Stop failing back HTLCs on temporary monitor udpate failures
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
24
25 use bitcoin::hashes::{Hash, HashEngine};
26 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
29 use bitcoin::hashes::cmp::fixed_time_eq;
30 use bitcoin::hash_types::BlockHash;
31
32 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
33 use bitcoin::secp256k1::Secp256k1;
34 use bitcoin::secp256k1::ecdh::SharedSecret;
35 use bitcoin::secp256k1;
36
37 use chain;
38 use chain::Watch;
39 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
40 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
41 use chain::transaction::{OutPoint, TransactionData};
42 use ln::channel::{Channel, ChannelError};
43 use ln::features::{InitFeatures, NodeFeatures};
44 use routing::router::{Route, RouteHop};
45 use ln::msgs;
46 use ln::msgs::NetAddress;
47 use ln::onion_utils;
48 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
49 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
50 use util::config::UserConfig;
51 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
52 use util::{byte_utils, events};
53 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
54 use util::chacha20::{ChaCha20, ChaChaReader};
55 use util::logger::Logger;
56 use util::errors::APIError;
57
58 use std::{cmp, mem};
59 use std::collections::{HashMap, hash_map, HashSet};
60 use std::io::{Cursor, Read};
61 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
62 use std::sync::atomic::{AtomicUsize, Ordering};
63 use std::time::Duration;
64 #[cfg(any(test, feature = "allow_wallclock_use"))]
65 use std::time::Instant;
66 use std::marker::{Sync, Send};
67 use std::ops::Deref;
68 use bitcoin::hashes::hex::ToHex;
69
70 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
71 //
72 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
73 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
74 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
75 //
76 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
77 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
78 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
79 // before we forward it.
80 //
81 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
82 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
83 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
84 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
85 // our payment, which we can use to decode errors or inform the user that the payment was sent.
86
87 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
88 enum PendingHTLCRouting {
89         Forward {
90                 onion_packet: msgs::OnionPacket,
91                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
92         },
93         Receive {
94                 payment_data: Option<msgs::FinalOnionHopData>,
95                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
96         },
97 }
98
99 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
100 pub(super) struct PendingHTLCInfo {
101         routing: PendingHTLCRouting,
102         incoming_shared_secret: [u8; 32],
103         payment_hash: PaymentHash,
104         pub(super) amt_to_forward: u64,
105         pub(super) outgoing_cltv_value: u32,
106 }
107
108 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
109 pub(super) enum HTLCFailureMsg {
110         Relay(msgs::UpdateFailHTLC),
111         Malformed(msgs::UpdateFailMalformedHTLC),
112 }
113
114 /// Stores whether we can't forward an HTLC or relevant forwarding info
115 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
116 pub(super) enum PendingHTLCStatus {
117         Forward(PendingHTLCInfo),
118         Fail(HTLCFailureMsg),
119 }
120
121 pub(super) enum HTLCForwardInfo {
122         AddHTLC {
123                 forward_info: PendingHTLCInfo,
124
125                 // These fields are produced in `forward_htlcs()` and consumed in
126                 // `process_pending_htlc_forwards()` for constructing the
127                 // `HTLCSource::PreviousHopData` for failed and forwarded
128                 // HTLCs.
129                 prev_short_channel_id: u64,
130                 prev_htlc_id: u64,
131                 prev_funding_outpoint: OutPoint,
132         },
133         FailHTLC {
134                 htlc_id: u64,
135                 err_packet: msgs::OnionErrorPacket,
136         },
137 }
138
139 /// Tracks the inbound corresponding to an outbound HTLC
140 #[derive(Clone, PartialEq)]
141 pub(crate) struct HTLCPreviousHopData {
142         short_channel_id: u64,
143         htlc_id: u64,
144         incoming_packet_shared_secret: [u8; 32],
145
146         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
147         // channel with a preimage provided by the forward channel.
148         outpoint: OutPoint,
149 }
150
151 struct ClaimableHTLC {
152         prev_hop: HTLCPreviousHopData,
153         value: u64,
154         /// Filled in when the HTLC was received with a payment_secret packet, which contains a
155         /// total_msat (which may differ from value if this is a Multi-Path Payment) and a
156         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
157         /// are part of the same payment.
158         payment_data: Option<msgs::FinalOnionHopData>,
159         cltv_expiry: u32,
160 }
161
162 /// Tracks the inbound corresponding to an outbound HTLC
163 #[derive(Clone, PartialEq)]
164 pub(crate) enum HTLCSource {
165         PreviousHopData(HTLCPreviousHopData),
166         OutboundRoute {
167                 path: Vec<RouteHop>,
168                 session_priv: SecretKey,
169                 /// Technically we can recalculate this from the route, but we cache it here to avoid
170                 /// doing a double-pass on route when we get a failure back
171                 first_hop_htlc_msat: u64,
172         },
173 }
174 #[cfg(test)]
175 impl HTLCSource {
176         pub fn dummy() -> Self {
177                 HTLCSource::OutboundRoute {
178                         path: Vec::new(),
179                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
180                         first_hop_htlc_msat: 0,
181                 }
182         }
183 }
184
185 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
186 pub(super) enum HTLCFailReason {
187         LightningError {
188                 err: msgs::OnionErrorPacket,
189         },
190         Reason {
191                 failure_code: u16,
192                 data: Vec<u8>,
193         }
194 }
195
196 /// payment_hash type, use to cross-lock hop
197 /// (C-not exported) as we just use [u8; 32] directly
198 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
199 pub struct PaymentHash(pub [u8;32]);
200 /// payment_preimage type, use to route payment between hop
201 /// (C-not exported) as we just use [u8; 32] directly
202 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
203 pub struct PaymentPreimage(pub [u8;32]);
204 /// payment_secret type, use to authenticate sender to the receiver and tie MPP HTLCs together
205 /// (C-not exported) as we just use [u8; 32] directly
206 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
207 pub struct PaymentSecret(pub [u8;32]);
208
209 type ShutdownResult = (Option<OutPoint>, ChannelMonitorUpdate, Vec<(HTLCSource, PaymentHash)>);
210
211 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
212 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
213 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
214 /// channel_state lock. We then return the set of things that need to be done outside the lock in
215 /// this struct and call handle_error!() on it.
216
217 struct MsgHandleErrInternal {
218         err: msgs::LightningError,
219         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
220 }
221 impl MsgHandleErrInternal {
222         #[inline]
223         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
224                 Self {
225                         err: LightningError {
226                                 err: err.clone(),
227                                 action: msgs::ErrorAction::SendErrorMessage {
228                                         msg: msgs::ErrorMessage {
229                                                 channel_id,
230                                                 data: err
231                                         },
232                                 },
233                         },
234                         shutdown_finish: None,
235                 }
236         }
237         #[inline]
238         fn ignore_no_close(err: String) -> Self {
239                 Self {
240                         err: LightningError {
241                                 err,
242                                 action: msgs::ErrorAction::IgnoreError,
243                         },
244                         shutdown_finish: None,
245                 }
246         }
247         #[inline]
248         fn from_no_close(err: msgs::LightningError) -> Self {
249                 Self { err, shutdown_finish: None }
250         }
251         #[inline]
252         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
253                 Self {
254                         err: LightningError {
255                                 err: err.clone(),
256                                 action: msgs::ErrorAction::SendErrorMessage {
257                                         msg: msgs::ErrorMessage {
258                                                 channel_id,
259                                                 data: err
260                                         },
261                                 },
262                         },
263                         shutdown_finish: Some((shutdown_res, channel_update)),
264                 }
265         }
266         #[inline]
267         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
268                 Self {
269                         err: match err {
270                                 ChannelError::Ignore(msg) => LightningError {
271                                         err: msg,
272                                         action: msgs::ErrorAction::IgnoreError,
273                                 },
274                                 ChannelError::Close(msg) => LightningError {
275                                         err: msg.clone(),
276                                         action: msgs::ErrorAction::SendErrorMessage {
277                                                 msg: msgs::ErrorMessage {
278                                                         channel_id,
279                                                         data: msg
280                                                 },
281                                         },
282                                 },
283                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
284                                         err: msg.clone(),
285                                         action: msgs::ErrorAction::SendErrorMessage {
286                                                 msg: msgs::ErrorMessage {
287                                                         channel_id,
288                                                         data: msg
289                                                 },
290                                         },
291                                 },
292                         },
293                         shutdown_finish: None,
294                 }
295         }
296 }
297
298 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
299 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
300 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
301 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
302 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
303
304 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
305 /// be sent in the order they appear in the return value, however sometimes the order needs to be
306 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
307 /// they were originally sent). In those cases, this enum is also returned.
308 #[derive(Clone, PartialEq)]
309 pub(super) enum RAACommitmentOrder {
310         /// Send the CommitmentUpdate messages first
311         CommitmentFirst,
312         /// Send the RevokeAndACK message first
313         RevokeAndACKFirst,
314 }
315
316 // Note this is only exposed in cfg(test):
317 pub(super) struct ChannelHolder<Signer: Sign> {
318         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
319         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
320         /// short channel id -> forward infos. Key of 0 means payments received
321         /// Note that while this is held in the same mutex as the channels themselves, no consistency
322         /// guarantees are made about the existence of a channel with the short id here, nor the short
323         /// ids in the PendingHTLCInfo!
324         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
325         /// (payment_hash, payment_secret) -> Vec<HTLCs> for tracking HTLCs that
326         /// were to us and can be failed/claimed by the user
327         /// Note that while this is held in the same mutex as the channels themselves, no consistency
328         /// guarantees are made about the channels given here actually existing anymore by the time you
329         /// go to read them!
330         claimable_htlcs: HashMap<(PaymentHash, Option<PaymentSecret>), Vec<ClaimableHTLC>>,
331         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
332         /// for broadcast messages, where ordering isn't as strict).
333         pub(super) pending_msg_events: Vec<MessageSendEvent>,
334 }
335
336 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
337 /// the latest Init features we heard from the peer.
338 struct PeerState {
339         latest_features: InitFeatures,
340 }
341
342 #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
343 const ERR: () = "You need at least 32 bit pointers (well, usize, but we'll assume they're the same) for ChannelManager::latest_block_height";
344
345 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
346 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
347 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
348 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
349 /// issues such as overly long function definitions. Note that the ChannelManager can take any
350 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
351 /// concrete type of the KeysManager.
352 pub type SimpleArcChannelManager<M, T, F, L> = Arc<ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>>;
353
354 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
355 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
356 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
357 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
358 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
359 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
360 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
361 /// concrete type of the KeysManager.
362 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
363
364 /// Manager which keeps track of a number of channels and sends messages to the appropriate
365 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
366 ///
367 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
368 /// to individual Channels.
369 ///
370 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
371 /// all peers during write/read (though does not modify this instance, only the instance being
372 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
373 /// called funding_transaction_generated for outbound channels).
374 ///
375 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
376 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
377 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
378 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
379 /// the serialization process). If the deserialized version is out-of-date compared to the
380 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
381 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
382 ///
383 /// Note that the deserializer is only implemented for (Sha256dHash, ChannelManager), which
384 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
385 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
386 /// block_connected() to step towards your best block) upon deserialization before using the
387 /// object!
388 ///
389 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
390 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
391 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
392 /// offline for a full minute. In order to track this, you must call
393 /// timer_chan_freshness_every_min roughly once per minute, though it doesn't have to be perfect.
394 ///
395 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
396 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
397 /// essentially you should default to using a SimpleRefChannelManager, and use a
398 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
399 /// you're using lightning-net-tokio.
400 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
401         where M::Target: chain::Watch<Signer>,
402         T::Target: BroadcasterInterface,
403         K::Target: KeysInterface<Signer = Signer>,
404         F::Target: FeeEstimator,
405                                 L::Target: Logger,
406 {
407         default_configuration: UserConfig,
408         genesis_hash: BlockHash,
409         fee_estimator: F,
410         chain_monitor: M,
411         tx_broadcaster: T,
412
413         #[cfg(test)]
414         pub(super) latest_block_height: AtomicUsize,
415         #[cfg(not(test))]
416         latest_block_height: AtomicUsize,
417         last_block_hash: Mutex<BlockHash>,
418         secp_ctx: Secp256k1<secp256k1::All>,
419
420         #[cfg(any(test, feature = "_test_utils"))]
421         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
422         #[cfg(not(any(test, feature = "_test_utils")))]
423         channel_state: Mutex<ChannelHolder<Signer>>,
424         our_network_key: SecretKey,
425
426         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
427         /// value increases strictly since we don't assume access to a time source.
428         last_node_announcement_serial: AtomicUsize,
429
430         /// The bulk of our storage will eventually be here (channels and message queues and the like).
431         /// If we are connected to a peer we always at least have an entry here, even if no channels
432         /// are currently open with that peer.
433         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
434         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
435         /// new channel.
436         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
437
438         pending_events: Mutex<Vec<events::Event>>,
439         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
440         /// Essentially just when we're serializing ourselves out.
441         /// Taken first everywhere where we are making changes before any other locks.
442         /// When acquiring this lock in read mode, rather than acquiring it directly, call
443         /// `PersistenceNotifierGuard::new(..)` and pass the lock to it, to ensure the PersistenceNotifier
444         /// the lock contains sends out a notification when the lock is released.
445         total_consistency_lock: RwLock<()>,
446
447         persistence_notifier: PersistenceNotifier,
448
449         keys_manager: K,
450
451         logger: L,
452 }
453
454 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
455 /// desirable to notify any listeners on `wait_timeout`/`wait` that new updates are available for
456 /// persistence. Therefore, this struct is responsible for locking the total consistency lock and,
457 /// upon going out of scope, sending the aforementioned notification (since the lock being released
458 /// indicates that the updates are ready for persistence).
459 struct PersistenceNotifierGuard<'a> {
460         persistence_notifier: &'a PersistenceNotifier,
461         // We hold onto this result so the lock doesn't get released immediately.
462         _read_guard: RwLockReadGuard<'a, ()>,
463 }
464
465 impl<'a> PersistenceNotifierGuard<'a> {
466         fn new(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> Self {
467                 let read_guard = lock.read().unwrap();
468
469                 Self {
470                         persistence_notifier: notifier,
471                         _read_guard: read_guard,
472                 }
473         }
474 }
475
476 impl<'a> Drop for PersistenceNotifierGuard<'a> {
477         fn drop(&mut self) {
478                 self.persistence_notifier.notify();
479         }
480 }
481
482 /// The amount of time we require our counterparty wait to claim their money (ie time between when
483 /// we, or our watchtower, must check for them having broadcast a theft transaction).
484 pub(crate) const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
485 /// The amount of time we're willing to wait to claim money back to us
486 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 6 * 24 * 7;
487
488 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
489 /// HTLC's CLTV. This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
490 /// ie the node we forwarded the payment on to should always have enough room to reliably time out
491 /// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
492 /// CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
493 const CLTV_EXPIRY_DELTA: u16 = 6 * 12; //TODO?
494 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
495
496 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
497 // ie that if the next-hop peer fails the HTLC within
498 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
499 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
500 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
501 // LATENCY_GRACE_PERIOD_BLOCKS.
502 #[deny(const_err)]
503 #[allow(dead_code)]
504 const CHECK_CLTV_EXPIRY_SANITY: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
505
506 // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
507 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
508 #[deny(const_err)]
509 #[allow(dead_code)]
510 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
511
512 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
513 #[derive(Clone)]
514 pub struct ChannelDetails {
515         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
516         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
517         /// Note that this means this value is *not* persistent - it can change once during the
518         /// lifetime of the channel.
519         pub channel_id: [u8; 32],
520         /// The position of the funding transaction in the chain. None if the funding transaction has
521         /// not yet been confirmed and the channel fully opened.
522         pub short_channel_id: Option<u64>,
523         /// The node_id of our counterparty
524         pub remote_network_id: PublicKey,
525         /// The Features the channel counterparty provided upon last connection.
526         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
527         /// many routing-relevant features are present in the init context.
528         pub counterparty_features: InitFeatures,
529         /// The value, in satoshis, of this channel as appears in the funding output
530         pub channel_value_satoshis: u64,
531         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
532         pub user_id: u64,
533         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
534         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
535         /// available for inclusion in new outbound HTLCs). This further does not include any pending
536         /// outgoing HTLCs which are awaiting some other resolution to be sent.
537         pub outbound_capacity_msat: u64,
538         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
539         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
540         /// available for inclusion in new inbound HTLCs).
541         /// Note that there are some corner cases not fully handled here, so the actual available
542         /// inbound capacity may be slightly higher than this.
543         pub inbound_capacity_msat: u64,
544         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
545         /// the peer is connected, and (c) no monitor update failure is pending resolution.
546         pub is_live: bool,
547 }
548
549 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
550 /// Err() type describing which state the payment is in, see the description of individual enum
551 /// states for more.
552 #[derive(Clone, Debug)]
553 pub enum PaymentSendFailure {
554         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
555         /// send the payment at all. No channel state has been changed or messages sent to peers, and
556         /// once you've changed the parameter at error, you can freely retry the payment in full.
557         ParameterError(APIError),
558         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
559         /// from attempting to send the payment at all. No channel state has been changed or messages
560         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
561         /// payment in full.
562         ///
563         /// The results here are ordered the same as the paths in the route object which was passed to
564         /// send_payment.
565         PathParameterError(Vec<Result<(), APIError>>),
566         /// All paths which were attempted failed to send, with no channel state change taking place.
567         /// You can freely retry the payment in full (though you probably want to do so over different
568         /// paths than the ones selected).
569         AllFailedRetrySafe(Vec<APIError>),
570         /// Some paths which were attempted failed to send, though possibly not all. At least some
571         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
572         /// in over-/re-payment.
573         ///
574         /// The results here are ordered the same as the paths in the route object which was passed to
575         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
576         /// retried (though there is currently no API with which to do so).
577         ///
578         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
579         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
580         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
581         /// with the latest update_id.
582         PartialFailure(Vec<Result<(), APIError>>),
583 }
584
585 macro_rules! handle_error {
586         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
587                 match $internal {
588                         Ok(msg) => Ok(msg),
589                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
590                                 #[cfg(debug_assertions)]
591                                 {
592                                         // In testing, ensure there are no deadlocks where the lock is already held upon
593                                         // entering the macro.
594                                         assert!($self.channel_state.try_lock().is_ok());
595                                 }
596
597                                 let mut msg_events = Vec::with_capacity(2);
598
599                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
600                                         $self.finish_force_close_channel(shutdown_res);
601                                         if let Some(update) = update_option {
602                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
603                                                         msg: update
604                                                 });
605                                         }
606                                 }
607
608                                 log_error!($self.logger, "{}", err.err);
609                                 if let msgs::ErrorAction::IgnoreError = err.action {
610                                 } else {
611                                         msg_events.push(events::MessageSendEvent::HandleError {
612                                                 node_id: $counterparty_node_id,
613                                                 action: err.action.clone()
614                                         });
615                                 }
616
617                                 if !msg_events.is_empty() {
618                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
619                                 }
620
621                                 // Return error in case higher-API need one
622                                 Err(err)
623                         },
624                 }
625         }
626 }
627
628 macro_rules! break_chan_entry {
629         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
630                 match $res {
631                         Ok(res) => res,
632                         Err(ChannelError::Ignore(msg)) => {
633                                 break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
634                         },
635                         Err(ChannelError::Close(msg)) => {
636                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
637                                 let (channel_id, mut chan) = $entry.remove_entry();
638                                 if let Some(short_id) = chan.get_short_channel_id() {
639                                         $channel_state.short_to_id.remove(&short_id);
640                                 }
641                                 break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
642                         },
643                         Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
644                 }
645         }
646 }
647
648 macro_rules! try_chan_entry {
649         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
650                 match $res {
651                         Ok(res) => res,
652                         Err(ChannelError::Ignore(msg)) => {
653                                 return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
654                         },
655                         Err(ChannelError::Close(msg)) => {
656                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
657                                 let (channel_id, mut chan) = $entry.remove_entry();
658                                 if let Some(short_id) = chan.get_short_channel_id() {
659                                         $channel_state.short_to_id.remove(&short_id);
660                                 }
661                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
662                         },
663                         Err(ChannelError::CloseDelayBroadcast(msg)) => {
664                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
665                                 let (channel_id, mut chan) = $entry.remove_entry();
666                                 if let Some(short_id) = chan.get_short_channel_id() {
667                                         $channel_state.short_to_id.remove(&short_id);
668                                 }
669                                 let shutdown_res = chan.force_shutdown(false);
670                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
671                         }
672                 }
673         }
674 }
675
676 macro_rules! handle_monitor_err {
677         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
678                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
679         };
680         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
681                 match $err {
682                         ChannelMonitorUpdateErr::PermanentFailure => {
683                                 log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
684                                 let (channel_id, mut chan) = $entry.remove_entry();
685                                 if let Some(short_id) = chan.get_short_channel_id() {
686                                         $channel_state.short_to_id.remove(&short_id);
687                                 }
688                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
689                                 // chain in a confused state! We need to move them into the ChannelMonitor which
690                                 // will be responsible for failing backwards once things confirm on-chain.
691                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
692                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
693                                 // us bother trying to claim it just to forward on to another peer. If we're
694                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
695                                 // given up the preimage yet, so might as well just wait until the payment is
696                                 // retried, avoiding the on-chain fees.
697                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
698                                 res
699                         },
700                         ChannelMonitorUpdateErr::TemporaryFailure => {
701                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
702                                                 log_bytes!($entry.key()[..]),
703                                                 if $resend_commitment && $resend_raa {
704                                                                 match $action_type {
705                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
706                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
707                                                                 }
708                                                         } else if $resend_commitment { "commitment" }
709                                                         else if $resend_raa { "RAA" }
710                                                         else { "nothing" },
711                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
712                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
713                                 if !$resend_commitment {
714                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
715                                 }
716                                 if !$resend_raa {
717                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
718                                 }
719                                 $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
720                                 Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
721                         },
722                 }
723         }
724 }
725
726 macro_rules! return_monitor_err {
727         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
728                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
729         };
730         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
731                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
732         }
733 }
734
735 // Does not break in case of TemporaryFailure!
736 macro_rules! maybe_break_monitor_err {
737         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
738                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
739                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
740                                 break e;
741                         },
742                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
743                 }
744         }
745 }
746
747 macro_rules! handle_chan_restoration_locked {
748         ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
749          $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
750          $pending_forwards: expr, $broadcast_safe: expr, $funding_locked: expr) => { {
751                 let mut htlc_forwards = None;
752                 let mut funding_broadcast_safe = None;
753                 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
754                 let channel_id = $channel_entry.get().channel_id();
755
756                 let res = loop {
757                         let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
758                         if !forwards.is_empty() {
759                                 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
760                                         $channel_entry.get().get_funding_txo().unwrap(), forwards));
761                         }
762                         if $chanmon_update.is_some() {
763                                 assert!($commitment_update.is_some());
764                                 assert!($funding_locked.is_none());
765                         }
766
767                         if let Some(msg) = $funding_locked {
768                                 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
769                                         node_id: counterparty_node_id,
770                                         msg,
771                                 });
772                                 if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
773                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
774                                                 node_id: counterparty_node_id,
775                                                 msg: announcement_sigs,
776                                         });
777                                 }
778                                 $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), channel_id);
779                         }
780
781                         macro_rules! handle_cs { () => {
782                                 if let Some(monitor_update) = $chanmon_update {
783                                         assert!($order == RAACommitmentOrder::RevokeAndACKFirst);
784                                         assert!(!$broadcast_safe);
785                                         assert!($commitment_update.is_some());
786                                         if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
787                                                 break handle_monitor_err!($self, e, $channel_state, $channel_entry, RAACommitmentOrder::CommitmentFirst, false, true);
788                                         }
789                                 }
790                                 if let Some(update) = $commitment_update {
791                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
792                                                 node_id: counterparty_node_id,
793                                                 updates: update,
794                                         });
795                                 }
796                         } }
797                         macro_rules! handle_raa { () => {
798                                 if let Some(revoke_and_ack) = $raa {
799                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
800                                                 node_id: counterparty_node_id,
801                                                 msg: revoke_and_ack,
802                                         });
803                                 }
804                         } }
805                         match $order {
806                                 RAACommitmentOrder::CommitmentFirst => {
807                                         handle_cs!();
808                                         handle_raa!();
809                                 },
810                                 RAACommitmentOrder::RevokeAndACKFirst => {
811                                         handle_raa!();
812                                         handle_cs!();
813                                 },
814                         }
815                         if $broadcast_safe {
816                                 funding_broadcast_safe = Some(events::Event::FundingBroadcastSafe {
817                                         funding_txo: $channel_entry.get().get_funding_txo().unwrap(),
818                                         user_channel_id: $channel_entry.get().get_user_id(),
819                                 });
820                         }
821                         break Ok(());
822                 };
823
824                 (htlc_forwards, funding_broadcast_safe, res, channel_id, counterparty_node_id)
825         } }
826 }
827
828 macro_rules! post_handle_chan_restoration {
829         ($self: ident, $locked_res: expr, $pending_failures: expr, $forwarding_failures: expr) => { {
830                 let (htlc_forwards, funding_broadcast_safe, res, channel_id, counterparty_node_id) = $locked_res;
831
832                 let _ = handle_error!($self, res, counterparty_node_id);
833
834                 if let Some(ev) = funding_broadcast_safe {
835                         $self.pending_events.lock().unwrap().push(ev);
836                 }
837
838                 let forwarding_failures: Vec<(HTLCSource, PaymentHash)> = $forwarding_failures; // Force type-checking to resolve
839                 $self.fail_holding_cell_htlcs(forwarding_failures, channel_id);
840
841                 let mut pending_failures: Vec<(HTLCSource, PaymentHash, HTLCFailReason)> = $pending_failures; // Force type-checking to resolve
842                 for failure in pending_failures.drain(..) {
843                         $self.fail_htlc_backwards_internal($self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
844                 }
845                 if let Some(forwards) = htlc_forwards {
846                         $self.forward_htlcs(&mut [forwards][..]);
847                 }
848         } }
849 }
850
851 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
852         where M::Target: chain::Watch<Signer>,
853         T::Target: BroadcasterInterface,
854         K::Target: KeysInterface<Signer = Signer>,
855         F::Target: FeeEstimator,
856         L::Target: Logger,
857 {
858         /// Constructs a new ChannelManager to hold several channels and route between them.
859         ///
860         /// This is the main "logic hub" for all channel-related actions, and implements
861         /// ChannelMessageHandler.
862         ///
863         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
864         ///
865         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
866         ///
867         /// Users must provide the current blockchain height from which to track onchain channel
868         /// funding outpoints and send payments with reliable timelocks.
869         ///
870         /// Users need to notify the new ChannelManager when a new block is connected or
871         /// disconnected using its `block_connected` and `block_disconnected` methods.
872         pub fn new(network: Network, fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, current_blockchain_height: usize) -> Self {
873                 let mut secp_ctx = Secp256k1::new();
874                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
875
876                 ChannelManager {
877                         default_configuration: config.clone(),
878                         genesis_hash: genesis_block(network).header.block_hash(),
879                         fee_estimator: fee_est,
880                         chain_monitor,
881                         tx_broadcaster,
882
883                         latest_block_height: AtomicUsize::new(current_blockchain_height),
884                         last_block_hash: Mutex::new(Default::default()),
885                         secp_ctx,
886
887                         channel_state: Mutex::new(ChannelHolder{
888                                 by_id: HashMap::new(),
889                                 short_to_id: HashMap::new(),
890                                 forward_htlcs: HashMap::new(),
891                                 claimable_htlcs: HashMap::new(),
892                                 pending_msg_events: Vec::new(),
893                         }),
894                         our_network_key: keys_manager.get_node_secret(),
895
896                         last_node_announcement_serial: AtomicUsize::new(0),
897
898                         per_peer_state: RwLock::new(HashMap::new()),
899
900                         pending_events: Mutex::new(Vec::new()),
901                         total_consistency_lock: RwLock::new(()),
902                         persistence_notifier: PersistenceNotifier::new(),
903
904                         keys_manager,
905
906                         logger,
907                 }
908         }
909
910         /// Creates a new outbound channel to the given remote node and with the given value.
911         ///
912         /// user_id will be provided back as user_channel_id in FundingGenerationReady and
913         /// FundingBroadcastSafe events to allow tracking of which events correspond with which
914         /// create_channel call. Note that user_channel_id defaults to 0 for inbound channels, so you
915         /// may wish to avoid using 0 for user_id here.
916         ///
917         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
918         /// PeerManager::process_events afterwards.
919         ///
920         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
921         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
922         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
923                 if channel_value_satoshis < 1000 {
924                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
925                 }
926
927                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
928                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
929                 let res = channel.get_open_channel(self.genesis_hash.clone());
930
931                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
932                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
933                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
934
935                 let mut channel_state = self.channel_state.lock().unwrap();
936                 match channel_state.by_id.entry(channel.channel_id()) {
937                         hash_map::Entry::Occupied(_) => {
938                                 if cfg!(feature = "fuzztarget") {
939                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
940                                 } else {
941                                         panic!("RNG is bad???");
942                                 }
943                         },
944                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
945                 }
946                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
947                         node_id: their_network_key,
948                         msg: res,
949                 });
950                 Ok(())
951         }
952
953         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
954                 let mut res = Vec::new();
955                 {
956                         let channel_state = self.channel_state.lock().unwrap();
957                         res.reserve(channel_state.by_id.len());
958                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
959                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
960                                 res.push(ChannelDetails {
961                                         channel_id: (*channel_id).clone(),
962                                         short_channel_id: channel.get_short_channel_id(),
963                                         remote_network_id: channel.get_counterparty_node_id(),
964                                         counterparty_features: InitFeatures::empty(),
965                                         channel_value_satoshis: channel.get_value_satoshis(),
966                                         inbound_capacity_msat,
967                                         outbound_capacity_msat,
968                                         user_id: channel.get_user_id(),
969                                         is_live: channel.is_live(),
970                                 });
971                         }
972                 }
973                 let per_peer_state = self.per_peer_state.read().unwrap();
974                 for chan in res.iter_mut() {
975                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
976                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
977                         }
978                 }
979                 res
980         }
981
982         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
983         /// more information.
984         pub fn list_channels(&self) -> Vec<ChannelDetails> {
985                 self.list_channels_with_filter(|_| true)
986         }
987
988         /// Gets the list of usable channels, in random order. Useful as an argument to
989         /// get_route to ensure non-announced channels are used.
990         ///
991         /// These are guaranteed to have their is_live value set to true, see the documentation for
992         /// ChannelDetails::is_live for more info on exactly what the criteria are.
993         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
994                 // Note we use is_live here instead of usable which leads to somewhat confused
995                 // internal/external nomenclature, but that's ok cause that's probably what the user
996                 // really wanted anyway.
997                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
998         }
999
1000         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1001         /// will be accepted on the given channel, and after additional timeout/the closing of all
1002         /// pending HTLCs, the channel will be closed on chain.
1003         ///
1004         /// May generate a SendShutdown message event on success, which should be relayed.
1005         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1006                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1007
1008                 let (mut failed_htlcs, chan_option) = {
1009                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1010                         let channel_state = &mut *channel_state_lock;
1011                         match channel_state.by_id.entry(channel_id.clone()) {
1012                                 hash_map::Entry::Occupied(mut chan_entry) => {
1013                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1014                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1015                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1016                                                 msg: shutdown_msg
1017                                         });
1018                                         if chan_entry.get().is_shutdown() {
1019                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1020                                                         channel_state.short_to_id.remove(&short_id);
1021                                                 }
1022                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1023                                         } else { (failed_htlcs, None) }
1024                                 },
1025                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1026                         }
1027                 };
1028                 for htlc_source in failed_htlcs.drain(..) {
1029                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1030                 }
1031                 let chan_update = if let Some(chan) = chan_option {
1032                         if let Ok(update) = self.get_channel_update(&chan) {
1033                                 Some(update)
1034                         } else { None }
1035                 } else { None };
1036
1037                 if let Some(update) = chan_update {
1038                         let mut channel_state = self.channel_state.lock().unwrap();
1039                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1040                                 msg: update
1041                         });
1042                 }
1043
1044                 Ok(())
1045         }
1046
1047         #[inline]
1048         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1049                 let (funding_txo_option, monitor_update, mut failed_htlcs) = shutdown_res;
1050                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1051                 for htlc_source in failed_htlcs.drain(..) {
1052                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1053                 }
1054                 if let Some(funding_txo) = funding_txo_option {
1055                         // There isn't anything we can do if we get an update failure - we're already
1056                         // force-closing. The monitor update on the required in-memory copy should broadcast
1057                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1058                         // ignore the result here.
1059                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1060                 }
1061         }
1062
1063         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<(), APIError> {
1064                 let mut chan = {
1065                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1066                         let channel_state = &mut *channel_state_lock;
1067                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1068                                 if let Some(node_id) = peer_node_id {
1069                                         if chan.get().get_counterparty_node_id() != *node_id {
1070                                                 // Error or Ok here doesn't matter - the result is only exposed publicly
1071                                                 // when peer_node_id is None anyway.
1072                                                 return Ok(());
1073                                         }
1074                                 }
1075                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1076                                         channel_state.short_to_id.remove(&short_id);
1077                                 }
1078                                 chan.remove_entry().1
1079                         } else {
1080                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1081                         }
1082                 };
1083                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1084                 self.finish_force_close_channel(chan.force_shutdown(true));
1085                 if let Ok(update) = self.get_channel_update(&chan) {
1086                         let mut channel_state = self.channel_state.lock().unwrap();
1087                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1088                                 msg: update
1089                         });
1090                 }
1091
1092                 Ok(())
1093         }
1094
1095         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1096         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1097         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1098                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1099                 self.force_close_channel_with_peer(channel_id, None)
1100         }
1101
1102         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1103         /// for each to the chain and rejecting new HTLCs on each.
1104         pub fn force_close_all_channels(&self) {
1105                 for chan in self.list_channels() {
1106                         let _ = self.force_close_channel(&chan.channel_id);
1107                 }
1108         }
1109
1110         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1111                 macro_rules! return_malformed_err {
1112                         ($msg: expr, $err_code: expr) => {
1113                                 {
1114                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1115                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1116                                                 channel_id: msg.channel_id,
1117                                                 htlc_id: msg.htlc_id,
1118                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1119                                                 failure_code: $err_code,
1120                                         })), self.channel_state.lock().unwrap());
1121                                 }
1122                         }
1123                 }
1124
1125                 if let Err(_) = msg.onion_routing_packet.public_key {
1126                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1127                 }
1128
1129                 let shared_secret = {
1130                         let mut arr = [0; 32];
1131                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1132                         arr
1133                 };
1134                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1135
1136                 if msg.onion_routing_packet.version != 0 {
1137                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1138                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1139                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1140                         //receiving node would have to brute force to figure out which version was put in the
1141                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1142                         //node knows the HMAC matched, so they already know what is there...
1143                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1144                 }
1145
1146                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1147                 hmac.input(&msg.onion_routing_packet.hop_data);
1148                 hmac.input(&msg.payment_hash.0[..]);
1149                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1150                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1151                 }
1152
1153                 let mut channel_state = None;
1154                 macro_rules! return_err {
1155                         ($msg: expr, $err_code: expr, $data: expr) => {
1156                                 {
1157                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1158                                         if channel_state.is_none() {
1159                                                 channel_state = Some(self.channel_state.lock().unwrap());
1160                                         }
1161                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1162                                                 channel_id: msg.channel_id,
1163                                                 htlc_id: msg.htlc_id,
1164                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1165                                         })), channel_state.unwrap());
1166                                 }
1167                         }
1168                 }
1169
1170                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1171                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1172                 let (next_hop_data, next_hop_hmac) = {
1173                         match msgs::OnionHopData::read(&mut chacha_stream) {
1174                                 Err(err) => {
1175                                         let error_code = match err {
1176                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1177                                                 msgs::DecodeError::UnknownRequiredFeature|
1178                                                 msgs::DecodeError::InvalidValue|
1179                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1180                                                 _ => 0x2000 | 2, // Should never happen
1181                                         };
1182                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1183                                 },
1184                                 Ok(msg) => {
1185                                         let mut hmac = [0; 32];
1186                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1187                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1188                                         }
1189                                         (msg, hmac)
1190                                 },
1191                         }
1192                 };
1193
1194                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1195                                 #[cfg(test)]
1196                                 {
1197                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1198                                         // We could do some fancy randomness test here, but, ehh, whatever.
1199                                         // This checks for the issue where you can calculate the path length given the
1200                                         // onion data as all the path entries that the originator sent will be here
1201                                         // as-is (and were originally 0s).
1202                                         // Of course reverse path calculation is still pretty easy given naive routing
1203                                         // algorithms, but this fixes the most-obvious case.
1204                                         let mut next_bytes = [0; 32];
1205                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1206                                         assert_ne!(next_bytes[..], [0; 32][..]);
1207                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1208                                         assert_ne!(next_bytes[..], [0; 32][..]);
1209                                 }
1210
1211                                 // OUR PAYMENT!
1212                                 // final_expiry_too_soon
1213                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1214                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1215                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1216                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1217                                 if (msg.cltv_expiry as u64) <= self.latest_block_height.load(Ordering::Acquire) as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1218                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1219                                 }
1220                                 // final_incorrect_htlc_amount
1221                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1222                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1223                                 }
1224                                 // final_incorrect_cltv_expiry
1225                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1226                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1227                                 }
1228
1229                                 let payment_data = match next_hop_data.format {
1230                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1231                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1232                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1233                                 };
1234
1235                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1236                                 // message, however that would leak that we are the recipient of this payment, so
1237                                 // instead we stay symmetric with the forwarding case, only responding (after a
1238                                 // delay) once they've send us a commitment_signed!
1239
1240                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1241                                         routing: PendingHTLCRouting::Receive {
1242                                                 payment_data,
1243                                                 incoming_cltv_expiry: msg.cltv_expiry,
1244                                         },
1245                                         payment_hash: msg.payment_hash.clone(),
1246                                         incoming_shared_secret: shared_secret,
1247                                         amt_to_forward: next_hop_data.amt_to_forward,
1248                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1249                                 })
1250                         } else {
1251                                 let mut new_packet_data = [0; 20*65];
1252                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1253                                 #[cfg(debug_assertions)]
1254                                 {
1255                                         // Check two things:
1256                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1257                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1258                                         // b) that we didn't somehow magically end up with extra data.
1259                                         let mut t = [0; 1];
1260                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1261                                 }
1262                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1263                                 // fill the onion hop data we'll forward to our next-hop peer.
1264                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1265
1266                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1267
1268                                 let blinding_factor = {
1269                                         let mut sha = Sha256::engine();
1270                                         sha.input(&new_pubkey.serialize()[..]);
1271                                         sha.input(&shared_secret);
1272                                         Sha256::from_engine(sha).into_inner()
1273                                 };
1274
1275                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1276                                         Err(e)
1277                                 } else { Ok(new_pubkey) };
1278
1279                                 let outgoing_packet = msgs::OnionPacket {
1280                                         version: 0,
1281                                         public_key,
1282                                         hop_data: new_packet_data,
1283                                         hmac: next_hop_hmac.clone(),
1284                                 };
1285
1286                                 let short_channel_id = match next_hop_data.format {
1287                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1288                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1289                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1290                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1291                                         },
1292                                 };
1293
1294                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1295                                         routing: PendingHTLCRouting::Forward {
1296                                                 onion_packet: outgoing_packet,
1297                                                 short_channel_id,
1298                                         },
1299                                         payment_hash: msg.payment_hash.clone(),
1300                                         incoming_shared_secret: shared_secret,
1301                                         amt_to_forward: next_hop_data.amt_to_forward,
1302                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1303                                 })
1304                         };
1305
1306                 channel_state = Some(self.channel_state.lock().unwrap());
1307                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1308                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1309                         // with a short_channel_id of 0. This is important as various things later assume
1310                         // short_channel_id is non-0 in any ::Forward.
1311                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1312                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1313                                 let forwarding_id = match id_option {
1314                                         None => { // unknown_next_peer
1315                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1316                                         },
1317                                         Some(id) => id.clone(),
1318                                 };
1319                                 if let Some((err, code, chan_update)) = loop {
1320                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1321
1322                                         // Note that we could technically not return an error yet here and just hope
1323                                         // that the connection is reestablished or monitor updated by the time we get
1324                                         // around to doing the actual forward, but better to fail early if we can and
1325                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1326                                         // on a small/per-node/per-channel scale.
1327                                         if !chan.is_live() { // channel_disabled
1328                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1329                                         }
1330                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1331                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1332                                         }
1333                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1334                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1335                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1336                                         }
1337                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + CLTV_EXPIRY_DELTA as u64 { // incorrect_cltv_expiry
1338                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1339                                         }
1340                                         let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1;
1341                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1342                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1343                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1344                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1345                                         }
1346                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1347                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1348                                         }
1349                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1350                                         // But, to be safe against policy reception, we use a longuer delay.
1351                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1352                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1353                                         }
1354
1355                                         break None;
1356                                 }
1357                                 {
1358                                         let mut res = Vec::with_capacity(8 + 128);
1359                                         if let Some(chan_update) = chan_update {
1360                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1361                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1362                                                 }
1363                                                 else if code == 0x1000 | 13 {
1364                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1365                                                 }
1366                                                 else if code == 0x1000 | 20 {
1367                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1368                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1369                                                 }
1370                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1371                                         }
1372                                         return_err!(err, code, &res[..]);
1373                                 }
1374                         }
1375                 }
1376
1377                 (pending_forward_info, channel_state.unwrap())
1378         }
1379
1380         /// only fails if the channel does not yet have an assigned short_id
1381         /// May be called with channel_state already locked!
1382         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1383                 let short_channel_id = match chan.get_short_channel_id() {
1384                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1385                         Some(id) => id,
1386                 };
1387
1388                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1389
1390                 let unsigned = msgs::UnsignedChannelUpdate {
1391                         chain_hash: self.genesis_hash,
1392                         short_channel_id,
1393                         timestamp: chan.get_update_time_counter(),
1394                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1395                         cltv_expiry_delta: CLTV_EXPIRY_DELTA,
1396                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1397                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1398                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1399                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1400                         excess_data: Vec::new(),
1401                 };
1402
1403                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1404                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1405
1406                 Ok(msgs::ChannelUpdate {
1407                         signature: sig,
1408                         contents: unsigned
1409                 })
1410         }
1411
1412         // Only public for testing, this should otherwise never be called direcly
1413         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1414                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1415                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1416                 let session_priv = SecretKey::from_slice(&self.keys_manager.get_secure_random_bytes()[..]).expect("RNG is busted");
1417
1418                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1419                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1420                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1421                 if onion_utils::route_size_insane(&onion_payloads) {
1422                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1423                 }
1424                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1425
1426                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1427
1428                 let err: Result<(), _> = loop {
1429                         let mut channel_lock = self.channel_state.lock().unwrap();
1430                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1431                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1432                                 Some(id) => id.clone(),
1433                         };
1434
1435                         let channel_state = &mut *channel_lock;
1436                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1437                                 match {
1438                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1439                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1440                                         }
1441                                         if !chan.get().is_live() {
1442                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1443                                         }
1444                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1445                                                 path: path.clone(),
1446                                                 session_priv: session_priv.clone(),
1447                                                 first_hop_htlc_msat: htlc_msat,
1448                                         }, onion_packet, &self.logger), channel_state, chan)
1449                                 } {
1450                                         Some((update_add, commitment_signed, monitor_update)) => {
1451                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1452                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1453                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1454                                                         // that we will resend the commitment update once monitor updating
1455                                                         // is restored. Therefore, we must return an error indicating that
1456                                                         // it is unsafe to retry the payment wholesale, which we do in the
1457                                                         // send_payment check for MonitorUpdateFailed, below.
1458                                                         return Err(APIError::MonitorUpdateFailed);
1459                                                 }
1460
1461                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1462                                                         node_id: path.first().unwrap().pubkey,
1463                                                         updates: msgs::CommitmentUpdate {
1464                                                                 update_add_htlcs: vec![update_add],
1465                                                                 update_fulfill_htlcs: Vec::new(),
1466                                                                 update_fail_htlcs: Vec::new(),
1467                                                                 update_fail_malformed_htlcs: Vec::new(),
1468                                                                 update_fee: None,
1469                                                                 commitment_signed,
1470                                                         },
1471                                                 });
1472                                         },
1473                                         None => {},
1474                                 }
1475                         } else { unreachable!(); }
1476                         return Ok(());
1477                 };
1478
1479                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1480                         Ok(_) => unreachable!(),
1481                         Err(e) => {
1482                                 Err(APIError::ChannelUnavailable { err: e.err })
1483                         },
1484                 }
1485         }
1486
1487         /// Sends a payment along a given route.
1488         ///
1489         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1490         /// fields for more info.
1491         ///
1492         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1493         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1494         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1495         /// specified in the last hop in the route! Thus, you should probably do your own
1496         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1497         /// payment") and prevent double-sends yourself.
1498         ///
1499         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1500         ///
1501         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1502         /// each entry matching the corresponding-index entry in the route paths, see
1503         /// PaymentSendFailure for more info.
1504         ///
1505         /// In general, a path may raise:
1506         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1507         ///    node public key) is specified.
1508         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1509         ///    (including due to previous monitor update failure or new permanent monitor update
1510         ///    failure).
1511         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1512         ///    relevant updates.
1513         ///
1514         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1515         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1516         /// different route unless you intend to pay twice!
1517         ///
1518         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1519         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1520         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1521         /// must not contain multiple paths as multi-path payments require a recipient-provided
1522         /// payment_secret.
1523         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1524         /// bit set (either as required or as available). If multiple paths are present in the Route,
1525         /// we assume the invoice had the basic_mpp feature set.
1526         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1527                 if route.paths.len() < 1 {
1528                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1529                 }
1530                 if route.paths.len() > 10 {
1531                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1532                         // limits. After we support retrying individual paths we should likely bump this, but
1533                         // for now more than 10 paths likely carries too much one-path failure.
1534                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1535                 }
1536                 let mut total_value = 0;
1537                 let our_node_id = self.get_our_node_id();
1538                 let mut path_errs = Vec::with_capacity(route.paths.len());
1539                 'path_check: for path in route.paths.iter() {
1540                         if path.len() < 1 || path.len() > 20 {
1541                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1542                                 continue 'path_check;
1543                         }
1544                         for (idx, hop) in path.iter().enumerate() {
1545                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1546                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1547                                         continue 'path_check;
1548                                 }
1549                         }
1550                         total_value += path.last().unwrap().fee_msat;
1551                         path_errs.push(Ok(()));
1552                 }
1553                 if path_errs.iter().any(|e| e.is_err()) {
1554                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1555                 }
1556
1557                 let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1;
1558                 let mut results = Vec::new();
1559                 for path in route.paths.iter() {
1560                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1561                 }
1562                 let mut has_ok = false;
1563                 let mut has_err = false;
1564                 for res in results.iter() {
1565                         if res.is_ok() { has_ok = true; }
1566                         if res.is_err() { has_err = true; }
1567                         if let &Err(APIError::MonitorUpdateFailed) = res {
1568                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1569                                 // PartialFailure.
1570                                 has_err = true;
1571                                 has_ok = true;
1572                                 break;
1573                         }
1574                 }
1575                 if has_err && has_ok {
1576                         Err(PaymentSendFailure::PartialFailure(results))
1577                 } else if has_err {
1578                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1579                 } else {
1580                         Ok(())
1581                 }
1582         }
1583
1584         /// Call this upon creation of a funding transaction for the given channel.
1585         ///
1586         /// Note that ALL inputs in the transaction pointed to by funding_txo MUST spend SegWit outputs
1587         /// or your counterparty can steal your funds!
1588         ///
1589         /// Panics if a funding transaction has already been provided for this channel.
1590         ///
1591         /// May panic if the funding_txo is duplicative with some other channel (note that this should
1592         /// be trivially prevented by using unique funding transaction keys per-channel).
1593         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_txo: OutPoint) {
1594                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1595
1596                 let (chan, msg) = {
1597                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1598                                 Some(mut chan) => {
1599                                         (chan.get_outbound_funding_created(funding_txo, &self.logger)
1600                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1601                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1602                                                 } else { unreachable!(); })
1603                                         , chan)
1604                                 },
1605                                 None => return
1606                         };
1607                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1608                                 Ok(funding_msg) => {
1609                                         (chan, funding_msg)
1610                                 },
1611                                 Err(_) => { return; }
1612                         }
1613                 };
1614
1615                 let mut channel_state = self.channel_state.lock().unwrap();
1616                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1617                         node_id: chan.get_counterparty_node_id(),
1618                         msg,
1619                 });
1620                 match channel_state.by_id.entry(chan.channel_id()) {
1621                         hash_map::Entry::Occupied(_) => {
1622                                 panic!("Generated duplicate funding txid?");
1623                         },
1624                         hash_map::Entry::Vacant(e) => {
1625                                 e.insert(chan);
1626                         }
1627                 }
1628         }
1629
1630         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1631                 if !chan.should_announce() {
1632                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1633                         return None
1634                 }
1635
1636                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1637                         Ok(res) => res,
1638                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1639                 };
1640                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1641                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1642
1643                 Some(msgs::AnnouncementSignatures {
1644                         channel_id: chan.channel_id(),
1645                         short_channel_id: chan.get_short_channel_id().unwrap(),
1646                         node_signature: our_node_sig,
1647                         bitcoin_signature: our_bitcoin_sig,
1648                 })
1649         }
1650
1651         #[allow(dead_code)]
1652         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1653         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1654         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1655         // message...
1656         const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1657         #[deny(const_err)]
1658         #[allow(dead_code)]
1659         // ...by failing to compile if the number of addresses that would be half of a message is
1660         // smaller than 500:
1661         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1662
1663         /// Generates a signed node_announcement from the given arguments and creates a
1664         /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1665         /// seen a channel_announcement from us (ie unless we have public channels open).
1666         ///
1667         /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1668         /// to humans. They carry no in-protocol meaning.
1669         ///
1670         /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1671         /// incoming connections. These will be broadcast to the network, publicly tying these
1672         /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1673         /// only Tor Onion addresses.
1674         ///
1675         /// Panics if addresses is absurdly large (more than 500).
1676         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], addresses: Vec<NetAddress>) {
1677                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1678
1679                 if addresses.len() > 500 {
1680                         panic!("More than half the message size was taken up by public addresses!");
1681                 }
1682
1683                 let announcement = msgs::UnsignedNodeAnnouncement {
1684                         features: NodeFeatures::known(),
1685                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1686                         node_id: self.get_our_node_id(),
1687                         rgb, alias, addresses,
1688                         excess_address_data: Vec::new(),
1689                         excess_data: Vec::new(),
1690                 };
1691                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1692
1693                 let mut channel_state = self.channel_state.lock().unwrap();
1694                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1695                         msg: msgs::NodeAnnouncement {
1696                                 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1697                                 contents: announcement
1698                         },
1699                 });
1700         }
1701
1702         /// Processes HTLCs which are pending waiting on random forward delay.
1703         ///
1704         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1705         /// Will likely generate further events.
1706         pub fn process_pending_htlc_forwards(&self) {
1707                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1708
1709                 let mut new_events = Vec::new();
1710                 let mut failed_forwards = Vec::new();
1711                 let mut handle_errors = Vec::new();
1712                 {
1713                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1714                         let channel_state = &mut *channel_state_lock;
1715
1716                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1717                                 if short_chan_id != 0 {
1718                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1719                                                 Some(chan_id) => chan_id.clone(),
1720                                                 None => {
1721                                                         failed_forwards.reserve(pending_forwards.len());
1722                                                         for forward_info in pending_forwards.drain(..) {
1723                                                                 match forward_info {
1724                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
1725                                                                                                    prev_funding_outpoint } => {
1726                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1727                                                                                         short_channel_id: prev_short_channel_id,
1728                                                                                         outpoint: prev_funding_outpoint,
1729                                                                                         htlc_id: prev_htlc_id,
1730                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
1731                                                                                 });
1732                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
1733                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
1734                                                                                 ));
1735                                                                         },
1736                                                                         HTLCForwardInfo::FailHTLC { .. } => {
1737                                                                                 // Channel went away before we could fail it. This implies
1738                                                                                 // the channel is now on chain and our counterparty is
1739                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
1740                                                                                 // problem, not ours.
1741                                                                         }
1742                                                                 }
1743                                                         }
1744                                                         continue;
1745                                                 }
1746                                         };
1747                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
1748                                                 let mut add_htlc_msgs = Vec::new();
1749                                                 let mut fail_htlc_msgs = Vec::new();
1750                                                 for forward_info in pending_forwards.drain(..) {
1751                                                         match forward_info {
1752                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1753                                                                                 routing: PendingHTLCRouting::Forward {
1754                                                                                         onion_packet, ..
1755                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
1756                                                                                 prev_funding_outpoint } => {
1757                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
1758                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1759                                                                                 short_channel_id: prev_short_channel_id,
1760                                                                                 outpoint: prev_funding_outpoint,
1761                                                                                 htlc_id: prev_htlc_id,
1762                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1763                                                                         });
1764                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
1765                                                                                 Err(e) => {
1766                                                                                         if let ChannelError::Ignore(msg) = e {
1767                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
1768                                                                                         } else {
1769                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
1770                                                                                         }
1771                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
1772                                                                                         failed_forwards.push((htlc_source, payment_hash,
1773                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
1774                                                                                         ));
1775                                                                                         continue;
1776                                                                                 },
1777                                                                                 Ok(update_add) => {
1778                                                                                         match update_add {
1779                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
1780                                                                                                 None => {
1781                                                                                                         // Nothing to do here...we're waiting on a remote
1782                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
1783                                                                                                         // will automatically handle building the update_add_htlc and
1784                                                                                                         // commitment_signed messages when we can.
1785                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
1786                                                                                                         // as we don't really want others relying on us relaying through
1787                                                                                                         // this channel currently :/.
1788                                                                                                 }
1789                                                                                         }
1790                                                                                 }
1791                                                                         }
1792                                                                 },
1793                                                                 HTLCForwardInfo::AddHTLC { .. } => {
1794                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
1795                                                                 },
1796                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
1797                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
1798                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
1799                                                                                 Err(e) => {
1800                                                                                         if let ChannelError::Ignore(msg) = e {
1801                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
1802                                                                                         } else {
1803                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
1804                                                                                         }
1805                                                                                         // fail-backs are best-effort, we probably already have one
1806                                                                                         // pending, and if not that's OK, if not, the channel is on
1807                                                                                         // the chain and sending the HTLC-Timeout is their problem.
1808                                                                                         continue;
1809                                                                                 },
1810                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
1811                                                                                 Ok(None) => {
1812                                                                                         // Nothing to do here...we're waiting on a remote
1813                                                                                         // revoke_and_ack before we can update the commitment
1814                                                                                         // transaction. The Channel will automatically handle
1815                                                                                         // building the update_fail_htlc and commitment_signed
1816                                                                                         // messages when we can.
1817                                                                                         // We don't need any kind of timer here as they should fail
1818                                                                                         // the channel onto the chain if they can't get our
1819                                                                                         // update_fail_htlc in time, it's not our problem.
1820                                                                                 }
1821                                                                         }
1822                                                                 },
1823                                                         }
1824                                                 }
1825
1826                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
1827                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
1828                                                                 Ok(res) => res,
1829                                                                 Err(e) => {
1830                                                                         // We surely failed send_commitment due to bad keys, in that case
1831                                                                         // close channel and then send error message to peer.
1832                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
1833                                                                         let err: Result<(), _>  = match e {
1834                                                                                 ChannelError::Ignore(_) => {
1835                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
1836                                                                                 },
1837                                                                                 ChannelError::Close(msg) => {
1838                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
1839                                                                                         let (channel_id, mut channel) = chan.remove_entry();
1840                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
1841                                                                                                 channel_state.short_to_id.remove(&short_id);
1842                                                                                         }
1843                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
1844                                                                                 },
1845                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
1846                                                                         };
1847                                                                         handle_errors.push((counterparty_node_id, err));
1848                                                                         continue;
1849                                                                 }
1850                                                         };
1851                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1852                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
1853                                                                 continue;
1854                                                         }
1855                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1856                                                                 node_id: chan.get().get_counterparty_node_id(),
1857                                                                 updates: msgs::CommitmentUpdate {
1858                                                                         update_add_htlcs: add_htlc_msgs,
1859                                                                         update_fulfill_htlcs: Vec::new(),
1860                                                                         update_fail_htlcs: fail_htlc_msgs,
1861                                                                         update_fail_malformed_htlcs: Vec::new(),
1862                                                                         update_fee: None,
1863                                                                         commitment_signed: commitment_msg,
1864                                                                 },
1865                                                         });
1866                                                 }
1867                                         } else {
1868                                                 unreachable!();
1869                                         }
1870                                 } else {
1871                                         for forward_info in pending_forwards.drain(..) {
1872                                                 match forward_info {
1873                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1874                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
1875                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
1876                                                                         prev_funding_outpoint } => {
1877                                                                 let prev_hop = HTLCPreviousHopData {
1878                                                                         short_channel_id: prev_short_channel_id,
1879                                                                         outpoint: prev_funding_outpoint,
1880                                                                         htlc_id: prev_htlc_id,
1881                                                                         incoming_packet_shared_secret: incoming_shared_secret,
1882                                                                 };
1883
1884                                                                 let mut total_value = 0;
1885                                                                 let payment_secret_opt =
1886                                                                         if let &Some(ref data) = &payment_data { Some(data.payment_secret.clone()) } else { None };
1887                                                                 let htlcs = channel_state.claimable_htlcs.entry((payment_hash, payment_secret_opt))
1888                                                                         .or_insert(Vec::new());
1889                                                                 htlcs.push(ClaimableHTLC {
1890                                                                         prev_hop,
1891                                                                         value: amt_to_forward,
1892                                                                         payment_data: payment_data.clone(),
1893                                                                         cltv_expiry: incoming_cltv_expiry,
1894                                                                 });
1895                                                                 if let &Some(ref data) = &payment_data {
1896                                                                         for htlc in htlcs.iter() {
1897                                                                                 total_value += htlc.value;
1898                                                                                 if htlc.payment_data.as_ref().unwrap().total_msat != data.total_msat {
1899                                                                                         total_value = msgs::MAX_VALUE_MSAT;
1900                                                                                 }
1901                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
1902                                                                         }
1903                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > data.total_msat  {
1904                                                                                 for htlc in htlcs.iter() {
1905                                                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
1906                                                                                         htlc_msat_height_data.extend_from_slice(
1907                                                                                                 &byte_utils::be32_to_array(
1908                                                                                                         self.latest_block_height.load(Ordering::Acquire)
1909                                                                                                                 as u32,
1910                                                                                                 ),
1911                                                                                         );
1912                                                                                         failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
1913                                                                                                         short_channel_id: htlc.prev_hop.short_channel_id,
1914                                                                                                         outpoint: prev_funding_outpoint,
1915                                                                                                         htlc_id: htlc.prev_hop.htlc_id,
1916                                                                                                         incoming_packet_shared_secret: htlc.prev_hop.incoming_packet_shared_secret,
1917                                                                                                 }), payment_hash,
1918                                                                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
1919                                                                                         ));
1920                                                                                 }
1921                                                                         } else if total_value == data.total_msat {
1922                                                                                 new_events.push(events::Event::PaymentReceived {
1923                                                                                         payment_hash,
1924                                                                                         payment_secret: Some(data.payment_secret),
1925                                                                                         amt: total_value,
1926                                                                                 });
1927                                                                         }
1928                                                                 } else {
1929                                                                         new_events.push(events::Event::PaymentReceived {
1930                                                                                 payment_hash,
1931                                                                                 payment_secret: None,
1932                                                                                 amt: amt_to_forward,
1933                                                                         });
1934                                                                 }
1935                                                         },
1936                                                         HTLCForwardInfo::AddHTLC { .. } => {
1937                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
1938                                                         },
1939                                                         HTLCForwardInfo::FailHTLC { .. } => {
1940                                                                 panic!("Got pending fail of our own HTLC");
1941                                                         }
1942                                                 }
1943                                         }
1944                                 }
1945                         }
1946                 }
1947
1948                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
1949                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
1950                 }
1951
1952                 for (counterparty_node_id, err) in handle_errors.drain(..) {
1953                         let _ = handle_error!(self, err, counterparty_node_id);
1954                 }
1955
1956                 if new_events.is_empty() { return }
1957                 let mut events = self.pending_events.lock().unwrap();
1958                 events.append(&mut new_events);
1959         }
1960
1961         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
1962         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
1963         /// to inform the network about the uselessness of these channels.
1964         ///
1965         /// This method handles all the details, and must be called roughly once per minute.
1966         pub fn timer_chan_freshness_every_min(&self) {
1967                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1968                 let mut channel_state_lock = self.channel_state.lock().unwrap();
1969                 let channel_state = &mut *channel_state_lock;
1970                 for (_, chan) in channel_state.by_id.iter_mut() {
1971                         if chan.is_disabled_staged() && !chan.is_live() {
1972                                 if let Ok(update) = self.get_channel_update(&chan) {
1973                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1974                                                 msg: update
1975                                         });
1976                                 }
1977                                 chan.to_fresh();
1978                         } else if chan.is_disabled_staged() && chan.is_live() {
1979                                 chan.to_fresh();
1980                         } else if chan.is_disabled_marked() {
1981                                 chan.to_disabled_staged();
1982                         }
1983                 }
1984         }
1985
1986         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
1987         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
1988         /// along the path (including in our own channel on which we received it).
1989         /// Returns false if no payment was found to fail backwards, true if the process of failing the
1990         /// HTLC backwards has been started.
1991         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>) -> bool {
1992                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1993
1994                 let mut channel_state = Some(self.channel_state.lock().unwrap());
1995                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(*payment_hash, *payment_secret));
1996                 if let Some(mut sources) = removed_source {
1997                         for htlc in sources.drain(..) {
1998                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
1999                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2000                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2001                                         self.latest_block_height.load(Ordering::Acquire) as u32,
2002                                 ));
2003                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2004                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2005                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2006                         }
2007                         true
2008                 } else { false }
2009         }
2010
2011         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2012         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2013         // be surfaced to the user.
2014         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2015                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2016                         match htlc_src {
2017                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2018                                         let (failure_code, onion_failure_data) =
2019                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2020                                                         hash_map::Entry::Occupied(chan_entry) => {
2021                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2022                                                                         (0x1000|7, upd.encode_with_len())
2023                                                                 } else {
2024                                                                         (0x4000|10, Vec::new())
2025                                                                 }
2026                                                         },
2027                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2028                                                 };
2029                                         let channel_state = self.channel_state.lock().unwrap();
2030                                         self.fail_htlc_backwards_internal(channel_state,
2031                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2032                                 },
2033                                 HTLCSource::OutboundRoute { .. } => {
2034                                         self.pending_events.lock().unwrap().push(
2035                                                 events::Event::PaymentFailed {
2036                                                         payment_hash,
2037                                                         rejected_by_dest: false,
2038 #[cfg(test)]
2039                                                         error_code: None,
2040 #[cfg(test)]
2041                                                         error_data: None,
2042                                                 }
2043                                         )
2044                                 },
2045                         };
2046                 }
2047         }
2048
2049         /// Fails an HTLC backwards to the sender of it to us.
2050         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2051         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2052         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2053         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2054         /// still-available channels.
2055         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2056                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2057                 //identify whether we sent it or not based on the (I presume) very different runtime
2058                 //between the branches here. We should make this async and move it into the forward HTLCs
2059                 //timer handling.
2060                 match source {
2061                         HTLCSource::OutboundRoute { ref path, .. } => {
2062                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2063                                 mem::drop(channel_state_lock);
2064                                 match &onion_error {
2065                                         &HTLCFailReason::LightningError { ref err } => {
2066 #[cfg(test)]
2067                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2068 #[cfg(not(test))]
2069                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2070                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2071                                                 // process_onion_failure we should close that channel as it implies our
2072                                                 // next-hop is needlessly blaming us!
2073                                                 if let Some(update) = channel_update {
2074                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2075                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2076                                                                         update,
2077                                                                 }
2078                                                         );
2079                                                 }
2080                                                 self.pending_events.lock().unwrap().push(
2081                                                         events::Event::PaymentFailed {
2082                                                                 payment_hash: payment_hash.clone(),
2083                                                                 rejected_by_dest: !payment_retryable,
2084 #[cfg(test)]
2085                                                                 error_code: onion_error_code,
2086 #[cfg(test)]
2087                                                                 error_data: onion_error_data
2088                                                         }
2089                                                 );
2090                                         },
2091                                         &HTLCFailReason::Reason {
2092 #[cfg(test)]
2093                                                         ref failure_code,
2094 #[cfg(test)]
2095                                                         ref data,
2096                                                         .. } => {
2097                                                 // we get a fail_malformed_htlc from the first hop
2098                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2099                                                 // failures here, but that would be insufficient as get_route
2100                                                 // generally ignores its view of our own channels as we provide them via
2101                                                 // ChannelDetails.
2102                                                 // TODO: For non-temporary failures, we really should be closing the
2103                                                 // channel here as we apparently can't relay through them anyway.
2104                                                 self.pending_events.lock().unwrap().push(
2105                                                         events::Event::PaymentFailed {
2106                                                                 payment_hash: payment_hash.clone(),
2107                                                                 rejected_by_dest: path.len() == 1,
2108 #[cfg(test)]
2109                                                                 error_code: Some(*failure_code),
2110 #[cfg(test)]
2111                                                                 error_data: Some(data.clone()),
2112                                                         }
2113                                                 );
2114                                         }
2115                                 }
2116                         },
2117                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2118                                 let err_packet = match onion_error {
2119                                         HTLCFailReason::Reason { failure_code, data } => {
2120                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2121                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2122                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2123                                         },
2124                                         HTLCFailReason::LightningError { err } => {
2125                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2126                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2127                                         }
2128                                 };
2129
2130                                 let mut forward_event = None;
2131                                 if channel_state_lock.forward_htlcs.is_empty() {
2132                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2133                                 }
2134                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2135                                         hash_map::Entry::Occupied(mut entry) => {
2136                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2137                                         },
2138                                         hash_map::Entry::Vacant(entry) => {
2139                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2140                                         }
2141                                 }
2142                                 mem::drop(channel_state_lock);
2143                                 if let Some(time) = forward_event {
2144                                         let mut pending_events = self.pending_events.lock().unwrap();
2145                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2146                                                 time_forwardable: time
2147                                         });
2148                                 }
2149                         },
2150                 }
2151         }
2152
2153         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2154         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2155         /// should probably kick the net layer to go send messages if this returns true!
2156         ///
2157         /// You must specify the expected amounts for this HTLC, and we will only claim HTLCs
2158         /// available within a few percent of the expected amount. This is critical for several
2159         /// reasons : a) it avoids providing senders with `proof-of-payment` (in the form of the
2160         /// payment_preimage without having provided the full value and b) it avoids certain
2161         /// privacy-breaking recipient-probing attacks which may reveal payment activity to
2162         /// motivated attackers.
2163         ///
2164         /// Note that the privacy concerns in (b) are not relevant in payments with a payment_secret
2165         /// set. Thus, for such payments we will claim any payments which do not under-pay.
2166         ///
2167         /// May panic if called except in response to a PaymentReceived event.
2168         pub fn claim_funds(&self, payment_preimage: PaymentPreimage, payment_secret: &Option<PaymentSecret>, expected_amount: u64) -> bool {
2169                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2170
2171                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2172
2173                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2174                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(payment_hash, *payment_secret));
2175                 if let Some(mut sources) = removed_source {
2176                         assert!(!sources.is_empty());
2177
2178                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2179                         // channel exists before claiming all of the payments (inside one lock).
2180                         // Note that channel existance is sufficient as we should always get a monitor update
2181                         // which will take care of the real HTLC claim enforcement.
2182                         //
2183                         // If we find an HTLC which we would need to claim but for which we do not have a
2184                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2185                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2186                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2187                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2188                         // it.
2189
2190                         let (is_mpp, mut valid_mpp) = if let &Some(ref data) = &sources[0].payment_data {
2191                                 assert!(payment_secret.is_some());
2192                                 (true, data.total_msat >= expected_amount)
2193                         } else {
2194                                 assert!(payment_secret.is_none());
2195                                 (false, false)
2196                         };
2197
2198                         for htlc in sources.iter() {
2199                                 if !is_mpp || !valid_mpp { break; }
2200                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2201                                         valid_mpp = false;
2202                                 }
2203                         }
2204
2205                         let mut errs = Vec::new();
2206                         let mut claimed_any_htlcs = false;
2207                         for htlc in sources.drain(..) {
2208                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2209                                 if (is_mpp && !valid_mpp) || (!is_mpp && (htlc.value < expected_amount || htlc.value > expected_amount * 2)) {
2210                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2211                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2212                                                 self.latest_block_height.load(Ordering::Acquire) as u32,
2213                                         ));
2214                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2215                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2216                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2217                                 } else {
2218                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2219                                                 Err(Some(e)) => {
2220                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2221                                                                 // We got a temporary failure updating monitor, but will claim the
2222                                                                 // HTLC when the monitor updating is restored (or on chain).
2223                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2224                                                                 claimed_any_htlcs = true;
2225                                                         } else { errs.push(e); }
2226                                                 },
2227                                                 Err(None) if is_mpp => unreachable!("We already checked for channel existence, we can't fail here!"),
2228                                                 Err(None) => {
2229                                                         log_warn!(self.logger, "Channel we expected to claim an HTLC from was closed.");
2230                                                 },
2231                                                 Ok(()) => claimed_any_htlcs = true,
2232                                         }
2233                                 }
2234                         }
2235
2236                         // Now that we've done the entire above loop in one lock, we can handle any errors
2237                         // which were generated.
2238                         channel_state.take();
2239
2240                         for (counterparty_node_id, err) in errs.drain(..) {
2241                                 let res: Result<(), _> = Err(err);
2242                                 let _ = handle_error!(self, res, counterparty_node_id);
2243                         }
2244
2245                         claimed_any_htlcs
2246                 } else { false }
2247         }
2248
2249         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2250                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2251                 let channel_state = &mut **channel_state_lock;
2252                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2253                         Some(chan_id) => chan_id.clone(),
2254                         None => {
2255                                 return Err(None)
2256                         }
2257                 };
2258
2259                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2260                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2261                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2262                                 Ok((msgs, monitor_option)) => {
2263                                         if let Some(monitor_update) = monitor_option {
2264                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2265                                                         if was_frozen_for_monitor {
2266                                                                 assert!(msgs.is_none());
2267                                                         } else {
2268                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2269                                                         }
2270                                                 }
2271                                         }
2272                                         if let Some((msg, commitment_signed)) = msgs {
2273                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2274                                                         node_id: chan.get().get_counterparty_node_id(),
2275                                                         updates: msgs::CommitmentUpdate {
2276                                                                 update_add_htlcs: Vec::new(),
2277                                                                 update_fulfill_htlcs: vec![msg],
2278                                                                 update_fail_htlcs: Vec::new(),
2279                                                                 update_fail_malformed_htlcs: Vec::new(),
2280                                                                 update_fee: None,
2281                                                                 commitment_signed,
2282                                                         }
2283                                                 });
2284                                         }
2285                                         return Ok(())
2286                                 },
2287                                 Err(e) => {
2288                                         // TODO: Do something with e?
2289                                         // This should only occur if we are claiming an HTLC at the same time as the
2290                                         // HTLC is being failed (eg because a block is being connected and this caused
2291                                         // an HTLC to time out). This should, of course, only occur if the user is the
2292                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2293                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2294                                         // previous HTLC was failed (thus not for an MPP payment).
2295                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2296                                         return Err(None)
2297                                 },
2298                         }
2299                 } else { unreachable!(); }
2300         }
2301
2302         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2303                 match source {
2304                         HTLCSource::OutboundRoute { .. } => {
2305                                 mem::drop(channel_state_lock);
2306                                 let mut pending_events = self.pending_events.lock().unwrap();
2307                                 pending_events.push(events::Event::PaymentSent {
2308                                         payment_preimage
2309                                 });
2310                         },
2311                         HTLCSource::PreviousHopData(hop_data) => {
2312                                 let prev_outpoint = hop_data.outpoint;
2313                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2314                                         Ok(()) => Ok(()),
2315                                         Err(None) => {
2316                                                 let preimage_update = ChannelMonitorUpdate {
2317                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2318                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2319                                                                 payment_preimage: payment_preimage.clone(),
2320                                                         }],
2321                                                 };
2322                                                 // We update the ChannelMonitor on the backward link, after
2323                                                 // receiving an offchain preimage event from the forward link (the
2324                                                 // event being update_fulfill_htlc).
2325                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2326                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2327                                                                    payment_preimage, e);
2328                                                 }
2329                                                 Ok(())
2330                                         },
2331                                         Err(Some(res)) => Err(res),
2332                                 } {
2333                                         mem::drop(channel_state_lock);
2334                                         let res: Result<(), _> = Err(err);
2335                                         let _ = handle_error!(self, res, counterparty_node_id);
2336                                 }
2337                         },
2338                 }
2339         }
2340
2341         /// Gets the node_id held by this ChannelManager
2342         pub fn get_our_node_id(&self) -> PublicKey {
2343                 PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key)
2344         }
2345
2346         /// Restores a single, given channel to normal operation after a
2347         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2348         /// operation.
2349         ///
2350         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2351         /// fully committed in every copy of the given channels' ChannelMonitors.
2352         ///
2353         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2354         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2355         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2356         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2357         ///
2358         /// In some cases, this may generate a monitor update, resulting in a call to the
2359         /// `chain::Watch`'s `update_channel` method for the same channel monitor which is being
2360         /// notified of a successful update here. Because of this, please be very careful with
2361         /// reentrancy bugs! It is incredibly easy to write an implementation of `update_channel` which
2362         /// will take a lock that is also held when calling this method.
2363         ///
2364         /// Thus, the anticipated use is, at a high level:
2365         ///  1) You register a chain::Watch with this ChannelManager,
2366         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2367         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2368         ///     any time it cannot do so instantly,
2369         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2370         ///  4) once all remote copies are updated, you call this function with the update_id that
2371         ///     completed, and once it is the latest the Channel will be re-enabled.
2372         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2373                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2374
2375                 let (pending_failures, forwarding_failures, chan_restoration_res) = {
2376                         let mut channel_lock = self.channel_state.lock().unwrap();
2377                         let channel_state = &mut *channel_lock;
2378                         let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
2379                                 hash_map::Entry::Occupied(chan) => chan,
2380                                 hash_map::Entry::Vacant(_) => return,
2381                         };
2382                         if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
2383                                 return;
2384                         }
2385
2386                         let (raa, commitment_update, order, chanmon_update, pending_forwards, pending_failures, forwarding_failures, needs_broadcast_safe, funding_locked) = channel.get_mut().monitor_updating_restored(&self.logger);
2387                         (pending_failures, forwarding_failures, handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, raa, commitment_update, order, chanmon_update, pending_forwards, needs_broadcast_safe, funding_locked))
2388                 };
2389                 post_handle_chan_restoration!(self, chan_restoration_res, pending_failures, forwarding_failures);
2390         }
2391
2392         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2393                 if msg.chain_hash != self.genesis_hash {
2394                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2395                 }
2396
2397                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2398                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2399                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2400                 let channel_state = &mut *channel_state_lock;
2401                 match channel_state.by_id.entry(channel.channel_id()) {
2402                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2403                         hash_map::Entry::Vacant(entry) => {
2404                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2405                                         node_id: counterparty_node_id.clone(),
2406                                         msg: channel.get_accept_channel(),
2407                                 });
2408                                 entry.insert(channel);
2409                         }
2410                 }
2411                 Ok(())
2412         }
2413
2414         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2415                 let (value, output_script, user_id) = {
2416                         let mut channel_lock = self.channel_state.lock().unwrap();
2417                         let channel_state = &mut *channel_lock;
2418                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2419                                 hash_map::Entry::Occupied(mut chan) => {
2420                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2421                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2422                                         }
2423                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2424                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2425                                 },
2426                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2427                         }
2428                 };
2429                 let mut pending_events = self.pending_events.lock().unwrap();
2430                 pending_events.push(events::Event::FundingGenerationReady {
2431                         temporary_channel_id: msg.temporary_channel_id,
2432                         channel_value_satoshis: value,
2433                         output_script,
2434                         user_channel_id: user_id,
2435                 });
2436                 Ok(())
2437         }
2438
2439         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2440                 let ((funding_msg, monitor), mut chan) = {
2441                         let mut channel_lock = self.channel_state.lock().unwrap();
2442                         let channel_state = &mut *channel_lock;
2443                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2444                                 hash_map::Entry::Occupied(mut chan) => {
2445                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2446                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2447                                         }
2448                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, &self.logger), channel_state, chan), chan.remove())
2449                                 },
2450                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2451                         }
2452                 };
2453                 // Because we have exclusive ownership of the channel here we can release the channel_state
2454                 // lock before watch_channel
2455                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2456                         match e {
2457                                 ChannelMonitorUpdateErr::PermanentFailure => {
2458                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2459                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2460                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2461                                         // any messages referencing a previously-closed channel anyway.
2462                                         // We do not do a force-close here as that would generate a monitor update for
2463                                         // a monitor that we didn't manage to store (and that we don't care about - we
2464                                         // don't respond with the funding_signed so the channel can never go on chain).
2465                                         let (_funding_txo_option, _monitor_update, failed_htlcs) = chan.force_shutdown(true);
2466                                         assert!(failed_htlcs.is_empty());
2467                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2468                                 },
2469                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2470                                         // There's no problem signing a counterparty's funding transaction if our monitor
2471                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2472                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2473                                         // until we have persisted our monitor.
2474                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2475                                 },
2476                         }
2477                 }
2478                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2479                 let channel_state = &mut *channel_state_lock;
2480                 match channel_state.by_id.entry(funding_msg.channel_id) {
2481                         hash_map::Entry::Occupied(_) => {
2482                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2483                         },
2484                         hash_map::Entry::Vacant(e) => {
2485                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2486                                         node_id: counterparty_node_id.clone(),
2487                                         msg: funding_msg,
2488                                 });
2489                                 e.insert(chan);
2490                         }
2491                 }
2492                 Ok(())
2493         }
2494
2495         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2496                 let (funding_txo, user_id) = {
2497                         let mut channel_lock = self.channel_state.lock().unwrap();
2498                         let channel_state = &mut *channel_lock;
2499                         match channel_state.by_id.entry(msg.channel_id) {
2500                                 hash_map::Entry::Occupied(mut chan) => {
2501                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2502                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2503                                         }
2504                                         let monitor = match chan.get_mut().funding_signed(&msg, &self.logger) {
2505                                                 Ok(update) => update,
2506                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2507                                         };
2508                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2509                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2510                                         }
2511                                         (chan.get().get_funding_txo().unwrap(), chan.get().get_user_id())
2512                                 },
2513                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2514                         }
2515                 };
2516                 let mut pending_events = self.pending_events.lock().unwrap();
2517                 pending_events.push(events::Event::FundingBroadcastSafe {
2518                         funding_txo,
2519                         user_channel_id: user_id,
2520                 });
2521                 Ok(())
2522         }
2523
2524         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2525                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2526                 let channel_state = &mut *channel_state_lock;
2527                 match channel_state.by_id.entry(msg.channel_id) {
2528                         hash_map::Entry::Occupied(mut chan) => {
2529                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2530                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2531                                 }
2532                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2533                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2534                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2535                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2536                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2537                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2538                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2539                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2540                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2541                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2542                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2543                                         // to be received, from then sigs are going to be flood to the whole network.
2544                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2545                                                 node_id: counterparty_node_id.clone(),
2546                                                 msg: announcement_sigs,
2547                                         });
2548                                 }
2549                                 Ok(())
2550                         },
2551                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2552                 }
2553         }
2554
2555         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2556                 let (mut dropped_htlcs, chan_option) = {
2557                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2558                         let channel_state = &mut *channel_state_lock;
2559
2560                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2561                                 hash_map::Entry::Occupied(mut chan_entry) => {
2562                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2563                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2564                                         }
2565                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2566                                         if let Some(msg) = shutdown {
2567                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2568                                                         node_id: counterparty_node_id.clone(),
2569                                                         msg,
2570                                                 });
2571                                         }
2572                                         if let Some(msg) = closing_signed {
2573                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2574                                                         node_id: counterparty_node_id.clone(),
2575                                                         msg,
2576                                                 });
2577                                         }
2578                                         if chan_entry.get().is_shutdown() {
2579                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2580                                                         channel_state.short_to_id.remove(&short_id);
2581                                                 }
2582                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2583                                         } else { (dropped_htlcs, None) }
2584                                 },
2585                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2586                         }
2587                 };
2588                 for htlc_source in dropped_htlcs.drain(..) {
2589                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2590                 }
2591                 if let Some(chan) = chan_option {
2592                         if let Ok(update) = self.get_channel_update(&chan) {
2593                                 let mut channel_state = self.channel_state.lock().unwrap();
2594                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2595                                         msg: update
2596                                 });
2597                         }
2598                 }
2599                 Ok(())
2600         }
2601
2602         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2603                 let (tx, chan_option) = {
2604                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2605                         let channel_state = &mut *channel_state_lock;
2606                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2607                                 hash_map::Entry::Occupied(mut chan_entry) => {
2608                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2609                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2610                                         }
2611                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2612                                         if let Some(msg) = closing_signed {
2613                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2614                                                         node_id: counterparty_node_id.clone(),
2615                                                         msg,
2616                                                 });
2617                                         }
2618                                         if tx.is_some() {
2619                                                 // We're done with this channel, we've got a signed closing transaction and
2620                                                 // will send the closing_signed back to the remote peer upon return. This
2621                                                 // also implies there are no pending HTLCs left on the channel, so we can
2622                                                 // fully delete it from tracking (the channel monitor is still around to
2623                                                 // watch for old state broadcasts)!
2624                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2625                                                         channel_state.short_to_id.remove(&short_id);
2626                                                 }
2627                                                 (tx, Some(chan_entry.remove_entry().1))
2628                                         } else { (tx, None) }
2629                                 },
2630                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2631                         }
2632                 };
2633                 if let Some(broadcast_tx) = tx {
2634                         log_trace!(self.logger, "Broadcast onchain {}", log_tx!(broadcast_tx));
2635                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
2636                 }
2637                 if let Some(chan) = chan_option {
2638                         if let Ok(update) = self.get_channel_update(&chan) {
2639                                 let mut channel_state = self.channel_state.lock().unwrap();
2640                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2641                                         msg: update
2642                                 });
2643                         }
2644                 }
2645                 Ok(())
2646         }
2647
2648         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
2649                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
2650                 //determine the state of the payment based on our response/if we forward anything/the time
2651                 //we take to respond. We should take care to avoid allowing such an attack.
2652                 //
2653                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
2654                 //us repeatedly garbled in different ways, and compare our error messages, which are
2655                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
2656                 //but we should prevent it anyway.
2657
2658                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
2659                 let channel_state = &mut *channel_state_lock;
2660
2661                 match channel_state.by_id.entry(msg.channel_id) {
2662                         hash_map::Entry::Occupied(mut chan) => {
2663                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2664                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2665                                 }
2666
2667                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
2668                                         // Ensure error_code has the UPDATE flag set, since by default we send a
2669                                         // channel update along as part of failing the HTLC.
2670                                         assert!((error_code & 0x1000) != 0);
2671                                         // If the update_add is completely bogus, the call will Err and we will close,
2672                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
2673                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
2674                                         match pending_forward_info {
2675                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
2676                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
2677                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
2678                                                                         let mut res = Vec::with_capacity(8 + 128);
2679                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2680                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
2681                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
2682                                                                         res
2683                                                                 }[..])
2684                                                         } else {
2685                                                                 // The only case where we'd be unable to
2686                                                                 // successfully get a channel update is if the
2687                                                                 // channel isn't in the fully-funded state yet,
2688                                                                 // implying our counterparty is trying to route
2689                                                                 // payments over the channel back to themselves
2690                                                                 // (cause no one else should know the short_id
2691                                                                 // is a lightning channel yet). We should have
2692                                                                 // no problem just calling this
2693                                                                 // unknown_next_peer (0x4000|10).
2694                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
2695                                                         };
2696                                                         let msg = msgs::UpdateFailHTLC {
2697                                                                 channel_id: msg.channel_id,
2698                                                                 htlc_id: msg.htlc_id,
2699                                                                 reason
2700                                                         };
2701                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
2702                                                 },
2703                                                 _ => pending_forward_info
2704                                         }
2705                                 };
2706                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
2707                         },
2708                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2709                 }
2710                 Ok(())
2711         }
2712
2713         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
2714                 let mut channel_lock = self.channel_state.lock().unwrap();
2715                 let htlc_source = {
2716                         let channel_state = &mut *channel_lock;
2717                         match channel_state.by_id.entry(msg.channel_id) {
2718                                 hash_map::Entry::Occupied(mut chan) => {
2719                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2720                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2721                                         }
2722                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
2723                                 },
2724                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2725                         }
2726                 };
2727                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
2728                 Ok(())
2729         }
2730
2731         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
2732                 let mut channel_lock = self.channel_state.lock().unwrap();
2733                 let channel_state = &mut *channel_lock;
2734                 match channel_state.by_id.entry(msg.channel_id) {
2735                         hash_map::Entry::Occupied(mut chan) => {
2736                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2737                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2738                                 }
2739                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
2740                         },
2741                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2742                 }
2743                 Ok(())
2744         }
2745
2746         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
2747                 let mut channel_lock = self.channel_state.lock().unwrap();
2748                 let channel_state = &mut *channel_lock;
2749                 match channel_state.by_id.entry(msg.channel_id) {
2750                         hash_map::Entry::Occupied(mut chan) => {
2751                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2752                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2753                                 }
2754                                 if (msg.failure_code & 0x8000) == 0 {
2755                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
2756                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
2757                                 }
2758                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
2759                                 Ok(())
2760                         },
2761                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2762                 }
2763         }
2764
2765         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
2766                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2767                 let channel_state = &mut *channel_state_lock;
2768                 match channel_state.by_id.entry(msg.channel_id) {
2769                         hash_map::Entry::Occupied(mut chan) => {
2770                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2771                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2772                                 }
2773                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
2774                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
2775                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
2776                                                 Err((Some(update), e)) => {
2777                                                         assert!(chan.get().is_awaiting_monitor_update());
2778                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
2779                                                         try_chan_entry!(self, Err(e), channel_state, chan);
2780                                                         unreachable!();
2781                                                 },
2782                                                 Ok(res) => res
2783                                         };
2784                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2785                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
2786                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
2787                                 }
2788                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2789                                         node_id: counterparty_node_id.clone(),
2790                                         msg: revoke_and_ack,
2791                                 });
2792                                 if let Some(msg) = commitment_signed {
2793                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2794                                                 node_id: counterparty_node_id.clone(),
2795                                                 updates: msgs::CommitmentUpdate {
2796                                                         update_add_htlcs: Vec::new(),
2797                                                         update_fulfill_htlcs: Vec::new(),
2798                                                         update_fail_htlcs: Vec::new(),
2799                                                         update_fail_malformed_htlcs: Vec::new(),
2800                                                         update_fee: None,
2801                                                         commitment_signed: msg,
2802                                                 },
2803                                         });
2804                                 }
2805                                 if let Some(msg) = closing_signed {
2806                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2807                                                 node_id: counterparty_node_id.clone(),
2808                                                 msg,
2809                                         });
2810                                 }
2811                                 Ok(())
2812                         },
2813                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2814                 }
2815         }
2816
2817         #[inline]
2818         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
2819                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
2820                         let mut forward_event = None;
2821                         if !pending_forwards.is_empty() {
2822                                 let mut channel_state = self.channel_state.lock().unwrap();
2823                                 if channel_state.forward_htlcs.is_empty() {
2824                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
2825                                 }
2826                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
2827                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
2828                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
2829                                                         PendingHTLCRouting::Receive { .. } => 0,
2830                                         }) {
2831                                                 hash_map::Entry::Occupied(mut entry) => {
2832                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
2833                                                                                                         prev_htlc_id, forward_info });
2834                                                 },
2835                                                 hash_map::Entry::Vacant(entry) => {
2836                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
2837                                                                                                      prev_htlc_id, forward_info }));
2838                                                 }
2839                                         }
2840                                 }
2841                         }
2842                         match forward_event {
2843                                 Some(time) => {
2844                                         let mut pending_events = self.pending_events.lock().unwrap();
2845                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2846                                                 time_forwardable: time
2847                                         });
2848                                 }
2849                                 None => {},
2850                         }
2851                 }
2852         }
2853
2854         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
2855                 let mut htlcs_to_fail = Vec::new();
2856                 let res = loop {
2857                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2858                         let channel_state = &mut *channel_state_lock;
2859                         match channel_state.by_id.entry(msg.channel_id) {
2860                                 hash_map::Entry::Occupied(mut chan) => {
2861                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2862                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2863                                         }
2864                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2865                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
2866                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
2867                                         htlcs_to_fail = htlcs_to_fail_in;
2868                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2869                                                 if was_frozen_for_monitor {
2870                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
2871                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
2872                                                 } else {
2873                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
2874                                                                 break Err(e);
2875                                                         } else { unreachable!(); }
2876                                                 }
2877                                         }
2878                                         if let Some(updates) = commitment_update {
2879                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2880                                                         node_id: counterparty_node_id.clone(),
2881                                                         updates,
2882                                                 });
2883                                         }
2884                                         if let Some(msg) = closing_signed {
2885                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2886                                                         node_id: counterparty_node_id.clone(),
2887                                                         msg,
2888                                                 });
2889                                         }
2890                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
2891                                 },
2892                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2893                         }
2894                 };
2895                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
2896                 match res {
2897                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
2898                                 for failure in pending_failures.drain(..) {
2899                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2900                                 }
2901                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
2902                                 Ok(())
2903                         },
2904                         Err(e) => Err(e)
2905                 }
2906         }
2907
2908         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
2909                 let mut channel_lock = self.channel_state.lock().unwrap();
2910                 let channel_state = &mut *channel_lock;
2911                 match channel_state.by_id.entry(msg.channel_id) {
2912                         hash_map::Entry::Occupied(mut chan) => {
2913                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2914                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2915                                 }
2916                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
2917                         },
2918                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2919                 }
2920                 Ok(())
2921         }
2922
2923         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
2924                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2925                 let channel_state = &mut *channel_state_lock;
2926
2927                 match channel_state.by_id.entry(msg.channel_id) {
2928                         hash_map::Entry::Occupied(mut chan) => {
2929                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2930                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2931                                 }
2932                                 if !chan.get().is_usable() {
2933                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
2934                                 }
2935
2936                                 let our_node_id = self.get_our_node_id();
2937                                 let (announcement, our_bitcoin_sig) =
2938                                         try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
2939
2940                                 let were_node_one = announcement.node_id_1 == our_node_id;
2941                                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2942                                 {
2943                                         let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
2944                                         let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
2945                                         match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
2946                                                    self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
2947                                                 (Err(e), _) => {
2948                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
2949                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
2950                                                 },
2951                                                 (_, Err(e)) => {
2952                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
2953                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
2954                                                 },
2955                                                 _ => {}
2956                                         }
2957                                 }
2958
2959                                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2960
2961                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
2962                                         msg: msgs::ChannelAnnouncement {
2963                                                 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
2964                                                 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
2965                                                 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
2966                                                 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
2967                                                 contents: announcement,
2968                                         },
2969                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
2970                                 });
2971                         },
2972                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2973                 }
2974                 Ok(())
2975         }
2976
2977         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
2978                 let (htlcs_failed_forward, chan_restoration_res) = {
2979                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2980                         let channel_state = &mut *channel_state_lock;
2981
2982                         match channel_state.by_id.entry(msg.channel_id) {
2983                                 hash_map::Entry::Occupied(mut chan) => {
2984                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2985                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2986                                         }
2987                                         // Currently, we expect all holding cell update_adds to be dropped on peer
2988                                         // disconnect, so Channel's reestablish will never hand us any holding cell
2989                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
2990                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
2991                                         let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, order, htlcs_failed_forward, shutdown) =
2992                                                 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
2993                                         if let Some(msg) = shutdown {
2994                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2995                                                         node_id: counterparty_node_id.clone(),
2996                                                         msg,
2997                                                 });
2998                                         }
2999                                         (htlcs_failed_forward, handle_chan_restoration_locked!(self, channel_state_lock, channel_state, chan, revoke_and_ack, commitment_update, order, monitor_update_opt, Vec::new(), false, funding_locked))
3000                                 },
3001                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3002                         }
3003                 };
3004                 post_handle_chan_restoration!(self, chan_restoration_res, Vec::new(), htlcs_failed_forward);
3005                 Ok(())
3006         }
3007
3008         /// Begin Update fee process. Allowed only on an outbound channel.
3009         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3010         /// PeerManager::process_events afterwards.
3011         /// Note: This API is likely to change!
3012         /// (C-not exported) Cause its doc(hidden) anyway
3013         #[doc(hidden)]
3014         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3015                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3016                 let counterparty_node_id;
3017                 let err: Result<(), _> = loop {
3018                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3019                         let channel_state = &mut *channel_state_lock;
3020
3021                         match channel_state.by_id.entry(channel_id) {
3022                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3023                                 hash_map::Entry::Occupied(mut chan) => {
3024                                         if !chan.get().is_outbound() {
3025                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3026                                         }
3027                                         if chan.get().is_awaiting_monitor_update() {
3028                                                 return Err(APIError::MonitorUpdateFailed);
3029                                         }
3030                                         if !chan.get().is_live() {
3031                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3032                                         }
3033                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3034                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3035                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3036                                         {
3037                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3038                                                         unimplemented!();
3039                                                 }
3040                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3041                                                         node_id: chan.get().get_counterparty_node_id(),
3042                                                         updates: msgs::CommitmentUpdate {
3043                                                                 update_add_htlcs: Vec::new(),
3044                                                                 update_fulfill_htlcs: Vec::new(),
3045                                                                 update_fail_htlcs: Vec::new(),
3046                                                                 update_fail_malformed_htlcs: Vec::new(),
3047                                                                 update_fee: Some(update_fee),
3048                                                                 commitment_signed,
3049                                                         },
3050                                                 });
3051                                         }
3052                                 },
3053                         }
3054                         return Ok(())
3055                 };
3056
3057                 match handle_error!(self, err, counterparty_node_id) {
3058                         Ok(_) => unreachable!(),
3059                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3060                 }
3061         }
3062
3063         /// Process pending events from the `chain::Watch`.
3064         fn process_pending_monitor_events(&self) {
3065                 let mut failed_channels = Vec::new();
3066                 {
3067                         for monitor_event in self.chain_monitor.release_pending_monitor_events() {
3068                                 match monitor_event {
3069                                         MonitorEvent::HTLCEvent(htlc_update) => {
3070                                                 if let Some(preimage) = htlc_update.payment_preimage {
3071                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3072                                                         self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3073                                                 } else {
3074                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3075                                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3076                                                 }
3077                                         },
3078                                         MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3079                                                 let mut channel_lock = self.channel_state.lock().unwrap();
3080                                                 let channel_state = &mut *channel_lock;
3081                                                 let by_id = &mut channel_state.by_id;
3082                                                 let short_to_id = &mut channel_state.short_to_id;
3083                                                 let pending_msg_events = &mut channel_state.pending_msg_events;
3084                                                 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3085                                                         if let Some(short_id) = chan.get_short_channel_id() {
3086                                                                 short_to_id.remove(&short_id);
3087                                                         }
3088                                                         failed_channels.push(chan.force_shutdown(false));
3089                                                         if let Ok(update) = self.get_channel_update(&chan) {
3090                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3091                                                                         msg: update
3092                                                                 });
3093                                                         }
3094                                                 }
3095                                         },
3096                                 }
3097                         }
3098                 }
3099
3100                 for failure in failed_channels.drain(..) {
3101                         self.finish_force_close_channel(failure);
3102                 }
3103         }
3104 }
3105
3106 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3107         where M::Target: chain::Watch<Signer>,
3108         T::Target: BroadcasterInterface,
3109         K::Target: KeysInterface<Signer = Signer>,
3110         F::Target: FeeEstimator,
3111                                 L::Target: Logger,
3112 {
3113         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3114                 //TODO: This behavior should be documented. It's non-intuitive that we query
3115                 // ChannelMonitors when clearing other events.
3116                 self.process_pending_monitor_events();
3117
3118                 let mut ret = Vec::new();
3119                 let mut channel_state = self.channel_state.lock().unwrap();
3120                 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3121                 ret
3122         }
3123 }
3124
3125 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3126         where M::Target: chain::Watch<Signer>,
3127         T::Target: BroadcasterInterface,
3128         K::Target: KeysInterface<Signer = Signer>,
3129         F::Target: FeeEstimator,
3130                                 L::Target: Logger,
3131 {
3132         fn get_and_clear_pending_events(&self) -> Vec<Event> {
3133                 //TODO: This behavior should be documented. It's non-intuitive that we query
3134                 // ChannelMonitors when clearing other events.
3135                 self.process_pending_monitor_events();
3136
3137                 let mut ret = Vec::new();
3138                 let mut pending_events = self.pending_events.lock().unwrap();
3139                 mem::swap(&mut ret, &mut *pending_events);
3140                 ret
3141         }
3142 }
3143
3144 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3145 where
3146         M::Target: chain::Watch<Signer>,
3147         T::Target: BroadcasterInterface,
3148         K::Target: KeysInterface<Signer = Signer>,
3149         F::Target: FeeEstimator,
3150         L::Target: Logger,
3151 {
3152         fn block_connected(&self, block: &Block, height: u32) {
3153                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3154                 ChannelManager::block_connected(self, &block.header, &txdata, height);
3155         }
3156
3157         fn block_disconnected(&self, header: &BlockHeader, _height: u32) {
3158                 ChannelManager::block_disconnected(self, header);
3159         }
3160 }
3161
3162 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3163         where M::Target: chain::Watch<Signer>,
3164         T::Target: BroadcasterInterface,
3165         K::Target: KeysInterface<Signer = Signer>,
3166         F::Target: FeeEstimator,
3167         L::Target: Logger,
3168 {
3169         /// Updates channel state based on transactions seen in a connected block.
3170         pub fn block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3171                 let header_hash = header.block_hash();
3172                 log_trace!(self.logger, "Block {} at height {} connected", header_hash, height);
3173                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3174                 let mut failed_channels = Vec::new();
3175                 let mut timed_out_htlcs = Vec::new();
3176                 {
3177                         let mut channel_lock = self.channel_state.lock().unwrap();
3178                         let channel_state = &mut *channel_lock;
3179                         let short_to_id = &mut channel_state.short_to_id;
3180                         let pending_msg_events = &mut channel_state.pending_msg_events;
3181                         channel_state.by_id.retain(|_, channel| {
3182                                 let res = channel.block_connected(header, txdata, height);
3183                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3184                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3185                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3186                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3187                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3188                                                         data: chan_update,
3189                                                 }));
3190                                         }
3191                                         if let Some(funding_locked) = chan_res {
3192                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3193                                                         node_id: channel.get_counterparty_node_id(),
3194                                                         msg: funding_locked,
3195                                                 });
3196                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3197                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3198                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3199                                                                 node_id: channel.get_counterparty_node_id(),
3200                                                                 msg: announcement_sigs,
3201                                                         });
3202                                                 } else {
3203                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3204                                                 }
3205                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3206                                         }
3207                                 } else if let Err(e) = res {
3208                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3209                                                 node_id: channel.get_counterparty_node_id(),
3210                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3211                                         });
3212                                         return false;
3213                                 }
3214                                 if let Some(funding_txo) = channel.get_funding_txo() {
3215                                         for &(_, tx) in txdata.iter() {
3216                                                 for inp in tx.input.iter() {
3217                                                         if inp.previous_output == funding_txo.into_bitcoin_outpoint() {
3218                                                                 log_trace!(self.logger, "Detected channel-closing tx {} spending {}:{}, closing channel {}", tx.txid(), inp.previous_output.txid, inp.previous_output.vout, log_bytes!(channel.channel_id()));
3219                                                                 if let Some(short_id) = channel.get_short_channel_id() {
3220                                                                         short_to_id.remove(&short_id);
3221                                                                 }
3222                                                                 // It looks like our counterparty went on-chain. We go ahead and
3223                                                                 // broadcast our latest local state as well here, just in case its
3224                                                                 // some kind of SPV attack, though we expect these to be dropped.
3225                                                                 failed_channels.push(channel.force_shutdown(true));
3226                                                                 if let Ok(update) = self.get_channel_update(&channel) {
3227                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3228                                                                                 msg: update
3229                                                                         });
3230                                                                 }
3231                                                                 return false;
3232                                                         }
3233                                                 }
3234                                         }
3235                                 }
3236                                 true
3237                         });
3238
3239                         channel_state.claimable_htlcs.retain(|&(ref payment_hash, _), htlcs| {
3240                                 htlcs.retain(|htlc| {
3241                                         // If height is approaching the number of blocks we think it takes us to get
3242                                         // our commitment transaction confirmed before the HTLC expires, plus the
3243                                         // number of blocks we generally consider it to take to do a commitment update,
3244                                         // just give up on it and fail the HTLC.
3245                                         if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3246                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3247                                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3248                                                 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3249                                                         failure_code: 0x4000 | 15,
3250                                                         data: htlc_msat_height_data
3251                                                 }));
3252                                                 false
3253                                         } else { true }
3254                                 });
3255                                 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3256                         });
3257                 }
3258                 for failure in failed_channels.drain(..) {
3259                         self.finish_force_close_channel(failure);
3260                 }
3261
3262                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3263                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3264                 }
3265                 self.latest_block_height.store(height as usize, Ordering::Release);
3266                 *self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header_hash;
3267                 loop {
3268                         // Update last_node_announcement_serial to be the max of its current value and the
3269                         // block timestamp. This should keep us close to the current time without relying on
3270                         // having an explicit local time source.
3271                         // Just in case we end up in a race, we loop until we either successfully update
3272                         // last_node_announcement_serial or decide we don't need to.
3273                         let old_serial = self.last_node_announcement_serial.load(Ordering::Acquire);
3274                         if old_serial >= header.time as usize { break; }
3275                         if self.last_node_announcement_serial.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3276                                 break;
3277                         }
3278                 }
3279         }
3280
3281         /// Updates channel state based on a disconnected block.
3282         ///
3283         /// If necessary, the channel may be force-closed without letting the counterparty participate
3284         /// in the shutdown.
3285         pub fn block_disconnected(&self, header: &BlockHeader) {
3286                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3287                 let mut failed_channels = Vec::new();
3288                 {
3289                         let mut channel_lock = self.channel_state.lock().unwrap();
3290                         let channel_state = &mut *channel_lock;
3291                         let short_to_id = &mut channel_state.short_to_id;
3292                         let pending_msg_events = &mut channel_state.pending_msg_events;
3293                         channel_state.by_id.retain(|_,  v| {
3294                                 if v.block_disconnected(header) {
3295                                         if let Some(short_id) = v.get_short_channel_id() {
3296                                                 short_to_id.remove(&short_id);
3297                                         }
3298                                         failed_channels.push(v.force_shutdown(true));
3299                                         if let Ok(update) = self.get_channel_update(&v) {
3300                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3301                                                         msg: update
3302                                                 });
3303                                         }
3304                                         false
3305                                 } else {
3306                                         true
3307                                 }
3308                         });
3309                 }
3310                 for failure in failed_channels.drain(..) {
3311                         self.finish_force_close_channel(failure);
3312                 }
3313                 self.latest_block_height.fetch_sub(1, Ordering::AcqRel);
3314                 *self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header.block_hash();
3315         }
3316
3317         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3318         /// indicating whether persistence is necessary. Only one listener on `wait_timeout` is
3319         /// guaranteed to be woken up.
3320         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3321         #[cfg(any(test, feature = "allow_wallclock_use"))]
3322         pub fn wait_timeout(&self, max_wait: Duration) -> bool {
3323                 self.persistence_notifier.wait_timeout(max_wait)
3324         }
3325
3326         /// Blocks until ChannelManager needs to be persisted. Only one listener on `wait` is
3327         /// guaranteed to be woken up.
3328         pub fn wait(&self) {
3329                 self.persistence_notifier.wait()
3330         }
3331
3332         #[cfg(any(test, feature = "_test_utils"))]
3333         pub fn get_persistence_condvar_value(&self) -> bool {
3334                 let mutcond = &self.persistence_notifier.persistence_lock;
3335                 let &(ref mtx, _) = mutcond;
3336                 let guard = mtx.lock().unwrap();
3337                 *guard
3338         }
3339 }
3340
3341 impl<Signer: Sign, M: Deref + Sync + Send, T: Deref + Sync + Send, K: Deref + Sync + Send, F: Deref + Sync + Send, L: Deref + Sync + Send>
3342         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3343         where M::Target: chain::Watch<Signer>,
3344         T::Target: BroadcasterInterface,
3345         K::Target: KeysInterface<Signer = Signer>,
3346         F::Target: FeeEstimator,
3347         L::Target: Logger,
3348 {
3349         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3350                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3351                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3352         }
3353
3354         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
3355                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3356                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3357         }
3358
3359         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
3360                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3361                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
3362         }
3363
3364         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
3365                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3366                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
3367         }
3368
3369         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
3370                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3371                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
3372         }
3373
3374         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
3375                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3376                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
3377         }
3378
3379         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
3380                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3381                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
3382         }
3383
3384         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
3385                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3386                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
3387         }
3388
3389         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
3390                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3391                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
3392         }
3393
3394         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
3395                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3396                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
3397         }
3398
3399         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
3400                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3401                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
3402         }
3403
3404         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
3405                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3406                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
3407         }
3408
3409         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
3410                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3411                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
3412         }
3413
3414         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
3415                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3416                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
3417         }
3418
3419         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
3420                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3421                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
3422         }
3423
3424         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
3425                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3426                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
3427         }
3428
3429         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
3430                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3431                 let mut failed_channels = Vec::new();
3432                 let mut no_channels_remain = true;
3433                 {
3434                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3435                         let channel_state = &mut *channel_state_lock;
3436                         let short_to_id = &mut channel_state.short_to_id;
3437                         let pending_msg_events = &mut channel_state.pending_msg_events;
3438                         if no_connection_possible {
3439                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
3440                                 channel_state.by_id.retain(|_, chan| {
3441                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3442                                                 if let Some(short_id) = chan.get_short_channel_id() {
3443                                                         short_to_id.remove(&short_id);
3444                                                 }
3445                                                 failed_channels.push(chan.force_shutdown(true));
3446                                                 if let Ok(update) = self.get_channel_update(&chan) {
3447                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3448                                                                 msg: update
3449                                                         });
3450                                                 }
3451                                                 false
3452                                         } else {
3453                                                 true
3454                                         }
3455                                 });
3456                         } else {
3457                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
3458                                 channel_state.by_id.retain(|_, chan| {
3459                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3460                                                 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
3461                                                 chan.to_disabled_marked();
3462                                                 if chan.is_shutdown() {
3463                                                         if let Some(short_id) = chan.get_short_channel_id() {
3464                                                                 short_to_id.remove(&short_id);
3465                                                         }
3466                                                         return false;
3467                                                 } else {
3468                                                         no_channels_remain = false;
3469                                                 }
3470                                         }
3471                                         true
3472                                 })
3473                         }
3474                         pending_msg_events.retain(|msg| {
3475                                 match msg {
3476                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
3477                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
3478                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
3479                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3480                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
3481                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
3482                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
3483                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
3484                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3485                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
3486                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
3487                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
3488                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
3489                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
3490                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
3491                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
3492                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
3493                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
3494                                 }
3495                         });
3496                 }
3497                 if no_channels_remain {
3498                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
3499                 }
3500
3501                 for failure in failed_channels.drain(..) {
3502                         self.finish_force_close_channel(failure);
3503                 }
3504         }
3505
3506         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
3507                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
3508
3509                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3510
3511                 {
3512                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
3513                         match peer_state_lock.entry(counterparty_node_id.clone()) {
3514                                 hash_map::Entry::Vacant(e) => {
3515                                         e.insert(Mutex::new(PeerState {
3516                                                 latest_features: init_msg.features.clone(),
3517                                         }));
3518                                 },
3519                                 hash_map::Entry::Occupied(e) => {
3520                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
3521                                 },
3522                         }
3523                 }
3524
3525                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3526                 let channel_state = &mut *channel_state_lock;
3527                 let pending_msg_events = &mut channel_state.pending_msg_events;
3528                 channel_state.by_id.retain(|_, chan| {
3529                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3530                                 if !chan.have_received_message() {
3531                                         // If we created this (outbound) channel while we were disconnected from the
3532                                         // peer we probably failed to send the open_channel message, which is now
3533                                         // lost. We can't have had anything pending related to this channel, so we just
3534                                         // drop it.
3535                                         false
3536                                 } else {
3537                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
3538                                                 node_id: chan.get_counterparty_node_id(),
3539                                                 msg: chan.get_channel_reestablish(&self.logger),
3540                                         });
3541                                         true
3542                                 }
3543                         } else { true }
3544                 });
3545                 //TODO: Also re-broadcast announcement_signatures
3546         }
3547
3548         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
3549                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3550
3551                 if msg.channel_id == [0; 32] {
3552                         for chan in self.list_channels() {
3553                                 if chan.remote_network_id == *counterparty_node_id {
3554                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3555                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
3556                                 }
3557                         }
3558                 } else {
3559                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3560                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
3561                 }
3562         }
3563 }
3564
3565 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
3566 /// disk/backups, through `wait_timeout` and `wait`.
3567 struct PersistenceNotifier {
3568         /// Users won't access the persistence_lock directly, but rather wait on its bool using
3569         /// `wait_timeout` and `wait`.
3570         persistence_lock: (Mutex<bool>, Condvar),
3571 }
3572
3573 impl PersistenceNotifier {
3574         fn new() -> Self {
3575                 Self {
3576                         persistence_lock: (Mutex::new(false), Condvar::new()),
3577                 }
3578         }
3579
3580         fn wait(&self) {
3581                 loop {
3582                         let &(ref mtx, ref cvar) = &self.persistence_lock;
3583                         let mut guard = mtx.lock().unwrap();
3584                         guard = cvar.wait(guard).unwrap();
3585                         let result = *guard;
3586                         if result {
3587                                 *guard = false;
3588                                 return
3589                         }
3590                 }
3591         }
3592
3593         #[cfg(any(test, feature = "allow_wallclock_use"))]
3594         fn wait_timeout(&self, max_wait: Duration) -> bool {
3595                 let current_time = Instant::now();
3596                 loop {
3597                         let &(ref mtx, ref cvar) = &self.persistence_lock;
3598                         let mut guard = mtx.lock().unwrap();
3599                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
3600                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
3601                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
3602                         // time. Note that this logic can be highly simplified through the use of
3603                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
3604                         // 1.42.0.
3605                         let elapsed = current_time.elapsed();
3606                         let result = *guard;
3607                         if result || elapsed >= max_wait {
3608                                 *guard = false;
3609                                 return result;
3610                         }
3611                         match max_wait.checked_sub(elapsed) {
3612                                 None => return result,
3613                                 Some(_) => continue
3614                         }
3615                 }
3616         }
3617
3618         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
3619         fn notify(&self) {
3620                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
3621                 let mut persistence_lock = persist_mtx.lock().unwrap();
3622                 *persistence_lock = true;
3623                 mem::drop(persistence_lock);
3624                 cnd.notify_all();
3625         }
3626 }
3627
3628 const SERIALIZATION_VERSION: u8 = 1;
3629 const MIN_SERIALIZATION_VERSION: u8 = 1;
3630
3631 impl Writeable for PendingHTLCInfo {
3632         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3633                 match &self.routing {
3634                         &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
3635                                 0u8.write(writer)?;
3636                                 onion_packet.write(writer)?;
3637                                 short_channel_id.write(writer)?;
3638                         },
3639                         &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
3640                                 1u8.write(writer)?;
3641                                 payment_data.write(writer)?;
3642                                 incoming_cltv_expiry.write(writer)?;
3643                         },
3644                 }
3645                 self.incoming_shared_secret.write(writer)?;
3646                 self.payment_hash.write(writer)?;
3647                 self.amt_to_forward.write(writer)?;
3648                 self.outgoing_cltv_value.write(writer)?;
3649                 Ok(())
3650         }
3651 }
3652
3653 impl Readable for PendingHTLCInfo {
3654         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
3655                 Ok(PendingHTLCInfo {
3656                         routing: match Readable::read(reader)? {
3657                                 0u8 => PendingHTLCRouting::Forward {
3658                                         onion_packet: Readable::read(reader)?,
3659                                         short_channel_id: Readable::read(reader)?,
3660                                 },
3661                                 1u8 => PendingHTLCRouting::Receive {
3662                                         payment_data: Readable::read(reader)?,
3663                                         incoming_cltv_expiry: Readable::read(reader)?,
3664                                 },
3665                                 _ => return Err(DecodeError::InvalidValue),
3666                         },
3667                         incoming_shared_secret: Readable::read(reader)?,
3668                         payment_hash: Readable::read(reader)?,
3669                         amt_to_forward: Readable::read(reader)?,
3670                         outgoing_cltv_value: Readable::read(reader)?,
3671                 })
3672         }
3673 }
3674
3675 impl Writeable for HTLCFailureMsg {
3676         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3677                 match self {
3678                         &HTLCFailureMsg::Relay(ref fail_msg) => {
3679                                 0u8.write(writer)?;
3680                                 fail_msg.write(writer)?;
3681                         },
3682                         &HTLCFailureMsg::Malformed(ref fail_msg) => {
3683                                 1u8.write(writer)?;
3684                                 fail_msg.write(writer)?;
3685                         }
3686                 }
3687                 Ok(())
3688         }
3689 }
3690
3691 impl Readable for HTLCFailureMsg {
3692         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
3693                 match <u8 as Readable>::read(reader)? {
3694                         0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
3695                         1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
3696                         _ => Err(DecodeError::InvalidValue),
3697                 }
3698         }
3699 }
3700
3701 impl Writeable for PendingHTLCStatus {
3702         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3703                 match self {
3704                         &PendingHTLCStatus::Forward(ref forward_info) => {
3705                                 0u8.write(writer)?;
3706                                 forward_info.write(writer)?;
3707                         },
3708                         &PendingHTLCStatus::Fail(ref fail_msg) => {
3709                                 1u8.write(writer)?;
3710                                 fail_msg.write(writer)?;
3711                         }
3712                 }
3713                 Ok(())
3714         }
3715 }
3716
3717 impl Readable for PendingHTLCStatus {
3718         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
3719                 match <u8 as Readable>::read(reader)? {
3720                         0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
3721                         1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
3722                         _ => Err(DecodeError::InvalidValue),
3723                 }
3724         }
3725 }
3726
3727 impl_writeable!(HTLCPreviousHopData, 0, {
3728         short_channel_id,
3729         outpoint,
3730         htlc_id,
3731         incoming_packet_shared_secret
3732 });
3733
3734 impl_writeable!(ClaimableHTLC, 0, {
3735         prev_hop,
3736         value,
3737         payment_data,
3738         cltv_expiry
3739 });
3740
3741 impl Writeable for HTLCSource {
3742         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3743                 match self {
3744                         &HTLCSource::PreviousHopData(ref hop_data) => {
3745                                 0u8.write(writer)?;
3746                                 hop_data.write(writer)?;
3747                         },
3748                         &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
3749                                 1u8.write(writer)?;
3750                                 path.write(writer)?;
3751                                 session_priv.write(writer)?;
3752                                 first_hop_htlc_msat.write(writer)?;
3753                         }
3754                 }
3755                 Ok(())
3756         }
3757 }
3758
3759 impl Readable for HTLCSource {
3760         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
3761                 match <u8 as Readable>::read(reader)? {
3762                         0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
3763                         1 => Ok(HTLCSource::OutboundRoute {
3764                                 path: Readable::read(reader)?,
3765                                 session_priv: Readable::read(reader)?,
3766                                 first_hop_htlc_msat: Readable::read(reader)?,
3767                         }),
3768                         _ => Err(DecodeError::InvalidValue),
3769                 }
3770         }
3771 }
3772
3773 impl Writeable for HTLCFailReason {
3774         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3775                 match self {
3776                         &HTLCFailReason::LightningError { ref err } => {
3777                                 0u8.write(writer)?;
3778                                 err.write(writer)?;
3779                         },
3780                         &HTLCFailReason::Reason { ref failure_code, ref data } => {
3781                                 1u8.write(writer)?;
3782                                 failure_code.write(writer)?;
3783                                 data.write(writer)?;
3784                         }
3785                 }
3786                 Ok(())
3787         }
3788 }
3789
3790 impl Readable for HTLCFailReason {
3791         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
3792                 match <u8 as Readable>::read(reader)? {
3793                         0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
3794                         1 => Ok(HTLCFailReason::Reason {
3795                                 failure_code: Readable::read(reader)?,
3796                                 data: Readable::read(reader)?,
3797                         }),
3798                         _ => Err(DecodeError::InvalidValue),
3799                 }
3800         }
3801 }
3802
3803 impl Writeable for HTLCForwardInfo {
3804         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3805                 match self {
3806                         &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
3807                                 0u8.write(writer)?;
3808                                 prev_short_channel_id.write(writer)?;
3809                                 prev_funding_outpoint.write(writer)?;
3810                                 prev_htlc_id.write(writer)?;
3811                                 forward_info.write(writer)?;
3812                         },
3813                         &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
3814                                 1u8.write(writer)?;
3815                                 htlc_id.write(writer)?;
3816                                 err_packet.write(writer)?;
3817                         },
3818                 }
3819                 Ok(())
3820         }
3821 }
3822
3823 impl Readable for HTLCForwardInfo {
3824         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
3825                 match <u8 as Readable>::read(reader)? {
3826                         0 => Ok(HTLCForwardInfo::AddHTLC {
3827                                 prev_short_channel_id: Readable::read(reader)?,
3828                                 prev_funding_outpoint: Readable::read(reader)?,
3829                                 prev_htlc_id: Readable::read(reader)?,
3830                                 forward_info: Readable::read(reader)?,
3831                         }),
3832                         1 => Ok(HTLCForwardInfo::FailHTLC {
3833                                 htlc_id: Readable::read(reader)?,
3834                                 err_packet: Readable::read(reader)?,
3835                         }),
3836                         _ => Err(DecodeError::InvalidValue),
3837                 }
3838         }
3839 }
3840
3841 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
3842         where M::Target: chain::Watch<Signer>,
3843         T::Target: BroadcasterInterface,
3844         K::Target: KeysInterface<Signer = Signer>,
3845         F::Target: FeeEstimator,
3846         L::Target: Logger,
3847 {
3848         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3849                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
3850
3851                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
3852                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
3853
3854                 self.genesis_hash.write(writer)?;
3855                 (self.latest_block_height.load(Ordering::Acquire) as u32).write(writer)?;
3856                 self.last_block_hash.lock().unwrap().write(writer)?;
3857
3858                 let channel_state = self.channel_state.lock().unwrap();
3859                 let mut unfunded_channels = 0;
3860                 for (_, channel) in channel_state.by_id.iter() {
3861                         if !channel.is_funding_initiated() {
3862                                 unfunded_channels += 1;
3863                         }
3864                 }
3865                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
3866                 for (_, channel) in channel_state.by_id.iter() {
3867                         if channel.is_funding_initiated() {
3868                                 channel.write(writer)?;
3869                         }
3870                 }
3871
3872                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
3873                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
3874                         short_channel_id.write(writer)?;
3875                         (pending_forwards.len() as u64).write(writer)?;
3876                         for forward in pending_forwards {
3877                                 forward.write(writer)?;
3878                         }
3879                 }
3880
3881                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
3882                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
3883                         payment_hash.write(writer)?;
3884                         (previous_hops.len() as u64).write(writer)?;
3885                         for htlc in previous_hops.iter() {
3886                                 htlc.write(writer)?;
3887                         }
3888                 }
3889
3890                 let per_peer_state = self.per_peer_state.write().unwrap();
3891                 (per_peer_state.len() as u64).write(writer)?;
3892                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
3893                         peer_pubkey.write(writer)?;
3894                         let peer_state = peer_state_mutex.lock().unwrap();
3895                         peer_state.latest_features.write(writer)?;
3896                 }
3897
3898                 let events = self.pending_events.lock().unwrap();
3899                 (events.len() as u64).write(writer)?;
3900                 for event in events.iter() {
3901                         event.write(writer)?;
3902                 }
3903
3904                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
3905
3906                 Ok(())
3907         }
3908 }
3909
3910 /// Arguments for the creation of a ChannelManager that are not deserialized.
3911 ///
3912 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
3913 /// is:
3914 /// 1) Deserialize all stored ChannelMonitors.
3915 /// 2) Deserialize the ChannelManager by filling in this struct and calling <(Sha256dHash,
3916 ///    ChannelManager)>::read(reader, args).
3917 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
3918 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
3919 /// 3) Register all relevant ChannelMonitor outpoints with your chain watch mechanism using
3920 ///    ChannelMonitor::get_outputs_to_watch() and ChannelMonitor::get_funding_txo().
3921 /// 4) Reconnect blocks on your ChannelMonitors.
3922 /// 5) Move the ChannelMonitors into your local chain::Watch.
3923 /// 6) Disconnect/connect blocks on the ChannelManager.
3924 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
3925         where M::Target: chain::Watch<Signer>,
3926         T::Target: BroadcasterInterface,
3927         K::Target: KeysInterface<Signer = Signer>,
3928         F::Target: FeeEstimator,
3929         L::Target: Logger,
3930 {
3931         /// The keys provider which will give us relevant keys. Some keys will be loaded during
3932         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
3933         /// signing data.
3934         pub keys_manager: K,
3935
3936         /// The fee_estimator for use in the ChannelManager in the future.
3937         ///
3938         /// No calls to the FeeEstimator will be made during deserialization.
3939         pub fee_estimator: F,
3940         /// The chain::Watch for use in the ChannelManager in the future.
3941         ///
3942         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
3943         /// you have deserialized ChannelMonitors separately and will add them to your
3944         /// chain::Watch after deserializing this ChannelManager.
3945         pub chain_monitor: M,
3946
3947         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
3948         /// used to broadcast the latest local commitment transactions of channels which must be
3949         /// force-closed during deserialization.
3950         pub tx_broadcaster: T,
3951         /// The Logger for use in the ChannelManager and which may be used to log information during
3952         /// deserialization.
3953         pub logger: L,
3954         /// Default settings used for new channels. Any existing channels will continue to use the
3955         /// runtime settings which were stored when the ChannelManager was serialized.
3956         pub default_config: UserConfig,
3957
3958         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
3959         /// value.get_funding_txo() should be the key).
3960         ///
3961         /// If a monitor is inconsistent with the channel state during deserialization the channel will
3962         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
3963         /// is true for missing channels as well. If there is a monitor missing for which we find
3964         /// channel data Err(DecodeError::InvalidValue) will be returned.
3965         ///
3966         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
3967         /// this struct.
3968         ///
3969         /// (C-not exported) because we have no HashMap bindings
3970         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
3971 }
3972
3973 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
3974                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
3975         where M::Target: chain::Watch<Signer>,
3976                 T::Target: BroadcasterInterface,
3977                 K::Target: KeysInterface<Signer = Signer>,
3978                 F::Target: FeeEstimator,
3979                 L::Target: Logger,
3980         {
3981         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
3982         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
3983         /// populate a HashMap directly from C.
3984         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
3985                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
3986                 Self {
3987                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
3988                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
3989                 }
3990         }
3991 }
3992
3993 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
3994 // SipmleArcChannelManager type:
3995 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
3996         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
3997         where M::Target: chain::Watch<Signer>,
3998         T::Target: BroadcasterInterface,
3999         K::Target: KeysInterface<Signer = Signer>,
4000         F::Target: FeeEstimator,
4001         L::Target: Logger,
4002 {
4003         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4004                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4005                 Ok((blockhash, Arc::new(chan_manager)))
4006         }
4007 }
4008
4009 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4010         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4011         where M::Target: chain::Watch<Signer>,
4012         T::Target: BroadcasterInterface,
4013         K::Target: KeysInterface<Signer = Signer>,
4014         F::Target: FeeEstimator,
4015         L::Target: Logger,
4016 {
4017         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4018                 let _ver: u8 = Readable::read(reader)?;
4019                 let min_ver: u8 = Readable::read(reader)?;
4020                 if min_ver > SERIALIZATION_VERSION {
4021                         return Err(DecodeError::UnknownVersion);
4022                 }
4023
4024                 let genesis_hash: BlockHash = Readable::read(reader)?;
4025                 let latest_block_height: u32 = Readable::read(reader)?;
4026                 let last_block_hash: BlockHash = Readable::read(reader)?;
4027
4028                 let mut failed_htlcs = Vec::new();
4029
4030                 let channel_count: u64 = Readable::read(reader)?;
4031                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4032                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4033                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4034                 for _ in 0..channel_count {
4035                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4036                         if channel.last_block_connected != Default::default() && channel.last_block_connected != last_block_hash {
4037                                 return Err(DecodeError::InvalidValue);
4038                         }
4039
4040                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4041                         funding_txo_set.insert(funding_txo.clone());
4042                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4043                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4044                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4045                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4046                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4047                                         // If the channel is ahead of the monitor, return InvalidValue:
4048                                         return Err(DecodeError::InvalidValue);
4049                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4050                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4051                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4052                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4053                                         // But if the channel is behind of the monitor, close the channel:
4054                                         let (_, _, mut new_failed_htlcs) = channel.force_shutdown(true);
4055                                         failed_htlcs.append(&mut new_failed_htlcs);
4056                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4057                                 } else {
4058                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4059                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4060                                         }
4061                                         by_id.insert(channel.channel_id(), channel);
4062                                 }
4063                         } else {
4064                                 return Err(DecodeError::InvalidValue);
4065                         }
4066                 }
4067
4068                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4069                         if !funding_txo_set.contains(funding_txo) {
4070                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4071                         }
4072                 }
4073
4074                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4075                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4076                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4077                 for _ in 0..forward_htlcs_count {
4078                         let short_channel_id = Readable::read(reader)?;
4079                         let pending_forwards_count: u64 = Readable::read(reader)?;
4080                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4081                         for _ in 0..pending_forwards_count {
4082                                 pending_forwards.push(Readable::read(reader)?);
4083                         }
4084                         forward_htlcs.insert(short_channel_id, pending_forwards);
4085                 }
4086
4087                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4088                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4089                 for _ in 0..claimable_htlcs_count {
4090                         let payment_hash = Readable::read(reader)?;
4091                         let previous_hops_len: u64 = Readable::read(reader)?;
4092                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4093                         for _ in 0..previous_hops_len {
4094                                 previous_hops.push(Readable::read(reader)?);
4095                         }
4096                         claimable_htlcs.insert(payment_hash, previous_hops);
4097                 }
4098
4099                 let peer_count: u64 = Readable::read(reader)?;
4100                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4101                 for _ in 0..peer_count {
4102                         let peer_pubkey = Readable::read(reader)?;
4103                         let peer_state = PeerState {
4104                                 latest_features: Readable::read(reader)?,
4105                         };
4106                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4107                 }
4108
4109                 let event_count: u64 = Readable::read(reader)?;
4110                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4111                 for _ in 0..event_count {
4112                         match MaybeReadable::read(reader)? {
4113                                 Some(event) => pending_events_read.push(event),
4114                                 None => continue,
4115                         }
4116                 }
4117
4118                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4119
4120                 let mut secp_ctx = Secp256k1::new();
4121                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4122
4123                 let channel_manager = ChannelManager {
4124                         genesis_hash,
4125                         fee_estimator: args.fee_estimator,
4126                         chain_monitor: args.chain_monitor,
4127                         tx_broadcaster: args.tx_broadcaster,
4128
4129                         latest_block_height: AtomicUsize::new(latest_block_height as usize),
4130                         last_block_hash: Mutex::new(last_block_hash),
4131                         secp_ctx,
4132
4133                         channel_state: Mutex::new(ChannelHolder {
4134                                 by_id,
4135                                 short_to_id,
4136                                 forward_htlcs,
4137                                 claimable_htlcs,
4138                                 pending_msg_events: Vec::new(),
4139                         }),
4140                         our_network_key: args.keys_manager.get_node_secret(),
4141
4142                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4143
4144                         per_peer_state: RwLock::new(per_peer_state),
4145
4146                         pending_events: Mutex::new(pending_events_read),
4147                         total_consistency_lock: RwLock::new(()),
4148                         persistence_notifier: PersistenceNotifier::new(),
4149
4150                         keys_manager: args.keys_manager,
4151                         logger: args.logger,
4152                         default_configuration: args.default_config,
4153                 };
4154
4155                 for htlc_source in failed_htlcs.drain(..) {
4156                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4157                 }
4158
4159                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4160                 //connection or two.
4161
4162                 Ok((last_block_hash.clone(), channel_manager))
4163         }
4164 }
4165
4166 #[cfg(test)]
4167 mod tests {
4168         use ln::channelmanager::PersistenceNotifier;
4169         use std::sync::Arc;
4170         use std::sync::atomic::{AtomicBool, Ordering};
4171         use std::thread;
4172         use std::time::Duration;
4173
4174         #[test]
4175         fn test_wait_timeout() {
4176                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4177                 let thread_notifier = Arc::clone(&persistence_notifier);
4178
4179                 let exit_thread = Arc::new(AtomicBool::new(false));
4180                 let exit_thread_clone = exit_thread.clone();
4181                 thread::spawn(move || {
4182                         loop {
4183                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4184                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4185                                 *persistence_lock = true;
4186                                 cnd.notify_all();
4187
4188                                 if exit_thread_clone.load(Ordering::SeqCst) {
4189                                         break
4190                                 }
4191                         }
4192                 });
4193
4194                 // Check that we can block indefinitely until updates are available.
4195                 let _ = persistence_notifier.wait();
4196
4197                 // Check that the PersistenceNotifier will return after the given duration if updates are
4198                 // available.
4199                 loop {
4200                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4201                                 break
4202                         }
4203                 }
4204
4205                 exit_thread.store(true, Ordering::SeqCst);
4206
4207                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4208                 // are available.
4209                 loop {
4210                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4211                                 break
4212                         }
4213                 }
4214         }
4215 }