1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::{Hash, HashEngine};
26 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
29 use bitcoin::hashes::cmp::fixed_time_eq;
30 use bitcoin::hash_types::BlockHash;
32 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
33 use bitcoin::secp256k1::Secp256k1;
34 use bitcoin::secp256k1::ecdh::SharedSecret;
35 use bitcoin::secp256k1;
39 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
40 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
41 use chain::transaction::{OutPoint, TransactionData};
42 use ln::channel::{Channel, ChannelError};
43 use ln::features::{InitFeatures, NodeFeatures};
44 use routing::router::{Route, RouteHop};
46 use ln::msgs::NetAddress;
48 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
49 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
50 use util::config::UserConfig;
51 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
52 use util::{byte_utils, events};
53 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
54 use util::chacha20::{ChaCha20, ChaChaReader};
55 use util::logger::Logger;
56 use util::errors::APIError;
59 use std::collections::{HashMap, hash_map, HashSet};
60 use std::io::{Cursor, Read};
61 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
62 use std::sync::atomic::{AtomicUsize, Ordering};
63 use std::time::Duration;
64 #[cfg(any(test, feature = "allow_wallclock_use"))]
65 use std::time::Instant;
66 use std::marker::{Sync, Send};
68 use bitcoin::hashes::hex::ToHex;
70 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
72 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
73 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
74 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
76 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
77 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
78 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
79 // before we forward it.
81 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
82 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
83 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
84 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
85 // our payment, which we can use to decode errors or inform the user that the payment was sent.
87 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
88 enum PendingHTLCRouting {
90 onion_packet: msgs::OnionPacket,
91 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
94 payment_data: Option<msgs::FinalOnionHopData>,
95 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
99 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
100 pub(super) struct PendingHTLCInfo {
101 routing: PendingHTLCRouting,
102 incoming_shared_secret: [u8; 32],
103 payment_hash: PaymentHash,
104 pub(super) amt_to_forward: u64,
105 pub(super) outgoing_cltv_value: u32,
108 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
109 pub(super) enum HTLCFailureMsg {
110 Relay(msgs::UpdateFailHTLC),
111 Malformed(msgs::UpdateFailMalformedHTLC),
114 /// Stores whether we can't forward an HTLC or relevant forwarding info
115 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
116 pub(super) enum PendingHTLCStatus {
117 Forward(PendingHTLCInfo),
118 Fail(HTLCFailureMsg),
121 pub(super) enum HTLCForwardInfo {
123 forward_info: PendingHTLCInfo,
125 // These fields are produced in `forward_htlcs()` and consumed in
126 // `process_pending_htlc_forwards()` for constructing the
127 // `HTLCSource::PreviousHopData` for failed and forwarded
129 prev_short_channel_id: u64,
131 prev_funding_outpoint: OutPoint,
135 err_packet: msgs::OnionErrorPacket,
139 /// Tracks the inbound corresponding to an outbound HTLC
140 #[derive(Clone, PartialEq)]
141 pub(crate) struct HTLCPreviousHopData {
142 short_channel_id: u64,
144 incoming_packet_shared_secret: [u8; 32],
146 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
147 // channel with a preimage provided by the forward channel.
151 struct ClaimableHTLC {
152 prev_hop: HTLCPreviousHopData,
154 /// Filled in when the HTLC was received with a payment_secret packet, which contains a
155 /// total_msat (which may differ from value if this is a Multi-Path Payment) and a
156 /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
157 /// are part of the same payment.
158 payment_data: Option<msgs::FinalOnionHopData>,
162 /// Tracks the inbound corresponding to an outbound HTLC
163 #[derive(Clone, PartialEq)]
164 pub(crate) enum HTLCSource {
165 PreviousHopData(HTLCPreviousHopData),
168 session_priv: SecretKey,
169 /// Technically we can recalculate this from the route, but we cache it here to avoid
170 /// doing a double-pass on route when we get a failure back
171 first_hop_htlc_msat: u64,
176 pub fn dummy() -> Self {
177 HTLCSource::OutboundRoute {
179 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
180 first_hop_htlc_msat: 0,
185 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
186 pub(super) enum HTLCFailReason {
188 err: msgs::OnionErrorPacket,
196 /// payment_hash type, use to cross-lock hop
197 /// (C-not exported) as we just use [u8; 32] directly
198 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
199 pub struct PaymentHash(pub [u8;32]);
200 /// payment_preimage type, use to route payment between hop
201 /// (C-not exported) as we just use [u8; 32] directly
202 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
203 pub struct PaymentPreimage(pub [u8;32]);
204 /// payment_secret type, use to authenticate sender to the receiver and tie MPP HTLCs together
205 /// (C-not exported) as we just use [u8; 32] directly
206 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
207 pub struct PaymentSecret(pub [u8;32]);
209 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
211 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
212 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
213 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
214 /// channel_state lock. We then return the set of things that need to be done outside the lock in
215 /// this struct and call handle_error!() on it.
217 struct MsgHandleErrInternal {
218 err: msgs::LightningError,
219 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
221 impl MsgHandleErrInternal {
223 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
225 err: LightningError {
227 action: msgs::ErrorAction::SendErrorMessage {
228 msg: msgs::ErrorMessage {
234 shutdown_finish: None,
238 fn ignore_no_close(err: String) -> Self {
240 err: LightningError {
242 action: msgs::ErrorAction::IgnoreError,
244 shutdown_finish: None,
248 fn from_no_close(err: msgs::LightningError) -> Self {
249 Self { err, shutdown_finish: None }
252 fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
254 err: LightningError {
256 action: msgs::ErrorAction::SendErrorMessage {
257 msg: msgs::ErrorMessage {
263 shutdown_finish: Some((shutdown_res, channel_update)),
267 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
270 ChannelError::Ignore(msg) => LightningError {
272 action: msgs::ErrorAction::IgnoreError,
274 ChannelError::Close(msg) => LightningError {
276 action: msgs::ErrorAction::SendErrorMessage {
277 msg: msgs::ErrorMessage {
283 ChannelError::CloseDelayBroadcast(msg) => LightningError {
285 action: msgs::ErrorAction::SendErrorMessage {
286 msg: msgs::ErrorMessage {
293 shutdown_finish: None,
298 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
299 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
300 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
301 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
302 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
304 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
305 /// be sent in the order they appear in the return value, however sometimes the order needs to be
306 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
307 /// they were originally sent). In those cases, this enum is also returned.
308 #[derive(Clone, PartialEq)]
309 pub(super) enum RAACommitmentOrder {
310 /// Send the CommitmentUpdate messages first
312 /// Send the RevokeAndACK message first
316 // Note this is only exposed in cfg(test):
317 pub(super) struct ChannelHolder<Signer: Sign> {
318 pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
319 pub(super) short_to_id: HashMap<u64, [u8; 32]>,
320 /// short channel id -> forward infos. Key of 0 means payments received
321 /// Note that while this is held in the same mutex as the channels themselves, no consistency
322 /// guarantees are made about the existence of a channel with the short id here, nor the short
323 /// ids in the PendingHTLCInfo!
324 pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
325 /// (payment_hash, payment_secret) -> Vec<HTLCs> for tracking HTLCs that
326 /// were to us and can be failed/claimed by the user
327 /// Note that while this is held in the same mutex as the channels themselves, no consistency
328 /// guarantees are made about the channels given here actually existing anymore by the time you
330 claimable_htlcs: HashMap<(PaymentHash, Option<PaymentSecret>), Vec<ClaimableHTLC>>,
331 /// Messages to send to peers - pushed to in the same lock that they are generated in (except
332 /// for broadcast messages, where ordering isn't as strict).
333 pub(super) pending_msg_events: Vec<MessageSendEvent>,
336 /// Events which we process internally but cannot be procsesed immediately at the generation site
337 /// for some reason. They are handled in timer_chan_freshness_every_min, so may be processed with
338 /// quite some time lag.
339 enum BackgroundEvent {
340 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
341 /// commitment transaction.
342 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
345 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
346 /// the latest Init features we heard from the peer.
348 latest_features: InitFeatures,
351 #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
352 const ERR: () = "You need at least 32 bit pointers (well, usize, but we'll assume they're the same) for ChannelManager::latest_block_height";
354 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
355 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
356 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
357 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
358 /// issues such as overly long function definitions. Note that the ChannelManager can take any
359 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
360 /// concrete type of the KeysManager.
361 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
363 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
364 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
365 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
366 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
367 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
368 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
369 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
370 /// concrete type of the KeysManager.
371 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
373 /// Manager which keeps track of a number of channels and sends messages to the appropriate
374 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
376 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
377 /// to individual Channels.
379 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
380 /// all peers during write/read (though does not modify this instance, only the instance being
381 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
382 /// called funding_transaction_generated for outbound channels).
384 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
385 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
386 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
387 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
388 /// the serialization process). If the deserialized version is out-of-date compared to the
389 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
390 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
392 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
393 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
394 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
395 /// block_connected() to step towards your best block) upon deserialization before using the
398 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
399 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
400 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
401 /// offline for a full minute. In order to track this, you must call
402 /// timer_chan_freshness_every_min roughly once per minute, though it doesn't have to be perfect.
404 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
405 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
406 /// essentially you should default to using a SimpleRefChannelManager, and use a
407 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
408 /// you're using lightning-net-tokio.
409 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
410 where M::Target: chain::Watch<Signer>,
411 T::Target: BroadcasterInterface,
412 K::Target: KeysInterface<Signer = Signer>,
413 F::Target: FeeEstimator,
416 default_configuration: UserConfig,
417 genesis_hash: BlockHash,
423 pub(super) latest_block_height: AtomicUsize,
425 latest_block_height: AtomicUsize,
426 last_block_hash: RwLock<BlockHash>,
427 secp_ctx: Secp256k1<secp256k1::All>,
429 #[cfg(any(test, feature = "_test_utils"))]
430 pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
431 #[cfg(not(any(test, feature = "_test_utils")))]
432 channel_state: Mutex<ChannelHolder<Signer>>,
433 our_network_key: SecretKey,
435 /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
436 /// value increases strictly since we don't assume access to a time source.
437 last_node_announcement_serial: AtomicUsize,
439 /// The bulk of our storage will eventually be here (channels and message queues and the like).
440 /// If we are connected to a peer we always at least have an entry here, even if no channels
441 /// are currently open with that peer.
442 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
443 /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
445 per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
447 pending_events: Mutex<Vec<events::Event>>,
448 pending_background_events: Mutex<Vec<BackgroundEvent>>,
449 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
450 /// Essentially just when we're serializing ourselves out.
451 /// Taken first everywhere where we are making changes before any other locks.
452 /// When acquiring this lock in read mode, rather than acquiring it directly, call
453 /// `PersistenceNotifierGuard::new(..)` and pass the lock to it, to ensure the PersistenceNotifier
454 /// the lock contains sends out a notification when the lock is released.
455 total_consistency_lock: RwLock<()>,
457 persistence_notifier: PersistenceNotifier,
464 /// Chain-related parameters used to construct a new `ChannelManager`.
466 /// Typically, the block-specific parameters are derived from the best block hash for the network,
467 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
468 /// are not needed when deserializing a previously constructed `ChannelManager`.
469 pub struct ChainParameters {
470 /// The network for determining the `chain_hash` in Lightning messages.
471 pub network: Network,
473 /// The hash of the latest block successfully connected.
474 pub latest_hash: BlockHash,
476 /// The height of the latest block successfully connected.
478 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
479 pub latest_height: usize,
482 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
483 /// desirable to notify any listeners on `wait_timeout`/`wait` that new updates are available for
484 /// persistence. Therefore, this struct is responsible for locking the total consistency lock and,
485 /// upon going out of scope, sending the aforementioned notification (since the lock being released
486 /// indicates that the updates are ready for persistence).
487 struct PersistenceNotifierGuard<'a> {
488 persistence_notifier: &'a PersistenceNotifier,
489 // We hold onto this result so the lock doesn't get released immediately.
490 _read_guard: RwLockReadGuard<'a, ()>,
493 impl<'a> PersistenceNotifierGuard<'a> {
494 fn new(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> Self {
495 let read_guard = lock.read().unwrap();
498 persistence_notifier: notifier,
499 _read_guard: read_guard,
504 impl<'a> Drop for PersistenceNotifierGuard<'a> {
506 self.persistence_notifier.notify();
510 /// The amount of time we require our counterparty wait to claim their money (ie time between when
511 /// we, or our watchtower, must check for them having broadcast a theft transaction).
512 pub(crate) const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
513 /// The amount of time we're willing to wait to claim money back to us
514 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 6 * 24 * 7;
516 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
517 /// HTLC's CLTV. This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
518 /// ie the node we forwarded the payment on to should always have enough room to reliably time out
519 /// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
520 /// CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
521 const CLTV_EXPIRY_DELTA: u16 = 6 * 12; //TODO?
522 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
524 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
525 // ie that if the next-hop peer fails the HTLC within
526 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
527 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
528 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
529 // LATENCY_GRACE_PERIOD_BLOCKS.
532 const CHECK_CLTV_EXPIRY_SANITY: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
534 // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
535 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
538 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
540 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
542 pub struct ChannelDetails {
543 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
544 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
545 /// Note that this means this value is *not* persistent - it can change once during the
546 /// lifetime of the channel.
547 pub channel_id: [u8; 32],
548 /// The position of the funding transaction in the chain. None if the funding transaction has
549 /// not yet been confirmed and the channel fully opened.
550 pub short_channel_id: Option<u64>,
551 /// The node_id of our counterparty
552 pub remote_network_id: PublicKey,
553 /// The Features the channel counterparty provided upon last connection.
554 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
555 /// many routing-relevant features are present in the init context.
556 pub counterparty_features: InitFeatures,
557 /// The value, in satoshis, of this channel as appears in the funding output
558 pub channel_value_satoshis: u64,
559 /// The user_id passed in to create_channel, or 0 if the channel was inbound.
561 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
562 /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
563 /// available for inclusion in new outbound HTLCs). This further does not include any pending
564 /// outgoing HTLCs which are awaiting some other resolution to be sent.
565 pub outbound_capacity_msat: u64,
566 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
567 /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
568 /// available for inclusion in new inbound HTLCs).
569 /// Note that there are some corner cases not fully handled here, so the actual available
570 /// inbound capacity may be slightly higher than this.
571 pub inbound_capacity_msat: u64,
572 /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
573 /// the peer is connected, and (c) no monitor update failure is pending resolution.
577 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
578 /// Err() type describing which state the payment is in, see the description of individual enum
580 #[derive(Clone, Debug)]
581 pub enum PaymentSendFailure {
582 /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
583 /// send the payment at all. No channel state has been changed or messages sent to peers, and
584 /// once you've changed the parameter at error, you can freely retry the payment in full.
585 ParameterError(APIError),
586 /// A parameter in a single path which was passed to send_payment was invalid, preventing us
587 /// from attempting to send the payment at all. No channel state has been changed or messages
588 /// sent to peers, and once you've changed the parameter at error, you can freely retry the
591 /// The results here are ordered the same as the paths in the route object which was passed to
593 PathParameterError(Vec<Result<(), APIError>>),
594 /// All paths which were attempted failed to send, with no channel state change taking place.
595 /// You can freely retry the payment in full (though you probably want to do so over different
596 /// paths than the ones selected).
597 AllFailedRetrySafe(Vec<APIError>),
598 /// Some paths which were attempted failed to send, though possibly not all. At least some
599 /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
600 /// in over-/re-payment.
602 /// The results here are ordered the same as the paths in the route object which was passed to
603 /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
604 /// retried (though there is currently no API with which to do so).
606 /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
607 /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
608 /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
609 /// with the latest update_id.
610 PartialFailure(Vec<Result<(), APIError>>),
613 macro_rules! handle_error {
614 ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
617 Err(MsgHandleErrInternal { err, shutdown_finish }) => {
618 #[cfg(debug_assertions)]
620 // In testing, ensure there are no deadlocks where the lock is already held upon
621 // entering the macro.
622 assert!($self.channel_state.try_lock().is_ok());
625 let mut msg_events = Vec::with_capacity(2);
627 if let Some((shutdown_res, update_option)) = shutdown_finish {
628 $self.finish_force_close_channel(shutdown_res);
629 if let Some(update) = update_option {
630 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
636 log_error!($self.logger, "{}", err.err);
637 if let msgs::ErrorAction::IgnoreError = err.action {
639 msg_events.push(events::MessageSendEvent::HandleError {
640 node_id: $counterparty_node_id,
641 action: err.action.clone()
645 if !msg_events.is_empty() {
646 $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
649 // Return error in case higher-API need one
656 macro_rules! break_chan_entry {
657 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
660 Err(ChannelError::Ignore(msg)) => {
661 break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
663 Err(ChannelError::Close(msg)) => {
664 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
665 let (channel_id, mut chan) = $entry.remove_entry();
666 if let Some(short_id) = chan.get_short_channel_id() {
667 $channel_state.short_to_id.remove(&short_id);
669 break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
671 Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
676 macro_rules! try_chan_entry {
677 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
680 Err(ChannelError::Ignore(msg)) => {
681 return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
683 Err(ChannelError::Close(msg)) => {
684 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
685 let (channel_id, mut chan) = $entry.remove_entry();
686 if let Some(short_id) = chan.get_short_channel_id() {
687 $channel_state.short_to_id.remove(&short_id);
689 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
691 Err(ChannelError::CloseDelayBroadcast(msg)) => {
692 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
693 let (channel_id, mut chan) = $entry.remove_entry();
694 if let Some(short_id) = chan.get_short_channel_id() {
695 $channel_state.short_to_id.remove(&short_id);
697 let shutdown_res = chan.force_shutdown(false);
698 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
704 macro_rules! handle_monitor_err {
705 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
706 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
708 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
710 ChannelMonitorUpdateErr::PermanentFailure => {
711 log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
712 let (channel_id, mut chan) = $entry.remove_entry();
713 if let Some(short_id) = chan.get_short_channel_id() {
714 $channel_state.short_to_id.remove(&short_id);
716 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
717 // chain in a confused state! We need to move them into the ChannelMonitor which
718 // will be responsible for failing backwards once things confirm on-chain.
719 // It's ok that we drop $failed_forwards here - at this point we'd rather they
720 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
721 // us bother trying to claim it just to forward on to another peer. If we're
722 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
723 // given up the preimage yet, so might as well just wait until the payment is
724 // retried, avoiding the on-chain fees.
725 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
728 ChannelMonitorUpdateErr::TemporaryFailure => {
729 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
730 log_bytes!($entry.key()[..]),
731 if $resend_commitment && $resend_raa {
733 RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
734 RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
736 } else if $resend_commitment { "commitment" }
737 else if $resend_raa { "RAA" }
739 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
740 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
741 if !$resend_commitment {
742 debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
745 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
747 $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
748 Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
754 macro_rules! return_monitor_err {
755 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
756 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
758 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
759 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
763 // Does not break in case of TemporaryFailure!
764 macro_rules! maybe_break_monitor_err {
765 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
766 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
767 (e, ChannelMonitorUpdateErr::PermanentFailure) => {
770 (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
775 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
776 where M::Target: chain::Watch<Signer>,
777 T::Target: BroadcasterInterface,
778 K::Target: KeysInterface<Signer = Signer>,
779 F::Target: FeeEstimator,
782 /// Constructs a new ChannelManager to hold several channels and route between them.
784 /// This is the main "logic hub" for all channel-related actions, and implements
785 /// ChannelMessageHandler.
787 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
789 /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
791 /// Users need to notify the new ChannelManager when a new block is connected or
792 /// disconnected using its `block_connected` and `block_disconnected` methods, starting
793 /// from after `params.latest_hash`.
794 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
795 let mut secp_ctx = Secp256k1::new();
796 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
799 default_configuration: config.clone(),
800 genesis_hash: genesis_block(params.network).header.block_hash(),
801 fee_estimator: fee_est,
805 latest_block_height: AtomicUsize::new(params.latest_height),
806 last_block_hash: RwLock::new(params.latest_hash),
809 channel_state: Mutex::new(ChannelHolder{
810 by_id: HashMap::new(),
811 short_to_id: HashMap::new(),
812 forward_htlcs: HashMap::new(),
813 claimable_htlcs: HashMap::new(),
814 pending_msg_events: Vec::new(),
816 our_network_key: keys_manager.get_node_secret(),
818 last_node_announcement_serial: AtomicUsize::new(0),
820 per_peer_state: RwLock::new(HashMap::new()),
822 pending_events: Mutex::new(Vec::new()),
823 pending_background_events: Mutex::new(Vec::new()),
824 total_consistency_lock: RwLock::new(()),
825 persistence_notifier: PersistenceNotifier::new(),
833 /// Creates a new outbound channel to the given remote node and with the given value.
835 /// user_id will be provided back as user_channel_id in FundingGenerationReady and
836 /// FundingBroadcastSafe events to allow tracking of which events correspond with which
837 /// create_channel call. Note that user_channel_id defaults to 0 for inbound channels, so you
838 /// may wish to avoid using 0 for user_id here.
840 /// If successful, will generate a SendOpenChannel message event, so you should probably poll
841 /// PeerManager::process_events afterwards.
843 /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
844 /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
845 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
846 if channel_value_satoshis < 1000 {
847 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
850 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
851 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
852 let res = channel.get_open_channel(self.genesis_hash.clone());
854 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
855 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
856 debug_assert!(&self.total_consistency_lock.try_write().is_err());
858 let mut channel_state = self.channel_state.lock().unwrap();
859 match channel_state.by_id.entry(channel.channel_id()) {
860 hash_map::Entry::Occupied(_) => {
861 if cfg!(feature = "fuzztarget") {
862 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
864 panic!("RNG is bad???");
867 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
869 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
870 node_id: their_network_key,
876 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
877 let mut res = Vec::new();
879 let channel_state = self.channel_state.lock().unwrap();
880 res.reserve(channel_state.by_id.len());
881 for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
882 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
883 res.push(ChannelDetails {
884 channel_id: (*channel_id).clone(),
885 short_channel_id: channel.get_short_channel_id(),
886 remote_network_id: channel.get_counterparty_node_id(),
887 counterparty_features: InitFeatures::empty(),
888 channel_value_satoshis: channel.get_value_satoshis(),
889 inbound_capacity_msat,
890 outbound_capacity_msat,
891 user_id: channel.get_user_id(),
892 is_live: channel.is_live(),
896 let per_peer_state = self.per_peer_state.read().unwrap();
897 for chan in res.iter_mut() {
898 if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
899 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
905 /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
906 /// more information.
907 pub fn list_channels(&self) -> Vec<ChannelDetails> {
908 self.list_channels_with_filter(|_| true)
911 /// Gets the list of usable channels, in random order. Useful as an argument to
912 /// get_route to ensure non-announced channels are used.
914 /// These are guaranteed to have their is_live value set to true, see the documentation for
915 /// ChannelDetails::is_live for more info on exactly what the criteria are.
916 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
917 // Note we use is_live here instead of usable which leads to somewhat confused
918 // internal/external nomenclature, but that's ok cause that's probably what the user
919 // really wanted anyway.
920 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
923 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
924 /// will be accepted on the given channel, and after additional timeout/the closing of all
925 /// pending HTLCs, the channel will be closed on chain.
927 /// May generate a SendShutdown message event on success, which should be relayed.
928 pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
929 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
931 let (mut failed_htlcs, chan_option) = {
932 let mut channel_state_lock = self.channel_state.lock().unwrap();
933 let channel_state = &mut *channel_state_lock;
934 match channel_state.by_id.entry(channel_id.clone()) {
935 hash_map::Entry::Occupied(mut chan_entry) => {
936 let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
937 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
938 node_id: chan_entry.get().get_counterparty_node_id(),
941 if chan_entry.get().is_shutdown() {
942 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
943 channel_state.short_to_id.remove(&short_id);
945 (failed_htlcs, Some(chan_entry.remove_entry().1))
946 } else { (failed_htlcs, None) }
948 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
951 for htlc_source in failed_htlcs.drain(..) {
952 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
954 let chan_update = if let Some(chan) = chan_option {
955 if let Ok(update) = self.get_channel_update(&chan) {
960 if let Some(update) = chan_update {
961 let mut channel_state = self.channel_state.lock().unwrap();
962 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
971 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
972 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
973 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
974 for htlc_source in failed_htlcs.drain(..) {
975 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
977 if let Some((funding_txo, monitor_update)) = monitor_update_option {
978 // There isn't anything we can do if we get an update failure - we're already
979 // force-closing. The monitor update on the required in-memory copy should broadcast
980 // the latest local state, which is the best we can do anyway. Thus, it is safe to
981 // ignore the result here.
982 let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
986 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<(), APIError> {
988 let mut channel_state_lock = self.channel_state.lock().unwrap();
989 let channel_state = &mut *channel_state_lock;
990 if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
991 if let Some(node_id) = peer_node_id {
992 if chan.get().get_counterparty_node_id() != *node_id {
993 // Error or Ok here doesn't matter - the result is only exposed publicly
994 // when peer_node_id is None anyway.
998 if let Some(short_id) = chan.get().get_short_channel_id() {
999 channel_state.short_to_id.remove(&short_id);
1001 chan.remove_entry().1
1003 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1006 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1007 self.finish_force_close_channel(chan.force_shutdown(true));
1008 if let Ok(update) = self.get_channel_update(&chan) {
1009 let mut channel_state = self.channel_state.lock().unwrap();
1010 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1018 /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1019 /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1020 pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1021 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1022 self.force_close_channel_with_peer(channel_id, None)
1025 /// Force close all channels, immediately broadcasting the latest local commitment transaction
1026 /// for each to the chain and rejecting new HTLCs on each.
1027 pub fn force_close_all_channels(&self) {
1028 for chan in self.list_channels() {
1029 let _ = self.force_close_channel(&chan.channel_id);
1033 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1034 macro_rules! return_malformed_err {
1035 ($msg: expr, $err_code: expr) => {
1037 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1038 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1039 channel_id: msg.channel_id,
1040 htlc_id: msg.htlc_id,
1041 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1042 failure_code: $err_code,
1043 })), self.channel_state.lock().unwrap());
1048 if let Err(_) = msg.onion_routing_packet.public_key {
1049 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1052 let shared_secret = {
1053 let mut arr = [0; 32];
1054 arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1057 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1059 if msg.onion_routing_packet.version != 0 {
1060 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1061 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1062 //the hash doesn't really serve any purpose - in the case of hashing all data, the
1063 //receiving node would have to brute force to figure out which version was put in the
1064 //packet by the node that send us the message, in the case of hashing the hop_data, the
1065 //node knows the HMAC matched, so they already know what is there...
1066 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1069 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1070 hmac.input(&msg.onion_routing_packet.hop_data);
1071 hmac.input(&msg.payment_hash.0[..]);
1072 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1073 return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1076 let mut channel_state = None;
1077 macro_rules! return_err {
1078 ($msg: expr, $err_code: expr, $data: expr) => {
1080 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1081 if channel_state.is_none() {
1082 channel_state = Some(self.channel_state.lock().unwrap());
1084 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1085 channel_id: msg.channel_id,
1086 htlc_id: msg.htlc_id,
1087 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1088 })), channel_state.unwrap());
1093 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1094 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1095 let (next_hop_data, next_hop_hmac) = {
1096 match msgs::OnionHopData::read(&mut chacha_stream) {
1098 let error_code = match err {
1099 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1100 msgs::DecodeError::UnknownRequiredFeature|
1101 msgs::DecodeError::InvalidValue|
1102 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1103 _ => 0x2000 | 2, // Should never happen
1105 return_err!("Unable to decode our hop data", error_code, &[0;0]);
1108 let mut hmac = [0; 32];
1109 if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1110 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1117 let pending_forward_info = if next_hop_hmac == [0; 32] {
1120 // In tests, make sure that the initial onion pcket data is, at least, non-0.
1121 // We could do some fancy randomness test here, but, ehh, whatever.
1122 // This checks for the issue where you can calculate the path length given the
1123 // onion data as all the path entries that the originator sent will be here
1124 // as-is (and were originally 0s).
1125 // Of course reverse path calculation is still pretty easy given naive routing
1126 // algorithms, but this fixes the most-obvious case.
1127 let mut next_bytes = [0; 32];
1128 chacha_stream.read_exact(&mut next_bytes).unwrap();
1129 assert_ne!(next_bytes[..], [0; 32][..]);
1130 chacha_stream.read_exact(&mut next_bytes).unwrap();
1131 assert_ne!(next_bytes[..], [0; 32][..]);
1135 // final_expiry_too_soon
1136 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1137 // HTLC_FAIL_BACK_BUFFER blocks to go.
1138 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1139 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1140 if (msg.cltv_expiry as u64) <= self.latest_block_height.load(Ordering::Acquire) as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1141 return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1143 // final_incorrect_htlc_amount
1144 if next_hop_data.amt_to_forward > msg.amount_msat {
1145 return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1147 // final_incorrect_cltv_expiry
1148 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1149 return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1152 let payment_data = match next_hop_data.format {
1153 msgs::OnionHopDataFormat::Legacy { .. } => None,
1154 msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1155 msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1158 // Note that we could obviously respond immediately with an update_fulfill_htlc
1159 // message, however that would leak that we are the recipient of this payment, so
1160 // instead we stay symmetric with the forwarding case, only responding (after a
1161 // delay) once they've send us a commitment_signed!
1163 PendingHTLCStatus::Forward(PendingHTLCInfo {
1164 routing: PendingHTLCRouting::Receive {
1166 incoming_cltv_expiry: msg.cltv_expiry,
1168 payment_hash: msg.payment_hash.clone(),
1169 incoming_shared_secret: shared_secret,
1170 amt_to_forward: next_hop_data.amt_to_forward,
1171 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1174 let mut new_packet_data = [0; 20*65];
1175 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1176 #[cfg(debug_assertions)]
1178 // Check two things:
1179 // a) that the behavior of our stream here will return Ok(0) even if the TLV
1180 // read above emptied out our buffer and the unwrap() wont needlessly panic
1181 // b) that we didn't somehow magically end up with extra data.
1183 debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1185 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1186 // fill the onion hop data we'll forward to our next-hop peer.
1187 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1189 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1191 let blinding_factor = {
1192 let mut sha = Sha256::engine();
1193 sha.input(&new_pubkey.serialize()[..]);
1194 sha.input(&shared_secret);
1195 Sha256::from_engine(sha).into_inner()
1198 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1200 } else { Ok(new_pubkey) };
1202 let outgoing_packet = msgs::OnionPacket {
1205 hop_data: new_packet_data,
1206 hmac: next_hop_hmac.clone(),
1209 let short_channel_id = match next_hop_data.format {
1210 msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1211 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1212 msgs::OnionHopDataFormat::FinalNode { .. } => {
1213 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1217 PendingHTLCStatus::Forward(PendingHTLCInfo {
1218 routing: PendingHTLCRouting::Forward {
1219 onion_packet: outgoing_packet,
1222 payment_hash: msg.payment_hash.clone(),
1223 incoming_shared_secret: shared_secret,
1224 amt_to_forward: next_hop_data.amt_to_forward,
1225 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1229 channel_state = Some(self.channel_state.lock().unwrap());
1230 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1231 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1232 // with a short_channel_id of 0. This is important as various things later assume
1233 // short_channel_id is non-0 in any ::Forward.
1234 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1235 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1236 let forwarding_id = match id_option {
1237 None => { // unknown_next_peer
1238 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1240 Some(id) => id.clone(),
1242 if let Some((err, code, chan_update)) = loop {
1243 let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1245 // Note that we could technically not return an error yet here and just hope
1246 // that the connection is reestablished or monitor updated by the time we get
1247 // around to doing the actual forward, but better to fail early if we can and
1248 // hopefully an attacker trying to path-trace payments cannot make this occur
1249 // on a small/per-node/per-channel scale.
1250 if !chan.is_live() { // channel_disabled
1251 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1253 if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1254 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1256 let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1257 if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1258 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1260 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + CLTV_EXPIRY_DELTA as u64 { // incorrect_cltv_expiry
1261 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1263 let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1;
1264 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1265 // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1266 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1267 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1269 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1270 break Some(("CLTV expiry is too far in the future", 21, None));
1272 // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1273 // But, to be safe against policy reception, we use a longuer delay.
1274 if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1275 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1281 let mut res = Vec::with_capacity(8 + 128);
1282 if let Some(chan_update) = chan_update {
1283 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1284 res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1286 else if code == 0x1000 | 13 {
1287 res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1289 else if code == 0x1000 | 20 {
1290 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1291 res.extend_from_slice(&byte_utils::be16_to_array(0));
1293 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1295 return_err!(err, code, &res[..]);
1300 (pending_forward_info, channel_state.unwrap())
1303 /// only fails if the channel does not yet have an assigned short_id
1304 /// May be called with channel_state already locked!
1305 fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1306 let short_channel_id = match chan.get_short_channel_id() {
1307 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1311 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1313 let unsigned = msgs::UnsignedChannelUpdate {
1314 chain_hash: self.genesis_hash,
1316 timestamp: chan.get_update_time_counter(),
1317 flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1318 cltv_expiry_delta: CLTV_EXPIRY_DELTA,
1319 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1320 htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1321 fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1322 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1323 excess_data: Vec::new(),
1326 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1327 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1329 Ok(msgs::ChannelUpdate {
1335 // Only public for testing, this should otherwise never be called direcly
1336 pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1337 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1338 let prng_seed = self.keys_manager.get_secure_random_bytes();
1339 let session_priv = SecretKey::from_slice(&self.keys_manager.get_secure_random_bytes()[..]).expect("RNG is busted");
1341 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1342 .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1343 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1344 if onion_utils::route_size_insane(&onion_payloads) {
1345 return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1347 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1349 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1351 let err: Result<(), _> = loop {
1352 let mut channel_lock = self.channel_state.lock().unwrap();
1353 let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1354 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1355 Some(id) => id.clone(),
1358 let channel_state = &mut *channel_lock;
1359 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1361 if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1362 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1364 if !chan.get().is_live() {
1365 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1367 break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1369 session_priv: session_priv.clone(),
1370 first_hop_htlc_msat: htlc_msat,
1371 }, onion_packet, &self.logger), channel_state, chan)
1373 Some((update_add, commitment_signed, monitor_update)) => {
1374 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1375 maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1376 // Note that MonitorUpdateFailed here indicates (per function docs)
1377 // that we will resend the commitment update once monitor updating
1378 // is restored. Therefore, we must return an error indicating that
1379 // it is unsafe to retry the payment wholesale, which we do in the
1380 // send_payment check for MonitorUpdateFailed, below.
1381 return Err(APIError::MonitorUpdateFailed);
1384 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1385 node_id: path.first().unwrap().pubkey,
1386 updates: msgs::CommitmentUpdate {
1387 update_add_htlcs: vec![update_add],
1388 update_fulfill_htlcs: Vec::new(),
1389 update_fail_htlcs: Vec::new(),
1390 update_fail_malformed_htlcs: Vec::new(),
1398 } else { unreachable!(); }
1402 match handle_error!(self, err, path.first().unwrap().pubkey) {
1403 Ok(_) => unreachable!(),
1405 Err(APIError::ChannelUnavailable { err: e.err })
1410 /// Sends a payment along a given route.
1412 /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1413 /// fields for more info.
1415 /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1416 /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1417 /// next hop knows the preimage to payment_hash they can claim an additional amount as
1418 /// specified in the last hop in the route! Thus, you should probably do your own
1419 /// payment_preimage tracking (which you should already be doing as they represent "proof of
1420 /// payment") and prevent double-sends yourself.
1422 /// May generate SendHTLCs message(s) event on success, which should be relayed.
1424 /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1425 /// each entry matching the corresponding-index entry in the route paths, see
1426 /// PaymentSendFailure for more info.
1428 /// In general, a path may raise:
1429 /// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1430 /// node public key) is specified.
1431 /// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1432 /// (including due to previous monitor update failure or new permanent monitor update
1434 /// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1435 /// relevant updates.
1437 /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1438 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1439 /// different route unless you intend to pay twice!
1441 /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1442 /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1443 /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1444 /// must not contain multiple paths as multi-path payments require a recipient-provided
1446 /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1447 /// bit set (either as required or as available). If multiple paths are present in the Route,
1448 /// we assume the invoice had the basic_mpp feature set.
1449 pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1450 if route.paths.len() < 1 {
1451 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1453 if route.paths.len() > 10 {
1454 // This limit is completely arbitrary - there aren't any real fundamental path-count
1455 // limits. After we support retrying individual paths we should likely bump this, but
1456 // for now more than 10 paths likely carries too much one-path failure.
1457 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1459 let mut total_value = 0;
1460 let our_node_id = self.get_our_node_id();
1461 let mut path_errs = Vec::with_capacity(route.paths.len());
1462 'path_check: for path in route.paths.iter() {
1463 if path.len() < 1 || path.len() > 20 {
1464 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1465 continue 'path_check;
1467 for (idx, hop) in path.iter().enumerate() {
1468 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1469 path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1470 continue 'path_check;
1473 total_value += path.last().unwrap().fee_msat;
1474 path_errs.push(Ok(()));
1476 if path_errs.iter().any(|e| e.is_err()) {
1477 return Err(PaymentSendFailure::PathParameterError(path_errs));
1480 let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1;
1481 let mut results = Vec::new();
1482 for path in route.paths.iter() {
1483 results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1485 let mut has_ok = false;
1486 let mut has_err = false;
1487 for res in results.iter() {
1488 if res.is_ok() { has_ok = true; }
1489 if res.is_err() { has_err = true; }
1490 if let &Err(APIError::MonitorUpdateFailed) = res {
1491 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1498 if has_err && has_ok {
1499 Err(PaymentSendFailure::PartialFailure(results))
1501 Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1507 /// Call this upon creation of a funding transaction for the given channel.
1509 /// Note that ALL inputs in the transaction pointed to by funding_txo MUST spend SegWit outputs
1510 /// or your counterparty can steal your funds!
1512 /// Panics if a funding transaction has already been provided for this channel.
1514 /// May panic if the funding_txo is duplicative with some other channel (note that this should
1515 /// be trivially prevented by using unique funding transaction keys per-channel).
1516 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_txo: OutPoint) {
1517 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1520 let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1522 (chan.get_outbound_funding_created(funding_txo, &self.logger)
1523 .map_err(|e| if let ChannelError::Close(msg) = e {
1524 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1525 } else { unreachable!(); })
1530 match handle_error!(self, res, chan.get_counterparty_node_id()) {
1531 Ok(funding_msg) => {
1534 Err(_) => { return; }
1538 let mut channel_state = self.channel_state.lock().unwrap();
1539 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1540 node_id: chan.get_counterparty_node_id(),
1543 match channel_state.by_id.entry(chan.channel_id()) {
1544 hash_map::Entry::Occupied(_) => {
1545 panic!("Generated duplicate funding txid?");
1547 hash_map::Entry::Vacant(e) => {
1553 fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1554 if !chan.should_announce() {
1555 log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1559 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1561 Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1563 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1564 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1566 Some(msgs::AnnouncementSignatures {
1567 channel_id: chan.channel_id(),
1568 short_channel_id: chan.get_short_channel_id().unwrap(),
1569 node_signature: our_node_sig,
1570 bitcoin_signature: our_bitcoin_sig,
1575 // Messages of up to 64KB should never end up more than half full with addresses, as that would
1576 // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1577 // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1579 const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1582 // ...by failing to compile if the number of addresses that would be half of a message is
1583 // smaller than 500:
1584 const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1586 /// Generates a signed node_announcement from the given arguments and creates a
1587 /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1588 /// seen a channel_announcement from us (ie unless we have public channels open).
1590 /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1591 /// to humans. They carry no in-protocol meaning.
1593 /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1594 /// incoming connections. These will be broadcast to the network, publicly tying these
1595 /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1596 /// only Tor Onion addresses.
1598 /// Panics if addresses is absurdly large (more than 500).
1599 pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], addresses: Vec<NetAddress>) {
1600 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1602 if addresses.len() > 500 {
1603 panic!("More than half the message size was taken up by public addresses!");
1606 let announcement = msgs::UnsignedNodeAnnouncement {
1607 features: NodeFeatures::known(),
1608 timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1609 node_id: self.get_our_node_id(),
1610 rgb, alias, addresses,
1611 excess_address_data: Vec::new(),
1612 excess_data: Vec::new(),
1614 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1616 let mut channel_state = self.channel_state.lock().unwrap();
1617 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1618 msg: msgs::NodeAnnouncement {
1619 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1620 contents: announcement
1625 /// Processes HTLCs which are pending waiting on random forward delay.
1627 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1628 /// Will likely generate further events.
1629 pub fn process_pending_htlc_forwards(&self) {
1630 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1632 let mut new_events = Vec::new();
1633 let mut failed_forwards = Vec::new();
1634 let mut handle_errors = Vec::new();
1636 let mut channel_state_lock = self.channel_state.lock().unwrap();
1637 let channel_state = &mut *channel_state_lock;
1639 for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1640 if short_chan_id != 0 {
1641 let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1642 Some(chan_id) => chan_id.clone(),
1644 failed_forwards.reserve(pending_forwards.len());
1645 for forward_info in pending_forwards.drain(..) {
1646 match forward_info {
1647 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
1648 prev_funding_outpoint } => {
1649 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1650 short_channel_id: prev_short_channel_id,
1651 outpoint: prev_funding_outpoint,
1652 htlc_id: prev_htlc_id,
1653 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
1655 failed_forwards.push((htlc_source, forward_info.payment_hash,
1656 HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
1659 HTLCForwardInfo::FailHTLC { .. } => {
1660 // Channel went away before we could fail it. This implies
1661 // the channel is now on chain and our counterparty is
1662 // trying to broadcast the HTLC-Timeout, but that's their
1663 // problem, not ours.
1670 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
1671 let mut add_htlc_msgs = Vec::new();
1672 let mut fail_htlc_msgs = Vec::new();
1673 for forward_info in pending_forwards.drain(..) {
1674 match forward_info {
1675 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1676 routing: PendingHTLCRouting::Forward {
1678 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
1679 prev_funding_outpoint } => {
1680 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
1681 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1682 short_channel_id: prev_short_channel_id,
1683 outpoint: prev_funding_outpoint,
1684 htlc_id: prev_htlc_id,
1685 incoming_packet_shared_secret: incoming_shared_secret,
1687 match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
1689 if let ChannelError::Ignore(msg) = e {
1690 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
1692 panic!("Stated return value requirements in send_htlc() were not met");
1694 let chan_update = self.get_channel_update(chan.get()).unwrap();
1695 failed_forwards.push((htlc_source, payment_hash,
1696 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
1702 Some(msg) => { add_htlc_msgs.push(msg); },
1704 // Nothing to do here...we're waiting on a remote
1705 // revoke_and_ack before we can add anymore HTLCs. The Channel
1706 // will automatically handle building the update_add_htlc and
1707 // commitment_signed messages when we can.
1708 // TODO: Do some kind of timer to set the channel as !is_live()
1709 // as we don't really want others relying on us relaying through
1710 // this channel currently :/.
1716 HTLCForwardInfo::AddHTLC { .. } => {
1717 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
1719 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
1720 log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
1721 match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
1723 if let ChannelError::Ignore(msg) = e {
1724 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
1726 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
1728 // fail-backs are best-effort, we probably already have one
1729 // pending, and if not that's OK, if not, the channel is on
1730 // the chain and sending the HTLC-Timeout is their problem.
1733 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
1735 // Nothing to do here...we're waiting on a remote
1736 // revoke_and_ack before we can update the commitment
1737 // transaction. The Channel will automatically handle
1738 // building the update_fail_htlc and commitment_signed
1739 // messages when we can.
1740 // We don't need any kind of timer here as they should fail
1741 // the channel onto the chain if they can't get our
1742 // update_fail_htlc in time, it's not our problem.
1749 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
1750 let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
1753 // We surely failed send_commitment due to bad keys, in that case
1754 // close channel and then send error message to peer.
1755 let counterparty_node_id = chan.get().get_counterparty_node_id();
1756 let err: Result<(), _> = match e {
1757 ChannelError::Ignore(_) => {
1758 panic!("Stated return value requirements in send_commitment() were not met");
1760 ChannelError::Close(msg) => {
1761 log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
1762 let (channel_id, mut channel) = chan.remove_entry();
1763 if let Some(short_id) = channel.get_short_channel_id() {
1764 channel_state.short_to_id.remove(&short_id);
1766 Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
1768 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
1770 handle_errors.push((counterparty_node_id, err));
1774 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1775 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
1778 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1779 node_id: chan.get().get_counterparty_node_id(),
1780 updates: msgs::CommitmentUpdate {
1781 update_add_htlcs: add_htlc_msgs,
1782 update_fulfill_htlcs: Vec::new(),
1783 update_fail_htlcs: fail_htlc_msgs,
1784 update_fail_malformed_htlcs: Vec::new(),
1786 commitment_signed: commitment_msg,
1794 for forward_info in pending_forwards.drain(..) {
1795 match forward_info {
1796 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1797 routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
1798 incoming_shared_secret, payment_hash, amt_to_forward, .. },
1799 prev_funding_outpoint } => {
1800 let prev_hop = HTLCPreviousHopData {
1801 short_channel_id: prev_short_channel_id,
1802 outpoint: prev_funding_outpoint,
1803 htlc_id: prev_htlc_id,
1804 incoming_packet_shared_secret: incoming_shared_secret,
1807 let mut total_value = 0;
1808 let payment_secret_opt =
1809 if let &Some(ref data) = &payment_data { Some(data.payment_secret.clone()) } else { None };
1810 let htlcs = channel_state.claimable_htlcs.entry((payment_hash, payment_secret_opt))
1811 .or_insert(Vec::new());
1812 htlcs.push(ClaimableHTLC {
1814 value: amt_to_forward,
1815 payment_data: payment_data.clone(),
1816 cltv_expiry: incoming_cltv_expiry,
1818 if let &Some(ref data) = &payment_data {
1819 for htlc in htlcs.iter() {
1820 total_value += htlc.value;
1821 if htlc.payment_data.as_ref().unwrap().total_msat != data.total_msat {
1822 total_value = msgs::MAX_VALUE_MSAT;
1824 if total_value >= msgs::MAX_VALUE_MSAT { break; }
1826 if total_value >= msgs::MAX_VALUE_MSAT || total_value > data.total_msat {
1827 for htlc in htlcs.iter() {
1828 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
1829 htlc_msat_height_data.extend_from_slice(
1830 &byte_utils::be32_to_array(
1831 self.latest_block_height.load(Ordering::Acquire)
1835 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
1836 short_channel_id: htlc.prev_hop.short_channel_id,
1837 outpoint: prev_funding_outpoint,
1838 htlc_id: htlc.prev_hop.htlc_id,
1839 incoming_packet_shared_secret: htlc.prev_hop.incoming_packet_shared_secret,
1841 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
1844 } else if total_value == data.total_msat {
1845 new_events.push(events::Event::PaymentReceived {
1847 payment_secret: Some(data.payment_secret),
1852 new_events.push(events::Event::PaymentReceived {
1854 payment_secret: None,
1855 amt: amt_to_forward,
1859 HTLCForwardInfo::AddHTLC { .. } => {
1860 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
1862 HTLCForwardInfo::FailHTLC { .. } => {
1863 panic!("Got pending fail of our own HTLC");
1871 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
1872 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
1875 for (counterparty_node_id, err) in handle_errors.drain(..) {
1876 let _ = handle_error!(self, err, counterparty_node_id);
1879 if new_events.is_empty() { return }
1880 let mut events = self.pending_events.lock().unwrap();
1881 events.append(&mut new_events);
1884 /// Free the background events, generally called from timer_chan_freshness_every_min.
1886 /// Exposed for testing to allow us to process events quickly without generating accidental
1887 /// BroadcastChannelUpdate events in timer_chan_freshness_every_min.
1889 /// Expects the caller to have a total_consistency_lock read lock.
1890 fn process_background_events(&self) {
1891 let mut background_events = Vec::new();
1892 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
1893 for event in background_events.drain(..) {
1895 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
1896 // The channel has already been closed, so no use bothering to care about the
1897 // monitor updating completing.
1898 let _ = self.chain_monitor.update_channel(funding_txo, update);
1904 #[cfg(any(test, feature = "_test_utils"))]
1905 pub(crate) fn test_process_background_events(&self) {
1906 self.process_background_events();
1909 /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
1910 /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
1911 /// to inform the network about the uselessness of these channels.
1913 /// This method handles all the details, and must be called roughly once per minute.
1915 /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
1916 pub fn timer_chan_freshness_every_min(&self) {
1917 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1918 self.process_background_events();
1920 let mut channel_state_lock = self.channel_state.lock().unwrap();
1921 let channel_state = &mut *channel_state_lock;
1922 for (_, chan) in channel_state.by_id.iter_mut() {
1923 if chan.is_disabled_staged() && !chan.is_live() {
1924 if let Ok(update) = self.get_channel_update(&chan) {
1925 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1930 } else if chan.is_disabled_staged() && chan.is_live() {
1932 } else if chan.is_disabled_marked() {
1933 chan.to_disabled_staged();
1938 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
1939 /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
1940 /// along the path (including in our own channel on which we received it).
1941 /// Returns false if no payment was found to fail backwards, true if the process of failing the
1942 /// HTLC backwards has been started.
1943 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>) -> bool {
1944 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1946 let mut channel_state = Some(self.channel_state.lock().unwrap());
1947 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(*payment_hash, *payment_secret));
1948 if let Some(mut sources) = removed_source {
1949 for htlc in sources.drain(..) {
1950 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
1951 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
1952 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
1953 self.latest_block_height.load(Ordering::Acquire) as u32,
1955 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
1956 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
1957 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
1963 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
1964 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
1965 // be surfaced to the user.
1966 fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
1967 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
1969 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
1970 let (failure_code, onion_failure_data) =
1971 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
1972 hash_map::Entry::Occupied(chan_entry) => {
1973 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
1974 (0x1000|7, upd.encode_with_len())
1976 (0x4000|10, Vec::new())
1979 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
1981 let channel_state = self.channel_state.lock().unwrap();
1982 self.fail_htlc_backwards_internal(channel_state,
1983 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
1985 HTLCSource::OutboundRoute { .. } => {
1986 self.pending_events.lock().unwrap().push(
1987 events::Event::PaymentFailed {
1989 rejected_by_dest: false,
2001 /// Fails an HTLC backwards to the sender of it to us.
2002 /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2003 /// There are several callsites that do stupid things like loop over a list of payment_hashes
2004 /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2005 /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2006 /// still-available channels.
2007 fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2008 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2009 //identify whether we sent it or not based on the (I presume) very different runtime
2010 //between the branches here. We should make this async and move it into the forward HTLCs
2013 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2014 // from block_connected which may run during initialization prior to the chain_monitor
2015 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2017 HTLCSource::OutboundRoute { ref path, .. } => {
2018 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2019 mem::drop(channel_state_lock);
2020 match &onion_error {
2021 &HTLCFailReason::LightningError { ref err } => {
2023 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2025 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2026 // TODO: If we decided to blame ourselves (or one of our channels) in
2027 // process_onion_failure we should close that channel as it implies our
2028 // next-hop is needlessly blaming us!
2029 if let Some(update) = channel_update {
2030 self.channel_state.lock().unwrap().pending_msg_events.push(
2031 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2036 self.pending_events.lock().unwrap().push(
2037 events::Event::PaymentFailed {
2038 payment_hash: payment_hash.clone(),
2039 rejected_by_dest: !payment_retryable,
2041 error_code: onion_error_code,
2043 error_data: onion_error_data
2047 &HTLCFailReason::Reason {
2053 // we get a fail_malformed_htlc from the first hop
2054 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2055 // failures here, but that would be insufficient as get_route
2056 // generally ignores its view of our own channels as we provide them via
2058 // TODO: For non-temporary failures, we really should be closing the
2059 // channel here as we apparently can't relay through them anyway.
2060 self.pending_events.lock().unwrap().push(
2061 events::Event::PaymentFailed {
2062 payment_hash: payment_hash.clone(),
2063 rejected_by_dest: path.len() == 1,
2065 error_code: Some(*failure_code),
2067 error_data: Some(data.clone()),
2073 HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2074 let err_packet = match onion_error {
2075 HTLCFailReason::Reason { failure_code, data } => {
2076 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2077 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2078 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2080 HTLCFailReason::LightningError { err } => {
2081 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2082 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2086 let mut forward_event = None;
2087 if channel_state_lock.forward_htlcs.is_empty() {
2088 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2090 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2091 hash_map::Entry::Occupied(mut entry) => {
2092 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2094 hash_map::Entry::Vacant(entry) => {
2095 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2098 mem::drop(channel_state_lock);
2099 if let Some(time) = forward_event {
2100 let mut pending_events = self.pending_events.lock().unwrap();
2101 pending_events.push(events::Event::PendingHTLCsForwardable {
2102 time_forwardable: time
2109 /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2110 /// generating message events for the net layer to claim the payment, if possible. Thus, you
2111 /// should probably kick the net layer to go send messages if this returns true!
2113 /// You must specify the expected amounts for this HTLC, and we will only claim HTLCs
2114 /// available within a few percent of the expected amount. This is critical for several
2115 /// reasons : a) it avoids providing senders with `proof-of-payment` (in the form of the
2116 /// payment_preimage without having provided the full value and b) it avoids certain
2117 /// privacy-breaking recipient-probing attacks which may reveal payment activity to
2118 /// motivated attackers.
2120 /// Note that the privacy concerns in (b) are not relevant in payments with a payment_secret
2121 /// set. Thus, for such payments we will claim any payments which do not under-pay.
2123 /// May panic if called except in response to a PaymentReceived event.
2124 pub fn claim_funds(&self, payment_preimage: PaymentPreimage, payment_secret: &Option<PaymentSecret>, expected_amount: u64) -> bool {
2125 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2127 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2129 let mut channel_state = Some(self.channel_state.lock().unwrap());
2130 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(payment_hash, *payment_secret));
2131 if let Some(mut sources) = removed_source {
2132 assert!(!sources.is_empty());
2134 // If we are claiming an MPP payment, we have to take special care to ensure that each
2135 // channel exists before claiming all of the payments (inside one lock).
2136 // Note that channel existance is sufficient as we should always get a monitor update
2137 // which will take care of the real HTLC claim enforcement.
2139 // If we find an HTLC which we would need to claim but for which we do not have a
2140 // channel, we will fail all parts of the MPP payment. While we could wait and see if
2141 // the sender retries the already-failed path(s), it should be a pretty rare case where
2142 // we got all the HTLCs and then a channel closed while we were waiting for the user to
2143 // provide the preimage, so worrying too much about the optimal handling isn't worth
2146 let (is_mpp, mut valid_mpp) = if let &Some(ref data) = &sources[0].payment_data {
2147 assert!(payment_secret.is_some());
2148 (true, data.total_msat >= expected_amount)
2150 assert!(payment_secret.is_none());
2154 for htlc in sources.iter() {
2155 if !is_mpp || !valid_mpp { break; }
2156 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2161 let mut errs = Vec::new();
2162 let mut claimed_any_htlcs = false;
2163 for htlc in sources.drain(..) {
2164 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2165 if (is_mpp && !valid_mpp) || (!is_mpp && (htlc.value < expected_amount || htlc.value > expected_amount * 2)) {
2166 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2167 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2168 self.latest_block_height.load(Ordering::Acquire) as u32,
2170 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2171 HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2172 HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2174 match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2176 if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2177 // We got a temporary failure updating monitor, but will claim the
2178 // HTLC when the monitor updating is restored (or on chain).
2179 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2180 claimed_any_htlcs = true;
2181 } else { errs.push(e); }
2183 Err(None) if is_mpp => unreachable!("We already checked for channel existence, we can't fail here!"),
2185 log_warn!(self.logger, "Channel we expected to claim an HTLC from was closed.");
2187 Ok(()) => claimed_any_htlcs = true,
2192 // Now that we've done the entire above loop in one lock, we can handle any errors
2193 // which were generated.
2194 channel_state.take();
2196 for (counterparty_node_id, err) in errs.drain(..) {
2197 let res: Result<(), _> = Err(err);
2198 let _ = handle_error!(self, res, counterparty_node_id);
2205 fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2206 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2207 let channel_state = &mut **channel_state_lock;
2208 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2209 Some(chan_id) => chan_id.clone(),
2215 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2216 let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2217 match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2218 Ok((msgs, monitor_option)) => {
2219 if let Some(monitor_update) = monitor_option {
2220 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2221 if was_frozen_for_monitor {
2222 assert!(msgs.is_none());
2224 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2228 if let Some((msg, commitment_signed)) = msgs {
2229 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2230 node_id: chan.get().get_counterparty_node_id(),
2231 updates: msgs::CommitmentUpdate {
2232 update_add_htlcs: Vec::new(),
2233 update_fulfill_htlcs: vec![msg],
2234 update_fail_htlcs: Vec::new(),
2235 update_fail_malformed_htlcs: Vec::new(),
2244 // TODO: Do something with e?
2245 // This should only occur if we are claiming an HTLC at the same time as the
2246 // HTLC is being failed (eg because a block is being connected and this caused
2247 // an HTLC to time out). This should, of course, only occur if the user is the
2248 // one doing the claiming (as it being a part of a peer claim would imply we're
2249 // about to lose funds) and only if the lock in claim_funds was dropped as a
2250 // previous HTLC was failed (thus not for an MPP payment).
2251 debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2255 } else { unreachable!(); }
2258 fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2260 HTLCSource::OutboundRoute { .. } => {
2261 mem::drop(channel_state_lock);
2262 let mut pending_events = self.pending_events.lock().unwrap();
2263 pending_events.push(events::Event::PaymentSent {
2267 HTLCSource::PreviousHopData(hop_data) => {
2268 let prev_outpoint = hop_data.outpoint;
2269 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2272 let preimage_update = ChannelMonitorUpdate {
2273 update_id: CLOSED_CHANNEL_UPDATE_ID,
2274 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2275 payment_preimage: payment_preimage.clone(),
2278 // We update the ChannelMonitor on the backward link, after
2279 // receiving an offchain preimage event from the forward link (the
2280 // event being update_fulfill_htlc).
2281 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2282 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2283 payment_preimage, e);
2287 Err(Some(res)) => Err(res),
2289 mem::drop(channel_state_lock);
2290 let res: Result<(), _> = Err(err);
2291 let _ = handle_error!(self, res, counterparty_node_id);
2297 /// Gets the node_id held by this ChannelManager
2298 pub fn get_our_node_id(&self) -> PublicKey {
2299 PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key)
2302 /// Restores a single, given channel to normal operation after a
2303 /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2306 /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2307 /// fully committed in every copy of the given channels' ChannelMonitors.
2309 /// Note that there is no effect to calling with a highest_applied_update_id other than the
2310 /// current latest ChannelMonitorUpdate and one call to this function after multiple
2311 /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2312 /// exists largely only to prevent races between this and concurrent update_monitor calls.
2314 /// Thus, the anticipated use is, at a high level:
2315 /// 1) You register a chain::Watch with this ChannelManager,
2316 /// 2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2317 /// said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2318 /// any time it cannot do so instantly,
2319 /// 3) update(s) are applied to each remote copy of a ChannelMonitor,
2320 /// 4) once all remote copies are updated, you call this function with the update_id that
2321 /// completed, and once it is the latest the Channel will be re-enabled.
2322 pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2323 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2325 let mut close_results = Vec::new();
2326 let mut htlc_forwards = Vec::new();
2327 let mut htlc_failures = Vec::new();
2328 let mut pending_events = Vec::new();
2331 let mut channel_lock = self.channel_state.lock().unwrap();
2332 let channel_state = &mut *channel_lock;
2333 let short_to_id = &mut channel_state.short_to_id;
2334 let pending_msg_events = &mut channel_state.pending_msg_events;
2335 let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) {
2339 if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id {
2343 let (raa, commitment_update, order, pending_forwards, mut pending_failures, needs_broadcast_safe, funding_locked) = channel.monitor_updating_restored(&self.logger);
2344 if !pending_forwards.is_empty() {
2345 htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), funding_txo.clone(), pending_forwards));
2347 htlc_failures.append(&mut pending_failures);
2349 macro_rules! handle_cs { () => {
2350 if let Some(update) = commitment_update {
2351 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2352 node_id: channel.get_counterparty_node_id(),
2357 macro_rules! handle_raa { () => {
2358 if let Some(revoke_and_ack) = raa {
2359 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2360 node_id: channel.get_counterparty_node_id(),
2361 msg: revoke_and_ack,
2366 RAACommitmentOrder::CommitmentFirst => {
2370 RAACommitmentOrder::RevokeAndACKFirst => {
2375 if needs_broadcast_safe {
2376 pending_events.push(events::Event::FundingBroadcastSafe {
2377 funding_txo: channel.get_funding_txo().unwrap(),
2378 user_channel_id: channel.get_user_id(),
2381 if let Some(msg) = funding_locked {
2382 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
2383 node_id: channel.get_counterparty_node_id(),
2386 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
2387 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2388 node_id: channel.get_counterparty_node_id(),
2389 msg: announcement_sigs,
2392 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
2396 self.pending_events.lock().unwrap().append(&mut pending_events);
2398 for failure in htlc_failures.drain(..) {
2399 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2401 self.forward_htlcs(&mut htlc_forwards[..]);
2403 for res in close_results.drain(..) {
2404 self.finish_force_close_channel(res);
2408 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2409 if msg.chain_hash != self.genesis_hash {
2410 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2413 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2414 .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2415 let mut channel_state_lock = self.channel_state.lock().unwrap();
2416 let channel_state = &mut *channel_state_lock;
2417 match channel_state.by_id.entry(channel.channel_id()) {
2418 hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2419 hash_map::Entry::Vacant(entry) => {
2420 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2421 node_id: counterparty_node_id.clone(),
2422 msg: channel.get_accept_channel(),
2424 entry.insert(channel);
2430 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2431 let (value, output_script, user_id) = {
2432 let mut channel_lock = self.channel_state.lock().unwrap();
2433 let channel_state = &mut *channel_lock;
2434 match channel_state.by_id.entry(msg.temporary_channel_id) {
2435 hash_map::Entry::Occupied(mut chan) => {
2436 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2437 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2439 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2440 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2442 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2445 let mut pending_events = self.pending_events.lock().unwrap();
2446 pending_events.push(events::Event::FundingGenerationReady {
2447 temporary_channel_id: msg.temporary_channel_id,
2448 channel_value_satoshis: value,
2450 user_channel_id: user_id,
2455 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2456 let ((funding_msg, monitor), mut chan) = {
2457 let last_block_hash = *self.last_block_hash.read().unwrap();
2458 let mut channel_lock = self.channel_state.lock().unwrap();
2459 let channel_state = &mut *channel_lock;
2460 match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2461 hash_map::Entry::Occupied(mut chan) => {
2462 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2463 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2465 (try_chan_entry!(self, chan.get_mut().funding_created(msg, last_block_hash, &self.logger), channel_state, chan), chan.remove())
2467 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2470 // Because we have exclusive ownership of the channel here we can release the channel_state
2471 // lock before watch_channel
2472 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2474 ChannelMonitorUpdateErr::PermanentFailure => {
2475 // Note that we reply with the new channel_id in error messages if we gave up on the
2476 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2477 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2478 // any messages referencing a previously-closed channel anyway.
2479 // We do not do a force-close here as that would generate a monitor update for
2480 // a monitor that we didn't manage to store (and that we don't care about - we
2481 // don't respond with the funding_signed so the channel can never go on chain).
2482 let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2483 assert!(failed_htlcs.is_empty());
2484 return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2486 ChannelMonitorUpdateErr::TemporaryFailure => {
2487 // There's no problem signing a counterparty's funding transaction if our monitor
2488 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2489 // accepted payment from yet. We do, however, need to wait to send our funding_locked
2490 // until we have persisted our monitor.
2491 chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2495 let mut channel_state_lock = self.channel_state.lock().unwrap();
2496 let channel_state = &mut *channel_state_lock;
2497 match channel_state.by_id.entry(funding_msg.channel_id) {
2498 hash_map::Entry::Occupied(_) => {
2499 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2501 hash_map::Entry::Vacant(e) => {
2502 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2503 node_id: counterparty_node_id.clone(),
2512 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2513 let (funding_txo, user_id) = {
2514 let last_block_hash = *self.last_block_hash.read().unwrap();
2515 let mut channel_lock = self.channel_state.lock().unwrap();
2516 let channel_state = &mut *channel_lock;
2517 match channel_state.by_id.entry(msg.channel_id) {
2518 hash_map::Entry::Occupied(mut chan) => {
2519 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2520 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2522 let monitor = match chan.get_mut().funding_signed(&msg, last_block_hash, &self.logger) {
2523 Ok(update) => update,
2524 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2526 if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2527 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2529 (chan.get().get_funding_txo().unwrap(), chan.get().get_user_id())
2531 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2534 let mut pending_events = self.pending_events.lock().unwrap();
2535 pending_events.push(events::Event::FundingBroadcastSafe {
2537 user_channel_id: user_id,
2542 fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2543 let mut channel_state_lock = self.channel_state.lock().unwrap();
2544 let channel_state = &mut *channel_state_lock;
2545 match channel_state.by_id.entry(msg.channel_id) {
2546 hash_map::Entry::Occupied(mut chan) => {
2547 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2548 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2550 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2551 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2552 log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2553 // If we see locking block before receiving remote funding_locked, we broadcast our
2554 // announcement_sigs at remote funding_locked reception. If we receive remote
2555 // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2556 // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2557 // the order of the events but our peer may not receive it due to disconnection. The specs
2558 // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2559 // connection in the future if simultaneous misses by both peers due to network/hardware
2560 // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2561 // to be received, from then sigs are going to be flood to the whole network.
2562 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2563 node_id: counterparty_node_id.clone(),
2564 msg: announcement_sigs,
2569 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2573 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2574 let (mut dropped_htlcs, chan_option) = {
2575 let mut channel_state_lock = self.channel_state.lock().unwrap();
2576 let channel_state = &mut *channel_state_lock;
2578 match channel_state.by_id.entry(msg.channel_id.clone()) {
2579 hash_map::Entry::Occupied(mut chan_entry) => {
2580 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2581 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2583 let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2584 if let Some(msg) = shutdown {
2585 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2586 node_id: counterparty_node_id.clone(),
2590 if let Some(msg) = closing_signed {
2591 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2592 node_id: counterparty_node_id.clone(),
2596 if chan_entry.get().is_shutdown() {
2597 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2598 channel_state.short_to_id.remove(&short_id);
2600 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2601 } else { (dropped_htlcs, None) }
2603 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2606 for htlc_source in dropped_htlcs.drain(..) {
2607 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2609 if let Some(chan) = chan_option {
2610 if let Ok(update) = self.get_channel_update(&chan) {
2611 let mut channel_state = self.channel_state.lock().unwrap();
2612 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2620 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2621 let (tx, chan_option) = {
2622 let mut channel_state_lock = self.channel_state.lock().unwrap();
2623 let channel_state = &mut *channel_state_lock;
2624 match channel_state.by_id.entry(msg.channel_id.clone()) {
2625 hash_map::Entry::Occupied(mut chan_entry) => {
2626 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2627 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2629 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2630 if let Some(msg) = closing_signed {
2631 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2632 node_id: counterparty_node_id.clone(),
2637 // We're done with this channel, we've got a signed closing transaction and
2638 // will send the closing_signed back to the remote peer upon return. This
2639 // also implies there are no pending HTLCs left on the channel, so we can
2640 // fully delete it from tracking (the channel monitor is still around to
2641 // watch for old state broadcasts)!
2642 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2643 channel_state.short_to_id.remove(&short_id);
2645 (tx, Some(chan_entry.remove_entry().1))
2646 } else { (tx, None) }
2648 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2651 if let Some(broadcast_tx) = tx {
2652 log_trace!(self.logger, "Broadcast onchain {}", log_tx!(broadcast_tx));
2653 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
2655 if let Some(chan) = chan_option {
2656 if let Ok(update) = self.get_channel_update(&chan) {
2657 let mut channel_state = self.channel_state.lock().unwrap();
2658 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2666 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
2667 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
2668 //determine the state of the payment based on our response/if we forward anything/the time
2669 //we take to respond. We should take care to avoid allowing such an attack.
2671 //TODO: There exists a further attack where a node may garble the onion data, forward it to
2672 //us repeatedly garbled in different ways, and compare our error messages, which are
2673 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
2674 //but we should prevent it anyway.
2676 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
2677 let channel_state = &mut *channel_state_lock;
2679 match channel_state.by_id.entry(msg.channel_id) {
2680 hash_map::Entry::Occupied(mut chan) => {
2681 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2682 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2685 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
2686 // Ensure error_code has the UPDATE flag set, since by default we send a
2687 // channel update along as part of failing the HTLC.
2688 assert!((error_code & 0x1000) != 0);
2689 // If the update_add is completely bogus, the call will Err and we will close,
2690 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
2691 // want to reject the new HTLC and fail it backwards instead of forwarding.
2692 match pending_forward_info {
2693 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
2694 let reason = if let Ok(upd) = self.get_channel_update(chan) {
2695 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
2696 let mut res = Vec::with_capacity(8 + 128);
2697 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2698 res.extend_from_slice(&byte_utils::be16_to_array(0));
2699 res.extend_from_slice(&upd.encode_with_len()[..]);
2703 // The only case where we'd be unable to
2704 // successfully get a channel update is if the
2705 // channel isn't in the fully-funded state yet,
2706 // implying our counterparty is trying to route
2707 // payments over the channel back to themselves
2708 // (cause no one else should know the short_id
2709 // is a lightning channel yet). We should have
2710 // no problem just calling this
2711 // unknown_next_peer (0x4000|10).
2712 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
2714 let msg = msgs::UpdateFailHTLC {
2715 channel_id: msg.channel_id,
2716 htlc_id: msg.htlc_id,
2719 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
2721 _ => pending_forward_info
2724 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
2726 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2731 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
2732 let mut channel_lock = self.channel_state.lock().unwrap();
2734 let channel_state = &mut *channel_lock;
2735 match channel_state.by_id.entry(msg.channel_id) {
2736 hash_map::Entry::Occupied(mut chan) => {
2737 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2738 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2740 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
2742 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2745 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
2749 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
2750 let mut channel_lock = self.channel_state.lock().unwrap();
2751 let channel_state = &mut *channel_lock;
2752 match channel_state.by_id.entry(msg.channel_id) {
2753 hash_map::Entry::Occupied(mut chan) => {
2754 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2755 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2757 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
2759 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2764 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
2765 let mut channel_lock = self.channel_state.lock().unwrap();
2766 let channel_state = &mut *channel_lock;
2767 match channel_state.by_id.entry(msg.channel_id) {
2768 hash_map::Entry::Occupied(mut chan) => {
2769 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2770 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2772 if (msg.failure_code & 0x8000) == 0 {
2773 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
2774 try_chan_entry!(self, Err(chan_err), channel_state, chan);
2776 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
2779 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2783 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
2784 let mut channel_state_lock = self.channel_state.lock().unwrap();
2785 let channel_state = &mut *channel_state_lock;
2786 match channel_state.by_id.entry(msg.channel_id) {
2787 hash_map::Entry::Occupied(mut chan) => {
2788 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2789 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2791 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
2792 match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
2793 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
2794 Err((Some(update), e)) => {
2795 assert!(chan.get().is_awaiting_monitor_update());
2796 let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
2797 try_chan_entry!(self, Err(e), channel_state, chan);
2802 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2803 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
2804 //TODO: Rebroadcast closing_signed if present on monitor update restoration
2806 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2807 node_id: counterparty_node_id.clone(),
2808 msg: revoke_and_ack,
2810 if let Some(msg) = commitment_signed {
2811 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2812 node_id: counterparty_node_id.clone(),
2813 updates: msgs::CommitmentUpdate {
2814 update_add_htlcs: Vec::new(),
2815 update_fulfill_htlcs: Vec::new(),
2816 update_fail_htlcs: Vec::new(),
2817 update_fail_malformed_htlcs: Vec::new(),
2819 commitment_signed: msg,
2823 if let Some(msg) = closing_signed {
2824 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2825 node_id: counterparty_node_id.clone(),
2831 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2836 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
2837 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
2838 let mut forward_event = None;
2839 if !pending_forwards.is_empty() {
2840 let mut channel_state = self.channel_state.lock().unwrap();
2841 if channel_state.forward_htlcs.is_empty() {
2842 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
2844 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
2845 match channel_state.forward_htlcs.entry(match forward_info.routing {
2846 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
2847 PendingHTLCRouting::Receive { .. } => 0,
2849 hash_map::Entry::Occupied(mut entry) => {
2850 entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
2851 prev_htlc_id, forward_info });
2853 hash_map::Entry::Vacant(entry) => {
2854 entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
2855 prev_htlc_id, forward_info }));
2860 match forward_event {
2862 let mut pending_events = self.pending_events.lock().unwrap();
2863 pending_events.push(events::Event::PendingHTLCsForwardable {
2864 time_forwardable: time
2872 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
2873 let mut htlcs_to_fail = Vec::new();
2875 let mut channel_state_lock = self.channel_state.lock().unwrap();
2876 let channel_state = &mut *channel_state_lock;
2877 match channel_state.by_id.entry(msg.channel_id) {
2878 hash_map::Entry::Occupied(mut chan) => {
2879 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2880 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2882 let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2883 let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
2884 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
2885 htlcs_to_fail = htlcs_to_fail_in;
2886 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2887 if was_frozen_for_monitor {
2888 assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
2889 break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
2891 if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
2893 } else { unreachable!(); }
2896 if let Some(updates) = commitment_update {
2897 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2898 node_id: counterparty_node_id.clone(),
2902 if let Some(msg) = closing_signed {
2903 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2904 node_id: counterparty_node_id.clone(),
2908 break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
2910 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2913 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
2915 Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
2916 for failure in pending_failures.drain(..) {
2917 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2919 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
2926 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
2927 let mut channel_lock = self.channel_state.lock().unwrap();
2928 let channel_state = &mut *channel_lock;
2929 match channel_state.by_id.entry(msg.channel_id) {
2930 hash_map::Entry::Occupied(mut chan) => {
2931 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2932 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2934 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
2936 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2941 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
2942 let mut channel_state_lock = self.channel_state.lock().unwrap();
2943 let channel_state = &mut *channel_state_lock;
2945 match channel_state.by_id.entry(msg.channel_id) {
2946 hash_map::Entry::Occupied(mut chan) => {
2947 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2948 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2950 if !chan.get().is_usable() {
2951 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
2954 let our_node_id = self.get_our_node_id();
2955 let (announcement, our_bitcoin_sig) =
2956 try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
2958 let were_node_one = announcement.node_id_1 == our_node_id;
2959 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2961 let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
2962 let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
2963 match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
2964 self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
2966 let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
2967 try_chan_entry!(self, Err(chan_err), channel_state, chan);
2970 let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
2971 try_chan_entry!(self, Err(chan_err), channel_state, chan);
2977 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2979 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
2980 msg: msgs::ChannelAnnouncement {
2981 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
2982 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
2983 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
2984 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
2985 contents: announcement,
2987 update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
2990 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2995 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
2996 let mut channel_state_lock = self.channel_state.lock().unwrap();
2997 let channel_state = &mut *channel_state_lock;
2999 match channel_state.by_id.entry(msg.channel_id) {
3000 hash_map::Entry::Occupied(mut chan) => {
3001 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3002 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3004 // Currently, we expect all holding cell update_adds to be dropped on peer
3005 // disconnect, so Channel's reestablish will never hand us any holding cell
3006 // freed HTLCs to fail backwards. If in the future we no longer drop pending
3007 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3008 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
3009 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3010 if let Some(monitor_update) = monitor_update_opt {
3011 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3012 // channel_reestablish doesn't guarantee the order it returns is sensical
3013 // for the messages it returns, but if we're setting what messages to
3014 // re-transmit on monitor update success, we need to make sure it is sane.
3015 if revoke_and_ack.is_none() {
3016 order = RAACommitmentOrder::CommitmentFirst;
3018 if commitment_update.is_none() {
3019 order = RAACommitmentOrder::RevokeAndACKFirst;
3021 return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
3022 //TODO: Resend the funding_locked if needed once we get the monitor running again
3025 if let Some(msg) = funding_locked {
3026 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3027 node_id: counterparty_node_id.clone(),
3031 macro_rules! send_raa { () => {
3032 if let Some(msg) = revoke_and_ack {
3033 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3034 node_id: counterparty_node_id.clone(),
3039 macro_rules! send_cu { () => {
3040 if let Some(updates) = commitment_update {
3041 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3042 node_id: counterparty_node_id.clone(),
3048 RAACommitmentOrder::RevokeAndACKFirst => {
3052 RAACommitmentOrder::CommitmentFirst => {
3057 if let Some(msg) = shutdown {
3058 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3059 node_id: counterparty_node_id.clone(),
3065 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3069 /// Begin Update fee process. Allowed only on an outbound channel.
3070 /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3071 /// PeerManager::process_events afterwards.
3072 /// Note: This API is likely to change!
3073 /// (C-not exported) Cause its doc(hidden) anyway
3075 pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3076 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3077 let counterparty_node_id;
3078 let err: Result<(), _> = loop {
3079 let mut channel_state_lock = self.channel_state.lock().unwrap();
3080 let channel_state = &mut *channel_state_lock;
3082 match channel_state.by_id.entry(channel_id) {
3083 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3084 hash_map::Entry::Occupied(mut chan) => {
3085 if !chan.get().is_outbound() {
3086 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3088 if chan.get().is_awaiting_monitor_update() {
3089 return Err(APIError::MonitorUpdateFailed);
3091 if !chan.get().is_live() {
3092 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3094 counterparty_node_id = chan.get().get_counterparty_node_id();
3095 if let Some((update_fee, commitment_signed, monitor_update)) =
3096 break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3098 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3101 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3102 node_id: chan.get().get_counterparty_node_id(),
3103 updates: msgs::CommitmentUpdate {
3104 update_add_htlcs: Vec::new(),
3105 update_fulfill_htlcs: Vec::new(),
3106 update_fail_htlcs: Vec::new(),
3107 update_fail_malformed_htlcs: Vec::new(),
3108 update_fee: Some(update_fee),
3118 match handle_error!(self, err, counterparty_node_id) {
3119 Ok(_) => unreachable!(),
3120 Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3124 /// Process pending events from the `chain::Watch`.
3125 fn process_pending_monitor_events(&self) {
3126 let mut failed_channels = Vec::new();
3128 for monitor_event in self.chain_monitor.release_pending_monitor_events() {
3129 match monitor_event {
3130 MonitorEvent::HTLCEvent(htlc_update) => {
3131 if let Some(preimage) = htlc_update.payment_preimage {
3132 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3133 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3135 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3136 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3139 MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3140 let mut channel_lock = self.channel_state.lock().unwrap();
3141 let channel_state = &mut *channel_lock;
3142 let by_id = &mut channel_state.by_id;
3143 let short_to_id = &mut channel_state.short_to_id;
3144 let pending_msg_events = &mut channel_state.pending_msg_events;
3145 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3146 if let Some(short_id) = chan.get_short_channel_id() {
3147 short_to_id.remove(&short_id);
3149 failed_channels.push(chan.force_shutdown(false));
3150 if let Ok(update) = self.get_channel_update(&chan) {
3151 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3161 for failure in failed_channels.drain(..) {
3162 self.finish_force_close_channel(failure);
3166 /// Handle a list of channel failures during a block_connected or block_disconnected call,
3167 /// pushing the channel monitor update (if any) to the background events queue and removing the
3169 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3170 for mut failure in failed_channels.drain(..) {
3171 // Either a commitment transactions has been confirmed on-chain or
3172 // Channel::block_disconnected detected that the funding transaction has been
3173 // reorganized out of the main chain.
3174 // We cannot broadcast our latest local state via monitor update (as
3175 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3176 // so we track the update internally and handle it when the user next calls
3177 // timer_chan_freshness_every_min, guaranteeing we're running normally.
3178 if let Some((funding_txo, update)) = failure.0.take() {
3179 assert_eq!(update.updates.len(), 1);
3180 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3181 assert!(should_broadcast);
3182 } else { unreachable!(); }
3183 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3185 self.finish_force_close_channel(failure);
3190 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3191 where M::Target: chain::Watch<Signer>,
3192 T::Target: BroadcasterInterface,
3193 K::Target: KeysInterface<Signer = Signer>,
3194 F::Target: FeeEstimator,
3197 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3198 //TODO: This behavior should be documented. It's non-intuitive that we query
3199 // ChannelMonitors when clearing other events.
3200 self.process_pending_monitor_events();
3202 let mut ret = Vec::new();
3203 let mut channel_state = self.channel_state.lock().unwrap();
3204 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3209 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3210 where M::Target: chain::Watch<Signer>,
3211 T::Target: BroadcasterInterface,
3212 K::Target: KeysInterface<Signer = Signer>,
3213 F::Target: FeeEstimator,
3216 fn get_and_clear_pending_events(&self) -> Vec<Event> {
3217 //TODO: This behavior should be documented. It's non-intuitive that we query
3218 // ChannelMonitors when clearing other events.
3219 self.process_pending_monitor_events();
3221 let mut ret = Vec::new();
3222 let mut pending_events = self.pending_events.lock().unwrap();
3223 mem::swap(&mut ret, &mut *pending_events);
3228 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3230 M::Target: chain::Watch<Signer>,
3231 T::Target: BroadcasterInterface,
3232 K::Target: KeysInterface<Signer = Signer>,
3233 F::Target: FeeEstimator,
3236 fn block_connected(&self, block: &Block, height: u32) {
3237 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3238 ChannelManager::block_connected(self, &block.header, &txdata, height);
3241 fn block_disconnected(&self, header: &BlockHeader, _height: u32) {
3242 ChannelManager::block_disconnected(self, header);
3246 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3247 where M::Target: chain::Watch<Signer>,
3248 T::Target: BroadcasterInterface,
3249 K::Target: KeysInterface<Signer = Signer>,
3250 F::Target: FeeEstimator,
3253 /// Updates channel state based on transactions seen in a connected block.
3254 pub fn block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3255 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3256 // during initialization prior to the chain_monitor being fully configured in some cases.
3257 // See the docs for `ChannelManagerReadArgs` for more.
3258 let block_hash = header.block_hash();
3259 log_trace!(self.logger, "Block {} at height {} connected", block_hash, height);
3261 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3263 self.latest_block_height.store(height as usize, Ordering::Release);
3264 *self.last_block_hash.write().unwrap() = block_hash;
3266 let mut failed_channels = Vec::new();
3267 let mut timed_out_htlcs = Vec::new();
3269 let mut channel_lock = self.channel_state.lock().unwrap();
3270 let channel_state = &mut *channel_lock;
3271 let short_to_id = &mut channel_state.short_to_id;
3272 let pending_msg_events = &mut channel_state.pending_msg_events;
3273 channel_state.by_id.retain(|_, channel| {
3274 let res = channel.block_connected(header, txdata, height);
3275 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3276 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3277 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3278 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
3279 failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3283 if let Some(funding_locked) = chan_res {
3284 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3285 node_id: channel.get_counterparty_node_id(),
3286 msg: funding_locked,
3288 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3289 log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3290 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3291 node_id: channel.get_counterparty_node_id(),
3292 msg: announcement_sigs,
3295 log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3297 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3299 } else if let Err(e) = res {
3300 pending_msg_events.push(events::MessageSendEvent::HandleError {
3301 node_id: channel.get_counterparty_node_id(),
3302 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3306 if let Some(funding_txo) = channel.get_funding_txo() {
3307 for &(_, tx) in txdata.iter() {
3308 for inp in tx.input.iter() {
3309 if inp.previous_output == funding_txo.into_bitcoin_outpoint() {
3310 log_trace!(self.logger, "Detected channel-closing tx {} spending {}:{}, closing channel {}", tx.txid(), inp.previous_output.txid, inp.previous_output.vout, log_bytes!(channel.channel_id()));
3311 if let Some(short_id) = channel.get_short_channel_id() {
3312 short_to_id.remove(&short_id);
3314 // It looks like our counterparty went on-chain. Close the channel.
3315 failed_channels.push(channel.force_shutdown(true));
3316 if let Ok(update) = self.get_channel_update(&channel) {
3317 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3329 channel_state.claimable_htlcs.retain(|&(ref payment_hash, _), htlcs| {
3330 htlcs.retain(|htlc| {
3331 // If height is approaching the number of blocks we think it takes us to get
3332 // our commitment transaction confirmed before the HTLC expires, plus the
3333 // number of blocks we generally consider it to take to do a commitment update,
3334 // just give up on it and fail the HTLC.
3335 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3336 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3337 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3338 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3339 failure_code: 0x4000 | 15,
3340 data: htlc_msat_height_data
3345 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3349 self.handle_init_event_channel_failures(failed_channels);
3351 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3352 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3356 // Update last_node_announcement_serial to be the max of its current value and the
3357 // block timestamp. This should keep us close to the current time without relying on
3358 // having an explicit local time source.
3359 // Just in case we end up in a race, we loop until we either successfully update
3360 // last_node_announcement_serial or decide we don't need to.
3361 let old_serial = self.last_node_announcement_serial.load(Ordering::Acquire);
3362 if old_serial >= header.time as usize { break; }
3363 if self.last_node_announcement_serial.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3369 /// Updates channel state based on a disconnected block.
3371 /// If necessary, the channel may be force-closed without letting the counterparty participate
3372 /// in the shutdown.
3373 pub fn block_disconnected(&self, header: &BlockHeader) {
3374 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3375 // during initialization prior to the chain_monitor being fully configured in some cases.
3376 // See the docs for `ChannelManagerReadArgs` for more.
3377 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3379 self.latest_block_height.fetch_sub(1, Ordering::AcqRel);
3380 *self.last_block_hash.write().unwrap() = header.block_hash();
3382 let mut failed_channels = Vec::new();
3384 let mut channel_lock = self.channel_state.lock().unwrap();
3385 let channel_state = &mut *channel_lock;
3386 let short_to_id = &mut channel_state.short_to_id;
3387 let pending_msg_events = &mut channel_state.pending_msg_events;
3388 channel_state.by_id.retain(|_, v| {
3389 if v.block_disconnected(header) {
3390 if let Some(short_id) = v.get_short_channel_id() {
3391 short_to_id.remove(&short_id);
3393 failed_channels.push(v.force_shutdown(true));
3394 if let Ok(update) = self.get_channel_update(&v) {
3395 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3406 self.handle_init_event_channel_failures(failed_channels);
3409 /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3410 /// indicating whether persistence is necessary. Only one listener on `wait_timeout` is
3411 /// guaranteed to be woken up.
3412 /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3413 #[cfg(any(test, feature = "allow_wallclock_use"))]
3414 pub fn wait_timeout(&self, max_wait: Duration) -> bool {
3415 self.persistence_notifier.wait_timeout(max_wait)
3418 /// Blocks until ChannelManager needs to be persisted. Only one listener on `wait` is
3419 /// guaranteed to be woken up.
3420 pub fn wait(&self) {
3421 self.persistence_notifier.wait()
3424 #[cfg(any(test, feature = "_test_utils"))]
3425 pub fn get_persistence_condvar_value(&self) -> bool {
3426 let mutcond = &self.persistence_notifier.persistence_lock;
3427 let &(ref mtx, _) = mutcond;
3428 let guard = mtx.lock().unwrap();
3433 impl<Signer: Sign, M: Deref + Sync + Send, T: Deref + Sync + Send, K: Deref + Sync + Send, F: Deref + Sync + Send, L: Deref + Sync + Send>
3434 ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3435 where M::Target: chain::Watch<Signer>,
3436 T::Target: BroadcasterInterface,
3437 K::Target: KeysInterface<Signer = Signer>,
3438 F::Target: FeeEstimator,
3441 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3442 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3443 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3446 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
3447 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3448 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3451 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
3452 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3453 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
3456 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
3457 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3458 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
3461 fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
3462 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3463 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
3466 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
3467 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3468 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
3471 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
3472 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3473 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
3476 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
3477 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3478 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
3481 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
3482 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3483 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
3486 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
3487 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3488 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
3491 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
3492 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3493 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
3496 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
3497 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3498 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
3501 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
3502 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3503 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
3506 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
3507 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3508 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
3511 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
3512 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3513 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
3516 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
3517 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3518 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
3521 fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
3522 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3523 let mut failed_channels = Vec::new();
3524 let mut failed_payments = Vec::new();
3525 let mut no_channels_remain = true;
3527 let mut channel_state_lock = self.channel_state.lock().unwrap();
3528 let channel_state = &mut *channel_state_lock;
3529 let short_to_id = &mut channel_state.short_to_id;
3530 let pending_msg_events = &mut channel_state.pending_msg_events;
3531 if no_connection_possible {
3532 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
3533 channel_state.by_id.retain(|_, chan| {
3534 if chan.get_counterparty_node_id() == *counterparty_node_id {
3535 if let Some(short_id) = chan.get_short_channel_id() {
3536 short_to_id.remove(&short_id);
3538 failed_channels.push(chan.force_shutdown(true));
3539 if let Ok(update) = self.get_channel_update(&chan) {
3540 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3550 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
3551 channel_state.by_id.retain(|_, chan| {
3552 if chan.get_counterparty_node_id() == *counterparty_node_id {
3553 // Note that currently on channel reestablish we assert that there are no
3554 // holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs
3555 // on peer disconnect here, there will need to be corresponding changes in
3556 // reestablish logic.
3557 let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
3558 chan.to_disabled_marked();
3559 if !failed_adds.is_empty() {
3560 let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3561 failed_payments.push((chan_update, failed_adds));
3563 if chan.is_shutdown() {
3564 if let Some(short_id) = chan.get_short_channel_id() {
3565 short_to_id.remove(&short_id);
3569 no_channels_remain = false;
3575 pending_msg_events.retain(|msg| {
3577 &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
3578 &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
3579 &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
3580 &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3581 &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
3582 &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
3583 &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
3584 &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
3585 &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3586 &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
3587 &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
3588 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
3589 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
3590 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
3591 &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
3592 &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
3593 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
3594 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
3598 if no_channels_remain {
3599 self.per_peer_state.write().unwrap().remove(counterparty_node_id);
3602 for failure in failed_channels.drain(..) {
3603 self.finish_force_close_channel(failure);
3605 for (chan_update, mut htlc_sources) in failed_payments {
3606 for (htlc_source, payment_hash) in htlc_sources.drain(..) {
3607 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
3612 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
3613 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
3615 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3618 let mut peer_state_lock = self.per_peer_state.write().unwrap();
3619 match peer_state_lock.entry(counterparty_node_id.clone()) {
3620 hash_map::Entry::Vacant(e) => {
3621 e.insert(Mutex::new(PeerState {
3622 latest_features: init_msg.features.clone(),
3625 hash_map::Entry::Occupied(e) => {
3626 e.get().lock().unwrap().latest_features = init_msg.features.clone();
3631 let mut channel_state_lock = self.channel_state.lock().unwrap();
3632 let channel_state = &mut *channel_state_lock;
3633 let pending_msg_events = &mut channel_state.pending_msg_events;
3634 channel_state.by_id.retain(|_, chan| {
3635 if chan.get_counterparty_node_id() == *counterparty_node_id {
3636 if !chan.have_received_message() {
3637 // If we created this (outbound) channel while we were disconnected from the
3638 // peer we probably failed to send the open_channel message, which is now
3639 // lost. We can't have had anything pending related to this channel, so we just
3643 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
3644 node_id: chan.get_counterparty_node_id(),
3645 msg: chan.get_channel_reestablish(&self.logger),
3651 //TODO: Also re-broadcast announcement_signatures
3654 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
3655 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3657 if msg.channel_id == [0; 32] {
3658 for chan in self.list_channels() {
3659 if chan.remote_network_id == *counterparty_node_id {
3660 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3661 let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
3665 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3666 let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
3671 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
3672 /// disk/backups, through `wait_timeout` and `wait`.
3673 struct PersistenceNotifier {
3674 /// Users won't access the persistence_lock directly, but rather wait on its bool using
3675 /// `wait_timeout` and `wait`.
3676 persistence_lock: (Mutex<bool>, Condvar),
3679 impl PersistenceNotifier {
3682 persistence_lock: (Mutex::new(false), Condvar::new()),
3688 let &(ref mtx, ref cvar) = &self.persistence_lock;
3689 let mut guard = mtx.lock().unwrap();
3690 guard = cvar.wait(guard).unwrap();
3691 let result = *guard;
3699 #[cfg(any(test, feature = "allow_wallclock_use"))]
3700 fn wait_timeout(&self, max_wait: Duration) -> bool {
3701 let current_time = Instant::now();
3703 let &(ref mtx, ref cvar) = &self.persistence_lock;
3704 let mut guard = mtx.lock().unwrap();
3705 guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
3706 // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
3707 // desired wait time has actually passed, and if not then restart the loop with a reduced wait
3708 // time. Note that this logic can be highly simplified through the use of
3709 // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
3711 let elapsed = current_time.elapsed();
3712 let result = *guard;
3713 if result || elapsed >= max_wait {
3717 match max_wait.checked_sub(elapsed) {
3718 None => return result,
3724 // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
3726 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
3727 let mut persistence_lock = persist_mtx.lock().unwrap();
3728 *persistence_lock = true;
3729 mem::drop(persistence_lock);
3734 const SERIALIZATION_VERSION: u8 = 1;
3735 const MIN_SERIALIZATION_VERSION: u8 = 1;
3737 impl Writeable for PendingHTLCInfo {
3738 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3739 match &self.routing {
3740 &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
3742 onion_packet.write(writer)?;
3743 short_channel_id.write(writer)?;
3745 &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
3747 payment_data.write(writer)?;
3748 incoming_cltv_expiry.write(writer)?;
3751 self.incoming_shared_secret.write(writer)?;
3752 self.payment_hash.write(writer)?;
3753 self.amt_to_forward.write(writer)?;
3754 self.outgoing_cltv_value.write(writer)?;
3759 impl Readable for PendingHTLCInfo {
3760 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
3761 Ok(PendingHTLCInfo {
3762 routing: match Readable::read(reader)? {
3763 0u8 => PendingHTLCRouting::Forward {
3764 onion_packet: Readable::read(reader)?,
3765 short_channel_id: Readable::read(reader)?,
3767 1u8 => PendingHTLCRouting::Receive {
3768 payment_data: Readable::read(reader)?,
3769 incoming_cltv_expiry: Readable::read(reader)?,
3771 _ => return Err(DecodeError::InvalidValue),
3773 incoming_shared_secret: Readable::read(reader)?,
3774 payment_hash: Readable::read(reader)?,
3775 amt_to_forward: Readable::read(reader)?,
3776 outgoing_cltv_value: Readable::read(reader)?,
3781 impl Writeable for HTLCFailureMsg {
3782 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3784 &HTLCFailureMsg::Relay(ref fail_msg) => {
3786 fail_msg.write(writer)?;
3788 &HTLCFailureMsg::Malformed(ref fail_msg) => {
3790 fail_msg.write(writer)?;
3797 impl Readable for HTLCFailureMsg {
3798 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
3799 match <u8 as Readable>::read(reader)? {
3800 0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
3801 1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
3802 _ => Err(DecodeError::InvalidValue),
3807 impl Writeable for PendingHTLCStatus {
3808 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3810 &PendingHTLCStatus::Forward(ref forward_info) => {
3812 forward_info.write(writer)?;
3814 &PendingHTLCStatus::Fail(ref fail_msg) => {
3816 fail_msg.write(writer)?;
3823 impl Readable for PendingHTLCStatus {
3824 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
3825 match <u8 as Readable>::read(reader)? {
3826 0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
3827 1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
3828 _ => Err(DecodeError::InvalidValue),
3833 impl_writeable!(HTLCPreviousHopData, 0, {
3837 incoming_packet_shared_secret
3840 impl_writeable!(ClaimableHTLC, 0, {
3847 impl Writeable for HTLCSource {
3848 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3850 &HTLCSource::PreviousHopData(ref hop_data) => {
3852 hop_data.write(writer)?;
3854 &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
3856 path.write(writer)?;
3857 session_priv.write(writer)?;
3858 first_hop_htlc_msat.write(writer)?;
3865 impl Readable for HTLCSource {
3866 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
3867 match <u8 as Readable>::read(reader)? {
3868 0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
3869 1 => Ok(HTLCSource::OutboundRoute {
3870 path: Readable::read(reader)?,
3871 session_priv: Readable::read(reader)?,
3872 first_hop_htlc_msat: Readable::read(reader)?,
3874 _ => Err(DecodeError::InvalidValue),
3879 impl Writeable for HTLCFailReason {
3880 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3882 &HTLCFailReason::LightningError { ref err } => {
3886 &HTLCFailReason::Reason { ref failure_code, ref data } => {
3888 failure_code.write(writer)?;
3889 data.write(writer)?;
3896 impl Readable for HTLCFailReason {
3897 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
3898 match <u8 as Readable>::read(reader)? {
3899 0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
3900 1 => Ok(HTLCFailReason::Reason {
3901 failure_code: Readable::read(reader)?,
3902 data: Readable::read(reader)?,
3904 _ => Err(DecodeError::InvalidValue),
3909 impl Writeable for HTLCForwardInfo {
3910 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3912 &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
3914 prev_short_channel_id.write(writer)?;
3915 prev_funding_outpoint.write(writer)?;
3916 prev_htlc_id.write(writer)?;
3917 forward_info.write(writer)?;
3919 &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
3921 htlc_id.write(writer)?;
3922 err_packet.write(writer)?;
3929 impl Readable for HTLCForwardInfo {
3930 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
3931 match <u8 as Readable>::read(reader)? {
3932 0 => Ok(HTLCForwardInfo::AddHTLC {
3933 prev_short_channel_id: Readable::read(reader)?,
3934 prev_funding_outpoint: Readable::read(reader)?,
3935 prev_htlc_id: Readable::read(reader)?,
3936 forward_info: Readable::read(reader)?,
3938 1 => Ok(HTLCForwardInfo::FailHTLC {
3939 htlc_id: Readable::read(reader)?,
3940 err_packet: Readable::read(reader)?,
3942 _ => Err(DecodeError::InvalidValue),
3947 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
3948 where M::Target: chain::Watch<Signer>,
3949 T::Target: BroadcasterInterface,
3950 K::Target: KeysInterface<Signer = Signer>,
3951 F::Target: FeeEstimator,
3954 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
3955 let _consistency_lock = self.total_consistency_lock.write().unwrap();
3957 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
3958 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
3960 self.genesis_hash.write(writer)?;
3961 (self.latest_block_height.load(Ordering::Acquire) as u32).write(writer)?;
3962 self.last_block_hash.read().unwrap().write(writer)?;
3964 let channel_state = self.channel_state.lock().unwrap();
3965 let mut unfunded_channels = 0;
3966 for (_, channel) in channel_state.by_id.iter() {
3967 if !channel.is_funding_initiated() {
3968 unfunded_channels += 1;
3971 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
3972 for (_, channel) in channel_state.by_id.iter() {
3973 if channel.is_funding_initiated() {
3974 channel.write(writer)?;
3978 (channel_state.forward_htlcs.len() as u64).write(writer)?;
3979 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
3980 short_channel_id.write(writer)?;
3981 (pending_forwards.len() as u64).write(writer)?;
3982 for forward in pending_forwards {
3983 forward.write(writer)?;
3987 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
3988 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
3989 payment_hash.write(writer)?;
3990 (previous_hops.len() as u64).write(writer)?;
3991 for htlc in previous_hops.iter() {
3992 htlc.write(writer)?;
3996 let per_peer_state = self.per_peer_state.write().unwrap();
3997 (per_peer_state.len() as u64).write(writer)?;
3998 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
3999 peer_pubkey.write(writer)?;
4000 let peer_state = peer_state_mutex.lock().unwrap();
4001 peer_state.latest_features.write(writer)?;
4004 let events = self.pending_events.lock().unwrap();
4005 (events.len() as u64).write(writer)?;
4006 for event in events.iter() {
4007 event.write(writer)?;
4010 let background_events = self.pending_background_events.lock().unwrap();
4011 (background_events.len() as u64).write(writer)?;
4012 for event in background_events.iter() {
4014 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4016 funding_txo.write(writer)?;
4017 monitor_update.write(writer)?;
4022 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4028 /// Arguments for the creation of a ChannelManager that are not deserialized.
4030 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4032 /// 1) Deserialize all stored ChannelMonitors.
4033 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4034 /// <(BlockHash, ChannelManager)>::read(reader, args)
4035 /// This may result in closing some Channels if the ChannelMonitor is newer than the stored
4036 /// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4037 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4038 /// way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4039 /// ChannelMonitor::get_funding_txo().
4040 /// 4) Reconnect blocks on your ChannelMonitors.
4041 /// 5) Disconnect/connect blocks on the ChannelManager.
4042 /// 6) Move the ChannelMonitors into your local chain::Watch.
4044 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4045 /// call any other methods on the newly-deserialized ChannelManager.
4047 /// Note that because some channels may be closed during deserialization, it is critical that you
4048 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4049 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4050 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4051 /// not force-close the same channels but consider them live), you may end up revoking a state for
4052 /// which you've already broadcasted the transaction.
4053 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4054 where M::Target: chain::Watch<Signer>,
4055 T::Target: BroadcasterInterface,
4056 K::Target: KeysInterface<Signer = Signer>,
4057 F::Target: FeeEstimator,
4060 /// The keys provider which will give us relevant keys. Some keys will be loaded during
4061 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4063 pub keys_manager: K,
4065 /// The fee_estimator for use in the ChannelManager in the future.
4067 /// No calls to the FeeEstimator will be made during deserialization.
4068 pub fee_estimator: F,
4069 /// The chain::Watch for use in the ChannelManager in the future.
4071 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4072 /// you have deserialized ChannelMonitors separately and will add them to your
4073 /// chain::Watch after deserializing this ChannelManager.
4074 pub chain_monitor: M,
4076 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4077 /// used to broadcast the latest local commitment transactions of channels which must be
4078 /// force-closed during deserialization.
4079 pub tx_broadcaster: T,
4080 /// The Logger for use in the ChannelManager and which may be used to log information during
4081 /// deserialization.
4083 /// Default settings used for new channels. Any existing channels will continue to use the
4084 /// runtime settings which were stored when the ChannelManager was serialized.
4085 pub default_config: UserConfig,
4087 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4088 /// value.get_funding_txo() should be the key).
4090 /// If a monitor is inconsistent with the channel state during deserialization the channel will
4091 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4092 /// is true for missing channels as well. If there is a monitor missing for which we find
4093 /// channel data Err(DecodeError::InvalidValue) will be returned.
4095 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4098 /// (C-not exported) because we have no HashMap bindings
4099 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4102 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4103 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4104 where M::Target: chain::Watch<Signer>,
4105 T::Target: BroadcasterInterface,
4106 K::Target: KeysInterface<Signer = Signer>,
4107 F::Target: FeeEstimator,
4110 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4111 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4112 /// populate a HashMap directly from C.
4113 pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4114 mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4116 keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4117 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4122 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4123 // SipmleArcChannelManager type:
4124 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4125 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4126 where M::Target: chain::Watch<Signer>,
4127 T::Target: BroadcasterInterface,
4128 K::Target: KeysInterface<Signer = Signer>,
4129 F::Target: FeeEstimator,
4132 fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4133 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4134 Ok((blockhash, Arc::new(chan_manager)))
4138 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4139 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4140 where M::Target: chain::Watch<Signer>,
4141 T::Target: BroadcasterInterface,
4142 K::Target: KeysInterface<Signer = Signer>,
4143 F::Target: FeeEstimator,
4146 fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4147 let _ver: u8 = Readable::read(reader)?;
4148 let min_ver: u8 = Readable::read(reader)?;
4149 if min_ver > SERIALIZATION_VERSION {
4150 return Err(DecodeError::UnknownVersion);
4153 let genesis_hash: BlockHash = Readable::read(reader)?;
4154 let latest_block_height: u32 = Readable::read(reader)?;
4155 let last_block_hash: BlockHash = Readable::read(reader)?;
4157 let mut failed_htlcs = Vec::new();
4159 let channel_count: u64 = Readable::read(reader)?;
4160 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4161 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4162 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4163 for _ in 0..channel_count {
4164 let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4165 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4166 funding_txo_set.insert(funding_txo.clone());
4167 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4168 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4169 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4170 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4171 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4172 // If the channel is ahead of the monitor, return InvalidValue:
4173 return Err(DecodeError::InvalidValue);
4174 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4175 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4176 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4177 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4178 // But if the channel is behind of the monitor, close the channel:
4179 let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4180 failed_htlcs.append(&mut new_failed_htlcs);
4181 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4183 if let Some(short_channel_id) = channel.get_short_channel_id() {
4184 short_to_id.insert(short_channel_id, channel.channel_id());
4186 by_id.insert(channel.channel_id(), channel);
4189 return Err(DecodeError::InvalidValue);
4193 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4194 if !funding_txo_set.contains(funding_txo) {
4195 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4199 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4200 let forward_htlcs_count: u64 = Readable::read(reader)?;
4201 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4202 for _ in 0..forward_htlcs_count {
4203 let short_channel_id = Readable::read(reader)?;
4204 let pending_forwards_count: u64 = Readable::read(reader)?;
4205 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4206 for _ in 0..pending_forwards_count {
4207 pending_forwards.push(Readable::read(reader)?);
4209 forward_htlcs.insert(short_channel_id, pending_forwards);
4212 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4213 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4214 for _ in 0..claimable_htlcs_count {
4215 let payment_hash = Readable::read(reader)?;
4216 let previous_hops_len: u64 = Readable::read(reader)?;
4217 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4218 for _ in 0..previous_hops_len {
4219 previous_hops.push(Readable::read(reader)?);
4221 claimable_htlcs.insert(payment_hash, previous_hops);
4224 let peer_count: u64 = Readable::read(reader)?;
4225 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4226 for _ in 0..peer_count {
4227 let peer_pubkey = Readable::read(reader)?;
4228 let peer_state = PeerState {
4229 latest_features: Readable::read(reader)?,
4231 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4234 let event_count: u64 = Readable::read(reader)?;
4235 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4236 for _ in 0..event_count {
4237 match MaybeReadable::read(reader)? {
4238 Some(event) => pending_events_read.push(event),
4243 let background_event_count: u64 = Readable::read(reader)?;
4244 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4245 for _ in 0..background_event_count {
4246 match <u8 as Readable>::read(reader)? {
4247 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4248 _ => return Err(DecodeError::InvalidValue),
4252 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4254 let mut secp_ctx = Secp256k1::new();
4255 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4257 let channel_manager = ChannelManager {
4259 fee_estimator: args.fee_estimator,
4260 chain_monitor: args.chain_monitor,
4261 tx_broadcaster: args.tx_broadcaster,
4263 latest_block_height: AtomicUsize::new(latest_block_height as usize),
4264 last_block_hash: RwLock::new(last_block_hash),
4267 channel_state: Mutex::new(ChannelHolder {
4272 pending_msg_events: Vec::new(),
4274 our_network_key: args.keys_manager.get_node_secret(),
4276 last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4278 per_peer_state: RwLock::new(per_peer_state),
4280 pending_events: Mutex::new(pending_events_read),
4281 pending_background_events: Mutex::new(pending_background_events_read),
4282 total_consistency_lock: RwLock::new(()),
4283 persistence_notifier: PersistenceNotifier::new(),
4285 keys_manager: args.keys_manager,
4286 logger: args.logger,
4287 default_configuration: args.default_config,
4290 for htlc_source in failed_htlcs.drain(..) {
4291 channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4294 //TODO: Broadcast channel update for closed channels, but only after we've made a
4295 //connection or two.
4297 Ok((last_block_hash.clone(), channel_manager))
4303 use ln::channelmanager::PersistenceNotifier;
4305 use std::sync::atomic::{AtomicBool, Ordering};
4307 use std::time::Duration;
4310 fn test_wait_timeout() {
4311 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4312 let thread_notifier = Arc::clone(&persistence_notifier);
4314 let exit_thread = Arc::new(AtomicBool::new(false));
4315 let exit_thread_clone = exit_thread.clone();
4316 thread::spawn(move || {
4318 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4319 let mut persistence_lock = persist_mtx.lock().unwrap();
4320 *persistence_lock = true;
4323 if exit_thread_clone.load(Ordering::SeqCst) {
4329 // Check that we can block indefinitely until updates are available.
4330 let _ = persistence_notifier.wait();
4332 // Check that the PersistenceNotifier will return after the given duration if updates are
4335 if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4340 exit_thread.store(true, Ordering::SeqCst);
4342 // Check that the PersistenceNotifier will return after the given duration even if no updates
4345 if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {