1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
39 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, PaymentParameters, Route, RouteHop, RouteParameters, Router};
49 use crate::routing::scoring::ProbabilisticScorer;
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
57 use crate::ln::wire::Encode;
58 use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner, WriteableEcdsaChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig};
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::string::UntrustedString;
63 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
64 use crate::util::logger::{Level, Logger};
65 use crate::util::errors::APIError;
67 use alloc::collections::BTreeMap;
70 use crate::prelude::*;
72 use core::cell::RefCell;
74 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
75 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
76 use core::time::Duration;
79 // Re-export this for use in the public API.
80 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
82 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
84 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
85 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
86 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
88 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
89 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
90 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
91 // before we forward it.
93 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
94 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
95 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
96 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
97 // our payment, which we can use to decode errors or inform the user that the payment was sent.
99 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
100 pub(super) enum PendingHTLCRouting {
102 onion_packet: msgs::OnionPacket,
103 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
104 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
105 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
108 payment_data: msgs::FinalOnionHopData,
109 payment_metadata: Option<Vec<u8>>,
110 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
111 phantom_shared_secret: Option<[u8; 32]>,
114 payment_preimage: PaymentPreimage,
115 payment_metadata: Option<Vec<u8>>,
116 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
120 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
121 pub(super) struct PendingHTLCInfo {
122 pub(super) routing: PendingHTLCRouting,
123 pub(super) incoming_shared_secret: [u8; 32],
124 payment_hash: PaymentHash,
126 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
127 /// Sender intended amount to forward or receive (actual amount received
128 /// may overshoot this in either case)
129 pub(super) outgoing_amt_msat: u64,
130 pub(super) outgoing_cltv_value: u32,
133 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
134 pub(super) enum HTLCFailureMsg {
135 Relay(msgs::UpdateFailHTLC),
136 Malformed(msgs::UpdateFailMalformedHTLC),
139 /// Stores whether we can't forward an HTLC or relevant forwarding info
140 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
141 pub(super) enum PendingHTLCStatus {
142 Forward(PendingHTLCInfo),
143 Fail(HTLCFailureMsg),
146 pub(super) struct PendingAddHTLCInfo {
147 pub(super) forward_info: PendingHTLCInfo,
149 // These fields are produced in `forward_htlcs()` and consumed in
150 // `process_pending_htlc_forwards()` for constructing the
151 // `HTLCSource::PreviousHopData` for failed and forwarded
154 // Note that this may be an outbound SCID alias for the associated channel.
155 prev_short_channel_id: u64,
157 prev_funding_outpoint: OutPoint,
158 prev_user_channel_id: u128,
161 pub(super) enum HTLCForwardInfo {
162 AddHTLC(PendingAddHTLCInfo),
165 err_packet: msgs::OnionErrorPacket,
169 /// Tracks the inbound corresponding to an outbound HTLC
170 #[derive(Clone, Hash, PartialEq, Eq)]
171 pub(crate) struct HTLCPreviousHopData {
172 // Note that this may be an outbound SCID alias for the associated channel.
173 short_channel_id: u64,
175 incoming_packet_shared_secret: [u8; 32],
176 phantom_shared_secret: Option<[u8; 32]>,
178 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
179 // channel with a preimage provided by the forward channel.
184 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
186 /// This is only here for backwards-compatibility in serialization, in the future it can be
187 /// removed, breaking clients running 0.0.106 and earlier.
188 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
190 /// Contains the payer-provided preimage.
191 Spontaneous(PaymentPreimage),
194 /// HTLCs that are to us and can be failed/claimed by the user
195 struct ClaimableHTLC {
196 prev_hop: HTLCPreviousHopData,
198 /// The amount (in msats) of this MPP part
200 /// The amount (in msats) that the sender intended to be sent in this MPP
201 /// part (used for validating total MPP amount)
202 sender_intended_value: u64,
203 onion_payload: OnionPayload,
205 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
206 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
207 total_value_received: Option<u64>,
208 /// The sender intended sum total of all MPP parts specified in the onion
212 /// A payment identifier used to uniquely identify a payment to LDK.
214 /// This is not exported to bindings users as we just use [u8; 32] directly
215 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
216 pub struct PaymentId(pub [u8; 32]);
218 impl Writeable for PaymentId {
219 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
224 impl Readable for PaymentId {
225 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
226 let buf: [u8; 32] = Readable::read(r)?;
231 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
233 /// This is not exported to bindings users as we just use [u8; 32] directly
234 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
235 pub struct InterceptId(pub [u8; 32]);
237 impl Writeable for InterceptId {
238 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
243 impl Readable for InterceptId {
244 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
245 let buf: [u8; 32] = Readable::read(r)?;
250 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
251 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
252 pub(crate) enum SentHTLCId {
253 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
254 OutboundRoute { session_priv: SecretKey },
257 pub(crate) fn from_source(source: &HTLCSource) -> Self {
259 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
260 short_channel_id: hop_data.short_channel_id,
261 htlc_id: hop_data.htlc_id,
263 HTLCSource::OutboundRoute { session_priv, .. } =>
264 Self::OutboundRoute { session_priv: *session_priv },
268 impl_writeable_tlv_based_enum!(SentHTLCId,
269 (0, PreviousHopData) => {
270 (0, short_channel_id, required),
271 (2, htlc_id, required),
273 (2, OutboundRoute) => {
274 (0, session_priv, required),
279 /// Tracks the inbound corresponding to an outbound HTLC
280 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
281 #[derive(Clone, PartialEq, Eq)]
282 pub(crate) enum HTLCSource {
283 PreviousHopData(HTLCPreviousHopData),
286 session_priv: SecretKey,
287 /// Technically we can recalculate this from the route, but we cache it here to avoid
288 /// doing a double-pass on route when we get a failure back
289 first_hop_htlc_msat: u64,
290 payment_id: PaymentId,
293 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
294 impl core::hash::Hash for HTLCSource {
295 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
297 HTLCSource::PreviousHopData(prev_hop_data) => {
299 prev_hop_data.hash(hasher);
301 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
304 session_priv[..].hash(hasher);
305 payment_id.hash(hasher);
306 first_hop_htlc_msat.hash(hasher);
312 #[cfg(not(feature = "grind_signatures"))]
314 pub fn dummy() -> Self {
315 HTLCSource::OutboundRoute {
316 path: Path { hops: Vec::new(), blinded_tail: None },
317 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
318 first_hop_htlc_msat: 0,
319 payment_id: PaymentId([2; 32]),
323 #[cfg(debug_assertions)]
324 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
325 /// transaction. Useful to ensure different datastructures match up.
326 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
327 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
328 *first_hop_htlc_msat == htlc.amount_msat
330 // There's nothing we can check for forwarded HTLCs
336 struct ReceiveError {
342 /// This enum is used to specify which error data to send to peers when failing back an HTLC
343 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
345 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
346 #[derive(Clone, Copy)]
347 pub enum FailureCode {
348 /// We had a temporary error processing the payment. Useful if no other error codes fit
349 /// and you want to indicate that the payer may want to retry.
350 TemporaryNodeFailure = 0x2000 | 2,
351 /// We have a required feature which was not in this onion. For example, you may require
352 /// some additional metadata that was not provided with this payment.
353 RequiredNodeFeatureMissing = 0x4000 | 0x2000 | 3,
354 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
355 /// the HTLC is too close to the current block height for safe handling.
356 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
357 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
358 IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
361 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
363 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
364 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
365 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
366 /// peer_state lock. We then return the set of things that need to be done outside the lock in
367 /// this struct and call handle_error!() on it.
369 struct MsgHandleErrInternal {
370 err: msgs::LightningError,
371 chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
372 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
374 impl MsgHandleErrInternal {
376 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
378 err: LightningError {
380 action: msgs::ErrorAction::SendErrorMessage {
381 msg: msgs::ErrorMessage {
388 shutdown_finish: None,
392 fn from_no_close(err: msgs::LightningError) -> Self {
393 Self { err, chan_id: None, shutdown_finish: None }
396 fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
398 err: LightningError {
400 action: msgs::ErrorAction::SendErrorMessage {
401 msg: msgs::ErrorMessage {
407 chan_id: Some((channel_id, user_channel_id)),
408 shutdown_finish: Some((shutdown_res, channel_update)),
412 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
415 ChannelError::Warn(msg) => LightningError {
417 action: msgs::ErrorAction::SendWarningMessage {
418 msg: msgs::WarningMessage {
422 log_level: Level::Warn,
425 ChannelError::Ignore(msg) => LightningError {
427 action: msgs::ErrorAction::IgnoreError,
429 ChannelError::Close(msg) => LightningError {
431 action: msgs::ErrorAction::SendErrorMessage {
432 msg: msgs::ErrorMessage {
440 shutdown_finish: None,
445 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
446 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
447 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
448 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
449 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
451 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
452 /// be sent in the order they appear in the return value, however sometimes the order needs to be
453 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
454 /// they were originally sent). In those cases, this enum is also returned.
455 #[derive(Clone, PartialEq)]
456 pub(super) enum RAACommitmentOrder {
457 /// Send the CommitmentUpdate messages first
459 /// Send the RevokeAndACK message first
463 /// Information about a payment which is currently being claimed.
464 struct ClaimingPayment {
466 payment_purpose: events::PaymentPurpose,
467 receiver_node_id: PublicKey,
469 impl_writeable_tlv_based!(ClaimingPayment, {
470 (0, amount_msat, required),
471 (2, payment_purpose, required),
472 (4, receiver_node_id, required),
475 struct ClaimablePayment {
476 purpose: events::PaymentPurpose,
477 onion_fields: Option<RecipientOnionFields>,
478 htlcs: Vec<ClaimableHTLC>,
481 /// Information about claimable or being-claimed payments
482 struct ClaimablePayments {
483 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
484 /// failed/claimed by the user.
486 /// Note that, no consistency guarantees are made about the channels given here actually
487 /// existing anymore by the time you go to read them!
489 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
490 /// we don't get a duplicate payment.
491 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
493 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
494 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
495 /// as an [`events::Event::PaymentClaimed`].
496 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
499 /// Events which we process internally but cannot be procsesed immediately at the generation site
500 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
501 /// quite some time lag.
502 enum BackgroundEvent {
503 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
504 /// commitment transaction.
505 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
509 pub(crate) enum MonitorUpdateCompletionAction {
510 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
511 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
512 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
513 /// event can be generated.
514 PaymentClaimed { payment_hash: PaymentHash },
515 /// Indicates an [`events::Event`] should be surfaced to the user.
516 EmitEvent { event: events::Event },
519 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
520 (0, PaymentClaimed) => { (0, payment_hash, required) },
521 (2, EmitEvent) => { (0, event, upgradable_required) },
524 /// State we hold per-peer.
525 pub(super) struct PeerState<Signer: ChannelSigner> {
526 /// `temporary_channel_id` or `channel_id` -> `channel`.
528 /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
529 /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
531 pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
532 /// The latest `InitFeatures` we heard from the peer.
533 latest_features: InitFeatures,
534 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
535 /// for broadcast messages, where ordering isn't as strict).
536 pub(super) pending_msg_events: Vec<MessageSendEvent>,
537 /// Map from a specific channel to some action(s) that should be taken when all pending
538 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
540 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
541 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
542 /// channels with a peer this will just be one allocation and will amount to a linear list of
543 /// channels to walk, avoiding the whole hashing rigmarole.
545 /// Note that the channel may no longer exist. For example, if a channel was closed but we
546 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
547 /// for a missing channel. While a malicious peer could construct a second channel with the
548 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
549 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
550 /// duplicates do not occur, so such channels should fail without a monitor update completing.
551 monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
552 /// The peer is currently connected (i.e. we've seen a
553 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
554 /// [`ChannelMessageHandler::peer_disconnected`].
558 impl <Signer: ChannelSigner> PeerState<Signer> {
559 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
560 /// If true is passed for `require_disconnected`, the function will return false if we haven't
561 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
562 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
563 if require_disconnected && self.is_connected {
566 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
570 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
571 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
573 /// For users who don't want to bother doing their own payment preimage storage, we also store that
576 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
577 /// and instead encoding it in the payment secret.
578 struct PendingInboundPayment {
579 /// The payment secret that the sender must use for us to accept this payment
580 payment_secret: PaymentSecret,
581 /// Time at which this HTLC expires - blocks with a header time above this value will result in
582 /// this payment being removed.
584 /// Arbitrary identifier the user specifies (or not)
585 user_payment_id: u64,
586 // Other required attributes of the payment, optionally enforced:
587 payment_preimage: Option<PaymentPreimage>,
588 min_value_msat: Option<u64>,
591 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
592 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
593 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
594 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
595 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
596 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
597 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
598 /// of [`KeysManager`] and [`DefaultRouter`].
600 /// This is not exported to bindings users as Arcs don't make sense in bindings
601 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
609 Arc<NetworkGraph<Arc<L>>>,
611 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
616 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
617 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
618 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
619 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
620 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
621 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
622 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
623 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
624 /// of [`KeysManager`] and [`DefaultRouter`].
626 /// This is not exported to bindings users as Arcs don't make sense in bindings
627 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
629 /// A trivial trait which describes any [`ChannelManager`] used in testing.
630 #[cfg(any(test, feature = "_test_utils"))]
631 pub trait AChannelManager {
632 type Watch: chain::Watch<Self::Signer>;
633 type M: Deref<Target = Self::Watch>;
634 type Broadcaster: BroadcasterInterface;
635 type T: Deref<Target = Self::Broadcaster>;
636 type EntropySource: EntropySource;
637 type ES: Deref<Target = Self::EntropySource>;
638 type NodeSigner: NodeSigner;
639 type NS: Deref<Target = Self::NodeSigner>;
640 type Signer: WriteableEcdsaChannelSigner;
641 type SignerProvider: SignerProvider<Signer = Self::Signer>;
642 type SP: Deref<Target = Self::SignerProvider>;
643 type FeeEstimator: FeeEstimator;
644 type F: Deref<Target = Self::FeeEstimator>;
646 type R: Deref<Target = Self::Router>;
648 type L: Deref<Target = Self::Logger>;
649 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
651 #[cfg(any(test, feature = "_test_utils"))]
652 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
653 for ChannelManager<M, T, ES, NS, SP, F, R, L>
655 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer> + Sized,
656 T::Target: BroadcasterInterface + Sized,
657 ES::Target: EntropySource + Sized,
658 NS::Target: NodeSigner + Sized,
659 SP::Target: SignerProvider + Sized,
660 F::Target: FeeEstimator + Sized,
661 R::Target: Router + Sized,
662 L::Target: Logger + Sized,
664 type Watch = M::Target;
666 type Broadcaster = T::Target;
668 type EntropySource = ES::Target;
670 type NodeSigner = NS::Target;
672 type Signer = <SP::Target as SignerProvider>::Signer;
673 type SignerProvider = SP::Target;
675 type FeeEstimator = F::Target;
677 type Router = R::Target;
679 type Logger = L::Target;
681 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
684 /// Manager which keeps track of a number of channels and sends messages to the appropriate
685 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
687 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
688 /// to individual Channels.
690 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
691 /// all peers during write/read (though does not modify this instance, only the instance being
692 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
693 /// called [`funding_transaction_generated`] for outbound channels) being closed.
695 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
696 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST write each monitor update out to disk before
697 /// returning from [`chain::Watch::watch_channel`]/[`update_channel`], with ChannelManagers, writing updates
698 /// happens out-of-band (and will prevent any other `ChannelManager` operations from occurring during
699 /// the serialization process). If the deserialized version is out-of-date compared to the
700 /// [`ChannelMonitor`] passed by reference to [`read`], those channels will be force-closed based on the
701 /// `ChannelMonitor` state and no funds will be lost (mod on-chain transaction fees).
703 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
704 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
705 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
707 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
708 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
709 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
710 /// offline for a full minute. In order to track this, you must call
711 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
713 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
714 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
715 /// not have a channel with being unable to connect to us or open new channels with us if we have
716 /// many peers with unfunded channels.
718 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
719 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
720 /// never limited. Please ensure you limit the count of such channels yourself.
722 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
723 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
724 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
725 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
726 /// you're using lightning-net-tokio.
728 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
729 /// [`funding_created`]: msgs::FundingCreated
730 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
731 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
732 /// [`update_channel`]: chain::Watch::update_channel
733 /// [`ChannelUpdate`]: msgs::ChannelUpdate
734 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
735 /// [`read`]: ReadableArgs::read
738 // The tree structure below illustrates the lock order requirements for the different locks of the
739 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
740 // and should then be taken in the order of the lowest to the highest level in the tree.
741 // Note that locks on different branches shall not be taken at the same time, as doing so will
742 // create a new lock order for those specific locks in the order they were taken.
746 // `total_consistency_lock`
748 // |__`forward_htlcs`
750 // | |__`pending_intercepted_htlcs`
752 // |__`per_peer_state`
754 // | |__`pending_inbound_payments`
756 // | |__`claimable_payments`
758 // | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
764 // | |__`short_to_chan_info`
766 // | |__`outbound_scid_aliases`
770 // | |__`pending_events`
772 // | |__`pending_background_events`
774 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
776 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
777 T::Target: BroadcasterInterface,
778 ES::Target: EntropySource,
779 NS::Target: NodeSigner,
780 SP::Target: SignerProvider,
781 F::Target: FeeEstimator,
785 default_configuration: UserConfig,
786 genesis_hash: BlockHash,
787 fee_estimator: LowerBoundedFeeEstimator<F>,
793 /// See `ChannelManager` struct-level documentation for lock order requirements.
795 pub(super) best_block: RwLock<BestBlock>,
797 best_block: RwLock<BestBlock>,
798 secp_ctx: Secp256k1<secp256k1::All>,
800 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
801 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
802 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
803 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
805 /// See `ChannelManager` struct-level documentation for lock order requirements.
806 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
808 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
809 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
810 /// (if the channel has been force-closed), however we track them here to prevent duplicative
811 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
812 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
813 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
814 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
815 /// after reloading from disk while replaying blocks against ChannelMonitors.
817 /// See `PendingOutboundPayment` documentation for more info.
819 /// See `ChannelManager` struct-level documentation for lock order requirements.
820 pending_outbound_payments: OutboundPayments,
822 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
824 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
825 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
826 /// and via the classic SCID.
828 /// Note that no consistency guarantees are made about the existence of a channel with the
829 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
831 /// See `ChannelManager` struct-level documentation for lock order requirements.
833 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
835 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
836 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
837 /// until the user tells us what we should do with them.
839 /// See `ChannelManager` struct-level documentation for lock order requirements.
840 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
842 /// The sets of payments which are claimable or currently being claimed. See
843 /// [`ClaimablePayments`]' individual field docs for more info.
845 /// See `ChannelManager` struct-level documentation for lock order requirements.
846 claimable_payments: Mutex<ClaimablePayments>,
848 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
849 /// and some closed channels which reached a usable state prior to being closed. This is used
850 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
851 /// active channel list on load.
853 /// See `ChannelManager` struct-level documentation for lock order requirements.
854 outbound_scid_aliases: Mutex<HashSet<u64>>,
856 /// `channel_id` -> `counterparty_node_id`.
858 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
859 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
860 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
862 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
863 /// the corresponding channel for the event, as we only have access to the `channel_id` during
864 /// the handling of the events.
866 /// Note that no consistency guarantees are made about the existence of a peer with the
867 /// `counterparty_node_id` in our other maps.
870 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
871 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
872 /// would break backwards compatability.
873 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
874 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
875 /// required to access the channel with the `counterparty_node_id`.
877 /// See `ChannelManager` struct-level documentation for lock order requirements.
878 id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
880 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
882 /// Outbound SCID aliases are added here once the channel is available for normal use, with
883 /// SCIDs being added once the funding transaction is confirmed at the channel's required
884 /// confirmation depth.
886 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
887 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
888 /// channel with the `channel_id` in our other maps.
890 /// See `ChannelManager` struct-level documentation for lock order requirements.
892 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
894 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
896 our_network_pubkey: PublicKey,
898 inbound_payment_key: inbound_payment::ExpandedKey,
900 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
901 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
902 /// we encrypt the namespace identifier using these bytes.
904 /// [fake scids]: crate::util::scid_utils::fake_scid
905 fake_scid_rand_bytes: [u8; 32],
907 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
908 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
909 /// keeping additional state.
910 probing_cookie_secret: [u8; 32],
912 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
913 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
914 /// very far in the past, and can only ever be up to two hours in the future.
915 highest_seen_timestamp: AtomicUsize,
917 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
918 /// basis, as well as the peer's latest features.
920 /// If we are connected to a peer we always at least have an entry here, even if no channels
921 /// are currently open with that peer.
923 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
924 /// operate on the inner value freely. This opens up for parallel per-peer operation for
927 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
929 /// See `ChannelManager` struct-level documentation for lock order requirements.
930 #[cfg(not(any(test, feature = "_test_utils")))]
931 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
932 #[cfg(any(test, feature = "_test_utils"))]
933 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
935 /// See `ChannelManager` struct-level documentation for lock order requirements.
936 pending_events: Mutex<Vec<events::Event>>,
937 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
938 pending_events_processor: AtomicBool,
939 /// See `ChannelManager` struct-level documentation for lock order requirements.
940 pending_background_events: Mutex<Vec<BackgroundEvent>>,
941 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
942 /// Essentially just when we're serializing ourselves out.
943 /// Taken first everywhere where we are making changes before any other locks.
944 /// When acquiring this lock in read mode, rather than acquiring it directly, call
945 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
946 /// Notifier the lock contains sends out a notification when the lock is released.
947 total_consistency_lock: RwLock<()>,
949 persistence_notifier: Notifier,
958 /// Chain-related parameters used to construct a new `ChannelManager`.
960 /// Typically, the block-specific parameters are derived from the best block hash for the network,
961 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
962 /// are not needed when deserializing a previously constructed `ChannelManager`.
963 #[derive(Clone, Copy, PartialEq)]
964 pub struct ChainParameters {
965 /// The network for determining the `chain_hash` in Lightning messages.
966 pub network: Network,
968 /// The hash and height of the latest block successfully connected.
970 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
971 pub best_block: BestBlock,
974 #[derive(Copy, Clone, PartialEq)]
980 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
981 /// desirable to notify any listeners on `await_persistable_update_timeout`/
982 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
983 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
984 /// sending the aforementioned notification (since the lock being released indicates that the
985 /// updates are ready for persistence).
987 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
988 /// notify or not based on whether relevant changes have been made, providing a closure to
989 /// `optionally_notify` which returns a `NotifyOption`.
990 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
991 persistence_notifier: &'a Notifier,
993 // We hold onto this result so the lock doesn't get released immediately.
994 _read_guard: RwLockReadGuard<'a, ()>,
997 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
998 fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
999 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
1002 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1003 let read_guard = lock.read().unwrap();
1005 PersistenceNotifierGuard {
1006 persistence_notifier: notifier,
1007 should_persist: persist_check,
1008 _read_guard: read_guard,
1013 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1014 fn drop(&mut self) {
1015 if (self.should_persist)() == NotifyOption::DoPersist {
1016 self.persistence_notifier.notify();
1021 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1022 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1024 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1026 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1027 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1028 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1029 /// the maximum required amount in lnd as of March 2021.
1030 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1032 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1033 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1035 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1037 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1038 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1039 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1040 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1041 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1042 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1043 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1044 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1045 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1046 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1047 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1048 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1049 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1051 /// Minimum CLTV difference between the current block height and received inbound payments.
1052 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1054 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1055 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1056 // a payment was being routed, so we add an extra block to be safe.
1057 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1059 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1060 // ie that if the next-hop peer fails the HTLC within
1061 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1062 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1063 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1064 // LATENCY_GRACE_PERIOD_BLOCKS.
1067 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1069 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1070 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1073 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1075 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1076 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1078 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
1079 /// idempotency of payments by [`PaymentId`]. See
1080 /// [`OutboundPayments::remove_stale_resolved_payments`].
1081 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
1083 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1084 /// until we mark the channel disabled and gossip the update.
1085 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1087 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1088 /// we mark the channel enabled and gossip the update.
1089 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1091 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1092 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1093 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1094 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1096 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1097 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1098 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1100 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1101 /// many peers we reject new (inbound) connections.
1102 const MAX_NO_CHANNEL_PEERS: usize = 250;
1104 /// Information needed for constructing an invoice route hint for this channel.
1105 #[derive(Clone, Debug, PartialEq)]
1106 pub struct CounterpartyForwardingInfo {
1107 /// Base routing fee in millisatoshis.
1108 pub fee_base_msat: u32,
1109 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1110 pub fee_proportional_millionths: u32,
1111 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1112 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1113 /// `cltv_expiry_delta` for more details.
1114 pub cltv_expiry_delta: u16,
1117 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1118 /// to better separate parameters.
1119 #[derive(Clone, Debug, PartialEq)]
1120 pub struct ChannelCounterparty {
1121 /// The node_id of our counterparty
1122 pub node_id: PublicKey,
1123 /// The Features the channel counterparty provided upon last connection.
1124 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1125 /// many routing-relevant features are present in the init context.
1126 pub features: InitFeatures,
1127 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1128 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1129 /// claiming at least this value on chain.
1131 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1133 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1134 pub unspendable_punishment_reserve: u64,
1135 /// Information on the fees and requirements that the counterparty requires when forwarding
1136 /// payments to us through this channel.
1137 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1138 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1139 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1140 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1141 pub outbound_htlc_minimum_msat: Option<u64>,
1142 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1143 pub outbound_htlc_maximum_msat: Option<u64>,
1146 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1147 #[derive(Clone, Debug, PartialEq)]
1148 pub struct ChannelDetails {
1149 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1150 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1151 /// Note that this means this value is *not* persistent - it can change once during the
1152 /// lifetime of the channel.
1153 pub channel_id: [u8; 32],
1154 /// Parameters which apply to our counterparty. See individual fields for more information.
1155 pub counterparty: ChannelCounterparty,
1156 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1157 /// our counterparty already.
1159 /// Note that, if this has been set, `channel_id` will be equivalent to
1160 /// `funding_txo.unwrap().to_channel_id()`.
1161 pub funding_txo: Option<OutPoint>,
1162 /// The features which this channel operates with. See individual features for more info.
1164 /// `None` until negotiation completes and the channel type is finalized.
1165 pub channel_type: Option<ChannelTypeFeatures>,
1166 /// The position of the funding transaction in the chain. None if the funding transaction has
1167 /// not yet been confirmed and the channel fully opened.
1169 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1170 /// payments instead of this. See [`get_inbound_payment_scid`].
1172 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1173 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1175 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1176 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1177 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1178 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1179 /// [`confirmations_required`]: Self::confirmations_required
1180 pub short_channel_id: Option<u64>,
1181 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1182 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1183 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1186 /// This will be `None` as long as the channel is not available for routing outbound payments.
1188 /// [`short_channel_id`]: Self::short_channel_id
1189 /// [`confirmations_required`]: Self::confirmations_required
1190 pub outbound_scid_alias: Option<u64>,
1191 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1192 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1193 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1194 /// when they see a payment to be routed to us.
1196 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1197 /// previous values for inbound payment forwarding.
1199 /// [`short_channel_id`]: Self::short_channel_id
1200 pub inbound_scid_alias: Option<u64>,
1201 /// The value, in satoshis, of this channel as appears in the funding output
1202 pub channel_value_satoshis: u64,
1203 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1204 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1205 /// this value on chain.
1207 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1209 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1211 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1212 pub unspendable_punishment_reserve: Option<u64>,
1213 /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1214 /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1216 pub user_channel_id: u128,
1217 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1218 /// which is applied to commitment and HTLC transactions.
1220 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1221 pub feerate_sat_per_1000_weight: Option<u32>,
1222 /// Our total balance. This is the amount we would get if we close the channel.
1223 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1224 /// amount is not likely to be recoverable on close.
1226 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1227 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1228 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1229 /// This does not consider any on-chain fees.
1231 /// See also [`ChannelDetails::outbound_capacity_msat`]
1232 pub balance_msat: u64,
1233 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1234 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1235 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1236 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1238 /// See also [`ChannelDetails::balance_msat`]
1240 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1241 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1242 /// should be able to spend nearly this amount.
1243 pub outbound_capacity_msat: u64,
1244 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1245 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1246 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1247 /// to use a limit as close as possible to the HTLC limit we can currently send.
1249 /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1250 pub next_outbound_htlc_limit_msat: u64,
1251 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1252 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1253 /// available for inclusion in new inbound HTLCs).
1254 /// Note that there are some corner cases not fully handled here, so the actual available
1255 /// inbound capacity may be slightly higher than this.
1257 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1258 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1259 /// However, our counterparty should be able to spend nearly this amount.
1260 pub inbound_capacity_msat: u64,
1261 /// The number of required confirmations on the funding transaction before the funding will be
1262 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1263 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1264 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1265 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1267 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1269 /// [`is_outbound`]: ChannelDetails::is_outbound
1270 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1271 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1272 pub confirmations_required: Option<u32>,
1273 /// The current number of confirmations on the funding transaction.
1275 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1276 pub confirmations: Option<u32>,
1277 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1278 /// until we can claim our funds after we force-close the channel. During this time our
1279 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1280 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1281 /// time to claim our non-HTLC-encumbered funds.
1283 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1284 pub force_close_spend_delay: Option<u16>,
1285 /// True if the channel was initiated (and thus funded) by us.
1286 pub is_outbound: bool,
1287 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1288 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1289 /// required confirmation count has been reached (and we were connected to the peer at some
1290 /// point after the funding transaction received enough confirmations). The required
1291 /// confirmation count is provided in [`confirmations_required`].
1293 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1294 pub is_channel_ready: bool,
1295 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1296 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1298 /// This is a strict superset of `is_channel_ready`.
1299 pub is_usable: bool,
1300 /// True if this channel is (or will be) publicly-announced.
1301 pub is_public: bool,
1302 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1303 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1304 pub inbound_htlc_minimum_msat: Option<u64>,
1305 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1306 pub inbound_htlc_maximum_msat: Option<u64>,
1307 /// Set of configurable parameters that affect channel operation.
1309 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1310 pub config: Option<ChannelConfig>,
1313 impl ChannelDetails {
1314 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1315 /// This should be used for providing invoice hints or in any other context where our
1316 /// counterparty will forward a payment to us.
1318 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1319 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1320 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1321 self.inbound_scid_alias.or(self.short_channel_id)
1324 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1325 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1326 /// we're sending or forwarding a payment outbound over this channel.
1328 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1329 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1330 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1331 self.short_channel_id.or(self.outbound_scid_alias)
1334 fn from_channel<Signer: WriteableEcdsaChannelSigner>(channel: &Channel<Signer>,
1335 best_block_height: u32, latest_features: InitFeatures) -> Self {
1337 let balance = channel.get_available_balances();
1338 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1339 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1341 channel_id: channel.channel_id(),
1342 counterparty: ChannelCounterparty {
1343 node_id: channel.get_counterparty_node_id(),
1344 features: latest_features,
1345 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1346 forwarding_info: channel.counterparty_forwarding_info(),
1347 // Ensures that we have actually received the `htlc_minimum_msat` value
1348 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1349 // message (as they are always the first message from the counterparty).
1350 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1351 // default `0` value set by `Channel::new_outbound`.
1352 outbound_htlc_minimum_msat: if channel.have_received_message() {
1353 Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1354 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1356 funding_txo: channel.get_funding_txo(),
1357 // Note that accept_channel (or open_channel) is always the first message, so
1358 // `have_received_message` indicates that type negotiation has completed.
1359 channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1360 short_channel_id: channel.get_short_channel_id(),
1361 outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1362 inbound_scid_alias: channel.latest_inbound_scid_alias(),
1363 channel_value_satoshis: channel.get_value_satoshis(),
1364 feerate_sat_per_1000_weight: Some(channel.get_feerate_sat_per_1000_weight()),
1365 unspendable_punishment_reserve: to_self_reserve_satoshis,
1366 balance_msat: balance.balance_msat,
1367 inbound_capacity_msat: balance.inbound_capacity_msat,
1368 outbound_capacity_msat: balance.outbound_capacity_msat,
1369 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1370 user_channel_id: channel.get_user_id(),
1371 confirmations_required: channel.minimum_depth(),
1372 confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1373 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1374 is_outbound: channel.is_outbound(),
1375 is_channel_ready: channel.is_usable(),
1376 is_usable: channel.is_live(),
1377 is_public: channel.should_announce(),
1378 inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1379 inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1380 config: Some(channel.config()),
1385 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1386 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1387 #[derive(Debug, PartialEq)]
1388 pub enum RecentPaymentDetails {
1389 /// When a payment is still being sent and awaiting successful delivery.
1391 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1393 payment_hash: PaymentHash,
1394 /// Total amount (in msat, excluding fees) across all paths for this payment,
1395 /// not just the amount currently inflight.
1398 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1399 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1400 /// payment is removed from tracking.
1402 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1403 /// made before LDK version 0.0.104.
1404 payment_hash: Option<PaymentHash>,
1406 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1407 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1408 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1410 /// Hash of the payment that we have given up trying to send.
1411 payment_hash: PaymentHash,
1415 /// Route hints used in constructing invoices for [phantom node payents].
1417 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1419 pub struct PhantomRouteHints {
1420 /// The list of channels to be included in the invoice route hints.
1421 pub channels: Vec<ChannelDetails>,
1422 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1424 pub phantom_scid: u64,
1425 /// The pubkey of the real backing node that would ultimately receive the payment.
1426 pub real_node_pubkey: PublicKey,
1429 macro_rules! handle_error {
1430 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1431 // In testing, ensure there are no deadlocks where the lock is already held upon
1432 // entering the macro.
1433 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1434 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1438 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1439 let mut msg_events = Vec::with_capacity(2);
1441 if let Some((shutdown_res, update_option)) = shutdown_finish {
1442 $self.finish_force_close_channel(shutdown_res);
1443 if let Some(update) = update_option {
1444 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1448 if let Some((channel_id, user_channel_id)) = chan_id {
1449 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1450 channel_id, user_channel_id,
1451 reason: ClosureReason::ProcessingError { err: err.err.clone() }
1456 log_error!($self.logger, "{}", err.err);
1457 if let msgs::ErrorAction::IgnoreError = err.action {
1459 msg_events.push(events::MessageSendEvent::HandleError {
1460 node_id: $counterparty_node_id,
1461 action: err.action.clone()
1465 if !msg_events.is_empty() {
1466 let per_peer_state = $self.per_peer_state.read().unwrap();
1467 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1468 let mut peer_state = peer_state_mutex.lock().unwrap();
1469 peer_state.pending_msg_events.append(&mut msg_events);
1473 // Return error in case higher-API need one
1480 macro_rules! update_maps_on_chan_removal {
1481 ($self: expr, $channel: expr) => {{
1482 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1483 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1484 if let Some(short_id) = $channel.get_short_channel_id() {
1485 short_to_chan_info.remove(&short_id);
1487 // If the channel was never confirmed on-chain prior to its closure, remove the
1488 // outbound SCID alias we used for it from the collision-prevention set. While we
1489 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1490 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1491 // opening a million channels with us which are closed before we ever reach the funding
1493 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1494 debug_assert!(alias_removed);
1496 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1500 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1501 macro_rules! convert_chan_err {
1502 ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1504 ChannelError::Warn(msg) => {
1505 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1507 ChannelError::Ignore(msg) => {
1508 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1510 ChannelError::Close(msg) => {
1511 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1512 update_maps_on_chan_removal!($self, $channel);
1513 let shutdown_res = $channel.force_shutdown(true);
1514 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1515 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1521 macro_rules! break_chan_entry {
1522 ($self: ident, $res: expr, $entry: expr) => {
1526 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1528 $entry.remove_entry();
1536 macro_rules! try_chan_entry {
1537 ($self: ident, $res: expr, $entry: expr) => {
1541 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1543 $entry.remove_entry();
1551 macro_rules! remove_channel {
1552 ($self: expr, $entry: expr) => {
1554 let channel = $entry.remove_entry().1;
1555 update_maps_on_chan_removal!($self, channel);
1561 macro_rules! send_channel_ready {
1562 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1563 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1564 node_id: $channel.get_counterparty_node_id(),
1565 msg: $channel_ready_msg,
1567 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1568 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1569 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1570 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1571 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1572 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1573 if let Some(real_scid) = $channel.get_short_channel_id() {
1574 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1575 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1576 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1581 macro_rules! emit_channel_pending_event {
1582 ($locked_events: expr, $channel: expr) => {
1583 if $channel.should_emit_channel_pending_event() {
1584 $locked_events.push(events::Event::ChannelPending {
1585 channel_id: $channel.channel_id(),
1586 former_temporary_channel_id: $channel.temporary_channel_id(),
1587 counterparty_node_id: $channel.get_counterparty_node_id(),
1588 user_channel_id: $channel.get_user_id(),
1589 funding_txo: $channel.get_funding_txo().unwrap().into_bitcoin_outpoint(),
1591 $channel.set_channel_pending_event_emitted();
1596 macro_rules! emit_channel_ready_event {
1597 ($locked_events: expr, $channel: expr) => {
1598 if $channel.should_emit_channel_ready_event() {
1599 debug_assert!($channel.channel_pending_event_emitted());
1600 $locked_events.push(events::Event::ChannelReady {
1601 channel_id: $channel.channel_id(),
1602 user_channel_id: $channel.get_user_id(),
1603 counterparty_node_id: $channel.get_counterparty_node_id(),
1604 channel_type: $channel.get_channel_type().clone(),
1606 $channel.set_channel_ready_event_emitted();
1611 macro_rules! handle_monitor_update_completion {
1612 ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1613 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1614 &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1615 $self.best_block.read().unwrap().height());
1616 let counterparty_node_id = $chan.get_counterparty_node_id();
1617 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1618 // We only send a channel_update in the case where we are just now sending a
1619 // channel_ready and the channel is in a usable state. We may re-send a
1620 // channel_update later through the announcement_signatures process for public
1621 // channels, but there's no reason not to just inform our counterparty of our fees
1623 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1624 Some(events::MessageSendEvent::SendChannelUpdate {
1625 node_id: counterparty_node_id,
1631 let update_actions = $peer_state.monitor_update_blocked_actions
1632 .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1634 let htlc_forwards = $self.handle_channel_resumption(
1635 &mut $peer_state.pending_msg_events, $chan, updates.raa,
1636 updates.commitment_update, updates.order, updates.accepted_htlcs,
1637 updates.funding_broadcastable, updates.channel_ready,
1638 updates.announcement_sigs);
1639 if let Some(upd) = channel_update {
1640 $peer_state.pending_msg_events.push(upd);
1643 let channel_id = $chan.channel_id();
1644 core::mem::drop($peer_state_lock);
1645 core::mem::drop($per_peer_state_lock);
1647 $self.handle_monitor_update_completion_actions(update_actions);
1649 if let Some(forwards) = htlc_forwards {
1650 $self.forward_htlcs(&mut [forwards][..]);
1652 $self.finalize_claims(updates.finalized_claimed_htlcs);
1653 for failure in updates.failed_htlcs.drain(..) {
1654 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1655 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1660 macro_rules! handle_new_monitor_update {
1661 ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1662 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1663 // any case so that it won't deadlock.
1664 debug_assert_ne!($self.id_to_peer.held_by_thread(), LockHeldState::HeldByThread);
1666 ChannelMonitorUpdateStatus::InProgress => {
1667 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1668 log_bytes!($chan.channel_id()[..]));
1671 ChannelMonitorUpdateStatus::PermanentFailure => {
1672 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1673 log_bytes!($chan.channel_id()[..]));
1674 update_maps_on_chan_removal!($self, $chan);
1675 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1676 "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1677 $chan.get_user_id(), $chan.force_shutdown(false),
1678 $self.get_channel_update_for_broadcast(&$chan).ok()));
1682 ChannelMonitorUpdateStatus::Completed => {
1683 if ($update_id == 0 || $chan.get_next_monitor_update()
1684 .expect("We can't be processing a monitor update if it isn't queued")
1685 .update_id == $update_id) &&
1686 $chan.get_latest_monitor_update_id() == $update_id
1688 handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1694 ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1695 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1699 macro_rules! process_events_body {
1700 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
1701 let mut processed_all_events = false;
1702 while !processed_all_events {
1703 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
1707 let mut result = NotifyOption::SkipPersist;
1710 // We'll acquire our total consistency lock so that we can be sure no other
1711 // persists happen while processing monitor events.
1712 let _read_guard = $self.total_consistency_lock.read().unwrap();
1714 // TODO: This behavior should be documented. It's unintuitive that we query
1715 // ChannelMonitors when clearing other events.
1716 if $self.process_pending_monitor_events() {
1717 result = NotifyOption::DoPersist;
1721 let pending_events = $self.pending_events.lock().unwrap().clone();
1722 let num_events = pending_events.len();
1723 if !pending_events.is_empty() {
1724 result = NotifyOption::DoPersist;
1727 for event in pending_events {
1728 $event_to_handle = event;
1733 let mut pending_events = $self.pending_events.lock().unwrap();
1734 pending_events.drain(..num_events);
1735 processed_all_events = pending_events.is_empty();
1736 $self.pending_events_processor.store(false, Ordering::Release);
1739 if result == NotifyOption::DoPersist {
1740 $self.persistence_notifier.notify();
1746 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1748 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1749 T::Target: BroadcasterInterface,
1750 ES::Target: EntropySource,
1751 NS::Target: NodeSigner,
1752 SP::Target: SignerProvider,
1753 F::Target: FeeEstimator,
1757 /// Constructs a new `ChannelManager` to hold several channels and route between them.
1759 /// This is the main "logic hub" for all channel-related actions, and implements
1760 /// [`ChannelMessageHandler`].
1762 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1764 /// Users need to notify the new `ChannelManager` when a new block is connected or
1765 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
1766 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
1769 /// [`block_connected`]: chain::Listen::block_connected
1770 /// [`block_disconnected`]: chain::Listen::block_disconnected
1771 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
1772 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1773 let mut secp_ctx = Secp256k1::new();
1774 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1775 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1776 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1778 default_configuration: config.clone(),
1779 genesis_hash: genesis_block(params.network).header.block_hash(),
1780 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1785 best_block: RwLock::new(params.best_block),
1787 outbound_scid_aliases: Mutex::new(HashSet::new()),
1788 pending_inbound_payments: Mutex::new(HashMap::new()),
1789 pending_outbound_payments: OutboundPayments::new(),
1790 forward_htlcs: Mutex::new(HashMap::new()),
1791 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1792 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1793 id_to_peer: Mutex::new(HashMap::new()),
1794 short_to_chan_info: FairRwLock::new(HashMap::new()),
1796 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1799 inbound_payment_key: expanded_inbound_key,
1800 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1802 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1804 highest_seen_timestamp: AtomicUsize::new(0),
1806 per_peer_state: FairRwLock::new(HashMap::new()),
1808 pending_events: Mutex::new(Vec::new()),
1809 pending_events_processor: AtomicBool::new(false),
1810 pending_background_events: Mutex::new(Vec::new()),
1811 total_consistency_lock: RwLock::new(()),
1812 persistence_notifier: Notifier::new(),
1822 /// Gets the current configuration applied to all new channels.
1823 pub fn get_current_default_configuration(&self) -> &UserConfig {
1824 &self.default_configuration
1827 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1828 let height = self.best_block.read().unwrap().height();
1829 let mut outbound_scid_alias = 0;
1832 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1833 outbound_scid_alias += 1;
1835 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1837 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1841 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1846 /// Creates a new outbound channel to the given remote node and with the given value.
1848 /// `user_channel_id` will be provided back as in
1849 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1850 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1851 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1852 /// is simply copied to events and otherwise ignored.
1854 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1855 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1857 /// Note that we do not check if you are currently connected to the given peer. If no
1858 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1859 /// the channel eventually being silently forgotten (dropped on reload).
1861 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1862 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1863 /// [`ChannelDetails::channel_id`] until after
1864 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1865 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1866 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1868 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1869 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1870 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1871 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1872 if channel_value_satoshis < 1000 {
1873 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1876 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1877 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1878 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1880 let per_peer_state = self.per_peer_state.read().unwrap();
1882 let peer_state_mutex = per_peer_state.get(&their_network_key)
1883 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1885 let mut peer_state = peer_state_mutex.lock().unwrap();
1887 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1888 let their_features = &peer_state.latest_features;
1889 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1890 match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1891 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1892 self.best_block.read().unwrap().height(), outbound_scid_alias)
1896 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1901 let res = channel.get_open_channel(self.genesis_hash.clone());
1903 let temporary_channel_id = channel.channel_id();
1904 match peer_state.channel_by_id.entry(temporary_channel_id) {
1905 hash_map::Entry::Occupied(_) => {
1907 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1909 panic!("RNG is bad???");
1912 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1915 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1916 node_id: their_network_key,
1919 Ok(temporary_channel_id)
1922 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1923 // Allocate our best estimate of the number of channels we have in the `res`
1924 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1925 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1926 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1927 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1928 // the same channel.
1929 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1931 let best_block_height = self.best_block.read().unwrap().height();
1932 let per_peer_state = self.per_peer_state.read().unwrap();
1933 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1934 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1935 let peer_state = &mut *peer_state_lock;
1936 for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1937 let details = ChannelDetails::from_channel(channel, best_block_height,
1938 peer_state.latest_features.clone());
1946 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
1947 /// more information.
1948 pub fn list_channels(&self) -> Vec<ChannelDetails> {
1949 self.list_channels_with_filter(|_| true)
1952 /// Gets the list of usable channels, in random order. Useful as an argument to
1953 /// [`Router::find_route`] to ensure non-announced channels are used.
1955 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1956 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1958 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1959 // Note we use is_live here instead of usable which leads to somewhat confused
1960 // internal/external nomenclature, but that's ok cause that's probably what the user
1961 // really wanted anyway.
1962 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1965 /// Gets the list of channels we have with a given counterparty, in random order.
1966 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
1967 let best_block_height = self.best_block.read().unwrap().height();
1968 let per_peer_state = self.per_peer_state.read().unwrap();
1970 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
1971 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1972 let peer_state = &mut *peer_state_lock;
1973 let features = &peer_state.latest_features;
1974 return peer_state.channel_by_id
1977 ChannelDetails::from_channel(channel, best_block_height, features.clone()))
1983 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
1984 /// successful path, or have unresolved HTLCs.
1986 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
1987 /// result of a crash. If such a payment exists, is not listed here, and an
1988 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
1990 /// [`Event::PaymentSent`]: events::Event::PaymentSent
1991 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
1992 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
1993 .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
1994 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
1995 Some(RecentPaymentDetails::Pending {
1996 payment_hash: *payment_hash,
1997 total_msat: *total_msat,
2000 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2001 Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
2003 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2004 Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
2006 PendingOutboundPayment::Legacy { .. } => None
2011 /// Helper function that issues the channel close events
2012 fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
2013 let mut pending_events_lock = self.pending_events.lock().unwrap();
2014 match channel.unbroadcasted_funding() {
2015 Some(transaction) => {
2016 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
2020 pending_events_lock.push(events::Event::ChannelClosed {
2021 channel_id: channel.channel_id(),
2022 user_channel_id: channel.get_user_id(),
2023 reason: closure_reason
2027 fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
2028 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2030 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2031 let result: Result<(), _> = loop {
2032 let per_peer_state = self.per_peer_state.read().unwrap();
2034 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2035 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2037 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2038 let peer_state = &mut *peer_state_lock;
2039 match peer_state.channel_by_id.entry(channel_id.clone()) {
2040 hash_map::Entry::Occupied(mut chan_entry) => {
2041 let funding_txo_opt = chan_entry.get().get_funding_txo();
2042 let their_features = &peer_state.latest_features;
2043 let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
2044 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
2045 failed_htlcs = htlcs;
2047 // We can send the `shutdown` message before updating the `ChannelMonitor`
2048 // here as we don't need the monitor update to complete until we send a
2049 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2050 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2051 node_id: *counterparty_node_id,
2055 // Update the monitor with the shutdown script if necessary.
2056 if let Some(monitor_update) = monitor_update_opt.take() {
2057 let update_id = monitor_update.update_id;
2058 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
2059 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
2062 if chan_entry.get().is_shutdown() {
2063 let channel = remove_channel!(self, chan_entry);
2064 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
2065 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2069 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
2073 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
2077 for htlc_source in failed_htlcs.drain(..) {
2078 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2079 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2080 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2083 let _ = handle_error!(self, result, *counterparty_node_id);
2087 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2088 /// will be accepted on the given channel, and after additional timeout/the closing of all
2089 /// pending HTLCs, the channel will be closed on chain.
2091 /// * If we are the channel initiator, we will pay between our [`Background`] and
2092 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2094 /// * If our counterparty is the channel initiator, we will require a channel closing
2095 /// transaction feerate of at least our [`Background`] feerate or the feerate which
2096 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2097 /// counterparty to pay as much fee as they'd like, however.
2099 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2101 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2102 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2103 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2104 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2105 pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2106 self.close_channel_internal(channel_id, counterparty_node_id, None)
2109 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2110 /// will be accepted on the given channel, and after additional timeout/the closing of all
2111 /// pending HTLCs, the channel will be closed on chain.
2113 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2114 /// the channel being closed or not:
2115 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2116 /// transaction. The upper-bound is set by
2117 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2118 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2119 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2120 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2121 /// will appear on a force-closure transaction, whichever is lower).
2123 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2125 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2126 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2127 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2128 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2129 pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
2130 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
2134 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
2135 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
2136 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
2137 for htlc_source in failed_htlcs.drain(..) {
2138 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2139 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2140 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2141 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2143 if let Some((funding_txo, monitor_update)) = monitor_update_option {
2144 // There isn't anything we can do if we get an update failure - we're already
2145 // force-closing. The monitor update on the required in-memory copy should broadcast
2146 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2147 // ignore the result here.
2148 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2152 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2153 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2154 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2155 -> Result<PublicKey, APIError> {
2156 let per_peer_state = self.per_peer_state.read().unwrap();
2157 let peer_state_mutex = per_peer_state.get(peer_node_id)
2158 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2160 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2161 let peer_state = &mut *peer_state_lock;
2162 if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
2163 if let Some(peer_msg) = peer_msg {
2164 self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) });
2166 self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
2168 remove_channel!(self, chan)
2170 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
2173 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2174 self.finish_force_close_channel(chan.force_shutdown(broadcast));
2175 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2176 let mut peer_state = peer_state_mutex.lock().unwrap();
2177 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2182 Ok(chan.get_counterparty_node_id())
2185 fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2186 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2187 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2188 Ok(counterparty_node_id) => {
2189 let per_peer_state = self.per_peer_state.read().unwrap();
2190 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2191 let mut peer_state = peer_state_mutex.lock().unwrap();
2192 peer_state.pending_msg_events.push(
2193 events::MessageSendEvent::HandleError {
2194 node_id: counterparty_node_id,
2195 action: msgs::ErrorAction::SendErrorMessage {
2196 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2207 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2208 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2209 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2211 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2212 -> Result<(), APIError> {
2213 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2216 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2217 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2218 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2220 /// You can always get the latest local transaction(s) to broadcast from
2221 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2222 pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2223 -> Result<(), APIError> {
2224 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2227 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2228 /// for each to the chain and rejecting new HTLCs on each.
2229 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2230 for chan in self.list_channels() {
2231 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2235 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2236 /// local transaction(s).
2237 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2238 for chan in self.list_channels() {
2239 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2243 fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2244 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2246 // final_incorrect_cltv_expiry
2247 if hop_data.outgoing_cltv_value > cltv_expiry {
2248 return Err(ReceiveError {
2249 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2251 err_data: cltv_expiry.to_be_bytes().to_vec()
2254 // final_expiry_too_soon
2255 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2256 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2258 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2259 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2260 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2261 let current_height: u32 = self.best_block.read().unwrap().height();
2262 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2263 let mut err_data = Vec::with_capacity(12);
2264 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2265 err_data.extend_from_slice(¤t_height.to_be_bytes());
2266 return Err(ReceiveError {
2267 err_code: 0x4000 | 15, err_data,
2268 msg: "The final CLTV expiry is too soon to handle",
2271 if hop_data.amt_to_forward > amt_msat {
2272 return Err(ReceiveError {
2274 err_data: amt_msat.to_be_bytes().to_vec(),
2275 msg: "Upstream node sent less than we were supposed to receive in payment",
2279 let routing = match hop_data.format {
2280 msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2281 return Err(ReceiveError {
2282 err_code: 0x4000|22,
2283 err_data: Vec::new(),
2284 msg: "Got non final data with an HMAC of 0",
2287 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage, payment_metadata } => {
2288 if payment_data.is_some() && keysend_preimage.is_some() {
2289 return Err(ReceiveError {
2290 err_code: 0x4000|22,
2291 err_data: Vec::new(),
2292 msg: "We don't support MPP keysend payments",
2294 } else if let Some(data) = payment_data {
2295 PendingHTLCRouting::Receive {
2298 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2299 phantom_shared_secret,
2301 } else if let Some(payment_preimage) = keysend_preimage {
2302 // We need to check that the sender knows the keysend preimage before processing this
2303 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2304 // could discover the final destination of X, by probing the adjacent nodes on the route
2305 // with a keysend payment of identical payment hash to X and observing the processing
2306 // time discrepancies due to a hash collision with X.
2307 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2308 if hashed_preimage != payment_hash {
2309 return Err(ReceiveError {
2310 err_code: 0x4000|22,
2311 err_data: Vec::new(),
2312 msg: "Payment preimage didn't match payment hash",
2316 PendingHTLCRouting::ReceiveKeysend {
2319 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2322 return Err(ReceiveError {
2323 err_code: 0x4000|0x2000|3,
2324 err_data: Vec::new(),
2325 msg: "We require payment_secrets",
2330 Ok(PendingHTLCInfo {
2333 incoming_shared_secret: shared_secret,
2334 incoming_amt_msat: Some(amt_msat),
2335 outgoing_amt_msat: hop_data.amt_to_forward,
2336 outgoing_cltv_value: hop_data.outgoing_cltv_value,
2340 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2341 macro_rules! return_malformed_err {
2342 ($msg: expr, $err_code: expr) => {
2344 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2345 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2346 channel_id: msg.channel_id,
2347 htlc_id: msg.htlc_id,
2348 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2349 failure_code: $err_code,
2355 if let Err(_) = msg.onion_routing_packet.public_key {
2356 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2359 let shared_secret = self.node_signer.ecdh(
2360 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2361 ).unwrap().secret_bytes();
2363 if msg.onion_routing_packet.version != 0 {
2364 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2365 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2366 //the hash doesn't really serve any purpose - in the case of hashing all data, the
2367 //receiving node would have to brute force to figure out which version was put in the
2368 //packet by the node that send us the message, in the case of hashing the hop_data, the
2369 //node knows the HMAC matched, so they already know what is there...
2370 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2372 macro_rules! return_err {
2373 ($msg: expr, $err_code: expr, $data: expr) => {
2375 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2376 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2377 channel_id: msg.channel_id,
2378 htlc_id: msg.htlc_id,
2379 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2380 .get_encrypted_failure_packet(&shared_secret, &None),
2386 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2388 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2389 return_malformed_err!(err_msg, err_code);
2391 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2392 return_err!(err_msg, err_code, &[0; 0]);
2396 let pending_forward_info = match next_hop {
2397 onion_utils::Hop::Receive(next_hop_data) => {
2399 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2401 // Note that we could obviously respond immediately with an update_fulfill_htlc
2402 // message, however that would leak that we are the recipient of this payment, so
2403 // instead we stay symmetric with the forwarding case, only responding (after a
2404 // delay) once they've send us a commitment_signed!
2405 PendingHTLCStatus::Forward(info)
2407 Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2410 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2411 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2412 let outgoing_packet = msgs::OnionPacket {
2414 public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2415 hop_data: new_packet_bytes,
2416 hmac: next_hop_hmac.clone(),
2419 let short_channel_id = match next_hop_data.format {
2420 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2421 msgs::OnionHopDataFormat::FinalNode { .. } => {
2422 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2426 PendingHTLCStatus::Forward(PendingHTLCInfo {
2427 routing: PendingHTLCRouting::Forward {
2428 onion_packet: outgoing_packet,
2431 payment_hash: msg.payment_hash.clone(),
2432 incoming_shared_secret: shared_secret,
2433 incoming_amt_msat: Some(msg.amount_msat),
2434 outgoing_amt_msat: next_hop_data.amt_to_forward,
2435 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2440 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2441 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2442 // with a short_channel_id of 0. This is important as various things later assume
2443 // short_channel_id is non-0 in any ::Forward.
2444 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2445 if let Some((err, mut code, chan_update)) = loop {
2446 let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2447 let forwarding_chan_info_opt = match id_option {
2448 None => { // unknown_next_peer
2449 // Note that this is likely a timing oracle for detecting whether an scid is a
2450 // phantom or an intercept.
2451 if (self.default_configuration.accept_intercept_htlcs &&
2452 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2453 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2457 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2460 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2462 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2463 let per_peer_state = self.per_peer_state.read().unwrap();
2464 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2465 if peer_state_mutex_opt.is_none() {
2466 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2468 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2469 let peer_state = &mut *peer_state_lock;
2470 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2472 // Channel was removed. The short_to_chan_info and channel_by_id maps
2473 // have no consistency guarantees.
2474 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2478 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2479 // Note that the behavior here should be identical to the above block - we
2480 // should NOT reveal the existence or non-existence of a private channel if
2481 // we don't allow forwards outbound over them.
2482 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2484 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2485 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2486 // "refuse to forward unless the SCID alias was used", so we pretend
2487 // we don't have the channel here.
2488 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2490 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2492 // Note that we could technically not return an error yet here and just hope
2493 // that the connection is reestablished or monitor updated by the time we get
2494 // around to doing the actual forward, but better to fail early if we can and
2495 // hopefully an attacker trying to path-trace payments cannot make this occur
2496 // on a small/per-node/per-channel scale.
2497 if !chan.is_live() { // channel_disabled
2498 // If the channel_update we're going to return is disabled (i.e. the
2499 // peer has been disabled for some time), return `channel_disabled`,
2500 // otherwise return `temporary_channel_failure`.
2501 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
2502 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
2504 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
2507 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2508 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2510 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2511 break Some((err, code, chan_update_opt));
2515 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2516 // We really should set `incorrect_cltv_expiry` here but as we're not
2517 // forwarding over a real channel we can't generate a channel_update
2518 // for it. Instead we just return a generic temporary_node_failure.
2520 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2527 let cur_height = self.best_block.read().unwrap().height() + 1;
2528 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2529 // but we want to be robust wrt to counterparty packet sanitization (see
2530 // HTLC_FAIL_BACK_BUFFER rationale).
2531 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2532 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2534 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2535 break Some(("CLTV expiry is too far in the future", 21, None));
2537 // If the HTLC expires ~now, don't bother trying to forward it to our
2538 // counterparty. They should fail it anyway, but we don't want to bother with
2539 // the round-trips or risk them deciding they definitely want the HTLC and
2540 // force-closing to ensure they get it if we're offline.
2541 // We previously had a much more aggressive check here which tried to ensure
2542 // our counterparty receives an HTLC which has *our* risk threshold met on it,
2543 // but there is no need to do that, and since we're a bit conservative with our
2544 // risk threshold it just results in failing to forward payments.
2545 if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2546 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2552 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2553 if let Some(chan_update) = chan_update {
2554 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2555 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2557 else if code == 0x1000 | 13 {
2558 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2560 else if code == 0x1000 | 20 {
2561 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2562 0u16.write(&mut res).expect("Writes cannot fail");
2564 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2565 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2566 chan_update.write(&mut res).expect("Writes cannot fail");
2567 } else if code & 0x1000 == 0x1000 {
2568 // If we're trying to return an error that requires a `channel_update` but
2569 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2570 // generate an update), just use the generic "temporary_node_failure"
2574 return_err!(err, code, &res.0[..]);
2579 pending_forward_info
2582 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
2583 /// public, and thus should be called whenever the result is going to be passed out in a
2584 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2586 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
2587 /// corresponding to the channel's counterparty locked, as the channel been removed from the
2588 /// storage and the `peer_state` lock has been dropped.
2590 /// [`channel_update`]: msgs::ChannelUpdate
2591 /// [`internal_closing_signed`]: Self::internal_closing_signed
2592 fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2593 if !chan.should_announce() {
2594 return Err(LightningError {
2595 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2596 action: msgs::ErrorAction::IgnoreError
2599 if chan.get_short_channel_id().is_none() {
2600 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2602 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2603 self.get_channel_update_for_unicast(chan)
2606 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
2607 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
2608 /// and thus MUST NOT be called unless the recipient of the resulting message has already
2609 /// provided evidence that they know about the existence of the channel.
2611 /// Note that through [`internal_closing_signed`], this function is called without the
2612 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
2613 /// removed from the storage and the `peer_state` lock has been dropped.
2615 /// [`channel_update`]: msgs::ChannelUpdate
2616 /// [`internal_closing_signed`]: Self::internal_closing_signed
2617 fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2618 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2619 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2620 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2624 self.get_channel_update_for_onion(short_channel_id, chan)
2626 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2627 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2628 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2630 let enabled = chan.is_usable() && match chan.channel_update_status() {
2631 ChannelUpdateStatus::Enabled => true,
2632 ChannelUpdateStatus::DisabledStaged(_) => true,
2633 ChannelUpdateStatus::Disabled => false,
2634 ChannelUpdateStatus::EnabledStaged(_) => false,
2637 let unsigned = msgs::UnsignedChannelUpdate {
2638 chain_hash: self.genesis_hash,
2640 timestamp: chan.get_update_time_counter(),
2641 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
2642 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2643 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2644 htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2645 fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2646 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2647 excess_data: Vec::new(),
2649 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2650 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2651 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2653 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2655 Ok(msgs::ChannelUpdate {
2662 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2663 let _lck = self.total_consistency_lock.read().unwrap();
2664 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
2667 fn send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2668 // The top-level caller should hold the total_consistency_lock read lock.
2669 debug_assert!(self.total_consistency_lock.try_write().is_err());
2671 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.hops.first().unwrap().short_channel_id);
2672 let prng_seed = self.entropy_source.get_secure_random_bytes();
2673 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2675 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2676 .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2677 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
2678 if onion_utils::route_size_insane(&onion_payloads) {
2679 return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
2681 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2683 let err: Result<(), _> = loop {
2684 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
2685 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2686 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2689 let per_peer_state = self.per_peer_state.read().unwrap();
2690 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2691 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2692 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2693 let peer_state = &mut *peer_state_lock;
2694 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2695 if !chan.get().is_live() {
2696 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2698 let funding_txo = chan.get().get_funding_txo().unwrap();
2699 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2700 htlc_cltv, HTLCSource::OutboundRoute {
2702 session_priv: session_priv.clone(),
2703 first_hop_htlc_msat: htlc_msat,
2705 }, onion_packet, &self.logger);
2706 match break_chan_entry!(self, send_res, chan) {
2707 Some(monitor_update) => {
2708 let update_id = monitor_update.update_id;
2709 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2710 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
2713 if update_res == ChannelMonitorUpdateStatus::InProgress {
2714 // Note that MonitorUpdateInProgress here indicates (per function
2715 // docs) that we will resend the commitment update once monitor
2716 // updating completes. Therefore, we must return an error
2717 // indicating that it is unsafe to retry the payment wholesale,
2718 // which we do in the send_payment check for
2719 // MonitorUpdateInProgress, below.
2720 return Err(APIError::MonitorUpdateInProgress);
2726 // The channel was likely removed after we fetched the id from the
2727 // `short_to_chan_info` map, but before we successfully locked the
2728 // `channel_by_id` map.
2729 // This can occur as no consistency guarantees exists between the two maps.
2730 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2735 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
2736 Ok(_) => unreachable!(),
2738 Err(APIError::ChannelUnavailable { err: e.err })
2743 /// Sends a payment along a given route.
2745 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2746 /// fields for more info.
2748 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
2749 /// [`PeerManager::process_events`]).
2751 /// # Avoiding Duplicate Payments
2753 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2754 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2755 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2756 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2757 /// second payment with the same [`PaymentId`].
2759 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2760 /// tracking of payments, including state to indicate once a payment has completed. Because you
2761 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2762 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2763 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2765 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2766 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2767 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2768 /// [`ChannelManager::list_recent_payments`] for more information.
2770 /// # Possible Error States on [`PaymentSendFailure`]
2772 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
2773 /// each entry matching the corresponding-index entry in the route paths, see
2774 /// [`PaymentSendFailure`] for more info.
2776 /// In general, a path may raise:
2777 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2778 /// node public key) is specified.
2779 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2780 /// (including due to previous monitor update failure or new permanent monitor update
2782 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2783 /// relevant updates.
2785 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
2786 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2787 /// different route unless you intend to pay twice!
2789 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2790 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2791 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
2792 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2793 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2794 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2795 let best_block_height = self.best_block.read().unwrap().height();
2796 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2797 self.pending_outbound_payments
2798 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2799 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2800 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2803 /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2804 /// `route_params` and retry failed payment paths based on `retry_strategy`.
2805 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2806 let best_block_height = self.best_block.read().unwrap().height();
2807 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2808 self.pending_outbound_payments
2809 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
2810 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2811 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2812 &self.pending_events,
2813 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2814 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2818 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2819 let best_block_height = self.best_block.read().unwrap().height();
2820 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2821 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2822 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2823 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2827 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2828 let best_block_height = self.best_block.read().unwrap().height();
2829 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
2833 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
2834 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
2838 /// Signals that no further retries for the given payment should occur. Useful if you have a
2839 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2840 /// retries are exhausted.
2842 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2843 /// as there are no remaining pending HTLCs for this payment.
2845 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2846 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2847 /// determine the ultimate status of a payment.
2849 /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2850 /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2852 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2853 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2854 pub fn abandon_payment(&self, payment_id: PaymentId) {
2855 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2856 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
2859 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2860 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2861 /// the preimage, it must be a cryptographically secure random value that no intermediate node
2862 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2863 /// never reach the recipient.
2865 /// See [`send_payment`] documentation for more details on the return value of this function
2866 /// and idempotency guarantees provided by the [`PaymentId`] key.
2868 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2869 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2871 /// Note that `route` must have exactly one path.
2873 /// [`send_payment`]: Self::send_payment
2874 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2875 let best_block_height = self.best_block.read().unwrap().height();
2876 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2877 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2878 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
2879 &self.node_signer, best_block_height,
2880 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2881 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2884 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2885 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2887 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2890 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2891 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2892 let best_block_height = self.best_block.read().unwrap().height();
2893 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2894 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
2895 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
2896 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
2897 &self.logger, &self.pending_events,
2898 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2899 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2902 /// Send a payment that is probing the given route for liquidity. We calculate the
2903 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2904 /// us to easily discern them from real payments.
2905 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2906 let best_block_height = self.best_block.read().unwrap().height();
2907 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2908 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2909 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2910 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2913 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2916 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2917 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2920 /// Handles the generation of a funding transaction, optionally (for tests) with a function
2921 /// which checks the correctness of the funding transaction given the associated channel.
2922 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2923 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2924 ) -> Result<(), APIError> {
2925 let per_peer_state = self.per_peer_state.read().unwrap();
2926 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2927 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2929 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2930 let peer_state = &mut *peer_state_lock;
2931 let (msg, chan) = match peer_state.channel_by_id.remove(temporary_channel_id) {
2933 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2935 let funding_res = chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2936 .map_err(|e| if let ChannelError::Close(msg) = e {
2937 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2938 } else { unreachable!(); });
2940 Ok(funding_msg) => (funding_msg, chan),
2942 mem::drop(peer_state_lock);
2943 mem::drop(per_peer_state);
2945 let _ = handle_error!(self, funding_res, chan.get_counterparty_node_id());
2946 return Err(APIError::ChannelUnavailable {
2947 err: "Signer refused to sign the initial commitment transaction".to_owned()
2953 return Err(APIError::ChannelUnavailable {
2955 "Channel with id {} not found for the passed counterparty node_id {}",
2956 log_bytes!(*temporary_channel_id), counterparty_node_id),
2961 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2962 node_id: chan.get_counterparty_node_id(),
2965 match peer_state.channel_by_id.entry(chan.channel_id()) {
2966 hash_map::Entry::Occupied(_) => {
2967 panic!("Generated duplicate funding txid?");
2969 hash_map::Entry::Vacant(e) => {
2970 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2971 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2972 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2981 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2982 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2983 Ok(OutPoint { txid: tx.txid(), index: output_index })
2987 /// Call this upon creation of a funding transaction for the given channel.
2989 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2990 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2992 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2993 /// across the p2p network.
2995 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2996 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2998 /// May panic if the output found in the funding transaction is duplicative with some other
2999 /// channel (note that this should be trivially prevented by using unique funding transaction
3000 /// keys per-channel).
3002 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3003 /// counterparty's signature the funding transaction will automatically be broadcast via the
3004 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3006 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3007 /// not currently support replacing a funding transaction on an existing channel. Instead,
3008 /// create a new channel with a conflicting funding transaction.
3010 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3011 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3012 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3013 /// for more details.
3015 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3016 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3017 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3018 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3020 for inp in funding_transaction.input.iter() {
3021 if inp.witness.is_empty() {
3022 return Err(APIError::APIMisuseError {
3023 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3028 let height = self.best_block.read().unwrap().height();
3029 // Transactions are evaluated as final by network mempools if their locktime is strictly
3030 // lower than the next block height. However, the modules constituting our Lightning
3031 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3032 // module is ahead of LDK, only allow one more block of headroom.
3033 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3034 return Err(APIError::APIMisuseError {
3035 err: "Funding transaction absolute timelock is non-final".to_owned()
3039 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
3040 let mut output_index = None;
3041 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
3042 for (idx, outp) in tx.output.iter().enumerate() {
3043 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
3044 if output_index.is_some() {
3045 return Err(APIError::APIMisuseError {
3046 err: "Multiple outputs matched the expected script and value".to_owned()
3049 if idx > u16::max_value() as usize {
3050 return Err(APIError::APIMisuseError {
3051 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3054 output_index = Some(idx as u16);
3057 if output_index.is_none() {
3058 return Err(APIError::APIMisuseError {
3059 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3062 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
3066 /// Atomically updates the [`ChannelConfig`] for the given channels.
3068 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3069 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3070 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3071 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3073 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3074 /// `counterparty_node_id` is provided.
3076 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3077 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3079 /// If an error is returned, none of the updates should be considered applied.
3081 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3082 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3083 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3084 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3085 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3086 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3087 /// [`APIMisuseError`]: APIError::APIMisuseError
3088 pub fn update_channel_config(
3089 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
3090 ) -> Result<(), APIError> {
3091 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
3092 return Err(APIError::APIMisuseError {
3093 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3097 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
3098 &self.total_consistency_lock, &self.persistence_notifier,
3100 let per_peer_state = self.per_peer_state.read().unwrap();
3101 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3102 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3103 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3104 let peer_state = &mut *peer_state_lock;
3105 for channel_id in channel_ids {
3106 if !peer_state.channel_by_id.contains_key(channel_id) {
3107 return Err(APIError::ChannelUnavailable {
3108 err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
3112 for channel_id in channel_ids {
3113 let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
3114 if !channel.update_config(config) {
3117 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3118 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3119 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3120 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3121 node_id: channel.get_counterparty_node_id(),
3129 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
3130 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
3132 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
3133 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
3135 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
3136 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
3137 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
3138 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
3139 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
3141 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
3142 /// you from forwarding more than you received.
3144 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3147 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
3148 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3149 // TODO: when we move to deciding the best outbound channel at forward time, only take
3150 // `next_node_id` and not `next_hop_channel_id`
3151 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
3152 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3154 let next_hop_scid = {
3155 let peer_state_lock = self.per_peer_state.read().unwrap();
3156 let peer_state_mutex = peer_state_lock.get(&next_node_id)
3157 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
3158 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3159 let peer_state = &mut *peer_state_lock;
3160 match peer_state.channel_by_id.get(next_hop_channel_id) {
3162 if !chan.is_usable() {
3163 return Err(APIError::ChannelUnavailable {
3164 err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
3167 chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
3169 None => return Err(APIError::ChannelUnavailable {
3170 err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
3175 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3176 .ok_or_else(|| APIError::APIMisuseError {
3177 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3180 let routing = match payment.forward_info.routing {
3181 PendingHTLCRouting::Forward { onion_packet, .. } => {
3182 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
3184 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
3186 let pending_htlc_info = PendingHTLCInfo {
3187 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
3190 let mut per_source_pending_forward = [(
3191 payment.prev_short_channel_id,
3192 payment.prev_funding_outpoint,
3193 payment.prev_user_channel_id,
3194 vec![(pending_htlc_info, payment.prev_htlc_id)]
3196 self.forward_htlcs(&mut per_source_pending_forward);
3200 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3201 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3203 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3206 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3207 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3208 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3210 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3211 .ok_or_else(|| APIError::APIMisuseError {
3212 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3215 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3216 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3217 short_channel_id: payment.prev_short_channel_id,
3218 outpoint: payment.prev_funding_outpoint,
3219 htlc_id: payment.prev_htlc_id,
3220 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3221 phantom_shared_secret: None,
3224 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3225 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3226 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3227 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3232 /// Processes HTLCs which are pending waiting on random forward delay.
3234 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3235 /// Will likely generate further events.
3236 pub fn process_pending_htlc_forwards(&self) {
3237 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3239 let mut new_events = Vec::new();
3240 let mut failed_forwards = Vec::new();
3241 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3243 let mut forward_htlcs = HashMap::new();
3244 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3246 for (short_chan_id, mut pending_forwards) in forward_htlcs {
3247 if short_chan_id != 0 {
3248 macro_rules! forwarding_channel_not_found {
3250 for forward_info in pending_forwards.drain(..) {
3251 match forward_info {
3252 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3253 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3254 forward_info: PendingHTLCInfo {
3255 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3256 outgoing_cltv_value, incoming_amt_msat: _
3259 macro_rules! failure_handler {
3260 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3261 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3263 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3264 short_channel_id: prev_short_channel_id,
3265 outpoint: prev_funding_outpoint,
3266 htlc_id: prev_htlc_id,
3267 incoming_packet_shared_secret: incoming_shared_secret,
3268 phantom_shared_secret: $phantom_ss,
3271 let reason = if $next_hop_unknown {
3272 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3274 HTLCDestination::FailedPayment{ payment_hash }
3277 failed_forwards.push((htlc_source, payment_hash,
3278 HTLCFailReason::reason($err_code, $err_data),
3284 macro_rules! fail_forward {
3285 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3287 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3291 macro_rules! failed_payment {
3292 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3294 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3298 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3299 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3300 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3301 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3302 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3304 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3305 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3306 // In this scenario, the phantom would have sent us an
3307 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3308 // if it came from us (the second-to-last hop) but contains the sha256
3310 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3312 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3313 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3317 onion_utils::Hop::Receive(hop_data) => {
3318 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3319 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3320 Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3326 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3329 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3332 HTLCForwardInfo::FailHTLC { .. } => {
3333 // Channel went away before we could fail it. This implies
3334 // the channel is now on chain and our counterparty is
3335 // trying to broadcast the HTLC-Timeout, but that's their
3336 // problem, not ours.
3342 let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3343 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3345 forwarding_channel_not_found!();
3349 let per_peer_state = self.per_peer_state.read().unwrap();
3350 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3351 if peer_state_mutex_opt.is_none() {
3352 forwarding_channel_not_found!();
3355 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3356 let peer_state = &mut *peer_state_lock;
3357 match peer_state.channel_by_id.entry(forward_chan_id) {
3358 hash_map::Entry::Vacant(_) => {
3359 forwarding_channel_not_found!();
3362 hash_map::Entry::Occupied(mut chan) => {
3363 for forward_info in pending_forwards.drain(..) {
3364 match forward_info {
3365 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3366 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3367 forward_info: PendingHTLCInfo {
3368 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3369 routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3372 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3373 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3374 short_channel_id: prev_short_channel_id,
3375 outpoint: prev_funding_outpoint,
3376 htlc_id: prev_htlc_id,
3377 incoming_packet_shared_secret: incoming_shared_secret,
3378 // Phantom payments are only PendingHTLCRouting::Receive.
3379 phantom_shared_secret: None,
3381 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3382 payment_hash, outgoing_cltv_value, htlc_source.clone(),
3383 onion_packet, &self.logger)
3385 if let ChannelError::Ignore(msg) = e {
3386 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3388 panic!("Stated return value requirements in send_htlc() were not met");
3390 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3391 failed_forwards.push((htlc_source, payment_hash,
3392 HTLCFailReason::reason(failure_code, data),
3393 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3398 HTLCForwardInfo::AddHTLC { .. } => {
3399 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3401 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3402 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3403 if let Err(e) = chan.get_mut().queue_fail_htlc(
3404 htlc_id, err_packet, &self.logger
3406 if let ChannelError::Ignore(msg) = e {
3407 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3409 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3411 // fail-backs are best-effort, we probably already have one
3412 // pending, and if not that's OK, if not, the channel is on
3413 // the chain and sending the HTLC-Timeout is their problem.
3422 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
3423 match forward_info {
3424 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3425 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3426 forward_info: PendingHTLCInfo {
3427 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat, ..
3430 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
3431 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret } => {
3432 let _legacy_hop_data = Some(payment_data.clone());
3434 RecipientOnionFields { payment_secret: Some(payment_data.payment_secret), payment_metadata };
3435 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
3436 Some(payment_data), phantom_shared_secret, onion_fields)
3438 PendingHTLCRouting::ReceiveKeysend { payment_preimage, payment_metadata, incoming_cltv_expiry } => {
3439 let onion_fields = RecipientOnionFields { payment_secret: None, payment_metadata };
3440 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
3441 None, None, onion_fields)
3444 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3447 let mut claimable_htlc = ClaimableHTLC {
3448 prev_hop: HTLCPreviousHopData {
3449 short_channel_id: prev_short_channel_id,
3450 outpoint: prev_funding_outpoint,
3451 htlc_id: prev_htlc_id,
3452 incoming_packet_shared_secret: incoming_shared_secret,
3453 phantom_shared_secret,
3455 // We differentiate the received value from the sender intended value
3456 // if possible so that we don't prematurely mark MPP payments complete
3457 // if routing nodes overpay
3458 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
3459 sender_intended_value: outgoing_amt_msat,
3461 total_value_received: None,
3462 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3467 let mut committed_to_claimable = false;
3469 macro_rules! fail_htlc {
3470 ($htlc: expr, $payment_hash: expr) => {
3471 debug_assert!(!committed_to_claimable);
3472 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3473 htlc_msat_height_data.extend_from_slice(
3474 &self.best_block.read().unwrap().height().to_be_bytes(),
3476 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3477 short_channel_id: $htlc.prev_hop.short_channel_id,
3478 outpoint: prev_funding_outpoint,
3479 htlc_id: $htlc.prev_hop.htlc_id,
3480 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3481 phantom_shared_secret,
3483 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3484 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3486 continue 'next_forwardable_htlc;
3489 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3490 let mut receiver_node_id = self.our_network_pubkey;
3491 if phantom_shared_secret.is_some() {
3492 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3493 .expect("Failed to get node_id for phantom node recipient");
3496 macro_rules! check_total_value {
3497 ($payment_data: expr, $payment_preimage: expr) => {{
3498 let mut payment_claimable_generated = false;
3500 events::PaymentPurpose::InvoicePayment {
3501 payment_preimage: $payment_preimage,
3502 payment_secret: $payment_data.payment_secret,
3505 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3506 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3507 fail_htlc!(claimable_htlc, payment_hash);
3509 let ref mut claimable_payment = claimable_payments.claimable_payments
3510 .entry(payment_hash)
3511 // Note that if we insert here we MUST NOT fail_htlc!()
3512 .or_insert_with(|| {
3513 committed_to_claimable = true;
3515 purpose: purpose(), htlcs: Vec::new(), onion_fields: None,
3518 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
3519 if earlier_fields.check_merge(&mut onion_fields).is_err() {
3520 fail_htlc!(claimable_htlc, payment_hash);
3523 claimable_payment.onion_fields = Some(onion_fields);
3525 let ref mut htlcs = &mut claimable_payment.htlcs;
3526 if htlcs.len() == 1 {
3527 if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3528 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3529 fail_htlc!(claimable_htlc, payment_hash);
3532 let mut total_value = claimable_htlc.sender_intended_value;
3533 let mut earliest_expiry = claimable_htlc.cltv_expiry;
3534 for htlc in htlcs.iter() {
3535 total_value += htlc.sender_intended_value;
3536 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
3537 match &htlc.onion_payload {
3538 OnionPayload::Invoice { .. } => {
3539 if htlc.total_msat != $payment_data.total_msat {
3540 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3541 log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3542 total_value = msgs::MAX_VALUE_MSAT;
3544 if total_value >= msgs::MAX_VALUE_MSAT { break; }
3546 _ => unreachable!(),
3549 // The condition determining whether an MPP is complete must
3550 // match exactly the condition used in `timer_tick_occurred`
3551 if total_value >= msgs::MAX_VALUE_MSAT {
3552 fail_htlc!(claimable_htlc, payment_hash);
3553 } else if total_value - claimable_htlc.sender_intended_value >= $payment_data.total_msat {
3554 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
3555 log_bytes!(payment_hash.0));
3556 fail_htlc!(claimable_htlc, payment_hash);
3557 } else if total_value >= $payment_data.total_msat {
3558 #[allow(unused_assignments)] {
3559 committed_to_claimable = true;
3561 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3562 htlcs.push(claimable_htlc);
3563 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
3564 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
3565 new_events.push(events::Event::PaymentClaimable {
3566 receiver_node_id: Some(receiver_node_id),
3570 via_channel_id: Some(prev_channel_id),
3571 via_user_channel_id: Some(prev_user_channel_id),
3572 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
3573 onion_fields: claimable_payment.onion_fields.clone(),
3575 payment_claimable_generated = true;
3577 // Nothing to do - we haven't reached the total
3578 // payment value yet, wait until we receive more
3580 htlcs.push(claimable_htlc);
3581 #[allow(unused_assignments)] {
3582 committed_to_claimable = true;
3585 payment_claimable_generated
3589 // Check that the payment hash and secret are known. Note that we
3590 // MUST take care to handle the "unknown payment hash" and
3591 // "incorrect payment secret" cases here identically or we'd expose
3592 // that we are the ultimate recipient of the given payment hash.
3593 // Further, we must not expose whether we have any other HTLCs
3594 // associated with the same payment_hash pending or not.
3595 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3596 match payment_secrets.entry(payment_hash) {
3597 hash_map::Entry::Vacant(_) => {
3598 match claimable_htlc.onion_payload {
3599 OnionPayload::Invoice { .. } => {
3600 let payment_data = payment_data.unwrap();
3601 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3602 Ok(result) => result,
3604 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3605 fail_htlc!(claimable_htlc, payment_hash);
3608 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3609 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3610 if (cltv_expiry as u64) < expected_min_expiry_height {
3611 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3612 log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3613 fail_htlc!(claimable_htlc, payment_hash);
3616 check_total_value!(payment_data, payment_preimage);
3618 OnionPayload::Spontaneous(preimage) => {
3619 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3620 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3621 fail_htlc!(claimable_htlc, payment_hash);
3623 match claimable_payments.claimable_payments.entry(payment_hash) {
3624 hash_map::Entry::Vacant(e) => {
3625 let amount_msat = claimable_htlc.value;
3626 claimable_htlc.total_value_received = Some(amount_msat);
3627 let claim_deadline = Some(claimable_htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER);
3628 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3629 e.insert(ClaimablePayment {
3630 purpose: purpose.clone(),
3631 onion_fields: Some(onion_fields.clone()),
3632 htlcs: vec![claimable_htlc],
3634 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3635 new_events.push(events::Event::PaymentClaimable {
3636 receiver_node_id: Some(receiver_node_id),
3640 via_channel_id: Some(prev_channel_id),
3641 via_user_channel_id: Some(prev_user_channel_id),
3643 onion_fields: Some(onion_fields),
3646 hash_map::Entry::Occupied(_) => {
3647 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3648 fail_htlc!(claimable_htlc, payment_hash);
3654 hash_map::Entry::Occupied(inbound_payment) => {
3655 if payment_data.is_none() {
3656 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3657 fail_htlc!(claimable_htlc, payment_hash);
3659 let payment_data = payment_data.unwrap();
3660 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3661 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3662 fail_htlc!(claimable_htlc, payment_hash);
3663 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3664 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3665 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3666 fail_htlc!(claimable_htlc, payment_hash);
3668 let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3669 if payment_claimable_generated {
3670 inbound_payment.remove_entry();
3676 HTLCForwardInfo::FailHTLC { .. } => {
3677 panic!("Got pending fail of our own HTLC");
3685 let best_block_height = self.best_block.read().unwrap().height();
3686 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3687 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3688 &self.pending_events, &self.logger,
3689 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3690 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3692 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3693 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3695 self.forward_htlcs(&mut phantom_receives);
3697 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3698 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3699 // nice to do the work now if we can rather than while we're trying to get messages in the
3701 self.check_free_holding_cells();
3703 if new_events.is_empty() { return }
3704 let mut events = self.pending_events.lock().unwrap();
3705 events.append(&mut new_events);
3708 /// Free the background events, generally called from timer_tick_occurred.
3710 /// Exposed for testing to allow us to process events quickly without generating accidental
3711 /// BroadcastChannelUpdate events in timer_tick_occurred.
3713 /// Expects the caller to have a total_consistency_lock read lock.
3714 fn process_background_events(&self) -> bool {
3715 let mut background_events = Vec::new();
3716 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3717 if background_events.is_empty() {
3721 for event in background_events.drain(..) {
3723 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3724 // The channel has already been closed, so no use bothering to care about the
3725 // monitor updating completing.
3726 let _ = self.chain_monitor.update_channel(funding_txo, &update);
3733 #[cfg(any(test, feature = "_test_utils"))]
3734 /// Process background events, for functional testing
3735 pub fn test_process_background_events(&self) {
3736 self.process_background_events();
3739 fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3740 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3741 // If the feerate has decreased by less than half, don't bother
3742 if new_feerate <= chan.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.get_feerate_sat_per_1000_weight() {
3743 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3744 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3745 return NotifyOption::SkipPersist;
3747 if !chan.is_live() {
3748 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3749 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3750 return NotifyOption::SkipPersist;
3752 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3753 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3755 chan.queue_update_fee(new_feerate, &self.logger);
3756 NotifyOption::DoPersist
3760 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3761 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3762 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3763 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3764 pub fn maybe_update_chan_fees(&self) {
3765 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3766 let mut should_persist = NotifyOption::SkipPersist;
3768 let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3770 let per_peer_state = self.per_peer_state.read().unwrap();
3771 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3772 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3773 let peer_state = &mut *peer_state_lock;
3774 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3775 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3776 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3784 /// Performs actions which should happen on startup and roughly once per minute thereafter.
3786 /// This currently includes:
3787 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3788 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
3789 /// than a minute, informing the network that they should no longer attempt to route over
3791 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
3792 /// with the current [`ChannelConfig`].
3793 /// * Removing peers which have disconnected but and no longer have any channels.
3795 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
3796 /// estimate fetches.
3798 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3799 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
3800 pub fn timer_tick_occurred(&self) {
3801 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3802 let mut should_persist = NotifyOption::SkipPersist;
3803 if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3805 let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3807 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3808 let mut timed_out_mpp_htlcs = Vec::new();
3809 let mut pending_peers_awaiting_removal = Vec::new();
3811 let per_peer_state = self.per_peer_state.read().unwrap();
3812 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3813 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3814 let peer_state = &mut *peer_state_lock;
3815 let pending_msg_events = &mut peer_state.pending_msg_events;
3816 let counterparty_node_id = *counterparty_node_id;
3817 peer_state.channel_by_id.retain(|chan_id, chan| {
3818 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3819 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3821 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3822 let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3823 handle_errors.push((Err(err), counterparty_node_id));
3824 if needs_close { return false; }
3827 match chan.channel_update_status() {
3828 ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
3829 ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
3830 ChannelUpdateStatus::DisabledStaged(_) if chan.is_live()
3831 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3832 ChannelUpdateStatus::EnabledStaged(_) if !chan.is_live()
3833 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3834 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.is_live() => {
3836 if n >= DISABLE_GOSSIP_TICKS {
3837 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3838 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3839 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3843 should_persist = NotifyOption::DoPersist;
3845 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
3848 ChannelUpdateStatus::EnabledStaged(mut n) if chan.is_live() => {
3850 if n >= ENABLE_GOSSIP_TICKS {
3851 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3852 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3853 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3857 should_persist = NotifyOption::DoPersist;
3859 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
3865 chan.maybe_expire_prev_config();
3869 if peer_state.ok_to_remove(true) {
3870 pending_peers_awaiting_removal.push(counterparty_node_id);
3875 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3876 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3877 // of to that peer is later closed while still being disconnected (i.e. force closed),
3878 // we therefore need to remove the peer from `peer_state` separately.
3879 // To avoid having to take the `per_peer_state` `write` lock once the channels are
3880 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3881 // negative effects on parallelism as much as possible.
3882 if pending_peers_awaiting_removal.len() > 0 {
3883 let mut per_peer_state = self.per_peer_state.write().unwrap();
3884 for counterparty_node_id in pending_peers_awaiting_removal {
3885 match per_peer_state.entry(counterparty_node_id) {
3886 hash_map::Entry::Occupied(entry) => {
3887 // Remove the entry if the peer is still disconnected and we still
3888 // have no channels to the peer.
3889 let remove_entry = {
3890 let peer_state = entry.get().lock().unwrap();
3891 peer_state.ok_to_remove(true)
3894 entry.remove_entry();
3897 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3902 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
3903 if payment.htlcs.is_empty() {
3904 // This should be unreachable
3905 debug_assert!(false);
3908 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
3909 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3910 // In this case we're not going to handle any timeouts of the parts here.
3911 // This condition determining whether the MPP is complete here must match
3912 // exactly the condition used in `process_pending_htlc_forwards`.
3913 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
3914 .fold(0, |total, htlc| total + htlc.sender_intended_value)
3917 } else if payment.htlcs.iter_mut().any(|htlc| {
3918 htlc.timer_ticks += 1;
3919 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3921 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
3922 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3929 for htlc_source in timed_out_mpp_htlcs.drain(..) {
3930 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3931 let reason = HTLCFailReason::from_failure_code(23);
3932 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3933 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3936 for (err, counterparty_node_id) in handle_errors.drain(..) {
3937 let _ = handle_error!(self, err, counterparty_node_id);
3940 self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3942 // Technically we don't need to do this here, but if we have holding cell entries in a
3943 // channel that need freeing, it's better to do that here and block a background task
3944 // than block the message queueing pipeline.
3945 if self.check_free_holding_cells() {
3946 should_persist = NotifyOption::DoPersist;
3953 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3954 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
3955 /// along the path (including in our own channel on which we received it).
3957 /// Note that in some cases around unclean shutdown, it is possible the payment may have
3958 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3959 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
3960 /// may have already been failed automatically by LDK if it was nearing its expiration time.
3962 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3963 /// [`ChannelManager::claim_funds`]), you should still monitor for
3964 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3965 /// startup during which time claims that were in-progress at shutdown may be replayed.
3966 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3967 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
3970 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
3971 /// reason for the failure.
3973 /// See [`FailureCode`] for valid failure codes.
3974 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
3975 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3977 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
3978 if let Some(payment) = removed_source {
3979 for htlc in payment.htlcs {
3980 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
3981 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3982 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
3983 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3988 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
3989 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
3990 match failure_code {
3991 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
3992 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
3993 FailureCode::IncorrectOrUnknownPaymentDetails => {
3994 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3995 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3996 HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
4001 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4002 /// that we want to return and a channel.
4004 /// This is for failures on the channel on which the HTLC was *received*, not failures
4006 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
4007 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
4008 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
4009 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
4010 // an inbound SCID alias before the real SCID.
4011 let scid_pref = if chan.should_announce() {
4012 chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
4014 chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
4016 if let Some(scid) = scid_pref {
4017 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
4019 (0x4000|10, Vec::new())
4024 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4025 /// that we want to return and a channel.
4026 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
4027 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
4028 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
4029 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
4030 if desired_err_code == 0x1000 | 20 {
4031 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
4032 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
4033 0u16.write(&mut enc).expect("Writes cannot fail");
4035 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
4036 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
4037 upd.write(&mut enc).expect("Writes cannot fail");
4038 (desired_err_code, enc.0)
4040 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
4041 // which means we really shouldn't have gotten a payment to be forwarded over this
4042 // channel yet, or if we did it's from a route hint. Either way, returning an error of
4043 // PERM|no_such_channel should be fine.
4044 (0x4000|10, Vec::new())
4048 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
4049 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
4050 // be surfaced to the user.
4051 fn fail_holding_cell_htlcs(
4052 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
4053 counterparty_node_id: &PublicKey
4055 let (failure_code, onion_failure_data) = {
4056 let per_peer_state = self.per_peer_state.read().unwrap();
4057 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
4058 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4059 let peer_state = &mut *peer_state_lock;
4060 match peer_state.channel_by_id.entry(channel_id) {
4061 hash_map::Entry::Occupied(chan_entry) => {
4062 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
4064 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
4066 } else { (0x4000|10, Vec::new()) }
4069 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
4070 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
4071 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
4072 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
4076 /// Fails an HTLC backwards to the sender of it to us.
4077 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
4078 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
4079 // Ensure that no peer state channel storage lock is held when calling this function.
4080 // This ensures that future code doesn't introduce a lock-order requirement for
4081 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
4082 // this function with any `per_peer_state` peer lock acquired would.
4083 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
4084 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
4087 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
4088 //identify whether we sent it or not based on the (I presume) very different runtime
4089 //between the branches here. We should make this async and move it into the forward HTLCs
4092 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4093 // from block_connected which may run during initialization prior to the chain_monitor
4094 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
4096 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
4097 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
4098 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
4099 &self.pending_events, &self.logger)
4100 { self.push_pending_forwards_ev(); }
4102 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
4103 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
4104 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
4106 let mut push_forward_ev = false;
4107 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4108 if forward_htlcs.is_empty() {
4109 push_forward_ev = true;
4111 match forward_htlcs.entry(*short_channel_id) {
4112 hash_map::Entry::Occupied(mut entry) => {
4113 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
4115 hash_map::Entry::Vacant(entry) => {
4116 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
4119 mem::drop(forward_htlcs);
4120 if push_forward_ev { self.push_pending_forwards_ev(); }
4121 let mut pending_events = self.pending_events.lock().unwrap();
4122 pending_events.push(events::Event::HTLCHandlingFailed {
4123 prev_channel_id: outpoint.to_channel_id(),
4124 failed_next_destination: destination,
4130 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
4131 /// [`MessageSendEvent`]s needed to claim the payment.
4133 /// This method is guaranteed to ensure the payment has been claimed but only if the current
4134 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
4135 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
4136 /// successful. It will generally be available in the next [`process_pending_events`] call.
4138 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
4139 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
4140 /// event matches your expectation. If you fail to do so and call this method, you may provide
4141 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
4143 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
4144 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
4145 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
4146 /// [`process_pending_events`]: EventsProvider::process_pending_events
4147 /// [`create_inbound_payment`]: Self::create_inbound_payment
4148 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
4149 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
4150 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4152 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4155 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4156 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
4157 let mut receiver_node_id = self.our_network_pubkey;
4158 for htlc in payment.htlcs.iter() {
4159 if htlc.prev_hop.phantom_shared_secret.is_some() {
4160 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
4161 .expect("Failed to get node_id for phantom node recipient");
4162 receiver_node_id = phantom_pubkey;
4167 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
4168 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
4169 payment_purpose: payment.purpose, receiver_node_id,
4171 if dup_purpose.is_some() {
4172 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
4173 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
4174 log_bytes!(payment_hash.0));
4179 debug_assert!(!sources.is_empty());
4181 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
4182 // and when we got here we need to check that the amount we're about to claim matches the
4183 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
4184 // the MPP parts all have the same `total_msat`.
4185 let mut claimable_amt_msat = 0;
4186 let mut prev_total_msat = None;
4187 let mut expected_amt_msat = None;
4188 let mut valid_mpp = true;
4189 let mut errs = Vec::new();
4190 let per_peer_state = self.per_peer_state.read().unwrap();
4191 for htlc in sources.iter() {
4192 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
4193 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
4194 debug_assert!(false);
4198 prev_total_msat = Some(htlc.total_msat);
4200 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
4201 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
4202 debug_assert!(false);
4206 expected_amt_msat = htlc.total_value_received;
4208 if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
4209 // We don't currently support MPP for spontaneous payments, so just check
4210 // that there's one payment here and move on.
4211 if sources.len() != 1 {
4212 log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
4213 debug_assert!(false);
4219 claimable_amt_msat += htlc.value;
4221 mem::drop(per_peer_state);
4222 if sources.is_empty() || expected_amt_msat.is_none() {
4223 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4224 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
4227 if claimable_amt_msat != expected_amt_msat.unwrap() {
4228 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4229 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
4230 expected_amt_msat.unwrap(), claimable_amt_msat);
4234 for htlc in sources.drain(..) {
4235 if let Err((pk, err)) = self.claim_funds_from_hop(
4236 htlc.prev_hop, payment_preimage,
4237 |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
4239 if let msgs::ErrorAction::IgnoreError = err.err.action {
4240 // We got a temporary failure updating monitor, but will claim the
4241 // HTLC when the monitor updating is restored (or on chain).
4242 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
4243 } else { errs.push((pk, err)); }
4248 for htlc in sources.drain(..) {
4249 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4250 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4251 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4252 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
4253 let receiver = HTLCDestination::FailedPayment { payment_hash };
4254 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4256 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4259 // Now we can handle any errors which were generated.
4260 for (counterparty_node_id, err) in errs.drain(..) {
4261 let res: Result<(), _> = Err(err);
4262 let _ = handle_error!(self, res, counterparty_node_id);
4266 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
4267 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
4268 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
4269 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4272 let per_peer_state = self.per_peer_state.read().unwrap();
4273 let chan_id = prev_hop.outpoint.to_channel_id();
4274 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
4275 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
4279 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
4280 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
4281 .map(|peer_mutex| peer_mutex.lock().unwrap())
4284 if peer_state_opt.is_some() {
4285 let mut peer_state_lock = peer_state_opt.unwrap();
4286 let peer_state = &mut *peer_state_lock;
4287 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
4288 let counterparty_node_id = chan.get().get_counterparty_node_id();
4289 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
4291 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
4292 if let Some(action) = completion_action(Some(htlc_value_msat)) {
4293 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4294 log_bytes!(chan_id), action);
4295 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4297 let update_id = monitor_update.update_id;
4298 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
4299 let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4300 peer_state, per_peer_state, chan);
4301 if let Err(e) = res {
4302 // TODO: This is a *critical* error - we probably updated the outbound edge
4303 // of the HTLC's monitor with a preimage. We should retry this monitor
4304 // update over and over again until morale improves.
4305 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4306 return Err((counterparty_node_id, e));
4313 let preimage_update = ChannelMonitorUpdate {
4314 update_id: CLOSED_CHANNEL_UPDATE_ID,
4315 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4319 // We update the ChannelMonitor on the backward link, after
4320 // receiving an `update_fulfill_htlc` from the forward link.
4321 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4322 if update_res != ChannelMonitorUpdateStatus::Completed {
4323 // TODO: This needs to be handled somehow - if we receive a monitor update
4324 // with a preimage we *must* somehow manage to propagate it to the upstream
4325 // channel, or we must have an ability to receive the same event and try
4326 // again on restart.
4327 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4328 payment_preimage, update_res);
4330 // Note that we do process the completion action here. This totally could be a
4331 // duplicate claim, but we have no way of knowing without interrogating the
4332 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4333 // generally always allowed to be duplicative (and it's specifically noted in
4334 // `PaymentForwarded`).
4335 self.handle_monitor_update_completion_actions(completion_action(None));
4339 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4340 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4343 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4345 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4346 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4348 HTLCSource::PreviousHopData(hop_data) => {
4349 let prev_outpoint = hop_data.outpoint;
4350 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4351 |htlc_claim_value_msat| {
4352 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4353 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4354 Some(claimed_htlc_value - forwarded_htlc_value)
4357 let prev_channel_id = Some(prev_outpoint.to_channel_id());
4358 let next_channel_id = Some(next_channel_id);
4360 Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4362 claim_from_onchain_tx: from_onchain,
4365 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
4369 if let Err((pk, err)) = res {
4370 let result: Result<(), _> = Err(err);
4371 let _ = handle_error!(self, result, pk);
4377 /// Gets the node_id held by this ChannelManager
4378 pub fn get_our_node_id(&self) -> PublicKey {
4379 self.our_network_pubkey.clone()
4382 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4383 for action in actions.into_iter() {
4385 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4386 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4387 if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4388 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4389 payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4393 MonitorUpdateCompletionAction::EmitEvent { event } => {
4394 self.pending_events.lock().unwrap().push(event);
4400 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4401 /// update completion.
4402 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4403 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4404 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4405 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4406 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4407 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4408 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4409 log_bytes!(channel.channel_id()),
4410 if raa.is_some() { "an" } else { "no" },
4411 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4412 if funding_broadcastable.is_some() { "" } else { "not " },
4413 if channel_ready.is_some() { "sending" } else { "without" },
4414 if announcement_sigs.is_some() { "sending" } else { "without" });
4416 let mut htlc_forwards = None;
4418 let counterparty_node_id = channel.get_counterparty_node_id();
4419 if !pending_forwards.is_empty() {
4420 htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4421 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4424 if let Some(msg) = channel_ready {
4425 send_channel_ready!(self, pending_msg_events, channel, msg);
4427 if let Some(msg) = announcement_sigs {
4428 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4429 node_id: counterparty_node_id,
4434 macro_rules! handle_cs { () => {
4435 if let Some(update) = commitment_update {
4436 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4437 node_id: counterparty_node_id,
4442 macro_rules! handle_raa { () => {
4443 if let Some(revoke_and_ack) = raa {
4444 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4445 node_id: counterparty_node_id,
4446 msg: revoke_and_ack,
4451 RAACommitmentOrder::CommitmentFirst => {
4455 RAACommitmentOrder::RevokeAndACKFirst => {
4461 if let Some(tx) = funding_broadcastable {
4462 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4463 self.tx_broadcaster.broadcast_transaction(&tx);
4467 let mut pending_events = self.pending_events.lock().unwrap();
4468 emit_channel_pending_event!(pending_events, channel);
4469 emit_channel_ready_event!(pending_events, channel);
4475 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4476 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4478 let counterparty_node_id = match counterparty_node_id {
4479 Some(cp_id) => cp_id.clone(),
4481 // TODO: Once we can rely on the counterparty_node_id from the
4482 // monitor event, this and the id_to_peer map should be removed.
4483 let id_to_peer = self.id_to_peer.lock().unwrap();
4484 match id_to_peer.get(&funding_txo.to_channel_id()) {
4485 Some(cp_id) => cp_id.clone(),
4490 let per_peer_state = self.per_peer_state.read().unwrap();
4491 let mut peer_state_lock;
4492 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4493 if peer_state_mutex_opt.is_none() { return }
4494 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4495 let peer_state = &mut *peer_state_lock;
4497 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4498 hash_map::Entry::Occupied(chan) => chan,
4499 hash_map::Entry::Vacant(_) => return,
4502 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4503 highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4504 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4507 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4510 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4512 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4513 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4516 /// The `user_channel_id` parameter will be provided back in
4517 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4518 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4520 /// Note that this method will return an error and reject the channel, if it requires support
4521 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4522 /// used to accept such channels.
4524 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4525 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4526 pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4527 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4530 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4531 /// it as confirmed immediately.
4533 /// The `user_channel_id` parameter will be provided back in
4534 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4535 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4537 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4538 /// and (if the counterparty agrees), enables forwarding of payments immediately.
4540 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4541 /// transaction and blindly assumes that it will eventually confirm.
4543 /// If it does not confirm before we decide to close the channel, or if the funding transaction
4544 /// does not pay to the correct script the correct amount, *you will lose funds*.
4546 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4547 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4548 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4549 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4552 fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4553 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4555 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4556 let per_peer_state = self.per_peer_state.read().unwrap();
4557 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4558 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4559 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4560 let peer_state = &mut *peer_state_lock;
4561 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4562 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4563 hash_map::Entry::Occupied(mut channel) => {
4564 if !channel.get().inbound_is_awaiting_accept() {
4565 return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4568 channel.get_mut().set_0conf();
4569 } else if channel.get().get_channel_type().requires_zero_conf() {
4570 let send_msg_err_event = events::MessageSendEvent::HandleError {
4571 node_id: channel.get().get_counterparty_node_id(),
4572 action: msgs::ErrorAction::SendErrorMessage{
4573 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4576 peer_state.pending_msg_events.push(send_msg_err_event);
4577 let _ = remove_channel!(self, channel);
4578 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4580 // If this peer already has some channels, a new channel won't increase our number of peers
4581 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4582 // channels per-peer we can accept channels from a peer with existing ones.
4583 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4584 let send_msg_err_event = events::MessageSendEvent::HandleError {
4585 node_id: channel.get().get_counterparty_node_id(),
4586 action: msgs::ErrorAction::SendErrorMessage{
4587 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4590 peer_state.pending_msg_events.push(send_msg_err_event);
4591 let _ = remove_channel!(self, channel);
4592 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4596 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4597 node_id: channel.get().get_counterparty_node_id(),
4598 msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4601 hash_map::Entry::Vacant(_) => {
4602 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4608 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4609 /// or 0-conf channels.
4611 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4612 /// non-0-conf channels we have with the peer.
4613 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4614 where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4615 let mut peers_without_funded_channels = 0;
4616 let best_block_height = self.best_block.read().unwrap().height();
4618 let peer_state_lock = self.per_peer_state.read().unwrap();
4619 for (_, peer_mtx) in peer_state_lock.iter() {
4620 let peer = peer_mtx.lock().unwrap();
4621 if !maybe_count_peer(&*peer) { continue; }
4622 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4623 if num_unfunded_channels == peer.channel_by_id.len() {
4624 peers_without_funded_channels += 1;
4628 return peers_without_funded_channels;
4631 fn unfunded_channel_count(
4632 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4634 let mut num_unfunded_channels = 0;
4635 for (_, chan) in peer.channel_by_id.iter() {
4636 if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4637 chan.get_funding_tx_confirmations(best_block_height) == 0
4639 num_unfunded_channels += 1;
4642 num_unfunded_channels
4645 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4646 if msg.chain_hash != self.genesis_hash {
4647 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4650 if !self.default_configuration.accept_inbound_channels {
4651 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4654 let mut random_bytes = [0u8; 16];
4655 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4656 let user_channel_id = u128::from_be_bytes(random_bytes);
4657 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4659 // Get the number of peers with channels, but without funded ones. We don't care too much
4660 // about peers that never open a channel, so we filter by peers that have at least one
4661 // channel, and then limit the number of those with unfunded channels.
4662 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4664 let per_peer_state = self.per_peer_state.read().unwrap();
4665 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4667 debug_assert!(false);
4668 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4670 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4671 let peer_state = &mut *peer_state_lock;
4673 // If this peer already has some channels, a new channel won't increase our number of peers
4674 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4675 // channels per-peer we can accept channels from a peer with existing ones.
4676 if peer_state.channel_by_id.is_empty() &&
4677 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4678 !self.default_configuration.manually_accept_inbound_channels
4680 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4681 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4682 msg.temporary_channel_id.clone()));
4685 let best_block_height = self.best_block.read().unwrap().height();
4686 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4687 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4688 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4689 msg.temporary_channel_id.clone()));
4692 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4693 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4694 &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4697 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4698 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4702 match peer_state.channel_by_id.entry(channel.channel_id()) {
4703 hash_map::Entry::Occupied(_) => {
4704 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4705 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4707 hash_map::Entry::Vacant(entry) => {
4708 if !self.default_configuration.manually_accept_inbound_channels {
4709 if channel.get_channel_type().requires_zero_conf() {
4710 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4712 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4713 node_id: counterparty_node_id.clone(),
4714 msg: channel.accept_inbound_channel(user_channel_id),
4717 let mut pending_events = self.pending_events.lock().unwrap();
4718 pending_events.push(
4719 events::Event::OpenChannelRequest {
4720 temporary_channel_id: msg.temporary_channel_id.clone(),
4721 counterparty_node_id: counterparty_node_id.clone(),
4722 funding_satoshis: msg.funding_satoshis,
4723 push_msat: msg.push_msat,
4724 channel_type: channel.get_channel_type().clone(),
4729 entry.insert(channel);
4735 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4736 let (value, output_script, user_id) = {
4737 let per_peer_state = self.per_peer_state.read().unwrap();
4738 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4740 debug_assert!(false);
4741 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4743 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4744 let peer_state = &mut *peer_state_lock;
4745 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4746 hash_map::Entry::Occupied(mut chan) => {
4747 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4748 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4750 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4753 let mut pending_events = self.pending_events.lock().unwrap();
4754 pending_events.push(events::Event::FundingGenerationReady {
4755 temporary_channel_id: msg.temporary_channel_id,
4756 counterparty_node_id: *counterparty_node_id,
4757 channel_value_satoshis: value,
4759 user_channel_id: user_id,
4764 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4765 let best_block = *self.best_block.read().unwrap();
4767 let per_peer_state = self.per_peer_state.read().unwrap();
4768 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4770 debug_assert!(false);
4771 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4774 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4775 let peer_state = &mut *peer_state_lock;
4776 let ((funding_msg, monitor), chan) =
4777 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4778 hash_map::Entry::Occupied(mut chan) => {
4779 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4781 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4784 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4785 hash_map::Entry::Occupied(_) => {
4786 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4788 hash_map::Entry::Vacant(e) => {
4789 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4790 hash_map::Entry::Occupied(_) => {
4791 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4792 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4793 funding_msg.channel_id))
4795 hash_map::Entry::Vacant(i_e) => {
4796 i_e.insert(chan.get_counterparty_node_id());
4800 // There's no problem signing a counterparty's funding transaction if our monitor
4801 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4802 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4803 // until we have persisted our monitor.
4804 let new_channel_id = funding_msg.channel_id;
4805 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4806 node_id: counterparty_node_id.clone(),
4810 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4812 let chan = e.insert(chan);
4813 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
4814 per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4816 // Note that we reply with the new channel_id in error messages if we gave up on the
4817 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4818 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4819 // any messages referencing a previously-closed channel anyway.
4820 // We do not propagate the monitor update to the user as it would be for a monitor
4821 // that we didn't manage to store (and that we don't care about - we don't respond
4822 // with the funding_signed so the channel can never go on chain).
4823 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4831 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4832 let best_block = *self.best_block.read().unwrap();
4833 let per_peer_state = self.per_peer_state.read().unwrap();
4834 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4836 debug_assert!(false);
4837 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4840 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4841 let peer_state = &mut *peer_state_lock;
4842 match peer_state.channel_by_id.entry(msg.channel_id) {
4843 hash_map::Entry::Occupied(mut chan) => {
4844 let monitor = try_chan_entry!(self,
4845 chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4846 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4847 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
4848 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4849 // We weren't able to watch the channel to begin with, so no updates should be made on
4850 // it. Previously, full_stack_target found an (unreachable) panic when the
4851 // monitor update contained within `shutdown_finish` was applied.
4852 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4853 shutdown_finish.0.take();
4858 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4862 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4863 let per_peer_state = self.per_peer_state.read().unwrap();
4864 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4866 debug_assert!(false);
4867 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4869 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4870 let peer_state = &mut *peer_state_lock;
4871 match peer_state.channel_by_id.entry(msg.channel_id) {
4872 hash_map::Entry::Occupied(mut chan) => {
4873 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4874 self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4875 if let Some(announcement_sigs) = announcement_sigs_opt {
4876 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4877 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4878 node_id: counterparty_node_id.clone(),
4879 msg: announcement_sigs,
4881 } else if chan.get().is_usable() {
4882 // If we're sending an announcement_signatures, we'll send the (public)
4883 // channel_update after sending a channel_announcement when we receive our
4884 // counterparty's announcement_signatures. Thus, we only bother to send a
4885 // channel_update here if the channel is not public, i.e. we're not sending an
4886 // announcement_signatures.
4887 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4888 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4889 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4890 node_id: counterparty_node_id.clone(),
4897 let mut pending_events = self.pending_events.lock().unwrap();
4898 emit_channel_ready_event!(pending_events, chan.get_mut());
4903 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4907 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4908 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4909 let result: Result<(), _> = loop {
4910 let per_peer_state = self.per_peer_state.read().unwrap();
4911 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4913 debug_assert!(false);
4914 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4916 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4917 let peer_state = &mut *peer_state_lock;
4918 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4919 hash_map::Entry::Occupied(mut chan_entry) => {
4921 if !chan_entry.get().received_shutdown() {
4922 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4923 log_bytes!(msg.channel_id),
4924 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4927 let funding_txo_opt = chan_entry.get().get_funding_txo();
4928 let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4929 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4930 dropped_htlcs = htlcs;
4932 if let Some(msg) = shutdown {
4933 // We can send the `shutdown` message before updating the `ChannelMonitor`
4934 // here as we don't need the monitor update to complete until we send a
4935 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4936 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4937 node_id: *counterparty_node_id,
4942 // Update the monitor with the shutdown script if necessary.
4943 if let Some(monitor_update) = monitor_update_opt {
4944 let update_id = monitor_update.update_id;
4945 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
4946 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
4950 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4953 for htlc_source in dropped_htlcs.drain(..) {
4954 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4955 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
4956 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
4962 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4963 let per_peer_state = self.per_peer_state.read().unwrap();
4964 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4966 debug_assert!(false);
4967 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4969 let (tx, chan_option) = {
4970 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4971 let peer_state = &mut *peer_state_lock;
4972 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4973 hash_map::Entry::Occupied(mut chan_entry) => {
4974 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
4975 if let Some(msg) = closing_signed {
4976 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4977 node_id: counterparty_node_id.clone(),
4982 // We're done with this channel, we've got a signed closing transaction and
4983 // will send the closing_signed back to the remote peer upon return. This
4984 // also implies there are no pending HTLCs left on the channel, so we can
4985 // fully delete it from tracking (the channel monitor is still around to
4986 // watch for old state broadcasts)!
4987 (tx, Some(remove_channel!(self, chan_entry)))
4988 } else { (tx, None) }
4990 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4993 if let Some(broadcast_tx) = tx {
4994 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4995 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4997 if let Some(chan) = chan_option {
4998 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4999 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5000 let peer_state = &mut *peer_state_lock;
5001 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5005 self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
5010 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
5011 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
5012 //determine the state of the payment based on our response/if we forward anything/the time
5013 //we take to respond. We should take care to avoid allowing such an attack.
5015 //TODO: There exists a further attack where a node may garble the onion data, forward it to
5016 //us repeatedly garbled in different ways, and compare our error messages, which are
5017 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
5018 //but we should prevent it anyway.
5020 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
5021 let per_peer_state = self.per_peer_state.read().unwrap();
5022 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5024 debug_assert!(false);
5025 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5027 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5028 let peer_state = &mut *peer_state_lock;
5029 match peer_state.channel_by_id.entry(msg.channel_id) {
5030 hash_map::Entry::Occupied(mut chan) => {
5032 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
5033 // If the update_add is completely bogus, the call will Err and we will close,
5034 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
5035 // want to reject the new HTLC and fail it backwards instead of forwarding.
5036 match pending_forward_info {
5037 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
5038 let reason = if (error_code & 0x1000) != 0 {
5039 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
5040 HTLCFailReason::reason(real_code, error_data)
5042 HTLCFailReason::from_failure_code(error_code)
5043 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
5044 let msg = msgs::UpdateFailHTLC {
5045 channel_id: msg.channel_id,
5046 htlc_id: msg.htlc_id,
5049 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
5051 _ => pending_forward_info
5054 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
5056 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5061 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
5062 let (htlc_source, forwarded_htlc_value) = {
5063 let per_peer_state = self.per_peer_state.read().unwrap();
5064 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5066 debug_assert!(false);
5067 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5069 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5070 let peer_state = &mut *peer_state_lock;
5071 match peer_state.channel_by_id.entry(msg.channel_id) {
5072 hash_map::Entry::Occupied(mut chan) => {
5073 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
5075 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5078 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
5082 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
5083 let per_peer_state = self.per_peer_state.read().unwrap();
5084 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5086 debug_assert!(false);
5087 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5089 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5090 let peer_state = &mut *peer_state_lock;
5091 match peer_state.channel_by_id.entry(msg.channel_id) {
5092 hash_map::Entry::Occupied(mut chan) => {
5093 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
5095 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5100 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
5101 let per_peer_state = self.per_peer_state.read().unwrap();
5102 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5104 debug_assert!(false);
5105 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5107 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5108 let peer_state = &mut *peer_state_lock;
5109 match peer_state.channel_by_id.entry(msg.channel_id) {
5110 hash_map::Entry::Occupied(mut chan) => {
5111 if (msg.failure_code & 0x8000) == 0 {
5112 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
5113 try_chan_entry!(self, Err(chan_err), chan);
5115 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
5118 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5122 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
5123 let per_peer_state = self.per_peer_state.read().unwrap();
5124 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5126 debug_assert!(false);
5127 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5129 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5130 let peer_state = &mut *peer_state_lock;
5131 match peer_state.channel_by_id.entry(msg.channel_id) {
5132 hash_map::Entry::Occupied(mut chan) => {
5133 let funding_txo = chan.get().get_funding_txo();
5134 let monitor_update = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
5135 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5136 let update_id = monitor_update.update_id;
5137 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
5138 peer_state, per_peer_state, chan)
5140 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5145 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
5146 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
5147 let mut push_forward_event = false;
5148 let mut new_intercept_events = Vec::new();
5149 let mut failed_intercept_forwards = Vec::new();
5150 if !pending_forwards.is_empty() {
5151 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
5152 let scid = match forward_info.routing {
5153 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
5154 PendingHTLCRouting::Receive { .. } => 0,
5155 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
5157 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
5158 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
5160 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5161 let forward_htlcs_empty = forward_htlcs.is_empty();
5162 match forward_htlcs.entry(scid) {
5163 hash_map::Entry::Occupied(mut entry) => {
5164 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5165 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
5167 hash_map::Entry::Vacant(entry) => {
5168 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
5169 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
5171 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
5172 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
5173 match pending_intercepts.entry(intercept_id) {
5174 hash_map::Entry::Vacant(entry) => {
5175 new_intercept_events.push(events::Event::HTLCIntercepted {
5176 requested_next_hop_scid: scid,
5177 payment_hash: forward_info.payment_hash,
5178 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
5179 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
5182 entry.insert(PendingAddHTLCInfo {
5183 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
5185 hash_map::Entry::Occupied(_) => {
5186 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
5187 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5188 short_channel_id: prev_short_channel_id,
5189 outpoint: prev_funding_outpoint,
5190 htlc_id: prev_htlc_id,
5191 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
5192 phantom_shared_secret: None,
5195 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
5196 HTLCFailReason::from_failure_code(0x4000 | 10),
5197 HTLCDestination::InvalidForward { requested_forward_scid: scid },
5202 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
5203 // payments are being processed.
5204 if forward_htlcs_empty {
5205 push_forward_event = true;
5207 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5208 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
5215 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
5216 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5219 if !new_intercept_events.is_empty() {
5220 let mut events = self.pending_events.lock().unwrap();
5221 events.append(&mut new_intercept_events);
5223 if push_forward_event { self.push_pending_forwards_ev() }
5227 // We only want to push a PendingHTLCsForwardable event if no others are queued.
5228 fn push_pending_forwards_ev(&self) {
5229 let mut pending_events = self.pending_events.lock().unwrap();
5230 let forward_ev_exists = pending_events.iter()
5231 .find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
5233 if !forward_ev_exists {
5234 pending_events.push(events::Event::PendingHTLCsForwardable {
5236 Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
5241 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
5242 let (htlcs_to_fail, res) = {
5243 let per_peer_state = self.per_peer_state.read().unwrap();
5244 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
5246 debug_assert!(false);
5247 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5248 }).map(|mtx| mtx.lock().unwrap())?;
5249 let peer_state = &mut *peer_state_lock;
5250 match peer_state.channel_by_id.entry(msg.channel_id) {
5251 hash_map::Entry::Occupied(mut chan) => {
5252 let funding_txo = chan.get().get_funding_txo();
5253 let (htlcs_to_fail, monitor_update) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
5254 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5255 let update_id = monitor_update.update_id;
5256 let res = handle_new_monitor_update!(self, update_res, update_id,
5257 peer_state_lock, peer_state, per_peer_state, chan);
5258 (htlcs_to_fail, res)
5260 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5263 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
5267 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
5268 let per_peer_state = self.per_peer_state.read().unwrap();
5269 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5271 debug_assert!(false);
5272 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5274 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5275 let peer_state = &mut *peer_state_lock;
5276 match peer_state.channel_by_id.entry(msg.channel_id) {
5277 hash_map::Entry::Occupied(mut chan) => {
5278 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
5280 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5285 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5286 let per_peer_state = self.per_peer_state.read().unwrap();
5287 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5289 debug_assert!(false);
5290 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5292 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5293 let peer_state = &mut *peer_state_lock;
5294 match peer_state.channel_by_id.entry(msg.channel_id) {
5295 hash_map::Entry::Occupied(mut chan) => {
5296 if !chan.get().is_usable() {
5297 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5300 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5301 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5302 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5303 msg, &self.default_configuration
5305 // Note that announcement_signatures fails if the channel cannot be announced,
5306 // so get_channel_update_for_broadcast will never fail by the time we get here.
5307 update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5310 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5315 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5316 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5317 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5318 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5320 // It's not a local channel
5321 return Ok(NotifyOption::SkipPersist)
5324 let per_peer_state = self.per_peer_state.read().unwrap();
5325 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5326 if peer_state_mutex_opt.is_none() {
5327 return Ok(NotifyOption::SkipPersist)
5329 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5330 let peer_state = &mut *peer_state_lock;
5331 match peer_state.channel_by_id.entry(chan_id) {
5332 hash_map::Entry::Occupied(mut chan) => {
5333 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5334 if chan.get().should_announce() {
5335 // If the announcement is about a channel of ours which is public, some
5336 // other peer may simply be forwarding all its gossip to us. Don't provide
5337 // a scary-looking error message and return Ok instead.
5338 return Ok(NotifyOption::SkipPersist);
5340 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5342 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5343 let msg_from_node_one = msg.contents.flags & 1 == 0;
5344 if were_node_one == msg_from_node_one {
5345 return Ok(NotifyOption::SkipPersist);
5347 log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5348 try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5351 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5353 Ok(NotifyOption::DoPersist)
5356 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5358 let need_lnd_workaround = {
5359 let per_peer_state = self.per_peer_state.read().unwrap();
5361 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5363 debug_assert!(false);
5364 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5366 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5367 let peer_state = &mut *peer_state_lock;
5368 match peer_state.channel_by_id.entry(msg.channel_id) {
5369 hash_map::Entry::Occupied(mut chan) => {
5370 // Currently, we expect all holding cell update_adds to be dropped on peer
5371 // disconnect, so Channel's reestablish will never hand us any holding cell
5372 // freed HTLCs to fail backwards. If in the future we no longer drop pending
5373 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5374 let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5375 msg, &self.logger, &self.node_signer, self.genesis_hash,
5376 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5377 let mut channel_update = None;
5378 if let Some(msg) = responses.shutdown_msg {
5379 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5380 node_id: counterparty_node_id.clone(),
5383 } else if chan.get().is_usable() {
5384 // If the channel is in a usable state (ie the channel is not being shut
5385 // down), send a unicast channel_update to our counterparty to make sure
5386 // they have the latest channel parameters.
5387 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5388 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5389 node_id: chan.get().get_counterparty_node_id(),
5394 let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5395 htlc_forwards = self.handle_channel_resumption(
5396 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5397 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5398 if let Some(upd) = channel_update {
5399 peer_state.pending_msg_events.push(upd);
5403 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5407 if let Some(forwards) = htlc_forwards {
5408 self.forward_htlcs(&mut [forwards][..]);
5411 if let Some(channel_ready_msg) = need_lnd_workaround {
5412 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5417 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
5418 fn process_pending_monitor_events(&self) -> bool {
5419 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5421 let mut failed_channels = Vec::new();
5422 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5423 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5424 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5425 for monitor_event in monitor_events.drain(..) {
5426 match monitor_event {
5427 MonitorEvent::HTLCEvent(htlc_update) => {
5428 if let Some(preimage) = htlc_update.payment_preimage {
5429 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5430 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5432 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5433 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5434 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5435 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5438 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5439 MonitorEvent::UpdateFailed(funding_outpoint) => {
5440 let counterparty_node_id_opt = match counterparty_node_id {
5441 Some(cp_id) => Some(cp_id),
5443 // TODO: Once we can rely on the counterparty_node_id from the
5444 // monitor event, this and the id_to_peer map should be removed.
5445 let id_to_peer = self.id_to_peer.lock().unwrap();
5446 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5449 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5450 let per_peer_state = self.per_peer_state.read().unwrap();
5451 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5452 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5453 let peer_state = &mut *peer_state_lock;
5454 let pending_msg_events = &mut peer_state.pending_msg_events;
5455 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5456 let mut chan = remove_channel!(self, chan_entry);
5457 failed_channels.push(chan.force_shutdown(false));
5458 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5459 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5463 let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5464 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5466 ClosureReason::CommitmentTxConfirmed
5468 self.issue_channel_close_events(&chan, reason);
5469 pending_msg_events.push(events::MessageSendEvent::HandleError {
5470 node_id: chan.get_counterparty_node_id(),
5471 action: msgs::ErrorAction::SendErrorMessage {
5472 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5479 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5480 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5486 for failure in failed_channels.drain(..) {
5487 self.finish_force_close_channel(failure);
5490 has_pending_monitor_events
5493 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5494 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5495 /// update events as a separate process method here.
5497 pub fn process_monitor_events(&self) {
5498 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5499 if self.process_pending_monitor_events() {
5500 NotifyOption::DoPersist
5502 NotifyOption::SkipPersist
5507 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5508 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5509 /// update was applied.
5510 fn check_free_holding_cells(&self) -> bool {
5511 let mut has_monitor_update = false;
5512 let mut failed_htlcs = Vec::new();
5513 let mut handle_errors = Vec::new();
5515 // Walk our list of channels and find any that need to update. Note that when we do find an
5516 // update, if it includes actions that must be taken afterwards, we have to drop the
5517 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5518 // manage to go through all our peers without finding a single channel to update.
5520 let per_peer_state = self.per_peer_state.read().unwrap();
5521 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5523 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5524 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5525 for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5526 let counterparty_node_id = chan.get_counterparty_node_id();
5527 let funding_txo = chan.get_funding_txo();
5528 let (monitor_opt, holding_cell_failed_htlcs) =
5529 chan.maybe_free_holding_cell_htlcs(&self.logger);
5530 if !holding_cell_failed_htlcs.is_empty() {
5531 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5533 if let Some(monitor_update) = monitor_opt {
5534 has_monitor_update = true;
5536 let update_res = self.chain_monitor.update_channel(
5537 funding_txo.expect("channel is live"), monitor_update);
5538 let update_id = monitor_update.update_id;
5539 let channel_id: [u8; 32] = *channel_id;
5540 let res = handle_new_monitor_update!(self, update_res, update_id,
5541 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
5542 peer_state.channel_by_id.remove(&channel_id));
5544 handle_errors.push((counterparty_node_id, res));
5546 continue 'peer_loop;
5555 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5556 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5557 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5560 for (counterparty_node_id, err) in handle_errors.drain(..) {
5561 let _ = handle_error!(self, err, counterparty_node_id);
5567 /// Check whether any channels have finished removing all pending updates after a shutdown
5568 /// exchange and can now send a closing_signed.
5569 /// Returns whether any closing_signed messages were generated.
5570 fn maybe_generate_initial_closing_signed(&self) -> bool {
5571 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5572 let mut has_update = false;
5574 let per_peer_state = self.per_peer_state.read().unwrap();
5576 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5577 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5578 let peer_state = &mut *peer_state_lock;
5579 let pending_msg_events = &mut peer_state.pending_msg_events;
5580 peer_state.channel_by_id.retain(|channel_id, chan| {
5581 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5582 Ok((msg_opt, tx_opt)) => {
5583 if let Some(msg) = msg_opt {
5585 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5586 node_id: chan.get_counterparty_node_id(), msg,
5589 if let Some(tx) = tx_opt {
5590 // We're done with this channel. We got a closing_signed and sent back
5591 // a closing_signed with a closing transaction to broadcast.
5592 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5593 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5598 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5600 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5601 self.tx_broadcaster.broadcast_transaction(&tx);
5602 update_maps_on_chan_removal!(self, chan);
5608 let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5609 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5617 for (counterparty_node_id, err) in handle_errors.drain(..) {
5618 let _ = handle_error!(self, err, counterparty_node_id);
5624 /// Handle a list of channel failures during a block_connected or block_disconnected call,
5625 /// pushing the channel monitor update (if any) to the background events queue and removing the
5627 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5628 for mut failure in failed_channels.drain(..) {
5629 // Either a commitment transactions has been confirmed on-chain or
5630 // Channel::block_disconnected detected that the funding transaction has been
5631 // reorganized out of the main chain.
5632 // We cannot broadcast our latest local state via monitor update (as
5633 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5634 // so we track the update internally and handle it when the user next calls
5635 // timer_tick_occurred, guaranteeing we're running normally.
5636 if let Some((funding_txo, update)) = failure.0.take() {
5637 assert_eq!(update.updates.len(), 1);
5638 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5639 assert!(should_broadcast);
5640 } else { unreachable!(); }
5641 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5643 self.finish_force_close_channel(failure);
5647 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5648 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5650 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5651 return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5654 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5656 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5657 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5658 match payment_secrets.entry(payment_hash) {
5659 hash_map::Entry::Vacant(e) => {
5660 e.insert(PendingInboundPayment {
5661 payment_secret, min_value_msat, payment_preimage,
5662 user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5663 // We assume that highest_seen_timestamp is pretty close to the current time -
5664 // it's updated when we receive a new block with the maximum time we've seen in
5665 // a header. It should never be more than two hours in the future.
5666 // Thus, we add two hours here as a buffer to ensure we absolutely
5667 // never fail a payment too early.
5668 // Note that we assume that received blocks have reasonably up-to-date
5670 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5673 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5678 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5681 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5682 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5684 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5685 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5686 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5687 /// passed directly to [`claim_funds`].
5689 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5691 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5692 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5696 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5697 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5699 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5701 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5702 /// on versions of LDK prior to 0.0.114.
5704 /// [`claim_funds`]: Self::claim_funds
5705 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5706 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5707 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5708 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5709 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5710 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5711 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5712 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5713 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5714 min_final_cltv_expiry_delta)
5717 /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5718 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5720 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5723 /// This method is deprecated and will be removed soon.
5725 /// [`create_inbound_payment`]: Self::create_inbound_payment
5727 pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5728 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5729 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5730 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5731 Ok((payment_hash, payment_secret))
5734 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5735 /// stored external to LDK.
5737 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5738 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5739 /// the `min_value_msat` provided here, if one is provided.
5741 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5742 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5745 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5746 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5747 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5748 /// sender "proof-of-payment" unless they have paid the required amount.
5750 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5751 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5752 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5753 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5754 /// invoices when no timeout is set.
5756 /// Note that we use block header time to time-out pending inbound payments (with some margin
5757 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5758 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5759 /// If you need exact expiry semantics, you should enforce them upon receipt of
5760 /// [`PaymentClaimable`].
5762 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5763 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5765 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5766 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5770 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5771 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5773 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5775 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5776 /// on versions of LDK prior to 0.0.114.
5778 /// [`create_inbound_payment`]: Self::create_inbound_payment
5779 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5780 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5781 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5782 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5783 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5784 min_final_cltv_expiry)
5787 /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5788 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5790 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5793 /// This method is deprecated and will be removed soon.
5795 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5797 pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5798 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5801 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5802 /// previously returned from [`create_inbound_payment`].
5804 /// [`create_inbound_payment`]: Self::create_inbound_payment
5805 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5806 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5809 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5810 /// are used when constructing the phantom invoice's route hints.
5812 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5813 pub fn get_phantom_scid(&self) -> u64 {
5814 let best_block_height = self.best_block.read().unwrap().height();
5815 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5817 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5818 // Ensure the generated scid doesn't conflict with a real channel.
5819 match short_to_chan_info.get(&scid_candidate) {
5820 Some(_) => continue,
5821 None => return scid_candidate
5826 /// Gets route hints for use in receiving [phantom node payments].
5828 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5829 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5831 channels: self.list_usable_channels(),
5832 phantom_scid: self.get_phantom_scid(),
5833 real_node_pubkey: self.get_our_node_id(),
5837 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5838 /// used when constructing the route hints for HTLCs intended to be intercepted. See
5839 /// [`ChannelManager::forward_intercepted_htlc`].
5841 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5842 /// times to get a unique scid.
5843 pub fn get_intercept_scid(&self) -> u64 {
5844 let best_block_height = self.best_block.read().unwrap().height();
5845 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5847 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5848 // Ensure the generated scid doesn't conflict with a real channel.
5849 if short_to_chan_info.contains_key(&scid_candidate) { continue }
5850 return scid_candidate
5854 /// Gets inflight HTLC information by processing pending outbound payments that are in
5855 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5856 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5857 let mut inflight_htlcs = InFlightHtlcs::new();
5859 let per_peer_state = self.per_peer_state.read().unwrap();
5860 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5861 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5862 let peer_state = &mut *peer_state_lock;
5863 for chan in peer_state.channel_by_id.values() {
5864 for (htlc_source, _) in chan.inflight_htlc_sources() {
5865 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5866 inflight_htlcs.process_path(path, self.get_our_node_id());
5875 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5876 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5877 let events = core::cell::RefCell::new(Vec::new());
5878 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5879 self.process_pending_events(&event_handler);
5883 #[cfg(feature = "_test_utils")]
5884 pub fn push_pending_event(&self, event: events::Event) {
5885 let mut events = self.pending_events.lock().unwrap();
5890 pub fn pop_pending_event(&self) -> Option<events::Event> {
5891 let mut events = self.pending_events.lock().unwrap();
5892 if events.is_empty() { None } else { Some(events.remove(0)) }
5896 pub fn has_pending_payments(&self) -> bool {
5897 self.pending_outbound_payments.has_pending_payments()
5901 pub fn clear_pending_payments(&self) {
5902 self.pending_outbound_payments.clear_pending_payments()
5905 /// Processes any events asynchronously in the order they were generated since the last call
5906 /// using the given event handler.
5908 /// See the trait-level documentation of [`EventsProvider`] for requirements.
5909 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
5913 process_events_body!(self, ev, { handler(ev).await });
5917 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5919 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5920 T::Target: BroadcasterInterface,
5921 ES::Target: EntropySource,
5922 NS::Target: NodeSigner,
5923 SP::Target: SignerProvider,
5924 F::Target: FeeEstimator,
5928 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
5929 /// The returned array will contain `MessageSendEvent`s for different peers if
5930 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
5931 /// is always placed next to each other.
5933 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
5934 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
5935 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
5936 /// will randomly be placed first or last in the returned array.
5938 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
5939 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
5940 /// the `MessageSendEvent`s to the specific peer they were generated under.
5941 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5942 let events = RefCell::new(Vec::new());
5943 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5944 let mut result = NotifyOption::SkipPersist;
5946 // TODO: This behavior should be documented. It's unintuitive that we query
5947 // ChannelMonitors when clearing other events.
5948 if self.process_pending_monitor_events() {
5949 result = NotifyOption::DoPersist;
5952 if self.check_free_holding_cells() {
5953 result = NotifyOption::DoPersist;
5955 if self.maybe_generate_initial_closing_signed() {
5956 result = NotifyOption::DoPersist;
5959 let mut pending_events = Vec::new();
5960 let per_peer_state = self.per_peer_state.read().unwrap();
5961 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5962 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5963 let peer_state = &mut *peer_state_lock;
5964 if peer_state.pending_msg_events.len() > 0 {
5965 pending_events.append(&mut peer_state.pending_msg_events);
5969 if !pending_events.is_empty() {
5970 events.replace(pending_events);
5979 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5981 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5982 T::Target: BroadcasterInterface,
5983 ES::Target: EntropySource,
5984 NS::Target: NodeSigner,
5985 SP::Target: SignerProvider,
5986 F::Target: FeeEstimator,
5990 /// Processes events that must be periodically handled.
5992 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5993 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5994 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5996 process_events_body!(self, ev, handler.handle_event(ev));
6000 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
6002 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6003 T::Target: BroadcasterInterface,
6004 ES::Target: EntropySource,
6005 NS::Target: NodeSigner,
6006 SP::Target: SignerProvider,
6007 F::Target: FeeEstimator,
6011 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
6013 let best_block = self.best_block.read().unwrap();
6014 assert_eq!(best_block.block_hash(), header.prev_blockhash,
6015 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
6016 assert_eq!(best_block.height(), height - 1,
6017 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
6020 self.transactions_confirmed(header, txdata, height);
6021 self.best_block_updated(header, height);
6024 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
6025 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6026 let new_height = height - 1;
6028 let mut best_block = self.best_block.write().unwrap();
6029 assert_eq!(best_block.block_hash(), header.block_hash(),
6030 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
6031 assert_eq!(best_block.height(), height,
6032 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
6033 *best_block = BestBlock::new(header.prev_blockhash, new_height)
6036 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6040 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
6042 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6043 T::Target: BroadcasterInterface,
6044 ES::Target: EntropySource,
6045 NS::Target: NodeSigner,
6046 SP::Target: SignerProvider,
6047 F::Target: FeeEstimator,
6051 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
6052 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6053 // during initialization prior to the chain_monitor being fully configured in some cases.
6054 // See the docs for `ChannelManagerReadArgs` for more.
6056 let block_hash = header.block_hash();
6057 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
6059 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6060 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
6061 .map(|(a, b)| (a, Vec::new(), b)));
6063 let last_best_block_height = self.best_block.read().unwrap().height();
6064 if height < last_best_block_height {
6065 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
6066 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6070 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
6071 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6072 // during initialization prior to the chain_monitor being fully configured in some cases.
6073 // See the docs for `ChannelManagerReadArgs` for more.
6075 let block_hash = header.block_hash();
6076 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
6078 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6080 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
6082 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6084 macro_rules! max_time {
6085 ($timestamp: expr) => {
6087 // Update $timestamp to be the max of its current value and the block
6088 // timestamp. This should keep us close to the current time without relying on
6089 // having an explicit local time source.
6090 // Just in case we end up in a race, we loop until we either successfully
6091 // update $timestamp or decide we don't need to.
6092 let old_serial = $timestamp.load(Ordering::Acquire);
6093 if old_serial >= header.time as usize { break; }
6094 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
6100 max_time!(self.highest_seen_timestamp);
6101 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
6102 payment_secrets.retain(|_, inbound_payment| {
6103 inbound_payment.expiry_time > header.time as u64
6107 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
6108 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
6109 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
6110 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6111 let peer_state = &mut *peer_state_lock;
6112 for chan in peer_state.channel_by_id.values() {
6113 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
6114 res.push((funding_txo.txid, Some(block_hash)));
6121 fn transaction_unconfirmed(&self, txid: &Txid) {
6122 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6123 self.do_chain_event(None, |channel| {
6124 if let Some(funding_txo) = channel.get_funding_txo() {
6125 if funding_txo.txid == *txid {
6126 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
6127 } else { Ok((None, Vec::new(), None)) }
6128 } else { Ok((None, Vec::new(), None)) }
6133 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
6135 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6136 T::Target: BroadcasterInterface,
6137 ES::Target: EntropySource,
6138 NS::Target: NodeSigner,
6139 SP::Target: SignerProvider,
6140 F::Target: FeeEstimator,
6144 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
6145 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
6147 fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
6148 (&self, height_opt: Option<u32>, f: FN) {
6149 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6150 // during initialization prior to the chain_monitor being fully configured in some cases.
6151 // See the docs for `ChannelManagerReadArgs` for more.
6153 let mut failed_channels = Vec::new();
6154 let mut timed_out_htlcs = Vec::new();
6156 let per_peer_state = self.per_peer_state.read().unwrap();
6157 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6158 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6159 let peer_state = &mut *peer_state_lock;
6160 let pending_msg_events = &mut peer_state.pending_msg_events;
6161 peer_state.channel_by_id.retain(|_, channel| {
6162 let res = f(channel);
6163 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
6164 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
6165 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
6166 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
6167 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
6169 if let Some(channel_ready) = channel_ready_opt {
6170 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
6171 if channel.is_usable() {
6172 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
6173 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
6174 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6175 node_id: channel.get_counterparty_node_id(),
6180 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
6185 let mut pending_events = self.pending_events.lock().unwrap();
6186 emit_channel_ready_event!(pending_events, channel);
6189 if let Some(announcement_sigs) = announcement_sigs {
6190 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
6191 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6192 node_id: channel.get_counterparty_node_id(),
6193 msg: announcement_sigs,
6195 if let Some(height) = height_opt {
6196 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
6197 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6199 // Note that announcement_signatures fails if the channel cannot be announced,
6200 // so get_channel_update_for_broadcast will never fail by the time we get here.
6201 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
6206 if channel.is_our_channel_ready() {
6207 if let Some(real_scid) = channel.get_short_channel_id() {
6208 // If we sent a 0conf channel_ready, and now have an SCID, we add it
6209 // to the short_to_chan_info map here. Note that we check whether we
6210 // can relay using the real SCID at relay-time (i.e.
6211 // enforce option_scid_alias then), and if the funding tx is ever
6212 // un-confirmed we force-close the channel, ensuring short_to_chan_info
6213 // is always consistent.
6214 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
6215 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
6216 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
6217 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
6218 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
6221 } else if let Err(reason) = res {
6222 update_maps_on_chan_removal!(self, channel);
6223 // It looks like our counterparty went on-chain or funding transaction was
6224 // reorged out of the main chain. Close the channel.
6225 failed_channels.push(channel.force_shutdown(true));
6226 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
6227 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6231 let reason_message = format!("{}", reason);
6232 self.issue_channel_close_events(channel, reason);
6233 pending_msg_events.push(events::MessageSendEvent::HandleError {
6234 node_id: channel.get_counterparty_node_id(),
6235 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
6236 channel_id: channel.channel_id(),
6237 data: reason_message,
6247 if let Some(height) = height_opt {
6248 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
6249 payment.htlcs.retain(|htlc| {
6250 // If height is approaching the number of blocks we think it takes us to get
6251 // our commitment transaction confirmed before the HTLC expires, plus the
6252 // number of blocks we generally consider it to take to do a commitment update,
6253 // just give up on it and fail the HTLC.
6254 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
6255 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6256 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
6258 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
6259 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
6260 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6264 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6267 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6268 intercepted_htlcs.retain(|_, htlc| {
6269 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6270 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6271 short_channel_id: htlc.prev_short_channel_id,
6272 htlc_id: htlc.prev_htlc_id,
6273 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6274 phantom_shared_secret: None,
6275 outpoint: htlc.prev_funding_outpoint,
6278 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6279 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6280 _ => unreachable!(),
6282 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6283 HTLCFailReason::from_failure_code(0x2000 | 2),
6284 HTLCDestination::InvalidForward { requested_forward_scid }));
6285 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6291 self.handle_init_event_channel_failures(failed_channels);
6293 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6294 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6298 /// Gets a [`Future`] that completes when this [`ChannelManager`] needs to be persisted.
6300 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
6301 /// [`ChannelManager`] and should instead register actions to be taken later.
6303 pub fn get_persistable_update_future(&self) -> Future {
6304 self.persistence_notifier.get_future()
6307 #[cfg(any(test, feature = "_test_utils"))]
6308 pub fn get_persistence_condvar_value(&self) -> bool {
6309 self.persistence_notifier.notify_pending()
6312 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6313 /// [`chain::Confirm`] interfaces.
6314 pub fn current_best_block(&self) -> BestBlock {
6315 self.best_block.read().unwrap().clone()
6318 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6319 /// [`ChannelManager`].
6320 pub fn node_features(&self) -> NodeFeatures {
6321 provided_node_features(&self.default_configuration)
6324 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6325 /// [`ChannelManager`].
6327 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6328 /// or not. Thus, this method is not public.
6329 #[cfg(any(feature = "_test_utils", test))]
6330 pub fn invoice_features(&self) -> InvoiceFeatures {
6331 provided_invoice_features(&self.default_configuration)
6334 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6335 /// [`ChannelManager`].
6336 pub fn channel_features(&self) -> ChannelFeatures {
6337 provided_channel_features(&self.default_configuration)
6340 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6341 /// [`ChannelManager`].
6342 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6343 provided_channel_type_features(&self.default_configuration)
6346 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6347 /// [`ChannelManager`].
6348 pub fn init_features(&self) -> InitFeatures {
6349 provided_init_features(&self.default_configuration)
6353 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6354 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6356 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6357 T::Target: BroadcasterInterface,
6358 ES::Target: EntropySource,
6359 NS::Target: NodeSigner,
6360 SP::Target: SignerProvider,
6361 F::Target: FeeEstimator,
6365 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6366 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6367 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6370 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6371 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6372 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6375 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6376 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6377 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6380 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6381 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6382 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6385 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6386 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6387 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6390 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6391 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6392 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6395 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6396 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6397 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6400 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6401 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6402 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6405 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6406 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6407 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6410 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6411 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6412 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6415 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6416 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6417 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6420 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6421 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6422 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6425 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6426 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6427 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6430 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6431 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6432 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6435 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6436 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6437 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6440 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6441 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6442 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6445 NotifyOption::SkipPersist
6450 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6451 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6452 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6455 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6456 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6457 let mut failed_channels = Vec::new();
6458 let mut per_peer_state = self.per_peer_state.write().unwrap();
6460 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6461 log_pubkey!(counterparty_node_id));
6462 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6463 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6464 let peer_state = &mut *peer_state_lock;
6465 let pending_msg_events = &mut peer_state.pending_msg_events;
6466 peer_state.channel_by_id.retain(|_, chan| {
6467 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6468 if chan.is_shutdown() {
6469 update_maps_on_chan_removal!(self, chan);
6470 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6475 pending_msg_events.retain(|msg| {
6477 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6478 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6479 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6480 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6481 &events::MessageSendEvent::SendChannelReady { .. } => false,
6482 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6483 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6484 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6485 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6486 &events::MessageSendEvent::SendShutdown { .. } => false,
6487 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6488 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6489 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6490 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6491 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6492 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6493 &events::MessageSendEvent::HandleError { .. } => false,
6494 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6495 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6496 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6497 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6500 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6501 peer_state.is_connected = false;
6502 peer_state.ok_to_remove(true)
6503 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6506 per_peer_state.remove(counterparty_node_id);
6508 mem::drop(per_peer_state);
6510 for failure in failed_channels.drain(..) {
6511 self.finish_force_close_channel(failure);
6515 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6516 if !init_msg.features.supports_static_remote_key() {
6517 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6521 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6523 // If we have too many peers connected which don't have funded channels, disconnect the
6524 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6525 // unfunded channels taking up space in memory for disconnected peers, we still let new
6526 // peers connect, but we'll reject new channels from them.
6527 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6528 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6531 let mut peer_state_lock = self.per_peer_state.write().unwrap();
6532 match peer_state_lock.entry(counterparty_node_id.clone()) {
6533 hash_map::Entry::Vacant(e) => {
6534 if inbound_peer_limited {
6537 e.insert(Mutex::new(PeerState {
6538 channel_by_id: HashMap::new(),
6539 latest_features: init_msg.features.clone(),
6540 pending_msg_events: Vec::new(),
6541 monitor_update_blocked_actions: BTreeMap::new(),
6545 hash_map::Entry::Occupied(e) => {
6546 let mut peer_state = e.get().lock().unwrap();
6547 peer_state.latest_features = init_msg.features.clone();
6549 let best_block_height = self.best_block.read().unwrap().height();
6550 if inbound_peer_limited &&
6551 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6552 peer_state.channel_by_id.len()
6557 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6558 peer_state.is_connected = true;
6563 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6565 let per_peer_state = self.per_peer_state.read().unwrap();
6566 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6567 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6568 let peer_state = &mut *peer_state_lock;
6569 let pending_msg_events = &mut peer_state.pending_msg_events;
6570 peer_state.channel_by_id.retain(|_, chan| {
6571 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6572 if !chan.have_received_message() {
6573 // If we created this (outbound) channel while we were disconnected from the
6574 // peer we probably failed to send the open_channel message, which is now
6575 // lost. We can't have had anything pending related to this channel, so we just
6579 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6580 node_id: chan.get_counterparty_node_id(),
6581 msg: chan.get_channel_reestablish(&self.logger),
6586 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6587 if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6588 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6589 pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6590 node_id: *counterparty_node_id,
6599 //TODO: Also re-broadcast announcement_signatures
6603 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6604 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6606 if msg.channel_id == [0; 32] {
6607 let channel_ids: Vec<[u8; 32]> = {
6608 let per_peer_state = self.per_peer_state.read().unwrap();
6609 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6610 if peer_state_mutex_opt.is_none() { return; }
6611 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6612 let peer_state = &mut *peer_state_lock;
6613 peer_state.channel_by_id.keys().cloned().collect()
6615 for channel_id in channel_ids {
6616 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6617 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6621 // First check if we can advance the channel type and try again.
6622 let per_peer_state = self.per_peer_state.read().unwrap();
6623 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6624 if peer_state_mutex_opt.is_none() { return; }
6625 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6626 let peer_state = &mut *peer_state_lock;
6627 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6628 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6629 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6630 node_id: *counterparty_node_id,
6638 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6639 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6643 fn provided_node_features(&self) -> NodeFeatures {
6644 provided_node_features(&self.default_configuration)
6647 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6648 provided_init_features(&self.default_configuration)
6652 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6653 /// [`ChannelManager`].
6654 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6655 provided_init_features(config).to_context()
6658 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6659 /// [`ChannelManager`].
6661 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6662 /// or not. Thus, this method is not public.
6663 #[cfg(any(feature = "_test_utils", test))]
6664 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6665 provided_init_features(config).to_context()
6668 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6669 /// [`ChannelManager`].
6670 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6671 provided_init_features(config).to_context()
6674 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6675 /// [`ChannelManager`].
6676 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6677 ChannelTypeFeatures::from_init(&provided_init_features(config))
6680 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6681 /// [`ChannelManager`].
6682 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6683 // Note that if new features are added here which other peers may (eventually) require, we
6684 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
6685 // [`ErroringMessageHandler`].
6686 let mut features = InitFeatures::empty();
6687 features.set_data_loss_protect_optional();
6688 features.set_upfront_shutdown_script_optional();
6689 features.set_variable_length_onion_required();
6690 features.set_static_remote_key_required();
6691 features.set_payment_secret_required();
6692 features.set_basic_mpp_optional();
6693 features.set_wumbo_optional();
6694 features.set_shutdown_any_segwit_optional();
6695 features.set_channel_type_optional();
6696 features.set_scid_privacy_optional();
6697 features.set_zero_conf_optional();
6699 { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6700 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6701 features.set_anchors_zero_fee_htlc_tx_optional();
6707 const SERIALIZATION_VERSION: u8 = 1;
6708 const MIN_SERIALIZATION_VERSION: u8 = 1;
6710 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6711 (2, fee_base_msat, required),
6712 (4, fee_proportional_millionths, required),
6713 (6, cltv_expiry_delta, required),
6716 impl_writeable_tlv_based!(ChannelCounterparty, {
6717 (2, node_id, required),
6718 (4, features, required),
6719 (6, unspendable_punishment_reserve, required),
6720 (8, forwarding_info, option),
6721 (9, outbound_htlc_minimum_msat, option),
6722 (11, outbound_htlc_maximum_msat, option),
6725 impl Writeable for ChannelDetails {
6726 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6727 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6728 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6729 let user_channel_id_low = self.user_channel_id as u64;
6730 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6731 write_tlv_fields!(writer, {
6732 (1, self.inbound_scid_alias, option),
6733 (2, self.channel_id, required),
6734 (3, self.channel_type, option),
6735 (4, self.counterparty, required),
6736 (5, self.outbound_scid_alias, option),
6737 (6, self.funding_txo, option),
6738 (7, self.config, option),
6739 (8, self.short_channel_id, option),
6740 (9, self.confirmations, option),
6741 (10, self.channel_value_satoshis, required),
6742 (12, self.unspendable_punishment_reserve, option),
6743 (14, user_channel_id_low, required),
6744 (16, self.balance_msat, required),
6745 (18, self.outbound_capacity_msat, required),
6746 // Note that by the time we get past the required read above, outbound_capacity_msat will be
6747 // filled in, so we can safely unwrap it here.
6748 (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6749 (20, self.inbound_capacity_msat, required),
6750 (22, self.confirmations_required, option),
6751 (24, self.force_close_spend_delay, option),
6752 (26, self.is_outbound, required),
6753 (28, self.is_channel_ready, required),
6754 (30, self.is_usable, required),
6755 (32, self.is_public, required),
6756 (33, self.inbound_htlc_minimum_msat, option),
6757 (35, self.inbound_htlc_maximum_msat, option),
6758 (37, user_channel_id_high_opt, option),
6759 (39, self.feerate_sat_per_1000_weight, option),
6765 impl Readable for ChannelDetails {
6766 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6767 _init_and_read_tlv_fields!(reader, {
6768 (1, inbound_scid_alias, option),
6769 (2, channel_id, required),
6770 (3, channel_type, option),
6771 (4, counterparty, required),
6772 (5, outbound_scid_alias, option),
6773 (6, funding_txo, option),
6774 (7, config, option),
6775 (8, short_channel_id, option),
6776 (9, confirmations, option),
6777 (10, channel_value_satoshis, required),
6778 (12, unspendable_punishment_reserve, option),
6779 (14, user_channel_id_low, required),
6780 (16, balance_msat, required),
6781 (18, outbound_capacity_msat, required),
6782 // Note that by the time we get past the required read above, outbound_capacity_msat will be
6783 // filled in, so we can safely unwrap it here.
6784 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6785 (20, inbound_capacity_msat, required),
6786 (22, confirmations_required, option),
6787 (24, force_close_spend_delay, option),
6788 (26, is_outbound, required),
6789 (28, is_channel_ready, required),
6790 (30, is_usable, required),
6791 (32, is_public, required),
6792 (33, inbound_htlc_minimum_msat, option),
6793 (35, inbound_htlc_maximum_msat, option),
6794 (37, user_channel_id_high_opt, option),
6795 (39, feerate_sat_per_1000_weight, option),
6798 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6799 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6800 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
6801 let user_channel_id = user_channel_id_low as u128 +
6802 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
6806 channel_id: channel_id.0.unwrap(),
6808 counterparty: counterparty.0.unwrap(),
6809 outbound_scid_alias,
6813 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
6814 unspendable_punishment_reserve,
6816 balance_msat: balance_msat.0.unwrap(),
6817 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
6818 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
6819 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
6820 confirmations_required,
6822 force_close_spend_delay,
6823 is_outbound: is_outbound.0.unwrap(),
6824 is_channel_ready: is_channel_ready.0.unwrap(),
6825 is_usable: is_usable.0.unwrap(),
6826 is_public: is_public.0.unwrap(),
6827 inbound_htlc_minimum_msat,
6828 inbound_htlc_maximum_msat,
6829 feerate_sat_per_1000_weight,
6834 impl_writeable_tlv_based!(PhantomRouteHints, {
6835 (2, channels, vec_type),
6836 (4, phantom_scid, required),
6837 (6, real_node_pubkey, required),
6840 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6842 (0, onion_packet, required),
6843 (2, short_channel_id, required),
6846 (0, payment_data, required),
6847 (1, phantom_shared_secret, option),
6848 (2, incoming_cltv_expiry, required),
6849 (3, payment_metadata, option),
6851 (2, ReceiveKeysend) => {
6852 (0, payment_preimage, required),
6853 (2, incoming_cltv_expiry, required),
6854 (3, payment_metadata, option),
6858 impl_writeable_tlv_based!(PendingHTLCInfo, {
6859 (0, routing, required),
6860 (2, incoming_shared_secret, required),
6861 (4, payment_hash, required),
6862 (6, outgoing_amt_msat, required),
6863 (8, outgoing_cltv_value, required),
6864 (9, incoming_amt_msat, option),
6868 impl Writeable for HTLCFailureMsg {
6869 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6871 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6873 channel_id.write(writer)?;
6874 htlc_id.write(writer)?;
6875 reason.write(writer)?;
6877 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6878 channel_id, htlc_id, sha256_of_onion, failure_code
6881 channel_id.write(writer)?;
6882 htlc_id.write(writer)?;
6883 sha256_of_onion.write(writer)?;
6884 failure_code.write(writer)?;
6891 impl Readable for HTLCFailureMsg {
6892 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6893 let id: u8 = Readable::read(reader)?;
6896 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6897 channel_id: Readable::read(reader)?,
6898 htlc_id: Readable::read(reader)?,
6899 reason: Readable::read(reader)?,
6903 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6904 channel_id: Readable::read(reader)?,
6905 htlc_id: Readable::read(reader)?,
6906 sha256_of_onion: Readable::read(reader)?,
6907 failure_code: Readable::read(reader)?,
6910 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6911 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6912 // messages contained in the variants.
6913 // In version 0.0.101, support for reading the variants with these types was added, and
6914 // we should migrate to writing these variants when UpdateFailHTLC or
6915 // UpdateFailMalformedHTLC get TLV fields.
6917 let length: BigSize = Readable::read(reader)?;
6918 let mut s = FixedLengthReader::new(reader, length.0);
6919 let res = Readable::read(&mut s)?;
6920 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6921 Ok(HTLCFailureMsg::Relay(res))
6924 let length: BigSize = Readable::read(reader)?;
6925 let mut s = FixedLengthReader::new(reader, length.0);
6926 let res = Readable::read(&mut s)?;
6927 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6928 Ok(HTLCFailureMsg::Malformed(res))
6930 _ => Err(DecodeError::UnknownRequiredFeature),
6935 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6940 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6941 (0, short_channel_id, required),
6942 (1, phantom_shared_secret, option),
6943 (2, outpoint, required),
6944 (4, htlc_id, required),
6945 (6, incoming_packet_shared_secret, required)
6948 impl Writeable for ClaimableHTLC {
6949 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6950 let (payment_data, keysend_preimage) = match &self.onion_payload {
6951 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6952 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6954 write_tlv_fields!(writer, {
6955 (0, self.prev_hop, required),
6956 (1, self.total_msat, required),
6957 (2, self.value, required),
6958 (3, self.sender_intended_value, required),
6959 (4, payment_data, option),
6960 (5, self.total_value_received, option),
6961 (6, self.cltv_expiry, required),
6962 (8, keysend_preimage, option),
6968 impl Readable for ClaimableHTLC {
6969 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6970 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
6972 let mut sender_intended_value = None;
6973 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6974 let mut cltv_expiry = 0;
6975 let mut total_value_received = None;
6976 let mut total_msat = None;
6977 let mut keysend_preimage: Option<PaymentPreimage> = None;
6978 read_tlv_fields!(reader, {
6979 (0, prev_hop, required),
6980 (1, total_msat, option),
6981 (2, value, required),
6982 (3, sender_intended_value, option),
6983 (4, payment_data, option),
6984 (5, total_value_received, option),
6985 (6, cltv_expiry, required),
6986 (8, keysend_preimage, option)
6988 let onion_payload = match keysend_preimage {
6990 if payment_data.is_some() {
6991 return Err(DecodeError::InvalidValue)
6993 if total_msat.is_none() {
6994 total_msat = Some(value);
6996 OnionPayload::Spontaneous(p)
6999 if total_msat.is_none() {
7000 if payment_data.is_none() {
7001 return Err(DecodeError::InvalidValue)
7003 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
7005 OnionPayload::Invoice { _legacy_hop_data: payment_data }
7009 prev_hop: prev_hop.0.unwrap(),
7012 sender_intended_value: sender_intended_value.unwrap_or(value),
7013 total_value_received,
7014 total_msat: total_msat.unwrap(),
7021 impl Readable for HTLCSource {
7022 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7023 let id: u8 = Readable::read(reader)?;
7026 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
7027 let mut first_hop_htlc_msat: u64 = 0;
7028 let mut path_hops: Option<Vec<RouteHop>> = Some(Vec::new());
7029 let mut payment_id = None;
7030 let mut payment_params: Option<PaymentParameters> = None;
7031 let mut blinded_tail: Option<BlindedTail> = None;
7032 read_tlv_fields!(reader, {
7033 (0, session_priv, required),
7034 (1, payment_id, option),
7035 (2, first_hop_htlc_msat, required),
7036 (4, path_hops, vec_type),
7037 (5, payment_params, (option: ReadableArgs, 0)),
7038 (6, blinded_tail, option),
7040 if payment_id.is_none() {
7041 // For backwards compat, if there was no payment_id written, use the session_priv bytes
7043 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
7045 let path = Path { hops: path_hops.ok_or(DecodeError::InvalidValue)?, blinded_tail };
7046 if path.hops.len() == 0 {
7047 return Err(DecodeError::InvalidValue);
7049 if let Some(params) = payment_params.as_mut() {
7050 if params.final_cltv_expiry_delta == 0 {
7051 params.final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
7054 Ok(HTLCSource::OutboundRoute {
7055 session_priv: session_priv.0.unwrap(),
7056 first_hop_htlc_msat,
7058 payment_id: payment_id.unwrap(),
7061 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
7062 _ => Err(DecodeError::UnknownRequiredFeature),
7067 impl Writeable for HTLCSource {
7068 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
7070 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
7072 let payment_id_opt = Some(payment_id);
7073 write_tlv_fields!(writer, {
7074 (0, session_priv, required),
7075 (1, payment_id_opt, option),
7076 (2, first_hop_htlc_msat, required),
7077 // 3 was previously used to write a PaymentSecret for the payment.
7078 (4, path.hops, vec_type),
7079 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
7080 (6, path.blinded_tail, option),
7083 HTLCSource::PreviousHopData(ref field) => {
7085 field.write(writer)?;
7092 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
7093 (0, forward_info, required),
7094 (1, prev_user_channel_id, (default_value, 0)),
7095 (2, prev_short_channel_id, required),
7096 (4, prev_htlc_id, required),
7097 (6, prev_funding_outpoint, required),
7100 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
7102 (0, htlc_id, required),
7103 (2, err_packet, required),
7108 impl_writeable_tlv_based!(PendingInboundPayment, {
7109 (0, payment_secret, required),
7110 (2, expiry_time, required),
7111 (4, user_payment_id, required),
7112 (6, payment_preimage, required),
7113 (8, min_value_msat, required),
7116 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
7118 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7119 T::Target: BroadcasterInterface,
7120 ES::Target: EntropySource,
7121 NS::Target: NodeSigner,
7122 SP::Target: SignerProvider,
7123 F::Target: FeeEstimator,
7127 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7128 let _consistency_lock = self.total_consistency_lock.write().unwrap();
7130 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
7132 self.genesis_hash.write(writer)?;
7134 let best_block = self.best_block.read().unwrap();
7135 best_block.height().write(writer)?;
7136 best_block.block_hash().write(writer)?;
7139 let mut serializable_peer_count: u64 = 0;
7141 let per_peer_state = self.per_peer_state.read().unwrap();
7142 let mut unfunded_channels = 0;
7143 let mut number_of_channels = 0;
7144 for (_, peer_state_mutex) in per_peer_state.iter() {
7145 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7146 let peer_state = &mut *peer_state_lock;
7147 if !peer_state.ok_to_remove(false) {
7148 serializable_peer_count += 1;
7150 number_of_channels += peer_state.channel_by_id.len();
7151 for (_, channel) in peer_state.channel_by_id.iter() {
7152 if !channel.is_funding_initiated() {
7153 unfunded_channels += 1;
7158 ((number_of_channels - unfunded_channels) as u64).write(writer)?;
7160 for (_, peer_state_mutex) in per_peer_state.iter() {
7161 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7162 let peer_state = &mut *peer_state_lock;
7163 for (_, channel) in peer_state.channel_by_id.iter() {
7164 if channel.is_funding_initiated() {
7165 channel.write(writer)?;
7172 let forward_htlcs = self.forward_htlcs.lock().unwrap();
7173 (forward_htlcs.len() as u64).write(writer)?;
7174 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
7175 short_channel_id.write(writer)?;
7176 (pending_forwards.len() as u64).write(writer)?;
7177 for forward in pending_forwards {
7178 forward.write(writer)?;
7183 let per_peer_state = self.per_peer_state.write().unwrap();
7185 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
7186 let claimable_payments = self.claimable_payments.lock().unwrap();
7187 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
7189 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
7190 let mut htlc_onion_fields: Vec<&_> = Vec::new();
7191 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
7192 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
7193 payment_hash.write(writer)?;
7194 (payment.htlcs.len() as u64).write(writer)?;
7195 for htlc in payment.htlcs.iter() {
7196 htlc.write(writer)?;
7198 htlc_purposes.push(&payment.purpose);
7199 htlc_onion_fields.push(&payment.onion_fields);
7202 let mut monitor_update_blocked_actions_per_peer = None;
7203 let mut peer_states = Vec::new();
7204 for (_, peer_state_mutex) in per_peer_state.iter() {
7205 // Because we're holding the owning `per_peer_state` write lock here there's no chance
7206 // of a lockorder violation deadlock - no other thread can be holding any
7207 // per_peer_state lock at all.
7208 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
7211 (serializable_peer_count).write(writer)?;
7212 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
7213 // Peers which we have no channels to should be dropped once disconnected. As we
7214 // disconnect all peers when shutting down and serializing the ChannelManager, we
7215 // consider all peers as disconnected here. There's therefore no need write peers with
7217 if !peer_state.ok_to_remove(false) {
7218 peer_pubkey.write(writer)?;
7219 peer_state.latest_features.write(writer)?;
7220 if !peer_state.monitor_update_blocked_actions.is_empty() {
7221 monitor_update_blocked_actions_per_peer
7222 .get_or_insert_with(Vec::new)
7223 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
7228 let events = self.pending_events.lock().unwrap();
7229 (events.len() as u64).write(writer)?;
7230 for event in events.iter() {
7231 event.write(writer)?;
7234 let background_events = self.pending_background_events.lock().unwrap();
7235 (background_events.len() as u64).write(writer)?;
7236 for event in background_events.iter() {
7238 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
7240 funding_txo.write(writer)?;
7241 monitor_update.write(writer)?;
7246 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
7247 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
7248 // likely to be identical.
7249 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7250 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7252 (pending_inbound_payments.len() as u64).write(writer)?;
7253 for (hash, pending_payment) in pending_inbound_payments.iter() {
7254 hash.write(writer)?;
7255 pending_payment.write(writer)?;
7258 // For backwards compat, write the session privs and their total length.
7259 let mut num_pending_outbounds_compat: u64 = 0;
7260 for (_, outbound) in pending_outbound_payments.iter() {
7261 if !outbound.is_fulfilled() && !outbound.abandoned() {
7262 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7265 num_pending_outbounds_compat.write(writer)?;
7266 for (_, outbound) in pending_outbound_payments.iter() {
7268 PendingOutboundPayment::Legacy { session_privs } |
7269 PendingOutboundPayment::Retryable { session_privs, .. } => {
7270 for session_priv in session_privs.iter() {
7271 session_priv.write(writer)?;
7274 PendingOutboundPayment::Fulfilled { .. } => {},
7275 PendingOutboundPayment::Abandoned { .. } => {},
7279 // Encode without retry info for 0.0.101 compatibility.
7280 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7281 for (id, outbound) in pending_outbound_payments.iter() {
7283 PendingOutboundPayment::Legacy { session_privs } |
7284 PendingOutboundPayment::Retryable { session_privs, .. } => {
7285 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7291 let mut pending_intercepted_htlcs = None;
7292 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7293 if our_pending_intercepts.len() != 0 {
7294 pending_intercepted_htlcs = Some(our_pending_intercepts);
7297 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7298 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7299 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7300 // map. Thus, if there are no entries we skip writing a TLV for it.
7301 pending_claiming_payments = None;
7304 write_tlv_fields!(writer, {
7305 (1, pending_outbound_payments_no_retry, required),
7306 (2, pending_intercepted_htlcs, option),
7307 (3, pending_outbound_payments, required),
7308 (4, pending_claiming_payments, option),
7309 (5, self.our_network_pubkey, required),
7310 (6, monitor_update_blocked_actions_per_peer, option),
7311 (7, self.fake_scid_rand_bytes, required),
7312 (9, htlc_purposes, vec_type),
7313 (11, self.probing_cookie_secret, required),
7314 (13, htlc_onion_fields, optional_vec),
7321 /// Arguments for the creation of a ChannelManager that are not deserialized.
7323 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7325 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7326 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7327 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
7328 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7329 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7330 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7331 /// same way you would handle a [`chain::Filter`] call using
7332 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7333 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7334 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7335 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7336 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7337 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7339 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7340 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7342 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7343 /// call any other methods on the newly-deserialized [`ChannelManager`].
7345 /// Note that because some channels may be closed during deserialization, it is critical that you
7346 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7347 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7348 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7349 /// not force-close the same channels but consider them live), you may end up revoking a state for
7350 /// which you've already broadcasted the transaction.
7352 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7353 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7355 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7356 T::Target: BroadcasterInterface,
7357 ES::Target: EntropySource,
7358 NS::Target: NodeSigner,
7359 SP::Target: SignerProvider,
7360 F::Target: FeeEstimator,
7364 /// A cryptographically secure source of entropy.
7365 pub entropy_source: ES,
7367 /// A signer that is able to perform node-scoped cryptographic operations.
7368 pub node_signer: NS,
7370 /// The keys provider which will give us relevant keys. Some keys will be loaded during
7371 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7373 pub signer_provider: SP,
7375 /// The fee_estimator for use in the ChannelManager in the future.
7377 /// No calls to the FeeEstimator will be made during deserialization.
7378 pub fee_estimator: F,
7379 /// The chain::Watch for use in the ChannelManager in the future.
7381 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7382 /// you have deserialized ChannelMonitors separately and will add them to your
7383 /// chain::Watch after deserializing this ChannelManager.
7384 pub chain_monitor: M,
7386 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7387 /// used to broadcast the latest local commitment transactions of channels which must be
7388 /// force-closed during deserialization.
7389 pub tx_broadcaster: T,
7390 /// The router which will be used in the ChannelManager in the future for finding routes
7391 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7393 /// No calls to the router will be made during deserialization.
7395 /// The Logger for use in the ChannelManager and which may be used to log information during
7396 /// deserialization.
7398 /// Default settings used for new channels. Any existing channels will continue to use the
7399 /// runtime settings which were stored when the ChannelManager was serialized.
7400 pub default_config: UserConfig,
7402 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7403 /// value.get_funding_txo() should be the key).
7405 /// If a monitor is inconsistent with the channel state during deserialization the channel will
7406 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7407 /// is true for missing channels as well. If there is a monitor missing for which we find
7408 /// channel data Err(DecodeError::InvalidValue) will be returned.
7410 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7413 /// This is not exported to bindings users because we have no HashMap bindings
7414 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7417 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7418 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7420 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7421 T::Target: BroadcasterInterface,
7422 ES::Target: EntropySource,
7423 NS::Target: NodeSigner,
7424 SP::Target: SignerProvider,
7425 F::Target: FeeEstimator,
7429 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7430 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7431 /// populate a HashMap directly from C.
7432 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7433 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7435 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7436 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7441 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7442 // SipmleArcChannelManager type:
7443 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7444 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7446 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7447 T::Target: BroadcasterInterface,
7448 ES::Target: EntropySource,
7449 NS::Target: NodeSigner,
7450 SP::Target: SignerProvider,
7451 F::Target: FeeEstimator,
7455 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7456 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7457 Ok((blockhash, Arc::new(chan_manager)))
7461 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7462 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7464 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7465 T::Target: BroadcasterInterface,
7466 ES::Target: EntropySource,
7467 NS::Target: NodeSigner,
7468 SP::Target: SignerProvider,
7469 F::Target: FeeEstimator,
7473 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7474 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7476 let genesis_hash: BlockHash = Readable::read(reader)?;
7477 let best_block_height: u32 = Readable::read(reader)?;
7478 let best_block_hash: BlockHash = Readable::read(reader)?;
7480 let mut failed_htlcs = Vec::new();
7482 let channel_count: u64 = Readable::read(reader)?;
7483 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7484 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7485 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7486 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7487 let mut channel_closures = Vec::new();
7488 let mut pending_background_events = Vec::new();
7489 for _ in 0..channel_count {
7490 let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7491 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7493 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7494 funding_txo_set.insert(funding_txo.clone());
7495 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7496 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
7497 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
7498 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
7499 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
7500 // If the channel is ahead of the monitor, return InvalidValue:
7501 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7502 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7503 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7504 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7505 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7506 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7507 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7508 return Err(DecodeError::InvalidValue);
7509 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7510 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7511 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7512 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7513 // But if the channel is behind of the monitor, close the channel:
7514 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7515 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7516 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7517 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7518 let (monitor_update, mut new_failed_htlcs) = channel.force_shutdown(true);
7519 if let Some(monitor_update) = monitor_update {
7520 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate(monitor_update));
7522 failed_htlcs.append(&mut new_failed_htlcs);
7523 channel_closures.push(events::Event::ChannelClosed {
7524 channel_id: channel.channel_id(),
7525 user_channel_id: channel.get_user_id(),
7526 reason: ClosureReason::OutdatedChannelManager
7528 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7529 let mut found_htlc = false;
7530 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7531 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7534 // If we have some HTLCs in the channel which are not present in the newer
7535 // ChannelMonitor, they have been removed and should be failed back to
7536 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7537 // were actually claimed we'd have generated and ensured the previous-hop
7538 // claim update ChannelMonitor updates were persisted prior to persising
7539 // the ChannelMonitor update for the forward leg, so attempting to fail the
7540 // backwards leg of the HTLC will simply be rejected.
7541 log_info!(args.logger,
7542 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7543 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7544 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7548 log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7549 if let Some(short_channel_id) = channel.get_short_channel_id() {
7550 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7552 if channel.is_funding_initiated() {
7553 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7555 match peer_channels.entry(channel.get_counterparty_node_id()) {
7556 hash_map::Entry::Occupied(mut entry) => {
7557 let by_id_map = entry.get_mut();
7558 by_id_map.insert(channel.channel_id(), channel);
7560 hash_map::Entry::Vacant(entry) => {
7561 let mut by_id_map = HashMap::new();
7562 by_id_map.insert(channel.channel_id(), channel);
7563 entry.insert(by_id_map);
7567 } else if channel.is_awaiting_initial_mon_persist() {
7568 // If we were persisted and shut down while the initial ChannelMonitor persistence
7569 // was in-progress, we never broadcasted the funding transaction and can still
7570 // safely discard the channel.
7571 let _ = channel.force_shutdown(false);
7572 channel_closures.push(events::Event::ChannelClosed {
7573 channel_id: channel.channel_id(),
7574 user_channel_id: channel.get_user_id(),
7575 reason: ClosureReason::DisconnectedPeer,
7578 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7579 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7580 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7581 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7582 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7583 return Err(DecodeError::InvalidValue);
7587 for (funding_txo, _) in args.channel_monitors.iter() {
7588 if !funding_txo_set.contains(funding_txo) {
7589 let monitor_update = ChannelMonitorUpdate {
7590 update_id: CLOSED_CHANNEL_UPDATE_ID,
7591 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
7593 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate((*funding_txo, monitor_update)));
7597 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7598 let forward_htlcs_count: u64 = Readable::read(reader)?;
7599 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7600 for _ in 0..forward_htlcs_count {
7601 let short_channel_id = Readable::read(reader)?;
7602 let pending_forwards_count: u64 = Readable::read(reader)?;
7603 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7604 for _ in 0..pending_forwards_count {
7605 pending_forwards.push(Readable::read(reader)?);
7607 forward_htlcs.insert(short_channel_id, pending_forwards);
7610 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7611 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7612 for _ in 0..claimable_htlcs_count {
7613 let payment_hash = Readable::read(reader)?;
7614 let previous_hops_len: u64 = Readable::read(reader)?;
7615 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7616 for _ in 0..previous_hops_len {
7617 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7619 claimable_htlcs_list.push((payment_hash, previous_hops));
7622 let peer_count: u64 = Readable::read(reader)?;
7623 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7624 for _ in 0..peer_count {
7625 let peer_pubkey = Readable::read(reader)?;
7626 let peer_state = PeerState {
7627 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7628 latest_features: Readable::read(reader)?,
7629 pending_msg_events: Vec::new(),
7630 monitor_update_blocked_actions: BTreeMap::new(),
7631 is_connected: false,
7633 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7636 let event_count: u64 = Readable::read(reader)?;
7637 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7638 for _ in 0..event_count {
7639 match MaybeReadable::read(reader)? {
7640 Some(event) => pending_events_read.push(event),
7645 let background_event_count: u64 = Readable::read(reader)?;
7646 for _ in 0..background_event_count {
7647 match <u8 as Readable>::read(reader)? {
7649 let (funding_txo, monitor_update): (OutPoint, ChannelMonitorUpdate) = (Readable::read(reader)?, Readable::read(reader)?);
7650 if pending_background_events.iter().find(|e| {
7651 let BackgroundEvent::ClosingMonitorUpdate((pending_funding_txo, pending_monitor_update)) = e;
7652 *pending_funding_txo == funding_txo && *pending_monitor_update == monitor_update
7654 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)));
7657 _ => return Err(DecodeError::InvalidValue),
7661 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7662 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7664 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7665 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7666 for _ in 0..pending_inbound_payment_count {
7667 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7668 return Err(DecodeError::InvalidValue);
7672 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7673 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7674 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7675 for _ in 0..pending_outbound_payments_count_compat {
7676 let session_priv = Readable::read(reader)?;
7677 let payment = PendingOutboundPayment::Legacy {
7678 session_privs: [session_priv].iter().cloned().collect()
7680 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7681 return Err(DecodeError::InvalidValue)
7685 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7686 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7687 let mut pending_outbound_payments = None;
7688 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7689 let mut received_network_pubkey: Option<PublicKey> = None;
7690 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7691 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7692 let mut claimable_htlc_purposes = None;
7693 let mut claimable_htlc_onion_fields = None;
7694 let mut pending_claiming_payments = Some(HashMap::new());
7695 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7696 read_tlv_fields!(reader, {
7697 (1, pending_outbound_payments_no_retry, option),
7698 (2, pending_intercepted_htlcs, option),
7699 (3, pending_outbound_payments, option),
7700 (4, pending_claiming_payments, option),
7701 (5, received_network_pubkey, option),
7702 (6, monitor_update_blocked_actions_per_peer, option),
7703 (7, fake_scid_rand_bytes, option),
7704 (9, claimable_htlc_purposes, vec_type),
7705 (11, probing_cookie_secret, option),
7706 (13, claimable_htlc_onion_fields, optional_vec),
7708 if fake_scid_rand_bytes.is_none() {
7709 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7712 if probing_cookie_secret.is_none() {
7713 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7716 if !channel_closures.is_empty() {
7717 pending_events_read.append(&mut channel_closures);
7720 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7721 pending_outbound_payments = Some(pending_outbound_payments_compat);
7722 } else if pending_outbound_payments.is_none() {
7723 let mut outbounds = HashMap::new();
7724 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7725 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7727 pending_outbound_payments = Some(outbounds);
7729 let pending_outbounds = OutboundPayments {
7730 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7731 retry_lock: Mutex::new(())
7735 // If we're tracking pending payments, ensure we haven't lost any by looking at the
7736 // ChannelMonitor data for any channels for which we do not have authorative state
7737 // (i.e. those for which we just force-closed above or we otherwise don't have a
7738 // corresponding `Channel` at all).
7739 // This avoids several edge-cases where we would otherwise "forget" about pending
7740 // payments which are still in-flight via their on-chain state.
7741 // We only rebuild the pending payments map if we were most recently serialized by
7743 for (_, monitor) in args.channel_monitors.iter() {
7744 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7745 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
7746 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
7747 if path.hops.is_empty() {
7748 log_error!(args.logger, "Got an empty path for a pending payment");
7749 return Err(DecodeError::InvalidValue);
7752 let path_amt = path.final_value_msat();
7753 let mut session_priv_bytes = [0; 32];
7754 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7755 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
7756 hash_map::Entry::Occupied(mut entry) => {
7757 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7758 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7759 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7761 hash_map::Entry::Vacant(entry) => {
7762 let path_fee = path.fee_msat();
7763 entry.insert(PendingOutboundPayment::Retryable {
7764 retry_strategy: None,
7765 attempts: PaymentAttempts::new(),
7766 payment_params: None,
7767 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7768 payment_hash: htlc.payment_hash,
7769 payment_secret: None, // only used for retries, and we'll never retry on startup
7770 payment_metadata: None, // only used for retries, and we'll never retry on startup
7771 keysend_preimage: None, // only used for retries, and we'll never retry on startup
7772 pending_amt_msat: path_amt,
7773 pending_fee_msat: Some(path_fee),
7774 total_msat: path_amt,
7775 starting_block_height: best_block_height,
7777 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7778 path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes));
7783 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
7785 HTLCSource::PreviousHopData(prev_hop_data) => {
7786 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
7787 info.prev_funding_outpoint == prev_hop_data.outpoint &&
7788 info.prev_htlc_id == prev_hop_data.htlc_id
7790 // The ChannelMonitor is now responsible for this HTLC's
7791 // failure/success and will let us know what its outcome is. If we
7792 // still have an entry for this HTLC in `forward_htlcs` or
7793 // `pending_intercepted_htlcs`, we were apparently not persisted after
7794 // the monitor was when forwarding the payment.
7795 forward_htlcs.retain(|_, forwards| {
7796 forwards.retain(|forward| {
7797 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
7798 if pending_forward_matches_htlc(&htlc_info) {
7799 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
7800 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7805 !forwards.is_empty()
7807 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
7808 if pending_forward_matches_htlc(&htlc_info) {
7809 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
7810 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7811 pending_events_read.retain(|event| {
7812 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
7813 intercepted_id != ev_id
7820 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
7821 if let Some(preimage) = preimage_opt {
7822 let pending_events = Mutex::new(pending_events_read);
7823 // Note that we set `from_onchain` to "false" here,
7824 // deliberately keeping the pending payment around forever.
7825 // Given it should only occur when we have a channel we're
7826 // force-closing for being stale that's okay.
7827 // The alternative would be to wipe the state when claiming,
7828 // generating a `PaymentPathSuccessful` event but regenerating
7829 // it and the `PaymentSent` on every restart until the
7830 // `ChannelMonitor` is removed.
7831 pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
7832 pending_events_read = pending_events.into_inner().unwrap();
7841 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
7842 // If we have pending HTLCs to forward, assume we either dropped a
7843 // `PendingHTLCsForwardable` or the user received it but never processed it as they
7844 // shut down before the timer hit. Either way, set the time_forwardable to a small
7845 // constant as enough time has likely passed that we should simply handle the forwards
7846 // now, or at least after the user gets a chance to reconnect to our peers.
7847 pending_events_read.push(events::Event::PendingHTLCsForwardable {
7848 time_forwardable: Duration::from_secs(2),
7852 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
7853 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7855 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
7856 if let Some(purposes) = claimable_htlc_purposes {
7857 if purposes.len() != claimable_htlcs_list.len() {
7858 return Err(DecodeError::InvalidValue);
7860 if let Some(onion_fields) = claimable_htlc_onion_fields {
7861 if onion_fields.len() != claimable_htlcs_list.len() {
7862 return Err(DecodeError::InvalidValue);
7864 for (purpose, (onion, (payment_hash, htlcs))) in
7865 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
7867 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
7868 purpose, htlcs, onion_fields: onion,
7870 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
7873 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
7874 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
7875 purpose, htlcs, onion_fields: None,
7877 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
7881 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7882 // include a `_legacy_hop_data` in the `OnionPayload`.
7883 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
7884 if htlcs.is_empty() {
7885 return Err(DecodeError::InvalidValue);
7887 let purpose = match &htlcs[0].onion_payload {
7888 OnionPayload::Invoice { _legacy_hop_data } => {
7889 if let Some(hop_data) = _legacy_hop_data {
7890 events::PaymentPurpose::InvoicePayment {
7891 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7892 Some(inbound_payment) => inbound_payment.payment_preimage,
7893 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7894 Ok((payment_preimage, _)) => payment_preimage,
7896 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7897 return Err(DecodeError::InvalidValue);
7901 payment_secret: hop_data.payment_secret,
7903 } else { return Err(DecodeError::InvalidValue); }
7905 OnionPayload::Spontaneous(payment_preimage) =>
7906 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7908 claimable_payments.insert(payment_hash, ClaimablePayment {
7909 purpose, htlcs, onion_fields: None,
7914 let mut secp_ctx = Secp256k1::new();
7915 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
7917 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
7919 Err(()) => return Err(DecodeError::InvalidValue)
7921 if let Some(network_pubkey) = received_network_pubkey {
7922 if network_pubkey != our_network_pubkey {
7923 log_error!(args.logger, "Key that was generated does not match the existing key.");
7924 return Err(DecodeError::InvalidValue);
7928 let mut outbound_scid_aliases = HashSet::new();
7929 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
7930 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7931 let peer_state = &mut *peer_state_lock;
7932 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
7933 if chan.outbound_scid_alias() == 0 {
7934 let mut outbound_scid_alias;
7936 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7937 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
7938 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7940 chan.set_outbound_scid_alias(outbound_scid_alias);
7941 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7942 // Note that in rare cases its possible to hit this while reading an older
7943 // channel if we just happened to pick a colliding outbound alias above.
7944 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7945 return Err(DecodeError::InvalidValue);
7947 if chan.is_usable() {
7948 if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7949 // Note that in rare cases its possible to hit this while reading an older
7950 // channel if we just happened to pick a colliding outbound alias above.
7951 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7952 return Err(DecodeError::InvalidValue);
7958 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7960 for (_, monitor) in args.channel_monitors.iter() {
7961 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7962 if let Some(payment) = claimable_payments.remove(&payment_hash) {
7963 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7964 let mut claimable_amt_msat = 0;
7965 let mut receiver_node_id = Some(our_network_pubkey);
7966 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
7967 if phantom_shared_secret.is_some() {
7968 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
7969 .expect("Failed to get node_id for phantom node recipient");
7970 receiver_node_id = Some(phantom_pubkey)
7972 for claimable_htlc in payment.htlcs {
7973 claimable_amt_msat += claimable_htlc.value;
7975 // Add a holding-cell claim of the payment to the Channel, which should be
7976 // applied ~immediately on peer reconnection. Because it won't generate a
7977 // new commitment transaction we can just provide the payment preimage to
7978 // the corresponding ChannelMonitor and nothing else.
7980 // We do so directly instead of via the normal ChannelMonitor update
7981 // procedure as the ChainMonitor hasn't yet been initialized, implying
7982 // we're not allowed to call it directly yet. Further, we do the update
7983 // without incrementing the ChannelMonitor update ID as there isn't any
7985 // If we were to generate a new ChannelMonitor update ID here and then
7986 // crash before the user finishes block connect we'd end up force-closing
7987 // this channel as well. On the flip side, there's no harm in restarting
7988 // without the new monitor persisted - we'll end up right back here on
7990 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7991 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
7992 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
7993 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7994 let peer_state = &mut *peer_state_lock;
7995 if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
7996 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7999 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
8000 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
8003 pending_events_read.push(events::Event::PaymentClaimed {
8006 purpose: payment.purpose,
8007 amount_msat: claimable_amt_msat,
8013 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
8014 if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
8015 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
8017 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
8018 return Err(DecodeError::InvalidValue);
8022 let channel_manager = ChannelManager {
8024 fee_estimator: bounded_fee_estimator,
8025 chain_monitor: args.chain_monitor,
8026 tx_broadcaster: args.tx_broadcaster,
8027 router: args.router,
8029 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
8031 inbound_payment_key: expanded_inbound_key,
8032 pending_inbound_payments: Mutex::new(pending_inbound_payments),
8033 pending_outbound_payments: pending_outbounds,
8034 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
8036 forward_htlcs: Mutex::new(forward_htlcs),
8037 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
8038 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
8039 id_to_peer: Mutex::new(id_to_peer),
8040 short_to_chan_info: FairRwLock::new(short_to_chan_info),
8041 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
8043 probing_cookie_secret: probing_cookie_secret.unwrap(),
8048 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
8050 per_peer_state: FairRwLock::new(per_peer_state),
8052 pending_events: Mutex::new(pending_events_read),
8053 pending_events_processor: AtomicBool::new(false),
8054 pending_background_events: Mutex::new(pending_background_events),
8055 total_consistency_lock: RwLock::new(()),
8056 persistence_notifier: Notifier::new(),
8058 entropy_source: args.entropy_source,
8059 node_signer: args.node_signer,
8060 signer_provider: args.signer_provider,
8062 logger: args.logger,
8063 default_configuration: args.default_config,
8066 for htlc_source in failed_htlcs.drain(..) {
8067 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
8068 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
8069 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
8070 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
8073 //TODO: Broadcast channel update for closed channels, but only after we've made a
8074 //connection or two.
8076 Ok((best_block_hash.clone(), channel_manager))
8082 use bitcoin::hashes::Hash;
8083 use bitcoin::hashes::sha256::Hash as Sha256;
8084 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
8085 use core::sync::atomic::Ordering;
8086 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
8087 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
8088 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
8089 use crate::ln::functional_test_utils::*;
8090 use crate::ln::msgs;
8091 use crate::ln::msgs::ChannelMessageHandler;
8092 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
8093 use crate::util::errors::APIError;
8094 use crate::util::test_utils;
8095 use crate::util::config::ChannelConfig;
8096 use crate::chain::keysinterface::EntropySource;
8099 fn test_notify_limits() {
8100 // Check that a few cases which don't require the persistence of a new ChannelManager,
8101 // indeed, do not cause the persistence of a new ChannelManager.
8102 let chanmon_cfgs = create_chanmon_cfgs(3);
8103 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
8104 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
8105 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
8107 // All nodes start with a persistable update pending as `create_network` connects each node
8108 // with all other nodes to make most tests simpler.
8109 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8110 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8111 assert!(nodes[2].node.get_persistable_update_future().poll_is_complete());
8113 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8115 // We check that the channel info nodes have doesn't change too early, even though we try
8116 // to connect messages with new values
8117 chan.0.contents.fee_base_msat *= 2;
8118 chan.1.contents.fee_base_msat *= 2;
8119 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
8120 &nodes[1].node.get_our_node_id()).pop().unwrap();
8121 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
8122 &nodes[0].node.get_our_node_id()).pop().unwrap();
8124 // The first two nodes (which opened a channel) should now require fresh persistence
8125 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8126 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8127 // ... but the last node should not.
8128 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
8129 // After persisting the first two nodes they should no longer need fresh persistence.
8130 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8131 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8133 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
8134 // about the channel.
8135 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
8136 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
8137 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
8139 // The nodes which are a party to the channel should also ignore messages from unrelated
8141 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8142 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8143 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8144 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8145 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8146 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8148 // At this point the channel info given by peers should still be the same.
8149 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8150 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8152 // An earlier version of handle_channel_update didn't check the directionality of the
8153 // update message and would always update the local fee info, even if our peer was
8154 // (spuriously) forwarding us our own channel_update.
8155 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
8156 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
8157 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
8159 // First deliver each peers' own message, checking that the node doesn't need to be
8160 // persisted and that its channel info remains the same.
8161 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
8162 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
8163 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8164 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8165 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8166 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8168 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
8169 // the channel info has updated.
8170 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
8171 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
8172 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8173 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8174 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
8175 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
8179 fn test_keysend_dup_hash_partial_mpp() {
8180 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
8182 let chanmon_cfgs = create_chanmon_cfgs(2);
8183 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8184 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8185 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8186 create_announced_chan_between_nodes(&nodes, 0, 1);
8188 // First, send a partial MPP payment.
8189 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
8190 let mut mpp_route = route.clone();
8191 mpp_route.paths.push(mpp_route.paths[0].clone());
8193 let payment_id = PaymentId([42; 32]);
8194 // Use the utility function send_payment_along_path to send the payment with MPP data which
8195 // indicates there are more HTLCs coming.
8196 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
8197 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
8198 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
8199 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
8200 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
8201 check_added_monitors!(nodes[0], 1);
8202 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8203 assert_eq!(events.len(), 1);
8204 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
8206 // Next, send a keysend payment with the same payment_hash and make sure it fails.
8207 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8208 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8209 check_added_monitors!(nodes[0], 1);
8210 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8211 assert_eq!(events.len(), 1);
8212 let ev = events.drain(..).next().unwrap();
8213 let payment_event = SendEvent::from_event(ev);
8214 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8215 check_added_monitors!(nodes[1], 0);
8216 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8217 expect_pending_htlcs_forwardable!(nodes[1]);
8218 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
8219 check_added_monitors!(nodes[1], 1);
8220 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8221 assert!(updates.update_add_htlcs.is_empty());
8222 assert!(updates.update_fulfill_htlcs.is_empty());
8223 assert_eq!(updates.update_fail_htlcs.len(), 1);
8224 assert!(updates.update_fail_malformed_htlcs.is_empty());
8225 assert!(updates.update_fee.is_none());
8226 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8227 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8228 expect_payment_failed!(nodes[0], our_payment_hash, true);
8230 // Send the second half of the original MPP payment.
8231 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
8232 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
8233 check_added_monitors!(nodes[0], 1);
8234 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8235 assert_eq!(events.len(), 1);
8236 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
8238 // Claim the full MPP payment. Note that we can't use a test utility like
8239 // claim_funds_along_route because the ordering of the messages causes the second half of the
8240 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
8241 // lightning messages manually.
8242 nodes[1].node.claim_funds(payment_preimage);
8243 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
8244 check_added_monitors!(nodes[1], 2);
8246 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8247 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
8248 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
8249 check_added_monitors!(nodes[0], 1);
8250 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8251 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
8252 check_added_monitors!(nodes[1], 1);
8253 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8254 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
8255 check_added_monitors!(nodes[1], 1);
8256 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8257 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
8258 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
8259 check_added_monitors!(nodes[0], 1);
8260 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
8261 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
8262 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8263 check_added_monitors!(nodes[0], 1);
8264 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
8265 check_added_monitors!(nodes[1], 1);
8266 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
8267 check_added_monitors!(nodes[1], 1);
8268 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8269 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
8270 check_added_monitors!(nodes[0], 1);
8272 // Note that successful MPP payments will generate a single PaymentSent event upon the first
8273 // path's success and a PaymentPathSuccessful event for each path's success.
8274 let events = nodes[0].node.get_and_clear_pending_events();
8275 assert_eq!(events.len(), 3);
8277 Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
8278 assert_eq!(Some(payment_id), *id);
8279 assert_eq!(payment_preimage, *preimage);
8280 assert_eq!(our_payment_hash, *hash);
8282 _ => panic!("Unexpected event"),
8285 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8286 assert_eq!(payment_id, *actual_payment_id);
8287 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8288 assert_eq!(route.paths[0], *path);
8290 _ => panic!("Unexpected event"),
8293 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8294 assert_eq!(payment_id, *actual_payment_id);
8295 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8296 assert_eq!(route.paths[0], *path);
8298 _ => panic!("Unexpected event"),
8303 fn test_keysend_dup_payment_hash() {
8304 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
8305 // outbound regular payment fails as expected.
8306 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
8307 // fails as expected.
8308 let chanmon_cfgs = create_chanmon_cfgs(2);
8309 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8310 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8311 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8312 create_announced_chan_between_nodes(&nodes, 0, 1);
8313 let scorer = test_utils::TestScorer::new();
8314 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8316 // To start (1), send a regular payment but don't claim it.
8317 let expected_route = [&nodes[1]];
8318 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
8320 // Next, attempt a keysend payment and make sure it fails.
8321 let route_params = RouteParameters {
8322 payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
8323 final_value_msat: 100_000,
8325 let route = find_route(
8326 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8327 None, nodes[0].logger, &scorer, &random_seed_bytes
8329 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8330 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8331 check_added_monitors!(nodes[0], 1);
8332 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8333 assert_eq!(events.len(), 1);
8334 let ev = events.drain(..).next().unwrap();
8335 let payment_event = SendEvent::from_event(ev);
8336 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8337 check_added_monitors!(nodes[1], 0);
8338 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8339 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
8340 // fails), the second will process the resulting failure and fail the HTLC backward
8341 expect_pending_htlcs_forwardable!(nodes[1]);
8342 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8343 check_added_monitors!(nodes[1], 1);
8344 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8345 assert!(updates.update_add_htlcs.is_empty());
8346 assert!(updates.update_fulfill_htlcs.is_empty());
8347 assert_eq!(updates.update_fail_htlcs.len(), 1);
8348 assert!(updates.update_fail_malformed_htlcs.is_empty());
8349 assert!(updates.update_fee.is_none());
8350 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8351 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8352 expect_payment_failed!(nodes[0], payment_hash, true);
8354 // Finally, claim the original payment.
8355 claim_payment(&nodes[0], &expected_route, payment_preimage);
8357 // To start (2), send a keysend payment but don't claim it.
8358 let payment_preimage = PaymentPreimage([42; 32]);
8359 let route = find_route(
8360 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8361 None, nodes[0].logger, &scorer, &random_seed_bytes
8363 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8364 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8365 check_added_monitors!(nodes[0], 1);
8366 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8367 assert_eq!(events.len(), 1);
8368 let event = events.pop().unwrap();
8369 let path = vec![&nodes[1]];
8370 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8372 // Next, attempt a regular payment and make sure it fails.
8373 let payment_secret = PaymentSecret([43; 32]);
8374 nodes[0].node.send_payment_with_route(&route, payment_hash,
8375 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
8376 check_added_monitors!(nodes[0], 1);
8377 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8378 assert_eq!(events.len(), 1);
8379 let ev = events.drain(..).next().unwrap();
8380 let payment_event = SendEvent::from_event(ev);
8381 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8382 check_added_monitors!(nodes[1], 0);
8383 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8384 expect_pending_htlcs_forwardable!(nodes[1]);
8385 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8386 check_added_monitors!(nodes[1], 1);
8387 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8388 assert!(updates.update_add_htlcs.is_empty());
8389 assert!(updates.update_fulfill_htlcs.is_empty());
8390 assert_eq!(updates.update_fail_htlcs.len(), 1);
8391 assert!(updates.update_fail_malformed_htlcs.is_empty());
8392 assert!(updates.update_fee.is_none());
8393 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8394 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8395 expect_payment_failed!(nodes[0], payment_hash, true);
8397 // Finally, succeed the keysend payment.
8398 claim_payment(&nodes[0], &expected_route, payment_preimage);
8402 fn test_keysend_hash_mismatch() {
8403 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8404 // preimage doesn't match the msg's payment hash.
8405 let chanmon_cfgs = create_chanmon_cfgs(2);
8406 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8407 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8408 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8410 let payer_pubkey = nodes[0].node.get_our_node_id();
8411 let payee_pubkey = nodes[1].node.get_our_node_id();
8413 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8414 let route_params = RouteParameters {
8415 payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8416 final_value_msat: 10_000,
8418 let network_graph = nodes[0].network_graph.clone();
8419 let first_hops = nodes[0].node.list_usable_channels();
8420 let scorer = test_utils::TestScorer::new();
8421 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8422 let route = find_route(
8423 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8424 nodes[0].logger, &scorer, &random_seed_bytes
8427 let test_preimage = PaymentPreimage([42; 32]);
8428 let mismatch_payment_hash = PaymentHash([43; 32]);
8429 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
8430 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
8431 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
8432 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8433 check_added_monitors!(nodes[0], 1);
8435 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8436 assert_eq!(updates.update_add_htlcs.len(), 1);
8437 assert!(updates.update_fulfill_htlcs.is_empty());
8438 assert!(updates.update_fail_htlcs.is_empty());
8439 assert!(updates.update_fail_malformed_htlcs.is_empty());
8440 assert!(updates.update_fee.is_none());
8441 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8443 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
8447 fn test_keysend_msg_with_secret_err() {
8448 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8449 let chanmon_cfgs = create_chanmon_cfgs(2);
8450 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8451 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8452 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8454 let payer_pubkey = nodes[0].node.get_our_node_id();
8455 let payee_pubkey = nodes[1].node.get_our_node_id();
8457 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8458 let route_params = RouteParameters {
8459 payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8460 final_value_msat: 10_000,
8462 let network_graph = nodes[0].network_graph.clone();
8463 let first_hops = nodes[0].node.list_usable_channels();
8464 let scorer = test_utils::TestScorer::new();
8465 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8466 let route = find_route(
8467 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8468 nodes[0].logger, &scorer, &random_seed_bytes
8471 let test_preimage = PaymentPreimage([42; 32]);
8472 let test_secret = PaymentSecret([43; 32]);
8473 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8474 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
8475 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8476 nodes[0].node.test_send_payment_internal(&route, payment_hash,
8477 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
8478 PaymentId(payment_hash.0), None, session_privs).unwrap();
8479 check_added_monitors!(nodes[0], 1);
8481 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8482 assert_eq!(updates.update_add_htlcs.len(), 1);
8483 assert!(updates.update_fulfill_htlcs.is_empty());
8484 assert!(updates.update_fail_htlcs.is_empty());
8485 assert!(updates.update_fail_malformed_htlcs.is_empty());
8486 assert!(updates.update_fee.is_none());
8487 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8489 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
8493 fn test_multi_hop_missing_secret() {
8494 let chanmon_cfgs = create_chanmon_cfgs(4);
8495 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8496 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8497 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8499 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8500 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8501 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8502 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8504 // Marshall an MPP route.
8505 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8506 let path = route.paths[0].clone();
8507 route.paths.push(path);
8508 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
8509 route.paths[0].hops[0].short_channel_id = chan_1_id;
8510 route.paths[0].hops[1].short_channel_id = chan_3_id;
8511 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
8512 route.paths[1].hops[0].short_channel_id = chan_2_id;
8513 route.paths[1].hops[1].short_channel_id = chan_4_id;
8515 match nodes[0].node.send_payment_with_route(&route, payment_hash,
8516 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
8518 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8519 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
8521 _ => panic!("unexpected error")
8526 fn test_drop_disconnected_peers_when_removing_channels() {
8527 let chanmon_cfgs = create_chanmon_cfgs(2);
8528 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8529 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8530 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8532 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8534 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8535 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8537 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8538 check_closed_broadcast!(nodes[0], true);
8539 check_added_monitors!(nodes[0], 1);
8540 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8543 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8544 // disconnected and the channel between has been force closed.
8545 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8546 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8547 assert_eq!(nodes_0_per_peer_state.len(), 1);
8548 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8551 nodes[0].node.timer_tick_occurred();
8554 // Assert that nodes[1] has now been removed.
8555 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8560 fn bad_inbound_payment_hash() {
8561 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8562 let chanmon_cfgs = create_chanmon_cfgs(2);
8563 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8564 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8565 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8567 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8568 let payment_data = msgs::FinalOnionHopData {
8570 total_msat: 100_000,
8573 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8574 // payment verification fails as expected.
8575 let mut bad_payment_hash = payment_hash.clone();
8576 bad_payment_hash.0[0] += 1;
8577 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8578 Ok(_) => panic!("Unexpected ok"),
8580 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
8584 // Check that using the original payment hash succeeds.
8585 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8589 fn test_id_to_peer_coverage() {
8590 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8591 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8592 // the channel is successfully closed.
8593 let chanmon_cfgs = create_chanmon_cfgs(2);
8594 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8595 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8596 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8598 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8599 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8600 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8601 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8602 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8604 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8605 let channel_id = &tx.txid().into_inner();
8607 // Ensure that the `id_to_peer` map is empty until either party has received the
8608 // funding transaction, and have the real `channel_id`.
8609 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8610 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8613 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8615 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8616 // as it has the funding transaction.
8617 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8618 assert_eq!(nodes_0_lock.len(), 1);
8619 assert!(nodes_0_lock.contains_key(channel_id));
8622 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8624 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8626 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8628 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8629 assert_eq!(nodes_0_lock.len(), 1);
8630 assert!(nodes_0_lock.contains_key(channel_id));
8632 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
8635 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8636 // as it has the funding transaction.
8637 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8638 assert_eq!(nodes_1_lock.len(), 1);
8639 assert!(nodes_1_lock.contains_key(channel_id));
8641 check_added_monitors!(nodes[1], 1);
8642 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8643 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8644 check_added_monitors!(nodes[0], 1);
8645 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
8646 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8647 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8648 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8650 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8651 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8652 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8653 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8655 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8656 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8658 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8659 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8660 // fee for the closing transaction has been negotiated and the parties has the other
8661 // party's signature for the fee negotiated closing transaction.)
8662 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8663 assert_eq!(nodes_0_lock.len(), 1);
8664 assert!(nodes_0_lock.contains_key(channel_id));
8668 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8669 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8670 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8671 // kept in the `nodes[1]`'s `id_to_peer` map.
8672 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8673 assert_eq!(nodes_1_lock.len(), 1);
8674 assert!(nodes_1_lock.contains_key(channel_id));
8677 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8679 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8680 // therefore has all it needs to fully close the channel (both signatures for the
8681 // closing transaction).
8682 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8683 // fully closed by `nodes[0]`.
8684 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8686 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
8687 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8688 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8689 assert_eq!(nodes_1_lock.len(), 1);
8690 assert!(nodes_1_lock.contains_key(channel_id));
8693 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8695 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8697 // Assert that the channel has now been removed from both parties `id_to_peer` map once
8698 // they both have everything required to fully close the channel.
8699 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8701 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8703 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8704 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8707 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8708 let expected_message = format!("Not connected to node: {}", expected_public_key);
8709 check_api_error_message(expected_message, res_err)
8712 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8713 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8714 check_api_error_message(expected_message, res_err)
8717 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8719 Err(APIError::APIMisuseError { err }) => {
8720 assert_eq!(err, expected_err_message);
8722 Err(APIError::ChannelUnavailable { err }) => {
8723 assert_eq!(err, expected_err_message);
8725 Ok(_) => panic!("Unexpected Ok"),
8726 Err(_) => panic!("Unexpected Error"),
8731 fn test_api_calls_with_unkown_counterparty_node() {
8732 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8733 // expected if the `counterparty_node_id` is an unkown peer in the
8734 // `ChannelManager::per_peer_state` map.
8735 let chanmon_cfg = create_chanmon_cfgs(2);
8736 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8737 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8738 let nodes = create_network(2, &node_cfg, &node_chanmgr);
8741 let channel_id = [4; 32];
8742 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
8743 let intercept_id = InterceptId([0; 32]);
8745 // Test the API functions.
8746 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
8748 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
8750 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
8752 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
8754 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
8756 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
8758 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
8762 fn test_connection_limiting() {
8763 // Test that we limit un-channel'd peers and un-funded channels properly.
8764 let chanmon_cfgs = create_chanmon_cfgs(2);
8765 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8766 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8767 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8769 // Note that create_network connects the nodes together for us
8771 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8772 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8774 let mut funding_tx = None;
8775 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8776 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8777 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8780 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8781 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
8782 funding_tx = Some(tx.clone());
8783 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
8784 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8786 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8787 check_added_monitors!(nodes[1], 1);
8788 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
8790 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8792 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8793 check_added_monitors!(nodes[0], 1);
8794 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
8796 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8799 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
8800 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8801 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8802 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8803 open_channel_msg.temporary_channel_id);
8805 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
8806 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
8808 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
8809 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
8810 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8811 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8812 peer_pks.push(random_pk);
8813 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8814 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8816 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8817 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8818 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8819 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8821 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
8822 // them if we have too many un-channel'd peers.
8823 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8824 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
8825 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
8826 for ev in chan_closed_events {
8827 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
8829 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8830 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8831 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8832 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8834 // but of course if the connection is outbound its allowed...
8835 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8836 features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
8837 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8839 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
8840 // Even though we accept one more connection from new peers, we won't actually let them
8842 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
8843 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8844 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
8845 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
8846 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8848 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8849 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8850 open_channel_msg.temporary_channel_id);
8852 // Of course, however, outbound channels are always allowed
8853 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
8854 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
8856 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
8857 // "protected" and can connect again.
8858 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
8859 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8860 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8861 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
8863 // Further, because the first channel was funded, we can open another channel with
8865 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8866 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8870 fn test_outbound_chans_unlimited() {
8871 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
8872 let chanmon_cfgs = create_chanmon_cfgs(2);
8873 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8874 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8875 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8877 // Note that create_network connects the nodes together for us
8879 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8880 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8882 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8883 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8884 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8885 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8888 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
8890 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8891 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8892 open_channel_msg.temporary_channel_id);
8894 // but we can still open an outbound channel.
8895 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8896 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
8898 // but even with such an outbound channel, additional inbound channels will still fail.
8899 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8900 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8901 open_channel_msg.temporary_channel_id);
8905 fn test_0conf_limiting() {
8906 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
8907 // flag set and (sometimes) accept channels as 0conf.
8908 let chanmon_cfgs = create_chanmon_cfgs(2);
8909 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8910 let mut settings = test_default_channel_config();
8911 settings.manually_accept_inbound_channels = true;
8912 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
8913 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8915 // Note that create_network connects the nodes together for us
8917 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8918 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8920 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
8921 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8922 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8923 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8924 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8925 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8927 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
8928 let events = nodes[1].node.get_and_clear_pending_events();
8930 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8931 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
8933 _ => panic!("Unexpected event"),
8935 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
8936 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8939 // If we try to accept a channel from another peer non-0conf it will fail.
8940 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8941 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8942 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8943 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8944 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8945 let events = nodes[1].node.get_and_clear_pending_events();
8947 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8948 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
8949 Err(APIError::APIMisuseError { err }) =>
8950 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
8954 _ => panic!("Unexpected event"),
8956 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8957 open_channel_msg.temporary_channel_id);
8959 // ...however if we accept the same channel 0conf it should work just fine.
8960 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8961 let events = nodes[1].node.get_and_clear_pending_events();
8963 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8964 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
8966 _ => panic!("Unexpected event"),
8968 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8973 fn test_anchors_zero_fee_htlc_tx_fallback() {
8974 // Tests that if both nodes support anchors, but the remote node does not want to accept
8975 // anchor channels at the moment, an error it sent to the local node such that it can retry
8976 // the channel without the anchors feature.
8977 let chanmon_cfgs = create_chanmon_cfgs(2);
8978 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8979 let mut anchors_config = test_default_channel_config();
8980 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
8981 anchors_config.manually_accept_inbound_channels = true;
8982 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
8983 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8985 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
8986 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8987 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
8989 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8990 let events = nodes[1].node.get_and_clear_pending_events();
8992 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8993 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
8995 _ => panic!("Unexpected event"),
8998 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
8999 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
9001 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9002 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
9004 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
9008 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
9010 use crate::chain::Listen;
9011 use crate::chain::chainmonitor::{ChainMonitor, Persist};
9012 use crate::chain::keysinterface::{KeysManager, InMemorySigner};
9013 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
9014 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
9015 use crate::ln::functional_test_utils::*;
9016 use crate::ln::msgs::{ChannelMessageHandler, Init};
9017 use crate::routing::gossip::NetworkGraph;
9018 use crate::routing::router::{PaymentParameters, RouteParameters};
9019 use crate::util::test_utils;
9020 use crate::util::config::UserConfig;
9022 use bitcoin::hashes::Hash;
9023 use bitcoin::hashes::sha256::Hash as Sha256;
9024 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
9026 use crate::sync::{Arc, Mutex};
9030 type Manager<'a, P> = ChannelManager<
9031 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
9032 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
9033 &'a test_utils::TestLogger, &'a P>,
9034 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
9035 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
9036 &'a test_utils::TestLogger>;
9038 struct ANodeHolder<'a, P: Persist<InMemorySigner>> {
9039 node: &'a Manager<'a, P>,
9041 impl<'a, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'a, P> {
9042 type CM = Manager<'a, P>;
9044 fn node(&self) -> &Manager<'a, P> { self.node }
9046 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
9051 fn bench_sends(bench: &mut Bencher) {
9052 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
9055 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
9056 // Do a simple benchmark of sending a payment back and forth between two nodes.
9057 // Note that this is unrealistic as each payment send will require at least two fsync
9059 let network = bitcoin::Network::Testnet;
9061 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
9062 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
9063 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
9064 let scorer = Mutex::new(test_utils::TestScorer::new());
9065 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
9067 let mut config: UserConfig = Default::default();
9068 config.channel_handshake_config.minimum_depth = 1;
9070 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
9071 let seed_a = [1u8; 32];
9072 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
9073 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
9075 best_block: BestBlock::from_network(network),
9077 let node_a_holder = ANodeHolder { node: &node_a };
9079 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
9080 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
9081 let seed_b = [2u8; 32];
9082 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
9083 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
9085 best_block: BestBlock::from_network(network),
9087 let node_b_holder = ANodeHolder { node: &node_b };
9089 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
9090 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
9091 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
9092 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
9093 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
9096 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
9097 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
9098 value: 8_000_000, script_pubkey: output_script,
9100 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
9101 } else { panic!(); }
9103 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
9104 let events_b = node_b.get_and_clear_pending_events();
9105 assert_eq!(events_b.len(), 1);
9107 Event::ChannelPending{ ref counterparty_node_id, .. } => {
9108 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
9110 _ => panic!("Unexpected event"),
9113 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
9114 let events_a = node_a.get_and_clear_pending_events();
9115 assert_eq!(events_a.len(), 1);
9117 Event::ChannelPending{ ref counterparty_node_id, .. } => {
9118 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
9120 _ => panic!("Unexpected event"),
9123 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
9126 header: BlockHeader { version: 0x20000000, prev_blockhash: BestBlock::from_network(network).block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
9129 Listen::block_connected(&node_a, &block, 1);
9130 Listen::block_connected(&node_b, &block, 1);
9132 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
9133 let msg_events = node_a.get_and_clear_pending_msg_events();
9134 assert_eq!(msg_events.len(), 2);
9135 match msg_events[0] {
9136 MessageSendEvent::SendChannelReady { ref msg, .. } => {
9137 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
9138 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
9142 match msg_events[1] {
9143 MessageSendEvent::SendChannelUpdate { .. } => {},
9147 let events_a = node_a.get_and_clear_pending_events();
9148 assert_eq!(events_a.len(), 1);
9150 Event::ChannelReady{ ref counterparty_node_id, .. } => {
9151 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
9153 _ => panic!("Unexpected event"),
9156 let events_b = node_b.get_and_clear_pending_events();
9157 assert_eq!(events_b.len(), 1);
9159 Event::ChannelReady{ ref counterparty_node_id, .. } => {
9160 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
9162 _ => panic!("Unexpected event"),
9165 let mut payment_count: u64 = 0;
9166 macro_rules! send_payment {
9167 ($node_a: expr, $node_b: expr) => {
9168 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
9169 .with_features($node_b.invoice_features());
9170 let mut payment_preimage = PaymentPreimage([0; 32]);
9171 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
9173 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
9174 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
9176 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
9177 PaymentId(payment_hash.0), RouteParameters {
9178 payment_params, final_value_msat: 10_000,
9179 }, Retry::Attempts(0)).unwrap();
9180 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
9181 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
9182 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
9183 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
9184 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
9185 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
9186 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
9188 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
9189 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
9190 $node_b.claim_funds(payment_preimage);
9191 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
9193 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
9194 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
9195 assert_eq!(node_id, $node_a.get_our_node_id());
9196 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
9197 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
9199 _ => panic!("Failed to generate claim event"),
9202 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
9203 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
9204 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
9205 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
9207 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
9212 send_payment!(node_a, node_b);
9213 send_payment!(node_b, node_a);