_channel = None;
2801 for (channel_id, counterparty_node_id, state) in affected_channels {
2802 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2803 let mut peer_state = peer_state_mutex.lock().unwrap();
2804 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2805 update_maps_on_chan_removal!(self, &chan.context());
2806 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2807 shutdown_results.push(chan.context_mut().force_shutdown(false));
2810 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2813 has_uncompleted_channel.unwrap_or(true),
2814 "Closing a batch where all channels have completed initial monitor update",
2817 for shutdown_result in shutdown_results.drain(..) {
2818 self.finish_close_channel(shutdown_result);
2822 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2823 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2824 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2825 -> Result<PublicKey, APIError> {
2826 let per_peer_state = self.per_peer_state.read().unwrap();
2827 let peer_state_mutex = per_peer_state.get(peer_node_id)
2828 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2829 let (update_opt, counterparty_node_id) = {
2830 let mut peer_state = peer_state_mutex.lock().unwrap();
2831 let closure_reason = if let Some(peer_msg) = peer_msg {
2832 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2834 ClosureReason::HolderForceClosed
2836 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2837 log_error!(self.logger, "Force-closing channel {}", channel_id);
2838 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2839 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2840 mem::drop(peer_state);
2841 mem::drop(per_peer_state);
2843 ChannelPhase::Funded(mut chan) => {
2844 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2845 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2847 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2848 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2849 // Unfunded channel has no update
2850 (None, chan_phase.context().get_counterparty_node_id())
2853 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2854 log_error!(self.logger, "Force-closing channel {}", &channel_id);
2855 // N.B. that we don't send any channel close event here: we
2856 // don't have a user_channel_id, and we never sent any opening
2858 (None, *peer_node_id)
2860 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2863 if let Some(update) = update_opt {
2864 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2865 // not try to broadcast it via whatever peer we have.
2866 let per_peer_state = self.per_peer_state.read().unwrap();
2867 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2868 .ok_or(per_peer_state.values().next());
2869 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2870 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2871 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2877 Ok(counterparty_node_id)
2880 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2881 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2882 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2883 Ok(counterparty_node_id) => {
2884 let per_peer_state = self.per_peer_state.read().unwrap();
2885 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2886 let mut peer_state = peer_state_mutex.lock().unwrap();
2887 peer_state.pending_msg_events.push(
2888 events::MessageSendEvent::HandleError {
2889 node_id: counterparty_node_id,
2890 action: msgs::ErrorAction::DisconnectPeer {
2891 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2902 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2903 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2904 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2906 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2907 -> Result<(), APIError> {
2908 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2911 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2912 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2913 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2915 /// You can always get the latest local transaction(s) to broadcast from
2916 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2917 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2918 -> Result<(), APIError> {
2919 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2922 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2923 /// for each to the chain and rejecting new HTLCs on each.
2924 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2925 for chan in self.list_channels() {
2926 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2930 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2931 /// local transaction(s).
2932 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2933 for chan in self.list_channels() {
2934 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2938 fn decode_update_add_htlc_onion(
2939 &self, msg: &msgs::UpdateAddHTLC
2941 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
2943 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
2944 msg, &self.node_signer, &self.logger, &self.secp_ctx
2947 macro_rules! return_err {
2948 ($msg: expr, $err_code: expr, $data: expr) => {
2950 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2951 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2952 channel_id: msg.channel_id,
2953 htlc_id: msg.htlc_id,
2954 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2955 .get_encrypted_failure_packet(&shared_secret, &None),
2961 let NextPacketDetails {
2962 next_packet_pubkey, outgoing_amt_msat, outgoing_scid, outgoing_cltv_value
2963 } = match next_packet_details_opt {
2964 Some(next_packet_details) => next_packet_details,
2965 // it is a receive, so no need for outbound checks
2966 None => return Ok((next_hop, shared_secret, None)),
2969 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
2970 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
2971 if let Some((err, mut code, chan_update)) = loop {
2972 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
2973 let forwarding_chan_info_opt = match id_option {
2974 None => { // unknown_next_peer
2975 // Note that this is likely a timing oracle for detecting whether an scid is a
2976 // phantom or an intercept.
2977 if (self.default_configuration.accept_intercept_htlcs &&
2978 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
2979 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
2983 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2986 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2988 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2989 let per_peer_state = self.per_peer_state.read().unwrap();
2990 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2991 if peer_state_mutex_opt.is_none() {
2992 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2994 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2995 let peer_state = &mut *peer_state_lock;
2996 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
2997 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3000 // Channel was removed. The short_to_chan_info and channel_by_id maps
3001 // have no consistency guarantees.
3002 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3006 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3007 // Note that the behavior here should be identical to the above block - we
3008 // should NOT reveal the existence or non-existence of a private channel if
3009 // we don't allow forwards outbound over them.
3010 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3012 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3013 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3014 // "refuse to forward unless the SCID alias was used", so we pretend
3015 // we don't have the channel here.
3016 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3018 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3020 // Note that we could technically not return an error yet here and just hope
3021 // that the connection is reestablished or monitor updated by the time we get
3022 // around to doing the actual forward, but better to fail early if we can and
3023 // hopefully an attacker trying to path-trace payments cannot make this occur
3024 // on a small/per-node/per-channel scale.
3025 if !chan.context.is_live() { // channel_disabled
3026 // If the channel_update we're going to return is disabled (i.e. the
3027 // peer has been disabled for some time), return `channel_disabled`,
3028 // otherwise return `temporary_channel_failure`.
3029 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3030 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3032 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3035 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3036 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3038 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3039 break Some((err, code, chan_update_opt));
3046 let cur_height = self.best_block.read().unwrap().height() + 1;
3048 if let Err((err_msg, code)) = check_incoming_htlc_cltv(
3049 cur_height, outgoing_cltv_value, msg.cltv_expiry
3051 if code & 0x1000 != 0 && chan_update_opt.is_none() {
3052 // We really should set `incorrect_cltv_expiry` here but as we're not
3053 // forwarding over a real channel we can't generate a channel_update
3054 // for it. Instead we just return a generic temporary_node_failure.
3055 break Some((err_msg, 0x2000 | 2, None))
3057 let chan_update_opt = if code & 0x1000 != 0 { chan_update_opt } else { None };
3058 break Some((err_msg, code, chan_update_opt));
3064 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3065 if let Some(chan_update) = chan_update {
3066 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3067 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3069 else if code == 0x1000 | 13 {
3070 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3072 else if code == 0x1000 | 20 {
3073 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3074 0u16.write(&mut res).expect("Writes cannot fail");
3076 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3077 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3078 chan_update.write(&mut res).expect("Writes cannot fail");
3079 } else if code & 0x1000 == 0x1000 {
3080 // If we're trying to return an error that requires a `channel_update` but
3081 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3082 // generate an update), just use the generic "temporary_node_failure"
3086 return_err!(err, code, &res.0[..]);
3088 Ok((next_hop, shared_secret, Some(next_packet_pubkey)))
3091 fn construct_pending_htlc_status<'a>(
3092 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3093 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3094 ) -> PendingHTLCStatus {
3095 macro_rules! return_err {
3096 ($msg: expr, $err_code: expr, $data: expr) => {
3098 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3099 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3100 channel_id: msg.channel_id,
3101 htlc_id: msg.htlc_id,
3102 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3103 .get_encrypted_failure_packet(&shared_secret, &None),
3109 onion_utils::Hop::Receive(next_hop_data) => {
3111 let current_height: u32 = self.best_block.read().unwrap().height();
3112 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3113 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3114 current_height, self.default_configuration.accept_mpp_keysend)
3117 // Note that we could obviously respond immediately with an update_fulfill_htlc
3118 // message, however that would leak that we are the recipient of this payment, so
3119 // instead we stay symmetric with the forwarding case, only responding (after a
3120 // delay) once they've send us a commitment_signed!
3121 PendingHTLCStatus::Forward(info)
3123 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3126 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3127 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3128 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3129 Ok(info) => PendingHTLCStatus::Forward(info),
3130 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3136 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3137 /// public, and thus should be called whenever the result is going to be passed out in a
3138 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3140 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3141 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3142 /// storage and the `peer_state` lock has been dropped.
3144 /// [`channel_update`]: msgs::ChannelUpdate
3145 /// [`internal_closing_signed`]: Self::internal_closing_signed
3146 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3147 if !chan.context.should_announce() {
3148 return Err(LightningError {
3149 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3150 action: msgs::ErrorAction::IgnoreError
3153 if chan.context.get_short_channel_id().is_none() {
3154 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3156 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3157 self.get_channel_update_for_unicast(chan)
3160 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3161 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3162 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3163 /// provided evidence that they know about the existence of the channel.
3165 /// Note that through [`internal_closing_signed`], this function is called without the
3166 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3167 /// removed from the storage and the `peer_state` lock has been dropped.
3169 /// [`channel_update`]: msgs::ChannelUpdate
3170 /// [`internal_closing_signed`]: Self::internal_closing_signed
3171 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3172 log_trace!(self.logger, "Attempting to generate channel update for channel {}", &chan.context.channel_id());
3173 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3174 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3178 self.get_channel_update_for_onion(short_channel_id, chan)
3181 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3182 log_trace!(self.logger, "Generating channel update for channel {}", &chan.context.channel_id());
3183 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3185 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3186 ChannelUpdateStatus::Enabled => true,
3187 ChannelUpdateStatus::DisabledStaged(_) => true,
3188 ChannelUpdateStatus::Disabled => false,
3189 ChannelUpdateStatus::EnabledStaged(_) => false,
3192 let unsigned = msgs::UnsignedChannelUpdate {
3193 chain_hash: self.chain_hash,
3195 timestamp: chan.context.get_update_time_counter(),
3196 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3197 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3198 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3199 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3200 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3201 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3202 excess_data: Vec::new(),
3204 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3205 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3206 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3208 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3210 Ok(msgs::ChannelUpdate {
3217 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3218 let _lck = self.total_consistency_lock.read().unwrap();
3219 self.send_payment_along_path(SendAlongPathArgs {
3220 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3225 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3226 let SendAlongPathArgs {
3227 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3230 // The top-level caller should hold the total_consistency_lock read lock.
3231 debug_assert!(self.total_consistency_lock.try_write().is_err());
3233 log_trace!(self.logger,
3234 "Attempting to send payment with payment hash {} along path with next hop {}",
3235 payment_hash, path.hops.first().unwrap().short_channel_id);
3236 let prng_seed = self.entropy_source.get_secure_random_bytes();
3237 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3239 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
3240 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
3241 payment_hash, keysend_preimage, prng_seed
3244 let err: Result<(), _> = loop {
3245 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3246 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3247 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3250 let per_peer_state = self.per_peer_state.read().unwrap();
3251 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3252 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3253 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3254 let peer_state = &mut *peer_state_lock;
3255 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3256 match chan_phase_entry.get_mut() {
3257 ChannelPhase::Funded(chan) => {
3258 if !chan.context.is_live() {
3259 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3261 let funding_txo = chan.context.get_funding_txo().unwrap();
3262 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3263 htlc_cltv, HTLCSource::OutboundRoute {
3265 session_priv: session_priv.clone(),
3266 first_hop_htlc_msat: htlc_msat,
3268 }, onion_packet, None, &self.fee_estimator, &self.logger);
3269 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3270 Some(monitor_update) => {
3271 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3273 // Note that MonitorUpdateInProgress here indicates (per function
3274 // docs) that we will resend the commitment update once monitor
3275 // updating completes. Therefore, we must return an error
3276 // indicating that it is unsafe to retry the payment wholesale,
3277 // which we do in the send_payment check for
3278 // MonitorUpdateInProgress, below.
3279 return Err(APIError::MonitorUpdateInProgress);
3287 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3290 // The channel was likely removed after we fetched the id from the
3291 // `short_to_chan_info` map, but before we successfully locked the
3292 // `channel_by_id` map.
3293 // This can occur as no consistency guarantees exists between the two maps.
3294 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3299 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3300 Ok(_) => unreachable!(),
3302 Err(APIError::ChannelUnavailable { err: e.err })
3307 /// Sends a payment along a given route.
3309 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3310 /// fields for more info.
3312 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3313 /// [`PeerManager::process_events`]).
3315 /// # Avoiding Duplicate Payments
3317 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3318 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3319 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3320 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3321 /// second payment with the same [`PaymentId`].
3323 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3324 /// tracking of payments, including state to indicate once a payment has completed. Because you
3325 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3326 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3327 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3329 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3330 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3331 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3332 /// [`ChannelManager::list_recent_payments`] for more information.
3334 /// # Possible Error States on [`PaymentSendFailure`]
3336 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3337 /// each entry matching the corresponding-index entry in the route paths, see
3338 /// [`PaymentSendFailure`] for more info.
3340 /// In general, a path may raise:
3341 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3342 /// node public key) is specified.
3343 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3344 /// closed, doesn't exist, or the peer is currently disconnected.
3345 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3346 /// relevant updates.
3348 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3349 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3350 /// different route unless you intend to pay twice!
3352 /// [`RouteHop`]: crate::routing::router::RouteHop
3353 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3354 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3355 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3356 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3357 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3358 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3359 let best_block_height = self.best_block.read().unwrap().height();
3360 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3361 self.pending_outbound_payments
3362 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3363 &self.entropy_source, &self.node_signer, best_block_height,
3364 |args| self.send_payment_along_path(args))
3367 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3368 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3369 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3370 let best_block_height = self.best_block.read().unwrap().height();
3371 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3372 self.pending_outbound_payments
3373 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3374 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3375 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3376 &self.pending_events, |args| self.send_payment_along_path(args))
3380 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3381 let best_block_height = self.best_block.read().unwrap().height();
3382 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3383 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3384 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3385 best_block_height, |args| self.send_payment_along_path(args))
3389 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3390 let best_block_height = self.best_block.read().unwrap().height();
3391 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3395 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3396 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3399 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3400 let best_block_height = self.best_block.read().unwrap().height();
3401 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3402 self.pending_outbound_payments
3403 .send_payment_for_bolt12_invoice(
3404 invoice, payment_id, &self.router, self.list_usable_channels(),
3405 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3406 best_block_height, &self.logger, &self.pending_events,
3407 |args| self.send_payment_along_path(args)
3411 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3412 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3413 /// retries are exhausted.
3415 /// # Event Generation
3417 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3418 /// as there are no remaining pending HTLCs for this payment.
3420 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3421 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3422 /// determine the ultimate status of a payment.
3424 /// # Requested Invoices
3426 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3427 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3428 /// and prevent any attempts at paying it once received. The other events may only be generated
3429 /// once the invoice has been received.
3431 /// # Restart Behavior
3433 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3434 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3435 /// [`Event::InvoiceRequestFailed`].
3437 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3438 pub fn abandon_payment(&self, payment_id: PaymentId) {
3439 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3440 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3443 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3444 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3445 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3446 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3447 /// never reach the recipient.
3449 /// See [`send_payment`] documentation for more details on the return value of this function
3450 /// and idempotency guarantees provided by the [`PaymentId`] key.
3452 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3453 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3455 /// [`send_payment`]: Self::send_payment
3456 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3457 let best_block_height = self.best_block.read().unwrap().height();
3458 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3459 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3460 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3461 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3464 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3465 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3467 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3470 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3471 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3472 let best_block_height = self.best_block.read().unwrap().height();
3473 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3474 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3475 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3476 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3477 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3480 /// Send a payment that is probing the given route for liquidity. We calculate the
3481 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3482 /// us to easily discern them from real payments.
3483 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3484 let best_block_height = self.best_block.read().unwrap().height();
3485 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3486 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3487 &self.entropy_source, &self.node_signer, best_block_height,
3488 |args| self.send_payment_along_path(args))
3491 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3494 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3495 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3498 /// Sends payment probes over all paths of a route that would be used to pay the given
3499 /// amount to the given `node_id`.
3501 /// See [`ChannelManager::send_preflight_probes`] for more information.
3502 pub fn send_spontaneous_preflight_probes(
3503 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3504 liquidity_limit_multiplier: Option<u64>,
3505 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3506 let payment_params =
3507 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3509 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3511 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3514 /// Sends payment probes over all paths of a route that would be used to pay a route found
3515 /// according to the given [`RouteParameters`].
3517 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3518 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3519 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3520 /// confirmation in a wallet UI.
3522 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3523 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3524 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3525 /// payment. To mitigate this issue, channels with available liquidity less than the required
3526 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3527 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3528 pub fn send_preflight_probes(
3529 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3530 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3531 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3533 let payer = self.get_our_node_id();
3534 let usable_channels = self.list_usable_channels();
3535 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3536 let inflight_htlcs = self.compute_inflight_htlcs();
3540 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3542 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3543 ProbeSendFailure::RouteNotFound
3546 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3548 let mut res = Vec::new();
3550 for mut path in route.paths {
3551 // If the last hop is probably an unannounced channel we refrain from probing all the
3552 // way through to the end and instead probe up to the second-to-last channel.
3553 while let Some(last_path_hop) = path.hops.last() {
3554 if last_path_hop.maybe_announced_channel {
3555 // We found a potentially announced last hop.
3558 // Drop the last hop, as it's likely unannounced.
3561 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3562 last_path_hop.short_channel_id
3564 let final_value_msat = path.final_value_msat();
3566 if let Some(new_last) = path.hops.last_mut() {
3567 new_last.fee_msat += final_value_msat;
3572 if path.hops.len() < 2 {
3575 "Skipped sending payment probe over path with less than two hops."
3580 if let Some(first_path_hop) = path.hops.first() {
3581 if let Some(first_hop) = first_hops.iter().find(|h| {
3582 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3584 let path_value = path.final_value_msat() + path.fee_msat();
3585 let used_liquidity =
3586 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3588 if first_hop.next_outbound_htlc_limit_msat
3589 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3591 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3594 *used_liquidity += path_value;
3599 res.push(self.send_probe(path).map_err(|e| {
3600 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3601 ProbeSendFailure::SendingFailed(e)
3608 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3609 /// which checks the correctness of the funding transaction given the associated channel.
3610 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3611 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3612 mut find_funding_output: FundingOutput,
3613 ) -> Result<(), APIError> {
3614 let per_peer_state = self.per_peer_state.read().unwrap();
3615 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3616 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3618 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3619 let peer_state = &mut *peer_state_lock;
3620 let (chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3621 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3622 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3624 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &self.logger)
3625 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3626 let channel_id = chan.context.channel_id();
3627 let user_id = chan.context.get_user_id();
3628 let shutdown_res = chan.context.force_shutdown(false);
3629 let channel_capacity = chan.context.get_value_satoshis();
3630 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3631 } else { unreachable!(); });
3633 Ok((chan, funding_msg)) => (chan, funding_msg),
3634 Err((chan, err)) => {
3635 mem::drop(peer_state_lock);
3636 mem::drop(per_peer_state);
3638 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3639 return Err(APIError::ChannelUnavailable {
3640 err: "Signer refused to sign the initial commitment transaction".to_owned()
3646 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3647 return Err(APIError::APIMisuseError {
3649 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3650 temporary_channel_id, counterparty_node_id),
3653 None => return Err(APIError::ChannelUnavailable {err: format!(
3654 "Channel with id {} not found for the passed counterparty node_id {}",
3655 temporary_channel_id, counterparty_node_id),
3659 if let Some(msg) = msg_opt {
3660 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3661 node_id: chan.context.get_counterparty_node_id(),
3665 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3666 hash_map::Entry::Occupied(_) => {
3667 panic!("Generated duplicate funding txid?");
3669 hash_map::Entry::Vacant(e) => {
3670 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3671 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3672 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3674 e.insert(ChannelPhase::Funded(chan));
3681 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3682 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3683 Ok(OutPoint { txid: tx.txid(), index: output_index })
3687 /// Call this upon creation of a funding transaction for the given channel.
3689 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3690 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3692 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3693 /// across the p2p network.
3695 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3696 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3698 /// May panic if the output found in the funding transaction is duplicative with some other
3699 /// channel (note that this should be trivially prevented by using unique funding transaction
3700 /// keys per-channel).
3702 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3703 /// counterparty's signature the funding transaction will automatically be broadcast via the
3704 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3706 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3707 /// not currently support replacing a funding transaction on an existing channel. Instead,
3708 /// create a new channel with a conflicting funding transaction.
3710 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3711 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3712 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3713 /// for more details.
3715 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3716 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3717 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3718 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3721 /// Call this upon creation of a batch funding transaction for the given channels.
3723 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3724 /// each individual channel and transaction output.
3726 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3727 /// will only be broadcast when we have safely received and persisted the counterparty's
3728 /// signature for each channel.
3730 /// If there is an error, all channels in the batch are to be considered closed.
3731 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3732 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3733 let mut result = Ok(());
3735 if !funding_transaction.is_coin_base() {
3736 for inp in funding_transaction.input.iter() {
3737 if inp.witness.is_empty() {
3738 result = result.and(Err(APIError::APIMisuseError {
3739 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3744 if funding_transaction.output.len() > u16::max_value() as usize {
3745 result = result.and(Err(APIError::APIMisuseError {
3746 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3750 let height = self.best_block.read().unwrap().height();
3751 // Transactions are evaluated as final by network mempools if their locktime is strictly
3752 // lower than the next block height. However, the modules constituting our Lightning
3753 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3754 // module is ahead of LDK, only allow one more block of headroom.
3755 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
3756 funding_transaction.lock_time.is_block_height() &&
3757 funding_transaction.lock_time.to_consensus_u32() > height + 1
3759 result = result.and(Err(APIError::APIMisuseError {
3760 err: "Funding transaction absolute timelock is non-final".to_owned()
3765 let txid = funding_transaction.txid();
3766 let is_batch_funding = temporary_channels.len() > 1;
3767 let mut funding_batch_states = if is_batch_funding {
3768 Some(self.funding_batch_states.lock().unwrap())
3772 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3773 match states.entry(txid) {
3774 btree_map::Entry::Occupied(_) => {
3775 result = result.clone().and(Err(APIError::APIMisuseError {
3776 err: "Batch funding transaction with the same txid already exists".to_owned()
3780 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3783 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3784 result = result.and_then(|_| self.funding_transaction_generated_intern(
3785 temporary_channel_id,
3786 counterparty_node_id,
3787 funding_transaction.clone(),
3790 let mut output_index = None;
3791 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3792 for (idx, outp) in tx.output.iter().enumerate() {
3793 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3794 if output_index.is_some() {
3795 return Err(APIError::APIMisuseError {
3796 err: "Multiple outputs matched the expected script and value".to_owned()
3799 output_index = Some(idx as u16);
3802 if output_index.is_none() {
3803 return Err(APIError::APIMisuseError {
3804 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3807 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3808 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
3809 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
3815 if let Err(ref e) = result {
3816 // Remaining channels need to be removed on any error.
3817 let e = format!("Error in transaction funding: {:?}", e);
3818 let mut channels_to_remove = Vec::new();
3819 channels_to_remove.extend(funding_batch_states.as_mut()
3820 .and_then(|states| states.remove(&txid))
3821 .into_iter().flatten()
3822 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
3824 channels_to_remove.extend(temporary_channels.iter()
3825 .map(|(&chan_id, &node_id)| (chan_id, node_id))
3827 let mut shutdown_results = Vec::new();
3829 let per_peer_state = self.per_peer_state.read().unwrap();
3830 for (channel_id, counterparty_node_id) in channels_to_remove {
3831 per_peer_state.get(&counterparty_node_id)
3832 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
3833 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
3835 update_maps_on_chan_removal!(self, &chan.context());
3836 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
3837 shutdown_results.push(chan.context_mut().force_shutdown(false));
3841 for shutdown_result in shutdown_results.drain(..) {
3842 self.finish_close_channel(shutdown_result);
3848 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3850 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3851 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3852 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3853 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3855 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3856 /// `counterparty_node_id` is provided.
3858 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3859 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3861 /// If an error is returned, none of the updates should be considered applied.
3863 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3864 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3865 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3866 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3867 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3868 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3869 /// [`APIMisuseError`]: APIError::APIMisuseError
3870 pub fn update_partial_channel_config(
3871 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
3872 ) -> Result<(), APIError> {
3873 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3874 return Err(APIError::APIMisuseError {
3875 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3879 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3880 let per_peer_state = self.per_peer_state.read().unwrap();
3881 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3882 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3883 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3884 let peer_state = &mut *peer_state_lock;
3885 for channel_id in channel_ids {
3886 if !peer_state.has_channel(channel_id) {
3887 return Err(APIError::ChannelUnavailable {
3888 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
3892 for channel_id in channel_ids {
3893 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
3894 let mut config = channel_phase.context().config();
3895 config.apply(config_update);
3896 if !channel_phase.context_mut().update_config(&config) {
3899 if let ChannelPhase::Funded(channel) = channel_phase {
3900 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3901 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3902 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3903 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3904 node_id: channel.context.get_counterparty_node_id(),
3911 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
3912 debug_assert!(false);
3913 return Err(APIError::ChannelUnavailable {
3915 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
3916 channel_id, counterparty_node_id),
3923 /// Atomically updates the [`ChannelConfig`] for the given channels.
3925 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3926 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3927 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3928 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3930 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3931 /// `counterparty_node_id` is provided.
3933 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3934 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3936 /// If an error is returned, none of the updates should be considered applied.
3938 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3939 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3940 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3941 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3942 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3943 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3944 /// [`APIMisuseError`]: APIError::APIMisuseError
3945 pub fn update_channel_config(
3946 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
3947 ) -> Result<(), APIError> {
3948 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
3951 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
3952 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
3954 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
3955 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
3957 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
3958 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
3959 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
3960 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
3961 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
3963 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
3964 /// you from forwarding more than you received. See
3965 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
3968 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3971 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
3972 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3973 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
3974 // TODO: when we move to deciding the best outbound channel at forward time, only take
3975 // `next_node_id` and not `next_hop_channel_id`
3976 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
3977 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3979 let next_hop_scid = {
3980 let peer_state_lock = self.per_peer_state.read().unwrap();
3981 let peer_state_mutex = peer_state_lock.get(&next_node_id)
3982 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
3983 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3984 let peer_state = &mut *peer_state_lock;
3985 match peer_state.channel_by_id.get(next_hop_channel_id) {
3986 Some(ChannelPhase::Funded(chan)) => {
3987 if !chan.context.is_usable() {
3988 return Err(APIError::ChannelUnavailable {
3989 err: format!("Channel with id {} not fully established", next_hop_channel_id)
3992 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
3994 Some(_) => return Err(APIError::ChannelUnavailable {
3995 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
3996 next_hop_channel_id, next_node_id)
3999 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4000 next_hop_channel_id, next_node_id);
4001 log_error!(self.logger, "{} when attempting to forward intercepted HTLC", error);
4002 return Err(APIError::ChannelUnavailable {
4009 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4010 .ok_or_else(|| APIError::APIMisuseError {
4011 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4014 let routing = match payment.forward_info.routing {
4015 PendingHTLCRouting::Forward { onion_packet, .. } => {
4016 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
4018 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4020 let skimmed_fee_msat =
4021 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4022 let pending_htlc_info = PendingHTLCInfo {
4023 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4024 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4027 let mut per_source_pending_forward = [(
4028 payment.prev_short_channel_id,
4029 payment.prev_funding_outpoint,
4030 payment.prev_user_channel_id,
4031 vec![(pending_htlc_info, payment.prev_htlc_id)]
4033 self.forward_htlcs(&mut per_source_pending_forward);
4037 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4038 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4040 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4043 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4044 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4045 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4047 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4048 .ok_or_else(|| APIError::APIMisuseError {
4049 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4052 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4053 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4054 short_channel_id: payment.prev_short_channel_id,
4055 user_channel_id: Some(payment.prev_user_channel_id),
4056 outpoint: payment.prev_funding_outpoint,
4057 htlc_id: payment.prev_htlc_id,
4058 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4059 phantom_shared_secret: None,
4062 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4063 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4064 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4065 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4070 /// Processes HTLCs which are pending waiting on random forward delay.
4072 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4073 /// Will likely generate further events.
4074 pub fn process_pending_htlc_forwards(&self) {
4075 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4077 let mut new_events = VecDeque::new();
4078 let mut failed_forwards = Vec::new();
4079 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4081 let mut forward_htlcs = HashMap::new();
4082 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4084 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4085 if short_chan_id != 0 {
4086 macro_rules! forwarding_channel_not_found {
4088 for forward_info in pending_forwards.drain(..) {
4089 match forward_info {
4090 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4091 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4092 forward_info: PendingHTLCInfo {
4093 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4094 outgoing_cltv_value, ..
4097 macro_rules! failure_handler {
4098 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4099 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4101 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4102 short_channel_id: prev_short_channel_id,
4103 user_channel_id: Some(prev_user_channel_id),
4104 outpoint: prev_funding_outpoint,
4105 htlc_id: prev_htlc_id,
4106 incoming_packet_shared_secret: incoming_shared_secret,
4107 phantom_shared_secret: $phantom_ss,
4110 let reason = if $next_hop_unknown {
4111 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4113 HTLCDestination::FailedPayment{ payment_hash }
4116 failed_forwards.push((htlc_source, payment_hash,
4117 HTLCFailReason::reason($err_code, $err_data),
4123 macro_rules! fail_forward {
4124 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4126 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4130 macro_rules! failed_payment {
4131 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4133 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4137 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
4138 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4139 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4140 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4141 let next_hop = match onion_utils::decode_next_payment_hop(
4142 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4143 payment_hash, &self.node_signer
4146 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4147 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
4148 // In this scenario, the phantom would have sent us an
4149 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4150 // if it came from us (the second-to-last hop) but contains the sha256
4152 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4154 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4155 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4159 onion_utils::Hop::Receive(hop_data) => {
4160 let current_height: u32 = self.best_block.read().unwrap().height();
4161 match create_recv_pending_htlc_info(hop_data,
4162 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4163 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
4164 current_height, self.default_configuration.accept_mpp_keysend)
4166 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4167 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4173 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4176 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4179 HTLCForwardInfo::FailHTLC { .. } => {
4180 // Channel went away before we could fail it. This implies
4181 // the channel is now on chain and our counterparty is
4182 // trying to broadcast the HTLC-Timeout, but that's their
4183 // problem, not ours.
4189 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4190 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4191 Some((cp_id, chan_id)) => (cp_id, chan_id),
4193 forwarding_channel_not_found!();
4197 let per_peer_state = self.per_peer_state.read().unwrap();
4198 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4199 if peer_state_mutex_opt.is_none() {
4200 forwarding_channel_not_found!();
4203 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4204 let peer_state = &mut *peer_state_lock;
4205 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4206 for forward_info in pending_forwards.drain(..) {
4207 match forward_info {
4208 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4209 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4210 forward_info: PendingHTLCInfo {
4211 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4212 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
4215 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4216 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4217 short_channel_id: prev_short_channel_id,
4218 user_channel_id: Some(prev_user_channel_id),
4219 outpoint: prev_funding_outpoint,
4220 htlc_id: prev_htlc_id,
4221 incoming_packet_shared_secret: incoming_shared_secret,
4222 // Phantom payments are only PendingHTLCRouting::Receive.
4223 phantom_shared_secret: None,
4225 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4226 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4227 onion_packet, skimmed_fee_msat, &self.fee_estimator,
4230 if let ChannelError::Ignore(msg) = e {
4231 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4233 panic!("Stated return value requirements in send_htlc() were not met");
4235 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4236 failed_forwards.push((htlc_source, payment_hash,
4237 HTLCFailReason::reason(failure_code, data),
4238 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4243 HTLCForwardInfo::AddHTLC { .. } => {
4244 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4246 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4247 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4248 if let Err(e) = chan.queue_fail_htlc(
4249 htlc_id, err_packet, &self.logger
4251 if let ChannelError::Ignore(msg) = e {
4252 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4254 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4256 // fail-backs are best-effort, we probably already have one
4257 // pending, and if not that's OK, if not, the channel is on
4258 // the chain and sending the HTLC-Timeout is their problem.
4265 forwarding_channel_not_found!();
4269 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4270 match forward_info {
4271 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4272 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4273 forward_info: PendingHTLCInfo {
4274 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4275 skimmed_fee_msat, ..
4278 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4279 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4280 let _legacy_hop_data = Some(payment_data.clone());
4281 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4282 payment_metadata, custom_tlvs };
4283 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4284 Some(payment_data), phantom_shared_secret, onion_fields)
4286 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4287 let onion_fields = RecipientOnionFields {
4288 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4292 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4293 payment_data, None, onion_fields)
4296 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4299 let claimable_htlc = ClaimableHTLC {
4300 prev_hop: HTLCPreviousHopData {
4301 short_channel_id: prev_short_channel_id,
4302 user_channel_id: Some(prev_user_channel_id),
4303 outpoint: prev_funding_outpoint,
4304 htlc_id: prev_htlc_id,
4305 incoming_packet_shared_secret: incoming_shared_secret,
4306 phantom_shared_secret,
4308 // We differentiate the received value from the sender intended value
4309 // if possible so that we don't prematurely mark MPP payments complete
4310 // if routing nodes overpay
4311 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4312 sender_intended_value: outgoing_amt_msat,
4314 total_value_received: None,
4315 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4318 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4321 let mut committed_to_claimable = false;
4323 macro_rules! fail_htlc {
4324 ($htlc: expr, $payment_hash: expr) => {
4325 debug_assert!(!committed_to_claimable);
4326 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4327 htlc_msat_height_data.extend_from_slice(
4328 &self.best_block.read().unwrap().height().to_be_bytes(),
4330 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4331 short_channel_id: $htlc.prev_hop.short_channel_id,
4332 user_channel_id: $htlc.prev_hop.user_channel_id,
4333 outpoint: prev_funding_outpoint,
4334 htlc_id: $htlc.prev_hop.htlc_id,
4335 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4336 phantom_shared_secret,
4338 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4339 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4341 continue 'next_forwardable_htlc;
4344 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4345 let mut receiver_node_id = self.our_network_pubkey;
4346 if phantom_shared_secret.is_some() {
4347 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4348 .expect("Failed to get node_id for phantom node recipient");
4351 macro_rules! check_total_value {
4352 ($purpose: expr) => {{
4353 let mut payment_claimable_generated = false;
4354 let is_keysend = match $purpose {
4355 events::PaymentPurpose::SpontaneousPayment(_) => true,
4356 events::PaymentPurpose::InvoicePayment { .. } => false,
4358 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4359 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4360 fail_htlc!(claimable_htlc, payment_hash);
4362 let ref mut claimable_payment = claimable_payments.claimable_payments
4363 .entry(payment_hash)
4364 // Note that if we insert here we MUST NOT fail_htlc!()
4365 .or_insert_with(|| {
4366 committed_to_claimable = true;
4368 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4371 if $purpose != claimable_payment.purpose {
4372 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4373 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4374 fail_htlc!(claimable_htlc, payment_hash);
4376 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4377 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4378 fail_htlc!(claimable_htlc, payment_hash);
4380 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4381 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4382 fail_htlc!(claimable_htlc, payment_hash);
4385 claimable_payment.onion_fields = Some(onion_fields);
4387 let ref mut htlcs = &mut claimable_payment.htlcs;
4388 let mut total_value = claimable_htlc.sender_intended_value;
4389 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4390 for htlc in htlcs.iter() {
4391 total_value += htlc.sender_intended_value;
4392 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4393 if htlc.total_msat != claimable_htlc.total_msat {
4394 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4395 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4396 total_value = msgs::MAX_VALUE_MSAT;
4398 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4400 // The condition determining whether an MPP is complete must
4401 // match exactly the condition used in `timer_tick_occurred`
4402 if total_value >= msgs::MAX_VALUE_MSAT {
4403 fail_htlc!(claimable_htlc, payment_hash);
4404 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4405 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4407 fail_htlc!(claimable_htlc, payment_hash);
4408 } else if total_value >= claimable_htlc.total_msat {
4409 #[allow(unused_assignments)] {
4410 committed_to_claimable = true;
4412 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4413 htlcs.push(claimable_htlc);
4414 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4415 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4416 let counterparty_skimmed_fee_msat = htlcs.iter()
4417 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4418 debug_assert!(total_value.saturating_sub(amount_msat) <=
4419 counterparty_skimmed_fee_msat);
4420 new_events.push_back((events::Event::PaymentClaimable {
4421 receiver_node_id: Some(receiver_node_id),
4425 counterparty_skimmed_fee_msat,
4426 via_channel_id: Some(prev_channel_id),
4427 via_user_channel_id: Some(prev_user_channel_id),
4428 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4429 onion_fields: claimable_payment.onion_fields.clone(),
4431 payment_claimable_generated = true;
4433 // Nothing to do - we haven't reached the total
4434 // payment value yet, wait until we receive more
4436 htlcs.push(claimable_htlc);
4437 #[allow(unused_assignments)] {
4438 committed_to_claimable = true;
4441 payment_claimable_generated
4445 // Check that the payment hash and secret are known. Note that we
4446 // MUST take care to handle the "unknown payment hash" and
4447 // "incorrect payment secret" cases here identically or we'd expose
4448 // that we are the ultimate recipient of the given payment hash.
4449 // Further, we must not expose whether we have any other HTLCs
4450 // associated with the same payment_hash pending or not.
4451 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4452 match payment_secrets.entry(payment_hash) {
4453 hash_map::Entry::Vacant(_) => {
4454 match claimable_htlc.onion_payload {
4455 OnionPayload::Invoice { .. } => {
4456 let payment_data = payment_data.unwrap();
4457 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4458 Ok(result) => result,
4460 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4461 fail_htlc!(claimable_htlc, payment_hash);
4464 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4465 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4466 if (cltv_expiry as u64) < expected_min_expiry_height {
4467 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4468 &payment_hash, cltv_expiry, expected_min_expiry_height);
4469 fail_htlc!(claimable_htlc, payment_hash);
4472 let purpose = events::PaymentPurpose::InvoicePayment {
4473 payment_preimage: payment_preimage.clone(),
4474 payment_secret: payment_data.payment_secret,
4476 check_total_value!(purpose);
4478 OnionPayload::Spontaneous(preimage) => {
4479 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4480 check_total_value!(purpose);
4484 hash_map::Entry::Occupied(inbound_payment) => {
4485 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4486 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4487 fail_htlc!(claimable_htlc, payment_hash);
4489 let payment_data = payment_data.unwrap();
4490 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4491 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4492 fail_htlc!(claimable_htlc, payment_hash);
4493 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4494 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4495 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4496 fail_htlc!(claimable_htlc, payment_hash);
4498 let purpose = events::PaymentPurpose::InvoicePayment {
4499 payment_preimage: inbound_payment.get().payment_preimage,
4500 payment_secret: payment_data.payment_secret,
4502 let payment_claimable_generated = check_total_value!(purpose);
4503 if payment_claimable_generated {
4504 inbound_payment.remove_entry();
4510 HTLCForwardInfo::FailHTLC { .. } => {
4511 panic!("Got pending fail of our own HTLC");
4519 let best_block_height = self.best_block.read().unwrap().height();
4520 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4521 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4522 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4524 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4525 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4527 self.forward_htlcs(&mut phantom_receives);
4529 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4530 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4531 // nice to do the work now if we can rather than while we're trying to get messages in the
4533 self.check_free_holding_cells();
4535 if new_events.is_empty() { return }
4536 let mut events = self.pending_events.lock().unwrap();
4537 events.append(&mut new_events);
4540 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4542 /// Expects the caller to have a total_consistency_lock read lock.
4543 fn process_background_events(&self) -> NotifyOption {
4544 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4546 self.background_events_processed_since_startup.store(true, Ordering::Release);
4548 let mut background_events = Vec::new();
4549 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4550 if background_events.is_empty() {
4551 return NotifyOption::SkipPersistNoEvents;
4554 for event in background_events.drain(..) {
4556 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4557 // The channel has already been closed, so no use bothering to care about the
4558 // monitor updating completing.
4559 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4561 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4562 let mut updated_chan = false;
4564 let per_peer_state = self.per_peer_state.read().unwrap();
4565 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4566 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4567 let peer_state = &mut *peer_state_lock;
4568 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4569 hash_map::Entry::Occupied(mut chan_phase) => {
4570 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4571 updated_chan = true;
4572 handle_new_monitor_update!(self, funding_txo, update.clone(),
4573 peer_state_lock, peer_state, per_peer_state, chan);
4575 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4578 hash_map::Entry::Vacant(_) => {},
4583 // TODO: Track this as in-flight even though the channel is closed.
4584 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4587 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4588 let per_peer_state = self.per_peer_state.read().unwrap();
4589 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4590 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4591 let peer_state = &mut *peer_state_lock;
4592 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4593 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4595 let update_actions = peer_state.monitor_update_blocked_actions
4596 .remove(&channel_id).unwrap_or(Vec::new());
4597 mem::drop(peer_state_lock);
4598 mem::drop(per_peer_state);
4599 self.handle_monitor_update_completion_actions(update_actions);
4605 NotifyOption::DoPersist
4608 #[cfg(any(test, feature = "_test_utils"))]
4609 /// Process background events, for functional testing
4610 pub fn test_process_background_events(&self) {
4611 let _lck = self.total_consistency_lock.read().unwrap();
4612 let _ = self.process_background_events();
4615 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4616 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4617 // If the feerate has decreased by less than half, don't bother
4618 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4619 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4620 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4621 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4623 return NotifyOption::SkipPersistNoEvents;
4625 if !chan.context.is_live() {
4626 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4627 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4628 return NotifyOption::SkipPersistNoEvents;
4630 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4631 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4633 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4634 NotifyOption::DoPersist
4638 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4639 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4640 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4641 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4642 pub fn maybe_update_chan_fees(&self) {
4643 PersistenceNotifierGuard::optionally_notify(self, || {
4644 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4646 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4647 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4649 let per_peer_state = self.per_peer_state.read().unwrap();
4650 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4651 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4652 let peer_state = &mut *peer_state_lock;
4653 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4654 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4656 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4661 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4662 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4670 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4672 /// This currently includes:
4673 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4674 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4675 /// than a minute, informing the network that they should no longer attempt to route over
4677 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4678 /// with the current [`ChannelConfig`].
4679 /// * Removing peers which have disconnected but and no longer have any channels.
4680 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4681 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4682 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4683 /// The latter is determined using the system clock in `std` and the highest seen block time
4684 /// minus two hours in `no-std`.
4686 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4687 /// estimate fetches.
4689 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4690 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4691 pub fn timer_tick_occurred(&self) {
4692 PersistenceNotifierGuard::optionally_notify(self, || {
4693 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4695 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4696 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4698 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4699 let mut timed_out_mpp_htlcs = Vec::new();
4700 let mut pending_peers_awaiting_removal = Vec::new();
4701 let mut shutdown_channels = Vec::new();
4703 let mut process_unfunded_channel_tick = |
4704 chan_id: &ChannelId,
4705 context: &mut ChannelContext<SP>,
4706 unfunded_context: &mut UnfundedChannelContext,
4707 pending_msg_events: &mut Vec<MessageSendEvent>,
4708 counterparty_node_id: PublicKey,
4710 context.maybe_expire_prev_config();
4711 if unfunded_context.should_expire_unfunded_channel() {
4712 log_error!(self.logger,
4713 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4714 update_maps_on_chan_removal!(self, &context);
4715 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4716 shutdown_channels.push(context.force_shutdown(false));
4717 pending_msg_events.push(MessageSendEvent::HandleError {
4718 node_id: counterparty_node_id,
4719 action: msgs::ErrorAction::SendErrorMessage {
4720 msg: msgs::ErrorMessage {
4721 channel_id: *chan_id,
4722 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4733 let per_peer_state = self.per_peer_state.read().unwrap();
4734 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4735 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4736 let peer_state = &mut *peer_state_lock;
4737 let pending_msg_events = &mut peer_state.pending_msg_events;
4738 let counterparty_node_id = *counterparty_node_id;
4739 peer_state.channel_by_id.retain(|chan_id, phase| {
4741 ChannelPhase::Funded(chan) => {
4742 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4747 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4748 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4750 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4751 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4752 handle_errors.push((Err(err), counterparty_node_id));
4753 if needs_close { return false; }
4756 match chan.channel_update_status() {
4757 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4758 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4759 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4760 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4761 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4762 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4763 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4765 if n >= DISABLE_GOSSIP_TICKS {
4766 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4767 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4768 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4772 should_persist = NotifyOption::DoPersist;
4774 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4777 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4779 if n >= ENABLE_GOSSIP_TICKS {
4780 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4781 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4782 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4786 should_persist = NotifyOption::DoPersist;
4788 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4794 chan.context.maybe_expire_prev_config();
4796 if chan.should_disconnect_peer_awaiting_response() {
4797 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4798 counterparty_node_id, chan_id);
4799 pending_msg_events.push(MessageSendEvent::HandleError {
4800 node_id: counterparty_node_id,
4801 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4802 msg: msgs::WarningMessage {
4803 channel_id: *chan_id,
4804 data: "Disconnecting due to timeout awaiting response".to_owned(),
4812 ChannelPhase::UnfundedInboundV1(chan) => {
4813 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4814 pending_msg_events, counterparty_node_id)
4816 ChannelPhase::UnfundedOutboundV1(chan) => {
4817 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4818 pending_msg_events, counterparty_node_id)
4823 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4824 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4825 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
4826 peer_state.pending_msg_events.push(
4827 events::MessageSendEvent::HandleError {
4828 node_id: counterparty_node_id,
4829 action: msgs::ErrorAction::SendErrorMessage {
4830 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4836 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4838 if peer_state.ok_to_remove(true) {
4839 pending_peers_awaiting_removal.push(counterparty_node_id);
4844 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4845 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4846 // of to that peer is later closed while still being disconnected (i.e. force closed),
4847 // we therefore need to remove the peer from `peer_state` separately.
4848 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4849 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4850 // negative effects on parallelism as much as possible.
4851 if pending_peers_awaiting_removal.len() > 0 {
4852 let mut per_peer_state = self.per_peer_state.write().unwrap();
4853 for counterparty_node_id in pending_peers_awaiting_removal {
4854 match per_peer_state.entry(counterparty_node_id) {
4855 hash_map::Entry::Occupied(entry) => {
4856 // Remove the entry if the peer is still disconnected and we still
4857 // have no channels to the peer.
4858 let remove_entry = {
4859 let peer_state = entry.get().lock().unwrap();
4860 peer_state.ok_to_remove(true)
4863 entry.remove_entry();
4866 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
4871 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
4872 if payment.htlcs.is_empty() {
4873 // This should be unreachable
4874 debug_assert!(false);
4877 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
4878 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
4879 // In this case we're not going to handle any timeouts of the parts here.
4880 // This condition determining whether the MPP is complete here must match
4881 // exactly the condition used in `process_pending_htlc_forwards`.
4882 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
4883 .fold(0, |total, htlc| total + htlc.sender_intended_value)
4886 } else if payment.htlcs.iter_mut().any(|htlc| {
4887 htlc.timer_ticks += 1;
4888 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
4890 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
4891 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
4898 for htlc_source in timed_out_mpp_htlcs.drain(..) {
4899 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
4900 let reason = HTLCFailReason::from_failure_code(23);
4901 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
4902 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
4905 for (err, counterparty_node_id) in handle_errors.drain(..) {
4906 let _ = handle_error!(self, err, counterparty_node_id);
4909 for shutdown_res in shutdown_channels {
4910 self.finish_close_channel(shutdown_res);
4913 #[cfg(feature = "std")]
4914 let duration_since_epoch = std::time::SystemTime::now()
4915 .duration_since(std::time::SystemTime::UNIX_EPOCH)
4916 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
4917 #[cfg(not(feature = "std"))]
4918 let duration_since_epoch = Duration::from_secs(
4919 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
4922 self.pending_outbound_payments.remove_stale_payments(
4923 duration_since_epoch, &self.pending_events
4926 // Technically we don't need to do this here, but if we have holding cell entries in a
4927 // channel that need freeing, it's better to do that here and block a background task
4928 // than block the message queueing pipeline.
4929 if self.check_free_holding_cells() {
4930 should_persist = NotifyOption::DoPersist;
4937 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
4938 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
4939 /// along the path (including in our own channel on which we received it).
4941 /// Note that in some cases around unclean shutdown, it is possible the payment may have
4942 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
4943 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
4944 /// may have already been failed automatically by LDK if it was nearing its expiration time.
4946 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
4947 /// [`ChannelManager::claim_funds`]), you should still monitor for
4948 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
4949 /// startup during which time claims that were in-progress at shutdown may be replayed.
4950 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
4951 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
4954 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
4955 /// reason for the failure.
4957 /// See [`FailureCode`] for valid failure codes.
4958 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
4959 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4961 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
4962 if let Some(payment) = removed_source {
4963 for htlc in payment.htlcs {
4964 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
4965 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4966 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
4967 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4972 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
4973 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
4974 match failure_code {
4975 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
4976 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
4977 FailureCode::IncorrectOrUnknownPaymentDetails => {
4978 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4979 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4980 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
4982 FailureCode::InvalidOnionPayload(data) => {
4983 let fail_data = match data {
4984 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
4987 HTLCFailReason::reason(failure_code.into(), fail_data)
4992 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4993 /// that we want to return and a channel.
4995 /// This is for failures on the channel on which the HTLC was *received*, not failures
4997 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
4998 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
4999 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5000 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5001 // an inbound SCID alias before the real SCID.
5002 let scid_pref = if chan.context.should_announce() {
5003 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5005 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5007 if let Some(scid) = scid_pref {
5008 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5010 (0x4000|10, Vec::new())
5015 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5016 /// that we want to return and a channel.
5017 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5018 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5019 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5020 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5021 if desired_err_code == 0x1000 | 20 {
5022 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5023 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5024 0u16.write(&mut enc).expect("Writes cannot fail");
5026 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5027 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5028 upd.write(&mut enc).expect("Writes cannot fail");
5029 (desired_err_code, enc.0)
5031 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5032 // which means we really shouldn't have gotten a payment to be forwarded over this
5033 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5034 // PERM|no_such_channel should be fine.
5035 (0x4000|10, Vec::new())
5039 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5040 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5041 // be surfaced to the user.
5042 fn fail_holding_cell_htlcs(
5043 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5044 counterparty_node_id: &PublicKey
5046 let (failure_code, onion_failure_data) = {
5047 let per_peer_state = self.per_peer_state.read().unwrap();
5048 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5049 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5050 let peer_state = &mut *peer_state_lock;
5051 match peer_state.channel_by_id.entry(channel_id) {
5052 hash_map::Entry::Occupied(chan_phase_entry) => {
5053 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5054 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5056 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5057 debug_assert!(false);
5058 (0x4000|10, Vec::new())
5061 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5063 } else { (0x4000|10, Vec::new()) }
5066 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5067 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5068 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5069 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5073 /// Fails an HTLC backwards to the sender of it to us.
5074 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5075 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5076 // Ensure that no peer state channel storage lock is held when calling this function.
5077 // This ensures that future code doesn't introduce a lock-order requirement for
5078 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5079 // this function with any `per_peer_state` peer lock acquired would.
5080 #[cfg(debug_assertions)]
5081 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5082 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5085 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5086 //identify whether we sent it or not based on the (I presume) very different runtime
5087 //between the branches here. We should make this async and move it into the forward HTLCs
5090 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5091 // from block_connected which may run during initialization prior to the chain_monitor
5092 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5094 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5095 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5096 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5097 &self.pending_events, &self.logger)
5098 { self.push_pending_forwards_ev(); }
5100 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
5101 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
5102 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
5104 let mut push_forward_ev = false;
5105 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5106 if forward_htlcs.is_empty() {
5107 push_forward_ev = true;
5109 match forward_htlcs.entry(*short_channel_id) {
5110 hash_map::Entry::Occupied(mut entry) => {
5111 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5113 hash_map::Entry::Vacant(entry) => {
5114 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5117 mem::drop(forward_htlcs);
5118 if push_forward_ev { self.push_pending_forwards_ev(); }
5119 let mut pending_events = self.pending_events.lock().unwrap();
5120 pending_events.push_back((events::Event::HTLCHandlingFailed {
5121 prev_channel_id: outpoint.to_channel_id(),
5122 failed_next_destination: destination,
5128 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5129 /// [`MessageSendEvent`]s needed to claim the payment.
5131 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5132 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5133 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5134 /// successful. It will generally be available in the next [`process_pending_events`] call.
5136 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5137 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5138 /// event matches your expectation. If you fail to do so and call this method, you may provide
5139 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5141 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5142 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5143 /// [`claim_funds_with_known_custom_tlvs`].
5145 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5146 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5147 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5148 /// [`process_pending_events`]: EventsProvider::process_pending_events
5149 /// [`create_inbound_payment`]: Self::create_inbound_payment
5150 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5151 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5152 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5153 self.claim_payment_internal(payment_preimage, false);
5156 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5157 /// even type numbers.
5161 /// You MUST check you've understood all even TLVs before using this to
5162 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5164 /// [`claim_funds`]: Self::claim_funds
5165 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5166 self.claim_payment_internal(payment_preimage, true);
5169 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5170 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
5172 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5175 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5176 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5177 let mut receiver_node_id = self.our_network_pubkey;
5178 for htlc in payment.htlcs.iter() {
5179 if htlc.prev_hop.phantom_shared_secret.is_some() {
5180 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5181 .expect("Failed to get node_id for phantom node recipient");
5182 receiver_node_id = phantom_pubkey;
5187 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5188 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5189 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5190 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5191 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5193 if dup_purpose.is_some() {
5194 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5195 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5199 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5200 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5201 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5202 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5203 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5204 mem::drop(claimable_payments);
5205 for htlc in payment.htlcs {
5206 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5207 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5208 let receiver = HTLCDestination::FailedPayment { payment_hash };
5209 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5218 debug_assert!(!sources.is_empty());
5220 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5221 // and when we got here we need to check that the amount we're about to claim matches the
5222 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5223 // the MPP parts all have the same `total_msat`.
5224 let mut claimable_amt_msat = 0;
5225 let mut prev_total_msat = None;
5226 let mut expected_amt_msat = None;
5227 let mut valid_mpp = true;
5228 let mut errs = Vec::new();
5229 let per_peer_state = self.per_peer_state.read().unwrap();
5230 for htlc in sources.iter() {
5231 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5232 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5233 debug_assert!(false);
5237 prev_total_msat = Some(htlc.total_msat);
5239 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5240 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5241 debug_assert!(false);
5245 expected_amt_msat = htlc.total_value_received;
5246 claimable_amt_msat += htlc.value;
5248 mem::drop(per_peer_state);
5249 if sources.is_empty() || expected_amt_msat.is_none() {
5250 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5251 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5254 if claimable_amt_msat != expected_amt_msat.unwrap() {
5255 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5256 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5257 expected_amt_msat.unwrap(), claimable_amt_msat);
5261 for htlc in sources.drain(..) {
5262 if let Err((pk, err)) = self.claim_funds_from_hop(
5263 htlc.prev_hop, payment_preimage,
5264 |_, definitely_duplicate| {
5265 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5266 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5269 if let msgs::ErrorAction::IgnoreError = err.err.action {
5270 // We got a temporary failure updating monitor, but will claim the
5271 // HTLC when the monitor updating is restored (or on chain).
5272 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5273 } else { errs.push((pk, err)); }
5278 for htlc in sources.drain(..) {
5279 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5280 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5281 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5282 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5283 let receiver = HTLCDestination::FailedPayment { payment_hash };
5284 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5286 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5289 // Now we can handle any errors which were generated.
5290 for (counterparty_node_id, err) in errs.drain(..) {
5291 let res: Result<(), _> = Err(err);
5292 let _ = handle_error!(self, res, counterparty_node_id);
5296 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5297 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5298 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5299 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5301 // If we haven't yet run background events assume we're still deserializing and shouldn't
5302 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5303 // `BackgroundEvent`s.
5304 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5306 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5307 // the required mutexes are not held before we start.
5308 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5309 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5312 let per_peer_state = self.per_peer_state.read().unwrap();
5313 let chan_id = prev_hop.outpoint.to_channel_id();
5314 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5315 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5319 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5320 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5321 .map(|peer_mutex| peer_mutex.lock().unwrap())
5324 if peer_state_opt.is_some() {
5325 let mut peer_state_lock = peer_state_opt.unwrap();
5326 let peer_state = &mut *peer_state_lock;
5327 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5328 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5329 let counterparty_node_id = chan.context.get_counterparty_node_id();
5330 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5333 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5334 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5335 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5337 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5340 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5341 peer_state, per_peer_state, chan);
5343 // If we're running during init we cannot update a monitor directly -
5344 // they probably haven't actually been loaded yet. Instead, push the
5345 // monitor update as a background event.
5346 self.pending_background_events.lock().unwrap().push(
5347 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5348 counterparty_node_id,
5349 funding_txo: prev_hop.outpoint,
5350 update: monitor_update.clone(),
5354 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5355 let action = if let Some(action) = completion_action(None, true) {
5360 mem::drop(peer_state_lock);
5362 log_trace!(self.logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5364 let (node_id, funding_outpoint, blocker) =
5365 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5366 downstream_counterparty_node_id: node_id,
5367 downstream_funding_outpoint: funding_outpoint,
5368 blocking_action: blocker,
5370 (node_id, funding_outpoint, blocker)
5372 debug_assert!(false,
5373 "Duplicate claims should always free another channel immediately");
5376 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5377 let mut peer_state = peer_state_mtx.lock().unwrap();
5378 if let Some(blockers) = peer_state
5379 .actions_blocking_raa_monitor_updates
5380 .get_mut(&funding_outpoint.to_channel_id())
5382 let mut found_blocker = false;
5383 blockers.retain(|iter| {
5384 // Note that we could actually be blocked, in
5385 // which case we need to only remove the one
5386 // blocker which was added duplicatively.
5387 let first_blocker = !found_blocker;
5388 if *iter == blocker { found_blocker = true; }
5389 *iter != blocker || !first_blocker
5391 debug_assert!(found_blocker);
5394 debug_assert!(false);
5403 let preimage_update = ChannelMonitorUpdate {
5404 update_id: CLOSED_CHANNEL_UPDATE_ID,
5405 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5411 // We update the ChannelMonitor on the backward link, after
5412 // receiving an `update_fulfill_htlc` from the forward link.
5413 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5414 if update_res != ChannelMonitorUpdateStatus::Completed {
5415 // TODO: This needs to be handled somehow - if we receive a monitor update
5416 // with a preimage we *must* somehow manage to propagate it to the upstream
5417 // channel, or we must have an ability to receive the same event and try
5418 // again on restart.
5419 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5420 payment_preimage, update_res);
5423 // If we're running during init we cannot update a monitor directly - they probably
5424 // haven't actually been loaded yet. Instead, push the monitor update as a background
5426 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5427 // channel is already closed) we need to ultimately handle the monitor update
5428 // completion action only after we've completed the monitor update. This is the only
5429 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5430 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5431 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5432 // complete the monitor update completion action from `completion_action`.
5433 self.pending_background_events.lock().unwrap().push(
5434 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5435 prev_hop.outpoint, preimage_update,
5438 // Note that we do process the completion action here. This totally could be a
5439 // duplicate claim, but we have no way of knowing without interrogating the
5440 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5441 // generally always allowed to be duplicative (and it's specifically noted in
5442 // `PaymentForwarded`).
5443 self.handle_monitor_update_completion_actions(completion_action(None, false));
5447 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5448 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5451 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5452 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5453 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5456 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5457 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5458 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5459 if let Some(pubkey) = next_channel_counterparty_node_id {
5460 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5462 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5463 channel_funding_outpoint: next_channel_outpoint,
5464 counterparty_node_id: path.hops[0].pubkey,
5466 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5467 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5470 HTLCSource::PreviousHopData(hop_data) => {
5471 let prev_outpoint = hop_data.outpoint;
5472 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5473 #[cfg(debug_assertions)]
5474 let claiming_chan_funding_outpoint = hop_data.outpoint;
5475 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5476 |htlc_claim_value_msat, definitely_duplicate| {
5477 let chan_to_release =
5478 if let Some(node_id) = next_channel_counterparty_node_id {
5479 Some((node_id, next_channel_outpoint, completed_blocker))
5481 // We can only get `None` here if we are processing a
5482 // `ChannelMonitor`-originated event, in which case we
5483 // don't care about ensuring we wake the downstream
5484 // channel's monitor updating - the channel is already
5489 if definitely_duplicate && startup_replay {
5490 // On startup we may get redundant claims which are related to
5491 // monitor updates still in flight. In that case, we shouldn't
5492 // immediately free, but instead let that monitor update complete
5493 // in the background.
5494 #[cfg(debug_assertions)] {
5495 let background_events = self.pending_background_events.lock().unwrap();
5496 // There should be a `BackgroundEvent` pending...
5497 assert!(background_events.iter().any(|ev| {
5499 // to apply a monitor update that blocked the claiming channel,
5500 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5501 funding_txo, update, ..
5503 if *funding_txo == claiming_chan_funding_outpoint {
5504 assert!(update.updates.iter().any(|upd|
5505 if let ChannelMonitorUpdateStep::PaymentPreimage {
5506 payment_preimage: update_preimage
5508 payment_preimage == *update_preimage
5514 // or the channel we'd unblock is already closed,
5515 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5516 (funding_txo, monitor_update)
5518 if *funding_txo == next_channel_outpoint {
5519 assert_eq!(monitor_update.updates.len(), 1);
5521 monitor_update.updates[0],
5522 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5527 // or the monitor update has completed and will unblock
5528 // immediately once we get going.
5529 BackgroundEvent::MonitorUpdatesComplete {
5532 *channel_id == claiming_chan_funding_outpoint.to_channel_id(),
5534 }), "{:?}", *background_events);
5537 } else if definitely_duplicate {
5538 if let Some(other_chan) = chan_to_release {
5539 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5540 downstream_counterparty_node_id: other_chan.0,
5541 downstream_funding_outpoint: other_chan.1,
5542 blocking_action: other_chan.2,
5546 let fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5547 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5548 Some(claimed_htlc_value - forwarded_htlc_value)
5551 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5552 event: events::Event::PaymentForwarded {
5554 claim_from_onchain_tx: from_onchain,
5555 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5556 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5557 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5559 downstream_counterparty_and_funding_outpoint: chan_to_release,
5563 if let Err((pk, err)) = res {
5564 let result: Result<(), _> = Err(err);
5565 let _ = handle_error!(self, result, pk);
5571 /// Gets the node_id held by this ChannelManager
5572 pub fn get_our_node_id(&self) -> PublicKey {
5573 self.our_network_pubkey.clone()
5576 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5577 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5578 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5579 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5581 for action in actions.into_iter() {
5583 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5584 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5585 if let Some(ClaimingPayment {
5587 payment_purpose: purpose,
5590 sender_intended_value: sender_intended_total_msat,
5592 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5596 receiver_node_id: Some(receiver_node_id),
5598 sender_intended_total_msat,
5602 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5603 event, downstream_counterparty_and_funding_outpoint
5605 self.pending_events.lock().unwrap().push_back((event, None));
5606 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5607 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5610 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5611 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5613 self.handle_monitor_update_release(
5614 downstream_counterparty_node_id,
5615 downstream_funding_outpoint,
5616 Some(blocking_action),
5623 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5624 /// update completion.
5625 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5626 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5627 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5628 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5629 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5630 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5631 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5632 &channel.context.channel_id(),
5633 if raa.is_some() { "an" } else { "no" },
5634 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5635 if funding_broadcastable.is_some() { "" } else { "not " },
5636 if channel_ready.is_some() { "sending" } else { "without" },
5637 if announcement_sigs.is_some() { "sending" } else { "without" });
5639 let mut htlc_forwards = None;
5641 let counterparty_node_id = channel.context.get_counterparty_node_id();
5642 if !pending_forwards.is_empty() {
5643 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5644 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5647 if let Some(msg) = channel_ready {
5648 send_channel_ready!(self, pending_msg_events, channel, msg);
5650 if let Some(msg) = announcement_sigs {
5651 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5652 node_id: counterparty_node_id,
5657 macro_rules! handle_cs { () => {
5658 if let Some(update) = commitment_update {
5659 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5660 node_id: counterparty_node_id,
5665 macro_rules! handle_raa { () => {
5666 if let Some(revoke_and_ack) = raa {
5667 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5668 node_id: counterparty_node_id,
5669 msg: revoke_and_ack,
5674 RAACommitmentOrder::CommitmentFirst => {
5678 RAACommitmentOrder::RevokeAndACKFirst => {
5684 if let Some(tx) = funding_broadcastable {
5685 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5686 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5690 let mut pending_events = self.pending_events.lock().unwrap();
5691 emit_channel_pending_event!(pending_events, channel);
5692 emit_channel_ready_event!(pending_events, channel);
5698 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5699 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5701 let counterparty_node_id = match counterparty_node_id {
5702 Some(cp_id) => cp_id.clone(),
5704 // TODO: Once we can rely on the counterparty_node_id from the
5705 // monitor event, this and the id_to_peer map should be removed.
5706 let id_to_peer = self.id_to_peer.lock().unwrap();
5707 match id_to_peer.get(&funding_txo.to_channel_id()) {
5708 Some(cp_id) => cp_id.clone(),
5713 let per_peer_state = self.per_peer_state.read().unwrap();
5714 let mut peer_state_lock;
5715 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5716 if peer_state_mutex_opt.is_none() { return }
5717 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5718 let peer_state = &mut *peer_state_lock;
5720 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5723 let update_actions = peer_state.monitor_update_blocked_actions
5724 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5725 mem::drop(peer_state_lock);
5726 mem::drop(per_peer_state);
5727 self.handle_monitor_update_completion_actions(update_actions);
5730 let remaining_in_flight =
5731 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5732 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5735 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5736 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5737 remaining_in_flight);
5738 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5741 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5744 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5746 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5747 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5750 /// The `user_channel_id` parameter will be provided back in
5751 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5752 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5754 /// Note that this method will return an error and reject the channel, if it requires support
5755 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5756 /// used to accept such channels.
5758 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5759 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5760 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5761 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5764 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5765 /// it as confirmed immediately.
5767 /// The `user_channel_id` parameter will be provided back in
5768 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5769 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5771 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5772 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5774 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5775 /// transaction and blindly assumes that it will eventually confirm.
5777 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5778 /// does not pay to the correct script the correct amount, *you will lose funds*.
5780 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5781 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5782 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5783 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5786 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5787 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5789 let peers_without_funded_channels =
5790 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5791 let per_peer_state = self.per_peer_state.read().unwrap();
5792 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5793 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5794 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5795 let peer_state = &mut *peer_state_lock;
5796 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5798 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5799 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5800 // that we can delay allocating the SCID until after we're sure that the checks below will
5802 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5803 Some(unaccepted_channel) => {
5804 let best_block_height = self.best_block.read().unwrap().height();
5805 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5806 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5807 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5808 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5810 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5814 // This should have been correctly configured by the call to InboundV1Channel::new.
5815 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
5816 } else if channel.context.get_channel_type().requires_zero_conf() {
5817 let send_msg_err_event = events::MessageSendEvent::HandleError {
5818 node_id: channel.context.get_counterparty_node_id(),
5819 action: msgs::ErrorAction::SendErrorMessage{
5820 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5823 peer_state.pending_msg_events.push(send_msg_err_event);
5824 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5826 // If this peer already has some channels, a new channel won't increase our number of peers
5827 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5828 // channels per-peer we can accept channels from a peer with existing ones.
5829 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5830 let send_msg_err_event = events::MessageSendEvent::HandleError {
5831 node_id: channel.context.get_counterparty_node_id(),
5832 action: msgs::ErrorAction::SendErrorMessage{
5833 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5836 peer_state.pending_msg_events.push(send_msg_err_event);
5837 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5841 // Now that we know we have a channel, assign an outbound SCID alias.
5842 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5843 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5845 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5846 node_id: channel.context.get_counterparty_node_id(),
5847 msg: channel.accept_inbound_channel(),
5850 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
5855 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
5856 /// or 0-conf channels.
5858 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
5859 /// non-0-conf channels we have with the peer.
5860 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
5861 where Filter: Fn(&PeerState<SP>) -> bool {
5862 let mut peers_without_funded_channels = 0;
5863 let best_block_height = self.best_block.read().unwrap().height();
5865 let peer_state_lock = self.per_peer_state.read().unwrap();
5866 for (_, peer_mtx) in peer_state_lock.iter() {
5867 let peer = peer_mtx.lock().unwrap();
5868 if !maybe_count_peer(&*peer) { continue; }
5869 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
5870 if num_unfunded_channels == peer.total_channel_count() {
5871 peers_without_funded_channels += 1;
5875 return peers_without_funded_channels;
5878 fn unfunded_channel_count(
5879 peer: &PeerState<SP>, best_block_height: u32
5881 let mut num_unfunded_channels = 0;
5882 for (_, phase) in peer.channel_by_id.iter() {
5884 ChannelPhase::Funded(chan) => {
5885 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
5886 // which have not yet had any confirmations on-chain.
5887 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
5888 chan.context.get_funding_tx_confirmations(best_block_height) == 0
5890 num_unfunded_channels += 1;
5893 ChannelPhase::UnfundedInboundV1(chan) => {
5894 if chan.context.minimum_depth().unwrap_or(1) != 0 {
5895 num_unfunded_channels += 1;
5898 ChannelPhase::UnfundedOutboundV1(_) => {
5899 // Outbound channels don't contribute to the unfunded count in the DoS context.
5904 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
5907 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
5908 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
5909 // likely to be lost on restart!
5910 if msg.chain_hash != self.chain_hash {
5911 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
5914 if !self.default_configuration.accept_inbound_channels {
5915 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5918 // Get the number of peers with channels, but without funded ones. We don't care too much
5919 // about peers that never open a channel, so we filter by peers that have at least one
5920 // channel, and then limit the number of those with unfunded channels.
5921 let channeled_peers_without_funding =
5922 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
5924 let per_peer_state = self.per_peer_state.read().unwrap();
5925 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5927 debug_assert!(false);
5928 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
5930 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5931 let peer_state = &mut *peer_state_lock;
5933 // If this peer already has some channels, a new channel won't increase our number of peers
5934 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5935 // channels per-peer we can accept channels from a peer with existing ones.
5936 if peer_state.total_channel_count() == 0 &&
5937 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
5938 !self.default_configuration.manually_accept_inbound_channels
5940 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5941 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
5942 msg.temporary_channel_id.clone()));
5945 let best_block_height = self.best_block.read().unwrap().height();
5946 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
5947 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5948 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
5949 msg.temporary_channel_id.clone()));
5952 let channel_id = msg.temporary_channel_id;
5953 let channel_exists = peer_state.has_channel(&channel_id);
5955 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
5958 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
5959 if self.default_configuration.manually_accept_inbound_channels {
5960 let mut pending_events = self.pending_events.lock().unwrap();
5961 pending_events.push_back((events::Event::OpenChannelRequest {
5962 temporary_channel_id: msg.temporary_channel_id.clone(),
5963 counterparty_node_id: counterparty_node_id.clone(),
5964 funding_satoshis: msg.funding_satoshis,
5965 push_msat: msg.push_msat,
5966 channel_type: msg.channel_type.clone().unwrap(),
5968 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
5969 open_channel_msg: msg.clone(),
5970 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
5975 // Otherwise create the channel right now.
5976 let mut random_bytes = [0u8; 16];
5977 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
5978 let user_channel_id = u128::from_be_bytes(random_bytes);
5979 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5980 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
5981 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
5984 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
5989 let channel_type = channel.context.get_channel_type();
5990 if channel_type.requires_zero_conf() {
5991 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5993 if channel_type.requires_anchors_zero_fee_htlc_tx() {
5994 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
5997 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5998 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6000 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6001 node_id: counterparty_node_id.clone(),
6002 msg: channel.accept_inbound_channel(),
6004 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6008 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6009 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6010 // likely to be lost on restart!
6011 let (value, output_script, user_id) = {
6012 let per_peer_state = self.per_peer_state.read().unwrap();
6013 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6015 debug_assert!(false);
6016 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6018 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6019 let peer_state = &mut *peer_state_lock;
6020 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6021 hash_map::Entry::Occupied(mut phase) => {
6022 match phase.get_mut() {
6023 ChannelPhase::UnfundedOutboundV1(chan) => {
6024 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6025 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6028 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6032 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6035 let mut pending_events = self.pending_events.lock().unwrap();
6036 pending_events.push_back((events::Event::FundingGenerationReady {
6037 temporary_channel_id: msg.temporary_channel_id,
6038 counterparty_node_id: *counterparty_node_id,
6039 channel_value_satoshis: value,
6041 user_channel_id: user_id,
6046 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6047 let best_block = *self.best_block.read().unwrap();
6049 let per_peer_state = self.per_peer_state.read().unwrap();
6050 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6052 debug_assert!(false);
6053 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6056 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6057 let peer_state = &mut *peer_state_lock;
6058 let (chan, funding_msg_opt, monitor) =
6059 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6060 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6061 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
6063 Err((mut inbound_chan, err)) => {
6064 // We've already removed this inbound channel from the map in `PeerState`
6065 // above so at this point we just need to clean up any lingering entries
6066 // concerning this channel as it is safe to do so.
6067 update_maps_on_chan_removal!(self, &inbound_chan.context);
6068 let user_id = inbound_chan.context.get_user_id();
6069 let shutdown_res = inbound_chan.context.force_shutdown(false);
6070 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6071 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6075 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6076 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6078 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6081 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
6082 hash_map::Entry::Occupied(_) => {
6083 Err(MsgHandleErrInternal::send_err_msg_no_close(
6084 "Already had channel with the new channel_id".to_owned(),
6085 chan.context.channel_id()
6088 hash_map::Entry::Vacant(e) => {
6089 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6090 match id_to_peer_lock.entry(chan.context.channel_id()) {
6091 hash_map::Entry::Occupied(_) => {
6092 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6093 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6094 chan.context.channel_id()))
6096 hash_map::Entry::Vacant(i_e) => {
6097 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6098 if let Ok(persist_state) = monitor_res {
6099 i_e.insert(chan.context.get_counterparty_node_id());
6100 mem::drop(id_to_peer_lock);
6102 // There's no problem signing a counterparty's funding transaction if our monitor
6103 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6104 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6105 // until we have persisted our monitor.
6106 if let Some(msg) = funding_msg_opt {
6107 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6108 node_id: counterparty_node_id.clone(),
6113 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6114 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6115 per_peer_state, chan, INITIAL_MONITOR);
6117 unreachable!("This must be a funded channel as we just inserted it.");
6121 log_error!(self.logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6122 let channel_id = match funding_msg_opt {
6123 Some(msg) => msg.channel_id,
6124 None => chan.context.channel_id(),
6126 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6127 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6136 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6137 let best_block = *self.best_block.read().unwrap();
6138 let per_peer_state = self.per_peer_state.read().unwrap();
6139 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6141 debug_assert!(false);
6142 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6145 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6146 let peer_state = &mut *peer_state_lock;
6147 match peer_state.channel_by_id.entry(msg.channel_id) {
6148 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6149 match chan_phase_entry.get_mut() {
6150 ChannelPhase::Funded(ref mut chan) => {
6151 let monitor = try_chan_phase_entry!(self,
6152 chan.funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan_phase_entry);
6153 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6154 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6157 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
6161 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6165 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6169 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6170 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6171 // closing a channel), so any changes are likely to be lost on restart!
6172 let per_peer_state = self.per_peer_state.read().unwrap();
6173 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6175 debug_assert!(false);
6176 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6178 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6179 let peer_state = &mut *peer_state_lock;
6180 match peer_state.channel_by_id.entry(msg.channel_id) {
6181 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6182 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6183 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6184 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan_phase_entry);
6185 if let Some(announcement_sigs) = announcement_sigs_opt {
6186 log_trace!(self.logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6187 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6188 node_id: counterparty_node_id.clone(),
6189 msg: announcement_sigs,
6191 } else if chan.context.is_usable() {
6192 // If we're sending an announcement_signatures, we'll send the (public)
6193 // channel_update after sending a channel_announcement when we receive our
6194 // counterparty's announcement_signatures. Thus, we only bother to send a
6195 // channel_update here if the channel is not public, i.e. we're not sending an
6196 // announcement_signatures.
6197 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6198 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6199 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6200 node_id: counterparty_node_id.clone(),
6207 let mut pending_events = self.pending_events.lock().unwrap();
6208 emit_channel_ready_event!(pending_events, chan);
6213 try_chan_phase_entry!(self, Err(ChannelError::Close(
6214 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6217 hash_map::Entry::Vacant(_) => {
6218 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6223 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6224 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6225 let mut finish_shutdown = None;
6227 let per_peer_state = self.per_peer_state.read().unwrap();
6228 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6230 debug_assert!(false);
6231 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6233 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6234 let peer_state = &mut *peer_state_lock;
6235 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6236 let phase = chan_phase_entry.get_mut();
6238 ChannelPhase::Funded(chan) => {
6239 if !chan.received_shutdown() {
6240 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
6242 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6245 let funding_txo_opt = chan.context.get_funding_txo();
6246 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6247 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6248 dropped_htlcs = htlcs;
6250 if let Some(msg) = shutdown {
6251 // We can send the `shutdown` message before updating the `ChannelMonitor`
6252 // here as we don't need the monitor update to complete until we send a
6253 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6254 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6255 node_id: *counterparty_node_id,
6259 // Update the monitor with the shutdown script if necessary.
6260 if let Some(monitor_update) = monitor_update_opt {
6261 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6262 peer_state_lock, peer_state, per_peer_state, chan);
6265 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6266 let context = phase.context_mut();
6267 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6268 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6269 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6270 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6274 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6277 for htlc_source in dropped_htlcs.drain(..) {
6278 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6279 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6280 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6282 if let Some(shutdown_res) = finish_shutdown {
6283 self.finish_close_channel(shutdown_res);
6289 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6290 let per_peer_state = self.per_peer_state.read().unwrap();
6291 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6293 debug_assert!(false);
6294 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6296 let (tx, chan_option, shutdown_result) = {
6297 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6298 let peer_state = &mut *peer_state_lock;
6299 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6300 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6301 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6302 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6303 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6304 if let Some(msg) = closing_signed {
6305 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6306 node_id: counterparty_node_id.clone(),
6311 // We're done with this channel, we've got a signed closing transaction and
6312 // will send the closing_signed back to the remote peer upon return. This
6313 // also implies there are no pending HTLCs left on the channel, so we can
6314 // fully delete it from tracking (the channel monitor is still around to
6315 // watch for old state broadcasts)!
6316 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6317 } else { (tx, None, shutdown_result) }
6319 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6320 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6323 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6326 if let Some(broadcast_tx) = tx {
6327 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
6328 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6330 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6331 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6332 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6333 let peer_state = &mut *peer_state_lock;
6334 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6338 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6340 mem::drop(per_peer_state);
6341 if let Some(shutdown_result) = shutdown_result {
6342 self.finish_close_channel(shutdown_result);
6347 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6348 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6349 //determine the state of the payment based on our response/if we forward anything/the time
6350 //we take to respond. We should take care to avoid allowing such an attack.
6352 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6353 //us repeatedly garbled in different ways, and compare our error messages, which are
6354 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6355 //but we should prevent it anyway.
6357 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6358 // closing a channel), so any changes are likely to be lost on restart!
6360 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
6361 let per_peer_state = self.per_peer_state.read().unwrap();
6362 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6364 debug_assert!(false);
6365 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6367 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6368 let peer_state = &mut *peer_state_lock;
6369 match peer_state.channel_by_id.entry(msg.channel_id) {
6370 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6371 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6372 let pending_forward_info = match decoded_hop_res {
6373 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6374 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
6375 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt),
6376 Err(e) => PendingHTLCStatus::Fail(e)
6378 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6379 // If the update_add is completely bogus, the call will Err and we will close,
6380 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6381 // want to reject the new HTLC and fail it backwards instead of forwarding.
6382 match pending_forward_info {
6383 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
6384 let reason = if (error_code & 0x1000) != 0 {
6385 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6386 HTLCFailReason::reason(real_code, error_data)
6388 HTLCFailReason::from_failure_code(error_code)
6389 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6390 let msg = msgs::UpdateFailHTLC {
6391 channel_id: msg.channel_id,
6392 htlc_id: msg.htlc_id,
6395 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6397 _ => pending_forward_info
6400 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan_phase_entry);
6402 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6403 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6406 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6411 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6413 let (htlc_source, forwarded_htlc_value) = {
6414 let per_peer_state = self.per_peer_state.read().unwrap();
6415 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6417 debug_assert!(false);
6418 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6420 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6421 let peer_state = &mut *peer_state_lock;
6422 match peer_state.channel_by_id.entry(msg.channel_id) {
6423 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6424 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6425 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6426 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6427 log_trace!(self.logger,
6428 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6430 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6431 .or_insert_with(Vec::new)
6432 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6434 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6435 // entry here, even though we *do* need to block the next RAA monitor update.
6436 // We do this instead in the `claim_funds_internal` by attaching a
6437 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6438 // outbound HTLC is claimed. This is guaranteed to all complete before we
6439 // process the RAA as messages are processed from single peers serially.
6440 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6443 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6444 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6447 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6450 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6454 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6455 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6456 // closing a channel), so any changes are likely to be lost on restart!
6457 let per_peer_state = self.per_peer_state.read().unwrap();
6458 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6460 debug_assert!(false);
6461 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6463 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6464 let peer_state = &mut *peer_state_lock;
6465 match peer_state.channel_by_id.entry(msg.channel_id) {
6466 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6467 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6468 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6470 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6471 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6474 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6479 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6480 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6481 // closing a channel), so any changes are likely to be lost on restart!
6482 let per_peer_state = self.per_peer_state.read().unwrap();
6483 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6485 debug_assert!(false);
6486 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6488 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6489 let peer_state = &mut *peer_state_lock;
6490 match peer_state.channel_by_id.entry(msg.channel_id) {
6491 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6492 if (msg.failure_code & 0x8000) == 0 {
6493 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6494 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6496 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6497 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6499 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6500 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6504 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6508 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6509 let per_peer_state = self.per_peer_state.read().unwrap();
6510 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6512 debug_assert!(false);
6513 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6515 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6516 let peer_state = &mut *peer_state_lock;
6517 match peer_state.channel_by_id.entry(msg.channel_id) {
6518 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6519 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6520 let funding_txo = chan.context.get_funding_txo();
6521 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &self.logger), chan_phase_entry);
6522 if let Some(monitor_update) = monitor_update_opt {
6523 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6524 peer_state, per_peer_state, chan);
6528 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6529 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6532 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6537 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6538 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6539 let mut push_forward_event = false;
6540 let mut new_intercept_events = VecDeque::new();
6541 let mut failed_intercept_forwards = Vec::new();
6542 if !pending_forwards.is_empty() {
6543 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6544 let scid = match forward_info.routing {
6545 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6546 PendingHTLCRouting::Receive { .. } => 0,
6547 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6549 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6550 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6552 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6553 let forward_htlcs_empty = forward_htlcs.is_empty();
6554 match forward_htlcs.entry(scid) {
6555 hash_map::Entry::Occupied(mut entry) => {
6556 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6557 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6559 hash_map::Entry::Vacant(entry) => {
6560 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6561 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6563 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
6564 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6565 match pending_intercepts.entry(intercept_id) {
6566 hash_map::Entry::Vacant(entry) => {
6567 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6568 requested_next_hop_scid: scid,
6569 payment_hash: forward_info.payment_hash,
6570 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6571 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6574 entry.insert(PendingAddHTLCInfo {
6575 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6577 hash_map::Entry::Occupied(_) => {
6578 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6579 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6580 short_channel_id: prev_short_channel_id,
6581 user_channel_id: Some(prev_user_channel_id),
6582 outpoint: prev_funding_outpoint,
6583 htlc_id: prev_htlc_id,
6584 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6585 phantom_shared_secret: None,
6588 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6589 HTLCFailReason::from_failure_code(0x4000 | 10),
6590 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6595 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6596 // payments are being processed.
6597 if forward_htlcs_empty {
6598 push_forward_event = true;
6600 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6601 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6608 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6609 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6612 if !new_intercept_events.is_empty() {
6613 let mut events = self.pending_events.lock().unwrap();
6614 events.append(&mut new_intercept_events);
6616 if push_forward_event { self.push_pending_forwards_ev() }
6620 fn push_pending_forwards_ev(&self) {
6621 let mut pending_events = self.pending_events.lock().unwrap();
6622 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6623 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6624 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6626 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6627 // events is done in batches and they are not removed until we're done processing each
6628 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6629 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6630 // payments will need an additional forwarding event before being claimed to make them look
6631 // real by taking more time.
6632 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6633 pending_events.push_back((Event::PendingHTLCsForwardable {
6634 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6639 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6640 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6641 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6642 /// the [`ChannelMonitorUpdate`] in question.
6643 fn raa_monitor_updates_held(&self,
6644 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6645 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6647 actions_blocking_raa_monitor_updates
6648 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6649 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6650 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6651 channel_funding_outpoint,
6652 counterparty_node_id,
6657 #[cfg(any(test, feature = "_test_utils"))]
6658 pub(crate) fn test_raa_monitor_updates_held(&self,
6659 counterparty_node_id: PublicKey, channel_id: ChannelId
6661 let per_peer_state = self.per_peer_state.read().unwrap();
6662 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6663 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6664 let peer_state = &mut *peer_state_lck;
6666 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6667 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6668 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6674 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6675 let htlcs_to_fail = {
6676 let per_peer_state = self.per_peer_state.read().unwrap();
6677 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6679 debug_assert!(false);
6680 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6681 }).map(|mtx| mtx.lock().unwrap())?;
6682 let peer_state = &mut *peer_state_lock;
6683 match peer_state.channel_by_id.entry(msg.channel_id) {
6684 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6685 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6686 let funding_txo_opt = chan.context.get_funding_txo();
6687 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6688 self.raa_monitor_updates_held(
6689 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6690 *counterparty_node_id)
6692 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6693 chan.revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan_phase_entry);
6694 if let Some(monitor_update) = monitor_update_opt {
6695 let funding_txo = funding_txo_opt
6696 .expect("Funding outpoint must have been set for RAA handling to succeed");
6697 handle_new_monitor_update!(self, funding_txo, monitor_update,
6698 peer_state_lock, peer_state, per_peer_state, chan);
6702 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6703 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6706 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6709 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6713 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6714 let per_peer_state = self.per_peer_state.read().unwrap();
6715 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6717 debug_assert!(false);
6718 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6720 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6721 let peer_state = &mut *peer_state_lock;
6722 match peer_state.channel_by_id.entry(msg.channel_id) {
6723 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6724 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6725 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &self.logger), chan_phase_entry);
6727 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6728 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6731 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6736 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6737 let per_peer_state = self.per_peer_state.read().unwrap();
6738 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6740 debug_assert!(false);
6741 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6743 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6744 let peer_state = &mut *peer_state_lock;
6745 match peer_state.channel_by_id.entry(msg.channel_id) {
6746 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6747 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6748 if !chan.context.is_usable() {
6749 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6752 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6753 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6754 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
6755 msg, &self.default_configuration
6756 ), chan_phase_entry),
6757 // Note that announcement_signatures fails if the channel cannot be announced,
6758 // so get_channel_update_for_broadcast will never fail by the time we get here.
6759 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6762 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6763 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6766 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6771 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6772 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6773 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6774 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6776 // It's not a local channel
6777 return Ok(NotifyOption::SkipPersistNoEvents)
6780 let per_peer_state = self.per_peer_state.read().unwrap();
6781 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6782 if peer_state_mutex_opt.is_none() {
6783 return Ok(NotifyOption::SkipPersistNoEvents)
6785 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6786 let peer_state = &mut *peer_state_lock;
6787 match peer_state.channel_by_id.entry(chan_id) {
6788 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6789 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6790 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6791 if chan.context.should_announce() {
6792 // If the announcement is about a channel of ours which is public, some
6793 // other peer may simply be forwarding all its gossip to us. Don't provide
6794 // a scary-looking error message and return Ok instead.
6795 return Ok(NotifyOption::SkipPersistNoEvents);
6797 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6799 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6800 let msg_from_node_one = msg.contents.flags & 1 == 0;
6801 if were_node_one == msg_from_node_one {
6802 return Ok(NotifyOption::SkipPersistNoEvents);
6804 log_debug!(self.logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
6805 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6806 // If nothing changed after applying their update, we don't need to bother
6809 return Ok(NotifyOption::SkipPersistNoEvents);
6813 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6814 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
6817 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
6819 Ok(NotifyOption::DoPersist)
6822 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
6824 let need_lnd_workaround = {
6825 let per_peer_state = self.per_peer_state.read().unwrap();
6827 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6829 debug_assert!(false);
6830 MsgHandleErrInternal::send_err_msg_no_close(
6831 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
6835 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6836 let peer_state = &mut *peer_state_lock;
6837 match peer_state.channel_by_id.entry(msg.channel_id) {
6838 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6839 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6840 // Currently, we expect all holding cell update_adds to be dropped on peer
6841 // disconnect, so Channel's reestablish will never hand us any holding cell
6842 // freed HTLCs to fail backwards. If in the future we no longer drop pending
6843 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
6844 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
6845 msg, &self.logger, &self.node_signer, self.chain_hash,
6846 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
6847 let mut channel_update = None;
6848 if let Some(msg) = responses.shutdown_msg {
6849 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6850 node_id: counterparty_node_id.clone(),
6853 } else if chan.context.is_usable() {
6854 // If the channel is in a usable state (ie the channel is not being shut
6855 // down), send a unicast channel_update to our counterparty to make sure
6856 // they have the latest channel parameters.
6857 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6858 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
6859 node_id: chan.context.get_counterparty_node_id(),
6864 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
6865 htlc_forwards = self.handle_channel_resumption(
6866 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
6867 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
6868 if let Some(upd) = channel_update {
6869 peer_state.pending_msg_events.push(upd);
6873 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6874 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
6877 hash_map::Entry::Vacant(_) => {
6878 log_debug!(self.logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
6879 log_bytes!(msg.channel_id.0));
6880 // Unfortunately, lnd doesn't force close on errors
6881 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
6882 // One of the few ways to get an lnd counterparty to force close is by
6883 // replicating what they do when restoring static channel backups (SCBs). They
6884 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
6885 // invalid `your_last_per_commitment_secret`.
6887 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
6888 // can assume it's likely the channel closed from our point of view, but it
6889 // remains open on the counterparty's side. By sending this bogus
6890 // `ChannelReestablish` message now as a response to theirs, we trigger them to
6891 // force close broadcasting their latest state. If the closing transaction from
6892 // our point of view remains unconfirmed, it'll enter a race with the
6893 // counterparty's to-be-broadcast latest commitment transaction.
6894 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
6895 node_id: *counterparty_node_id,
6896 msg: msgs::ChannelReestablish {
6897 channel_id: msg.channel_id,
6898 next_local_commitment_number: 0,
6899 next_remote_commitment_number: 0,
6900 your_last_per_commitment_secret: [1u8; 32],
6901 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
6902 next_funding_txid: None,
6905 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6906 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
6907 counterparty_node_id), msg.channel_id)
6913 let mut persist = NotifyOption::SkipPersistHandleEvents;
6914 if let Some(forwards) = htlc_forwards {
6915 self.forward_htlcs(&mut [forwards][..]);
6916 persist = NotifyOption::DoPersist;
6919 if let Some(channel_ready_msg) = need_lnd_workaround {
6920 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
6925 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
6926 fn process_pending_monitor_events(&self) -> bool {
6927 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6929 let mut failed_channels = Vec::new();
6930 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
6931 let has_pending_monitor_events = !pending_monitor_events.is_empty();
6932 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
6933 for monitor_event in monitor_events.drain(..) {
6934 match monitor_event {
6935 MonitorEvent::HTLCEvent(htlc_update) => {
6936 if let Some(preimage) = htlc_update.payment_preimage {
6937 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", preimage);
6938 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
6940 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
6941 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
6942 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6943 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
6946 MonitorEvent::HolderForceClosed(funding_outpoint) => {
6947 let counterparty_node_id_opt = match counterparty_node_id {
6948 Some(cp_id) => Some(cp_id),
6950 // TODO: Once we can rely on the counterparty_node_id from the
6951 // monitor event, this and the id_to_peer map should be removed.
6952 let id_to_peer = self.id_to_peer.lock().unwrap();
6953 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
6956 if let Some(counterparty_node_id) = counterparty_node_id_opt {
6957 let per_peer_state = self.per_peer_state.read().unwrap();
6958 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
6959 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6960 let peer_state = &mut *peer_state_lock;
6961 let pending_msg_events = &mut peer_state.pending_msg_events;
6962 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
6963 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
6964 failed_channels.push(chan.context.force_shutdown(false));
6965 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6966 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6970 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
6971 pending_msg_events.push(events::MessageSendEvent::HandleError {
6972 node_id: chan.context.get_counterparty_node_id(),
6973 action: msgs::ErrorAction::DisconnectPeer {
6974 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
6982 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
6983 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
6989 for failure in failed_channels.drain(..) {
6990 self.finish_close_channel(failure);
6993 has_pending_monitor_events
6996 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
6997 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
6998 /// update events as a separate process method here.
7000 pub fn process_monitor_events(&self) {
7001 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7002 self.process_pending_monitor_events();
7005 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7006 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7007 /// update was applied.
7008 fn check_free_holding_cells(&self) -> bool {
7009 let mut has_monitor_update = false;
7010 let mut failed_htlcs = Vec::new();
7012 // Walk our list of channels and find any that need to update. Note that when we do find an
7013 // update, if it includes actions that must be taken afterwards, we have to drop the
7014 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7015 // manage to go through all our peers without finding a single channel to update.
7017 let per_peer_state = self.per_peer_state.read().unwrap();
7018 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7020 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7021 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7022 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7023 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7025 let counterparty_node_id = chan.context.get_counterparty_node_id();
7026 let funding_txo = chan.context.get_funding_txo();
7027 let (monitor_opt, holding_cell_failed_htlcs) =
7028 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
7029 if !holding_cell_failed_htlcs.is_empty() {
7030 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7032 if let Some(monitor_update) = monitor_opt {
7033 has_monitor_update = true;
7035 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7036 peer_state_lock, peer_state, per_peer_state, chan);
7037 continue 'peer_loop;
7046 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7047 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7048 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7054 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7055 /// is (temporarily) unavailable, and the operation should be retried later.
7057 /// This method allows for that retry - either checking for any signer-pending messages to be
7058 /// attempted in every channel, or in the specifically provided channel.
7060 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7061 #[cfg(test)] // This is only implemented for one signer method, and should be private until we
7062 // actually finish implementing it fully.
7063 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7064 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7066 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7067 let node_id = phase.context().get_counterparty_node_id();
7068 if let ChannelPhase::Funded(chan) = phase {
7069 let msgs = chan.signer_maybe_unblocked(&self.logger);
7070 if let Some(updates) = msgs.commitment_update {
7071 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7076 if let Some(msg) = msgs.funding_signed {
7077 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7082 if let Some(msg) = msgs.funding_created {
7083 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7088 if let Some(msg) = msgs.channel_ready {
7089 send_channel_ready!(self, pending_msg_events, chan, msg);
7094 let per_peer_state = self.per_peer_state.read().unwrap();
7095 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7096 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7097 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7098 let peer_state = &mut *peer_state_lock;
7099 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7100 unblock_chan(chan, &mut peer_state.pending_msg_events);
7104 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7105 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7106 let peer_state = &mut *peer_state_lock;
7107 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7108 unblock_chan(chan, &mut peer_state.pending_msg_events);
7114 /// Check whether any channels have finished removing all pending updates after a shutdown
7115 /// exchange and can now send a closing_signed.
7116 /// Returns whether any closing_signed messages were generated.
7117 fn maybe_generate_initial_closing_signed(&self) -> bool {
7118 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7119 let mut has_update = false;
7120 let mut shutdown_results = Vec::new();
7122 let per_peer_state = self.per_peer_state.read().unwrap();
7124 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7125 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7126 let peer_state = &mut *peer_state_lock;
7127 let pending_msg_events = &mut peer_state.pending_msg_events;
7128 peer_state.channel_by_id.retain(|channel_id, phase| {
7130 ChannelPhase::Funded(chan) => {
7131 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
7132 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7133 if let Some(msg) = msg_opt {
7135 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7136 node_id: chan.context.get_counterparty_node_id(), msg,
7139 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7140 if let Some(shutdown_result) = shutdown_result_opt {
7141 shutdown_results.push(shutdown_result);
7143 if let Some(tx) = tx_opt {
7144 // We're done with this channel. We got a closing_signed and sent back
7145 // a closing_signed with a closing transaction to broadcast.
7146 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7147 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7152 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7154 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
7155 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7156 update_maps_on_chan_removal!(self, &chan.context);
7162 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7163 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7168 _ => true, // Retain unfunded channels if present.
7174 for (counterparty_node_id, err) in handle_errors.drain(..) {
7175 let _ = handle_error!(self, err, counterparty_node_id);
7178 for shutdown_result in shutdown_results.drain(..) {
7179 self.finish_close_channel(shutdown_result);
7185 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7186 /// pushing the channel monitor update (if any) to the background events queue and removing the
7188 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7189 for mut failure in failed_channels.drain(..) {
7190 // Either a commitment transactions has been confirmed on-chain or
7191 // Channel::block_disconnected detected that the funding transaction has been
7192 // reorganized out of the main chain.
7193 // We cannot broadcast our latest local state via monitor update (as
7194 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7195 // so we track the update internally and handle it when the user next calls
7196 // timer_tick_occurred, guaranteeing we're running normally.
7197 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7198 assert_eq!(update.updates.len(), 1);
7199 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7200 assert!(should_broadcast);
7201 } else { unreachable!(); }
7202 self.pending_background_events.lock().unwrap().push(
7203 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7204 counterparty_node_id, funding_txo, update
7207 self.finish_close_channel(failure);
7211 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7212 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7213 /// not have an expiration unless otherwise set on the builder.
7217 /// Uses a one-hop [`BlindedPath`] for the offer with [`ChannelManager::get_our_node_id`] as the
7218 /// introduction node and a derived signing pubkey for recipient privacy. As such, currently,
7219 /// the node must be announced. Otherwise, there is no way to find a path to the introduction
7220 /// node in order to send the [`InvoiceRequest`].
7224 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7227 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7229 /// [`Offer`]: crate::offers::offer::Offer
7230 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7231 pub fn create_offer_builder(
7232 &self, description: String
7233 ) -> OfferBuilder<DerivedMetadata, secp256k1::All> {
7234 let node_id = self.get_our_node_id();
7235 let expanded_key = &self.inbound_payment_key;
7236 let entropy = &*self.entropy_source;
7237 let secp_ctx = &self.secp_ctx;
7238 let path = self.create_one_hop_blinded_path();
7240 OfferBuilder::deriving_signing_pubkey(description, node_id, expanded_key, entropy, secp_ctx)
7241 .chain_hash(self.chain_hash)
7245 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7246 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7250 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7251 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7253 /// The builder will have the provided expiration set. Any changes to the expiration on the
7254 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7255 /// block time minus two hours is used for the current time when determining if the refund has
7258 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7259 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7260 /// with an [`Event::InvoiceRequestFailed`].
7262 /// If `max_total_routing_fee_msat` is not specified, The default from
7263 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7267 /// Uses a one-hop [`BlindedPath`] for the refund with [`ChannelManager::get_our_node_id`] as
7268 /// the introduction node and a derived payer id for payer privacy. As such, currently, the
7269 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7270 /// in order to send the [`Bolt12Invoice`].
7274 /// Requires a direct connection to an introduction node in the responding
7275 /// [`Bolt12Invoice::payment_paths`].
7279 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7280 /// or if `amount_msats` is invalid.
7282 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7284 /// [`Refund`]: crate::offers::refund::Refund
7285 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7286 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7287 pub fn create_refund_builder(
7288 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7289 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7290 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7291 let node_id = self.get_our_node_id();
7292 let expanded_key = &self.inbound_payment_key;
7293 let entropy = &*self.entropy_source;
7294 let secp_ctx = &self.secp_ctx;
7295 let path = self.create_one_hop_blinded_path();
7297 let builder = RefundBuilder::deriving_payer_id(
7298 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7300 .chain_hash(self.chain_hash)
7301 .absolute_expiry(absolute_expiry)
7304 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7305 self.pending_outbound_payments
7306 .add_new_awaiting_invoice(
7307 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7309 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7314 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7315 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7316 /// [`Bolt12Invoice`] once it is received.
7318 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7319 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7320 /// The optional parameters are used in the builder, if `Some`:
7321 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7322 /// [`Offer::expects_quantity`] is `true`.
7323 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7324 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7326 /// If `max_total_routing_fee_msat` is not specified, The default from
7327 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7331 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7332 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7335 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7336 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7337 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7341 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7342 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7343 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7344 /// in order to send the [`Bolt12Invoice`].
7348 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7349 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7350 /// [`Bolt12Invoice::payment_paths`].
7354 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7355 /// or if the provided parameters are invalid for the offer.
7357 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7358 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7359 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7360 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7361 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7362 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7363 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7364 pub fn pay_for_offer(
7365 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7366 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7367 max_total_routing_fee_msat: Option<u64>
7368 ) -> Result<(), Bolt12SemanticError> {
7369 let expanded_key = &self.inbound_payment_key;
7370 let entropy = &*self.entropy_source;
7371 let secp_ctx = &self.secp_ctx;
7374 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7375 .chain_hash(self.chain_hash)?;
7376 let builder = match quantity {
7378 Some(quantity) => builder.quantity(quantity)?,
7380 let builder = match amount_msats {
7382 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7384 let builder = match payer_note {
7386 Some(payer_note) => builder.payer_note(payer_note),
7389 let invoice_request = builder.build_and_sign()?;
7390 let reply_path = self.create_one_hop_blinded_path();
7392 let expiration = StaleExpiration::TimerTicks(1);
7393 self.pending_outbound_payments
7394 .add_new_awaiting_invoice(
7395 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7397 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7399 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7400 if offer.paths().is_empty() {
7401 let message = new_pending_onion_message(
7402 OffersMessage::InvoiceRequest(invoice_request),
7403 Destination::Node(offer.signing_pubkey()),
7406 pending_offers_messages.push(message);
7408 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7409 // Using only one path could result in a failure if the path no longer exists. But only
7410 // one invoice for a given payment id will be paid, even if more than one is received.
7411 const REQUEST_LIMIT: usize = 10;
7412 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7413 let message = new_pending_onion_message(
7414 OffersMessage::InvoiceRequest(invoice_request.clone()),
7415 Destination::BlindedPath(path.clone()),
7416 Some(reply_path.clone()),
7418 pending_offers_messages.push(message);
7425 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7428 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7429 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7430 /// [`PaymentPreimage`].
7434 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7435 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7436 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7437 /// received and no retries will be made.
7439 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7440 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7441 let expanded_key = &self.inbound_payment_key;
7442 let entropy = &*self.entropy_source;
7443 let secp_ctx = &self.secp_ctx;
7445 let amount_msats = refund.amount_msats();
7446 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7448 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7449 Ok((payment_hash, payment_secret)) => {
7450 let payment_paths = vec![
7451 self.create_one_hop_blinded_payment_path(payment_secret),
7453 #[cfg(not(feature = "no-std"))]
7454 let builder = refund.respond_using_derived_keys(
7455 payment_paths, payment_hash, expanded_key, entropy
7457 #[cfg(feature = "no-std")]
7458 let created_at = Duration::from_secs(
7459 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7461 #[cfg(feature = "no-std")]
7462 let builder = refund.respond_using_derived_keys_no_std(
7463 payment_paths, payment_hash, created_at, expanded_key, entropy
7465 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7466 let reply_path = self.create_one_hop_blinded_path();
7468 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7469 if refund.paths().is_empty() {
7470 let message = new_pending_onion_message(
7471 OffersMessage::Invoice(invoice),
7472 Destination::Node(refund.payer_id()),
7475 pending_offers_messages.push(message);
7477 for path in refund.paths() {
7478 let message = new_pending_onion_message(
7479 OffersMessage::Invoice(invoice.clone()),
7480 Destination::BlindedPath(path.clone()),
7481 Some(reply_path.clone()),
7483 pending_offers_messages.push(message);
7489 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7493 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7496 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7497 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7499 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7500 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7501 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7502 /// passed directly to [`claim_funds`].
7504 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7506 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7507 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7511 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7512 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7514 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7516 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7517 /// on versions of LDK prior to 0.0.114.
7519 /// [`claim_funds`]: Self::claim_funds
7520 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7521 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7522 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7523 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7524 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7525 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7526 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7527 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7528 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7529 min_final_cltv_expiry_delta)
7532 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7533 /// stored external to LDK.
7535 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7536 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7537 /// the `min_value_msat` provided here, if one is provided.
7539 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7540 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7543 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7544 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7545 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7546 /// sender "proof-of-payment" unless they have paid the required amount.
7548 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7549 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7550 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7551 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7552 /// invoices when no timeout is set.
7554 /// Note that we use block header time to time-out pending inbound payments (with some margin
7555 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7556 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7557 /// If you need exact expiry semantics, you should enforce them upon receipt of
7558 /// [`PaymentClaimable`].
7560 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7561 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7563 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7564 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7568 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7569 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7571 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7573 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7574 /// on versions of LDK prior to 0.0.114.
7576 /// [`create_inbound_payment`]: Self::create_inbound_payment
7577 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7578 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7579 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7580 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7581 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7582 min_final_cltv_expiry)
7585 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7586 /// previously returned from [`create_inbound_payment`].
7588 /// [`create_inbound_payment`]: Self::create_inbound_payment
7589 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7590 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7593 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7595 fn create_one_hop_blinded_path(&self) -> BlindedPath {
7596 let entropy_source = self.entropy_source.deref();
7597 let secp_ctx = &self.secp_ctx;
7598 BlindedPath::one_hop_for_message(self.get_our_node_id(), entropy_source, secp_ctx).unwrap()
7601 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7603 fn create_one_hop_blinded_payment_path(
7604 &self, payment_secret: PaymentSecret
7605 ) -> (BlindedPayInfo, BlindedPath) {
7606 let entropy_source = self.entropy_source.deref();
7607 let secp_ctx = &self.secp_ctx;
7609 let payee_node_id = self.get_our_node_id();
7610 let max_cltv_expiry = self.best_block.read().unwrap().height() + LATENCY_GRACE_PERIOD_BLOCKS;
7611 let payee_tlvs = ReceiveTlvs {
7613 payment_constraints: PaymentConstraints {
7615 htlc_minimum_msat: 1,
7618 // TODO: Err for overflow?
7619 BlindedPath::one_hop_for_payment(
7620 payee_node_id, payee_tlvs, entropy_source, secp_ctx
7624 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7625 /// are used when constructing the phantom invoice's route hints.
7627 /// [phantom node payments]: crate::sign::PhantomKeysManager
7628 pub fn get_phantom_scid(&self) -> u64 {
7629 let best_block_height = self.best_block.read().unwrap().height();
7630 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7632 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7633 // Ensure the generated scid doesn't conflict with a real channel.
7634 match short_to_chan_info.get(&scid_candidate) {
7635 Some(_) => continue,
7636 None => return scid_candidate
7641 /// Gets route hints for use in receiving [phantom node payments].
7643 /// [phantom node payments]: crate::sign::PhantomKeysManager
7644 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7646 channels: self.list_usable_channels(),
7647 phantom_scid: self.get_phantom_scid(),
7648 real_node_pubkey: self.get_our_node_id(),
7652 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7653 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7654 /// [`ChannelManager::forward_intercepted_htlc`].
7656 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7657 /// times to get a unique scid.
7658 pub fn get_intercept_scid(&self) -> u64 {
7659 let best_block_height = self.best_block.read().unwrap().height();
7660 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7662 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7663 // Ensure the generated scid doesn't conflict with a real channel.
7664 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7665 return scid_candidate
7669 /// Gets inflight HTLC information by processing pending outbound payments that are in
7670 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7671 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7672 let mut inflight_htlcs = InFlightHtlcs::new();
7674 let per_peer_state = self.per_peer_state.read().unwrap();
7675 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7676 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7677 let peer_state = &mut *peer_state_lock;
7678 for chan in peer_state.channel_by_id.values().filter_map(
7679 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7681 for (htlc_source, _) in chan.inflight_htlc_sources() {
7682 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7683 inflight_htlcs.process_path(path, self.get_our_node_id());
7692 #[cfg(any(test, feature = "_test_utils"))]
7693 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7694 let events = core::cell::RefCell::new(Vec::new());
7695 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7696 self.process_pending_events(&event_handler);
7700 #[cfg(feature = "_test_utils")]
7701 pub fn push_pending_event(&self, event: events::Event) {
7702 let mut events = self.pending_events.lock().unwrap();
7703 events.push_back((event, None));
7707 pub fn pop_pending_event(&self) -> Option<events::Event> {
7708 let mut events = self.pending_events.lock().unwrap();
7709 events.pop_front().map(|(e, _)| e)
7713 pub fn has_pending_payments(&self) -> bool {
7714 self.pending_outbound_payments.has_pending_payments()
7718 pub fn clear_pending_payments(&self) {
7719 self.pending_outbound_payments.clear_pending_payments()
7722 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7723 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7724 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7725 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7726 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7728 let per_peer_state = self.per_peer_state.read().unwrap();
7729 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7730 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7731 let peer_state = &mut *peer_state_lck;
7733 if let Some(blocker) = completed_blocker.take() {
7734 // Only do this on the first iteration of the loop.
7735 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7736 .get_mut(&channel_funding_outpoint.to_channel_id())
7738 blockers.retain(|iter| iter != &blocker);
7742 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7743 channel_funding_outpoint, counterparty_node_id) {
7744 // Check that, while holding the peer lock, we don't have anything else
7745 // blocking monitor updates for this channel. If we do, release the monitor
7746 // update(s) when those blockers complete.
7747 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7748 &channel_funding_outpoint.to_channel_id());
7752 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7753 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7754 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7755 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7756 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
7757 channel_funding_outpoint.to_channel_id());
7758 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7759 peer_state_lck, peer_state, per_peer_state, chan);
7760 if further_update_exists {
7761 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7766 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
7767 channel_funding_outpoint.to_channel_id());
7772 log_debug!(self.logger,
7773 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7774 log_pubkey!(counterparty_node_id));
7780 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7781 for action in actions {
7783 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7784 channel_funding_outpoint, counterparty_node_id
7786 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7792 /// Processes any events asynchronously in the order they were generated since the last call
7793 /// using the given event handler.
7795 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7796 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7800 process_events_body!(self, ev, { handler(ev).await });
7804 fn create_fwd_pending_htlc_info(
7805 msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
7806 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
7807 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
7808 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
7809 debug_assert!(next_packet_pubkey_opt.is_some());
7810 let outgoing_packet = msgs::OnionPacket {
7812 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
7813 hop_data: new_packet_bytes,
7817 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
7818 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
7819 (short_channel_id, amt_to_forward, outgoing_cltv_value),
7820 msgs::InboundOnionPayload::Receive { .. } | msgs::InboundOnionPayload::BlindedReceive { .. } =>
7821 return Err(InboundOnionErr {
7822 msg: "Final Node OnionHopData provided for us as an intermediary node",
7823 err_code: 0x4000 | 22,
7824 err_data: Vec::new(),
7828 Ok(PendingHTLCInfo {
7829 routing: PendingHTLCRouting::Forward {
7830 onion_packet: outgoing_packet,
7833 payment_hash: msg.payment_hash,
7834 incoming_shared_secret: shared_secret,
7835 incoming_amt_msat: Some(msg.amount_msat),
7836 outgoing_amt_msat: amt_to_forward,
7837 outgoing_cltv_value,
7838 skimmed_fee_msat: None,
7842 fn create_recv_pending_htlc_info(
7843 hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
7844 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
7845 counterparty_skimmed_fee_msat: Option<u64>, current_height: u32, accept_mpp_keysend: bool,
7846 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
7847 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
7848 msgs::InboundOnionPayload::Receive {
7849 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
7851 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
7852 msgs::InboundOnionPayload::BlindedReceive {
7853 amt_msat, total_msat, outgoing_cltv_value, payment_secret, ..
7855 let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat };
7856 (Some(payment_data), None, Vec::new(), amt_msat, outgoing_cltv_value, None)
7858 msgs::InboundOnionPayload::Forward { .. } => {
7859 return Err(InboundOnionErr {
7860 err_code: 0x4000|22,
7861 err_data: Vec::new(),
7862 msg: "Got non final data with an HMAC of 0",
7866 // final_incorrect_cltv_expiry
7867 if outgoing_cltv_value > cltv_expiry {
7868 return Err(InboundOnionErr {
7869 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
7871 err_data: cltv_expiry.to_be_bytes().to_vec()
7874 // final_expiry_too_soon
7875 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
7876 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
7878 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
7879 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
7880 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
7881 if cltv_expiry <= current_height + HTLC_FAIL_BACK_BUFFER + 1 {
7882 let mut err_data = Vec::with_capacity(12);
7883 err_data.extend_from_slice(&amt_msat.to_be_bytes());
7884 err_data.extend_from_slice(¤t_height.to_be_bytes());
7885 return Err(InboundOnionErr {
7886 err_code: 0x4000 | 15, err_data,
7887 msg: "The final CLTV expiry is too soon to handle",
7890 if (!allow_underpay && onion_amt_msat > amt_msat) ||
7891 (allow_underpay && onion_amt_msat >
7892 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
7894 return Err(InboundOnionErr {
7896 err_data: amt_msat.to_be_bytes().to_vec(),
7897 msg: "Upstream node sent less than we were supposed to receive in payment",
7901 let routing = if let Some(payment_preimage) = keysend_preimage {
7902 // We need to check that the sender knows the keysend preimage before processing this
7903 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
7904 // could discover the final destination of X, by probing the adjacent nodes on the route
7905 // with a keysend payment of identical payment hash to X and observing the processing
7906 // time discrepancies due to a hash collision with X.
7907 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
7908 if hashed_preimage != payment_hash {
7909 return Err(InboundOnionErr {
7910 err_code: 0x4000|22,
7911 err_data: Vec::new(),
7912 msg: "Payment preimage didn't match payment hash",
7915 if !accept_mpp_keysend && payment_data.is_some() {
7916 return Err(InboundOnionErr {
7917 err_code: 0x4000|22,
7918 err_data: Vec::new(),
7919 msg: "We don't support MPP keysend payments",
7922 PendingHTLCRouting::ReceiveKeysend {
7926 incoming_cltv_expiry: outgoing_cltv_value,
7929 } else if let Some(data) = payment_data {
7930 PendingHTLCRouting::Receive {
7933 incoming_cltv_expiry: outgoing_cltv_value,
7934 phantom_shared_secret,
7938 return Err(InboundOnionErr {
7939 err_code: 0x4000|0x2000|3,
7940 err_data: Vec::new(),
7941 msg: "We require payment_secrets",
7944 Ok(PendingHTLCInfo {
7947 incoming_shared_secret: shared_secret,
7948 incoming_amt_msat: Some(amt_msat),
7949 outgoing_amt_msat: onion_amt_msat,
7950 outgoing_cltv_value,
7951 skimmed_fee_msat: counterparty_skimmed_fee_msat,
7955 /// Peel one layer off an incoming onion, returning [`PendingHTLCInfo`] (either Forward or Receive).
7956 /// This does all the relevant context-free checks that LDK requires for payment relay or
7957 /// acceptance. If the payment is to be received, and the amount matches the expected amount for
7958 /// a given invoice, this indicates the [`msgs::UpdateAddHTLC`], once fully committed in the
7959 /// channel, will generate an [`Event::PaymentClaimable`].
7960 pub fn peel_payment_onion<NS: Deref, L: Deref, T: secp256k1::Verification>(
7961 msg: &msgs::UpdateAddHTLC, node_signer: &NS, logger: &L, secp_ctx: &Secp256k1<T>,
7962 cur_height: u32, accept_mpp_keysend: bool,
7963 ) -> Result<PendingHTLCInfo, InboundOnionErr>
7965 NS::Target: NodeSigner,
7968 let (hop, shared_secret, next_packet_details_opt) =
7969 decode_incoming_update_add_htlc_onion(msg, node_signer, logger, secp_ctx
7971 let (err_code, err_data) = match e {
7972 HTLCFailureMsg::Malformed(m) => (m.failure_code, Vec::new()),
7973 HTLCFailureMsg::Relay(r) => (0x4000 | 22, r.reason.data),
7975 let msg = "Failed to decode update add htlc onion";
7976 InboundOnionErr { msg, err_code, err_data }
7979 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
7980 let NextPacketDetails {
7981 next_packet_pubkey, outgoing_amt_msat: _, outgoing_scid: _, outgoing_cltv_value
7982 } = match next_packet_details_opt {
7983 Some(next_packet_details) => next_packet_details,
7984 // Forward should always include the next hop details
7985 None => return Err(InboundOnionErr {
7986 msg: "Failed to decode update add htlc onion",
7987 err_code: 0x4000 | 22,
7988 err_data: Vec::new(),
7992 if let Err((err_msg, code)) = check_incoming_htlc_cltv(
7993 cur_height, outgoing_cltv_value, msg.cltv_expiry
7995 return Err(InboundOnionErr {
7998 err_data: Vec::new(),
8001 create_fwd_pending_htlc_info(
8002 msg, next_hop_data, next_hop_hmac, new_packet_bytes, shared_secret,
8003 Some(next_packet_pubkey)
8006 onion_utils::Hop::Receive(received_data) => {
8007 create_recv_pending_htlc_info(
8008 received_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry,
8009 None, false, msg.skimmed_fee_msat, cur_height, accept_mpp_keysend,
8015 struct NextPacketDetails {
8016 next_packet_pubkey: Result<PublicKey, secp256k1::Error>,
8018 outgoing_amt_msat: u64,
8019 outgoing_cltv_value: u32,
8022 fn decode_incoming_update_add_htlc_onion<NS: Deref, L: Deref, T: secp256k1::Verification>(
8023 msg: &msgs::UpdateAddHTLC, node_signer: &NS, logger: &L, secp_ctx: &Secp256k1<T>,
8024 ) -> Result<(onion_utils::Hop, [u8; 32], Option<NextPacketDetails>), HTLCFailureMsg>
8026 NS::Target: NodeSigner,
8029 macro_rules! return_malformed_err {
8030 ($msg: expr, $err_code: expr) => {
8032 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
8033 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8034 channel_id: msg.channel_id,
8035 htlc_id: msg.htlc_id,
8036 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).to_byte_array(),
8037 failure_code: $err_code,
8043 if let Err(_) = msg.onion_routing_packet.public_key {
8044 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
8047 let shared_secret = node_signer.ecdh(
8048 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
8049 ).unwrap().secret_bytes();
8051 if msg.onion_routing_packet.version != 0 {
8052 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
8053 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
8054 //the hash doesn't really serve any purpose - in the case of hashing all data, the
8055 //receiving node would have to brute force to figure out which version was put in the
8056 //packet by the node that send us the message, in the case of hashing the hop_data, the
8057 //node knows the HMAC matched, so they already know what is there...
8058 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
8060 macro_rules! return_err {
8061 ($msg: expr, $err_code: expr, $data: expr) => {
8063 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
8064 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
8065 channel_id: msg.channel_id,
8066 htlc_id: msg.htlc_id,
8067 reason: HTLCFailReason::reason($err_code, $data.to_vec())
8068 .get_encrypted_failure_packet(&shared_secret, &None),
8074 let next_hop = match onion_utils::decode_next_payment_hop(
8075 shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac,
8076 msg.payment_hash, node_signer
8079 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
8080 return_malformed_err!(err_msg, err_code);
8082 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
8083 return_err!(err_msg, err_code, &[0; 0]);
8087 let next_packet_details = match next_hop {
8088 onion_utils::Hop::Forward {
8089 next_hop_data: msgs::InboundOnionPayload::Forward {
8090 short_channel_id, amt_to_forward, outgoing_cltv_value
8093 let next_packet_pubkey = onion_utils::next_hop_pubkey(secp_ctx,
8094 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
8096 next_packet_pubkey, outgoing_scid: short_channel_id,
8097 outgoing_amt_msat: amt_to_forward, outgoing_cltv_value
8100 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
8101 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } |
8102 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::BlindedReceive { .. }, .. } =>
8104 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
8108 Ok((next_hop, shared_secret, Some(next_packet_details)))
8111 fn check_incoming_htlc_cltv(
8112 cur_height: u32, outgoing_cltv_value: u32, cltv_expiry: u32
8113 ) -> Result<(), (&'static str, u16)> {
8114 if (cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
8116 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
8117 0x1000 | 13, // incorrect_cltv_expiry
8120 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
8121 // but we want to be robust wrt to counterparty packet sanitization (see
8122 // HTLC_FAIL_BACK_BUFFER rationale).
8123 if cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
8124 return Err(("CLTV expiry is too close", 0x1000 | 14));
8126 if cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
8127 return Err(("CLTV expiry is too far in the future", 21));
8129 // If the HTLC expires ~now, don't bother trying to forward it to our
8130 // counterparty. They should fail it anyway, but we don't want to bother with
8131 // the round-trips or risk them deciding they definitely want the HTLC and
8132 // force-closing to ensure they get it if we're offline.
8133 // We previously had a much more aggressive check here which tried to ensure
8134 // our counterparty receives an HTLC which has *our* risk threshold met on it,
8135 // but there is no need to do that, and since we're a bit conservative with our
8136 // risk threshold it just results in failing to forward payments.
8137 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
8138 return Err(("Outgoing CLTV value is too soon", 0x1000 | 14));
8144 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8146 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8147 T::Target: BroadcasterInterface,
8148 ES::Target: EntropySource,
8149 NS::Target: NodeSigner,
8150 SP::Target: SignerProvider,
8151 F::Target: FeeEstimator,
8155 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
8156 /// The returned array will contain `MessageSendEvent`s for different peers if
8157 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
8158 /// is always placed next to each other.
8160 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
8161 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
8162 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
8163 /// will randomly be placed first or last in the returned array.
8165 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
8166 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
8167 /// the `MessageSendEvent`s to the specific peer they were generated under.
8168 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
8169 let events = RefCell::new(Vec::new());
8170 PersistenceNotifierGuard::optionally_notify(self, || {
8171 let mut result = NotifyOption::SkipPersistNoEvents;
8173 // TODO: This behavior should be documented. It's unintuitive that we query
8174 // ChannelMonitors when clearing other events.
8175 if self.process_pending_monitor_events() {
8176 result = NotifyOption::DoPersist;
8179 if self.check_free_holding_cells() {
8180 result = NotifyOption::DoPersist;
8182 if self.maybe_generate_initial_closing_signed() {
8183 result = NotifyOption::DoPersist;
8186 let mut pending_events = Vec::new();
8187 let per_peer_state = self.per_peer_state.read().unwrap();
8188 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8189 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8190 let peer_state = &mut *peer_state_lock;
8191 if peer_state.pending_msg_events.len() > 0 {
8192 pending_events.append(&mut peer_state.pending_msg_events);
8196 if !pending_events.is_empty() {
8197 events.replace(pending_events);
8206 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8208 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8209 T::Target: BroadcasterInterface,
8210 ES::Target: EntropySource,
8211 NS::Target: NodeSigner,
8212 SP::Target: SignerProvider,
8213 F::Target: FeeEstimator,
8217 /// Processes events that must be periodically handled.
8219 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8220 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8221 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8223 process_events_body!(self, ev, handler.handle_event(ev));
8227 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8229 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8230 T::Target: BroadcasterInterface,
8231 ES::Target: EntropySource,
8232 NS::Target: NodeSigner,
8233 SP::Target: SignerProvider,
8234 F::Target: FeeEstimator,
8238 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
8240 let best_block = self.best_block.read().unwrap();
8241 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8242 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8243 assert_eq!(best_block.height(), height - 1,
8244 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8247 self.transactions_confirmed(header, txdata, height);
8248 self.best_block_updated(header, height);
8251 fn block_disconnected(&self, header: &Header, height: u32) {
8252 let _persistence_guard =
8253 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8254 self, || -> NotifyOption { NotifyOption::DoPersist });
8255 let new_height = height - 1;
8257 let mut best_block = self.best_block.write().unwrap();
8258 assert_eq!(best_block.block_hash(), header.block_hash(),
8259 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8260 assert_eq!(best_block.height(), height,
8261 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8262 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8265 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8269 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8271 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8272 T::Target: BroadcasterInterface,
8273 ES::Target: EntropySource,
8274 NS::Target: NodeSigner,
8275 SP::Target: SignerProvider,
8276 F::Target: FeeEstimator,
8280 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
8281 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8282 // during initialization prior to the chain_monitor being fully configured in some cases.
8283 // See the docs for `ChannelManagerReadArgs` for more.
8285 let block_hash = header.block_hash();
8286 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8288 let _persistence_guard =
8289 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8290 self, || -> NotifyOption { NotifyOption::DoPersist });
8291 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger)
8292 .map(|(a, b)| (a, Vec::new(), b)));
8294 let last_best_block_height = self.best_block.read().unwrap().height();
8295 if height < last_best_block_height {
8296 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8297 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8301 fn best_block_updated(&self, header: &Header, height: u32) {
8302 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8303 // during initialization prior to the chain_monitor being fully configured in some cases.
8304 // See the docs for `ChannelManagerReadArgs` for more.
8306 let block_hash = header.block_hash();
8307 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8309 let _persistence_guard =
8310 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8311 self, || -> NotifyOption { NotifyOption::DoPersist });
8312 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8314 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8316 macro_rules! max_time {
8317 ($timestamp: expr) => {
8319 // Update $timestamp to be the max of its current value and the block
8320 // timestamp. This should keep us close to the current time without relying on
8321 // having an explicit local time source.
8322 // Just in case we end up in a race, we loop until we either successfully
8323 // update $timestamp or decide we don't need to.
8324 let old_serial = $timestamp.load(Ordering::Acquire);
8325 if old_serial >= header.time as usize { break; }
8326 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8332 max_time!(self.highest_seen_timestamp);
8333 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8334 payment_secrets.retain(|_, inbound_payment| {
8335 inbound_payment.expiry_time > header.time as u64
8339 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
8340 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8341 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8342 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8343 let peer_state = &mut *peer_state_lock;
8344 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8345 let txid_opt = chan.context.get_funding_txo();
8346 let height_opt = chan.context.get_funding_tx_confirmation_height();
8347 let hash_opt = chan.context.get_funding_tx_confirmed_in();
8348 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
8349 res.push((funding_txo.txid, conf_height, Some(block_hash)));
8356 fn transaction_unconfirmed(&self, txid: &Txid) {
8357 let _persistence_guard =
8358 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8359 self, || -> NotifyOption { NotifyOption::DoPersist });
8360 self.do_chain_event(None, |channel| {
8361 if let Some(funding_txo) = channel.context.get_funding_txo() {
8362 if funding_txo.txid == *txid {
8363 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
8364 } else { Ok((None, Vec::new(), None)) }
8365 } else { Ok((None, Vec::new(), None)) }
8370 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8372 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8373 T::Target: BroadcasterInterface,
8374 ES::Target: EntropySource,
8375 NS::Target: NodeSigner,
8376 SP::Target: SignerProvider,
8377 F::Target: FeeEstimator,
8381 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8382 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8384 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8385 (&self, height_opt: Option<u32>, f: FN) {
8386 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8387 // during initialization prior to the chain_monitor being fully configured in some cases.
8388 // See the docs for `ChannelManagerReadArgs` for more.
8390 let mut failed_channels = Vec::new();
8391 let mut timed_out_htlcs = Vec::new();
8393 let per_peer_state = self.per_peer_state.read().unwrap();
8394 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8395 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8396 let peer_state = &mut *peer_state_lock;
8397 let pending_msg_events = &mut peer_state.pending_msg_events;
8398 peer_state.channel_by_id.retain(|_, phase| {
8400 // Retain unfunded channels.
8401 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8402 ChannelPhase::Funded(channel) => {
8403 let res = f(channel);
8404 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8405 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8406 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8407 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8408 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8410 if let Some(channel_ready) = channel_ready_opt {
8411 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8412 if channel.context.is_usable() {
8413 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8414 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8415 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8416 node_id: channel.context.get_counterparty_node_id(),
8421 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8426 let mut pending_events = self.pending_events.lock().unwrap();
8427 emit_channel_ready_event!(pending_events, channel);
8430 if let Some(announcement_sigs) = announcement_sigs {
8431 log_trace!(self.logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8432 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8433 node_id: channel.context.get_counterparty_node_id(),
8434 msg: announcement_sigs,
8436 if let Some(height) = height_opt {
8437 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8438 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8440 // Note that announcement_signatures fails if the channel cannot be announced,
8441 // so get_channel_update_for_broadcast will never fail by the time we get here.
8442 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8447 if channel.is_our_channel_ready() {
8448 if let Some(real_scid) = channel.context.get_short_channel_id() {
8449 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8450 // to the short_to_chan_info map here. Note that we check whether we
8451 // can relay using the real SCID at relay-time (i.e.
8452 // enforce option_scid_alias then), and if the funding tx is ever
8453 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8454 // is always consistent.
8455 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8456 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8457 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8458 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8459 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8462 } else if let Err(reason) = res {
8463 update_maps_on_chan_removal!(self, &channel.context);
8464 // It looks like our counterparty went on-chain or funding transaction was
8465 // reorged out of the main chain. Close the channel.
8466 failed_channels.push(channel.context.force_shutdown(true));
8467 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8468 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8472 let reason_message = format!("{}", reason);
8473 self.issue_channel_close_events(&channel.context, reason);
8474 pending_msg_events.push(events::MessageSendEvent::HandleError {
8475 node_id: channel.context.get_counterparty_node_id(),
8476 action: msgs::ErrorAction::DisconnectPeer {
8477 msg: Some(msgs::ErrorMessage {
8478 channel_id: channel.context.channel_id(),
8479 data: reason_message,
8492 if let Some(height) = height_opt {
8493 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8494 payment.htlcs.retain(|htlc| {
8495 // If height is approaching the number of blocks we think it takes us to get
8496 // our commitment transaction confirmed before the HTLC expires, plus the
8497 // number of blocks we generally consider it to take to do a commitment update,
8498 // just give up on it and fail the HTLC.
8499 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8500 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8501 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8503 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8504 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8505 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8509 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8512 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8513 intercepted_htlcs.retain(|_, htlc| {
8514 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8515 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8516 short_channel_id: htlc.prev_short_channel_id,
8517 user_channel_id: Some(htlc.prev_user_channel_id),
8518 htlc_id: htlc.prev_htlc_id,
8519 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8520 phantom_shared_secret: None,
8521 outpoint: htlc.prev_funding_outpoint,
8524 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8525 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8526 _ => unreachable!(),
8528 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8529 HTLCFailReason::from_failure_code(0x2000 | 2),
8530 HTLCDestination::InvalidForward { requested_forward_scid }));
8531 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8537 self.handle_init_event_channel_failures(failed_channels);
8539 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8540 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8544 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8545 /// may have events that need processing.
8547 /// In order to check if this [`ChannelManager`] needs persisting, call
8548 /// [`Self::get_and_clear_needs_persistence`].
8550 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8551 /// [`ChannelManager`] and should instead register actions to be taken later.
8552 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8553 self.event_persist_notifier.get_future()
8556 /// Returns true if this [`ChannelManager`] needs to be persisted.
8557 pub fn get_and_clear_needs_persistence(&self) -> bool {
8558 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8561 #[cfg(any(test, feature = "_test_utils"))]
8562 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8563 self.event_persist_notifier.notify_pending()
8566 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8567 /// [`chain::Confirm`] interfaces.
8568 pub fn current_best_block(&self) -> BestBlock {
8569 self.best_block.read().unwrap().clone()
8572 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8573 /// [`ChannelManager`].
8574 pub fn node_features(&self) -> NodeFeatures {
8575 provided_node_features(&self.default_configuration)
8578 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8579 /// [`ChannelManager`].
8581 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8582 /// or not. Thus, this method is not public.
8583 #[cfg(any(feature = "_test_utils", test))]
8584 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8585 provided_bolt11_invoice_features(&self.default_configuration)
8588 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8589 /// [`ChannelManager`].
8590 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8591 provided_bolt12_invoice_features(&self.default_configuration)
8594 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8595 /// [`ChannelManager`].
8596 pub fn channel_features(&self) -> ChannelFeatures {
8597 provided_channel_features(&self.default_configuration)
8600 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8601 /// [`ChannelManager`].
8602 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8603 provided_channel_type_features(&self.default_configuration)
8606 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8607 /// [`ChannelManager`].
8608 pub fn init_features(&self) -> InitFeatures {
8609 provided_init_features(&self.default_configuration)
8613 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8614 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8616 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8617 T::Target: BroadcasterInterface,
8618 ES::Target: EntropySource,
8619 NS::Target: NodeSigner,
8620 SP::Target: SignerProvider,
8621 F::Target: FeeEstimator,
8625 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8626 // Note that we never need to persist the updated ChannelManager for an inbound
8627 // open_channel message - pre-funded channels are never written so there should be no
8628 // change to the contents.
8629 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8630 let res = self.internal_open_channel(counterparty_node_id, msg);
8631 let persist = match &res {
8632 Err(e) if e.closes_channel() => {
8633 debug_assert!(false, "We shouldn't close a new channel");
8634 NotifyOption::DoPersist
8636 _ => NotifyOption::SkipPersistHandleEvents,
8638 let _ = handle_error!(self, res, *counterparty_node_id);
8643 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8644 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8645 "Dual-funded channels not supported".to_owned(),
8646 msg.temporary_channel_id.clone())), *counterparty_node_id);
8649 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8650 // Note that we never need to persist the updated ChannelManager for an inbound
8651 // accept_channel message - pre-funded channels are never written so there should be no
8652 // change to the contents.
8653 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8654 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8655 NotifyOption::SkipPersistHandleEvents
8659 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8660 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8661 "Dual-funded channels not supported".to_owned(),
8662 msg.temporary_channel_id.clone())), *counterparty_node_id);
8665 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8666 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8667 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8670 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8671 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8672 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8675 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8676 // Note that we never need to persist the updated ChannelManager for an inbound
8677 // channel_ready message - while the channel's state will change, any channel_ready message
8678 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8679 // will not force-close the channel on startup.
8680 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8681 let res = self.internal_channel_ready(counterparty_node_id, msg);
8682 let persist = match &res {
8683 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8684 _ => NotifyOption::SkipPersistHandleEvents,
8686 let _ = handle_error!(self, res, *counterparty_node_id);
8691 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
8692 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8693 "Quiescence not supported".to_owned(),
8694 msg.channel_id.clone())), *counterparty_node_id);
8697 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
8698 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8699 "Splicing not supported".to_owned(),
8700 msg.channel_id.clone())), *counterparty_node_id);
8703 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
8704 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8705 "Splicing not supported (splice_ack)".to_owned(),
8706 msg.channel_id.clone())), *counterparty_node_id);
8709 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
8710 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8711 "Splicing not supported (splice_locked)".to_owned(),
8712 msg.channel_id.clone())), *counterparty_node_id);
8715 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8716 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8717 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8720 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8721 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8722 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8725 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8726 // Note that we never need to persist the updated ChannelManager for an inbound
8727 // update_add_htlc message - the message itself doesn't change our channel state only the
8728 // `commitment_signed` message afterwards will.
8729 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8730 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8731 let persist = match &res {
8732 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8733 Err(_) => NotifyOption::SkipPersistHandleEvents,
8734 Ok(()) => NotifyOption::SkipPersistNoEvents,
8736 let _ = handle_error!(self, res, *counterparty_node_id);
8741 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8742 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8743 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8746 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8747 // Note that we never need to persist the updated ChannelManager for an inbound
8748 // update_fail_htlc message - the message itself doesn't change our channel state only the
8749 // `commitment_signed` message afterwards will.
8750 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8751 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8752 let persist = match &res {
8753 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8754 Err(_) => NotifyOption::SkipPersistHandleEvents,
8755 Ok(()) => NotifyOption::SkipPersistNoEvents,
8757 let _ = handle_error!(self, res, *counterparty_node_id);
8762 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8763 // Note that we never need to persist the updated ChannelManager for an inbound
8764 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8765 // only the `commitment_signed` message afterwards will.
8766 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8767 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8768 let persist = match &res {
8769 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8770 Err(_) => NotifyOption::SkipPersistHandleEvents,
8771 Ok(()) => NotifyOption::SkipPersistNoEvents,
8773 let _ = handle_error!(self, res, *counterparty_node_id);
8778 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8779 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8780 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8783 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8784 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8785 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8788 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8789 // Note that we never need to persist the updated ChannelManager for an inbound
8790 // update_fee message - the message itself doesn't change our channel state only the
8791 // `commitment_signed` message afterwards will.
8792 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8793 let res = self.internal_update_fee(counterparty_node_id, msg);
8794 let persist = match &res {
8795 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8796 Err(_) => NotifyOption::SkipPersistHandleEvents,
8797 Ok(()) => NotifyOption::SkipPersistNoEvents,
8799 let _ = handle_error!(self, res, *counterparty_node_id);
8804 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8805 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8806 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8809 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8810 PersistenceNotifierGuard::optionally_notify(self, || {
8811 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8814 NotifyOption::DoPersist
8819 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8820 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8821 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8822 let persist = match &res {
8823 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8824 Err(_) => NotifyOption::SkipPersistHandleEvents,
8825 Ok(persist) => *persist,
8827 let _ = handle_error!(self, res, *counterparty_node_id);
8832 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8833 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8834 self, || NotifyOption::SkipPersistHandleEvents);
8835 let mut failed_channels = Vec::new();
8836 let mut per_peer_state = self.per_peer_state.write().unwrap();
8838 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
8839 log_pubkey!(counterparty_node_id));
8840 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8841 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8842 let peer_state = &mut *peer_state_lock;
8843 let pending_msg_events = &mut peer_state.pending_msg_events;
8844 peer_state.channel_by_id.retain(|_, phase| {
8845 let context = match phase {
8846 ChannelPhase::Funded(chan) => {
8847 if chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger).is_ok() {
8848 // We only retain funded channels that are not shutdown.
8853 // Unfunded channels will always be removed.
8854 ChannelPhase::UnfundedOutboundV1(chan) => {
8857 ChannelPhase::UnfundedInboundV1(chan) => {
8861 // Clean up for removal.
8862 update_maps_on_chan_removal!(self, &context);
8863 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8864 failed_channels.push(context.force_shutdown(false));
8867 // Note that we don't bother generating any events for pre-accept channels -
8868 // they're not considered "channels" yet from the PoV of our events interface.
8869 peer_state.inbound_channel_request_by_id.clear();
8870 pending_msg_events.retain(|msg| {
8872 // V1 Channel Establishment
8873 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8874 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8875 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8876 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8877 // V2 Channel Establishment
8878 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8879 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8880 // Common Channel Establishment
8881 &events::MessageSendEvent::SendChannelReady { .. } => false,
8882 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8884 &events::MessageSendEvent::SendStfu { .. } => false,
8886 &events::MessageSendEvent::SendSplice { .. } => false,
8887 &events::MessageSendEvent::SendSpliceAck { .. } => false,
8888 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
8889 // Interactive Transaction Construction
8890 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8891 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8892 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8893 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8894 &events::MessageSendEvent::SendTxComplete { .. } => false,
8895 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8896 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8897 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8898 &events::MessageSendEvent::SendTxAbort { .. } => false,
8899 // Channel Operations
8900 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8901 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8902 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8903 &events::MessageSendEvent::SendShutdown { .. } => false,
8904 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8905 &events::MessageSendEvent::HandleError { .. } => false,
8907 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8908 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8909 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8910 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8911 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8912 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8913 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8914 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8915 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8918 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8919 peer_state.is_connected = false;
8920 peer_state.ok_to_remove(true)
8921 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8924 per_peer_state.remove(counterparty_node_id);
8926 mem::drop(per_peer_state);
8928 for failure in failed_channels.drain(..) {
8929 self.finish_close_channel(failure);
8933 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8934 if !init_msg.features.supports_static_remote_key() {
8935 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8939 let mut res = Ok(());
8941 PersistenceNotifierGuard::optionally_notify(self, || {
8942 // If we have too many peers connected which don't have funded channels, disconnect the
8943 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8944 // unfunded channels taking up space in memory for disconnected peers, we still let new
8945 // peers connect, but we'll reject new channels from them.
8946 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8947 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8950 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8951 match peer_state_lock.entry(counterparty_node_id.clone()) {
8952 hash_map::Entry::Vacant(e) => {
8953 if inbound_peer_limited {
8955 return NotifyOption::SkipPersistNoEvents;
8957 e.insert(Mutex::new(PeerState {
8958 channel_by_id: HashMap::new(),
8959 inbound_channel_request_by_id: HashMap::new(),
8960 latest_features: init_msg.features.clone(),
8961 pending_msg_events: Vec::new(),
8962 in_flight_monitor_updates: BTreeMap::new(),
8963 monitor_update_blocked_actions: BTreeMap::new(),
8964 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8968 hash_map::Entry::Occupied(e) => {
8969 let mut peer_state = e.get().lock().unwrap();
8970 peer_state.latest_features = init_msg.features.clone();
8972 let best_block_height = self.best_block.read().unwrap().height();
8973 if inbound_peer_limited &&
8974 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8975 peer_state.channel_by_id.len()
8978 return NotifyOption::SkipPersistNoEvents;
8981 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8982 peer_state.is_connected = true;
8987 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8989 let per_peer_state = self.per_peer_state.read().unwrap();
8990 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8991 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8992 let peer_state = &mut *peer_state_lock;
8993 let pending_msg_events = &mut peer_state.pending_msg_events;
8995 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8996 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8997 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8998 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8999 // worry about closing and removing them.
9000 debug_assert!(false);
9004 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
9005 node_id: chan.context.get_counterparty_node_id(),
9006 msg: chan.get_channel_reestablish(&self.logger),
9011 return NotifyOption::SkipPersistHandleEvents;
9012 //TODO: Also re-broadcast announcement_signatures
9017 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
9018 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9020 match &msg.data as &str {
9021 "cannot co-op close channel w/ active htlcs"|
9022 "link failed to shutdown" =>
9024 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
9025 // send one while HTLCs are still present. The issue is tracked at
9026 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
9027 // to fix it but none so far have managed to land upstream. The issue appears to be
9028 // very low priority for the LND team despite being marked "P1".
9029 // We're not going to bother handling this in a sensible way, instead simply
9030 // repeating the Shutdown message on repeat until morale improves.
9031 if !msg.channel_id.is_zero() {
9032 let per_peer_state = self.per_peer_state.read().unwrap();
9033 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9034 if peer_state_mutex_opt.is_none() { return; }
9035 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
9036 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
9037 if let Some(msg) = chan.get_outbound_shutdown() {
9038 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
9039 node_id: *counterparty_node_id,
9043 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
9044 node_id: *counterparty_node_id,
9045 action: msgs::ErrorAction::SendWarningMessage {
9046 msg: msgs::WarningMessage {
9047 channel_id: msg.channel_id,
9048 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
9050 log_level: Level::Trace,
9060 if msg.channel_id.is_zero() {
9061 let channel_ids: Vec<ChannelId> = {
9062 let per_peer_state = self.per_peer_state.read().unwrap();
9063 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9064 if peer_state_mutex_opt.is_none() { return; }
9065 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
9066 let peer_state = &mut *peer_state_lock;
9067 // Note that we don't bother generating any events for pre-accept channels -
9068 // they're not considered "channels" yet from the PoV of our events interface.
9069 peer_state.inbound_channel_request_by_id.clear();
9070 peer_state.channel_by_id.keys().cloned().collect()
9072 for channel_id in channel_ids {
9073 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
9074 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
9078 // First check if we can advance the channel type and try again.
9079 let per_peer_state = self.per_peer_state.read().unwrap();
9080 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9081 if peer_state_mutex_opt.is_none() { return; }
9082 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
9083 let peer_state = &mut *peer_state_lock;
9084 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
9085 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
9086 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
9087 node_id: *counterparty_node_id,
9095 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
9096 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
9100 fn provided_node_features(&self) -> NodeFeatures {
9101 provided_node_features(&self.default_configuration)
9104 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
9105 provided_init_features(&self.default_configuration)
9108 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
9109 Some(vec![self.chain_hash])
9112 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
9113 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9114 "Dual-funded channels not supported".to_owned(),
9115 msg.channel_id.clone())), *counterparty_node_id);
9118 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
9119 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9120 "Dual-funded channels not supported".to_owned(),
9121 msg.channel_id.clone())), *counterparty_node_id);
9124 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
9125 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9126 "Dual-funded channels not supported".to_owned(),
9127 msg.channel_id.clone())), *counterparty_node_id);
9130 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
9131 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9132 "Dual-funded channels not supported".to_owned(),
9133 msg.channel_id.clone())), *counterparty_node_id);
9136 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
9137 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9138 "Dual-funded channels not supported".to_owned(),
9139 msg.channel_id.clone())), *counterparty_node_id);
9142 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
9143 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9144 "Dual-funded channels not supported".to_owned(),
9145 msg.channel_id.clone())), *counterparty_node_id);
9148 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
9149 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9150 "Dual-funded channels not supported".to_owned(),
9151 msg.channel_id.clone())), *counterparty_node_id);
9154 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
9155 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9156 "Dual-funded channels not supported".to_owned(),
9157 msg.channel_id.clone())), *counterparty_node_id);
9160 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
9161 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9162 "Dual-funded channels not supported".to_owned(),
9163 msg.channel_id.clone())), *counterparty_node_id);
9167 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9168 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9170 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9171 T::Target: BroadcasterInterface,
9172 ES::Target: EntropySource,
9173 NS::Target: NodeSigner,
9174 SP::Target: SignerProvider,
9175 F::Target: FeeEstimator,
9179 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
9180 let secp_ctx = &self.secp_ctx;
9181 let expanded_key = &self.inbound_payment_key;
9184 OffersMessage::InvoiceRequest(invoice_request) => {
9185 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
9188 Ok(amount_msats) => Some(amount_msats),
9189 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9191 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9192 Ok(invoice_request) => invoice_request,
9194 let error = Bolt12SemanticError::InvalidMetadata;
9195 return Some(OffersMessage::InvoiceError(error.into()));
9198 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9200 match self.create_inbound_payment(amount_msats, relative_expiry, None) {
9201 Ok((payment_hash, payment_secret)) if invoice_request.keys.is_some() => {
9202 let payment_paths = vec![
9203 self.create_one_hop_blinded_payment_path(payment_secret),
9205 #[cfg(not(feature = "no-std"))]
9206 let builder = invoice_request.respond_using_derived_keys(
9207 payment_paths, payment_hash
9209 #[cfg(feature = "no-std")]
9210 let created_at = Duration::from_secs(
9211 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9213 #[cfg(feature = "no-std")]
9214 let builder = invoice_request.respond_using_derived_keys_no_std(
9215 payment_paths, payment_hash, created_at
9217 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9218 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9219 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9222 Ok((payment_hash, payment_secret)) => {
9223 let payment_paths = vec![
9224 self.create_one_hop_blinded_payment_path(payment_secret),
9226 #[cfg(not(feature = "no-std"))]
9227 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9228 #[cfg(feature = "no-std")]
9229 let created_at = Duration::from_secs(
9230 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9232 #[cfg(feature = "no-std")]
9233 let builder = invoice_request.respond_with_no_std(
9234 payment_paths, payment_hash, created_at
9236 let response = builder.and_then(|builder| builder.allow_mpp().build())
9237 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9239 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9240 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9241 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9242 InvoiceError::from_string("Failed signing invoice".to_string())
9244 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9245 InvoiceError::from_string("Failed invoice signature verification".to_string())
9249 Ok(invoice) => Some(invoice),
9250 Err(error) => Some(error),
9254 Some(OffersMessage::InvoiceError(Bolt12SemanticError::InvalidAmount.into()))
9258 OffersMessage::Invoice(invoice) => {
9259 match invoice.verify(expanded_key, secp_ctx) {
9261 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9263 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9264 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9267 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9268 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9269 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9276 OffersMessage::InvoiceError(invoice_error) => {
9277 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9283 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9284 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9288 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9289 /// [`ChannelManager`].
9290 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9291 let mut node_features = provided_init_features(config).to_context();
9292 node_features.set_keysend_optional();
9296 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9297 /// [`ChannelManager`].
9299 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9300 /// or not. Thus, this method is not public.
9301 #[cfg(any(feature = "_test_utils", test))]
9302 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9303 provided_init_features(config).to_context()
9306 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9307 /// [`ChannelManager`].
9308 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9309 provided_init_features(config).to_context()
9312 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9313 /// [`ChannelManager`].
9314 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9315 provided_init_features(config).to_context()
9318 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9319 /// [`ChannelManager`].
9320 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9321 ChannelTypeFeatures::from_init(&provided_init_features(config))
9324 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9325 /// [`ChannelManager`].
9326 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9327 // Note that if new features are added here which other peers may (eventually) require, we
9328 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9329 // [`ErroringMessageHandler`].
9330 let mut features = InitFeatures::empty();
9331 features.set_data_loss_protect_required();
9332 features.set_upfront_shutdown_script_optional();
9333 features.set_variable_length_onion_required();
9334 features.set_static_remote_key_required();
9335 features.set_payment_secret_required();
9336 features.set_basic_mpp_optional();
9337 features.set_wumbo_optional();
9338 features.set_shutdown_any_segwit_optional();
9339 features.set_channel_type_optional();
9340 features.set_scid_privacy_optional();
9341 features.set_zero_conf_optional();
9342 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9343 features.set_anchors_zero_fee_htlc_tx_optional();
9348 const SERIALIZATION_VERSION: u8 = 1;
9349 const MIN_SERIALIZATION_VERSION: u8 = 1;
9351 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9352 (2, fee_base_msat, required),
9353 (4, fee_proportional_millionths, required),
9354 (6, cltv_expiry_delta, required),
9357 impl_writeable_tlv_based!(ChannelCounterparty, {
9358 (2, node_id, required),
9359 (4, features, required),
9360 (6, unspendable_punishment_reserve, required),
9361 (8, forwarding_info, option),
9362 (9, outbound_htlc_minimum_msat, option),
9363 (11, outbound_htlc_maximum_msat, option),
9366 impl Writeable for ChannelDetails {
9367 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9368 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9369 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9370 let user_channel_id_low = self.user_channel_id as u64;
9371 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9372 write_tlv_fields!(writer, {
9373 (1, self.inbound_scid_alias, option),
9374 (2, self.channel_id, required),
9375 (3, self.channel_type, option),
9376 (4, self.counterparty, required),
9377 (5, self.outbound_scid_alias, option),
9378 (6, self.funding_txo, option),
9379 (7, self.config, option),
9380 (8, self.short_channel_id, option),
9381 (9, self.confirmations, option),
9382 (10, self.channel_value_satoshis, required),
9383 (12, self.unspendable_punishment_reserve, option),
9384 (14, user_channel_id_low, required),
9385 (16, self.balance_msat, required),
9386 (18, self.outbound_capacity_msat, required),
9387 (19, self.next_outbound_htlc_limit_msat, required),
9388 (20, self.inbound_capacity_msat, required),
9389 (21, self.next_outbound_htlc_minimum_msat, required),
9390 (22, self.confirmations_required, option),
9391 (24, self.force_close_spend_delay, option),
9392 (26, self.is_outbound, required),
9393 (28, self.is_channel_ready, required),
9394 (30, self.is_usable, required),
9395 (32, self.is_public, required),
9396 (33, self.inbound_htlc_minimum_msat, option),
9397 (35, self.inbound_htlc_maximum_msat, option),
9398 (37, user_channel_id_high_opt, option),
9399 (39, self.feerate_sat_per_1000_weight, option),
9400 (41, self.channel_shutdown_state, option),
9406 impl Readable for ChannelDetails {
9407 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9408 _init_and_read_len_prefixed_tlv_fields!(reader, {
9409 (1, inbound_scid_alias, option),
9410 (2, channel_id, required),
9411 (3, channel_type, option),
9412 (4, counterparty, required),
9413 (5, outbound_scid_alias, option),
9414 (6, funding_txo, option),
9415 (7, config, option),
9416 (8, short_channel_id, option),
9417 (9, confirmations, option),
9418 (10, channel_value_satoshis, required),
9419 (12, unspendable_punishment_reserve, option),
9420 (14, user_channel_id_low, required),
9421 (16, balance_msat, required),
9422 (18, outbound_capacity_msat, required),
9423 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9424 // filled in, so we can safely unwrap it here.
9425 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9426 (20, inbound_capacity_msat, required),
9427 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9428 (22, confirmations_required, option),
9429 (24, force_close_spend_delay, option),
9430 (26, is_outbound, required),
9431 (28, is_channel_ready, required),
9432 (30, is_usable, required),
9433 (32, is_public, required),
9434 (33, inbound_htlc_minimum_msat, option),
9435 (35, inbound_htlc_maximum_msat, option),
9436 (37, user_channel_id_high_opt, option),
9437 (39, feerate_sat_per_1000_weight, option),
9438 (41, channel_shutdown_state, option),
9441 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9442 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9443 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9444 let user_channel_id = user_channel_id_low as u128 +
9445 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9449 channel_id: channel_id.0.unwrap(),
9451 counterparty: counterparty.0.unwrap(),
9452 outbound_scid_alias,
9456 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9457 unspendable_punishment_reserve,
9459 balance_msat: balance_msat.0.unwrap(),
9460 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9461 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9462 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9463 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9464 confirmations_required,
9466 force_close_spend_delay,
9467 is_outbound: is_outbound.0.unwrap(),
9468 is_channel_ready: is_channel_ready.0.unwrap(),
9469 is_usable: is_usable.0.unwrap(),
9470 is_public: is_public.0.unwrap(),
9471 inbound_htlc_minimum_msat,
9472 inbound_htlc_maximum_msat,
9473 feerate_sat_per_1000_weight,
9474 channel_shutdown_state,
9479 impl_writeable_tlv_based!(PhantomRouteHints, {
9480 (2, channels, required_vec),
9481 (4, phantom_scid, required),
9482 (6, real_node_pubkey, required),
9485 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9487 (0, onion_packet, required),
9488 (2, short_channel_id, required),
9491 (0, payment_data, required),
9492 (1, phantom_shared_secret, option),
9493 (2, incoming_cltv_expiry, required),
9494 (3, payment_metadata, option),
9495 (5, custom_tlvs, optional_vec),
9497 (2, ReceiveKeysend) => {
9498 (0, payment_preimage, required),
9499 (2, incoming_cltv_expiry, required),
9500 (3, payment_metadata, option),
9501 (4, payment_data, option), // Added in 0.0.116
9502 (5, custom_tlvs, optional_vec),
9506 impl_writeable_tlv_based!(PendingHTLCInfo, {
9507 (0, routing, required),
9508 (2, incoming_shared_secret, required),
9509 (4, payment_hash, required),
9510 (6, outgoing_amt_msat, required),
9511 (8, outgoing_cltv_value, required),
9512 (9, incoming_amt_msat, option),
9513 (10, skimmed_fee_msat, option),
9517 impl Writeable for HTLCFailureMsg {
9518 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9520 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9522 channel_id.write(writer)?;
9523 htlc_id.write(writer)?;
9524 reason.write(writer)?;
9526 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9527 channel_id, htlc_id, sha256_of_onion, failure_code
9530 channel_id.write(writer)?;
9531 htlc_id.write(writer)?;
9532 sha256_of_onion.write(writer)?;
9533 failure_code.write(writer)?;
9540 impl Readable for HTLCFailureMsg {
9541 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9542 let id: u8 = Readable::read(reader)?;
9545 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9546 channel_id: Readable::read(reader)?,
9547 htlc_id: Readable::read(reader)?,
9548 reason: Readable::read(reader)?,
9552 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9553 channel_id: Readable::read(reader)?,
9554 htlc_id: Readable::read(reader)?,
9555 sha256_of_onion: Readable::read(reader)?,
9556 failure_code: Readable::read(reader)?,
9559 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9560 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9561 // messages contained in the variants.
9562 // In version 0.0.101, support for reading the variants with these types was added, and
9563 // we should migrate to writing these variants when UpdateFailHTLC or
9564 // UpdateFailMalformedHTLC get TLV fields.
9566 let length: BigSize = Readable::read(reader)?;
9567 let mut s = FixedLengthReader::new(reader, length.0);
9568 let res = Readable::read(&mut s)?;
9569 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9570 Ok(HTLCFailureMsg::Relay(res))
9573 let length: BigSize = Readable::read(reader)?;
9574 let mut s = FixedLengthReader::new(reader, length.0);
9575 let res = Readable::read(&mut s)?;
9576 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9577 Ok(HTLCFailureMsg::Malformed(res))
9579 _ => Err(DecodeError::UnknownRequiredFeature),
9584 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9589 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9590 (0, short_channel_id, required),
9591 (1, phantom_shared_secret, option),
9592 (2, outpoint, required),
9593 (4, htlc_id, required),
9594 (6, incoming_packet_shared_secret, required),
9595 (7, user_channel_id, option),
9598 impl Writeable for ClaimableHTLC {
9599 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9600 let (payment_data, keysend_preimage) = match &self.onion_payload {
9601 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9602 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9604 write_tlv_fields!(writer, {
9605 (0, self.prev_hop, required),
9606 (1, self.total_msat, required),
9607 (2, self.value, required),
9608 (3, self.sender_intended_value, required),
9609 (4, payment_data, option),
9610 (5, self.total_value_received, option),
9611 (6, self.cltv_expiry, required),
9612 (8, keysend_preimage, option),
9613 (10, self.counterparty_skimmed_fee_msat, option),
9619 impl Readable for ClaimableHTLC {
9620 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9621 _init_and_read_len_prefixed_tlv_fields!(reader, {
9622 (0, prev_hop, required),
9623 (1, total_msat, option),
9624 (2, value_ser, required),
9625 (3, sender_intended_value, option),
9626 (4, payment_data_opt, option),
9627 (5, total_value_received, option),
9628 (6, cltv_expiry, required),
9629 (8, keysend_preimage, option),
9630 (10, counterparty_skimmed_fee_msat, option),
9632 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9633 let value = value_ser.0.unwrap();
9634 let onion_payload = match keysend_preimage {
9636 if payment_data.is_some() {
9637 return Err(DecodeError::InvalidValue)
9639 if total_msat.is_none() {
9640 total_msat = Some(value);
9642 OnionPayload::Spontaneous(p)
9645 if total_msat.is_none() {
9646 if payment_data.is_none() {
9647 return Err(DecodeError::InvalidValue)
9649 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9651 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9655 prev_hop: prev_hop.0.unwrap(),
9658 sender_intended_value: sender_intended_value.unwrap_or(value),
9659 total_value_received,
9660 total_msat: total_msat.unwrap(),
9662 cltv_expiry: cltv_expiry.0.unwrap(),
9663 counterparty_skimmed_fee_msat,
9668 impl Readable for HTLCSource {
9669 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9670 let id: u8 = Readable::read(reader)?;
9673 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9674 let mut first_hop_htlc_msat: u64 = 0;
9675 let mut path_hops = Vec::new();
9676 let mut payment_id = None;
9677 let mut payment_params: Option<PaymentParameters> = None;
9678 let mut blinded_tail: Option<BlindedTail> = None;
9679 read_tlv_fields!(reader, {
9680 (0, session_priv, required),
9681 (1, payment_id, option),
9682 (2, first_hop_htlc_msat, required),
9683 (4, path_hops, required_vec),
9684 (5, payment_params, (option: ReadableArgs, 0)),
9685 (6, blinded_tail, option),
9687 if payment_id.is_none() {
9688 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9690 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9692 let path = Path { hops: path_hops, blinded_tail };
9693 if path.hops.len() == 0 {
9694 return Err(DecodeError::InvalidValue);
9696 if let Some(params) = payment_params.as_mut() {
9697 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9698 if final_cltv_expiry_delta == &0 {
9699 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9703 Ok(HTLCSource::OutboundRoute {
9704 session_priv: session_priv.0.unwrap(),
9705 first_hop_htlc_msat,
9707 payment_id: payment_id.unwrap(),
9710 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9711 _ => Err(DecodeError::UnknownRequiredFeature),
9716 impl Writeable for HTLCSource {
9717 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9719 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9721 let payment_id_opt = Some(payment_id);
9722 write_tlv_fields!(writer, {
9723 (0, session_priv, required),
9724 (1, payment_id_opt, option),
9725 (2, first_hop_htlc_msat, required),
9726 // 3 was previously used to write a PaymentSecret for the payment.
9727 (4, path.hops, required_vec),
9728 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9729 (6, path.blinded_tail, option),
9732 HTLCSource::PreviousHopData(ref field) => {
9734 field.write(writer)?;
9741 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9742 (0, forward_info, required),
9743 (1, prev_user_channel_id, (default_value, 0)),
9744 (2, prev_short_channel_id, required),
9745 (4, prev_htlc_id, required),
9746 (6, prev_funding_outpoint, required),
9749 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
9751 (0, htlc_id, required),
9752 (2, err_packet, required),
9757 impl_writeable_tlv_based!(PendingInboundPayment, {
9758 (0, payment_secret, required),
9759 (2, expiry_time, required),
9760 (4, user_payment_id, required),
9761 (6, payment_preimage, required),
9762 (8, min_value_msat, required),
9765 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
9767 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9768 T::Target: BroadcasterInterface,
9769 ES::Target: EntropySource,
9770 NS::Target: NodeSigner,
9771 SP::Target: SignerProvider,
9772 F::Target: FeeEstimator,
9776 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9777 let _consistency_lock = self.total_consistency_lock.write().unwrap();
9779 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
9781 self.chain_hash.write(writer)?;
9783 let best_block = self.best_block.read().unwrap();
9784 best_block.height().write(writer)?;
9785 best_block.block_hash().write(writer)?;
9788 let mut serializable_peer_count: u64 = 0;
9790 let per_peer_state = self.per_peer_state.read().unwrap();
9791 let mut number_of_funded_channels = 0;
9792 for (_, peer_state_mutex) in per_peer_state.iter() {
9793 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9794 let peer_state = &mut *peer_state_lock;
9795 if !peer_state.ok_to_remove(false) {
9796 serializable_peer_count += 1;
9799 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
9800 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
9804 (number_of_funded_channels as u64).write(writer)?;
9806 for (_, peer_state_mutex) in per_peer_state.iter() {
9807 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9808 let peer_state = &mut *peer_state_lock;
9809 for channel in peer_state.channel_by_id.iter().filter_map(
9810 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
9811 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
9814 channel.write(writer)?;
9820 let forward_htlcs = self.forward_htlcs.lock().unwrap();
9821 (forward_htlcs.len() as u64).write(writer)?;
9822 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
9823 short_channel_id.write(writer)?;
9824 (pending_forwards.len() as u64).write(writer)?;
9825 for forward in pending_forwards {
9826 forward.write(writer)?;
9831 let per_peer_state = self.per_peer_state.write().unwrap();
9833 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9834 let claimable_payments = self.claimable_payments.lock().unwrap();
9835 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9837 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9838 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9839 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9840 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9841 payment_hash.write(writer)?;
9842 (payment.htlcs.len() as u64).write(writer)?;
9843 for htlc in payment.htlcs.iter() {
9844 htlc.write(writer)?;
9846 htlc_purposes.push(&payment.purpose);
9847 htlc_onion_fields.push(&payment.onion_fields);
9850 let mut monitor_update_blocked_actions_per_peer = None;
9851 let mut peer_states = Vec::new();
9852 for (_, peer_state_mutex) in per_peer_state.iter() {
9853 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9854 // of a lockorder violation deadlock - no other thread can be holding any
9855 // per_peer_state lock at all.
9856 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9859 (serializable_peer_count).write(writer)?;
9860 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9861 // Peers which we have no channels to should be dropped once disconnected. As we
9862 // disconnect all peers when shutting down and serializing the ChannelManager, we
9863 // consider all peers as disconnected here. There's therefore no need write peers with
9865 if !peer_state.ok_to_remove(false) {
9866 peer_pubkey.write(writer)?;
9867 peer_state.latest_features.write(writer)?;
9868 if !peer_state.monitor_update_blocked_actions.is_empty() {
9869 monitor_update_blocked_actions_per_peer
9870 .get_or_insert_with(Vec::new)
9871 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9876 let events = self.pending_events.lock().unwrap();
9877 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9878 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9879 // refuse to read the new ChannelManager.
9880 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9881 if events_not_backwards_compatible {
9882 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9883 // well save the space and not write any events here.
9884 0u64.write(writer)?;
9886 (events.len() as u64).write(writer)?;
9887 for (event, _) in events.iter() {
9888 event.write(writer)?;
9892 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9893 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9894 // the closing monitor updates were always effectively replayed on startup (either directly
9895 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9896 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9897 0u64.write(writer)?;
9899 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9900 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9901 // likely to be identical.
9902 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9903 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9905 (pending_inbound_payments.len() as u64).write(writer)?;
9906 for (hash, pending_payment) in pending_inbound_payments.iter() {
9907 hash.write(writer)?;
9908 pending_payment.write(writer)?;
9911 // For backwards compat, write the session privs and their total length.
9912 let mut num_pending_outbounds_compat: u64 = 0;
9913 for (_, outbound) in pending_outbound_payments.iter() {
9914 if !outbound.is_fulfilled() && !outbound.abandoned() {
9915 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
9918 num_pending_outbounds_compat.write(writer)?;
9919 for (_, outbound) in pending_outbound_payments.iter() {
9921 PendingOutboundPayment::Legacy { session_privs } |
9922 PendingOutboundPayment::Retryable { session_privs, .. } => {
9923 for session_priv in session_privs.iter() {
9924 session_priv.write(writer)?;
9927 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9928 PendingOutboundPayment::InvoiceReceived { .. } => {},
9929 PendingOutboundPayment::Fulfilled { .. } => {},
9930 PendingOutboundPayment::Abandoned { .. } => {},
9934 // Encode without retry info for 0.0.101 compatibility.
9935 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9936 for (id, outbound) in pending_outbound_payments.iter() {
9938 PendingOutboundPayment::Legacy { session_privs } |
9939 PendingOutboundPayment::Retryable { session_privs, .. } => {
9940 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9946 let mut pending_intercepted_htlcs = None;
9947 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9948 if our_pending_intercepts.len() != 0 {
9949 pending_intercepted_htlcs = Some(our_pending_intercepts);
9952 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9953 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9954 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9955 // map. Thus, if there are no entries we skip writing a TLV for it.
9956 pending_claiming_payments = None;
9959 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9960 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9961 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9962 if !updates.is_empty() {
9963 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9964 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9969 write_tlv_fields!(writer, {
9970 (1, pending_outbound_payments_no_retry, required),
9971 (2, pending_intercepted_htlcs, option),
9972 (3, pending_outbound_payments, required),
9973 (4, pending_claiming_payments, option),
9974 (5, self.our_network_pubkey, required),
9975 (6, monitor_update_blocked_actions_per_peer, option),
9976 (7, self.fake_scid_rand_bytes, required),
9977 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9978 (9, htlc_purposes, required_vec),
9979 (10, in_flight_monitor_updates, option),
9980 (11, self.probing_cookie_secret, required),
9981 (13, htlc_onion_fields, optional_vec),
9988 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9989 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9990 (self.len() as u64).write(w)?;
9991 for (event, action) in self.iter() {
9994 #[cfg(debug_assertions)] {
9995 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9996 // be persisted and are regenerated on restart. However, if such an event has a
9997 // post-event-handling action we'll write nothing for the event and would have to
9998 // either forget the action or fail on deserialization (which we do below). Thus,
9999 // check that the event is sane here.
10000 let event_encoded = event.encode();
10001 let event_read: Option<Event> =
10002 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
10003 if action.is_some() { assert!(event_read.is_some()); }
10009 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
10010 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10011 let len: u64 = Readable::read(reader)?;
10012 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
10013 let mut events: Self = VecDeque::with_capacity(cmp::min(
10014 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
10017 let ev_opt = MaybeReadable::read(reader)?;
10018 let action = Readable::read(reader)?;
10019 if let Some(ev) = ev_opt {
10020 events.push_back((ev, action));
10021 } else if action.is_some() {
10022 return Err(DecodeError::InvalidValue);
10029 impl_writeable_tlv_based_enum!(ChannelShutdownState,
10030 (0, NotShuttingDown) => {},
10031 (2, ShutdownInitiated) => {},
10032 (4, ResolvingHTLCs) => {},
10033 (6, NegotiatingClosingFee) => {},
10034 (8, ShutdownComplete) => {}, ;
10037 /// Arguments for the creation of a ChannelManager that are not deserialized.
10039 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
10041 /// 1) Deserialize all stored [`ChannelMonitor`]s.
10042 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
10043 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
10044 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
10045 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
10046 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
10047 /// same way you would handle a [`chain::Filter`] call using
10048 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
10049 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
10050 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
10051 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
10052 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
10053 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
10055 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
10056 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
10058 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
10059 /// call any other methods on the newly-deserialized [`ChannelManager`].
10061 /// Note that because some channels may be closed during deserialization, it is critical that you
10062 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
10063 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
10064 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
10065 /// not force-close the same channels but consider them live), you may end up revoking a state for
10066 /// which you've already broadcasted the transaction.
10068 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
10069 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10071 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
10072 T::Target: BroadcasterInterface,
10073 ES::Target: EntropySource,
10074 NS::Target: NodeSigner,
10075 SP::Target: SignerProvider,
10076 F::Target: FeeEstimator,
10080 /// A cryptographically secure source of entropy.
10081 pub entropy_source: ES,
10083 /// A signer that is able to perform node-scoped cryptographic operations.
10084 pub node_signer: NS,
10086 /// The keys provider which will give us relevant keys. Some keys will be loaded during
10087 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
10089 pub signer_provider: SP,
10091 /// The fee_estimator for use in the ChannelManager in the future.
10093 /// No calls to the FeeEstimator will be made during deserialization.
10094 pub fee_estimator: F,
10095 /// The chain::Watch for use in the ChannelManager in the future.
10097 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
10098 /// you have deserialized ChannelMonitors separately and will add them to your
10099 /// chain::Watch after deserializing this ChannelManager.
10100 pub chain_monitor: M,
10102 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
10103 /// used to broadcast the latest local commitment transactions of channels which must be
10104 /// force-closed during deserialization.
10105 pub tx_broadcaster: T,
10106 /// The router which will be used in the ChannelManager in the future for finding routes
10107 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
10109 /// No calls to the router will be made during deserialization.
10111 /// The Logger for use in the ChannelManager and which may be used to log information during
10112 /// deserialization.
10114 /// Default settings used for new channels. Any existing channels will continue to use the
10115 /// runtime settings which were stored when the ChannelManager was serialized.
10116 pub default_config: UserConfig,
10118 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
10119 /// value.context.get_funding_txo() should be the key).
10121 /// If a monitor is inconsistent with the channel state during deserialization the channel will
10122 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
10123 /// is true for missing channels as well. If there is a monitor missing for which we find
10124 /// channel data Err(DecodeError::InvalidValue) will be returned.
10126 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
10129 /// This is not exported to bindings users because we have no HashMap bindings
10130 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
10133 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10134 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
10136 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
10137 T::Target: BroadcasterInterface,
10138 ES::Target: EntropySource,
10139 NS::Target: NodeSigner,
10140 SP::Target: SignerProvider,
10141 F::Target: FeeEstimator,
10145 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
10146 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
10147 /// populate a HashMap directly from C.
10148 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
10149 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
10151 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
10152 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
10157 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
10158 // SipmleArcChannelManager type:
10159 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10160 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
10162 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
10163 T::Target: BroadcasterInterface,
10164 ES::Target: EntropySource,
10165 NS::Target: NodeSigner,
10166 SP::Target: SignerProvider,
10167 F::Target: FeeEstimator,
10171 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10172 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
10173 Ok((blockhash, Arc::new(chan_manager)))
10177 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10178 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
10180 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
10181 T::Target: BroadcasterInterface,
10182 ES::Target: EntropySource,
10183 NS::Target: NodeSigner,
10184 SP::Target: SignerProvider,
10185 F::Target: FeeEstimator,
10189 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10190 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10192 let chain_hash: ChainHash = Readable::read(reader)?;
10193 let best_block_height: u32 = Readable::read(reader)?;
10194 let best_block_hash: BlockHash = Readable::read(reader)?;
10196 let mut failed_htlcs = Vec::new();
10198 let channel_count: u64 = Readable::read(reader)?;
10199 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
10200 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10201 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10202 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10203 let mut channel_closures = VecDeque::new();
10204 let mut close_background_events = Vec::new();
10205 for _ in 0..channel_count {
10206 let mut channel: Channel<SP> = Channel::read(reader, (
10207 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10209 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10210 funding_txo_set.insert(funding_txo.clone());
10211 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10212 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10213 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10214 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10215 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10216 // But if the channel is behind of the monitor, close the channel:
10217 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10218 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10219 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10220 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10221 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10223 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10224 log_error!(args.logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10225 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10227 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10228 log_error!(args.logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10229 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10231 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10232 log_error!(args.logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10233 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10235 let mut shutdown_result = channel.context.force_shutdown(true);
10236 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10237 return Err(DecodeError::InvalidValue);
10239 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
10240 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10241 counterparty_node_id, funding_txo, update
10244 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10245 channel_closures.push_back((events::Event::ChannelClosed {
10246 channel_id: channel.context.channel_id(),
10247 user_channel_id: channel.context.get_user_id(),
10248 reason: ClosureReason::OutdatedChannelManager,
10249 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10250 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10252 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10253 let mut found_htlc = false;
10254 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10255 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10258 // If we have some HTLCs in the channel which are not present in the newer
10259 // ChannelMonitor, they have been removed and should be failed back to
10260 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10261 // were actually claimed we'd have generated and ensured the previous-hop
10262 // claim update ChannelMonitor updates were persisted prior to persising
10263 // the ChannelMonitor update for the forward leg, so attempting to fail the
10264 // backwards leg of the HTLC will simply be rejected.
10265 log_info!(args.logger,
10266 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10267 &channel.context.channel_id(), &payment_hash);
10268 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10272 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10273 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10274 monitor.get_latest_update_id());
10275 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10276 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10278 if channel.context.is_funding_broadcast() {
10279 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
10281 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10282 hash_map::Entry::Occupied(mut entry) => {
10283 let by_id_map = entry.get_mut();
10284 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10286 hash_map::Entry::Vacant(entry) => {
10287 let mut by_id_map = HashMap::new();
10288 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10289 entry.insert(by_id_map);
10293 } else if channel.is_awaiting_initial_mon_persist() {
10294 // If we were persisted and shut down while the initial ChannelMonitor persistence
10295 // was in-progress, we never broadcasted the funding transaction and can still
10296 // safely discard the channel.
10297 let _ = channel.context.force_shutdown(false);
10298 channel_closures.push_back((events::Event::ChannelClosed {
10299 channel_id: channel.context.channel_id(),
10300 user_channel_id: channel.context.get_user_id(),
10301 reason: ClosureReason::DisconnectedPeer,
10302 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10303 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10306 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10307 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10308 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10309 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10310 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10311 return Err(DecodeError::InvalidValue);
10315 for (funding_txo, _) in args.channel_monitors.iter() {
10316 if !funding_txo_set.contains(funding_txo) {
10317 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
10318 &funding_txo.to_channel_id());
10319 let monitor_update = ChannelMonitorUpdate {
10320 update_id: CLOSED_CHANNEL_UPDATE_ID,
10321 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10323 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
10327 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10328 let forward_htlcs_count: u64 = Readable::read(reader)?;
10329 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10330 for _ in 0..forward_htlcs_count {
10331 let short_channel_id = Readable::read(reader)?;
10332 let pending_forwards_count: u64 = Readable::read(reader)?;
10333 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10334 for _ in 0..pending_forwards_count {
10335 pending_forwards.push(Readable::read(reader)?);
10337 forward_htlcs.insert(short_channel_id, pending_forwards);
10340 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10341 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10342 for _ in 0..claimable_htlcs_count {
10343 let payment_hash = Readable::read(reader)?;
10344 let previous_hops_len: u64 = Readable::read(reader)?;
10345 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10346 for _ in 0..previous_hops_len {
10347 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10349 claimable_htlcs_list.push((payment_hash, previous_hops));
10352 let peer_state_from_chans = |channel_by_id| {
10355 inbound_channel_request_by_id: HashMap::new(),
10356 latest_features: InitFeatures::empty(),
10357 pending_msg_events: Vec::new(),
10358 in_flight_monitor_updates: BTreeMap::new(),
10359 monitor_update_blocked_actions: BTreeMap::new(),
10360 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10361 is_connected: false,
10365 let peer_count: u64 = Readable::read(reader)?;
10366 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10367 for _ in 0..peer_count {
10368 let peer_pubkey = Readable::read(reader)?;
10369 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
10370 let mut peer_state = peer_state_from_chans(peer_chans);
10371 peer_state.latest_features = Readable::read(reader)?;
10372 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10375 let event_count: u64 = Readable::read(reader)?;
10376 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10377 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10378 for _ in 0..event_count {
10379 match MaybeReadable::read(reader)? {
10380 Some(event) => pending_events_read.push_back((event, None)),
10385 let background_event_count: u64 = Readable::read(reader)?;
10386 for _ in 0..background_event_count {
10387 match <u8 as Readable>::read(reader)? {
10389 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10390 // however we really don't (and never did) need them - we regenerate all
10391 // on-startup monitor updates.
10392 let _: OutPoint = Readable::read(reader)?;
10393 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10395 _ => return Err(DecodeError::InvalidValue),
10399 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10400 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10402 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10403 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10404 for _ in 0..pending_inbound_payment_count {
10405 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10406 return Err(DecodeError::InvalidValue);
10410 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10411 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10412 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10413 for _ in 0..pending_outbound_payments_count_compat {
10414 let session_priv = Readable::read(reader)?;
10415 let payment = PendingOutboundPayment::Legacy {
10416 session_privs: [session_priv].iter().cloned().collect()
10418 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10419 return Err(DecodeError::InvalidValue)
10423 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10424 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10425 let mut pending_outbound_payments = None;
10426 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
10427 let mut received_network_pubkey: Option<PublicKey> = None;
10428 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10429 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10430 let mut claimable_htlc_purposes = None;
10431 let mut claimable_htlc_onion_fields = None;
10432 let mut pending_claiming_payments = Some(HashMap::new());
10433 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10434 let mut events_override = None;
10435 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10436 read_tlv_fields!(reader, {
10437 (1, pending_outbound_payments_no_retry, option),
10438 (2, pending_intercepted_htlcs, option),
10439 (3, pending_outbound_payments, option),
10440 (4, pending_claiming_payments, option),
10441 (5, received_network_pubkey, option),
10442 (6, monitor_update_blocked_actions_per_peer, option),
10443 (7, fake_scid_rand_bytes, option),
10444 (8, events_override, option),
10445 (9, claimable_htlc_purposes, optional_vec),
10446 (10, in_flight_monitor_updates, option),
10447 (11, probing_cookie_secret, option),
10448 (13, claimable_htlc_onion_fields, optional_vec),
10450 if fake_scid_rand_bytes.is_none() {
10451 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10454 if probing_cookie_secret.is_none() {
10455 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10458 if let Some(events) = events_override {
10459 pending_events_read = events;
10462 if !channel_closures.is_empty() {
10463 pending_events_read.append(&mut channel_closures);
10466 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10467 pending_outbound_payments = Some(pending_outbound_payments_compat);
10468 } else if pending_outbound_payments.is_none() {
10469 let mut outbounds = HashMap::new();
10470 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10471 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10473 pending_outbound_payments = Some(outbounds);
10475 let pending_outbounds = OutboundPayments {
10476 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10477 retry_lock: Mutex::new(())
10480 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10481 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10482 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10483 // replayed, and for each monitor update we have to replay we have to ensure there's a
10484 // `ChannelMonitor` for it.
10486 // In order to do so we first walk all of our live channels (so that we can check their
10487 // state immediately after doing the update replays, when we have the `update_id`s
10488 // available) and then walk any remaining in-flight updates.
10490 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10491 let mut pending_background_events = Vec::new();
10492 macro_rules! handle_in_flight_updates {
10493 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10494 $monitor: expr, $peer_state: expr, $channel_info_log: expr
10496 let mut max_in_flight_update_id = 0;
10497 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10498 for update in $chan_in_flight_upds.iter() {
10499 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10500 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
10501 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10502 pending_background_events.push(
10503 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10504 counterparty_node_id: $counterparty_node_id,
10505 funding_txo: $funding_txo,
10506 update: update.clone(),
10509 if $chan_in_flight_upds.is_empty() {
10510 // We had some updates to apply, but it turns out they had completed before we
10511 // were serialized, we just weren't notified of that. Thus, we may have to run
10512 // the completion actions for any monitor updates, but otherwise are done.
10513 pending_background_events.push(
10514 BackgroundEvent::MonitorUpdatesComplete {
10515 counterparty_node_id: $counterparty_node_id,
10516 channel_id: $funding_txo.to_channel_id(),
10519 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10520 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
10521 return Err(DecodeError::InvalidValue);
10523 max_in_flight_update_id
10527 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10528 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10529 let peer_state = &mut *peer_state_lock;
10530 for phase in peer_state.channel_by_id.values() {
10531 if let ChannelPhase::Funded(chan) = phase {
10532 // Channels that were persisted have to be funded, otherwise they should have been
10534 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10535 let monitor = args.channel_monitors.get(&funding_txo)
10536 .expect("We already checked for monitor presence when loading channels");
10537 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10538 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10539 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10540 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10541 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10542 funding_txo, monitor, peer_state, ""));
10545 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10546 // If the channel is ahead of the monitor, return InvalidValue:
10547 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10548 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10549 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10550 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10551 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10552 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10553 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10554 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10555 return Err(DecodeError::InvalidValue);
10558 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10559 // created in this `channel_by_id` map.
10560 debug_assert!(false);
10561 return Err(DecodeError::InvalidValue);
10566 if let Some(in_flight_upds) = in_flight_monitor_updates {
10567 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10568 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10569 // Now that we've removed all the in-flight monitor updates for channels that are
10570 // still open, we need to replay any monitor updates that are for closed channels,
10571 // creating the neccessary peer_state entries as we go.
10572 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10573 Mutex::new(peer_state_from_chans(HashMap::new()))
10575 let mut peer_state = peer_state_mutex.lock().unwrap();
10576 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10577 funding_txo, monitor, peer_state, "closed ");
10579 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10580 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
10581 &funding_txo.to_channel_id());
10582 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10583 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10584 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10585 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10586 return Err(DecodeError::InvalidValue);
10591 // Note that we have to do the above replays before we push new monitor updates.
10592 pending_background_events.append(&mut close_background_events);
10594 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10595 // should ensure we try them again on the inbound edge. We put them here and do so after we
10596 // have a fully-constructed `ChannelManager` at the end.
10597 let mut pending_claims_to_replay = Vec::new();
10600 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10601 // ChannelMonitor data for any channels for which we do not have authorative state
10602 // (i.e. those for which we just force-closed above or we otherwise don't have a
10603 // corresponding `Channel` at all).
10604 // This avoids several edge-cases where we would otherwise "forget" about pending
10605 // payments which are still in-flight via their on-chain state.
10606 // We only rebuild the pending payments map if we were most recently serialized by
10608 for (_, monitor) in args.channel_monitors.iter() {
10609 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
10610 if counterparty_opt.is_none() {
10611 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10612 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10613 if path.hops.is_empty() {
10614 log_error!(args.logger, "Got an empty path for a pending payment");
10615 return Err(DecodeError::InvalidValue);
10618 let path_amt = path.final_value_msat();
10619 let mut session_priv_bytes = [0; 32];
10620 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10621 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10622 hash_map::Entry::Occupied(mut entry) => {
10623 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10624 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10625 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
10627 hash_map::Entry::Vacant(entry) => {
10628 let path_fee = path.fee_msat();
10629 entry.insert(PendingOutboundPayment::Retryable {
10630 retry_strategy: None,
10631 attempts: PaymentAttempts::new(),
10632 payment_params: None,
10633 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
10634 payment_hash: htlc.payment_hash,
10635 payment_secret: None, // only used for retries, and we'll never retry on startup
10636 payment_metadata: None, // only used for retries, and we'll never retry on startup
10637 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10638 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10639 pending_amt_msat: path_amt,
10640 pending_fee_msat: Some(path_fee),
10641 total_msat: path_amt,
10642 starting_block_height: best_block_height,
10643 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10645 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10646 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10651 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10652 match htlc_source {
10653 HTLCSource::PreviousHopData(prev_hop_data) => {
10654 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10655 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10656 info.prev_htlc_id == prev_hop_data.htlc_id
10658 // The ChannelMonitor is now responsible for this HTLC's
10659 // failure/success and will let us know what its outcome is. If we
10660 // still have an entry for this HTLC in `forward_htlcs` or
10661 // `pending_intercepted_htlcs`, we were apparently not persisted after
10662 // the monitor was when forwarding the payment.
10663 forward_htlcs.retain(|_, forwards| {
10664 forwards.retain(|forward| {
10665 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10666 if pending_forward_matches_htlc(&htlc_info) {
10667 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10668 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10673 !forwards.is_empty()
10675 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10676 if pending_forward_matches_htlc(&htlc_info) {
10677 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10678 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10679 pending_events_read.retain(|(event, _)| {
10680 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10681 intercepted_id != ev_id
10688 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10689 if let Some(preimage) = preimage_opt {
10690 let pending_events = Mutex::new(pending_events_read);
10691 // Note that we set `from_onchain` to "false" here,
10692 // deliberately keeping the pending payment around forever.
10693 // Given it should only occur when we have a channel we're
10694 // force-closing for being stale that's okay.
10695 // The alternative would be to wipe the state when claiming,
10696 // generating a `PaymentPathSuccessful` event but regenerating
10697 // it and the `PaymentSent` on every restart until the
10698 // `ChannelMonitor` is removed.
10700 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10701 channel_funding_outpoint: monitor.get_funding_txo().0,
10702 counterparty_node_id: path.hops[0].pubkey,
10704 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
10705 path, false, compl_action, &pending_events, &args.logger);
10706 pending_events_read = pending_events.into_inner().unwrap();
10713 // Whether the downstream channel was closed or not, try to re-apply any payment
10714 // preimages from it which may be needed in upstream channels for forwarded
10716 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
10718 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
10719 if let HTLCSource::PreviousHopData(_) = htlc_source {
10720 if let Some(payment_preimage) = preimage_opt {
10721 Some((htlc_source, payment_preimage, htlc.amount_msat,
10722 // Check if `counterparty_opt.is_none()` to see if the
10723 // downstream chan is closed (because we don't have a
10724 // channel_id -> peer map entry).
10725 counterparty_opt.is_none(),
10726 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
10727 monitor.get_funding_txo().0))
10730 // If it was an outbound payment, we've handled it above - if a preimage
10731 // came in and we persisted the `ChannelManager` we either handled it and
10732 // are good to go or the channel force-closed - we don't have to handle the
10733 // channel still live case here.
10737 for tuple in outbound_claimed_htlcs_iter {
10738 pending_claims_to_replay.push(tuple);
10743 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
10744 // If we have pending HTLCs to forward, assume we either dropped a
10745 // `PendingHTLCsForwardable` or the user received it but never processed it as they
10746 // shut down before the timer hit. Either way, set the time_forwardable to a small
10747 // constant as enough time has likely passed that we should simply handle the forwards
10748 // now, or at least after the user gets a chance to reconnect to our peers.
10749 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
10750 time_forwardable: Duration::from_secs(2),
10754 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
10755 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
10757 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
10758 if let Some(purposes) = claimable_htlc_purposes {
10759 if purposes.len() != claimable_htlcs_list.len() {
10760 return Err(DecodeError::InvalidValue);
10762 if let Some(onion_fields) = claimable_htlc_onion_fields {
10763 if onion_fields.len() != claimable_htlcs_list.len() {
10764 return Err(DecodeError::InvalidValue);
10766 for (purpose, (onion, (payment_hash, htlcs))) in
10767 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
10769 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10770 purpose, htlcs, onion_fields: onion,
10772 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10775 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
10776 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10777 purpose, htlcs, onion_fields: None,
10779 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10783 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
10784 // include a `_legacy_hop_data` in the `OnionPayload`.
10785 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
10786 if htlcs.is_empty() {
10787 return Err(DecodeError::InvalidValue);
10789 let purpose = match &htlcs[0].onion_payload {
10790 OnionPayload::Invoice { _legacy_hop_data } => {
10791 if let Some(hop_data) = _legacy_hop_data {
10792 events::PaymentPurpose::InvoicePayment {
10793 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
10794 Some(inbound_payment) => inbound_payment.payment_preimage,
10795 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
10796 Ok((payment_preimage, _)) => payment_preimage,
10798 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
10799 return Err(DecodeError::InvalidValue);
10803 payment_secret: hop_data.payment_secret,
10805 } else { return Err(DecodeError::InvalidValue); }
10807 OnionPayload::Spontaneous(payment_preimage) =>
10808 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
10810 claimable_payments.insert(payment_hash, ClaimablePayment {
10811 purpose, htlcs, onion_fields: None,
10816 let mut secp_ctx = Secp256k1::new();
10817 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
10819 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
10821 Err(()) => return Err(DecodeError::InvalidValue)
10823 if let Some(network_pubkey) = received_network_pubkey {
10824 if network_pubkey != our_network_pubkey {
10825 log_error!(args.logger, "Key that was generated does not match the existing key.");
10826 return Err(DecodeError::InvalidValue);
10830 let mut outbound_scid_aliases = HashSet::new();
10831 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10832 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10833 let peer_state = &mut *peer_state_lock;
10834 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10835 if let ChannelPhase::Funded(chan) = phase {
10836 if chan.context.outbound_scid_alias() == 0 {
10837 let mut outbound_scid_alias;
10839 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10840 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10841 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10843 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10844 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10845 // Note that in rare cases its possible to hit this while reading an older
10846 // channel if we just happened to pick a colliding outbound alias above.
10847 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10848 return Err(DecodeError::InvalidValue);
10850 if chan.context.is_usable() {
10851 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10852 // Note that in rare cases its possible to hit this while reading an older
10853 // channel if we just happened to pick a colliding outbound alias above.
10854 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10855 return Err(DecodeError::InvalidValue);
10859 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10860 // created in this `channel_by_id` map.
10861 debug_assert!(false);
10862 return Err(DecodeError::InvalidValue);
10867 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10869 for (_, monitor) in args.channel_monitors.iter() {
10870 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10871 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10872 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10873 let mut claimable_amt_msat = 0;
10874 let mut receiver_node_id = Some(our_network_pubkey);
10875 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10876 if phantom_shared_secret.is_some() {
10877 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10878 .expect("Failed to get node_id for phantom node recipient");
10879 receiver_node_id = Some(phantom_pubkey)
10881 for claimable_htlc in &payment.htlcs {
10882 claimable_amt_msat += claimable_htlc.value;
10884 // Add a holding-cell claim of the payment to the Channel, which should be
10885 // applied ~immediately on peer reconnection. Because it won't generate a
10886 // new commitment transaction we can just provide the payment preimage to
10887 // the corresponding ChannelMonitor and nothing else.
10889 // We do so directly instead of via the normal ChannelMonitor update
10890 // procedure as the ChainMonitor hasn't yet been initialized, implying
10891 // we're not allowed to call it directly yet. Further, we do the update
10892 // without incrementing the ChannelMonitor update ID as there isn't any
10894 // If we were to generate a new ChannelMonitor update ID here and then
10895 // crash before the user finishes block connect we'd end up force-closing
10896 // this channel as well. On the flip side, there's no harm in restarting
10897 // without the new monitor persisted - we'll end up right back here on
10899 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
10900 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
10901 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
10902 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10903 let peer_state = &mut *peer_state_lock;
10904 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
10905 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
10908 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
10909 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
10912 pending_events_read.push_back((events::Event::PaymentClaimed {
10915 purpose: payment.purpose,
10916 amount_msat: claimable_amt_msat,
10917 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
10918 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10924 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10925 if let Some(peer_state) = per_peer_state.get(&node_id) {
10926 for (_, actions) in monitor_update_blocked_actions.iter() {
10927 for action in actions.iter() {
10928 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10929 downstream_counterparty_and_funding_outpoint:
10930 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10932 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10933 log_trace!(args.logger,
10934 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
10935 blocked_channel_outpoint.to_channel_id());
10936 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10937 .entry(blocked_channel_outpoint.to_channel_id())
10938 .or_insert_with(Vec::new).push(blocking_action.clone());
10940 // If the channel we were blocking has closed, we don't need to
10941 // worry about it - the blocked monitor update should never have
10942 // been released from the `Channel` object so it can't have
10943 // completed, and if the channel closed there's no reason to bother
10947 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
10948 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
10952 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10954 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
10955 return Err(DecodeError::InvalidValue);
10959 let channel_manager = ChannelManager {
10961 fee_estimator: bounded_fee_estimator,
10962 chain_monitor: args.chain_monitor,
10963 tx_broadcaster: args.tx_broadcaster,
10964 router: args.router,
10966 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10968 inbound_payment_key: expanded_inbound_key,
10969 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10970 pending_outbound_payments: pending_outbounds,
10971 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10973 forward_htlcs: Mutex::new(forward_htlcs),
10974 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10975 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10976 id_to_peer: Mutex::new(id_to_peer),
10977 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10978 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10980 probing_cookie_secret: probing_cookie_secret.unwrap(),
10982 our_network_pubkey,
10985 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10987 per_peer_state: FairRwLock::new(per_peer_state),
10989 pending_events: Mutex::new(pending_events_read),
10990 pending_events_processor: AtomicBool::new(false),
10991 pending_background_events: Mutex::new(pending_background_events),
10992 total_consistency_lock: RwLock::new(()),
10993 background_events_processed_since_startup: AtomicBool::new(false),
10995 event_persist_notifier: Notifier::new(),
10996 needs_persist_flag: AtomicBool::new(false),
10998 funding_batch_states: Mutex::new(BTreeMap::new()),
11000 pending_offers_messages: Mutex::new(Vec::new()),
11002 entropy_source: args.entropy_source,
11003 node_signer: args.node_signer,
11004 signer_provider: args.signer_provider,
11006 logger: args.logger,
11007 default_configuration: args.default_config,
11010 for htlc_source in failed_htlcs.drain(..) {
11011 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
11012 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
11013 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
11014 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
11017 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
11018 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
11019 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
11020 // channel is closed we just assume that it probably came from an on-chain claim.
11021 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
11022 downstream_closed, true, downstream_node_id, downstream_funding);
11025 //TODO: Broadcast channel update for closed channels, but only after we've made a
11026 //connection or two.
11028 Ok((best_block_hash.clone(), channel_manager))
11034 use bitcoin::hashes::Hash;
11035 use bitcoin::hashes::sha256::Hash as Sha256;
11036 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
11037 use core::sync::atomic::Ordering;
11038 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
11039 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
11040 use crate::ln::ChannelId;
11041 use crate::ln::channelmanager::{create_recv_pending_htlc_info, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
11042 use crate::ln::features::{ChannelFeatures, NodeFeatures};
11043 use crate::ln::functional_test_utils::*;
11044 use crate::ln::msgs::{self, ErrorAction};
11045 use crate::ln::msgs::ChannelMessageHandler;
11046 use crate::routing::router::{Path, PaymentParameters, RouteHop, RouteParameters, find_route};
11047 use crate::util::errors::APIError;
11048 use crate::util::test_utils;
11049 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
11050 use crate::sign::EntropySource;
11053 fn test_notify_limits() {
11054 // Check that a few cases which don't require the persistence of a new ChannelManager,
11055 // indeed, do not cause the persistence of a new ChannelManager.
11056 let chanmon_cfgs = create_chanmon_cfgs(3);
11057 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11058 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
11059 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11061 // All nodes start with a persistable update pending as `create_network` connects each node
11062 // with all other nodes to make most tests simpler.
11063 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11064 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11065 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11067 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11069 // We check that the channel info nodes have doesn't change too early, even though we try
11070 // to connect messages with new values
11071 chan.0.contents.fee_base_msat *= 2;
11072 chan.1.contents.fee_base_msat *= 2;
11073 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
11074 &nodes[1].node.get_our_node_id()).pop().unwrap();
11075 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
11076 &nodes[0].node.get_our_node_id()).pop().unwrap();
11078 // The first two nodes (which opened a channel) should now require fresh persistence
11079 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11080 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11081 // ... but the last node should not.
11082 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11083 // After persisting the first two nodes they should no longer need fresh persistence.
11084 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11085 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11087 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
11088 // about the channel.
11089 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
11090 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
11091 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11093 // The nodes which are a party to the channel should also ignore messages from unrelated
11095 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
11096 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
11097 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
11098 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
11099 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11100 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11102 // At this point the channel info given by peers should still be the same.
11103 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11104 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11106 // An earlier version of handle_channel_update didn't check the directionality of the
11107 // update message and would always update the local fee info, even if our peer was
11108 // (spuriously) forwarding us our own channel_update.
11109 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
11110 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
11111 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
11113 // First deliver each peers' own message, checking that the node doesn't need to be
11114 // persisted and that its channel info remains the same.
11115 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
11116 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
11117 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11118 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11119 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11120 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11122 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
11123 // the channel info has updated.
11124 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
11125 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
11126 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11127 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11128 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
11129 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
11133 fn test_keysend_dup_hash_partial_mpp() {
11134 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
11136 let chanmon_cfgs = create_chanmon_cfgs(2);
11137 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11138 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11139 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11140 create_announced_chan_between_nodes(&nodes, 0, 1);
11142 // First, send a partial MPP payment.
11143 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
11144 let mut mpp_route = route.clone();
11145 mpp_route.paths.push(mpp_route.paths[0].clone());
11147 let payment_id = PaymentId([42; 32]);
11148 // Use the utility function send_payment_along_path to send the payment with MPP data which
11149 // indicates there are more HTLCs coming.
11150 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
11151 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
11152 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
11153 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
11154 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
11155 check_added_monitors!(nodes[0], 1);
11156 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11157 assert_eq!(events.len(), 1);
11158 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
11160 // Next, send a keysend payment with the same payment_hash and make sure it fails.
11161 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11162 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11163 check_added_monitors!(nodes[0], 1);
11164 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11165 assert_eq!(events.len(), 1);
11166 let ev = events.drain(..).next().unwrap();
11167 let payment_event = SendEvent::from_event(ev);
11168 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11169 check_added_monitors!(nodes[1], 0);
11170 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11171 expect_pending_htlcs_forwardable!(nodes[1]);
11172 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
11173 check_added_monitors!(nodes[1], 1);
11174 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11175 assert!(updates.update_add_htlcs.is_empty());
11176 assert!(updates.update_fulfill_htlcs.is_empty());
11177 assert_eq!(updates.update_fail_htlcs.len(), 1);
11178 assert!(updates.update_fail_malformed_htlcs.is_empty());
11179 assert!(updates.update_fee.is_none());
11180 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11181 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11182 expect_payment_failed!(nodes[0], our_payment_hash, true);
11184 // Send the second half of the original MPP payment.
11185 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
11186 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11187 check_added_monitors!(nodes[0], 1);
11188 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11189 assert_eq!(events.len(), 1);
11190 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11192 // Claim the full MPP payment. Note that we can't use a test utility like
11193 // claim_funds_along_route because the ordering of the messages causes the second half of the
11194 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11195 // lightning messages manually.
11196 nodes[1].node.claim_funds(payment_preimage);
11197 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11198 check_added_monitors!(nodes[1], 2);
11200 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11201 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11202 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11203 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11204 check_added_monitors!(nodes[0], 1);
11205 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11206 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11207 check_added_monitors!(nodes[1], 1);
11208 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11209 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11210 check_added_monitors!(nodes[1], 1);
11211 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11212 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11213 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11214 check_added_monitors!(nodes[0], 1);
11215 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11216 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11217 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11218 check_added_monitors!(nodes[0], 1);
11219 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11220 check_added_monitors!(nodes[1], 1);
11221 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11222 check_added_monitors!(nodes[1], 1);
11223 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11224 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11225 check_added_monitors!(nodes[0], 1);
11227 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11228 // path's success and a PaymentPathSuccessful event for each path's success.
11229 let events = nodes[0].node.get_and_clear_pending_events();
11230 assert_eq!(events.len(), 2);
11232 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11233 assert_eq!(payment_id, *actual_payment_id);
11234 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11235 assert_eq!(route.paths[0], *path);
11237 _ => panic!("Unexpected event"),
11240 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11241 assert_eq!(payment_id, *actual_payment_id);
11242 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11243 assert_eq!(route.paths[0], *path);
11245 _ => panic!("Unexpected event"),
11250 fn test_keysend_dup_payment_hash() {
11251 do_test_keysend_dup_payment_hash(false);
11252 do_test_keysend_dup_payment_hash(true);
11255 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11256 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11257 // outbound regular payment fails as expected.
11258 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11259 // fails as expected.
11260 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11261 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11262 // reject MPP keysend payments, since in this case where the payment has no payment
11263 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11264 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11265 // payment secrets and reject otherwise.
11266 let chanmon_cfgs = create_chanmon_cfgs(2);
11267 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11268 let mut mpp_keysend_cfg = test_default_channel_config();
11269 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11270 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11271 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11272 create_announced_chan_between_nodes(&nodes, 0, 1);
11273 let scorer = test_utils::TestScorer::new();
11274 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11276 // To start (1), send a regular payment but don't claim it.
11277 let expected_route = [&nodes[1]];
11278 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11280 // Next, attempt a keysend payment and make sure it fails.
11281 let route_params = RouteParameters::from_payment_params_and_value(
11282 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11283 TEST_FINAL_CLTV, false), 100_000);
11284 let route = find_route(
11285 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11286 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11288 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11289 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11290 check_added_monitors!(nodes[0], 1);
11291 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11292 assert_eq!(events.len(), 1);
11293 let ev = events.drain(..).next().unwrap();
11294 let payment_event = SendEvent::from_event(ev);
11295 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11296 check_added_monitors!(nodes[1], 0);
11297 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11298 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11299 // fails), the second will process the resulting failure and fail the HTLC backward
11300 expect_pending_htlcs_forwardable!(nodes[1]);
11301 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11302 check_added_monitors!(nodes[1], 1);
11303 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11304 assert!(updates.update_add_htlcs.is_empty());
11305 assert!(updates.update_fulfill_htlcs.is_empty());
11306 assert_eq!(updates.update_fail_htlcs.len(), 1);
11307 assert!(updates.update_fail_malformed_htlcs.is_empty());
11308 assert!(updates.update_fee.is_none());
11309 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11310 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11311 expect_payment_failed!(nodes[0], payment_hash, true);
11313 // Finally, claim the original payment.
11314 claim_payment(&nodes[0], &expected_route, payment_preimage);
11316 // To start (2), send a keysend payment but don't claim it.
11317 let payment_preimage = PaymentPreimage([42; 32]);
11318 let route = find_route(
11319 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11320 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11322 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11323 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11324 check_added_monitors!(nodes[0], 1);
11325 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11326 assert_eq!(events.len(), 1);
11327 let event = events.pop().unwrap();
11328 let path = vec![&nodes[1]];
11329 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11331 // Next, attempt a regular payment and make sure it fails.
11332 let payment_secret = PaymentSecret([43; 32]);
11333 nodes[0].node.send_payment_with_route(&route, payment_hash,
11334 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11335 check_added_monitors!(nodes[0], 1);
11336 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11337 assert_eq!(events.len(), 1);
11338 let ev = events.drain(..).next().unwrap();
11339 let payment_event = SendEvent::from_event(ev);
11340 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11341 check_added_monitors!(nodes[1], 0);
11342 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11343 expect_pending_htlcs_forwardable!(nodes[1]);
11344 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11345 check_added_monitors!(nodes[1], 1);
11346 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11347 assert!(updates.update_add_htlcs.is_empty());
11348 assert!(updates.update_fulfill_htlcs.is_empty());
11349 assert_eq!(updates.update_fail_htlcs.len(), 1);
11350 assert!(updates.update_fail_malformed_htlcs.is_empty());
11351 assert!(updates.update_fee.is_none());
11352 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11353 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11354 expect_payment_failed!(nodes[0], payment_hash, true);
11356 // Finally, succeed the keysend payment.
11357 claim_payment(&nodes[0], &expected_route, payment_preimage);
11359 // To start (3), send a keysend payment but don't claim it.
11360 let payment_id_1 = PaymentId([44; 32]);
11361 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11362 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11363 check_added_monitors!(nodes[0], 1);
11364 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11365 assert_eq!(events.len(), 1);
11366 let event = events.pop().unwrap();
11367 let path = vec![&nodes[1]];
11368 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11370 // Next, attempt a keysend payment and make sure it fails.
11371 let route_params = RouteParameters::from_payment_params_and_value(
11372 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11375 let route = find_route(
11376 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11377 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11379 let payment_id_2 = PaymentId([45; 32]);
11380 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11381 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11382 check_added_monitors!(nodes[0], 1);
11383 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11384 assert_eq!(events.len(), 1);
11385 let ev = events.drain(..).next().unwrap();
11386 let payment_event = SendEvent::from_event(ev);
11387 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11388 check_added_monitors!(nodes[1], 0);
11389 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11390 expect_pending_htlcs_forwardable!(nodes[1]);
11391 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11392 check_added_monitors!(nodes[1], 1);
11393 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11394 assert!(updates.update_add_htlcs.is_empty());
11395 assert!(updates.update_fulfill_htlcs.is_empty());
11396 assert_eq!(updates.update_fail_htlcs.len(), 1);
11397 assert!(updates.update_fail_malformed_htlcs.is_empty());
11398 assert!(updates.update_fee.is_none());
11399 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11400 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11401 expect_payment_failed!(nodes[0], payment_hash, true);
11403 // Finally, claim the original payment.
11404 claim_payment(&nodes[0], &expected_route, payment_preimage);
11408 fn test_keysend_hash_mismatch() {
11409 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11410 // preimage doesn't match the msg's payment hash.
11411 let chanmon_cfgs = create_chanmon_cfgs(2);
11412 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11413 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11414 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11416 let payer_pubkey = nodes[0].node.get_our_node_id();
11417 let payee_pubkey = nodes[1].node.get_our_node_id();
11419 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11420 let route_params = RouteParameters::from_payment_params_and_value(
11421 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11422 let network_graph = nodes[0].network_graph;
11423 let first_hops = nodes[0].node.list_usable_channels();
11424 let scorer = test_utils::TestScorer::new();
11425 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11426 let route = find_route(
11427 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11428 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11431 let test_preimage = PaymentPreimage([42; 32]);
11432 let mismatch_payment_hash = PaymentHash([43; 32]);
11433 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11434 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11435 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11436 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11437 check_added_monitors!(nodes[0], 1);
11439 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11440 assert_eq!(updates.update_add_htlcs.len(), 1);
11441 assert!(updates.update_fulfill_htlcs.is_empty());
11442 assert!(updates.update_fail_htlcs.is_empty());
11443 assert!(updates.update_fail_malformed_htlcs.is_empty());
11444 assert!(updates.update_fee.is_none());
11445 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11447 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11451 fn test_keysend_msg_with_secret_err() {
11452 // Test that we error as expected if we receive a keysend payment that includes a payment
11453 // secret when we don't support MPP keysend.
11454 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11455 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11456 let chanmon_cfgs = create_chanmon_cfgs(2);
11457 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11458 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11459 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11461 let payer_pubkey = nodes[0].node.get_our_node_id();
11462 let payee_pubkey = nodes[1].node.get_our_node_id();
11464 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11465 let route_params = RouteParameters::from_payment_params_and_value(
11466 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11467 let network_graph = nodes[0].network_graph;
11468 let first_hops = nodes[0].node.list_usable_channels();
11469 let scorer = test_utils::TestScorer::new();
11470 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11471 let route = find_route(
11472 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11473 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11476 let test_preimage = PaymentPreimage([42; 32]);
11477 let test_secret = PaymentSecret([43; 32]);
11478 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
11479 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11480 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11481 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11482 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11483 PaymentId(payment_hash.0), None, session_privs).unwrap();
11484 check_added_monitors!(nodes[0], 1);
11486 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11487 assert_eq!(updates.update_add_htlcs.len(), 1);
11488 assert!(updates.update_fulfill_htlcs.is_empty());
11489 assert!(updates.update_fail_htlcs.is_empty());
11490 assert!(updates.update_fail_malformed_htlcs.is_empty());
11491 assert!(updates.update_fee.is_none());
11492 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11494 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11498 fn test_multi_hop_missing_secret() {
11499 let chanmon_cfgs = create_chanmon_cfgs(4);
11500 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11501 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11502 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11504 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11505 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11506 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11507 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11509 // Marshall an MPP route.
11510 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11511 let path = route.paths[0].clone();
11512 route.paths.push(path);
11513 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11514 route.paths[0].hops[0].short_channel_id = chan_1_id;
11515 route.paths[0].hops[1].short_channel_id = chan_3_id;
11516 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11517 route.paths[1].hops[0].short_channel_id = chan_2_id;
11518 route.paths[1].hops[1].short_channel_id = chan_4_id;
11520 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11521 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11523 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11524 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11526 _ => panic!("unexpected error")
11531 fn test_drop_disconnected_peers_when_removing_channels() {
11532 let chanmon_cfgs = create_chanmon_cfgs(2);
11533 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11534 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11535 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11537 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11539 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11540 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11542 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11543 check_closed_broadcast!(nodes[0], true);
11544 check_added_monitors!(nodes[0], 1);
11545 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11548 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11549 // disconnected and the channel between has been force closed.
11550 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11551 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11552 assert_eq!(nodes_0_per_peer_state.len(), 1);
11553 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11556 nodes[0].node.timer_tick_occurred();
11559 // Assert that nodes[1] has now been removed.
11560 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11565 fn bad_inbound_payment_hash() {
11566 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11567 let chanmon_cfgs = create_chanmon_cfgs(2);
11568 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11569 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11570 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11572 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11573 let payment_data = msgs::FinalOnionHopData {
11575 total_msat: 100_000,
11578 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11579 // payment verification fails as expected.
11580 let mut bad_payment_hash = payment_hash.clone();
11581 bad_payment_hash.0[0] += 1;
11582 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11583 Ok(_) => panic!("Unexpected ok"),
11585 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11589 // Check that using the original payment hash succeeds.
11590 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11594 fn test_id_to_peer_coverage() {
11595 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
11596 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11597 // the channel is successfully closed.
11598 let chanmon_cfgs = create_chanmon_cfgs(2);
11599 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11600 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11601 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11603 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11604 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11605 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11606 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11607 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11609 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11610 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
11612 // Ensure that the `id_to_peer` map is empty until either party has received the
11613 // funding transaction, and have the real `channel_id`.
11614 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11615 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11618 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11620 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
11621 // as it has the funding transaction.
11622 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11623 assert_eq!(nodes_0_lock.len(), 1);
11624 assert!(nodes_0_lock.contains_key(&channel_id));
11627 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11629 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11631 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11633 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11634 assert_eq!(nodes_0_lock.len(), 1);
11635 assert!(nodes_0_lock.contains_key(&channel_id));
11637 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11640 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
11641 // as it has the funding transaction.
11642 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11643 assert_eq!(nodes_1_lock.len(), 1);
11644 assert!(nodes_1_lock.contains_key(&channel_id));
11646 check_added_monitors!(nodes[1], 1);
11647 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11648 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11649 check_added_monitors!(nodes[0], 1);
11650 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11651 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11652 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11653 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11655 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11656 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11657 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11658 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11660 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11661 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11663 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
11664 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11665 // fee for the closing transaction has been negotiated and the parties has the other
11666 // party's signature for the fee negotiated closing transaction.)
11667 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11668 assert_eq!(nodes_0_lock.len(), 1);
11669 assert!(nodes_0_lock.contains_key(&channel_id));
11673 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11674 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11675 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11676 // kept in the `nodes[1]`'s `id_to_peer` map.
11677 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11678 assert_eq!(nodes_1_lock.len(), 1);
11679 assert!(nodes_1_lock.contains_key(&channel_id));
11682 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11684 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11685 // therefore has all it needs to fully close the channel (both signatures for the
11686 // closing transaction).
11687 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
11688 // fully closed by `nodes[0]`.
11689 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11691 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
11692 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11693 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11694 assert_eq!(nodes_1_lock.len(), 1);
11695 assert!(nodes_1_lock.contains_key(&channel_id));
11698 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
11700 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
11702 // Assert that the channel has now been removed from both parties `id_to_peer` map once
11703 // they both have everything required to fully close the channel.
11704 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11706 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
11708 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
11709 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
11712 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11713 let expected_message = format!("Not connected to node: {}", expected_public_key);
11714 check_api_error_message(expected_message, res_err)
11717 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11718 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
11719 check_api_error_message(expected_message, res_err)
11722 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
11723 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
11724 check_api_error_message(expected_message, res_err)
11727 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
11728 let expected_message = "No such channel awaiting to be accepted.".to_string();
11729 check_api_error_message(expected_message, res_err)
11732 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
11734 Err(APIError::APIMisuseError { err }) => {
11735 assert_eq!(err, expected_err_message);
11737 Err(APIError::ChannelUnavailable { err }) => {
11738 assert_eq!(err, expected_err_message);
11740 Ok(_) => panic!("Unexpected Ok"),
11741 Err(_) => panic!("Unexpected Error"),
11746 fn test_api_calls_with_unkown_counterparty_node() {
11747 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
11748 // expected if the `counterparty_node_id` is an unkown peer in the
11749 // `ChannelManager::per_peer_state` map.
11750 let chanmon_cfg = create_chanmon_cfgs(2);
11751 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11752 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11753 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11756 let channel_id = ChannelId::from_bytes([4; 32]);
11757 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
11758 let intercept_id = InterceptId([0; 32]);
11760 // Test the API functions.
11761 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
11763 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
11765 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
11767 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
11769 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
11771 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
11773 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
11777 fn test_api_calls_with_unavailable_channel() {
11778 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
11779 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
11780 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
11781 // the given `channel_id`.
11782 let chanmon_cfg = create_chanmon_cfgs(2);
11783 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11784 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11785 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11787 let counterparty_node_id = nodes[1].node.get_our_node_id();
11790 let channel_id = ChannelId::from_bytes([4; 32]);
11792 // Test the API functions.
11793 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
11795 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11797 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11799 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11801 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
11803 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
11807 fn test_connection_limiting() {
11808 // Test that we limit un-channel'd peers and un-funded channels properly.
11809 let chanmon_cfgs = create_chanmon_cfgs(2);
11810 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11811 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11812 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11814 // Note that create_network connects the nodes together for us
11816 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11817 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11819 let mut funding_tx = None;
11820 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11821 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11822 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11825 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11826 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
11827 funding_tx = Some(tx.clone());
11828 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
11829 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11831 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11832 check_added_monitors!(nodes[1], 1);
11833 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11835 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11837 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11838 check_added_monitors!(nodes[0], 1);
11839 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11841 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11844 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11845 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11846 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11847 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11848 open_channel_msg.temporary_channel_id);
11850 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11851 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11853 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11854 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11855 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11856 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11857 peer_pks.push(random_pk);
11858 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11859 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11862 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11863 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11864 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11865 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11866 }, true).unwrap_err();
11868 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11869 // them if we have too many un-channel'd peers.
11870 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11871 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11872 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11873 for ev in chan_closed_events {
11874 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11876 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11877 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11879 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11880 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11881 }, true).unwrap_err();
11883 // but of course if the connection is outbound its allowed...
11884 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11885 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11886 }, false).unwrap();
11887 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11889 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11890 // Even though we accept one more connection from new peers, we won't actually let them
11892 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11893 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11894 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11895 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11896 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11898 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11899 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11900 open_channel_msg.temporary_channel_id);
11902 // Of course, however, outbound channels are always allowed
11903 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
11904 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
11906 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
11907 // "protected" and can connect again.
11908 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
11909 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11910 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11912 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
11914 // Further, because the first channel was funded, we can open another channel with
11916 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11917 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11921 fn test_outbound_chans_unlimited() {
11922 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
11923 let chanmon_cfgs = create_chanmon_cfgs(2);
11924 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11925 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11926 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11928 // Note that create_network connects the nodes together for us
11930 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11931 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11933 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11934 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11935 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11936 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11939 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11941 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11942 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11943 open_channel_msg.temporary_channel_id);
11945 // but we can still open an outbound channel.
11946 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11947 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11949 // but even with such an outbound channel, additional inbound channels will still fail.
11950 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11951 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11952 open_channel_msg.temporary_channel_id);
11956 fn test_0conf_limiting() {
11957 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11958 // flag set and (sometimes) accept channels as 0conf.
11959 let chanmon_cfgs = create_chanmon_cfgs(2);
11960 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11961 let mut settings = test_default_channel_config();
11962 settings.manually_accept_inbound_channels = true;
11963 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11964 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11966 // Note that create_network connects the nodes together for us
11968 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11969 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11971 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11972 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11973 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11974 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11975 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11976 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11979 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11980 let events = nodes[1].node.get_and_clear_pending_events();
11982 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11983 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11985 _ => panic!("Unexpected event"),
11987 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11988 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11991 // If we try to accept a channel from another peer non-0conf it will fail.
11992 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11993 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11994 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11995 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11997 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11998 let events = nodes[1].node.get_and_clear_pending_events();
12000 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12001 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
12002 Err(APIError::APIMisuseError { err }) =>
12003 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
12007 _ => panic!("Unexpected event"),
12009 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
12010 open_channel_msg.temporary_channel_id);
12012 // ...however if we accept the same channel 0conf it should work just fine.
12013 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
12014 let events = nodes[1].node.get_and_clear_pending_events();
12016 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12017 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
12019 _ => panic!("Unexpected event"),
12021 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
12025 fn reject_excessively_underpaying_htlcs() {
12026 let chanmon_cfg = create_chanmon_cfgs(1);
12027 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12028 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
12029 let node = create_network(1, &node_cfg, &node_chanmgr);
12030 let sender_intended_amt_msat = 100;
12031 let extra_fee_msat = 10;
12032 let hop_data = msgs::InboundOnionPayload::Receive {
12034 outgoing_cltv_value: 42,
12035 payment_metadata: None,
12036 keysend_preimage: None,
12037 payment_data: Some(msgs::FinalOnionHopData {
12038 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
12040 custom_tlvs: Vec::new(),
12042 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
12043 // intended amount, we fail the payment.
12044 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12045 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
12046 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
12047 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
12048 current_height, node[0].node.default_configuration.accept_mpp_keysend)
12050 assert_eq!(err_code, 19);
12051 } else { panic!(); }
12053 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
12054 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
12056 outgoing_cltv_value: 42,
12057 payment_metadata: None,
12058 keysend_preimage: None,
12059 payment_data: Some(msgs::FinalOnionHopData {
12060 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
12062 custom_tlvs: Vec::new(),
12064 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12065 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
12066 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
12067 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
12071 fn test_final_incorrect_cltv(){
12072 let chanmon_cfg = create_chanmon_cfgs(1);
12073 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12074 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
12075 let node = create_network(1, &node_cfg, &node_chanmgr);
12077 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12078 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
12080 outgoing_cltv_value: 22,
12081 payment_metadata: None,
12082 keysend_preimage: None,
12083 payment_data: Some(msgs::FinalOnionHopData {
12084 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
12086 custom_tlvs: Vec::new(),
12087 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
12088 node[0].node.default_configuration.accept_mpp_keysend);
12090 // Should not return an error as this condition:
12091 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
12092 // is not satisfied.
12093 assert!(result.is_ok());
12097 fn test_inbound_anchors_manual_acceptance() {
12098 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
12099 // flag set and (sometimes) accept channels as 0conf.
12100 let mut anchors_cfg = test_default_channel_config();
12101 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12103 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
12104 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
12106 let chanmon_cfgs = create_chanmon_cfgs(3);
12107 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12108 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
12109 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
12110 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12112 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12113 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12115 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12116 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12117 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
12118 match &msg_events[0] {
12119 MessageSendEvent::HandleError { node_id, action } => {
12120 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
12122 ErrorAction::SendErrorMessage { msg } =>
12123 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
12124 _ => panic!("Unexpected error action"),
12127 _ => panic!("Unexpected event"),
12130 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12131 let events = nodes[2].node.get_and_clear_pending_events();
12133 Event::OpenChannelRequest { temporary_channel_id, .. } =>
12134 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
12135 _ => panic!("Unexpected event"),
12137 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12141 fn test_anchors_zero_fee_htlc_tx_fallback() {
12142 // Tests that if both nodes support anchors, but the remote node does not want to accept
12143 // anchor channels at the moment, an error it sent to the local node such that it can retry
12144 // the channel without the anchors feature.
12145 let chanmon_cfgs = create_chanmon_cfgs(2);
12146 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12147 let mut anchors_config = test_default_channel_config();
12148 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12149 anchors_config.manually_accept_inbound_channels = true;
12150 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
12151 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12153 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
12154 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12155 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
12157 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12158 let events = nodes[1].node.get_and_clear_pending_events();
12160 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12161 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
12163 _ => panic!("Unexpected event"),
12166 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
12167 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
12169 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12170 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
12172 // Since nodes[1] should not have accepted the channel, it should
12173 // not have generated any events.
12174 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12178 fn test_update_channel_config() {
12179 let chanmon_cfg = create_chanmon_cfgs(2);
12180 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12181 let mut user_config = test_default_channel_config();
12182 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12183 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12184 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
12185 let channel = &nodes[0].node.list_channels()[0];
12187 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12188 let events = nodes[0].node.get_and_clear_pending_msg_events();
12189 assert_eq!(events.len(), 0);
12191 user_config.channel_config.forwarding_fee_base_msat += 10;
12192 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12193 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12194 let events = nodes[0].node.get_and_clear_pending_msg_events();
12195 assert_eq!(events.len(), 1);
12197 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12198 _ => panic!("expected BroadcastChannelUpdate event"),
12201 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12202 let events = nodes[0].node.get_and_clear_pending_msg_events();
12203 assert_eq!(events.len(), 0);
12205 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12206 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12207 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12208 ..Default::default()
12210 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12211 let events = nodes[0].node.get_and_clear_pending_msg_events();
12212 assert_eq!(events.len(), 1);
12214 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12215 _ => panic!("expected BroadcastChannelUpdate event"),
12218 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12219 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12220 forwarding_fee_proportional_millionths: Some(new_fee),
12221 ..Default::default()
12223 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12224 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12225 let events = nodes[0].node.get_and_clear_pending_msg_events();
12226 assert_eq!(events.len(), 1);
12228 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12229 _ => panic!("expected BroadcastChannelUpdate event"),
12232 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12233 // should be applied to ensure update atomicity as specified in the API docs.
12234 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12235 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12236 let new_fee = current_fee + 100;
12239 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12240 forwarding_fee_proportional_millionths: Some(new_fee),
12241 ..Default::default()
12243 Err(APIError::ChannelUnavailable { err: _ }),
12246 // Check that the fee hasn't changed for the channel that exists.
12247 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12248 let events = nodes[0].node.get_and_clear_pending_msg_events();
12249 assert_eq!(events.len(), 0);
12253 fn test_payment_display() {
12254 let payment_id = PaymentId([42; 32]);
12255 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12256 let payment_hash = PaymentHash([42; 32]);
12257 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12258 let payment_preimage = PaymentPreimage([42; 32]);
12259 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12263 fn test_trigger_lnd_force_close() {
12264 let chanmon_cfg = create_chanmon_cfgs(2);
12265 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12266 let user_config = test_default_channel_config();
12267 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12268 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12270 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12271 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12272 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12273 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12274 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12275 check_closed_broadcast(&nodes[0], 1, true);
12276 check_added_monitors(&nodes[0], 1);
12277 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12279 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12280 assert_eq!(txn.len(), 1);
12281 check_spends!(txn[0], funding_tx);
12284 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12285 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12287 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12288 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12290 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12291 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12292 }, false).unwrap();
12293 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12294 let channel_reestablish = get_event_msg!(
12295 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12297 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12299 // Alice should respond with an error since the channel isn't known, but a bogus
12300 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12301 // close even if it was an lnd node.
12302 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12303 assert_eq!(msg_events.len(), 2);
12304 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12305 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12306 assert_eq!(msg.next_local_commitment_number, 0);
12307 assert_eq!(msg.next_remote_commitment_number, 0);
12308 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12309 } else { panic!() };
12310 check_closed_broadcast(&nodes[1], 1, true);
12311 check_added_monitors(&nodes[1], 1);
12312 let expected_close_reason = ClosureReason::ProcessingError {
12313 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12315 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12317 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12318 assert_eq!(txn.len(), 1);
12319 check_spends!(txn[0], funding_tx);
12324 fn test_peel_payment_onion() {
12326 let secp_ctx = Secp256k1::new();
12328 let bob = crate::sign::KeysManager::new(&[2; 32], 42, 42);
12329 let bob_pk = PublicKey::from_secret_key(&secp_ctx, &bob.get_node_secret_key());
12330 let charlie = crate::sign::KeysManager::new(&[3; 32], 42, 42);
12331 let charlie_pk = PublicKey::from_secret_key(&secp_ctx, &charlie.get_node_secret_key());
12333 let (session_priv, total_amt_msat, cur_height, recipient_onion, preimage, payment_hash,
12334 prng_seed, hops, recipient_amount, pay_secret) = payment_onion_args(bob_pk, charlie_pk);
12338 blinded_tail: None,
12341 let (amount_msat, cltv_expiry, onion) = create_payment_onion(
12342 &secp_ctx, &path, &session_priv, total_amt_msat, recipient_onion, cur_height,
12343 payment_hash, Some(preimage), prng_seed
12346 let msg = make_update_add_msg(amount_msat, cltv_expiry, payment_hash, onion);
12347 let logger = test_utils::TestLogger::with_id("bob".to_string());
12349 let peeled = peel_payment_onion(&msg, &&bob, &&logger, &secp_ctx, cur_height, true)
12350 .map_err(|e| e.msg).unwrap();
12352 let next_onion = match peeled.routing {
12353 PendingHTLCRouting::Forward { onion_packet, short_channel_id: _ } => {
12356 _ => panic!("expected a forwarded onion"),
12359 let msg2 = make_update_add_msg(amount_msat, cltv_expiry, payment_hash, next_onion);
12360 let peeled2 = peel_payment_onion(&msg2, &&charlie, &&logger, &secp_ctx, cur_height, true)
12361 .map_err(|e| e.msg).unwrap();
12363 match peeled2.routing {
12364 PendingHTLCRouting::ReceiveKeysend { payment_preimage, payment_data, incoming_cltv_expiry, .. } => {
12365 assert_eq!(payment_preimage, preimage);
12366 assert_eq!(peeled2.outgoing_amt_msat, recipient_amount);
12367 assert_eq!(incoming_cltv_expiry, peeled2.outgoing_cltv_value);
12368 let msgs::FinalOnionHopData{total_msat, payment_secret} = payment_data.unwrap();
12369 assert_eq!(total_msat, total_amt_msat);
12370 assert_eq!(payment_secret, pay_secret);
12372 _ => panic!("expected a received keysend"),
12376 fn make_update_add_msg(
12377 amount_msat: u64, cltv_expiry: u32, payment_hash: PaymentHash,
12378 onion_routing_packet: msgs::OnionPacket
12379 ) -> msgs::UpdateAddHTLC {
12380 msgs::UpdateAddHTLC {
12381 channel_id: ChannelId::from_bytes([0; 32]),
12386 onion_routing_packet,
12387 skimmed_fee_msat: None,
12391 fn payment_onion_args(hop_pk: PublicKey, recipient_pk: PublicKey) -> (
12392 SecretKey, u64, u32, RecipientOnionFields, PaymentPreimage, PaymentHash, [u8; 32],
12393 Vec<RouteHop>, u64, PaymentSecret,
12395 let session_priv_bytes = [42; 32];
12396 let session_priv = SecretKey::from_slice(&session_priv_bytes).unwrap();
12397 let total_amt_msat = 1000;
12398 let cur_height = 1000;
12399 let pay_secret = PaymentSecret([99; 32]);
12400 let recipient_onion = RecipientOnionFields::secret_only(pay_secret);
12401 let preimage_bytes = [43; 32];
12402 let preimage = PaymentPreimage(preimage_bytes);
12403 let rhash_bytes = Sha256::hash(&preimage_bytes).to_byte_array();
12404 let payment_hash = PaymentHash(rhash_bytes);
12405 let prng_seed = [44; 32];
12407 // make a route alice -> bob -> charlie
12409 let recipient_amount = total_amt_msat - hop_fee;
12414 cltv_expiry_delta: 42,
12415 short_channel_id: 1,
12416 node_features: NodeFeatures::empty(),
12417 channel_features: ChannelFeatures::empty(),
12418 maybe_announced_channel: false,
12421 pubkey: recipient_pk,
12422 fee_msat: recipient_amount,
12423 cltv_expiry_delta: 42,
12424 short_channel_id: 2,
12425 node_features: NodeFeatures::empty(),
12426 channel_features: ChannelFeatures::empty(),
12427 maybe_announced_channel: false,
12431 (session_priv, total_amt_msat, cur_height, recipient_onion, preimage, payment_hash,
12432 prng_seed, hops, recipient_amount, pay_secret)
12435 pub fn create_payment_onion<T: bitcoin::secp256k1::Signing>(
12436 secp_ctx: &Secp256k1<T>, path: &Path, session_priv: &SecretKey, total_msat: u64,
12437 recipient_onion: RecipientOnionFields, best_block_height: u32, payment_hash: PaymentHash,
12438 keysend_preimage: Option<PaymentPreimage>, prng_seed: [u8; 32]
12439 ) -> Result<(u64, u32, msgs::OnionPacket), ()> {
12440 let onion_keys = super::onion_utils::construct_onion_keys(&secp_ctx, &path, &session_priv).map_err(|_| ())?;
12441 let (onion_payloads, htlc_msat, htlc_cltv) = super::onion_utils::build_onion_payloads(
12445 best_block_height + 1,
12447 ).map_err(|_| ())?;
12448 let onion_packet = super::onion_utils::construct_onion_packet(
12449 onion_payloads, onion_keys, prng_seed, &payment_hash
12451 Ok((htlc_msat, htlc_cltv, onion_packet))
12457 use crate::chain::Listen;
12458 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12459 use crate::sign::{KeysManager, InMemorySigner};
12460 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12461 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12462 use crate::ln::functional_test_utils::*;
12463 use crate::ln::msgs::{ChannelMessageHandler, Init};
12464 use crate::routing::gossip::NetworkGraph;
12465 use crate::routing::router::{PaymentParameters, RouteParameters};
12466 use crate::util::test_utils;
12467 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12469 use bitcoin::blockdata::locktime::absolute::LockTime;
12470 use bitcoin::hashes::Hash;
12471 use bitcoin::hashes::sha256::Hash as Sha256;
12472 use bitcoin::{Block, Transaction, TxOut};
12474 use crate::sync::{Arc, Mutex, RwLock};
12476 use criterion::Criterion;
12478 type Manager<'a, P> = ChannelManager<
12479 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12480 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12481 &'a test_utils::TestLogger, &'a P>,
12482 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12483 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12484 &'a test_utils::TestLogger>;
12486 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12487 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12489 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12490 type CM = Manager<'chan_mon_cfg, P>;
12492 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12494 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12497 pub fn bench_sends(bench: &mut Criterion) {
12498 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12501 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12502 // Do a simple benchmark of sending a payment back and forth between two nodes.
12503 // Note that this is unrealistic as each payment send will require at least two fsync
12505 let network = bitcoin::Network::Testnet;
12506 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12508 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12509 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12510 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12511 let scorer = RwLock::new(test_utils::TestScorer::new());
12512 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
12514 let mut config: UserConfig = Default::default();
12515 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12516 config.channel_handshake_config.minimum_depth = 1;
12518 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12519 let seed_a = [1u8; 32];
12520 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12521 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12523 best_block: BestBlock::from_network(network),
12524 }, genesis_block.header.time);
12525 let node_a_holder = ANodeHolder { node: &node_a };
12527 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12528 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12529 let seed_b = [2u8; 32];
12530 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12531 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12533 best_block: BestBlock::from_network(network),
12534 }, genesis_block.header.time);
12535 let node_b_holder = ANodeHolder { node: &node_b };
12537 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12538 features: node_b.init_features(), networks: None, remote_network_address: None
12540 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12541 features: node_a.init_features(), networks: None, remote_network_address: None
12542 }, false).unwrap();
12543 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12544 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12545 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12548 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12549 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12550 value: 8_000_000, script_pubkey: output_script,
12552 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12553 } else { panic!(); }
12555 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12556 let events_b = node_b.get_and_clear_pending_events();
12557 assert_eq!(events_b.len(), 1);
12558 match events_b[0] {
12559 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12560 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12562 _ => panic!("Unexpected event"),
12565 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12566 let events_a = node_a.get_and_clear_pending_events();
12567 assert_eq!(events_a.len(), 1);
12568 match events_a[0] {
12569 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12570 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12572 _ => panic!("Unexpected event"),
12575 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12577 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12578 Listen::block_connected(&node_a, &block, 1);
12579 Listen::block_connected(&node_b, &block, 1);
12581 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12582 let msg_events = node_a.get_and_clear_pending_msg_events();
12583 assert_eq!(msg_events.len(), 2);
12584 match msg_events[0] {
12585 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12586 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12587 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12591 match msg_events[1] {
12592 MessageSendEvent::SendChannelUpdate { .. } => {},
12596 let events_a = node_a.get_and_clear_pending_events();
12597 assert_eq!(events_a.len(), 1);
12598 match events_a[0] {
12599 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12600 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12602 _ => panic!("Unexpected event"),
12605 let events_b = node_b.get_and_clear_pending_events();
12606 assert_eq!(events_b.len(), 1);
12607 match events_b[0] {
12608 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12609 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12611 _ => panic!("Unexpected event"),
12614 let mut payment_count: u64 = 0;
12615 macro_rules! send_payment {
12616 ($node_a: expr, $node_b: expr) => {
12617 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12618 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12619 let mut payment_preimage = PaymentPreimage([0; 32]);
12620 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12621 payment_count += 1;
12622 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
12623 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12625 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12626 PaymentId(payment_hash.0),
12627 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12628 Retry::Attempts(0)).unwrap();
12629 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12630 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12631 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12632 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12633 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12634 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12635 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12637 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12638 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12639 $node_b.claim_funds(payment_preimage);
12640 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12642 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12643 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12644 assert_eq!(node_id, $node_a.get_our_node_id());
12645 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12646 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12648 _ => panic!("Failed to generate claim event"),
12651 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12652 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12653 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12654 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12656 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12660 bench.bench_function(bench_name, |b| b.iter(|| {
12661 send_payment!(node_a, node_b);
12662 send_payment!(node_b, node_a);