1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::{genesis_block, ChainHash};
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
39 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::Bolt11InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
49 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs};
57 use crate::ln::wire::Encode;
58 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, WriteableEcdsaChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::string::UntrustedString;
63 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
64 use crate::util::logger::{Level, Logger};
65 use crate::util::errors::APIError;
67 use alloc::collections::BTreeMap;
70 use crate::prelude::*;
72 use core::cell::RefCell;
74 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
75 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
76 use core::time::Duration;
79 // Re-export this for use in the public API.
80 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
81 use crate::ln::script::ShutdownScript;
83 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
85 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
86 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
87 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
89 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
90 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
91 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
92 // before we forward it.
94 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
95 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
96 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
97 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
98 // our payment, which we can use to decode errors or inform the user that the payment was sent.
100 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
101 pub(super) enum PendingHTLCRouting {
103 onion_packet: msgs::OnionPacket,
104 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
105 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
106 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
109 payment_data: msgs::FinalOnionHopData,
110 payment_metadata: Option<Vec<u8>>,
111 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
112 phantom_shared_secret: Option<[u8; 32]>,
113 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
114 custom_tlvs: Vec<(u64, Vec<u8>)>,
117 /// This was added in 0.0.116 and will break deserialization on downgrades.
118 payment_data: Option<msgs::FinalOnionHopData>,
119 payment_preimage: PaymentPreimage,
120 payment_metadata: Option<Vec<u8>>,
121 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
122 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
123 custom_tlvs: Vec<(u64, Vec<u8>)>,
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 pub(super) struct PendingHTLCInfo {
129 pub(super) routing: PendingHTLCRouting,
130 pub(super) incoming_shared_secret: [u8; 32],
131 payment_hash: PaymentHash,
133 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
134 /// Sender intended amount to forward or receive (actual amount received
135 /// may overshoot this in either case)
136 pub(super) outgoing_amt_msat: u64,
137 pub(super) outgoing_cltv_value: u32,
138 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
139 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
140 pub(super) skimmed_fee_msat: Option<u64>,
143 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
144 pub(super) enum HTLCFailureMsg {
145 Relay(msgs::UpdateFailHTLC),
146 Malformed(msgs::UpdateFailMalformedHTLC),
149 /// Stores whether we can't forward an HTLC or relevant forwarding info
150 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
151 pub(super) enum PendingHTLCStatus {
152 Forward(PendingHTLCInfo),
153 Fail(HTLCFailureMsg),
156 pub(super) struct PendingAddHTLCInfo {
157 pub(super) forward_info: PendingHTLCInfo,
159 // These fields are produced in `forward_htlcs()` and consumed in
160 // `process_pending_htlc_forwards()` for constructing the
161 // `HTLCSource::PreviousHopData` for failed and forwarded
164 // Note that this may be an outbound SCID alias for the associated channel.
165 prev_short_channel_id: u64,
167 prev_funding_outpoint: OutPoint,
168 prev_user_channel_id: u128,
171 pub(super) enum HTLCForwardInfo {
172 AddHTLC(PendingAddHTLCInfo),
175 err_packet: msgs::OnionErrorPacket,
179 /// Tracks the inbound corresponding to an outbound HTLC
180 #[derive(Clone, Hash, PartialEq, Eq)]
181 pub(crate) struct HTLCPreviousHopData {
182 // Note that this may be an outbound SCID alias for the associated channel.
183 short_channel_id: u64,
184 user_channel_id: Option<u128>,
186 incoming_packet_shared_secret: [u8; 32],
187 phantom_shared_secret: Option<[u8; 32]>,
189 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
190 // channel with a preimage provided by the forward channel.
195 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
197 /// This is only here for backwards-compatibility in serialization, in the future it can be
198 /// removed, breaking clients running 0.0.106 and earlier.
199 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
201 /// Contains the payer-provided preimage.
202 Spontaneous(PaymentPreimage),
205 /// HTLCs that are to us and can be failed/claimed by the user
206 struct ClaimableHTLC {
207 prev_hop: HTLCPreviousHopData,
209 /// The amount (in msats) of this MPP part
211 /// The amount (in msats) that the sender intended to be sent in this MPP
212 /// part (used for validating total MPP amount)
213 sender_intended_value: u64,
214 onion_payload: OnionPayload,
216 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
217 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
218 total_value_received: Option<u64>,
219 /// The sender intended sum total of all MPP parts specified in the onion
221 /// The extra fee our counterparty skimmed off the top of this HTLC.
222 counterparty_skimmed_fee_msat: Option<u64>,
225 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
226 fn from(val: &ClaimableHTLC) -> Self {
227 events::ClaimedHTLC {
228 channel_id: val.prev_hop.outpoint.to_channel_id(),
229 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
230 cltv_expiry: val.cltv_expiry,
231 value_msat: val.value,
236 /// A payment identifier used to uniquely identify a payment to LDK.
238 /// This is not exported to bindings users as we just use [u8; 32] directly
239 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
240 pub struct PaymentId(pub [u8; 32]);
242 impl Writeable for PaymentId {
243 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
248 impl Readable for PaymentId {
249 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
250 let buf: [u8; 32] = Readable::read(r)?;
255 impl core::fmt::Display for PaymentId {
256 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
257 crate::util::logger::DebugBytes(&self.0).fmt(f)
261 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
263 /// This is not exported to bindings users as we just use [u8; 32] directly
264 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
265 pub struct InterceptId(pub [u8; 32]);
267 impl Writeable for InterceptId {
268 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
273 impl Readable for InterceptId {
274 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
275 let buf: [u8; 32] = Readable::read(r)?;
280 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
281 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
282 pub(crate) enum SentHTLCId {
283 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
284 OutboundRoute { session_priv: SecretKey },
287 pub(crate) fn from_source(source: &HTLCSource) -> Self {
289 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
290 short_channel_id: hop_data.short_channel_id,
291 htlc_id: hop_data.htlc_id,
293 HTLCSource::OutboundRoute { session_priv, .. } =>
294 Self::OutboundRoute { session_priv: *session_priv },
298 impl_writeable_tlv_based_enum!(SentHTLCId,
299 (0, PreviousHopData) => {
300 (0, short_channel_id, required),
301 (2, htlc_id, required),
303 (2, OutboundRoute) => {
304 (0, session_priv, required),
309 /// Tracks the inbound corresponding to an outbound HTLC
310 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
311 #[derive(Clone, PartialEq, Eq)]
312 pub(crate) enum HTLCSource {
313 PreviousHopData(HTLCPreviousHopData),
316 session_priv: SecretKey,
317 /// Technically we can recalculate this from the route, but we cache it here to avoid
318 /// doing a double-pass on route when we get a failure back
319 first_hop_htlc_msat: u64,
320 payment_id: PaymentId,
323 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
324 impl core::hash::Hash for HTLCSource {
325 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
327 HTLCSource::PreviousHopData(prev_hop_data) => {
329 prev_hop_data.hash(hasher);
331 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
334 session_priv[..].hash(hasher);
335 payment_id.hash(hasher);
336 first_hop_htlc_msat.hash(hasher);
342 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
344 pub fn dummy() -> Self {
345 HTLCSource::OutboundRoute {
346 path: Path { hops: Vec::new(), blinded_tail: None },
347 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
348 first_hop_htlc_msat: 0,
349 payment_id: PaymentId([2; 32]),
353 #[cfg(debug_assertions)]
354 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
355 /// transaction. Useful to ensure different datastructures match up.
356 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
357 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
358 *first_hop_htlc_msat == htlc.amount_msat
360 // There's nothing we can check for forwarded HTLCs
366 struct InboundOnionErr {
372 /// This enum is used to specify which error data to send to peers when failing back an HTLC
373 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
375 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
376 #[derive(Clone, Copy)]
377 pub enum FailureCode {
378 /// We had a temporary error processing the payment. Useful if no other error codes fit
379 /// and you want to indicate that the payer may want to retry.
380 TemporaryNodeFailure,
381 /// We have a required feature which was not in this onion. For example, you may require
382 /// some additional metadata that was not provided with this payment.
383 RequiredNodeFeatureMissing,
384 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
385 /// the HTLC is too close to the current block height for safe handling.
386 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
387 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
388 IncorrectOrUnknownPaymentDetails,
389 /// We failed to process the payload after the onion was decrypted. You may wish to
390 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
392 /// If available, the tuple data may include the type number and byte offset in the
393 /// decrypted byte stream where the failure occurred.
394 InvalidOnionPayload(Option<(u64, u16)>),
397 impl Into<u16> for FailureCode {
398 fn into(self) -> u16 {
400 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
401 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
402 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
403 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
408 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
409 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
410 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
411 /// peer_state lock. We then return the set of things that need to be done outside the lock in
412 /// this struct and call handle_error!() on it.
414 struct MsgHandleErrInternal {
415 err: msgs::LightningError,
416 chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
417 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
418 channel_capacity: Option<u64>,
420 impl MsgHandleErrInternal {
422 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
424 err: LightningError {
426 action: msgs::ErrorAction::SendErrorMessage {
427 msg: msgs::ErrorMessage {
434 shutdown_finish: None,
435 channel_capacity: None,
439 fn from_no_close(err: msgs::LightningError) -> Self {
440 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
443 fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
445 err: LightningError {
447 action: msgs::ErrorAction::SendErrorMessage {
448 msg: msgs::ErrorMessage {
454 chan_id: Some((channel_id, user_channel_id)),
455 shutdown_finish: Some((shutdown_res, channel_update)),
456 channel_capacity: Some(channel_capacity)
460 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
463 ChannelError::Warn(msg) => LightningError {
465 action: msgs::ErrorAction::SendWarningMessage {
466 msg: msgs::WarningMessage {
470 log_level: Level::Warn,
473 ChannelError::Ignore(msg) => LightningError {
475 action: msgs::ErrorAction::IgnoreError,
477 ChannelError::Close(msg) => LightningError {
479 action: msgs::ErrorAction::SendErrorMessage {
480 msg: msgs::ErrorMessage {
488 shutdown_finish: None,
489 channel_capacity: None,
494 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
495 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
496 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
497 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
498 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
500 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
501 /// be sent in the order they appear in the return value, however sometimes the order needs to be
502 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
503 /// they were originally sent). In those cases, this enum is also returned.
504 #[derive(Clone, PartialEq)]
505 pub(super) enum RAACommitmentOrder {
506 /// Send the CommitmentUpdate messages first
508 /// Send the RevokeAndACK message first
512 /// Information about a payment which is currently being claimed.
513 struct ClaimingPayment {
515 payment_purpose: events::PaymentPurpose,
516 receiver_node_id: PublicKey,
517 htlcs: Vec<events::ClaimedHTLC>,
518 sender_intended_value: Option<u64>,
520 impl_writeable_tlv_based!(ClaimingPayment, {
521 (0, amount_msat, required),
522 (2, payment_purpose, required),
523 (4, receiver_node_id, required),
524 (5, htlcs, optional_vec),
525 (7, sender_intended_value, option),
528 struct ClaimablePayment {
529 purpose: events::PaymentPurpose,
530 onion_fields: Option<RecipientOnionFields>,
531 htlcs: Vec<ClaimableHTLC>,
534 /// Information about claimable or being-claimed payments
535 struct ClaimablePayments {
536 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
537 /// failed/claimed by the user.
539 /// Note that, no consistency guarantees are made about the channels given here actually
540 /// existing anymore by the time you go to read them!
542 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
543 /// we don't get a duplicate payment.
544 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
546 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
547 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
548 /// as an [`events::Event::PaymentClaimed`].
549 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
552 /// Events which we process internally but cannot be processed immediately at the generation site
553 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
554 /// running normally, and specifically must be processed before any other non-background
555 /// [`ChannelMonitorUpdate`]s are applied.
556 enum BackgroundEvent {
557 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
558 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
559 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
560 /// channel has been force-closed we do not need the counterparty node_id.
562 /// Note that any such events are lost on shutdown, so in general they must be updates which
563 /// are regenerated on startup.
564 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
565 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
566 /// channel to continue normal operation.
568 /// In general this should be used rather than
569 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
570 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
571 /// error the other variant is acceptable.
573 /// Note that any such events are lost on shutdown, so in general they must be updates which
574 /// are regenerated on startup.
575 MonitorUpdateRegeneratedOnStartup {
576 counterparty_node_id: PublicKey,
577 funding_txo: OutPoint,
578 update: ChannelMonitorUpdate
580 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
581 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
583 MonitorUpdatesComplete {
584 counterparty_node_id: PublicKey,
585 channel_id: [u8; 32],
590 pub(crate) enum MonitorUpdateCompletionAction {
591 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
592 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
593 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
594 /// event can be generated.
595 PaymentClaimed { payment_hash: PaymentHash },
596 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
597 /// operation of another channel.
599 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
600 /// from completing a monitor update which removes the payment preimage until the inbound edge
601 /// completes a monitor update containing the payment preimage. In that case, after the inbound
602 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
604 EmitEventAndFreeOtherChannel {
605 event: events::Event,
606 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
610 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
611 (0, PaymentClaimed) => { (0, payment_hash, required) },
612 (2, EmitEventAndFreeOtherChannel) => {
613 (0, event, upgradable_required),
614 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
615 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
616 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
617 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
618 // downgrades to prior versions.
619 (1, downstream_counterparty_and_funding_outpoint, option),
623 #[derive(Clone, Debug, PartialEq, Eq)]
624 pub(crate) enum EventCompletionAction {
625 ReleaseRAAChannelMonitorUpdate {
626 counterparty_node_id: PublicKey,
627 channel_funding_outpoint: OutPoint,
630 impl_writeable_tlv_based_enum!(EventCompletionAction,
631 (0, ReleaseRAAChannelMonitorUpdate) => {
632 (0, channel_funding_outpoint, required),
633 (2, counterparty_node_id, required),
637 #[derive(Clone, PartialEq, Eq, Debug)]
638 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
639 /// the blocked action here. See enum variants for more info.
640 pub(crate) enum RAAMonitorUpdateBlockingAction {
641 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
642 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
644 ForwardedPaymentInboundClaim {
645 /// The upstream channel ID (i.e. the inbound edge).
646 channel_id: [u8; 32],
647 /// The HTLC ID on the inbound edge.
652 impl RAAMonitorUpdateBlockingAction {
654 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
655 Self::ForwardedPaymentInboundClaim {
656 channel_id: prev_hop.outpoint.to_channel_id(),
657 htlc_id: prev_hop.htlc_id,
662 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
663 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
667 /// State we hold per-peer.
668 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
669 /// `channel_id` -> `Channel`.
671 /// Holds all funded channels where the peer is the counterparty.
672 pub(super) channel_by_id: HashMap<[u8; 32], Channel<SP>>,
673 /// `temporary_channel_id` -> `OutboundV1Channel`.
675 /// Holds all outbound V1 channels where the peer is the counterparty. Once an outbound channel has
676 /// been assigned a `channel_id`, the entry in this map is removed and one is created in
678 pub(super) outbound_v1_channel_by_id: HashMap<[u8; 32], OutboundV1Channel<SP>>,
679 /// `temporary_channel_id` -> `InboundV1Channel`.
681 /// Holds all inbound V1 channels where the peer is the counterparty. Once an inbound channel has
682 /// been assigned a `channel_id`, the entry in this map is removed and one is created in
684 pub(super) inbound_v1_channel_by_id: HashMap<[u8; 32], InboundV1Channel<SP>>,
685 /// `temporary_channel_id` -> `InboundChannelRequest`.
687 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
688 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
689 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
690 /// the channel is rejected, then the entry is simply removed.
691 pub(super) inbound_channel_request_by_id: HashMap<[u8; 32], InboundChannelRequest>,
692 /// The latest `InitFeatures` we heard from the peer.
693 latest_features: InitFeatures,
694 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
695 /// for broadcast messages, where ordering isn't as strict).
696 pub(super) pending_msg_events: Vec<MessageSendEvent>,
697 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
698 /// user but which have not yet completed.
700 /// Note that the channel may no longer exist. For example if the channel was closed but we
701 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
702 /// for a missing channel.
703 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
704 /// Map from a specific channel to some action(s) that should be taken when all pending
705 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
707 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
708 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
709 /// channels with a peer this will just be one allocation and will amount to a linear list of
710 /// channels to walk, avoiding the whole hashing rigmarole.
712 /// Note that the channel may no longer exist. For example, if a channel was closed but we
713 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
714 /// for a missing channel. While a malicious peer could construct a second channel with the
715 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
716 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
717 /// duplicates do not occur, so such channels should fail without a monitor update completing.
718 monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
719 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
720 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
721 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
722 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
723 actions_blocking_raa_monitor_updates: BTreeMap<[u8; 32], Vec<RAAMonitorUpdateBlockingAction>>,
724 /// The peer is currently connected (i.e. we've seen a
725 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
726 /// [`ChannelMessageHandler::peer_disconnected`].
730 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
731 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
732 /// If true is passed for `require_disconnected`, the function will return false if we haven't
733 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
734 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
735 if require_disconnected && self.is_connected {
738 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
739 && self.in_flight_monitor_updates.is_empty()
742 // Returns a count of all channels we have with this peer, including unfunded channels.
743 fn total_channel_count(&self) -> usize {
744 self.channel_by_id.len() +
745 self.outbound_v1_channel_by_id.len() +
746 self.inbound_v1_channel_by_id.len() +
747 self.inbound_channel_request_by_id.len()
750 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
751 fn has_channel(&self, channel_id: &[u8; 32]) -> bool {
752 self.channel_by_id.contains_key(channel_id) ||
753 self.outbound_v1_channel_by_id.contains_key(channel_id) ||
754 self.inbound_v1_channel_by_id.contains_key(channel_id) ||
755 self.inbound_channel_request_by_id.contains_key(channel_id)
759 /// A not-yet-accepted inbound (from counterparty) channel. Once
760 /// accepted, the parameters will be used to construct a channel.
761 pub(super) struct InboundChannelRequest {
762 /// The original OpenChannel message.
763 pub open_channel_msg: msgs::OpenChannel,
764 /// The number of ticks remaining before the request expires.
765 pub ticks_remaining: i32,
768 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
769 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
770 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
772 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
773 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
775 /// For users who don't want to bother doing their own payment preimage storage, we also store that
778 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
779 /// and instead encoding it in the payment secret.
780 struct PendingInboundPayment {
781 /// The payment secret that the sender must use for us to accept this payment
782 payment_secret: PaymentSecret,
783 /// Time at which this HTLC expires - blocks with a header time above this value will result in
784 /// this payment being removed.
786 /// Arbitrary identifier the user specifies (or not)
787 user_payment_id: u64,
788 // Other required attributes of the payment, optionally enforced:
789 payment_preimage: Option<PaymentPreimage>,
790 min_value_msat: Option<u64>,
793 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
794 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
795 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
796 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
797 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
798 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
799 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
800 /// of [`KeysManager`] and [`DefaultRouter`].
802 /// This is not exported to bindings users as Arcs don't make sense in bindings
803 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
811 Arc<NetworkGraph<Arc<L>>>,
813 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
814 ProbabilisticScoringFeeParameters,
815 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
820 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
821 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
822 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
823 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
824 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
825 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
826 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
827 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
828 /// of [`KeysManager`] and [`DefaultRouter`].
830 /// This is not exported to bindings users as Arcs don't make sense in bindings
831 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
840 &'f NetworkGraph<&'g L>,
842 &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
843 ProbabilisticScoringFeeParameters,
844 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
849 macro_rules! define_test_pub_trait { ($vis: vis) => {
850 /// A trivial trait which describes any [`ChannelManager`] used in testing.
851 $vis trait AChannelManager {
852 type Watch: chain::Watch<Self::Signer> + ?Sized;
853 type M: Deref<Target = Self::Watch>;
854 type Broadcaster: BroadcasterInterface + ?Sized;
855 type T: Deref<Target = Self::Broadcaster>;
856 type EntropySource: EntropySource + ?Sized;
857 type ES: Deref<Target = Self::EntropySource>;
858 type NodeSigner: NodeSigner + ?Sized;
859 type NS: Deref<Target = Self::NodeSigner>;
860 type Signer: WriteableEcdsaChannelSigner + Sized;
861 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
862 type SP: Deref<Target = Self::SignerProvider>;
863 type FeeEstimator: FeeEstimator + ?Sized;
864 type F: Deref<Target = Self::FeeEstimator>;
865 type Router: Router + ?Sized;
866 type R: Deref<Target = Self::Router>;
867 type Logger: Logger + ?Sized;
868 type L: Deref<Target = Self::Logger>;
869 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
872 #[cfg(any(test, feature = "_test_utils"))]
873 define_test_pub_trait!(pub);
874 #[cfg(not(any(test, feature = "_test_utils")))]
875 define_test_pub_trait!(pub(crate));
876 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
877 for ChannelManager<M, T, ES, NS, SP, F, R, L>
879 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
880 T::Target: BroadcasterInterface,
881 ES::Target: EntropySource,
882 NS::Target: NodeSigner,
883 SP::Target: SignerProvider,
884 F::Target: FeeEstimator,
888 type Watch = M::Target;
890 type Broadcaster = T::Target;
892 type EntropySource = ES::Target;
894 type NodeSigner = NS::Target;
896 type Signer = <SP::Target as SignerProvider>::Signer;
897 type SignerProvider = SP::Target;
899 type FeeEstimator = F::Target;
901 type Router = R::Target;
903 type Logger = L::Target;
905 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
908 /// Manager which keeps track of a number of channels and sends messages to the appropriate
909 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
911 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
912 /// to individual Channels.
914 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
915 /// all peers during write/read (though does not modify this instance, only the instance being
916 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
917 /// called [`funding_transaction_generated`] for outbound channels) being closed.
919 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
920 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST write each monitor update out to disk before
921 /// returning from [`chain::Watch::watch_channel`]/[`update_channel`], with ChannelManagers, writing updates
922 /// happens out-of-band (and will prevent any other `ChannelManager` operations from occurring during
923 /// the serialization process). If the deserialized version is out-of-date compared to the
924 /// [`ChannelMonitor`] passed by reference to [`read`], those channels will be force-closed based on the
925 /// `ChannelMonitor` state and no funds will be lost (mod on-chain transaction fees).
927 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
928 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
929 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
931 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
932 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
933 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
934 /// offline for a full minute. In order to track this, you must call
935 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
937 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
938 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
939 /// not have a channel with being unable to connect to us or open new channels with us if we have
940 /// many peers with unfunded channels.
942 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
943 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
944 /// never limited. Please ensure you limit the count of such channels yourself.
946 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
947 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
948 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
949 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
950 /// you're using lightning-net-tokio.
952 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
953 /// [`funding_created`]: msgs::FundingCreated
954 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
955 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
956 /// [`update_channel`]: chain::Watch::update_channel
957 /// [`ChannelUpdate`]: msgs::ChannelUpdate
958 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
959 /// [`read`]: ReadableArgs::read
962 // The tree structure below illustrates the lock order requirements for the different locks of the
963 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
964 // and should then be taken in the order of the lowest to the highest level in the tree.
965 // Note that locks on different branches shall not be taken at the same time, as doing so will
966 // create a new lock order for those specific locks in the order they were taken.
970 // `total_consistency_lock`
972 // |__`forward_htlcs`
974 // | |__`pending_intercepted_htlcs`
976 // |__`per_peer_state`
978 // | |__`pending_inbound_payments`
980 // | |__`claimable_payments`
982 // | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
988 // | |__`short_to_chan_info`
990 // | |__`outbound_scid_aliases`
994 // | |__`pending_events`
996 // | |__`pending_background_events`
998 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1000 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1001 T::Target: BroadcasterInterface,
1002 ES::Target: EntropySource,
1003 NS::Target: NodeSigner,
1004 SP::Target: SignerProvider,
1005 F::Target: FeeEstimator,
1009 default_configuration: UserConfig,
1010 genesis_hash: BlockHash,
1011 fee_estimator: LowerBoundedFeeEstimator<F>,
1017 /// See `ChannelManager` struct-level documentation for lock order requirements.
1019 pub(super) best_block: RwLock<BestBlock>,
1021 best_block: RwLock<BestBlock>,
1022 secp_ctx: Secp256k1<secp256k1::All>,
1024 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1025 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1026 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1027 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1029 /// See `ChannelManager` struct-level documentation for lock order requirements.
1030 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1032 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1033 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1034 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1035 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1036 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1037 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1038 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1039 /// after reloading from disk while replaying blocks against ChannelMonitors.
1041 /// See `PendingOutboundPayment` documentation for more info.
1043 /// See `ChannelManager` struct-level documentation for lock order requirements.
1044 pending_outbound_payments: OutboundPayments,
1046 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1048 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1049 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1050 /// and via the classic SCID.
1052 /// Note that no consistency guarantees are made about the existence of a channel with the
1053 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1055 /// See `ChannelManager` struct-level documentation for lock order requirements.
1057 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1059 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1060 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1061 /// until the user tells us what we should do with them.
1063 /// See `ChannelManager` struct-level documentation for lock order requirements.
1064 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1066 /// The sets of payments which are claimable or currently being claimed. See
1067 /// [`ClaimablePayments`]' individual field docs for more info.
1069 /// See `ChannelManager` struct-level documentation for lock order requirements.
1070 claimable_payments: Mutex<ClaimablePayments>,
1072 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1073 /// and some closed channels which reached a usable state prior to being closed. This is used
1074 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1075 /// active channel list on load.
1077 /// See `ChannelManager` struct-level documentation for lock order requirements.
1078 outbound_scid_aliases: Mutex<HashSet<u64>>,
1080 /// `channel_id` -> `counterparty_node_id`.
1082 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1083 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1084 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1086 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1087 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1088 /// the handling of the events.
1090 /// Note that no consistency guarantees are made about the existence of a peer with the
1091 /// `counterparty_node_id` in our other maps.
1094 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1095 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1096 /// would break backwards compatability.
1097 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1098 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1099 /// required to access the channel with the `counterparty_node_id`.
1101 /// See `ChannelManager` struct-level documentation for lock order requirements.
1102 id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
1104 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1106 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1107 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1108 /// confirmation depth.
1110 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1111 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1112 /// channel with the `channel_id` in our other maps.
1114 /// See `ChannelManager` struct-level documentation for lock order requirements.
1116 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
1118 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
1120 our_network_pubkey: PublicKey,
1122 inbound_payment_key: inbound_payment::ExpandedKey,
1124 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1125 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1126 /// we encrypt the namespace identifier using these bytes.
1128 /// [fake scids]: crate::util::scid_utils::fake_scid
1129 fake_scid_rand_bytes: [u8; 32],
1131 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1132 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1133 /// keeping additional state.
1134 probing_cookie_secret: [u8; 32],
1136 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1137 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1138 /// very far in the past, and can only ever be up to two hours in the future.
1139 highest_seen_timestamp: AtomicUsize,
1141 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1142 /// basis, as well as the peer's latest features.
1144 /// If we are connected to a peer we always at least have an entry here, even if no channels
1145 /// are currently open with that peer.
1147 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1148 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1151 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1153 /// See `ChannelManager` struct-level documentation for lock order requirements.
1154 #[cfg(not(any(test, feature = "_test_utils")))]
1155 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1156 #[cfg(any(test, feature = "_test_utils"))]
1157 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1159 /// The set of events which we need to give to the user to handle. In some cases an event may
1160 /// require some further action after the user handles it (currently only blocking a monitor
1161 /// update from being handed to the user to ensure the included changes to the channel state
1162 /// are handled by the user before they're persisted durably to disk). In that case, the second
1163 /// element in the tuple is set to `Some` with further details of the action.
1165 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1166 /// could be in the middle of being processed without the direct mutex held.
1168 /// See `ChannelManager` struct-level documentation for lock order requirements.
1169 #[cfg(not(any(test, feature = "_test_utils")))]
1170 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1171 #[cfg(any(test, feature = "_test_utils"))]
1172 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1174 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1175 pending_events_processor: AtomicBool,
1177 /// If we are running during init (either directly during the deserialization method or in
1178 /// block connection methods which run after deserialization but before normal operation) we
1179 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1180 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1181 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1183 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1185 /// See `ChannelManager` struct-level documentation for lock order requirements.
1187 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1188 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1189 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1190 /// Essentially just when we're serializing ourselves out.
1191 /// Taken first everywhere where we are making changes before any other locks.
1192 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1193 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1194 /// Notifier the lock contains sends out a notification when the lock is released.
1195 total_consistency_lock: RwLock<()>,
1197 background_events_processed_since_startup: AtomicBool,
1199 persistence_notifier: Notifier,
1203 signer_provider: SP,
1208 /// Chain-related parameters used to construct a new `ChannelManager`.
1210 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1211 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1212 /// are not needed when deserializing a previously constructed `ChannelManager`.
1213 #[derive(Clone, Copy, PartialEq)]
1214 pub struct ChainParameters {
1215 /// The network for determining the `chain_hash` in Lightning messages.
1216 pub network: Network,
1218 /// The hash and height of the latest block successfully connected.
1220 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1221 pub best_block: BestBlock,
1224 #[derive(Copy, Clone, PartialEq)]
1231 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1232 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1233 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1234 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1235 /// sending the aforementioned notification (since the lock being released indicates that the
1236 /// updates are ready for persistence).
1238 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1239 /// notify or not based on whether relevant changes have been made, providing a closure to
1240 /// `optionally_notify` which returns a `NotifyOption`.
1241 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
1242 persistence_notifier: &'a Notifier,
1244 // We hold onto this result so the lock doesn't get released immediately.
1245 _read_guard: RwLockReadGuard<'a, ()>,
1248 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1249 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
1250 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1251 let _ = cm.get_cm().process_background_events(); // We always persist
1253 PersistenceNotifierGuard {
1254 persistence_notifier: &cm.get_cm().persistence_notifier,
1255 should_persist: || -> NotifyOption { NotifyOption::DoPersist },
1256 _read_guard: read_guard,
1261 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1262 /// [`ChannelManager::process_background_events`] MUST be called first.
1263 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1264 let read_guard = lock.read().unwrap();
1266 PersistenceNotifierGuard {
1267 persistence_notifier: notifier,
1268 should_persist: persist_check,
1269 _read_guard: read_guard,
1274 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1275 fn drop(&mut self) {
1276 if (self.should_persist)() == NotifyOption::DoPersist {
1277 self.persistence_notifier.notify();
1282 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1283 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1285 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1287 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1288 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1289 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1290 /// the maximum required amount in lnd as of March 2021.
1291 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1293 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1294 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1296 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1298 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1299 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1300 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1301 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1302 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1303 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1304 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1305 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1306 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1307 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1308 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1309 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1310 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1312 /// Minimum CLTV difference between the current block height and received inbound payments.
1313 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1315 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1316 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1317 // a payment was being routed, so we add an extra block to be safe.
1318 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1320 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1321 // ie that if the next-hop peer fails the HTLC within
1322 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1323 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1324 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1325 // LATENCY_GRACE_PERIOD_BLOCKS.
1328 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1330 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1331 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1334 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1336 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1337 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1339 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
1340 /// idempotency of payments by [`PaymentId`]. See
1341 /// [`OutboundPayments::remove_stale_resolved_payments`].
1342 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
1344 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1345 /// until we mark the channel disabled and gossip the update.
1346 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1348 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1349 /// we mark the channel enabled and gossip the update.
1350 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1352 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1353 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1354 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1355 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1357 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1358 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1359 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1361 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1362 /// many peers we reject new (inbound) connections.
1363 const MAX_NO_CHANNEL_PEERS: usize = 250;
1365 /// Information needed for constructing an invoice route hint for this channel.
1366 #[derive(Clone, Debug, PartialEq)]
1367 pub struct CounterpartyForwardingInfo {
1368 /// Base routing fee in millisatoshis.
1369 pub fee_base_msat: u32,
1370 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1371 pub fee_proportional_millionths: u32,
1372 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1373 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1374 /// `cltv_expiry_delta` for more details.
1375 pub cltv_expiry_delta: u16,
1378 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1379 /// to better separate parameters.
1380 #[derive(Clone, Debug, PartialEq)]
1381 pub struct ChannelCounterparty {
1382 /// The node_id of our counterparty
1383 pub node_id: PublicKey,
1384 /// The Features the channel counterparty provided upon last connection.
1385 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1386 /// many routing-relevant features are present in the init context.
1387 pub features: InitFeatures,
1388 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1389 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1390 /// claiming at least this value on chain.
1392 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1394 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1395 pub unspendable_punishment_reserve: u64,
1396 /// Information on the fees and requirements that the counterparty requires when forwarding
1397 /// payments to us through this channel.
1398 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1399 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1400 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1401 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1402 pub outbound_htlc_minimum_msat: Option<u64>,
1403 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1404 pub outbound_htlc_maximum_msat: Option<u64>,
1407 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1409 /// Balances of a channel are available through [`ChainMonitor::get_claimable_balances`] and
1410 /// [`ChannelMonitor::get_claimable_balances`], calculated with respect to the corresponding on-chain
1413 /// [`ChainMonitor::get_claimable_balances`]: crate::chain::chainmonitor::ChainMonitor::get_claimable_balances
1414 #[derive(Clone, Debug, PartialEq)]
1415 pub struct ChannelDetails {
1416 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1417 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1418 /// Note that this means this value is *not* persistent - it can change once during the
1419 /// lifetime of the channel.
1420 pub channel_id: [u8; 32],
1421 /// Parameters which apply to our counterparty. See individual fields for more information.
1422 pub counterparty: ChannelCounterparty,
1423 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1424 /// our counterparty already.
1426 /// Note that, if this has been set, `channel_id` will be equivalent to
1427 /// `funding_txo.unwrap().to_channel_id()`.
1428 pub funding_txo: Option<OutPoint>,
1429 /// The features which this channel operates with. See individual features for more info.
1431 /// `None` until negotiation completes and the channel type is finalized.
1432 pub channel_type: Option<ChannelTypeFeatures>,
1433 /// The position of the funding transaction in the chain. None if the funding transaction has
1434 /// not yet been confirmed and the channel fully opened.
1436 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1437 /// payments instead of this. See [`get_inbound_payment_scid`].
1439 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1440 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1442 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1443 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1444 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1445 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1446 /// [`confirmations_required`]: Self::confirmations_required
1447 pub short_channel_id: Option<u64>,
1448 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1449 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1450 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1453 /// This will be `None` as long as the channel is not available for routing outbound payments.
1455 /// [`short_channel_id`]: Self::short_channel_id
1456 /// [`confirmations_required`]: Self::confirmations_required
1457 pub outbound_scid_alias: Option<u64>,
1458 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1459 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1460 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1461 /// when they see a payment to be routed to us.
1463 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1464 /// previous values for inbound payment forwarding.
1466 /// [`short_channel_id`]: Self::short_channel_id
1467 pub inbound_scid_alias: Option<u64>,
1468 /// The value, in satoshis, of this channel as appears in the funding output
1469 pub channel_value_satoshis: u64,
1470 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1471 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1472 /// this value on chain.
1474 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1476 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1478 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1479 pub unspendable_punishment_reserve: Option<u64>,
1480 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1481 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1482 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1483 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1484 /// serialized with LDK versions prior to 0.0.113.
1486 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1487 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1488 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1489 pub user_channel_id: u128,
1490 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1491 /// which is applied to commitment and HTLC transactions.
1493 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1494 pub feerate_sat_per_1000_weight: Option<u32>,
1495 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1496 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1497 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1498 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1500 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1501 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1502 /// should be able to spend nearly this amount.
1503 pub outbound_capacity_msat: u64,
1504 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1505 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1506 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1507 /// to use a limit as close as possible to the HTLC limit we can currently send.
1509 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`] and
1510 /// [`ChannelDetails::outbound_capacity_msat`].
1511 pub next_outbound_htlc_limit_msat: u64,
1512 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1513 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1514 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1515 /// route which is valid.
1516 pub next_outbound_htlc_minimum_msat: u64,
1517 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1518 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1519 /// available for inclusion in new inbound HTLCs).
1520 /// Note that there are some corner cases not fully handled here, so the actual available
1521 /// inbound capacity may be slightly higher than this.
1523 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1524 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1525 /// However, our counterparty should be able to spend nearly this amount.
1526 pub inbound_capacity_msat: u64,
1527 /// The number of required confirmations on the funding transaction before the funding will be
1528 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1529 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1530 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1531 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1533 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1535 /// [`is_outbound`]: ChannelDetails::is_outbound
1536 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1537 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1538 pub confirmations_required: Option<u32>,
1539 /// The current number of confirmations on the funding transaction.
1541 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1542 pub confirmations: Option<u32>,
1543 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1544 /// until we can claim our funds after we force-close the channel. During this time our
1545 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1546 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1547 /// time to claim our non-HTLC-encumbered funds.
1549 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1550 pub force_close_spend_delay: Option<u16>,
1551 /// True if the channel was initiated (and thus funded) by us.
1552 pub is_outbound: bool,
1553 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1554 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1555 /// required confirmation count has been reached (and we were connected to the peer at some
1556 /// point after the funding transaction received enough confirmations). The required
1557 /// confirmation count is provided in [`confirmations_required`].
1559 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1560 pub is_channel_ready: bool,
1561 /// The stage of the channel's shutdown.
1562 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1563 pub channel_shutdown_state: Option<ChannelShutdownState>,
1564 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1565 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1567 /// This is a strict superset of `is_channel_ready`.
1568 pub is_usable: bool,
1569 /// True if this channel is (or will be) publicly-announced.
1570 pub is_public: bool,
1571 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1572 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1573 pub inbound_htlc_minimum_msat: Option<u64>,
1574 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1575 pub inbound_htlc_maximum_msat: Option<u64>,
1576 /// Set of configurable parameters that affect channel operation.
1578 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1579 pub config: Option<ChannelConfig>,
1582 impl ChannelDetails {
1583 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1584 /// This should be used for providing invoice hints or in any other context where our
1585 /// counterparty will forward a payment to us.
1587 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1588 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1589 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1590 self.inbound_scid_alias.or(self.short_channel_id)
1593 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1594 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1595 /// we're sending or forwarding a payment outbound over this channel.
1597 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1598 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1599 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1600 self.short_channel_id.or(self.outbound_scid_alias)
1603 fn from_channel_context<SP: Deref, F: Deref>(
1604 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1605 fee_estimator: &LowerBoundedFeeEstimator<F>
1608 SP::Target: SignerProvider,
1609 F::Target: FeeEstimator
1611 let balance = context.get_available_balances(fee_estimator);
1612 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1613 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1615 channel_id: context.channel_id(),
1616 counterparty: ChannelCounterparty {
1617 node_id: context.get_counterparty_node_id(),
1618 features: latest_features,
1619 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1620 forwarding_info: context.counterparty_forwarding_info(),
1621 // Ensures that we have actually received the `htlc_minimum_msat` value
1622 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1623 // message (as they are always the first message from the counterparty).
1624 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1625 // default `0` value set by `Channel::new_outbound`.
1626 outbound_htlc_minimum_msat: if context.have_received_message() {
1627 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1628 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1630 funding_txo: context.get_funding_txo(),
1631 // Note that accept_channel (or open_channel) is always the first message, so
1632 // `have_received_message` indicates that type negotiation has completed.
1633 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1634 short_channel_id: context.get_short_channel_id(),
1635 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1636 inbound_scid_alias: context.latest_inbound_scid_alias(),
1637 channel_value_satoshis: context.get_value_satoshis(),
1638 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1639 unspendable_punishment_reserve: to_self_reserve_satoshis,
1640 inbound_capacity_msat: balance.inbound_capacity_msat,
1641 outbound_capacity_msat: balance.outbound_capacity_msat,
1642 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1643 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1644 user_channel_id: context.get_user_id(),
1645 confirmations_required: context.minimum_depth(),
1646 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1647 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1648 is_outbound: context.is_outbound(),
1649 is_channel_ready: context.is_usable(),
1650 is_usable: context.is_live(),
1651 is_public: context.should_announce(),
1652 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1653 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1654 config: Some(context.config()),
1655 channel_shutdown_state: Some(context.shutdown_state()),
1660 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1661 /// Further information on the details of the channel shutdown.
1662 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1663 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1664 /// the channel will be removed shortly.
1665 /// Also note, that in normal operation, peers could disconnect at any of these states
1666 /// and require peer re-connection before making progress onto other states
1667 pub enum ChannelShutdownState {
1668 /// Channel has not sent or received a shutdown message.
1670 /// Local node has sent a shutdown message for this channel.
1672 /// Shutdown message exchanges have concluded and the channels are in the midst of
1673 /// resolving all existing open HTLCs before closing can continue.
1675 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1676 NegotiatingClosingFee,
1677 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1678 /// to drop the channel.
1682 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1683 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1684 #[derive(Debug, PartialEq)]
1685 pub enum RecentPaymentDetails {
1686 /// When a payment is still being sent and awaiting successful delivery.
1688 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1690 payment_hash: PaymentHash,
1691 /// Total amount (in msat, excluding fees) across all paths for this payment,
1692 /// not just the amount currently inflight.
1695 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1696 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1697 /// payment is removed from tracking.
1699 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1700 /// made before LDK version 0.0.104.
1701 payment_hash: Option<PaymentHash>,
1703 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1704 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1705 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1707 /// Hash of the payment that we have given up trying to send.
1708 payment_hash: PaymentHash,
1712 /// Route hints used in constructing invoices for [phantom node payents].
1714 /// [phantom node payments]: crate::sign::PhantomKeysManager
1716 pub struct PhantomRouteHints {
1717 /// The list of channels to be included in the invoice route hints.
1718 pub channels: Vec<ChannelDetails>,
1719 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1721 pub phantom_scid: u64,
1722 /// The pubkey of the real backing node that would ultimately receive the payment.
1723 pub real_node_pubkey: PublicKey,
1726 macro_rules! handle_error {
1727 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1728 // In testing, ensure there are no deadlocks where the lock is already held upon
1729 // entering the macro.
1730 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1731 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1735 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1736 let mut msg_events = Vec::with_capacity(2);
1738 if let Some((shutdown_res, update_option)) = shutdown_finish {
1739 $self.finish_force_close_channel(shutdown_res);
1740 if let Some(update) = update_option {
1741 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1745 if let Some((channel_id, user_channel_id)) = chan_id {
1746 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1747 channel_id, user_channel_id,
1748 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1749 counterparty_node_id: Some($counterparty_node_id),
1750 channel_capacity_sats: channel_capacity,
1755 log_error!($self.logger, "{}", err.err);
1756 if let msgs::ErrorAction::IgnoreError = err.action {
1758 msg_events.push(events::MessageSendEvent::HandleError {
1759 node_id: $counterparty_node_id,
1760 action: err.action.clone()
1764 if !msg_events.is_empty() {
1765 let per_peer_state = $self.per_peer_state.read().unwrap();
1766 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1767 let mut peer_state = peer_state_mutex.lock().unwrap();
1768 peer_state.pending_msg_events.append(&mut msg_events);
1772 // Return error in case higher-API need one
1777 ($self: ident, $internal: expr) => {
1780 Err((chan, msg_handle_err)) => {
1781 let counterparty_node_id = chan.get_counterparty_node_id();
1782 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1788 macro_rules! update_maps_on_chan_removal {
1789 ($self: expr, $channel_context: expr) => {{
1790 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1791 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1792 if let Some(short_id) = $channel_context.get_short_channel_id() {
1793 short_to_chan_info.remove(&short_id);
1795 // If the channel was never confirmed on-chain prior to its closure, remove the
1796 // outbound SCID alias we used for it from the collision-prevention set. While we
1797 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1798 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1799 // opening a million channels with us which are closed before we ever reach the funding
1801 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1802 debug_assert!(alias_removed);
1804 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1808 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1809 macro_rules! convert_chan_err {
1810 ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1812 ChannelError::Warn(msg) => {
1813 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1815 ChannelError::Ignore(msg) => {
1816 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1818 ChannelError::Close(msg) => {
1819 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1820 update_maps_on_chan_removal!($self, &$channel.context);
1821 let shutdown_res = $channel.context.force_shutdown(true);
1822 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.context.get_user_id(),
1823 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok(), $channel.context.get_value_satoshis()))
1827 ($self: ident, $err: expr, $channel_context: expr, $channel_id: expr, UNFUNDED) => {
1829 // We should only ever have `ChannelError::Close` when unfunded channels error.
1830 // In any case, just close the channel.
1831 ChannelError::Warn(msg) | ChannelError::Ignore(msg) | ChannelError::Close(msg) => {
1832 log_error!($self.logger, "Closing unfunded channel {} due to an error: {}", log_bytes!($channel_id[..]), msg);
1833 update_maps_on_chan_removal!($self, &$channel_context);
1834 let shutdown_res = $channel_context.force_shutdown(false);
1835 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel_context.get_user_id(),
1836 shutdown_res, None, $channel_context.get_value_satoshis()))
1842 macro_rules! break_chan_entry {
1843 ($self: ident, $res: expr, $entry: expr) => {
1847 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1849 $entry.remove_entry();
1857 macro_rules! try_v1_outbound_chan_entry {
1858 ($self: ident, $res: expr, $entry: expr) => {
1862 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut().context, $entry.key(), UNFUNDED);
1864 $entry.remove_entry();
1872 macro_rules! try_chan_entry {
1873 ($self: ident, $res: expr, $entry: expr) => {
1877 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1879 $entry.remove_entry();
1887 macro_rules! remove_channel {
1888 ($self: expr, $entry: expr) => {
1890 let channel = $entry.remove_entry().1;
1891 update_maps_on_chan_removal!($self, &channel.context);
1897 macro_rules! send_channel_ready {
1898 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1899 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1900 node_id: $channel.context.get_counterparty_node_id(),
1901 msg: $channel_ready_msg,
1903 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1904 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1905 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1906 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1907 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1908 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1909 if let Some(real_scid) = $channel.context.get_short_channel_id() {
1910 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1911 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1912 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1917 macro_rules! emit_channel_pending_event {
1918 ($locked_events: expr, $channel: expr) => {
1919 if $channel.context.should_emit_channel_pending_event() {
1920 $locked_events.push_back((events::Event::ChannelPending {
1921 channel_id: $channel.context.channel_id(),
1922 former_temporary_channel_id: $channel.context.temporary_channel_id(),
1923 counterparty_node_id: $channel.context.get_counterparty_node_id(),
1924 user_channel_id: $channel.context.get_user_id(),
1925 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
1927 $channel.context.set_channel_pending_event_emitted();
1932 macro_rules! emit_channel_ready_event {
1933 ($locked_events: expr, $channel: expr) => {
1934 if $channel.context.should_emit_channel_ready_event() {
1935 debug_assert!($channel.context.channel_pending_event_emitted());
1936 $locked_events.push_back((events::Event::ChannelReady {
1937 channel_id: $channel.context.channel_id(),
1938 user_channel_id: $channel.context.get_user_id(),
1939 counterparty_node_id: $channel.context.get_counterparty_node_id(),
1940 channel_type: $channel.context.get_channel_type().clone(),
1942 $channel.context.set_channel_ready_event_emitted();
1947 macro_rules! handle_monitor_update_completion {
1948 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1949 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1950 &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1951 $self.best_block.read().unwrap().height());
1952 let counterparty_node_id = $chan.context.get_counterparty_node_id();
1953 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
1954 // We only send a channel_update in the case where we are just now sending a
1955 // channel_ready and the channel is in a usable state. We may re-send a
1956 // channel_update later through the announcement_signatures process for public
1957 // channels, but there's no reason not to just inform our counterparty of our fees
1959 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1960 Some(events::MessageSendEvent::SendChannelUpdate {
1961 node_id: counterparty_node_id,
1967 let update_actions = $peer_state.monitor_update_blocked_actions
1968 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
1970 let htlc_forwards = $self.handle_channel_resumption(
1971 &mut $peer_state.pending_msg_events, $chan, updates.raa,
1972 updates.commitment_update, updates.order, updates.accepted_htlcs,
1973 updates.funding_broadcastable, updates.channel_ready,
1974 updates.announcement_sigs);
1975 if let Some(upd) = channel_update {
1976 $peer_state.pending_msg_events.push(upd);
1979 let channel_id = $chan.context.channel_id();
1980 core::mem::drop($peer_state_lock);
1981 core::mem::drop($per_peer_state_lock);
1983 $self.handle_monitor_update_completion_actions(update_actions);
1985 if let Some(forwards) = htlc_forwards {
1986 $self.forward_htlcs(&mut [forwards][..]);
1988 $self.finalize_claims(updates.finalized_claimed_htlcs);
1989 for failure in updates.failed_htlcs.drain(..) {
1990 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1991 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1996 macro_rules! handle_new_monitor_update {
1997 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, _internal, $remove: expr, $completed: expr) => { {
1998 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1999 // any case so that it won't deadlock.
2000 debug_assert_ne!($self.id_to_peer.held_by_thread(), LockHeldState::HeldByThread);
2001 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2003 ChannelMonitorUpdateStatus::InProgress => {
2004 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2005 log_bytes!($chan.context.channel_id()[..]));
2008 ChannelMonitorUpdateStatus::PermanentFailure => {
2009 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
2010 log_bytes!($chan.context.channel_id()[..]));
2011 update_maps_on_chan_removal!($self, &$chan.context);
2012 let res = Err(MsgHandleErrInternal::from_finish_shutdown(
2013 "ChannelMonitor storage failure".to_owned(), $chan.context.channel_id(),
2014 $chan.context.get_user_id(), $chan.context.force_shutdown(false),
2015 $self.get_channel_update_for_broadcast(&$chan).ok(), $chan.context.get_value_satoshis()));
2019 ChannelMonitorUpdateStatus::Completed => {
2025 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING_INITIAL_MONITOR, $remove: expr) => {
2026 handle_new_monitor_update!($self, $update_res, $peer_state_lock, $peer_state,
2027 $per_peer_state_lock, $chan, _internal, $remove,
2028 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2030 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr, INITIAL_MONITOR) => {
2031 handle_new_monitor_update!($self, $update_res, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING_INITIAL_MONITOR, $chan_entry.remove_entry())
2033 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
2034 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2035 .or_insert_with(Vec::new);
2036 // During startup, we push monitor updates as background events through to here in
2037 // order to replay updates that were in-flight when we shut down. Thus, we have to
2038 // filter for uniqueness here.
2039 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2040 .unwrap_or_else(|| {
2041 in_flight_updates.push($update);
2042 in_flight_updates.len() - 1
2044 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2045 handle_new_monitor_update!($self, update_res, $peer_state_lock, $peer_state,
2046 $per_peer_state_lock, $chan, _internal, $remove,
2048 let _ = in_flight_updates.remove(idx);
2049 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2050 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2054 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
2055 handle_new_monitor_update!($self, $funding_txo, $update, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
2059 macro_rules! process_events_body {
2060 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2061 let mut processed_all_events = false;
2062 while !processed_all_events {
2063 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2067 let mut result = NotifyOption::SkipPersist;
2070 // We'll acquire our total consistency lock so that we can be sure no other
2071 // persists happen while processing monitor events.
2072 let _read_guard = $self.total_consistency_lock.read().unwrap();
2074 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2075 // ensure any startup-generated background events are handled first.
2076 if $self.process_background_events() == NotifyOption::DoPersist { result = NotifyOption::DoPersist; }
2078 // TODO: This behavior should be documented. It's unintuitive that we query
2079 // ChannelMonitors when clearing other events.
2080 if $self.process_pending_monitor_events() {
2081 result = NotifyOption::DoPersist;
2085 let pending_events = $self.pending_events.lock().unwrap().clone();
2086 let num_events = pending_events.len();
2087 if !pending_events.is_empty() {
2088 result = NotifyOption::DoPersist;
2091 let mut post_event_actions = Vec::new();
2093 for (event, action_opt) in pending_events {
2094 $event_to_handle = event;
2096 if let Some(action) = action_opt {
2097 post_event_actions.push(action);
2102 let mut pending_events = $self.pending_events.lock().unwrap();
2103 pending_events.drain(..num_events);
2104 processed_all_events = pending_events.is_empty();
2105 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2106 // updated here with the `pending_events` lock acquired.
2107 $self.pending_events_processor.store(false, Ordering::Release);
2110 if !post_event_actions.is_empty() {
2111 $self.handle_post_event_actions(post_event_actions);
2112 // If we had some actions, go around again as we may have more events now
2113 processed_all_events = false;
2116 if result == NotifyOption::DoPersist {
2117 $self.persistence_notifier.notify();
2123 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2125 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2126 T::Target: BroadcasterInterface,
2127 ES::Target: EntropySource,
2128 NS::Target: NodeSigner,
2129 SP::Target: SignerProvider,
2130 F::Target: FeeEstimator,
2134 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2136 /// The current time or latest block header time can be provided as the `current_timestamp`.
2138 /// This is the main "logic hub" for all channel-related actions, and implements
2139 /// [`ChannelMessageHandler`].
2141 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2143 /// Users need to notify the new `ChannelManager` when a new block is connected or
2144 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2145 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2148 /// [`block_connected`]: chain::Listen::block_connected
2149 /// [`block_disconnected`]: chain::Listen::block_disconnected
2150 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2152 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2153 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2154 current_timestamp: u32,
2156 let mut secp_ctx = Secp256k1::new();
2157 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2158 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2159 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2161 default_configuration: config.clone(),
2162 genesis_hash: genesis_block(params.network).header.block_hash(),
2163 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2168 best_block: RwLock::new(params.best_block),
2170 outbound_scid_aliases: Mutex::new(HashSet::new()),
2171 pending_inbound_payments: Mutex::new(HashMap::new()),
2172 pending_outbound_payments: OutboundPayments::new(),
2173 forward_htlcs: Mutex::new(HashMap::new()),
2174 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2175 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2176 id_to_peer: Mutex::new(HashMap::new()),
2177 short_to_chan_info: FairRwLock::new(HashMap::new()),
2179 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2182 inbound_payment_key: expanded_inbound_key,
2183 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2185 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2187 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2189 per_peer_state: FairRwLock::new(HashMap::new()),
2191 pending_events: Mutex::new(VecDeque::new()),
2192 pending_events_processor: AtomicBool::new(false),
2193 pending_background_events: Mutex::new(Vec::new()),
2194 total_consistency_lock: RwLock::new(()),
2195 background_events_processed_since_startup: AtomicBool::new(false),
2196 persistence_notifier: Notifier::new(),
2206 /// Gets the current configuration applied to all new channels.
2207 pub fn get_current_default_configuration(&self) -> &UserConfig {
2208 &self.default_configuration
2211 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2212 let height = self.best_block.read().unwrap().height();
2213 let mut outbound_scid_alias = 0;
2216 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2217 outbound_scid_alias += 1;
2219 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2221 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2225 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2230 /// Creates a new outbound channel to the given remote node and with the given value.
2232 /// `user_channel_id` will be provided back as in
2233 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2234 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2235 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2236 /// is simply copied to events and otherwise ignored.
2238 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2239 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2241 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2242 /// generate a shutdown scriptpubkey or destination script set by
2243 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2245 /// Note that we do not check if you are currently connected to the given peer. If no
2246 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2247 /// the channel eventually being silently forgotten (dropped on reload).
2249 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2250 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2251 /// [`ChannelDetails::channel_id`] until after
2252 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2253 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2254 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2256 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2257 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2258 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2259 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
2260 if channel_value_satoshis < 1000 {
2261 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2264 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2265 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2266 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2268 let per_peer_state = self.per_peer_state.read().unwrap();
2270 let peer_state_mutex = per_peer_state.get(&their_network_key)
2271 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2273 let mut peer_state = peer_state_mutex.lock().unwrap();
2275 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2276 let their_features = &peer_state.latest_features;
2277 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2278 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2279 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2280 self.best_block.read().unwrap().height(), outbound_scid_alias)
2284 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2289 let res = channel.get_open_channel(self.genesis_hash.clone());
2291 let temporary_channel_id = channel.context.channel_id();
2292 match peer_state.outbound_v1_channel_by_id.entry(temporary_channel_id) {
2293 hash_map::Entry::Occupied(_) => {
2295 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2297 panic!("RNG is bad???");
2300 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
2303 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2304 node_id: their_network_key,
2307 Ok(temporary_channel_id)
2310 fn list_funded_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2311 // Allocate our best estimate of the number of channels we have in the `res`
2312 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2313 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2314 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2315 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2316 // the same channel.
2317 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2319 let best_block_height = self.best_block.read().unwrap().height();
2320 let per_peer_state = self.per_peer_state.read().unwrap();
2321 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2322 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2323 let peer_state = &mut *peer_state_lock;
2324 // Only `Channels` in the channel_by_id map can be considered funded.
2325 for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
2326 let details = ChannelDetails::from_channel_context(&channel.context, best_block_height,
2327 peer_state.latest_features.clone(), &self.fee_estimator);
2335 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2336 /// more information.
2337 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2338 // Allocate our best estimate of the number of channels we have in the `res`
2339 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2340 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2341 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2342 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2343 // the same channel.
2344 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2346 let best_block_height = self.best_block.read().unwrap().height();
2347 let per_peer_state = self.per_peer_state.read().unwrap();
2348 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2349 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2350 let peer_state = &mut *peer_state_lock;
2351 for (_channel_id, channel) in peer_state.channel_by_id.iter() {
2352 let details = ChannelDetails::from_channel_context(&channel.context, best_block_height,
2353 peer_state.latest_features.clone(), &self.fee_estimator);
2356 for (_channel_id, channel) in peer_state.inbound_v1_channel_by_id.iter() {
2357 let details = ChannelDetails::from_channel_context(&channel.context, best_block_height,
2358 peer_state.latest_features.clone(), &self.fee_estimator);
2361 for (_channel_id, channel) in peer_state.outbound_v1_channel_by_id.iter() {
2362 let details = ChannelDetails::from_channel_context(&channel.context, best_block_height,
2363 peer_state.latest_features.clone(), &self.fee_estimator);
2371 /// Gets the list of usable channels, in random order. Useful as an argument to
2372 /// [`Router::find_route`] to ensure non-announced channels are used.
2374 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2375 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2377 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2378 // Note we use is_live here instead of usable which leads to somewhat confused
2379 // internal/external nomenclature, but that's ok cause that's probably what the user
2380 // really wanted anyway.
2381 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2384 /// Gets the list of channels we have with a given counterparty, in random order.
2385 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2386 let best_block_height = self.best_block.read().unwrap().height();
2387 let per_peer_state = self.per_peer_state.read().unwrap();
2389 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2390 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2391 let peer_state = &mut *peer_state_lock;
2392 let features = &peer_state.latest_features;
2393 let chan_context_to_details = |context| {
2394 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2396 return peer_state.channel_by_id
2398 .map(|(_, channel)| &channel.context)
2399 .chain(peer_state.outbound_v1_channel_by_id.iter().map(|(_, channel)| &channel.context))
2400 .chain(peer_state.inbound_v1_channel_by_id.iter().map(|(_, channel)| &channel.context))
2401 .map(chan_context_to_details)
2407 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2408 /// successful path, or have unresolved HTLCs.
2410 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2411 /// result of a crash. If such a payment exists, is not listed here, and an
2412 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2414 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2415 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2416 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2417 .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
2418 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2419 Some(RecentPaymentDetails::Pending {
2420 payment_hash: *payment_hash,
2421 total_msat: *total_msat,
2424 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2425 Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
2427 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2428 Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
2430 PendingOutboundPayment::Legacy { .. } => None
2435 /// Helper function that issues the channel close events
2436 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2437 let mut pending_events_lock = self.pending_events.lock().unwrap();
2438 match context.unbroadcasted_funding() {
2439 Some(transaction) => {
2440 pending_events_lock.push_back((events::Event::DiscardFunding {
2441 channel_id: context.channel_id(), transaction
2446 pending_events_lock.push_back((events::Event::ChannelClosed {
2447 channel_id: context.channel_id(),
2448 user_channel_id: context.get_user_id(),
2449 reason: closure_reason,
2450 counterparty_node_id: Some(context.get_counterparty_node_id()),
2451 channel_capacity_sats: Some(context.get_value_satoshis()),
2455 fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2456 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2458 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2459 let result: Result<(), _> = loop {
2461 let per_peer_state = self.per_peer_state.read().unwrap();
2463 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2464 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2466 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2467 let peer_state = &mut *peer_state_lock;
2469 match peer_state.channel_by_id.entry(channel_id.clone()) {
2470 hash_map::Entry::Occupied(mut chan_entry) => {
2471 let funding_txo_opt = chan_entry.get().context.get_funding_txo();
2472 let their_features = &peer_state.latest_features;
2473 let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
2474 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2475 failed_htlcs = htlcs;
2477 // We can send the `shutdown` message before updating the `ChannelMonitor`
2478 // here as we don't need the monitor update to complete until we send a
2479 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2480 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2481 node_id: *counterparty_node_id,
2485 // Update the monitor with the shutdown script if necessary.
2486 if let Some(monitor_update) = monitor_update_opt.take() {
2487 break handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2488 peer_state_lock, peer_state, per_peer_state, chan_entry).map(|_| ());
2491 if chan_entry.get().is_shutdown() {
2492 let channel = remove_channel!(self, chan_entry);
2493 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
2494 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2498 self.issue_channel_close_events(&channel.context, ClosureReason::HolderForceClosed);
2502 hash_map::Entry::Vacant(_) => (),
2505 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2506 // it does not exist for this peer. Either way, we can attempt to force-close it.
2508 // An appropriate error will be returned for non-existence of the channel if that's the case.
2509 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2510 // TODO(dunxen): This is still not ideal as we're doing some extra lookups.
2511 // Fix this with https://github.com/lightningdevkit/rust-lightning/issues/2422
2514 for htlc_source in failed_htlcs.drain(..) {
2515 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2516 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2517 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2520 let _ = handle_error!(self, result, *counterparty_node_id);
2524 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2525 /// will be accepted on the given channel, and after additional timeout/the closing of all
2526 /// pending HTLCs, the channel will be closed on chain.
2528 /// * If we are the channel initiator, we will pay between our [`Background`] and
2529 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2531 /// * If our counterparty is the channel initiator, we will require a channel closing
2532 /// transaction feerate of at least our [`Background`] feerate or the feerate which
2533 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2534 /// counterparty to pay as much fee as they'd like, however.
2536 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2538 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2539 /// generate a shutdown scriptpubkey or destination script set by
2540 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2543 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2544 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2545 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2546 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2547 pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2548 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2551 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2552 /// will be accepted on the given channel, and after additional timeout/the closing of all
2553 /// pending HTLCs, the channel will be closed on chain.
2555 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2556 /// the channel being closed or not:
2557 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2558 /// transaction. The upper-bound is set by
2559 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2560 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2561 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2562 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2563 /// will appear on a force-closure transaction, whichever is lower).
2565 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2566 /// Will fail if a shutdown script has already been set for this channel by
2567 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2568 /// also be compatible with our and the counterparty's features.
2570 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2572 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2573 /// generate a shutdown scriptpubkey or destination script set by
2574 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2577 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2578 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2579 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2580 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2581 pub fn close_channel_with_feerate_and_script(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2582 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2586 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
2587 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
2588 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
2589 for htlc_source in failed_htlcs.drain(..) {
2590 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2591 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2592 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2593 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2595 if let Some((_, funding_txo, monitor_update)) = monitor_update_option {
2596 // There isn't anything we can do if we get an update failure - we're already
2597 // force-closing. The monitor update on the required in-memory copy should broadcast
2598 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2599 // ignore the result here.
2600 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2604 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2605 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2606 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2607 -> Result<PublicKey, APIError> {
2608 let per_peer_state = self.per_peer_state.read().unwrap();
2609 let peer_state_mutex = per_peer_state.get(peer_node_id)
2610 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2611 let (update_opt, counterparty_node_id) = {
2612 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2613 let peer_state = &mut *peer_state_lock;
2614 let closure_reason = if let Some(peer_msg) = peer_msg {
2615 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2617 ClosureReason::HolderForceClosed
2619 if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
2620 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2621 self.issue_channel_close_events(&chan.get().context, closure_reason);
2622 let mut chan = remove_channel!(self, chan);
2623 self.finish_force_close_channel(chan.context.force_shutdown(broadcast));
2624 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2625 } else if let hash_map::Entry::Occupied(chan) = peer_state.outbound_v1_channel_by_id.entry(channel_id.clone()) {
2626 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2627 self.issue_channel_close_events(&chan.get().context, closure_reason);
2628 let mut chan = remove_channel!(self, chan);
2629 self.finish_force_close_channel(chan.context.force_shutdown(false));
2630 // Unfunded channel has no update
2631 (None, chan.context.get_counterparty_node_id())
2632 } else if let hash_map::Entry::Occupied(chan) = peer_state.inbound_v1_channel_by_id.entry(channel_id.clone()) {
2633 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2634 self.issue_channel_close_events(&chan.get().context, closure_reason);
2635 let mut chan = remove_channel!(self, chan);
2636 self.finish_force_close_channel(chan.context.force_shutdown(false));
2637 // Unfunded channel has no update
2638 (None, chan.context.get_counterparty_node_id())
2639 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2640 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2641 // N.B. that we don't send any channel close event here: we
2642 // don't have a user_channel_id, and we never sent any opening
2644 (None, *peer_node_id)
2646 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
2649 if let Some(update) = update_opt {
2650 let mut peer_state = peer_state_mutex.lock().unwrap();
2651 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2656 Ok(counterparty_node_id)
2659 fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2660 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2661 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2662 Ok(counterparty_node_id) => {
2663 let per_peer_state = self.per_peer_state.read().unwrap();
2664 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2665 let mut peer_state = peer_state_mutex.lock().unwrap();
2666 peer_state.pending_msg_events.push(
2667 events::MessageSendEvent::HandleError {
2668 node_id: counterparty_node_id,
2669 action: msgs::ErrorAction::SendErrorMessage {
2670 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2681 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2682 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2683 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2685 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2686 -> Result<(), APIError> {
2687 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2690 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2691 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2692 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2694 /// You can always get the latest local transaction(s) to broadcast from
2695 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2696 pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2697 -> Result<(), APIError> {
2698 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2701 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2702 /// for each to the chain and rejecting new HTLCs on each.
2703 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2704 for chan in self.list_channels() {
2705 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2709 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2710 /// local transaction(s).
2711 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2712 for chan in self.list_channels() {
2713 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2717 fn construct_fwd_pending_htlc_info(
2718 &self, msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
2719 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
2720 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
2721 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2722 debug_assert!(next_packet_pubkey_opt.is_some());
2723 let outgoing_packet = msgs::OnionPacket {
2725 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
2726 hop_data: new_packet_bytes,
2730 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
2731 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
2732 (short_channel_id, amt_to_forward, outgoing_cltv_value),
2733 msgs::InboundOnionPayload::Receive { .. } =>
2734 return Err(InboundOnionErr {
2735 msg: "Final Node OnionHopData provided for us as an intermediary node",
2736 err_code: 0x4000 | 22,
2737 err_data: Vec::new(),
2741 Ok(PendingHTLCInfo {
2742 routing: PendingHTLCRouting::Forward {
2743 onion_packet: outgoing_packet,
2746 payment_hash: msg.payment_hash,
2747 incoming_shared_secret: shared_secret,
2748 incoming_amt_msat: Some(msg.amount_msat),
2749 outgoing_amt_msat: amt_to_forward,
2750 outgoing_cltv_value,
2751 skimmed_fee_msat: None,
2755 fn construct_recv_pending_htlc_info(
2756 &self, hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
2757 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
2758 counterparty_skimmed_fee_msat: Option<u64>,
2759 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2760 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
2761 msgs::InboundOnionPayload::Receive {
2762 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
2764 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
2766 return Err(InboundOnionErr {
2767 err_code: 0x4000|22,
2768 err_data: Vec::new(),
2769 msg: "Got non final data with an HMAC of 0",
2772 // final_incorrect_cltv_expiry
2773 if outgoing_cltv_value > cltv_expiry {
2774 return Err(InboundOnionErr {
2775 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2777 err_data: cltv_expiry.to_be_bytes().to_vec()
2780 // final_expiry_too_soon
2781 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2782 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2784 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2785 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2786 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2787 let current_height: u32 = self.best_block.read().unwrap().height();
2788 if (outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2789 let mut err_data = Vec::with_capacity(12);
2790 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2791 err_data.extend_from_slice(¤t_height.to_be_bytes());
2792 return Err(InboundOnionErr {
2793 err_code: 0x4000 | 15, err_data,
2794 msg: "The final CLTV expiry is too soon to handle",
2797 if (!allow_underpay && onion_amt_msat > amt_msat) ||
2798 (allow_underpay && onion_amt_msat >
2799 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
2801 return Err(InboundOnionErr {
2803 err_data: amt_msat.to_be_bytes().to_vec(),
2804 msg: "Upstream node sent less than we were supposed to receive in payment",
2808 let routing = if let Some(payment_preimage) = keysend_preimage {
2809 // We need to check that the sender knows the keysend preimage before processing this
2810 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2811 // could discover the final destination of X, by probing the adjacent nodes on the route
2812 // with a keysend payment of identical payment hash to X and observing the processing
2813 // time discrepancies due to a hash collision with X.
2814 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2815 if hashed_preimage != payment_hash {
2816 return Err(InboundOnionErr {
2817 err_code: 0x4000|22,
2818 err_data: Vec::new(),
2819 msg: "Payment preimage didn't match payment hash",
2822 if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() {
2823 return Err(InboundOnionErr {
2824 err_code: 0x4000|22,
2825 err_data: Vec::new(),
2826 msg: "We don't support MPP keysend payments",
2829 PendingHTLCRouting::ReceiveKeysend {
2833 incoming_cltv_expiry: outgoing_cltv_value,
2836 } else if let Some(data) = payment_data {
2837 PendingHTLCRouting::Receive {
2840 incoming_cltv_expiry: outgoing_cltv_value,
2841 phantom_shared_secret,
2845 return Err(InboundOnionErr {
2846 err_code: 0x4000|0x2000|3,
2847 err_data: Vec::new(),
2848 msg: "We require payment_secrets",
2851 Ok(PendingHTLCInfo {
2854 incoming_shared_secret: shared_secret,
2855 incoming_amt_msat: Some(amt_msat),
2856 outgoing_amt_msat: onion_amt_msat,
2857 outgoing_cltv_value,
2858 skimmed_fee_msat: counterparty_skimmed_fee_msat,
2862 fn decode_update_add_htlc_onion(
2863 &self, msg: &msgs::UpdateAddHTLC
2864 ) -> Result<(onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg> {
2865 macro_rules! return_malformed_err {
2866 ($msg: expr, $err_code: expr) => {
2868 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2869 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2870 channel_id: msg.channel_id,
2871 htlc_id: msg.htlc_id,
2872 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2873 failure_code: $err_code,
2879 if let Err(_) = msg.onion_routing_packet.public_key {
2880 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2883 let shared_secret = self.node_signer.ecdh(
2884 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2885 ).unwrap().secret_bytes();
2887 if msg.onion_routing_packet.version != 0 {
2888 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2889 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2890 //the hash doesn't really serve any purpose - in the case of hashing all data, the
2891 //receiving node would have to brute force to figure out which version was put in the
2892 //packet by the node that send us the message, in the case of hashing the hop_data, the
2893 //node knows the HMAC matched, so they already know what is there...
2894 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2896 macro_rules! return_err {
2897 ($msg: expr, $err_code: expr, $data: expr) => {
2899 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2900 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2901 channel_id: msg.channel_id,
2902 htlc_id: msg.htlc_id,
2903 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2904 .get_encrypted_failure_packet(&shared_secret, &None),
2910 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2912 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2913 return_malformed_err!(err_msg, err_code);
2915 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2916 return_err!(err_msg, err_code, &[0; 0]);
2919 let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop {
2920 onion_utils::Hop::Forward {
2921 next_hop_data: msgs::InboundOnionPayload::Forward {
2922 short_channel_id, amt_to_forward, outgoing_cltv_value
2925 let next_packet_pk = onion_utils::next_hop_pubkey(&self.secp_ctx,
2926 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
2927 (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_packet_pk))
2929 // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the
2930 // inbound channel's state.
2931 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
2932 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } => {
2933 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
2937 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
2938 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
2939 if let Some((err, mut code, chan_update)) = loop {
2940 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
2941 let forwarding_chan_info_opt = match id_option {
2942 None => { // unknown_next_peer
2943 // Note that this is likely a timing oracle for detecting whether an scid is a
2944 // phantom or an intercept.
2945 if (self.default_configuration.accept_intercept_htlcs &&
2946 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)) ||
2947 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)
2951 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2954 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2956 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2957 let per_peer_state = self.per_peer_state.read().unwrap();
2958 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2959 if peer_state_mutex_opt.is_none() {
2960 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2962 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2963 let peer_state = &mut *peer_state_lock;
2964 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2966 // Channel was removed. The short_to_chan_info and channel_by_id maps
2967 // have no consistency guarantees.
2968 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2972 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2973 // Note that the behavior here should be identical to the above block - we
2974 // should NOT reveal the existence or non-existence of a private channel if
2975 // we don't allow forwards outbound over them.
2976 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2978 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
2979 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2980 // "refuse to forward unless the SCID alias was used", so we pretend
2981 // we don't have the channel here.
2982 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2984 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
2986 // Note that we could technically not return an error yet here and just hope
2987 // that the connection is reestablished or monitor updated by the time we get
2988 // around to doing the actual forward, but better to fail early if we can and
2989 // hopefully an attacker trying to path-trace payments cannot make this occur
2990 // on a small/per-node/per-channel scale.
2991 if !chan.context.is_live() { // channel_disabled
2992 // If the channel_update we're going to return is disabled (i.e. the
2993 // peer has been disabled for some time), return `channel_disabled`,
2994 // otherwise return `temporary_channel_failure`.
2995 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
2996 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
2998 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3001 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3002 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3004 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3005 break Some((err, code, chan_update_opt));
3009 if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
3010 // We really should set `incorrect_cltv_expiry` here but as we're not
3011 // forwarding over a real channel we can't generate a channel_update
3012 // for it. Instead we just return a generic temporary_node_failure.
3014 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
3021 let cur_height = self.best_block.read().unwrap().height() + 1;
3022 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
3023 // but we want to be robust wrt to counterparty packet sanitization (see
3024 // HTLC_FAIL_BACK_BUFFER rationale).
3025 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
3026 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
3028 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
3029 break Some(("CLTV expiry is too far in the future", 21, None));
3031 // If the HTLC expires ~now, don't bother trying to forward it to our
3032 // counterparty. They should fail it anyway, but we don't want to bother with
3033 // the round-trips or risk them deciding they definitely want the HTLC and
3034 // force-closing to ensure they get it if we're offline.
3035 // We previously had a much more aggressive check here which tried to ensure
3036 // our counterparty receives an HTLC which has *our* risk threshold met on it,
3037 // but there is no need to do that, and since we're a bit conservative with our
3038 // risk threshold it just results in failing to forward payments.
3039 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
3040 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
3046 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3047 if let Some(chan_update) = chan_update {
3048 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3049 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3051 else if code == 0x1000 | 13 {
3052 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3054 else if code == 0x1000 | 20 {
3055 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3056 0u16.write(&mut res).expect("Writes cannot fail");
3058 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3059 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3060 chan_update.write(&mut res).expect("Writes cannot fail");
3061 } else if code & 0x1000 == 0x1000 {
3062 // If we're trying to return an error that requires a `channel_update` but
3063 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3064 // generate an update), just use the generic "temporary_node_failure"
3068 return_err!(err, code, &res.0[..]);
3070 Ok((next_hop, shared_secret, next_packet_pk_opt))
3073 fn construct_pending_htlc_status<'a>(
3074 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3075 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3076 ) -> PendingHTLCStatus {
3077 macro_rules! return_err {
3078 ($msg: expr, $err_code: expr, $data: expr) => {
3080 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3081 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3082 channel_id: msg.channel_id,
3083 htlc_id: msg.htlc_id,
3084 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3085 .get_encrypted_failure_packet(&shared_secret, &None),
3091 onion_utils::Hop::Receive(next_hop_data) => {
3093 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3094 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat)
3097 // Note that we could obviously respond immediately with an update_fulfill_htlc
3098 // message, however that would leak that we are the recipient of this payment, so
3099 // instead we stay symmetric with the forwarding case, only responding (after a
3100 // delay) once they've send us a commitment_signed!
3101 PendingHTLCStatus::Forward(info)
3103 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3106 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3107 match self.construct_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3108 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3109 Ok(info) => PendingHTLCStatus::Forward(info),
3110 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3116 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3117 /// public, and thus should be called whenever the result is going to be passed out in a
3118 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3120 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3121 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3122 /// storage and the `peer_state` lock has been dropped.
3124 /// [`channel_update`]: msgs::ChannelUpdate
3125 /// [`internal_closing_signed`]: Self::internal_closing_signed
3126 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3127 if !chan.context.should_announce() {
3128 return Err(LightningError {
3129 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3130 action: msgs::ErrorAction::IgnoreError
3133 if chan.context.get_short_channel_id().is_none() {
3134 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3136 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.context.channel_id()));
3137 self.get_channel_update_for_unicast(chan)
3140 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3141 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3142 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3143 /// provided evidence that they know about the existence of the channel.
3145 /// Note that through [`internal_closing_signed`], this function is called without the
3146 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3147 /// removed from the storage and the `peer_state` lock has been dropped.
3149 /// [`channel_update`]: msgs::ChannelUpdate
3150 /// [`internal_closing_signed`]: Self::internal_closing_signed
3151 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3152 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.context.channel_id()));
3153 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3154 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3158 self.get_channel_update_for_onion(short_channel_id, chan)
3161 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3162 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.context.channel_id()));
3163 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3165 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3166 ChannelUpdateStatus::Enabled => true,
3167 ChannelUpdateStatus::DisabledStaged(_) => true,
3168 ChannelUpdateStatus::Disabled => false,
3169 ChannelUpdateStatus::EnabledStaged(_) => false,
3172 let unsigned = msgs::UnsignedChannelUpdate {
3173 chain_hash: self.genesis_hash,
3175 timestamp: chan.context.get_update_time_counter(),
3176 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3177 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3178 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3179 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3180 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3181 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3182 excess_data: Vec::new(),
3184 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3185 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3186 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3188 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3190 Ok(msgs::ChannelUpdate {
3197 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3198 let _lck = self.total_consistency_lock.read().unwrap();
3199 self.send_payment_along_path(SendAlongPathArgs {
3200 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3205 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3206 let SendAlongPathArgs {
3207 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3210 // The top-level caller should hold the total_consistency_lock read lock.
3211 debug_assert!(self.total_consistency_lock.try_write().is_err());
3213 log_trace!(self.logger,
3214 "Attempting to send payment with payment hash {} along path with next hop {}",
3215 payment_hash, path.hops.first().unwrap().short_channel_id);
3216 let prng_seed = self.entropy_source.get_secure_random_bytes();
3217 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3219 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
3220 .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
3221 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
3223 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash)
3224 .map_err(|_| APIError::InvalidRoute { err: "Route size too large considering onion data".to_owned()})?;
3226 let err: Result<(), _> = loop {
3227 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3228 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3229 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3232 let per_peer_state = self.per_peer_state.read().unwrap();
3233 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3234 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3235 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3236 let peer_state = &mut *peer_state_lock;
3237 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
3238 if !chan.get().context.is_live() {
3239 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3241 let funding_txo = chan.get().context.get_funding_txo().unwrap();
3242 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3243 htlc_cltv, HTLCSource::OutboundRoute {
3245 session_priv: session_priv.clone(),
3246 first_hop_htlc_msat: htlc_msat,
3248 }, onion_packet, None, &self.fee_estimator, &self.logger);
3249 match break_chan_entry!(self, send_res, chan) {
3250 Some(monitor_update) => {
3251 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3252 Err(e) => break Err(e),
3254 // Note that MonitorUpdateInProgress here indicates (per function
3255 // docs) that we will resend the commitment update once monitor
3256 // updating completes. Therefore, we must return an error
3257 // indicating that it is unsafe to retry the payment wholesale,
3258 // which we do in the send_payment check for
3259 // MonitorUpdateInProgress, below.
3260 return Err(APIError::MonitorUpdateInProgress);
3268 // The channel was likely removed after we fetched the id from the
3269 // `short_to_chan_info` map, but before we successfully locked the
3270 // `channel_by_id` map.
3271 // This can occur as no consistency guarantees exists between the two maps.
3272 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3277 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3278 Ok(_) => unreachable!(),
3280 Err(APIError::ChannelUnavailable { err: e.err })
3285 /// Sends a payment along a given route.
3287 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3288 /// fields for more info.
3290 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3291 /// [`PeerManager::process_events`]).
3293 /// # Avoiding Duplicate Payments
3295 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3296 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3297 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3298 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3299 /// second payment with the same [`PaymentId`].
3301 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3302 /// tracking of payments, including state to indicate once a payment has completed. Because you
3303 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3304 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3305 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3307 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3308 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3309 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3310 /// [`ChannelManager::list_recent_payments`] for more information.
3312 /// # Possible Error States on [`PaymentSendFailure`]
3314 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3315 /// each entry matching the corresponding-index entry in the route paths, see
3316 /// [`PaymentSendFailure`] for more info.
3318 /// In general, a path may raise:
3319 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3320 /// node public key) is specified.
3321 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
3322 /// (including due to previous monitor update failure or new permanent monitor update
3324 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3325 /// relevant updates.
3327 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3328 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3329 /// different route unless you intend to pay twice!
3331 /// [`RouteHop`]: crate::routing::router::RouteHop
3332 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3333 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3334 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3335 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3336 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3337 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3338 let best_block_height = self.best_block.read().unwrap().height();
3339 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3340 self.pending_outbound_payments
3341 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3342 &self.entropy_source, &self.node_signer, best_block_height,
3343 |args| self.send_payment_along_path(args))
3346 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3347 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3348 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3349 let best_block_height = self.best_block.read().unwrap().height();
3350 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3351 self.pending_outbound_payments
3352 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3353 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3354 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3355 &self.pending_events, |args| self.send_payment_along_path(args))
3359 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3360 let best_block_height = self.best_block.read().unwrap().height();
3361 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3362 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3363 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3364 best_block_height, |args| self.send_payment_along_path(args))
3368 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3369 let best_block_height = self.best_block.read().unwrap().height();
3370 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3374 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3375 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3379 /// Signals that no further retries for the given payment should occur. Useful if you have a
3380 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3381 /// retries are exhausted.
3383 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3384 /// as there are no remaining pending HTLCs for this payment.
3386 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3387 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3388 /// determine the ultimate status of a payment.
3390 /// If an [`Event::PaymentFailed`] event is generated and we restart without this
3391 /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
3393 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3394 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3395 pub fn abandon_payment(&self, payment_id: PaymentId) {
3396 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3397 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3400 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3401 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3402 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3403 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3404 /// never reach the recipient.
3406 /// See [`send_payment`] documentation for more details on the return value of this function
3407 /// and idempotency guarantees provided by the [`PaymentId`] key.
3409 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3410 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3412 /// [`send_payment`]: Self::send_payment
3413 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3414 let best_block_height = self.best_block.read().unwrap().height();
3415 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3416 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3417 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3418 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3421 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3422 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3424 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3427 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3428 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3429 let best_block_height = self.best_block.read().unwrap().height();
3430 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3431 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3432 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3433 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3434 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3437 /// Send a payment that is probing the given route for liquidity. We calculate the
3438 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3439 /// us to easily discern them from real payments.
3440 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3441 let best_block_height = self.best_block.read().unwrap().height();
3442 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3443 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3444 &self.entropy_source, &self.node_signer, best_block_height,
3445 |args| self.send_payment_along_path(args))
3448 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3451 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3452 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3455 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3456 /// which checks the correctness of the funding transaction given the associated channel.
3457 fn funding_transaction_generated_intern<FundingOutput: Fn(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3458 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
3459 ) -> Result<(), APIError> {
3460 let per_peer_state = self.per_peer_state.read().unwrap();
3461 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3462 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3464 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3465 let peer_state = &mut *peer_state_lock;
3466 let (chan, msg) = match peer_state.outbound_v1_channel_by_id.remove(temporary_channel_id) {
3468 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3470 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, &self.logger)
3471 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3472 let channel_id = chan.context.channel_id();
3473 let user_id = chan.context.get_user_id();
3474 let shutdown_res = chan.context.force_shutdown(false);
3475 let channel_capacity = chan.context.get_value_satoshis();
3476 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3477 } else { unreachable!(); });
3479 Ok((chan, funding_msg)) => (chan, funding_msg),
3480 Err((chan, err)) => {
3481 mem::drop(peer_state_lock);
3482 mem::drop(per_peer_state);
3484 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3485 return Err(APIError::ChannelUnavailable {
3486 err: "Signer refused to sign the initial commitment transaction".to_owned()
3492 return Err(APIError::ChannelUnavailable {
3494 "Channel with id {} not found for the passed counterparty node_id {}",
3495 log_bytes!(*temporary_channel_id), counterparty_node_id),
3500 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3501 node_id: chan.context.get_counterparty_node_id(),
3504 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3505 hash_map::Entry::Occupied(_) => {
3506 panic!("Generated duplicate funding txid?");
3508 hash_map::Entry::Vacant(e) => {
3509 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3510 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3511 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3520 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3521 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
3522 Ok(OutPoint { txid: tx.txid(), index: output_index })
3526 /// Call this upon creation of a funding transaction for the given channel.
3528 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3529 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3531 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3532 /// across the p2p network.
3534 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3535 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3537 /// May panic if the output found in the funding transaction is duplicative with some other
3538 /// channel (note that this should be trivially prevented by using unique funding transaction
3539 /// keys per-channel).
3541 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3542 /// counterparty's signature the funding transaction will automatically be broadcast via the
3543 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3545 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3546 /// not currently support replacing a funding transaction on an existing channel. Instead,
3547 /// create a new channel with a conflicting funding transaction.
3549 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3550 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3551 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3552 /// for more details.
3554 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3555 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3556 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3557 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3559 for inp in funding_transaction.input.iter() {
3560 if inp.witness.is_empty() {
3561 return Err(APIError::APIMisuseError {
3562 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3567 let height = self.best_block.read().unwrap().height();
3568 // Transactions are evaluated as final by network mempools if their locktime is strictly
3569 // lower than the next block height. However, the modules constituting our Lightning
3570 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3571 // module is ahead of LDK, only allow one more block of headroom.
3572 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3573 return Err(APIError::APIMisuseError {
3574 err: "Funding transaction absolute timelock is non-final".to_owned()
3578 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
3579 if tx.output.len() > u16::max_value() as usize {
3580 return Err(APIError::APIMisuseError {
3581 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3585 let mut output_index = None;
3586 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3587 for (idx, outp) in tx.output.iter().enumerate() {
3588 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3589 if output_index.is_some() {
3590 return Err(APIError::APIMisuseError {
3591 err: "Multiple outputs matched the expected script and value".to_owned()
3594 output_index = Some(idx as u16);
3597 if output_index.is_none() {
3598 return Err(APIError::APIMisuseError {
3599 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3602 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
3606 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3608 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3609 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3610 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3611 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3613 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3614 /// `counterparty_node_id` is provided.
3616 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3617 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3619 /// If an error is returned, none of the updates should be considered applied.
3621 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3622 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3623 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3624 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3625 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3626 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3627 /// [`APIMisuseError`]: APIError::APIMisuseError
3628 pub fn update_partial_channel_config(
3629 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config_update: &ChannelConfigUpdate,
3630 ) -> Result<(), APIError> {
3631 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3632 return Err(APIError::APIMisuseError {
3633 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3637 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3638 let per_peer_state = self.per_peer_state.read().unwrap();
3639 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3640 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3641 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3642 let peer_state = &mut *peer_state_lock;
3643 for channel_id in channel_ids {
3644 if !peer_state.has_channel(channel_id) {
3645 return Err(APIError::ChannelUnavailable {
3646 err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
3650 for channel_id in channel_ids {
3651 if let Some(channel) = peer_state.channel_by_id.get_mut(channel_id) {
3652 let mut config = channel.context.config();
3653 config.apply(config_update);
3654 if !channel.context.update_config(&config) {
3657 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3658 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3659 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3660 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3661 node_id: channel.context.get_counterparty_node_id(),
3668 let context = if let Some(channel) = peer_state.inbound_v1_channel_by_id.get_mut(channel_id) {
3669 &mut channel.context
3670 } else if let Some(channel) = peer_state.outbound_v1_channel_by_id.get_mut(channel_id) {
3671 &mut channel.context
3673 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
3674 debug_assert!(false);
3675 return Err(APIError::ChannelUnavailable {
3677 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
3678 log_bytes!(*channel_id), counterparty_node_id),
3681 let mut config = context.config();
3682 config.apply(config_update);
3683 // We update the config, but we MUST NOT broadcast a `channel_update` before `channel_ready`
3684 // which would be the case for pending inbound/outbound channels.
3685 context.update_config(&config);
3690 /// Atomically updates the [`ChannelConfig`] for the given channels.
3692 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3693 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3694 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3695 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3697 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3698 /// `counterparty_node_id` is provided.
3700 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3701 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3703 /// If an error is returned, none of the updates should be considered applied.
3705 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3706 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3707 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3708 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3709 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3710 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3711 /// [`APIMisuseError`]: APIError::APIMisuseError
3712 pub fn update_channel_config(
3713 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
3714 ) -> Result<(), APIError> {
3715 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
3718 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
3719 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
3721 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
3722 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
3724 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
3725 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
3726 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
3727 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
3728 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
3730 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
3731 /// you from forwarding more than you received. See
3732 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
3735 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3738 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
3739 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3740 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
3741 // TODO: when we move to deciding the best outbound channel at forward time, only take
3742 // `next_node_id` and not `next_hop_channel_id`
3743 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
3744 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3746 let next_hop_scid = {
3747 let peer_state_lock = self.per_peer_state.read().unwrap();
3748 let peer_state_mutex = peer_state_lock.get(&next_node_id)
3749 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
3750 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3751 let peer_state = &mut *peer_state_lock;
3752 match peer_state.channel_by_id.get(next_hop_channel_id) {
3754 if !chan.context.is_usable() {
3755 return Err(APIError::ChannelUnavailable {
3756 err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
3759 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
3761 None => return Err(APIError::ChannelUnavailable {
3762 err: format!("Funded channel with id {} not found for the passed counterparty node_id {}. Channel may still be opening.",
3763 log_bytes!(*next_hop_channel_id), next_node_id)
3768 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3769 .ok_or_else(|| APIError::APIMisuseError {
3770 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3773 let routing = match payment.forward_info.routing {
3774 PendingHTLCRouting::Forward { onion_packet, .. } => {
3775 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
3777 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
3779 let skimmed_fee_msat =
3780 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
3781 let pending_htlc_info = PendingHTLCInfo {
3782 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
3783 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
3786 let mut per_source_pending_forward = [(
3787 payment.prev_short_channel_id,
3788 payment.prev_funding_outpoint,
3789 payment.prev_user_channel_id,
3790 vec![(pending_htlc_info, payment.prev_htlc_id)]
3792 self.forward_htlcs(&mut per_source_pending_forward);
3796 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3797 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3799 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3802 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3803 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3804 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3806 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3807 .ok_or_else(|| APIError::APIMisuseError {
3808 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3811 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3812 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3813 short_channel_id: payment.prev_short_channel_id,
3814 user_channel_id: Some(payment.prev_user_channel_id),
3815 outpoint: payment.prev_funding_outpoint,
3816 htlc_id: payment.prev_htlc_id,
3817 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3818 phantom_shared_secret: None,
3821 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3822 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3823 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3824 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3829 /// Processes HTLCs which are pending waiting on random forward delay.
3831 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3832 /// Will likely generate further events.
3833 pub fn process_pending_htlc_forwards(&self) {
3834 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3836 let mut new_events = VecDeque::new();
3837 let mut failed_forwards = Vec::new();
3838 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3840 let mut forward_htlcs = HashMap::new();
3841 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3843 for (short_chan_id, mut pending_forwards) in forward_htlcs {
3844 if short_chan_id != 0 {
3845 macro_rules! forwarding_channel_not_found {
3847 for forward_info in pending_forwards.drain(..) {
3848 match forward_info {
3849 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3850 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3851 forward_info: PendingHTLCInfo {
3852 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3853 outgoing_cltv_value, ..
3856 macro_rules! failure_handler {
3857 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3858 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3860 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3861 short_channel_id: prev_short_channel_id,
3862 user_channel_id: Some(prev_user_channel_id),
3863 outpoint: prev_funding_outpoint,
3864 htlc_id: prev_htlc_id,
3865 incoming_packet_shared_secret: incoming_shared_secret,
3866 phantom_shared_secret: $phantom_ss,
3869 let reason = if $next_hop_unknown {
3870 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3872 HTLCDestination::FailedPayment{ payment_hash }
3875 failed_forwards.push((htlc_source, payment_hash,
3876 HTLCFailReason::reason($err_code, $err_data),
3882 macro_rules! fail_forward {
3883 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3885 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3889 macro_rules! failed_payment {
3890 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3892 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3896 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3897 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3898 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3899 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3900 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3902 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3903 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3904 // In this scenario, the phantom would have sent us an
3905 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3906 // if it came from us (the second-to-last hop) but contains the sha256
3908 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3910 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3911 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3915 onion_utils::Hop::Receive(hop_data) => {
3916 match self.construct_recv_pending_htlc_info(hop_data,
3917 incoming_shared_secret, payment_hash, outgoing_amt_msat,
3918 outgoing_cltv_value, Some(phantom_shared_secret), false, None)
3920 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3921 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3927 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3930 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3933 HTLCForwardInfo::FailHTLC { .. } => {
3934 // Channel went away before we could fail it. This implies
3935 // the channel is now on chain and our counterparty is
3936 // trying to broadcast the HTLC-Timeout, but that's their
3937 // problem, not ours.
3943 let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3944 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3946 forwarding_channel_not_found!();
3950 let per_peer_state = self.per_peer_state.read().unwrap();
3951 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3952 if peer_state_mutex_opt.is_none() {
3953 forwarding_channel_not_found!();
3956 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3957 let peer_state = &mut *peer_state_lock;
3958 match peer_state.channel_by_id.entry(forward_chan_id) {
3959 hash_map::Entry::Vacant(_) => {
3960 forwarding_channel_not_found!();
3963 hash_map::Entry::Occupied(mut chan) => {
3964 for forward_info in pending_forwards.drain(..) {
3965 match forward_info {
3966 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3967 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3968 forward_info: PendingHTLCInfo {
3969 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3970 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
3973 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
3974 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3975 short_channel_id: prev_short_channel_id,
3976 user_channel_id: Some(prev_user_channel_id),
3977 outpoint: prev_funding_outpoint,
3978 htlc_id: prev_htlc_id,
3979 incoming_packet_shared_secret: incoming_shared_secret,
3980 // Phantom payments are only PendingHTLCRouting::Receive.
3981 phantom_shared_secret: None,
3983 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3984 payment_hash, outgoing_cltv_value, htlc_source.clone(),
3985 onion_packet, skimmed_fee_msat, &self.fee_estimator,
3988 if let ChannelError::Ignore(msg) = e {
3989 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
3991 panic!("Stated return value requirements in send_htlc() were not met");
3993 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3994 failed_forwards.push((htlc_source, payment_hash,
3995 HTLCFailReason::reason(failure_code, data),
3996 HTLCDestination::NextHopChannel { node_id: Some(chan.get().context.get_counterparty_node_id()), channel_id: forward_chan_id }
4001 HTLCForwardInfo::AddHTLC { .. } => {
4002 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4004 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4005 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4006 if let Err(e) = chan.get_mut().queue_fail_htlc(
4007 htlc_id, err_packet, &self.logger
4009 if let ChannelError::Ignore(msg) = e {
4010 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4012 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4014 // fail-backs are best-effort, we probably already have one
4015 // pending, and if not that's OK, if not, the channel is on
4016 // the chain and sending the HTLC-Timeout is their problem.
4025 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4026 match forward_info {
4027 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4028 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4029 forward_info: PendingHTLCInfo {
4030 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4031 skimmed_fee_msat, ..
4034 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4035 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4036 let _legacy_hop_data = Some(payment_data.clone());
4037 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4038 payment_metadata, custom_tlvs };
4039 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4040 Some(payment_data), phantom_shared_secret, onion_fields)
4042 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4043 let onion_fields = RecipientOnionFields {
4044 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4048 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4049 payment_data, None, onion_fields)
4052 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4055 let claimable_htlc = ClaimableHTLC {
4056 prev_hop: HTLCPreviousHopData {
4057 short_channel_id: prev_short_channel_id,
4058 user_channel_id: Some(prev_user_channel_id),
4059 outpoint: prev_funding_outpoint,
4060 htlc_id: prev_htlc_id,
4061 incoming_packet_shared_secret: incoming_shared_secret,
4062 phantom_shared_secret,
4064 // We differentiate the received value from the sender intended value
4065 // if possible so that we don't prematurely mark MPP payments complete
4066 // if routing nodes overpay
4067 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4068 sender_intended_value: outgoing_amt_msat,
4070 total_value_received: None,
4071 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4074 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4077 let mut committed_to_claimable = false;
4079 macro_rules! fail_htlc {
4080 ($htlc: expr, $payment_hash: expr) => {
4081 debug_assert!(!committed_to_claimable);
4082 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4083 htlc_msat_height_data.extend_from_slice(
4084 &self.best_block.read().unwrap().height().to_be_bytes(),
4086 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4087 short_channel_id: $htlc.prev_hop.short_channel_id,
4088 user_channel_id: $htlc.prev_hop.user_channel_id,
4089 outpoint: prev_funding_outpoint,
4090 htlc_id: $htlc.prev_hop.htlc_id,
4091 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4092 phantom_shared_secret,
4094 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4095 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4097 continue 'next_forwardable_htlc;
4100 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4101 let mut receiver_node_id = self.our_network_pubkey;
4102 if phantom_shared_secret.is_some() {
4103 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4104 .expect("Failed to get node_id for phantom node recipient");
4107 macro_rules! check_total_value {
4108 ($purpose: expr) => {{
4109 let mut payment_claimable_generated = false;
4110 let is_keysend = match $purpose {
4111 events::PaymentPurpose::SpontaneousPayment(_) => true,
4112 events::PaymentPurpose::InvoicePayment { .. } => false,
4114 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4115 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4116 fail_htlc!(claimable_htlc, payment_hash);
4118 let ref mut claimable_payment = claimable_payments.claimable_payments
4119 .entry(payment_hash)
4120 // Note that if we insert here we MUST NOT fail_htlc!()
4121 .or_insert_with(|| {
4122 committed_to_claimable = true;
4124 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4127 if $purpose != claimable_payment.purpose {
4128 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4129 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4130 fail_htlc!(claimable_htlc, payment_hash);
4132 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4133 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4134 fail_htlc!(claimable_htlc, payment_hash);
4136 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4137 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4138 fail_htlc!(claimable_htlc, payment_hash);
4141 claimable_payment.onion_fields = Some(onion_fields);
4143 let ref mut htlcs = &mut claimable_payment.htlcs;
4144 let mut total_value = claimable_htlc.sender_intended_value;
4145 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4146 for htlc in htlcs.iter() {
4147 total_value += htlc.sender_intended_value;
4148 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4149 if htlc.total_msat != claimable_htlc.total_msat {
4150 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4151 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4152 total_value = msgs::MAX_VALUE_MSAT;
4154 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4156 // The condition determining whether an MPP is complete must
4157 // match exactly the condition used in `timer_tick_occurred`
4158 if total_value >= msgs::MAX_VALUE_MSAT {
4159 fail_htlc!(claimable_htlc, payment_hash);
4160 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4161 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4163 fail_htlc!(claimable_htlc, payment_hash);
4164 } else if total_value >= claimable_htlc.total_msat {
4165 #[allow(unused_assignments)] {
4166 committed_to_claimable = true;
4168 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4169 htlcs.push(claimable_htlc);
4170 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4171 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4172 let counterparty_skimmed_fee_msat = htlcs.iter()
4173 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4174 debug_assert!(total_value.saturating_sub(amount_msat) <=
4175 counterparty_skimmed_fee_msat);
4176 new_events.push_back((events::Event::PaymentClaimable {
4177 receiver_node_id: Some(receiver_node_id),
4181 counterparty_skimmed_fee_msat,
4182 via_channel_id: Some(prev_channel_id),
4183 via_user_channel_id: Some(prev_user_channel_id),
4184 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4185 onion_fields: claimable_payment.onion_fields.clone(),
4187 payment_claimable_generated = true;
4189 // Nothing to do - we haven't reached the total
4190 // payment value yet, wait until we receive more
4192 htlcs.push(claimable_htlc);
4193 #[allow(unused_assignments)] {
4194 committed_to_claimable = true;
4197 payment_claimable_generated
4201 // Check that the payment hash and secret are known. Note that we
4202 // MUST take care to handle the "unknown payment hash" and
4203 // "incorrect payment secret" cases here identically or we'd expose
4204 // that we are the ultimate recipient of the given payment hash.
4205 // Further, we must not expose whether we have any other HTLCs
4206 // associated with the same payment_hash pending or not.
4207 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4208 match payment_secrets.entry(payment_hash) {
4209 hash_map::Entry::Vacant(_) => {
4210 match claimable_htlc.onion_payload {
4211 OnionPayload::Invoice { .. } => {
4212 let payment_data = payment_data.unwrap();
4213 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4214 Ok(result) => result,
4216 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4217 fail_htlc!(claimable_htlc, payment_hash);
4220 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4221 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4222 if (cltv_expiry as u64) < expected_min_expiry_height {
4223 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4224 &payment_hash, cltv_expiry, expected_min_expiry_height);
4225 fail_htlc!(claimable_htlc, payment_hash);
4228 let purpose = events::PaymentPurpose::InvoicePayment {
4229 payment_preimage: payment_preimage.clone(),
4230 payment_secret: payment_data.payment_secret,
4232 check_total_value!(purpose);
4234 OnionPayload::Spontaneous(preimage) => {
4235 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4236 check_total_value!(purpose);
4240 hash_map::Entry::Occupied(inbound_payment) => {
4241 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4242 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4243 fail_htlc!(claimable_htlc, payment_hash);
4245 let payment_data = payment_data.unwrap();
4246 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4247 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4248 fail_htlc!(claimable_htlc, payment_hash);
4249 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4250 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4251 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4252 fail_htlc!(claimable_htlc, payment_hash);
4254 let purpose = events::PaymentPurpose::InvoicePayment {
4255 payment_preimage: inbound_payment.get().payment_preimage,
4256 payment_secret: payment_data.payment_secret,
4258 let payment_claimable_generated = check_total_value!(purpose);
4259 if payment_claimable_generated {
4260 inbound_payment.remove_entry();
4266 HTLCForwardInfo::FailHTLC { .. } => {
4267 panic!("Got pending fail of our own HTLC");
4275 let best_block_height = self.best_block.read().unwrap().height();
4276 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4277 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4278 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4280 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4281 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4283 self.forward_htlcs(&mut phantom_receives);
4285 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4286 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4287 // nice to do the work now if we can rather than while we're trying to get messages in the
4289 self.check_free_holding_cells();
4291 if new_events.is_empty() { return }
4292 let mut events = self.pending_events.lock().unwrap();
4293 events.append(&mut new_events);
4296 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4298 /// Expects the caller to have a total_consistency_lock read lock.
4299 fn process_background_events(&self) -> NotifyOption {
4300 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4302 self.background_events_processed_since_startup.store(true, Ordering::Release);
4304 let mut background_events = Vec::new();
4305 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4306 if background_events.is_empty() {
4307 return NotifyOption::SkipPersist;
4310 for event in background_events.drain(..) {
4312 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4313 // The channel has already been closed, so no use bothering to care about the
4314 // monitor updating completing.
4315 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4317 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4318 let mut updated_chan = false;
4320 let per_peer_state = self.per_peer_state.read().unwrap();
4321 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4322 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4323 let peer_state = &mut *peer_state_lock;
4324 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4325 hash_map::Entry::Occupied(mut chan) => {
4326 updated_chan = true;
4327 handle_new_monitor_update!(self, funding_txo, update.clone(),
4328 peer_state_lock, peer_state, per_peer_state, chan).map(|_| ())
4330 hash_map::Entry::Vacant(_) => Ok(()),
4335 // TODO: Track this as in-flight even though the channel is closed.
4336 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4338 // TODO: If this channel has since closed, we're likely providing a payment
4339 // preimage update, which we must ensure is durable! We currently don't,
4340 // however, ensure that.
4342 log_error!(self.logger,
4343 "Failed to provide ChannelMonitorUpdate to closed channel! This likely lost us a payment preimage!");
4345 let _ = handle_error!(self, res, counterparty_node_id);
4347 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4348 let per_peer_state = self.per_peer_state.read().unwrap();
4349 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4350 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4351 let peer_state = &mut *peer_state_lock;
4352 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
4353 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4355 let update_actions = peer_state.monitor_update_blocked_actions
4356 .remove(&channel_id).unwrap_or(Vec::new());
4357 mem::drop(peer_state_lock);
4358 mem::drop(per_peer_state);
4359 self.handle_monitor_update_completion_actions(update_actions);
4365 NotifyOption::DoPersist
4368 #[cfg(any(test, feature = "_test_utils"))]
4369 /// Process background events, for functional testing
4370 pub fn test_process_background_events(&self) {
4371 let _lck = self.total_consistency_lock.read().unwrap();
4372 let _ = self.process_background_events();
4375 fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4376 if !chan.context.is_outbound() { return NotifyOption::SkipPersist; }
4377 // If the feerate has decreased by less than half, don't bother
4378 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4379 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4380 log_bytes!(chan_id[..]), chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4381 return NotifyOption::SkipPersist;
4383 if !chan.context.is_live() {
4384 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4385 log_bytes!(chan_id[..]), chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4386 return NotifyOption::SkipPersist;
4388 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4389 log_bytes!(chan_id[..]), chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4391 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4392 NotifyOption::DoPersist
4396 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4397 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4398 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4399 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4400 pub fn maybe_update_chan_fees(&self) {
4401 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4402 let mut should_persist = self.process_background_events();
4404 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4405 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4407 let per_peer_state = self.per_peer_state.read().unwrap();
4408 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4409 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4410 let peer_state = &mut *peer_state_lock;
4411 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
4412 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4417 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4418 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4426 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4428 /// This currently includes:
4429 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4430 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4431 /// than a minute, informing the network that they should no longer attempt to route over
4433 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4434 /// with the current [`ChannelConfig`].
4435 /// * Removing peers which have disconnected but and no longer have any channels.
4436 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4438 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4439 /// estimate fetches.
4441 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4442 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4443 pub fn timer_tick_occurred(&self) {
4444 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4445 let mut should_persist = self.process_background_events();
4447 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4448 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4450 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4451 let mut timed_out_mpp_htlcs = Vec::new();
4452 let mut pending_peers_awaiting_removal = Vec::new();
4454 let per_peer_state = self.per_peer_state.read().unwrap();
4455 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4456 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4457 let peer_state = &mut *peer_state_lock;
4458 let pending_msg_events = &mut peer_state.pending_msg_events;
4459 let counterparty_node_id = *counterparty_node_id;
4460 peer_state.channel_by_id.retain(|chan_id, chan| {
4461 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4466 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4467 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4469 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4470 let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
4471 handle_errors.push((Err(err), counterparty_node_id));
4472 if needs_close { return false; }
4475 match chan.channel_update_status() {
4476 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4477 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4478 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4479 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4480 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4481 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4482 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4484 if n >= DISABLE_GOSSIP_TICKS {
4485 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4486 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4487 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4491 should_persist = NotifyOption::DoPersist;
4493 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4496 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4498 if n >= ENABLE_GOSSIP_TICKS {
4499 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4500 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4501 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4505 should_persist = NotifyOption::DoPersist;
4507 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4513 chan.context.maybe_expire_prev_config();
4515 if chan.should_disconnect_peer_awaiting_response() {
4516 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4517 counterparty_node_id, log_bytes!(*chan_id));
4518 pending_msg_events.push(MessageSendEvent::HandleError {
4519 node_id: counterparty_node_id,
4520 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4521 msg: msgs::WarningMessage {
4522 channel_id: *chan_id,
4523 data: "Disconnecting due to timeout awaiting response".to_owned(),
4532 let process_unfunded_channel_tick = |
4534 chan_context: &mut ChannelContext<SP>,
4535 unfunded_chan_context: &mut UnfundedChannelContext,
4536 pending_msg_events: &mut Vec<MessageSendEvent>,
4538 chan_context.maybe_expire_prev_config();
4539 if unfunded_chan_context.should_expire_unfunded_channel() {
4540 log_error!(self.logger,
4541 "Force-closing pending channel with ID {} for not establishing in a timely manner",
4542 log_bytes!(&chan_id[..]));
4543 update_maps_on_chan_removal!(self, &chan_context);
4544 self.issue_channel_close_events(&chan_context, ClosureReason::HolderForceClosed);
4545 self.finish_force_close_channel(chan_context.force_shutdown(false));
4546 pending_msg_events.push(MessageSendEvent::HandleError {
4547 node_id: counterparty_node_id,
4548 action: msgs::ErrorAction::SendErrorMessage {
4549 msg: msgs::ErrorMessage {
4550 channel_id: *chan_id,
4551 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4560 peer_state.outbound_v1_channel_by_id.retain(|chan_id, chan| process_unfunded_channel_tick(
4561 chan_id, &mut chan.context, &mut chan.unfunded_context, pending_msg_events));
4562 peer_state.inbound_v1_channel_by_id.retain(|chan_id, chan| process_unfunded_channel_tick(
4563 chan_id, &mut chan.context, &mut chan.unfunded_context, pending_msg_events));
4565 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4566 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4567 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", log_bytes!(&chan_id[..]));
4568 peer_state.pending_msg_events.push(
4569 events::MessageSendEvent::HandleError {
4570 node_id: counterparty_node_id,
4571 action: msgs::ErrorAction::SendErrorMessage {
4572 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4578 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4580 if peer_state.ok_to_remove(true) {
4581 pending_peers_awaiting_removal.push(counterparty_node_id);
4586 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4587 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4588 // of to that peer is later closed while still being disconnected (i.e. force closed),
4589 // we therefore need to remove the peer from `peer_state` separately.
4590 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4591 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4592 // negative effects on parallelism as much as possible.
4593 if pending_peers_awaiting_removal.len() > 0 {
4594 let mut per_peer_state = self.per_peer_state.write().unwrap();
4595 for counterparty_node_id in pending_peers_awaiting_removal {
4596 match per_peer_state.entry(counterparty_node_id) {
4597 hash_map::Entry::Occupied(entry) => {
4598 // Remove the entry if the peer is still disconnected and we still
4599 // have no channels to the peer.
4600 let remove_entry = {
4601 let peer_state = entry.get().lock().unwrap();
4602 peer_state.ok_to_remove(true)
4605 entry.remove_entry();
4608 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
4613 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
4614 if payment.htlcs.is_empty() {
4615 // This should be unreachable
4616 debug_assert!(false);
4619 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
4620 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
4621 // In this case we're not going to handle any timeouts of the parts here.
4622 // This condition determining whether the MPP is complete here must match
4623 // exactly the condition used in `process_pending_htlc_forwards`.
4624 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
4625 .fold(0, |total, htlc| total + htlc.sender_intended_value)
4628 } else if payment.htlcs.iter_mut().any(|htlc| {
4629 htlc.timer_ticks += 1;
4630 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
4632 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
4633 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
4640 for htlc_source in timed_out_mpp_htlcs.drain(..) {
4641 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
4642 let reason = HTLCFailReason::from_failure_code(23);
4643 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
4644 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
4647 for (err, counterparty_node_id) in handle_errors.drain(..) {
4648 let _ = handle_error!(self, err, counterparty_node_id);
4651 self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
4653 // Technically we don't need to do this here, but if we have holding cell entries in a
4654 // channel that need freeing, it's better to do that here and block a background task
4655 // than block the message queueing pipeline.
4656 if self.check_free_holding_cells() {
4657 should_persist = NotifyOption::DoPersist;
4664 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
4665 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
4666 /// along the path (including in our own channel on which we received it).
4668 /// Note that in some cases around unclean shutdown, it is possible the payment may have
4669 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
4670 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
4671 /// may have already been failed automatically by LDK if it was nearing its expiration time.
4673 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
4674 /// [`ChannelManager::claim_funds`]), you should still monitor for
4675 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
4676 /// startup during which time claims that were in-progress at shutdown may be replayed.
4677 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
4678 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
4681 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
4682 /// reason for the failure.
4684 /// See [`FailureCode`] for valid failure codes.
4685 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
4686 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4688 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
4689 if let Some(payment) = removed_source {
4690 for htlc in payment.htlcs {
4691 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
4692 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4693 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
4694 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4699 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
4700 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
4701 match failure_code {
4702 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
4703 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
4704 FailureCode::IncorrectOrUnknownPaymentDetails => {
4705 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4706 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4707 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
4709 FailureCode::InvalidOnionPayload(data) => {
4710 let fail_data = match data {
4711 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
4714 HTLCFailReason::reason(failure_code.into(), fail_data)
4719 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4720 /// that we want to return and a channel.
4722 /// This is for failures on the channel on which the HTLC was *received*, not failures
4724 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
4725 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
4726 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
4727 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
4728 // an inbound SCID alias before the real SCID.
4729 let scid_pref = if chan.context.should_announce() {
4730 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
4732 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
4734 if let Some(scid) = scid_pref {
4735 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
4737 (0x4000|10, Vec::new())
4742 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4743 /// that we want to return and a channel.
4744 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
4745 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
4746 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
4747 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
4748 if desired_err_code == 0x1000 | 20 {
4749 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
4750 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
4751 0u16.write(&mut enc).expect("Writes cannot fail");
4753 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
4754 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
4755 upd.write(&mut enc).expect("Writes cannot fail");
4756 (desired_err_code, enc.0)
4758 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
4759 // which means we really shouldn't have gotten a payment to be forwarded over this
4760 // channel yet, or if we did it's from a route hint. Either way, returning an error of
4761 // PERM|no_such_channel should be fine.
4762 (0x4000|10, Vec::new())
4766 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
4767 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
4768 // be surfaced to the user.
4769 fn fail_holding_cell_htlcs(
4770 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
4771 counterparty_node_id: &PublicKey
4773 let (failure_code, onion_failure_data) = {
4774 let per_peer_state = self.per_peer_state.read().unwrap();
4775 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
4776 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4777 let peer_state = &mut *peer_state_lock;
4778 match peer_state.channel_by_id.entry(channel_id) {
4779 hash_map::Entry::Occupied(chan_entry) => {
4780 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
4782 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
4784 } else { (0x4000|10, Vec::new()) }
4787 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
4788 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
4789 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
4790 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
4794 /// Fails an HTLC backwards to the sender of it to us.
4795 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
4796 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
4797 // Ensure that no peer state channel storage lock is held when calling this function.
4798 // This ensures that future code doesn't introduce a lock-order requirement for
4799 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
4800 // this function with any `per_peer_state` peer lock acquired would.
4801 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
4802 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
4805 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
4806 //identify whether we sent it or not based on the (I presume) very different runtime
4807 //between the branches here. We should make this async and move it into the forward HTLCs
4810 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4811 // from block_connected which may run during initialization prior to the chain_monitor
4812 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
4814 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
4815 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
4816 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
4817 &self.pending_events, &self.logger)
4818 { self.push_pending_forwards_ev(); }
4820 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
4821 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
4822 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
4824 let mut push_forward_ev = false;
4825 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4826 if forward_htlcs.is_empty() {
4827 push_forward_ev = true;
4829 match forward_htlcs.entry(*short_channel_id) {
4830 hash_map::Entry::Occupied(mut entry) => {
4831 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
4833 hash_map::Entry::Vacant(entry) => {
4834 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
4837 mem::drop(forward_htlcs);
4838 if push_forward_ev { self.push_pending_forwards_ev(); }
4839 let mut pending_events = self.pending_events.lock().unwrap();
4840 pending_events.push_back((events::Event::HTLCHandlingFailed {
4841 prev_channel_id: outpoint.to_channel_id(),
4842 failed_next_destination: destination,
4848 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
4849 /// [`MessageSendEvent`]s needed to claim the payment.
4851 /// This method is guaranteed to ensure the payment has been claimed but only if the current
4852 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
4853 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
4854 /// successful. It will generally be available in the next [`process_pending_events`] call.
4856 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
4857 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
4858 /// event matches your expectation. If you fail to do so and call this method, you may provide
4859 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
4861 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
4862 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
4863 /// [`claim_funds_with_known_custom_tlvs`].
4865 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
4866 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
4867 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
4868 /// [`process_pending_events`]: EventsProvider::process_pending_events
4869 /// [`create_inbound_payment`]: Self::create_inbound_payment
4870 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
4871 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
4872 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
4873 self.claim_payment_internal(payment_preimage, false);
4876 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
4877 /// even type numbers.
4881 /// You MUST check you've understood all even TLVs before using this to
4882 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
4884 /// [`claim_funds`]: Self::claim_funds
4885 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
4886 self.claim_payment_internal(payment_preimage, true);
4889 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
4890 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4892 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4895 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4896 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
4897 let mut receiver_node_id = self.our_network_pubkey;
4898 for htlc in payment.htlcs.iter() {
4899 if htlc.prev_hop.phantom_shared_secret.is_some() {
4900 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
4901 .expect("Failed to get node_id for phantom node recipient");
4902 receiver_node_id = phantom_pubkey;
4907 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
4908 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
4909 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
4910 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
4911 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
4913 if dup_purpose.is_some() {
4914 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
4915 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
4919 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
4920 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
4921 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
4922 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
4923 claimable_payments.pending_claiming_payments.remove(&payment_hash);
4924 mem::drop(claimable_payments);
4925 for htlc in payment.htlcs {
4926 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
4927 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4928 let receiver = HTLCDestination::FailedPayment { payment_hash };
4929 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4938 debug_assert!(!sources.is_empty());
4940 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
4941 // and when we got here we need to check that the amount we're about to claim matches the
4942 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
4943 // the MPP parts all have the same `total_msat`.
4944 let mut claimable_amt_msat = 0;
4945 let mut prev_total_msat = None;
4946 let mut expected_amt_msat = None;
4947 let mut valid_mpp = true;
4948 let mut errs = Vec::new();
4949 let per_peer_state = self.per_peer_state.read().unwrap();
4950 for htlc in sources.iter() {
4951 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
4952 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
4953 debug_assert!(false);
4957 prev_total_msat = Some(htlc.total_msat);
4959 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
4960 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
4961 debug_assert!(false);
4965 expected_amt_msat = htlc.total_value_received;
4966 claimable_amt_msat += htlc.value;
4968 mem::drop(per_peer_state);
4969 if sources.is_empty() || expected_amt_msat.is_none() {
4970 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4971 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
4974 if claimable_amt_msat != expected_amt_msat.unwrap() {
4975 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4976 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
4977 expected_amt_msat.unwrap(), claimable_amt_msat);
4981 for htlc in sources.drain(..) {
4982 if let Err((pk, err)) = self.claim_funds_from_hop(
4983 htlc.prev_hop, payment_preimage,
4984 |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
4986 if let msgs::ErrorAction::IgnoreError = err.err.action {
4987 // We got a temporary failure updating monitor, but will claim the
4988 // HTLC when the monitor updating is restored (or on chain).
4989 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
4990 } else { errs.push((pk, err)); }
4995 for htlc in sources.drain(..) {
4996 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4997 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4998 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4999 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5000 let receiver = HTLCDestination::FailedPayment { payment_hash };
5001 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5003 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5006 // Now we can handle any errors which were generated.
5007 for (counterparty_node_id, err) in errs.drain(..) {
5008 let res: Result<(), _> = Err(err);
5009 let _ = handle_error!(self, res, counterparty_node_id);
5013 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
5014 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5015 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5016 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5018 // If we haven't yet run background events assume we're still deserializing and shouldn't
5019 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5020 // `BackgroundEvent`s.
5021 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5024 let per_peer_state = self.per_peer_state.read().unwrap();
5025 let chan_id = prev_hop.outpoint.to_channel_id();
5026 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5027 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5031 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5032 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5033 .map(|peer_mutex| peer_mutex.lock().unwrap())
5036 if peer_state_opt.is_some() {
5037 let mut peer_state_lock = peer_state_opt.unwrap();
5038 let peer_state = &mut *peer_state_lock;
5039 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
5040 let counterparty_node_id = chan.get().context.get_counterparty_node_id();
5041 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5043 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
5044 if let Some(action) = completion_action(Some(htlc_value_msat)) {
5045 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5046 log_bytes!(chan_id), action);
5047 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5050 let res = handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5051 peer_state, per_peer_state, chan);
5052 if let Err(e) = res {
5053 // TODO: This is a *critical* error - we probably updated the outbound edge
5054 // of the HTLC's monitor with a preimage. We should retry this monitor
5055 // update over and over again until morale improves.
5056 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
5057 return Err((counterparty_node_id, e));
5060 // If we're running during init we cannot update a monitor directly -
5061 // they probably haven't actually been loaded yet. Instead, push the
5062 // monitor update as a background event.
5063 self.pending_background_events.lock().unwrap().push(
5064 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5065 counterparty_node_id,
5066 funding_txo: prev_hop.outpoint,
5067 update: monitor_update.clone(),
5075 let preimage_update = ChannelMonitorUpdate {
5076 update_id: CLOSED_CHANNEL_UPDATE_ID,
5077 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5083 // We update the ChannelMonitor on the backward link, after
5084 // receiving an `update_fulfill_htlc` from the forward link.
5085 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5086 if update_res != ChannelMonitorUpdateStatus::Completed {
5087 // TODO: This needs to be handled somehow - if we receive a monitor update
5088 // with a preimage we *must* somehow manage to propagate it to the upstream
5089 // channel, or we must have an ability to receive the same event and try
5090 // again on restart.
5091 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5092 payment_preimage, update_res);
5095 // If we're running during init we cannot update a monitor directly - they probably
5096 // haven't actually been loaded yet. Instead, push the monitor update as a background
5098 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5099 // channel is already closed) we need to ultimately handle the monitor update
5100 // completion action only after we've completed the monitor update. This is the only
5101 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5102 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5103 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5104 // complete the monitor update completion action from `completion_action`.
5105 self.pending_background_events.lock().unwrap().push(
5106 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5107 prev_hop.outpoint, preimage_update,
5110 // Note that we do process the completion action here. This totally could be a
5111 // duplicate claim, but we have no way of knowing without interrogating the
5112 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5113 // generally always allowed to be duplicative (and it's specifically noted in
5114 // `PaymentForwarded`).
5115 self.handle_monitor_update_completion_actions(completion_action(None));
5119 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5120 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5123 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_outpoint: OutPoint) {
5125 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5126 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5127 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5128 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5129 channel_funding_outpoint: next_channel_outpoint,
5130 counterparty_node_id: path.hops[0].pubkey,
5132 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5133 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5136 HTLCSource::PreviousHopData(hop_data) => {
5137 let prev_outpoint = hop_data.outpoint;
5138 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5139 |htlc_claim_value_msat| {
5140 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5141 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5142 Some(claimed_htlc_value - forwarded_htlc_value)
5145 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5146 event: events::Event::PaymentForwarded {
5148 claim_from_onchain_tx: from_onchain,
5149 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5150 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5151 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5153 downstream_counterparty_and_funding_outpoint: None,
5157 if let Err((pk, err)) = res {
5158 let result: Result<(), _> = Err(err);
5159 let _ = handle_error!(self, result, pk);
5165 /// Gets the node_id held by this ChannelManager
5166 pub fn get_our_node_id(&self) -> PublicKey {
5167 self.our_network_pubkey.clone()
5170 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5171 for action in actions.into_iter() {
5173 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5174 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5175 if let Some(ClaimingPayment {
5177 payment_purpose: purpose,
5180 sender_intended_value: sender_intended_total_msat,
5182 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5186 receiver_node_id: Some(receiver_node_id),
5188 sender_intended_total_msat,
5192 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5193 event, downstream_counterparty_and_funding_outpoint
5195 self.pending_events.lock().unwrap().push_back((event, None));
5196 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5197 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5204 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5205 /// update completion.
5206 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5207 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5208 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5209 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5210 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5211 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5212 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5213 log_bytes!(channel.context.channel_id()),
5214 if raa.is_some() { "an" } else { "no" },
5215 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5216 if funding_broadcastable.is_some() { "" } else { "not " },
5217 if channel_ready.is_some() { "sending" } else { "without" },
5218 if announcement_sigs.is_some() { "sending" } else { "without" });
5220 let mut htlc_forwards = None;
5222 let counterparty_node_id = channel.context.get_counterparty_node_id();
5223 if !pending_forwards.is_empty() {
5224 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5225 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5228 if let Some(msg) = channel_ready {
5229 send_channel_ready!(self, pending_msg_events, channel, msg);
5231 if let Some(msg) = announcement_sigs {
5232 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5233 node_id: counterparty_node_id,
5238 macro_rules! handle_cs { () => {
5239 if let Some(update) = commitment_update {
5240 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5241 node_id: counterparty_node_id,
5246 macro_rules! handle_raa { () => {
5247 if let Some(revoke_and_ack) = raa {
5248 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5249 node_id: counterparty_node_id,
5250 msg: revoke_and_ack,
5255 RAACommitmentOrder::CommitmentFirst => {
5259 RAACommitmentOrder::RevokeAndACKFirst => {
5265 if let Some(tx) = funding_broadcastable {
5266 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5267 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5271 let mut pending_events = self.pending_events.lock().unwrap();
5272 emit_channel_pending_event!(pending_events, channel);
5273 emit_channel_ready_event!(pending_events, channel);
5279 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5280 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5282 let counterparty_node_id = match counterparty_node_id {
5283 Some(cp_id) => cp_id.clone(),
5285 // TODO: Once we can rely on the counterparty_node_id from the
5286 // monitor event, this and the id_to_peer map should be removed.
5287 let id_to_peer = self.id_to_peer.lock().unwrap();
5288 match id_to_peer.get(&funding_txo.to_channel_id()) {
5289 Some(cp_id) => cp_id.clone(),
5294 let per_peer_state = self.per_peer_state.read().unwrap();
5295 let mut peer_state_lock;
5296 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5297 if peer_state_mutex_opt.is_none() { return }
5298 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5299 let peer_state = &mut *peer_state_lock;
5301 if let Some(chan) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5304 let update_actions = peer_state.monitor_update_blocked_actions
5305 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5306 mem::drop(peer_state_lock);
5307 mem::drop(per_peer_state);
5308 self.handle_monitor_update_completion_actions(update_actions);
5311 let remaining_in_flight =
5312 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5313 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5316 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5317 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5318 remaining_in_flight);
5319 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5322 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5325 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5327 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5328 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5331 /// The `user_channel_id` parameter will be provided back in
5332 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5333 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5335 /// Note that this method will return an error and reject the channel, if it requires support
5336 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5337 /// used to accept such channels.
5339 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5340 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5341 pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5342 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5345 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5346 /// it as confirmed immediately.
5348 /// The `user_channel_id` parameter will be provided back in
5349 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5350 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5352 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5353 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5355 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5356 /// transaction and blindly assumes that it will eventually confirm.
5358 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5359 /// does not pay to the correct script the correct amount, *you will lose funds*.
5361 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5362 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5363 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5364 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5367 fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5368 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5370 let peers_without_funded_channels =
5371 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5372 let per_peer_state = self.per_peer_state.read().unwrap();
5373 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5374 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5375 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5376 let peer_state = &mut *peer_state_lock;
5377 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5379 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5380 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5381 // that we can delay allocating the SCID until after we're sure that the checks below will
5383 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5384 Some(unaccepted_channel) => {
5385 let best_block_height = self.best_block.read().unwrap().height();
5386 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5387 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5388 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5389 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5391 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5395 // This should have been correctly configured by the call to InboundV1Channel::new.
5396 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
5397 } else if channel.context.get_channel_type().requires_zero_conf() {
5398 let send_msg_err_event = events::MessageSendEvent::HandleError {
5399 node_id: channel.context.get_counterparty_node_id(),
5400 action: msgs::ErrorAction::SendErrorMessage{
5401 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5404 peer_state.pending_msg_events.push(send_msg_err_event);
5405 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5407 // If this peer already has some channels, a new channel won't increase our number of peers
5408 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5409 // channels per-peer we can accept channels from a peer with existing ones.
5410 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5411 let send_msg_err_event = events::MessageSendEvent::HandleError {
5412 node_id: channel.context.get_counterparty_node_id(),
5413 action: msgs::ErrorAction::SendErrorMessage{
5414 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5417 peer_state.pending_msg_events.push(send_msg_err_event);
5418 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5422 // Now that we know we have a channel, assign an outbound SCID alias.
5423 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5424 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5426 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5427 node_id: channel.context.get_counterparty_node_id(),
5428 msg: channel.accept_inbound_channel(),
5431 peer_state.inbound_v1_channel_by_id.insert(temporary_channel_id.clone(), channel);
5436 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
5437 /// or 0-conf channels.
5439 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
5440 /// non-0-conf channels we have with the peer.
5441 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
5442 where Filter: Fn(&PeerState<SP>) -> bool {
5443 let mut peers_without_funded_channels = 0;
5444 let best_block_height = self.best_block.read().unwrap().height();
5446 let peer_state_lock = self.per_peer_state.read().unwrap();
5447 for (_, peer_mtx) in peer_state_lock.iter() {
5448 let peer = peer_mtx.lock().unwrap();
5449 if !maybe_count_peer(&*peer) { continue; }
5450 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
5451 if num_unfunded_channels == peer.total_channel_count() {
5452 peers_without_funded_channels += 1;
5456 return peers_without_funded_channels;
5459 fn unfunded_channel_count(
5460 peer: &PeerState<SP>, best_block_height: u32
5462 let mut num_unfunded_channels = 0;
5463 for (_, chan) in peer.channel_by_id.iter() {
5464 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
5465 // which have not yet had any confirmations on-chain.
5466 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
5467 chan.context.get_funding_tx_confirmations(best_block_height) == 0
5469 num_unfunded_channels += 1;
5472 for (_, chan) in peer.inbound_v1_channel_by_id.iter() {
5473 if chan.context.minimum_depth().unwrap_or(1) != 0 {
5474 num_unfunded_channels += 1;
5477 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
5480 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
5481 if msg.chain_hash != self.genesis_hash {
5482 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
5485 if !self.default_configuration.accept_inbound_channels {
5486 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5489 // Get the number of peers with channels, but without funded ones. We don't care too much
5490 // about peers that never open a channel, so we filter by peers that have at least one
5491 // channel, and then limit the number of those with unfunded channels.
5492 let channeled_peers_without_funding =
5493 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
5495 let per_peer_state = self.per_peer_state.read().unwrap();
5496 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5498 debug_assert!(false);
5499 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
5501 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5502 let peer_state = &mut *peer_state_lock;
5504 // If this peer already has some channels, a new channel won't increase our number of peers
5505 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5506 // channels per-peer we can accept channels from a peer with existing ones.
5507 if peer_state.total_channel_count() == 0 &&
5508 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
5509 !self.default_configuration.manually_accept_inbound_channels
5511 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5512 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
5513 msg.temporary_channel_id.clone()));
5516 let best_block_height = self.best_block.read().unwrap().height();
5517 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
5518 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5519 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
5520 msg.temporary_channel_id.clone()));
5523 let channel_id = msg.temporary_channel_id;
5524 let channel_exists = peer_state.has_channel(&channel_id);
5526 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
5529 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
5530 if self.default_configuration.manually_accept_inbound_channels {
5531 let mut pending_events = self.pending_events.lock().unwrap();
5532 pending_events.push_back((events::Event::OpenChannelRequest {
5533 temporary_channel_id: msg.temporary_channel_id.clone(),
5534 counterparty_node_id: counterparty_node_id.clone(),
5535 funding_satoshis: msg.funding_satoshis,
5536 push_msat: msg.push_msat,
5537 channel_type: msg.channel_type.clone().unwrap(),
5539 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
5540 open_channel_msg: msg.clone(),
5541 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
5546 // Otherwise create the channel right now.
5547 let mut random_bytes = [0u8; 16];
5548 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
5549 let user_channel_id = u128::from_be_bytes(random_bytes);
5550 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5551 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
5552 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
5555 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
5560 let channel_type = channel.context.get_channel_type();
5561 if channel_type.requires_zero_conf() {
5562 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5564 if channel_type.requires_anchors_zero_fee_htlc_tx() {
5565 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
5568 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5569 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5571 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5572 node_id: counterparty_node_id.clone(),
5573 msg: channel.accept_inbound_channel(),
5575 peer_state.inbound_v1_channel_by_id.insert(channel_id, channel);
5579 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
5580 let (value, output_script, user_id) = {
5581 let per_peer_state = self.per_peer_state.read().unwrap();
5582 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5584 debug_assert!(false);
5585 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
5587 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5588 let peer_state = &mut *peer_state_lock;
5589 match peer_state.outbound_v1_channel_by_id.entry(msg.temporary_channel_id) {
5590 hash_map::Entry::Occupied(mut chan) => {
5591 try_v1_outbound_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
5592 (chan.get().context.get_value_satoshis(), chan.get().context.get_funding_redeemscript().to_v0_p2wsh(), chan.get().context.get_user_id())
5594 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
5597 let mut pending_events = self.pending_events.lock().unwrap();
5598 pending_events.push_back((events::Event::FundingGenerationReady {
5599 temporary_channel_id: msg.temporary_channel_id,
5600 counterparty_node_id: *counterparty_node_id,
5601 channel_value_satoshis: value,
5603 user_channel_id: user_id,
5608 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
5609 let best_block = *self.best_block.read().unwrap();
5611 let per_peer_state = self.per_peer_state.read().unwrap();
5612 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5614 debug_assert!(false);
5615 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
5618 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5619 let peer_state = &mut *peer_state_lock;
5620 let (chan, funding_msg, monitor) =
5621 match peer_state.inbound_v1_channel_by_id.remove(&msg.temporary_channel_id) {
5622 Some(inbound_chan) => {
5623 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
5625 Err((mut inbound_chan, err)) => {
5626 // We've already removed this inbound channel from the map in `PeerState`
5627 // above so at this point we just need to clean up any lingering entries
5628 // concerning this channel as it is safe to do so.
5629 update_maps_on_chan_removal!(self, &inbound_chan.context);
5630 let user_id = inbound_chan.context.get_user_id();
5631 let shutdown_res = inbound_chan.context.force_shutdown(false);
5632 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
5633 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
5637 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
5640 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
5641 hash_map::Entry::Occupied(_) => {
5642 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
5644 hash_map::Entry::Vacant(e) => {
5645 match self.id_to_peer.lock().unwrap().entry(chan.context.channel_id()) {
5646 hash_map::Entry::Occupied(_) => {
5647 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5648 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
5649 funding_msg.channel_id))
5651 hash_map::Entry::Vacant(i_e) => {
5652 i_e.insert(chan.context.get_counterparty_node_id());
5656 // There's no problem signing a counterparty's funding transaction if our monitor
5657 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
5658 // accepted payment from yet. We do, however, need to wait to send our channel_ready
5659 // until we have persisted our monitor.
5660 let new_channel_id = funding_msg.channel_id;
5661 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
5662 node_id: counterparty_node_id.clone(),
5666 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
5668 let chan = e.insert(chan);
5669 let mut res = handle_new_monitor_update!(self, monitor_res, peer_state_lock, peer_state,
5670 per_peer_state, chan, MANUALLY_REMOVING_INITIAL_MONITOR,
5671 { peer_state.channel_by_id.remove(&new_channel_id) });
5673 // Note that we reply with the new channel_id in error messages if we gave up on the
5674 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
5675 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
5676 // any messages referencing a previously-closed channel anyway.
5677 // We do not propagate the monitor update to the user as it would be for a monitor
5678 // that we didn't manage to store (and that we don't care about - we don't respond
5679 // with the funding_signed so the channel can never go on chain).
5680 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
5688 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
5689 let best_block = *self.best_block.read().unwrap();
5690 let per_peer_state = self.per_peer_state.read().unwrap();
5691 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5693 debug_assert!(false);
5694 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5697 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5698 let peer_state = &mut *peer_state_lock;
5699 match peer_state.channel_by_id.entry(msg.channel_id) {
5700 hash_map::Entry::Occupied(mut chan) => {
5701 let monitor = try_chan_entry!(self,
5702 chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
5703 let update_res = self.chain_monitor.watch_channel(chan.get().context.get_funding_txo().unwrap(), monitor);
5704 let mut res = handle_new_monitor_update!(self, update_res, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
5705 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
5706 // We weren't able to watch the channel to begin with, so no updates should be made on
5707 // it. Previously, full_stack_target found an (unreachable) panic when the
5708 // monitor update contained within `shutdown_finish` was applied.
5709 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
5710 shutdown_finish.0.take();
5715 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
5719 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
5720 let per_peer_state = self.per_peer_state.read().unwrap();
5721 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5723 debug_assert!(false);
5724 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5726 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5727 let peer_state = &mut *peer_state_lock;
5728 match peer_state.channel_by_id.entry(msg.channel_id) {
5729 hash_map::Entry::Occupied(mut chan) => {
5730 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
5731 self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
5732 if let Some(announcement_sigs) = announcement_sigs_opt {
5733 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().context.channel_id()));
5734 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5735 node_id: counterparty_node_id.clone(),
5736 msg: announcement_sigs,
5738 } else if chan.get().context.is_usable() {
5739 // If we're sending an announcement_signatures, we'll send the (public)
5740 // channel_update after sending a channel_announcement when we receive our
5741 // counterparty's announcement_signatures. Thus, we only bother to send a
5742 // channel_update here if the channel is not public, i.e. we're not sending an
5743 // announcement_signatures.
5744 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().context.channel_id()));
5745 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5746 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5747 node_id: counterparty_node_id.clone(),
5754 let mut pending_events = self.pending_events.lock().unwrap();
5755 emit_channel_ready_event!(pending_events, chan.get_mut());
5760 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5764 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
5765 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
5766 let result: Result<(), _> = loop {
5767 let per_peer_state = self.per_peer_state.read().unwrap();
5768 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5770 debug_assert!(false);
5771 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5773 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5774 let peer_state = &mut *peer_state_lock;
5775 // TODO(dunxen): Fix this duplication when we switch to a single map with enums as per
5776 // https://github.com/lightningdevkit/rust-lightning/issues/2422
5777 if let hash_map::Entry::Occupied(chan_entry) = peer_state.outbound_v1_channel_by_id.entry(msg.channel_id.clone()) {
5778 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", log_bytes!(&msg.channel_id[..]));
5779 self.issue_channel_close_events(&chan_entry.get().context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
5780 let mut chan = remove_channel!(self, chan_entry);
5781 self.finish_force_close_channel(chan.context.force_shutdown(false));
5783 } else if let hash_map::Entry::Occupied(chan_entry) = peer_state.inbound_v1_channel_by_id.entry(msg.channel_id.clone()) {
5784 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", log_bytes!(&msg.channel_id[..]));
5785 self.issue_channel_close_events(&chan_entry.get().context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
5786 let mut chan = remove_channel!(self, chan_entry);
5787 self.finish_force_close_channel(chan.context.force_shutdown(false));
5789 } else if let hash_map::Entry::Occupied(mut chan_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
5790 if !chan_entry.get().received_shutdown() {
5791 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
5792 log_bytes!(msg.channel_id),
5793 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
5796 let funding_txo_opt = chan_entry.get().context.get_funding_txo();
5797 let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
5798 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
5799 dropped_htlcs = htlcs;
5801 if let Some(msg) = shutdown {
5802 // We can send the `shutdown` message before updating the `ChannelMonitor`
5803 // here as we don't need the monitor update to complete until we send a
5804 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
5805 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5806 node_id: *counterparty_node_id,
5811 // Update the monitor with the shutdown script if necessary.
5812 if let Some(monitor_update) = monitor_update_opt {
5813 break handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
5814 peer_state_lock, peer_state, per_peer_state, chan_entry).map(|_| ());
5818 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5821 for htlc_source in dropped_htlcs.drain(..) {
5822 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
5823 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5824 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
5830 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
5831 let per_peer_state = self.per_peer_state.read().unwrap();
5832 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5834 debug_assert!(false);
5835 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5837 let (tx, chan_option) = {
5838 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5839 let peer_state = &mut *peer_state_lock;
5840 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
5841 hash_map::Entry::Occupied(mut chan_entry) => {
5842 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
5843 if let Some(msg) = closing_signed {
5844 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5845 node_id: counterparty_node_id.clone(),
5850 // We're done with this channel, we've got a signed closing transaction and
5851 // will send the closing_signed back to the remote peer upon return. This
5852 // also implies there are no pending HTLCs left on the channel, so we can
5853 // fully delete it from tracking (the channel monitor is still around to
5854 // watch for old state broadcasts)!
5855 (tx, Some(remove_channel!(self, chan_entry)))
5856 } else { (tx, None) }
5858 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5861 if let Some(broadcast_tx) = tx {
5862 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
5863 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
5865 if let Some(chan) = chan_option {
5866 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5867 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5868 let peer_state = &mut *peer_state_lock;
5869 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5873 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
5878 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
5879 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
5880 //determine the state of the payment based on our response/if we forward anything/the time
5881 //we take to respond. We should take care to avoid allowing such an attack.
5883 //TODO: There exists a further attack where a node may garble the onion data, forward it to
5884 //us repeatedly garbled in different ways, and compare our error messages, which are
5885 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
5886 //but we should prevent it anyway.
5888 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
5889 let per_peer_state = self.per_peer_state.read().unwrap();
5890 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5892 debug_assert!(false);
5893 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5895 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5896 let peer_state = &mut *peer_state_lock;
5897 match peer_state.channel_by_id.entry(msg.channel_id) {
5898 hash_map::Entry::Occupied(mut chan) => {
5900 let pending_forward_info = match decoded_hop_res {
5901 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
5902 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
5903 chan.get().context.config().accept_underpaying_htlcs, next_packet_pk_opt),
5904 Err(e) => PendingHTLCStatus::Fail(e)
5906 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
5907 // If the update_add is completely bogus, the call will Err and we will close,
5908 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
5909 // want to reject the new HTLC and fail it backwards instead of forwarding.
5910 match pending_forward_info {
5911 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
5912 let reason = if (error_code & 0x1000) != 0 {
5913 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
5914 HTLCFailReason::reason(real_code, error_data)
5916 HTLCFailReason::from_failure_code(error_code)
5917 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
5918 let msg = msgs::UpdateFailHTLC {
5919 channel_id: msg.channel_id,
5920 htlc_id: msg.htlc_id,
5923 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
5925 _ => pending_forward_info
5928 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan);
5930 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5935 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
5937 let (htlc_source, forwarded_htlc_value) = {
5938 let per_peer_state = self.per_peer_state.read().unwrap();
5939 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5941 debug_assert!(false);
5942 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5944 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5945 let peer_state = &mut *peer_state_lock;
5946 match peer_state.channel_by_id.entry(msg.channel_id) {
5947 hash_map::Entry::Occupied(mut chan) => {
5948 let res = try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan);
5949 funding_txo = chan.get().context.get_funding_txo().expect("We won't accept a fulfill until funded");
5952 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5955 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, funding_txo);
5959 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
5960 let per_peer_state = self.per_peer_state.read().unwrap();
5961 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5963 debug_assert!(false);
5964 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5966 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5967 let peer_state = &mut *peer_state_lock;
5968 match peer_state.channel_by_id.entry(msg.channel_id) {
5969 hash_map::Entry::Occupied(mut chan) => {
5970 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
5972 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5977 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
5978 let per_peer_state = self.per_peer_state.read().unwrap();
5979 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5981 debug_assert!(false);
5982 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5984 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5985 let peer_state = &mut *peer_state_lock;
5986 match peer_state.channel_by_id.entry(msg.channel_id) {
5987 hash_map::Entry::Occupied(mut chan) => {
5988 if (msg.failure_code & 0x8000) == 0 {
5989 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
5990 try_chan_entry!(self, Err(chan_err), chan);
5992 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
5995 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5999 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6000 let per_peer_state = self.per_peer_state.read().unwrap();
6001 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6003 debug_assert!(false);
6004 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6006 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6007 let peer_state = &mut *peer_state_lock;
6008 match peer_state.channel_by_id.entry(msg.channel_id) {
6009 hash_map::Entry::Occupied(mut chan) => {
6010 let funding_txo = chan.get().context.get_funding_txo();
6011 let monitor_update_opt = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
6012 if let Some(monitor_update) = monitor_update_opt {
6013 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6014 peer_state, per_peer_state, chan).map(|_| ())
6017 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6022 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6023 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6024 let mut push_forward_event = false;
6025 let mut new_intercept_events = VecDeque::new();
6026 let mut failed_intercept_forwards = Vec::new();
6027 if !pending_forwards.is_empty() {
6028 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6029 let scid = match forward_info.routing {
6030 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6031 PendingHTLCRouting::Receive { .. } => 0,
6032 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6034 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6035 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6037 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6038 let forward_htlcs_empty = forward_htlcs.is_empty();
6039 match forward_htlcs.entry(scid) {
6040 hash_map::Entry::Occupied(mut entry) => {
6041 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6042 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6044 hash_map::Entry::Vacant(entry) => {
6045 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6046 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
6048 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
6049 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6050 match pending_intercepts.entry(intercept_id) {
6051 hash_map::Entry::Vacant(entry) => {
6052 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6053 requested_next_hop_scid: scid,
6054 payment_hash: forward_info.payment_hash,
6055 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6056 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6059 entry.insert(PendingAddHTLCInfo {
6060 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6062 hash_map::Entry::Occupied(_) => {
6063 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6064 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6065 short_channel_id: prev_short_channel_id,
6066 user_channel_id: Some(prev_user_channel_id),
6067 outpoint: prev_funding_outpoint,
6068 htlc_id: prev_htlc_id,
6069 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6070 phantom_shared_secret: None,
6073 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6074 HTLCFailReason::from_failure_code(0x4000 | 10),
6075 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6080 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6081 // payments are being processed.
6082 if forward_htlcs_empty {
6083 push_forward_event = true;
6085 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6086 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6093 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6094 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6097 if !new_intercept_events.is_empty() {
6098 let mut events = self.pending_events.lock().unwrap();
6099 events.append(&mut new_intercept_events);
6101 if push_forward_event { self.push_pending_forwards_ev() }
6105 fn push_pending_forwards_ev(&self) {
6106 let mut pending_events = self.pending_events.lock().unwrap();
6107 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6108 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6109 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6111 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6112 // events is done in batches and they are not removed until we're done processing each
6113 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6114 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6115 // payments will need an additional forwarding event before being claimed to make them look
6116 // real by taking more time.
6117 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6118 pending_events.push_back((Event::PendingHTLCsForwardable {
6119 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6124 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6125 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6126 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6127 /// the [`ChannelMonitorUpdate`] in question.
6128 fn raa_monitor_updates_held(&self,
6129 actions_blocking_raa_monitor_updates: &BTreeMap<[u8; 32], Vec<RAAMonitorUpdateBlockingAction>>,
6130 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6132 actions_blocking_raa_monitor_updates
6133 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6134 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6135 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6136 channel_funding_outpoint,
6137 counterparty_node_id,
6142 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6143 let (htlcs_to_fail, res) = {
6144 let per_peer_state = self.per_peer_state.read().unwrap();
6145 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6147 debug_assert!(false);
6148 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6149 }).map(|mtx| mtx.lock().unwrap())?;
6150 let peer_state = &mut *peer_state_lock;
6151 match peer_state.channel_by_id.entry(msg.channel_id) {
6152 hash_map::Entry::Occupied(mut chan) => {
6153 let funding_txo_opt = chan.get().context.get_funding_txo();
6154 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6155 self.raa_monitor_updates_held(
6156 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6157 *counterparty_node_id)
6159 let (htlcs_to_fail, monitor_update_opt) = try_chan_entry!(self,
6160 chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan);
6161 let res = if let Some(monitor_update) = monitor_update_opt {
6162 let funding_txo = funding_txo_opt
6163 .expect("Funding outpoint must have been set for RAA handling to succeed");
6164 handle_new_monitor_update!(self, funding_txo, monitor_update,
6165 peer_state_lock, peer_state, per_peer_state, chan).map(|_| ())
6167 (htlcs_to_fail, res)
6169 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6172 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6176 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6177 let per_peer_state = self.per_peer_state.read().unwrap();
6178 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6180 debug_assert!(false);
6181 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6183 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6184 let peer_state = &mut *peer_state_lock;
6185 match peer_state.channel_by_id.entry(msg.channel_id) {
6186 hash_map::Entry::Occupied(mut chan) => {
6187 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
6189 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6194 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6195 let per_peer_state = self.per_peer_state.read().unwrap();
6196 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6198 debug_assert!(false);
6199 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6201 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6202 let peer_state = &mut *peer_state_lock;
6203 match peer_state.channel_by_id.entry(msg.channel_id) {
6204 hash_map::Entry::Occupied(mut chan) => {
6205 if !chan.get().context.is_usable() {
6206 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6209 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6210 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
6211 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
6212 msg, &self.default_configuration
6214 // Note that announcement_signatures fails if the channel cannot be announced,
6215 // so get_channel_update_for_broadcast will never fail by the time we get here.
6216 update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
6219 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6224 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
6225 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6226 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6227 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6229 // It's not a local channel
6230 return Ok(NotifyOption::SkipPersist)
6233 let per_peer_state = self.per_peer_state.read().unwrap();
6234 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6235 if peer_state_mutex_opt.is_none() {
6236 return Ok(NotifyOption::SkipPersist)
6238 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6239 let peer_state = &mut *peer_state_lock;
6240 match peer_state.channel_by_id.entry(chan_id) {
6241 hash_map::Entry::Occupied(mut chan) => {
6242 if chan.get().context.get_counterparty_node_id() != *counterparty_node_id {
6243 if chan.get().context.should_announce() {
6244 // If the announcement is about a channel of ours which is public, some
6245 // other peer may simply be forwarding all its gossip to us. Don't provide
6246 // a scary-looking error message and return Ok instead.
6247 return Ok(NotifyOption::SkipPersist);
6249 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6251 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().context.get_counterparty_node_id().serialize()[..];
6252 let msg_from_node_one = msg.contents.flags & 1 == 0;
6253 if were_node_one == msg_from_node_one {
6254 return Ok(NotifyOption::SkipPersist);
6256 log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
6257 try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
6260 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
6262 Ok(NotifyOption::DoPersist)
6265 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
6267 let need_lnd_workaround = {
6268 let per_peer_state = self.per_peer_state.read().unwrap();
6270 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6272 debug_assert!(false);
6273 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6275 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6276 let peer_state = &mut *peer_state_lock;
6277 match peer_state.channel_by_id.entry(msg.channel_id) {
6278 hash_map::Entry::Occupied(mut chan) => {
6279 // Currently, we expect all holding cell update_adds to be dropped on peer
6280 // disconnect, so Channel's reestablish will never hand us any holding cell
6281 // freed HTLCs to fail backwards. If in the future we no longer drop pending
6282 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
6283 let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
6284 msg, &self.logger, &self.node_signer, self.genesis_hash,
6285 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
6286 let mut channel_update = None;
6287 if let Some(msg) = responses.shutdown_msg {
6288 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6289 node_id: counterparty_node_id.clone(),
6292 } else if chan.get().context.is_usable() {
6293 // If the channel is in a usable state (ie the channel is not being shut
6294 // down), send a unicast channel_update to our counterparty to make sure
6295 // they have the latest channel parameters.
6296 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
6297 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
6298 node_id: chan.get().context.get_counterparty_node_id(),
6303 let need_lnd_workaround = chan.get_mut().context.workaround_lnd_bug_4006.take();
6304 htlc_forwards = self.handle_channel_resumption(
6305 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
6306 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
6307 if let Some(upd) = channel_update {
6308 peer_state.pending_msg_events.push(upd);
6312 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6316 if let Some(forwards) = htlc_forwards {
6317 self.forward_htlcs(&mut [forwards][..]);
6320 if let Some(channel_ready_msg) = need_lnd_workaround {
6321 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
6326 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
6327 fn process_pending_monitor_events(&self) -> bool {
6328 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6330 let mut failed_channels = Vec::new();
6331 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
6332 let has_pending_monitor_events = !pending_monitor_events.is_empty();
6333 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
6334 for monitor_event in monitor_events.drain(..) {
6335 match monitor_event {
6336 MonitorEvent::HTLCEvent(htlc_update) => {
6337 if let Some(preimage) = htlc_update.payment_preimage {
6338 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", &preimage);
6339 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint);
6341 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
6342 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
6343 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6344 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
6347 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
6348 MonitorEvent::UpdateFailed(funding_outpoint) => {
6349 let counterparty_node_id_opt = match counterparty_node_id {
6350 Some(cp_id) => Some(cp_id),
6352 // TODO: Once we can rely on the counterparty_node_id from the
6353 // monitor event, this and the id_to_peer map should be removed.
6354 let id_to_peer = self.id_to_peer.lock().unwrap();
6355 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
6358 if let Some(counterparty_node_id) = counterparty_node_id_opt {
6359 let per_peer_state = self.per_peer_state.read().unwrap();
6360 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
6361 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6362 let peer_state = &mut *peer_state_lock;
6363 let pending_msg_events = &mut peer_state.pending_msg_events;
6364 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
6365 let mut chan = remove_channel!(self, chan_entry);
6366 failed_channels.push(chan.context.force_shutdown(false));
6367 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6368 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6372 let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
6373 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
6375 ClosureReason::CommitmentTxConfirmed
6377 self.issue_channel_close_events(&chan.context, reason);
6378 pending_msg_events.push(events::MessageSendEvent::HandleError {
6379 node_id: chan.context.get_counterparty_node_id(),
6380 action: msgs::ErrorAction::SendErrorMessage {
6381 msg: msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() }
6388 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
6389 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
6395 for failure in failed_channels.drain(..) {
6396 self.finish_force_close_channel(failure);
6399 has_pending_monitor_events
6402 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
6403 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
6404 /// update events as a separate process method here.
6406 pub fn process_monitor_events(&self) {
6407 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6408 self.process_pending_monitor_events();
6411 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
6412 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
6413 /// update was applied.
6414 fn check_free_holding_cells(&self) -> bool {
6415 let mut has_monitor_update = false;
6416 let mut failed_htlcs = Vec::new();
6417 let mut handle_errors = Vec::new();
6419 // Walk our list of channels and find any that need to update. Note that when we do find an
6420 // update, if it includes actions that must be taken afterwards, we have to drop the
6421 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
6422 // manage to go through all our peers without finding a single channel to update.
6424 let per_peer_state = self.per_peer_state.read().unwrap();
6425 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6427 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6428 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
6429 for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
6430 let counterparty_node_id = chan.context.get_counterparty_node_id();
6431 let funding_txo = chan.context.get_funding_txo();
6432 let (monitor_opt, holding_cell_failed_htlcs) =
6433 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
6434 if !holding_cell_failed_htlcs.is_empty() {
6435 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
6437 if let Some(monitor_update) = monitor_opt {
6438 has_monitor_update = true;
6440 let channel_id: [u8; 32] = *channel_id;
6441 let res = handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
6442 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
6443 peer_state.channel_by_id.remove(&channel_id));
6445 handle_errors.push((counterparty_node_id, res));
6447 continue 'peer_loop;
6456 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
6457 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
6458 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
6461 for (counterparty_node_id, err) in handle_errors.drain(..) {
6462 let _ = handle_error!(self, err, counterparty_node_id);
6468 /// Check whether any channels have finished removing all pending updates after a shutdown
6469 /// exchange and can now send a closing_signed.
6470 /// Returns whether any closing_signed messages were generated.
6471 fn maybe_generate_initial_closing_signed(&self) -> bool {
6472 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
6473 let mut has_update = false;
6475 let per_peer_state = self.per_peer_state.read().unwrap();
6477 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6478 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6479 let peer_state = &mut *peer_state_lock;
6480 let pending_msg_events = &mut peer_state.pending_msg_events;
6481 peer_state.channel_by_id.retain(|channel_id, chan| {
6482 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
6483 Ok((msg_opt, tx_opt)) => {
6484 if let Some(msg) = msg_opt {
6486 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6487 node_id: chan.context.get_counterparty_node_id(), msg,
6490 if let Some(tx) = tx_opt {
6491 // We're done with this channel. We got a closing_signed and sent back
6492 // a closing_signed with a closing transaction to broadcast.
6493 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6494 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6499 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6501 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
6502 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6503 update_maps_on_chan_removal!(self, &chan.context);
6509 let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
6510 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
6518 for (counterparty_node_id, err) in handle_errors.drain(..) {
6519 let _ = handle_error!(self, err, counterparty_node_id);
6525 /// Handle a list of channel failures during a block_connected or block_disconnected call,
6526 /// pushing the channel monitor update (if any) to the background events queue and removing the
6528 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
6529 for mut failure in failed_channels.drain(..) {
6530 // Either a commitment transactions has been confirmed on-chain or
6531 // Channel::block_disconnected detected that the funding transaction has been
6532 // reorganized out of the main chain.
6533 // We cannot broadcast our latest local state via monitor update (as
6534 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
6535 // so we track the update internally and handle it when the user next calls
6536 // timer_tick_occurred, guaranteeing we're running normally.
6537 if let Some((counterparty_node_id, funding_txo, update)) = failure.0.take() {
6538 assert_eq!(update.updates.len(), 1);
6539 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
6540 assert!(should_broadcast);
6541 } else { unreachable!(); }
6542 self.pending_background_events.lock().unwrap().push(
6543 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6544 counterparty_node_id, funding_txo, update
6547 self.finish_force_close_channel(failure);
6551 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
6554 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
6555 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
6557 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
6558 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
6559 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
6560 /// passed directly to [`claim_funds`].
6562 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
6564 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
6565 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
6569 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
6570 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
6572 /// Errors if `min_value_msat` is greater than total bitcoin supply.
6574 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
6575 /// on versions of LDK prior to 0.0.114.
6577 /// [`claim_funds`]: Self::claim_funds
6578 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
6579 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
6580 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
6581 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
6582 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6583 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
6584 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
6585 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
6586 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
6587 min_final_cltv_expiry_delta)
6590 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
6591 /// stored external to LDK.
6593 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
6594 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
6595 /// the `min_value_msat` provided here, if one is provided.
6597 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
6598 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
6601 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
6602 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
6603 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
6604 /// sender "proof-of-payment" unless they have paid the required amount.
6606 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
6607 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
6608 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
6609 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
6610 /// invoices when no timeout is set.
6612 /// Note that we use block header time to time-out pending inbound payments (with some margin
6613 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
6614 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
6615 /// If you need exact expiry semantics, you should enforce them upon receipt of
6616 /// [`PaymentClaimable`].
6618 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
6619 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
6621 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
6622 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
6626 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
6627 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
6629 /// Errors if `min_value_msat` is greater than total bitcoin supply.
6631 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
6632 /// on versions of LDK prior to 0.0.114.
6634 /// [`create_inbound_payment`]: Self::create_inbound_payment
6635 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
6636 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
6637 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
6638 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
6639 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
6640 min_final_cltv_expiry)
6643 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
6644 /// previously returned from [`create_inbound_payment`].
6646 /// [`create_inbound_payment`]: Self::create_inbound_payment
6647 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
6648 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
6651 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
6652 /// are used when constructing the phantom invoice's route hints.
6654 /// [phantom node payments]: crate::sign::PhantomKeysManager
6655 pub fn get_phantom_scid(&self) -> u64 {
6656 let best_block_height = self.best_block.read().unwrap().height();
6657 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
6659 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
6660 // Ensure the generated scid doesn't conflict with a real channel.
6661 match short_to_chan_info.get(&scid_candidate) {
6662 Some(_) => continue,
6663 None => return scid_candidate
6668 /// Gets route hints for use in receiving [phantom node payments].
6670 /// [phantom node payments]: crate::sign::PhantomKeysManager
6671 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
6673 channels: self.list_usable_channels(),
6674 phantom_scid: self.get_phantom_scid(),
6675 real_node_pubkey: self.get_our_node_id(),
6679 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
6680 /// used when constructing the route hints for HTLCs intended to be intercepted. See
6681 /// [`ChannelManager::forward_intercepted_htlc`].
6683 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
6684 /// times to get a unique scid.
6685 pub fn get_intercept_scid(&self) -> u64 {
6686 let best_block_height = self.best_block.read().unwrap().height();
6687 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
6689 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
6690 // Ensure the generated scid doesn't conflict with a real channel.
6691 if short_to_chan_info.contains_key(&scid_candidate) { continue }
6692 return scid_candidate
6696 /// Gets inflight HTLC information by processing pending outbound payments that are in
6697 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
6698 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
6699 let mut inflight_htlcs = InFlightHtlcs::new();
6701 let per_peer_state = self.per_peer_state.read().unwrap();
6702 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6703 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6704 let peer_state = &mut *peer_state_lock;
6705 for chan in peer_state.channel_by_id.values() {
6706 for (htlc_source, _) in chan.inflight_htlc_sources() {
6707 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
6708 inflight_htlcs.process_path(path, self.get_our_node_id());
6717 #[cfg(any(test, feature = "_test_utils"))]
6718 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
6719 let events = core::cell::RefCell::new(Vec::new());
6720 let event_handler = |event: events::Event| events.borrow_mut().push(event);
6721 self.process_pending_events(&event_handler);
6725 #[cfg(feature = "_test_utils")]
6726 pub fn push_pending_event(&self, event: events::Event) {
6727 let mut events = self.pending_events.lock().unwrap();
6728 events.push_back((event, None));
6732 pub fn pop_pending_event(&self) -> Option<events::Event> {
6733 let mut events = self.pending_events.lock().unwrap();
6734 events.pop_front().map(|(e, _)| e)
6738 pub fn has_pending_payments(&self) -> bool {
6739 self.pending_outbound_payments.has_pending_payments()
6743 pub fn clear_pending_payments(&self) {
6744 self.pending_outbound_payments.clear_pending_payments()
6747 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
6748 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
6749 /// operation. It will double-check that nothing *else* is also blocking the same channel from
6750 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
6751 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
6752 let mut errors = Vec::new();
6754 let per_peer_state = self.per_peer_state.read().unwrap();
6755 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6756 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6757 let peer_state = &mut *peer_state_lck;
6759 if let Some(blocker) = completed_blocker.take() {
6760 // Only do this on the first iteration of the loop.
6761 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
6762 .get_mut(&channel_funding_outpoint.to_channel_id())
6764 blockers.retain(|iter| iter != &blocker);
6768 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6769 channel_funding_outpoint, counterparty_node_id) {
6770 // Check that, while holding the peer lock, we don't have anything else
6771 // blocking monitor updates for this channel. If we do, release the monitor
6772 // update(s) when those blockers complete.
6773 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
6774 log_bytes!(&channel_funding_outpoint.to_channel_id()[..]));
6778 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
6779 debug_assert_eq!(chan.get().context.get_funding_txo().unwrap(), channel_funding_outpoint);
6780 if let Some((monitor_update, further_update_exists)) = chan.get_mut().unblock_next_blocked_monitor_update() {
6781 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
6782 log_bytes!(&channel_funding_outpoint.to_channel_id()[..]));
6783 if let Err(e) = handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
6784 peer_state_lck, peer_state, per_peer_state, chan)
6786 errors.push((e, counterparty_node_id));
6788 if further_update_exists {
6789 // If there are more `ChannelMonitorUpdate`s to process, restart at the
6794 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
6795 log_bytes!(&channel_funding_outpoint.to_channel_id()[..]));
6799 log_debug!(self.logger,
6800 "Got a release post-RAA monitor update for peer {} but the channel is gone",
6801 log_pubkey!(counterparty_node_id));
6805 for (err, counterparty_node_id) in errors {
6806 let res = Err::<(), _>(err);
6807 let _ = handle_error!(self, res, counterparty_node_id);
6811 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
6812 for action in actions {
6814 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6815 channel_funding_outpoint, counterparty_node_id
6817 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
6823 /// Processes any events asynchronously in the order they were generated since the last call
6824 /// using the given event handler.
6826 /// See the trait-level documentation of [`EventsProvider`] for requirements.
6827 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
6831 process_events_body!(self, ev, { handler(ev).await });
6835 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
6837 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6838 T::Target: BroadcasterInterface,
6839 ES::Target: EntropySource,
6840 NS::Target: NodeSigner,
6841 SP::Target: SignerProvider,
6842 F::Target: FeeEstimator,
6846 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
6847 /// The returned array will contain `MessageSendEvent`s for different peers if
6848 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
6849 /// is always placed next to each other.
6851 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
6852 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
6853 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
6854 /// will randomly be placed first or last in the returned array.
6856 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
6857 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
6858 /// the `MessageSendEvent`s to the specific peer they were generated under.
6859 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
6860 let events = RefCell::new(Vec::new());
6861 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6862 let mut result = self.process_background_events();
6864 // TODO: This behavior should be documented. It's unintuitive that we query
6865 // ChannelMonitors when clearing other events.
6866 if self.process_pending_monitor_events() {
6867 result = NotifyOption::DoPersist;
6870 if self.check_free_holding_cells() {
6871 result = NotifyOption::DoPersist;
6873 if self.maybe_generate_initial_closing_signed() {
6874 result = NotifyOption::DoPersist;
6877 let mut pending_events = Vec::new();
6878 let per_peer_state = self.per_peer_state.read().unwrap();
6879 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6880 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6881 let peer_state = &mut *peer_state_lock;
6882 if peer_state.pending_msg_events.len() > 0 {
6883 pending_events.append(&mut peer_state.pending_msg_events);
6887 if !pending_events.is_empty() {
6888 events.replace(pending_events);
6897 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
6899 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6900 T::Target: BroadcasterInterface,
6901 ES::Target: EntropySource,
6902 NS::Target: NodeSigner,
6903 SP::Target: SignerProvider,
6904 F::Target: FeeEstimator,
6908 /// Processes events that must be periodically handled.
6910 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
6911 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
6912 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
6914 process_events_body!(self, ev, handler.handle_event(ev));
6918 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
6920 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6921 T::Target: BroadcasterInterface,
6922 ES::Target: EntropySource,
6923 NS::Target: NodeSigner,
6924 SP::Target: SignerProvider,
6925 F::Target: FeeEstimator,
6929 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
6931 let best_block = self.best_block.read().unwrap();
6932 assert_eq!(best_block.block_hash(), header.prev_blockhash,
6933 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
6934 assert_eq!(best_block.height(), height - 1,
6935 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
6938 self.transactions_confirmed(header, txdata, height);
6939 self.best_block_updated(header, height);
6942 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
6943 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock,
6944 &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist });
6945 let new_height = height - 1;
6947 let mut best_block = self.best_block.write().unwrap();
6948 assert_eq!(best_block.block_hash(), header.block_hash(),
6949 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
6950 assert_eq!(best_block.height(), height,
6951 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
6952 *best_block = BestBlock::new(header.prev_blockhash, new_height)
6955 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6959 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
6961 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6962 T::Target: BroadcasterInterface,
6963 ES::Target: EntropySource,
6964 NS::Target: NodeSigner,
6965 SP::Target: SignerProvider,
6966 F::Target: FeeEstimator,
6970 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
6971 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6972 // during initialization prior to the chain_monitor being fully configured in some cases.
6973 // See the docs for `ChannelManagerReadArgs` for more.
6975 let block_hash = header.block_hash();
6976 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
6978 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock,
6979 &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist });
6980 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
6981 .map(|(a, b)| (a, Vec::new(), b)));
6983 let last_best_block_height = self.best_block.read().unwrap().height();
6984 if height < last_best_block_height {
6985 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
6986 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6990 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
6991 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6992 // during initialization prior to the chain_monitor being fully configured in some cases.
6993 // See the docs for `ChannelManagerReadArgs` for more.
6995 let block_hash = header.block_hash();
6996 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
6998 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock,
6999 &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist });
7000 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
7002 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7004 macro_rules! max_time {
7005 ($timestamp: expr) => {
7007 // Update $timestamp to be the max of its current value and the block
7008 // timestamp. This should keep us close to the current time without relying on
7009 // having an explicit local time source.
7010 // Just in case we end up in a race, we loop until we either successfully
7011 // update $timestamp or decide we don't need to.
7012 let old_serial = $timestamp.load(Ordering::Acquire);
7013 if old_serial >= header.time as usize { break; }
7014 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
7020 max_time!(self.highest_seen_timestamp);
7021 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
7022 payment_secrets.retain(|_, inbound_payment| {
7023 inbound_payment.expiry_time > header.time as u64
7027 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
7028 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
7029 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
7030 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7031 let peer_state = &mut *peer_state_lock;
7032 for chan in peer_state.channel_by_id.values() {
7033 if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) {
7034 res.push((funding_txo.txid, Some(block_hash)));
7041 fn transaction_unconfirmed(&self, txid: &Txid) {
7042 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock,
7043 &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist });
7044 self.do_chain_event(None, |channel| {
7045 if let Some(funding_txo) = channel.context.get_funding_txo() {
7046 if funding_txo.txid == *txid {
7047 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
7048 } else { Ok((None, Vec::new(), None)) }
7049 } else { Ok((None, Vec::new(), None)) }
7054 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
7056 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7057 T::Target: BroadcasterInterface,
7058 ES::Target: EntropySource,
7059 NS::Target: NodeSigner,
7060 SP::Target: SignerProvider,
7061 F::Target: FeeEstimator,
7065 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
7066 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
7068 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
7069 (&self, height_opt: Option<u32>, f: FN) {
7070 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7071 // during initialization prior to the chain_monitor being fully configured in some cases.
7072 // See the docs for `ChannelManagerReadArgs` for more.
7074 let mut failed_channels = Vec::new();
7075 let mut timed_out_htlcs = Vec::new();
7077 let per_peer_state = self.per_peer_state.read().unwrap();
7078 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7079 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7080 let peer_state = &mut *peer_state_lock;
7081 let pending_msg_events = &mut peer_state.pending_msg_events;
7082 peer_state.channel_by_id.retain(|_, channel| {
7083 let res = f(channel);
7084 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
7085 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
7086 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
7087 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
7088 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
7090 if let Some(channel_ready) = channel_ready_opt {
7091 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
7092 if channel.context.is_usable() {
7093 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.context.channel_id()));
7094 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
7095 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7096 node_id: channel.context.get_counterparty_node_id(),
7101 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.context.channel_id()));
7106 let mut pending_events = self.pending_events.lock().unwrap();
7107 emit_channel_ready_event!(pending_events, channel);
7110 if let Some(announcement_sigs) = announcement_sigs {
7111 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.context.channel_id()));
7112 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7113 node_id: channel.context.get_counterparty_node_id(),
7114 msg: announcement_sigs,
7116 if let Some(height) = height_opt {
7117 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
7118 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
7120 // Note that announcement_signatures fails if the channel cannot be announced,
7121 // so get_channel_update_for_broadcast will never fail by the time we get here.
7122 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
7127 if channel.is_our_channel_ready() {
7128 if let Some(real_scid) = channel.context.get_short_channel_id() {
7129 // If we sent a 0conf channel_ready, and now have an SCID, we add it
7130 // to the short_to_chan_info map here. Note that we check whether we
7131 // can relay using the real SCID at relay-time (i.e.
7132 // enforce option_scid_alias then), and if the funding tx is ever
7133 // un-confirmed we force-close the channel, ensuring short_to_chan_info
7134 // is always consistent.
7135 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
7136 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
7137 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
7138 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
7139 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
7142 } else if let Err(reason) = res {
7143 update_maps_on_chan_removal!(self, &channel.context);
7144 // It looks like our counterparty went on-chain or funding transaction was
7145 // reorged out of the main chain. Close the channel.
7146 failed_channels.push(channel.context.force_shutdown(true));
7147 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
7148 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7152 let reason_message = format!("{}", reason);
7153 self.issue_channel_close_events(&channel.context, reason);
7154 pending_msg_events.push(events::MessageSendEvent::HandleError {
7155 node_id: channel.context.get_counterparty_node_id(),
7156 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
7157 channel_id: channel.context.channel_id(),
7158 data: reason_message,
7168 if let Some(height) = height_opt {
7169 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
7170 payment.htlcs.retain(|htlc| {
7171 // If height is approaching the number of blocks we think it takes us to get
7172 // our commitment transaction confirmed before the HTLC expires, plus the
7173 // number of blocks we generally consider it to take to do a commitment update,
7174 // just give up on it and fail the HTLC.
7175 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
7176 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
7177 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
7179 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
7180 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
7181 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
7185 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
7188 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
7189 intercepted_htlcs.retain(|_, htlc| {
7190 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
7191 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7192 short_channel_id: htlc.prev_short_channel_id,
7193 user_channel_id: Some(htlc.prev_user_channel_id),
7194 htlc_id: htlc.prev_htlc_id,
7195 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
7196 phantom_shared_secret: None,
7197 outpoint: htlc.prev_funding_outpoint,
7200 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
7201 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7202 _ => unreachable!(),
7204 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
7205 HTLCFailReason::from_failure_code(0x2000 | 2),
7206 HTLCDestination::InvalidForward { requested_forward_scid }));
7207 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
7213 self.handle_init_event_channel_failures(failed_channels);
7215 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
7216 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
7220 /// Gets a [`Future`] that completes when this [`ChannelManager`] needs to be persisted.
7222 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
7223 /// [`ChannelManager`] and should instead register actions to be taken later.
7225 pub fn get_persistable_update_future(&self) -> Future {
7226 self.persistence_notifier.get_future()
7229 #[cfg(any(test, feature = "_test_utils"))]
7230 pub fn get_persistence_condvar_value(&self) -> bool {
7231 self.persistence_notifier.notify_pending()
7234 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
7235 /// [`chain::Confirm`] interfaces.
7236 pub fn current_best_block(&self) -> BestBlock {
7237 self.best_block.read().unwrap().clone()
7240 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
7241 /// [`ChannelManager`].
7242 pub fn node_features(&self) -> NodeFeatures {
7243 provided_node_features(&self.default_configuration)
7246 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
7247 /// [`ChannelManager`].
7249 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
7250 /// or not. Thus, this method is not public.
7251 #[cfg(any(feature = "_test_utils", test))]
7252 pub fn invoice_features(&self) -> Bolt11InvoiceFeatures {
7253 provided_invoice_features(&self.default_configuration)
7256 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
7257 /// [`ChannelManager`].
7258 pub fn channel_features(&self) -> ChannelFeatures {
7259 provided_channel_features(&self.default_configuration)
7262 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
7263 /// [`ChannelManager`].
7264 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
7265 provided_channel_type_features(&self.default_configuration)
7268 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
7269 /// [`ChannelManager`].
7270 pub fn init_features(&self) -> InitFeatures {
7271 provided_init_features(&self.default_configuration)
7275 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7276 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
7278 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7279 T::Target: BroadcasterInterface,
7280 ES::Target: EntropySource,
7281 NS::Target: NodeSigner,
7282 SP::Target: SignerProvider,
7283 F::Target: FeeEstimator,
7287 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
7288 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7289 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
7292 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
7293 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7294 "Dual-funded channels not supported".to_owned(),
7295 msg.temporary_channel_id.clone())), *counterparty_node_id);
7298 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
7299 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7300 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
7303 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
7304 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7305 "Dual-funded channels not supported".to_owned(),
7306 msg.temporary_channel_id.clone())), *counterparty_node_id);
7309 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
7310 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7311 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
7314 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
7315 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7316 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
7319 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
7320 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7321 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
7324 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
7325 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7326 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
7329 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
7330 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7331 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
7334 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
7335 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7336 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
7339 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
7340 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7341 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
7344 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
7345 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7346 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
7349 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
7350 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7351 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
7354 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
7355 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7356 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
7359 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
7360 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7361 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
7364 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
7365 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7366 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
7369 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
7370 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7371 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
7374 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
7375 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
7376 let force_persist = self.process_background_events();
7377 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
7378 if force_persist == NotifyOption::DoPersist { NotifyOption::DoPersist } else { persist }
7380 NotifyOption::SkipPersist
7385 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
7386 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7387 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
7390 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
7391 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7392 let mut failed_channels = Vec::new();
7393 let mut per_peer_state = self.per_peer_state.write().unwrap();
7395 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
7396 log_pubkey!(counterparty_node_id));
7397 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
7398 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7399 let peer_state = &mut *peer_state_lock;
7400 let pending_msg_events = &mut peer_state.pending_msg_events;
7401 peer_state.channel_by_id.retain(|_, chan| {
7402 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
7403 if chan.is_shutdown() {
7404 update_maps_on_chan_removal!(self, &chan.context);
7405 self.issue_channel_close_events(&chan.context, ClosureReason::DisconnectedPeer);
7410 peer_state.inbound_v1_channel_by_id.retain(|_, chan| {
7411 update_maps_on_chan_removal!(self, &chan.context);
7412 self.issue_channel_close_events(&chan.context, ClosureReason::DisconnectedPeer);
7415 peer_state.outbound_v1_channel_by_id.retain(|_, chan| {
7416 update_maps_on_chan_removal!(self, &chan.context);
7417 self.issue_channel_close_events(&chan.context, ClosureReason::DisconnectedPeer);
7420 // Note that we don't bother generating any events for pre-accept channels -
7421 // they're not considered "channels" yet from the PoV of our events interface.
7422 peer_state.inbound_channel_request_by_id.clear();
7423 pending_msg_events.retain(|msg| {
7425 // V1 Channel Establishment
7426 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
7427 &events::MessageSendEvent::SendOpenChannel { .. } => false,
7428 &events::MessageSendEvent::SendFundingCreated { .. } => false,
7429 &events::MessageSendEvent::SendFundingSigned { .. } => false,
7430 // V2 Channel Establishment
7431 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
7432 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
7433 // Common Channel Establishment
7434 &events::MessageSendEvent::SendChannelReady { .. } => false,
7435 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
7436 // Interactive Transaction Construction
7437 &events::MessageSendEvent::SendTxAddInput { .. } => false,
7438 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
7439 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
7440 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
7441 &events::MessageSendEvent::SendTxComplete { .. } => false,
7442 &events::MessageSendEvent::SendTxSignatures { .. } => false,
7443 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
7444 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
7445 &events::MessageSendEvent::SendTxAbort { .. } => false,
7446 // Channel Operations
7447 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
7448 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
7449 &events::MessageSendEvent::SendClosingSigned { .. } => false,
7450 &events::MessageSendEvent::SendShutdown { .. } => false,
7451 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
7452 &events::MessageSendEvent::HandleError { .. } => false,
7454 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
7455 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
7456 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
7457 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
7458 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
7459 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
7460 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
7461 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
7462 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
7465 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
7466 peer_state.is_connected = false;
7467 peer_state.ok_to_remove(true)
7468 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
7471 per_peer_state.remove(counterparty_node_id);
7473 mem::drop(per_peer_state);
7475 for failure in failed_channels.drain(..) {
7476 self.finish_force_close_channel(failure);
7480 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
7481 if !init_msg.features.supports_static_remote_key() {
7482 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
7486 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7488 // If we have too many peers connected which don't have funded channels, disconnect the
7489 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
7490 // unfunded channels taking up space in memory for disconnected peers, we still let new
7491 // peers connect, but we'll reject new channels from them.
7492 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
7493 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
7496 let mut peer_state_lock = self.per_peer_state.write().unwrap();
7497 match peer_state_lock.entry(counterparty_node_id.clone()) {
7498 hash_map::Entry::Vacant(e) => {
7499 if inbound_peer_limited {
7502 e.insert(Mutex::new(PeerState {
7503 channel_by_id: HashMap::new(),
7504 outbound_v1_channel_by_id: HashMap::new(),
7505 inbound_v1_channel_by_id: HashMap::new(),
7506 inbound_channel_request_by_id: HashMap::new(),
7507 latest_features: init_msg.features.clone(),
7508 pending_msg_events: Vec::new(),
7509 in_flight_monitor_updates: BTreeMap::new(),
7510 monitor_update_blocked_actions: BTreeMap::new(),
7511 actions_blocking_raa_monitor_updates: BTreeMap::new(),
7515 hash_map::Entry::Occupied(e) => {
7516 let mut peer_state = e.get().lock().unwrap();
7517 peer_state.latest_features = init_msg.features.clone();
7519 let best_block_height = self.best_block.read().unwrap().height();
7520 if inbound_peer_limited &&
7521 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
7522 peer_state.channel_by_id.len()
7527 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
7528 peer_state.is_connected = true;
7533 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
7535 let per_peer_state = self.per_peer_state.read().unwrap();
7536 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
7537 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7538 let peer_state = &mut *peer_state_lock;
7539 let pending_msg_events = &mut peer_state.pending_msg_events;
7541 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
7542 // (so won't be recovered after a crash) we don't need to bother closing unfunded channels and
7543 // clearing their maps here. Instead we can just send queue channel_reestablish messages for
7544 // channels in the channel_by_id map.
7545 peer_state.channel_by_id.iter_mut().for_each(|(_, chan)| {
7546 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
7547 node_id: chan.context.get_counterparty_node_id(),
7548 msg: chan.get_channel_reestablish(&self.logger),
7552 //TODO: Also re-broadcast announcement_signatures
7556 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
7557 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7559 match &msg.data as &str {
7560 "cannot co-op close channel w/ active htlcs"|
7561 "link failed to shutdown" =>
7563 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
7564 // send one while HTLCs are still present. The issue is tracked at
7565 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
7566 // to fix it but none so far have managed to land upstream. The issue appears to be
7567 // very low priority for the LND team despite being marked "P1".
7568 // We're not going to bother handling this in a sensible way, instead simply
7569 // repeating the Shutdown message on repeat until morale improves.
7570 if msg.channel_id != [0; 32] {
7571 let per_peer_state = self.per_peer_state.read().unwrap();
7572 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
7573 if peer_state_mutex_opt.is_none() { return; }
7574 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
7575 if let Some(chan) = peer_state.channel_by_id.get(&msg.channel_id) {
7576 if let Some(msg) = chan.get_outbound_shutdown() {
7577 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7578 node_id: *counterparty_node_id,
7582 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
7583 node_id: *counterparty_node_id,
7584 action: msgs::ErrorAction::SendWarningMessage {
7585 msg: msgs::WarningMessage {
7586 channel_id: msg.channel_id,
7587 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
7589 log_level: Level::Trace,
7599 if msg.channel_id == [0; 32] {
7600 let channel_ids: Vec<[u8; 32]> = {
7601 let per_peer_state = self.per_peer_state.read().unwrap();
7602 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
7603 if peer_state_mutex_opt.is_none() { return; }
7604 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
7605 let peer_state = &mut *peer_state_lock;
7606 // Note that we don't bother generating any events for pre-accept channels -
7607 // they're not considered "channels" yet from the PoV of our events interface.
7608 peer_state.inbound_channel_request_by_id.clear();
7609 peer_state.channel_by_id.keys().cloned()
7610 .chain(peer_state.outbound_v1_channel_by_id.keys().cloned())
7611 .chain(peer_state.inbound_v1_channel_by_id.keys().cloned()).collect()
7613 for channel_id in channel_ids {
7614 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
7615 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
7619 // First check if we can advance the channel type and try again.
7620 let per_peer_state = self.per_peer_state.read().unwrap();
7621 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
7622 if peer_state_mutex_opt.is_none() { return; }
7623 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
7624 let peer_state = &mut *peer_state_lock;
7625 if let Some(chan) = peer_state.outbound_v1_channel_by_id.get_mut(&msg.channel_id) {
7626 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash, &self.fee_estimator) {
7627 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
7628 node_id: *counterparty_node_id,
7636 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
7637 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
7641 fn provided_node_features(&self) -> NodeFeatures {
7642 provided_node_features(&self.default_configuration)
7645 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
7646 provided_init_features(&self.default_configuration)
7649 fn get_genesis_hashes(&self) -> Option<Vec<ChainHash>> {
7650 Some(vec![ChainHash::from(&self.genesis_hash[..])])
7653 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
7654 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7655 "Dual-funded channels not supported".to_owned(),
7656 msg.channel_id.clone())), *counterparty_node_id);
7659 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
7660 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7661 "Dual-funded channels not supported".to_owned(),
7662 msg.channel_id.clone())), *counterparty_node_id);
7665 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
7666 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7667 "Dual-funded channels not supported".to_owned(),
7668 msg.channel_id.clone())), *counterparty_node_id);
7671 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
7672 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7673 "Dual-funded channels not supported".to_owned(),
7674 msg.channel_id.clone())), *counterparty_node_id);
7677 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
7678 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7679 "Dual-funded channels not supported".to_owned(),
7680 msg.channel_id.clone())), *counterparty_node_id);
7683 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
7684 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7685 "Dual-funded channels not supported".to_owned(),
7686 msg.channel_id.clone())), *counterparty_node_id);
7689 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
7690 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7691 "Dual-funded channels not supported".to_owned(),
7692 msg.channel_id.clone())), *counterparty_node_id);
7695 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
7696 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7697 "Dual-funded channels not supported".to_owned(),
7698 msg.channel_id.clone())), *counterparty_node_id);
7701 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
7702 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7703 "Dual-funded channels not supported".to_owned(),
7704 msg.channel_id.clone())), *counterparty_node_id);
7708 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
7709 /// [`ChannelManager`].
7710 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
7711 let mut node_features = provided_init_features(config).to_context();
7712 node_features.set_keysend_optional();
7716 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
7717 /// [`ChannelManager`].
7719 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
7720 /// or not. Thus, this method is not public.
7721 #[cfg(any(feature = "_test_utils", test))]
7722 pub(crate) fn provided_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
7723 provided_init_features(config).to_context()
7726 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
7727 /// [`ChannelManager`].
7728 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
7729 provided_init_features(config).to_context()
7732 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
7733 /// [`ChannelManager`].
7734 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
7735 ChannelTypeFeatures::from_init(&provided_init_features(config))
7738 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
7739 /// [`ChannelManager`].
7740 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
7741 // Note that if new features are added here which other peers may (eventually) require, we
7742 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
7743 // [`ErroringMessageHandler`].
7744 let mut features = InitFeatures::empty();
7745 features.set_data_loss_protect_required();
7746 features.set_upfront_shutdown_script_optional();
7747 features.set_variable_length_onion_required();
7748 features.set_static_remote_key_required();
7749 features.set_payment_secret_required();
7750 features.set_basic_mpp_optional();
7751 features.set_wumbo_optional();
7752 features.set_shutdown_any_segwit_optional();
7753 features.set_channel_type_optional();
7754 features.set_scid_privacy_optional();
7755 features.set_zero_conf_optional();
7756 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
7757 features.set_anchors_zero_fee_htlc_tx_optional();
7762 const SERIALIZATION_VERSION: u8 = 1;
7763 const MIN_SERIALIZATION_VERSION: u8 = 1;
7765 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
7766 (2, fee_base_msat, required),
7767 (4, fee_proportional_millionths, required),
7768 (6, cltv_expiry_delta, required),
7771 impl_writeable_tlv_based!(ChannelCounterparty, {
7772 (2, node_id, required),
7773 (4, features, required),
7774 (6, unspendable_punishment_reserve, required),
7775 (8, forwarding_info, option),
7776 (9, outbound_htlc_minimum_msat, option),
7777 (11, outbound_htlc_maximum_msat, option),
7780 impl Writeable for ChannelDetails {
7781 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7782 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
7783 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
7784 let user_channel_id_low = self.user_channel_id as u64;
7785 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
7786 write_tlv_fields!(writer, {
7787 (1, self.inbound_scid_alias, option),
7788 (2, self.channel_id, required),
7789 (3, self.channel_type, option),
7790 (4, self.counterparty, required),
7791 (5, self.outbound_scid_alias, option),
7792 (6, self.funding_txo, option),
7793 (7, self.config, option),
7794 (8, self.short_channel_id, option),
7795 (9, self.confirmations, option),
7796 (10, self.channel_value_satoshis, required),
7797 (12, self.unspendable_punishment_reserve, option),
7798 (14, user_channel_id_low, required),
7799 (16, self.next_outbound_htlc_limit_msat, required), // Forwards compatibility for removed balance_msat field.
7800 (18, self.outbound_capacity_msat, required),
7801 (19, self.next_outbound_htlc_limit_msat, required),
7802 (20, self.inbound_capacity_msat, required),
7803 (21, self.next_outbound_htlc_minimum_msat, required),
7804 (22, self.confirmations_required, option),
7805 (24, self.force_close_spend_delay, option),
7806 (26, self.is_outbound, required),
7807 (28, self.is_channel_ready, required),
7808 (30, self.is_usable, required),
7809 (32, self.is_public, required),
7810 (33, self.inbound_htlc_minimum_msat, option),
7811 (35, self.inbound_htlc_maximum_msat, option),
7812 (37, user_channel_id_high_opt, option),
7813 (39, self.feerate_sat_per_1000_weight, option),
7814 (41, self.channel_shutdown_state, option),
7820 impl Readable for ChannelDetails {
7821 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7822 _init_and_read_len_prefixed_tlv_fields!(reader, {
7823 (1, inbound_scid_alias, option),
7824 (2, channel_id, required),
7825 (3, channel_type, option),
7826 (4, counterparty, required),
7827 (5, outbound_scid_alias, option),
7828 (6, funding_txo, option),
7829 (7, config, option),
7830 (8, short_channel_id, option),
7831 (9, confirmations, option),
7832 (10, channel_value_satoshis, required),
7833 (12, unspendable_punishment_reserve, option),
7834 (14, user_channel_id_low, required),
7835 (16, _balance_msat, option), // Backwards compatibility for removed balance_msat field.
7836 (18, outbound_capacity_msat, required),
7837 // Note that by the time we get past the required read above, outbound_capacity_msat will be
7838 // filled in, so we can safely unwrap it here.
7839 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
7840 (20, inbound_capacity_msat, required),
7841 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
7842 (22, confirmations_required, option),
7843 (24, force_close_spend_delay, option),
7844 (26, is_outbound, required),
7845 (28, is_channel_ready, required),
7846 (30, is_usable, required),
7847 (32, is_public, required),
7848 (33, inbound_htlc_minimum_msat, option),
7849 (35, inbound_htlc_maximum_msat, option),
7850 (37, user_channel_id_high_opt, option),
7851 (39, feerate_sat_per_1000_weight, option),
7852 (41, channel_shutdown_state, option),
7855 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
7856 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
7857 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
7858 let user_channel_id = user_channel_id_low as u128 +
7859 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
7861 let _balance_msat: Option<u64> = _balance_msat;
7865 channel_id: channel_id.0.unwrap(),
7867 counterparty: counterparty.0.unwrap(),
7868 outbound_scid_alias,
7872 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
7873 unspendable_punishment_reserve,
7875 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
7876 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
7877 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
7878 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
7879 confirmations_required,
7881 force_close_spend_delay,
7882 is_outbound: is_outbound.0.unwrap(),
7883 is_channel_ready: is_channel_ready.0.unwrap(),
7884 is_usable: is_usable.0.unwrap(),
7885 is_public: is_public.0.unwrap(),
7886 inbound_htlc_minimum_msat,
7887 inbound_htlc_maximum_msat,
7888 feerate_sat_per_1000_weight,
7889 channel_shutdown_state,
7894 impl_writeable_tlv_based!(PhantomRouteHints, {
7895 (2, channels, required_vec),
7896 (4, phantom_scid, required),
7897 (6, real_node_pubkey, required),
7900 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
7902 (0, onion_packet, required),
7903 (2, short_channel_id, required),
7906 (0, payment_data, required),
7907 (1, phantom_shared_secret, option),
7908 (2, incoming_cltv_expiry, required),
7909 (3, payment_metadata, option),
7910 (5, custom_tlvs, optional_vec),
7912 (2, ReceiveKeysend) => {
7913 (0, payment_preimage, required),
7914 (2, incoming_cltv_expiry, required),
7915 (3, payment_metadata, option),
7916 (4, payment_data, option), // Added in 0.0.116
7917 (5, custom_tlvs, optional_vec),
7921 impl_writeable_tlv_based!(PendingHTLCInfo, {
7922 (0, routing, required),
7923 (2, incoming_shared_secret, required),
7924 (4, payment_hash, required),
7925 (6, outgoing_amt_msat, required),
7926 (8, outgoing_cltv_value, required),
7927 (9, incoming_amt_msat, option),
7928 (10, skimmed_fee_msat, option),
7932 impl Writeable for HTLCFailureMsg {
7933 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7935 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
7937 channel_id.write(writer)?;
7938 htlc_id.write(writer)?;
7939 reason.write(writer)?;
7941 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
7942 channel_id, htlc_id, sha256_of_onion, failure_code
7945 channel_id.write(writer)?;
7946 htlc_id.write(writer)?;
7947 sha256_of_onion.write(writer)?;
7948 failure_code.write(writer)?;
7955 impl Readable for HTLCFailureMsg {
7956 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7957 let id: u8 = Readable::read(reader)?;
7960 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
7961 channel_id: Readable::read(reader)?,
7962 htlc_id: Readable::read(reader)?,
7963 reason: Readable::read(reader)?,
7967 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
7968 channel_id: Readable::read(reader)?,
7969 htlc_id: Readable::read(reader)?,
7970 sha256_of_onion: Readable::read(reader)?,
7971 failure_code: Readable::read(reader)?,
7974 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
7975 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
7976 // messages contained in the variants.
7977 // In version 0.0.101, support for reading the variants with these types was added, and
7978 // we should migrate to writing these variants when UpdateFailHTLC or
7979 // UpdateFailMalformedHTLC get TLV fields.
7981 let length: BigSize = Readable::read(reader)?;
7982 let mut s = FixedLengthReader::new(reader, length.0);
7983 let res = Readable::read(&mut s)?;
7984 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
7985 Ok(HTLCFailureMsg::Relay(res))
7988 let length: BigSize = Readable::read(reader)?;
7989 let mut s = FixedLengthReader::new(reader, length.0);
7990 let res = Readable::read(&mut s)?;
7991 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
7992 Ok(HTLCFailureMsg::Malformed(res))
7994 _ => Err(DecodeError::UnknownRequiredFeature),
7999 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
8004 impl_writeable_tlv_based!(HTLCPreviousHopData, {
8005 (0, short_channel_id, required),
8006 (1, phantom_shared_secret, option),
8007 (2, outpoint, required),
8008 (4, htlc_id, required),
8009 (6, incoming_packet_shared_secret, required),
8010 (7, user_channel_id, option),
8013 impl Writeable for ClaimableHTLC {
8014 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8015 let (payment_data, keysend_preimage) = match &self.onion_payload {
8016 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
8017 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
8019 write_tlv_fields!(writer, {
8020 (0, self.prev_hop, required),
8021 (1, self.total_msat, required),
8022 (2, self.value, required),
8023 (3, self.sender_intended_value, required),
8024 (4, payment_data, option),
8025 (5, self.total_value_received, option),
8026 (6, self.cltv_expiry, required),
8027 (8, keysend_preimage, option),
8028 (10, self.counterparty_skimmed_fee_msat, option),
8034 impl Readable for ClaimableHTLC {
8035 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8036 _init_and_read_len_prefixed_tlv_fields!(reader, {
8037 (0, prev_hop, required),
8038 (1, total_msat, option),
8039 (2, value_ser, required),
8040 (3, sender_intended_value, option),
8041 (4, payment_data_opt, option),
8042 (5, total_value_received, option),
8043 (6, cltv_expiry, required),
8044 (8, keysend_preimage, option),
8045 (10, counterparty_skimmed_fee_msat, option),
8047 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
8048 let value = value_ser.0.unwrap();
8049 let onion_payload = match keysend_preimage {
8051 if payment_data.is_some() {
8052 return Err(DecodeError::InvalidValue)
8054 if total_msat.is_none() {
8055 total_msat = Some(value);
8057 OnionPayload::Spontaneous(p)
8060 if total_msat.is_none() {
8061 if payment_data.is_none() {
8062 return Err(DecodeError::InvalidValue)
8064 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
8066 OnionPayload::Invoice { _legacy_hop_data: payment_data }
8070 prev_hop: prev_hop.0.unwrap(),
8073 sender_intended_value: sender_intended_value.unwrap_or(value),
8074 total_value_received,
8075 total_msat: total_msat.unwrap(),
8077 cltv_expiry: cltv_expiry.0.unwrap(),
8078 counterparty_skimmed_fee_msat,
8083 impl Readable for HTLCSource {
8084 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8085 let id: u8 = Readable::read(reader)?;
8088 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
8089 let mut first_hop_htlc_msat: u64 = 0;
8090 let mut path_hops = Vec::new();
8091 let mut payment_id = None;
8092 let mut payment_params: Option<PaymentParameters> = None;
8093 let mut blinded_tail: Option<BlindedTail> = None;
8094 read_tlv_fields!(reader, {
8095 (0, session_priv, required),
8096 (1, payment_id, option),
8097 (2, first_hop_htlc_msat, required),
8098 (4, path_hops, required_vec),
8099 (5, payment_params, (option: ReadableArgs, 0)),
8100 (6, blinded_tail, option),
8102 if payment_id.is_none() {
8103 // For backwards compat, if there was no payment_id written, use the session_priv bytes
8105 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
8107 let path = Path { hops: path_hops, blinded_tail };
8108 if path.hops.len() == 0 {
8109 return Err(DecodeError::InvalidValue);
8111 if let Some(params) = payment_params.as_mut() {
8112 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
8113 if final_cltv_expiry_delta == &0 {
8114 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
8118 Ok(HTLCSource::OutboundRoute {
8119 session_priv: session_priv.0.unwrap(),
8120 first_hop_htlc_msat,
8122 payment_id: payment_id.unwrap(),
8125 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
8126 _ => Err(DecodeError::UnknownRequiredFeature),
8131 impl Writeable for HTLCSource {
8132 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
8134 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
8136 let payment_id_opt = Some(payment_id);
8137 write_tlv_fields!(writer, {
8138 (0, session_priv, required),
8139 (1, payment_id_opt, option),
8140 (2, first_hop_htlc_msat, required),
8141 // 3 was previously used to write a PaymentSecret for the payment.
8142 (4, path.hops, required_vec),
8143 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
8144 (6, path.blinded_tail, option),
8147 HTLCSource::PreviousHopData(ref field) => {
8149 field.write(writer)?;
8156 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
8157 (0, forward_info, required),
8158 (1, prev_user_channel_id, (default_value, 0)),
8159 (2, prev_short_channel_id, required),
8160 (4, prev_htlc_id, required),
8161 (6, prev_funding_outpoint, required),
8164 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
8166 (0, htlc_id, required),
8167 (2, err_packet, required),
8172 impl_writeable_tlv_based!(PendingInboundPayment, {
8173 (0, payment_secret, required),
8174 (2, expiry_time, required),
8175 (4, user_payment_id, required),
8176 (6, payment_preimage, required),
8177 (8, min_value_msat, required),
8180 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
8182 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8183 T::Target: BroadcasterInterface,
8184 ES::Target: EntropySource,
8185 NS::Target: NodeSigner,
8186 SP::Target: SignerProvider,
8187 F::Target: FeeEstimator,
8191 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8192 let _consistency_lock = self.total_consistency_lock.write().unwrap();
8194 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
8196 self.genesis_hash.write(writer)?;
8198 let best_block = self.best_block.read().unwrap();
8199 best_block.height().write(writer)?;
8200 best_block.block_hash().write(writer)?;
8203 let mut serializable_peer_count: u64 = 0;
8205 let per_peer_state = self.per_peer_state.read().unwrap();
8206 let mut unfunded_channels = 0;
8207 let mut number_of_channels = 0;
8208 for (_, peer_state_mutex) in per_peer_state.iter() {
8209 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8210 let peer_state = &mut *peer_state_lock;
8211 if !peer_state.ok_to_remove(false) {
8212 serializable_peer_count += 1;
8214 number_of_channels += peer_state.channel_by_id.len();
8215 for (_, channel) in peer_state.channel_by_id.iter() {
8216 if !channel.context.is_funding_initiated() {
8217 unfunded_channels += 1;
8222 ((number_of_channels - unfunded_channels) as u64).write(writer)?;
8224 for (_, peer_state_mutex) in per_peer_state.iter() {
8225 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8226 let peer_state = &mut *peer_state_lock;
8227 for (_, channel) in peer_state.channel_by_id.iter() {
8228 if channel.context.is_funding_initiated() {
8229 channel.write(writer)?;
8236 let forward_htlcs = self.forward_htlcs.lock().unwrap();
8237 (forward_htlcs.len() as u64).write(writer)?;
8238 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
8239 short_channel_id.write(writer)?;
8240 (pending_forwards.len() as u64).write(writer)?;
8241 for forward in pending_forwards {
8242 forward.write(writer)?;
8247 let per_peer_state = self.per_peer_state.write().unwrap();
8249 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
8250 let claimable_payments = self.claimable_payments.lock().unwrap();
8251 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
8253 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
8254 let mut htlc_onion_fields: Vec<&_> = Vec::new();
8255 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
8256 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
8257 payment_hash.write(writer)?;
8258 (payment.htlcs.len() as u64).write(writer)?;
8259 for htlc in payment.htlcs.iter() {
8260 htlc.write(writer)?;
8262 htlc_purposes.push(&payment.purpose);
8263 htlc_onion_fields.push(&payment.onion_fields);
8266 let mut monitor_update_blocked_actions_per_peer = None;
8267 let mut peer_states = Vec::new();
8268 for (_, peer_state_mutex) in per_peer_state.iter() {
8269 // Because we're holding the owning `per_peer_state` write lock here there's no chance
8270 // of a lockorder violation deadlock - no other thread can be holding any
8271 // per_peer_state lock at all.
8272 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
8275 (serializable_peer_count).write(writer)?;
8276 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
8277 // Peers which we have no channels to should be dropped once disconnected. As we
8278 // disconnect all peers when shutting down and serializing the ChannelManager, we
8279 // consider all peers as disconnected here. There's therefore no need write peers with
8281 if !peer_state.ok_to_remove(false) {
8282 peer_pubkey.write(writer)?;
8283 peer_state.latest_features.write(writer)?;
8284 if !peer_state.monitor_update_blocked_actions.is_empty() {
8285 monitor_update_blocked_actions_per_peer
8286 .get_or_insert_with(Vec::new)
8287 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
8292 let events = self.pending_events.lock().unwrap();
8293 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
8294 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
8295 // refuse to read the new ChannelManager.
8296 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
8297 if events_not_backwards_compatible {
8298 // If we're gonna write a even TLV that will overwrite our events anyway we might as
8299 // well save the space and not write any events here.
8300 0u64.write(writer)?;
8302 (events.len() as u64).write(writer)?;
8303 for (event, _) in events.iter() {
8304 event.write(writer)?;
8308 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
8309 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
8310 // the closing monitor updates were always effectively replayed on startup (either directly
8311 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
8312 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
8313 0u64.write(writer)?;
8315 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
8316 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
8317 // likely to be identical.
8318 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
8319 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
8321 (pending_inbound_payments.len() as u64).write(writer)?;
8322 for (hash, pending_payment) in pending_inbound_payments.iter() {
8323 hash.write(writer)?;
8324 pending_payment.write(writer)?;
8327 // For backwards compat, write the session privs and their total length.
8328 let mut num_pending_outbounds_compat: u64 = 0;
8329 for (_, outbound) in pending_outbound_payments.iter() {
8330 if !outbound.is_fulfilled() && !outbound.abandoned() {
8331 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
8334 num_pending_outbounds_compat.write(writer)?;
8335 for (_, outbound) in pending_outbound_payments.iter() {
8337 PendingOutboundPayment::Legacy { session_privs } |
8338 PendingOutboundPayment::Retryable { session_privs, .. } => {
8339 for session_priv in session_privs.iter() {
8340 session_priv.write(writer)?;
8343 PendingOutboundPayment::Fulfilled { .. } => {},
8344 PendingOutboundPayment::Abandoned { .. } => {},
8348 // Encode without retry info for 0.0.101 compatibility.
8349 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
8350 for (id, outbound) in pending_outbound_payments.iter() {
8352 PendingOutboundPayment::Legacy { session_privs } |
8353 PendingOutboundPayment::Retryable { session_privs, .. } => {
8354 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
8360 let mut pending_intercepted_htlcs = None;
8361 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
8362 if our_pending_intercepts.len() != 0 {
8363 pending_intercepted_htlcs = Some(our_pending_intercepts);
8366 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
8367 if pending_claiming_payments.as_ref().unwrap().is_empty() {
8368 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
8369 // map. Thus, if there are no entries we skip writing a TLV for it.
8370 pending_claiming_payments = None;
8373 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
8374 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
8375 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
8376 if !updates.is_empty() {
8377 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
8378 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
8383 write_tlv_fields!(writer, {
8384 (1, pending_outbound_payments_no_retry, required),
8385 (2, pending_intercepted_htlcs, option),
8386 (3, pending_outbound_payments, required),
8387 (4, pending_claiming_payments, option),
8388 (5, self.our_network_pubkey, required),
8389 (6, monitor_update_blocked_actions_per_peer, option),
8390 (7, self.fake_scid_rand_bytes, required),
8391 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
8392 (9, htlc_purposes, required_vec),
8393 (10, in_flight_monitor_updates, option),
8394 (11, self.probing_cookie_secret, required),
8395 (13, htlc_onion_fields, optional_vec),
8402 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
8403 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
8404 (self.len() as u64).write(w)?;
8405 for (event, action) in self.iter() {
8408 #[cfg(debug_assertions)] {
8409 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
8410 // be persisted and are regenerated on restart. However, if such an event has a
8411 // post-event-handling action we'll write nothing for the event and would have to
8412 // either forget the action or fail on deserialization (which we do below). Thus,
8413 // check that the event is sane here.
8414 let event_encoded = event.encode();
8415 let event_read: Option<Event> =
8416 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
8417 if action.is_some() { assert!(event_read.is_some()); }
8423 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
8424 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8425 let len: u64 = Readable::read(reader)?;
8426 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
8427 let mut events: Self = VecDeque::with_capacity(cmp::min(
8428 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
8431 let ev_opt = MaybeReadable::read(reader)?;
8432 let action = Readable::read(reader)?;
8433 if let Some(ev) = ev_opt {
8434 events.push_back((ev, action));
8435 } else if action.is_some() {
8436 return Err(DecodeError::InvalidValue);
8443 impl_writeable_tlv_based_enum!(ChannelShutdownState,
8444 (0, NotShuttingDown) => {},
8445 (2, ShutdownInitiated) => {},
8446 (4, ResolvingHTLCs) => {},
8447 (6, NegotiatingClosingFee) => {},
8448 (8, ShutdownComplete) => {}, ;
8451 /// Arguments for the creation of a ChannelManager that are not deserialized.
8453 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
8455 /// 1) Deserialize all stored [`ChannelMonitor`]s.
8456 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
8457 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
8458 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
8459 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
8460 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
8461 /// same way you would handle a [`chain::Filter`] call using
8462 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
8463 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
8464 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
8465 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
8466 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
8467 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
8469 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
8470 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
8472 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
8473 /// call any other methods on the newly-deserialized [`ChannelManager`].
8475 /// Note that because some channels may be closed during deserialization, it is critical that you
8476 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
8477 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
8478 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
8479 /// not force-close the same channels but consider them live), you may end up revoking a state for
8480 /// which you've already broadcasted the transaction.
8482 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
8483 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8485 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8486 T::Target: BroadcasterInterface,
8487 ES::Target: EntropySource,
8488 NS::Target: NodeSigner,
8489 SP::Target: SignerProvider,
8490 F::Target: FeeEstimator,
8494 /// A cryptographically secure source of entropy.
8495 pub entropy_source: ES,
8497 /// A signer that is able to perform node-scoped cryptographic operations.
8498 pub node_signer: NS,
8500 /// The keys provider which will give us relevant keys. Some keys will be loaded during
8501 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
8503 pub signer_provider: SP,
8505 /// The fee_estimator for use in the ChannelManager in the future.
8507 /// No calls to the FeeEstimator will be made during deserialization.
8508 pub fee_estimator: F,
8509 /// The chain::Watch for use in the ChannelManager in the future.
8511 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
8512 /// you have deserialized ChannelMonitors separately and will add them to your
8513 /// chain::Watch after deserializing this ChannelManager.
8514 pub chain_monitor: M,
8516 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
8517 /// used to broadcast the latest local commitment transactions of channels which must be
8518 /// force-closed during deserialization.
8519 pub tx_broadcaster: T,
8520 /// The router which will be used in the ChannelManager in the future for finding routes
8521 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
8523 /// No calls to the router will be made during deserialization.
8525 /// The Logger for use in the ChannelManager and which may be used to log information during
8526 /// deserialization.
8528 /// Default settings used for new channels. Any existing channels will continue to use the
8529 /// runtime settings which were stored when the ChannelManager was serialized.
8530 pub default_config: UserConfig,
8532 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
8533 /// value.context.get_funding_txo() should be the key).
8535 /// If a monitor is inconsistent with the channel state during deserialization the channel will
8536 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
8537 /// is true for missing channels as well. If there is a monitor missing for which we find
8538 /// channel data Err(DecodeError::InvalidValue) will be returned.
8540 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
8543 /// This is not exported to bindings users because we have no HashMap bindings
8544 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
8547 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8548 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
8550 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8551 T::Target: BroadcasterInterface,
8552 ES::Target: EntropySource,
8553 NS::Target: NodeSigner,
8554 SP::Target: SignerProvider,
8555 F::Target: FeeEstimator,
8559 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
8560 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
8561 /// populate a HashMap directly from C.
8562 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
8563 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
8565 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
8566 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
8571 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
8572 // SipmleArcChannelManager type:
8573 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8574 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
8576 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8577 T::Target: BroadcasterInterface,
8578 ES::Target: EntropySource,
8579 NS::Target: NodeSigner,
8580 SP::Target: SignerProvider,
8581 F::Target: FeeEstimator,
8585 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
8586 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
8587 Ok((blockhash, Arc::new(chan_manager)))
8591 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8592 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
8594 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8595 T::Target: BroadcasterInterface,
8596 ES::Target: EntropySource,
8597 NS::Target: NodeSigner,
8598 SP::Target: SignerProvider,
8599 F::Target: FeeEstimator,
8603 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
8604 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
8606 let genesis_hash: BlockHash = Readable::read(reader)?;
8607 let best_block_height: u32 = Readable::read(reader)?;
8608 let best_block_hash: BlockHash = Readable::read(reader)?;
8610 let mut failed_htlcs = Vec::new();
8612 let channel_count: u64 = Readable::read(reader)?;
8613 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
8614 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
8615 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
8616 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
8617 let mut channel_closures = VecDeque::new();
8618 let mut close_background_events = Vec::new();
8619 for _ in 0..channel_count {
8620 let mut channel: Channel<SP> = Channel::read(reader, (
8621 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
8623 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
8624 funding_txo_set.insert(funding_txo.clone());
8625 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
8626 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
8627 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
8628 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
8629 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
8630 // But if the channel is behind of the monitor, close the channel:
8631 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
8632 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
8633 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
8634 log_bytes!(channel.context.channel_id()), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
8635 let (monitor_update, mut new_failed_htlcs) = channel.context.force_shutdown(true);
8636 if let Some((counterparty_node_id, funding_txo, update)) = monitor_update {
8637 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8638 counterparty_node_id, funding_txo, update
8641 failed_htlcs.append(&mut new_failed_htlcs);
8642 channel_closures.push_back((events::Event::ChannelClosed {
8643 channel_id: channel.context.channel_id(),
8644 user_channel_id: channel.context.get_user_id(),
8645 reason: ClosureReason::OutdatedChannelManager,
8646 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
8647 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
8649 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
8650 let mut found_htlc = false;
8651 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
8652 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
8655 // If we have some HTLCs in the channel which are not present in the newer
8656 // ChannelMonitor, they have been removed and should be failed back to
8657 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
8658 // were actually claimed we'd have generated and ensured the previous-hop
8659 // claim update ChannelMonitor updates were persisted prior to persising
8660 // the ChannelMonitor update for the forward leg, so attempting to fail the
8661 // backwards leg of the HTLC will simply be rejected.
8662 log_info!(args.logger,
8663 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
8664 log_bytes!(channel.context.channel_id()), &payment_hash);
8665 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8669 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
8670 log_bytes!(channel.context.channel_id()), channel.context.get_latest_monitor_update_id(),
8671 monitor.get_latest_update_id());
8672 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
8673 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8675 if channel.context.is_funding_initiated() {
8676 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
8678 match peer_channels.entry(channel.context.get_counterparty_node_id()) {
8679 hash_map::Entry::Occupied(mut entry) => {
8680 let by_id_map = entry.get_mut();
8681 by_id_map.insert(channel.context.channel_id(), channel);
8683 hash_map::Entry::Vacant(entry) => {
8684 let mut by_id_map = HashMap::new();
8685 by_id_map.insert(channel.context.channel_id(), channel);
8686 entry.insert(by_id_map);
8690 } else if channel.is_awaiting_initial_mon_persist() {
8691 // If we were persisted and shut down while the initial ChannelMonitor persistence
8692 // was in-progress, we never broadcasted the funding transaction and can still
8693 // safely discard the channel.
8694 let _ = channel.context.force_shutdown(false);
8695 channel_closures.push_back((events::Event::ChannelClosed {
8696 channel_id: channel.context.channel_id(),
8697 user_channel_id: channel.context.get_user_id(),
8698 reason: ClosureReason::DisconnectedPeer,
8699 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
8700 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
8703 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.context.channel_id()));
8704 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
8705 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
8706 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
8707 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
8708 return Err(DecodeError::InvalidValue);
8712 for (funding_txo, _) in args.channel_monitors.iter() {
8713 if !funding_txo_set.contains(funding_txo) {
8714 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
8715 log_bytes!(funding_txo.to_channel_id()));
8716 let monitor_update = ChannelMonitorUpdate {
8717 update_id: CLOSED_CHANNEL_UPDATE_ID,
8718 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
8720 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
8724 const MAX_ALLOC_SIZE: usize = 1024 * 64;
8725 let forward_htlcs_count: u64 = Readable::read(reader)?;
8726 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
8727 for _ in 0..forward_htlcs_count {
8728 let short_channel_id = Readable::read(reader)?;
8729 let pending_forwards_count: u64 = Readable::read(reader)?;
8730 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
8731 for _ in 0..pending_forwards_count {
8732 pending_forwards.push(Readable::read(reader)?);
8734 forward_htlcs.insert(short_channel_id, pending_forwards);
8737 let claimable_htlcs_count: u64 = Readable::read(reader)?;
8738 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
8739 for _ in 0..claimable_htlcs_count {
8740 let payment_hash = Readable::read(reader)?;
8741 let previous_hops_len: u64 = Readable::read(reader)?;
8742 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
8743 for _ in 0..previous_hops_len {
8744 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
8746 claimable_htlcs_list.push((payment_hash, previous_hops));
8749 let peer_state_from_chans = |channel_by_id| {
8752 outbound_v1_channel_by_id: HashMap::new(),
8753 inbound_v1_channel_by_id: HashMap::new(),
8754 inbound_channel_request_by_id: HashMap::new(),
8755 latest_features: InitFeatures::empty(),
8756 pending_msg_events: Vec::new(),
8757 in_flight_monitor_updates: BTreeMap::new(),
8758 monitor_update_blocked_actions: BTreeMap::new(),
8759 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8760 is_connected: false,
8764 let peer_count: u64 = Readable::read(reader)?;
8765 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
8766 for _ in 0..peer_count {
8767 let peer_pubkey = Readable::read(reader)?;
8768 let peer_chans = peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
8769 let mut peer_state = peer_state_from_chans(peer_chans);
8770 peer_state.latest_features = Readable::read(reader)?;
8771 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
8774 let event_count: u64 = Readable::read(reader)?;
8775 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
8776 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
8777 for _ in 0..event_count {
8778 match MaybeReadable::read(reader)? {
8779 Some(event) => pending_events_read.push_back((event, None)),
8784 let background_event_count: u64 = Readable::read(reader)?;
8785 for _ in 0..background_event_count {
8786 match <u8 as Readable>::read(reader)? {
8788 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
8789 // however we really don't (and never did) need them - we regenerate all
8790 // on-startup monitor updates.
8791 let _: OutPoint = Readable::read(reader)?;
8792 let _: ChannelMonitorUpdate = Readable::read(reader)?;
8794 _ => return Err(DecodeError::InvalidValue),
8798 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
8799 let highest_seen_timestamp: u32 = Readable::read(reader)?;
8801 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
8802 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
8803 for _ in 0..pending_inbound_payment_count {
8804 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
8805 return Err(DecodeError::InvalidValue);
8809 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
8810 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
8811 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
8812 for _ in 0..pending_outbound_payments_count_compat {
8813 let session_priv = Readable::read(reader)?;
8814 let payment = PendingOutboundPayment::Legacy {
8815 session_privs: [session_priv].iter().cloned().collect()
8817 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
8818 return Err(DecodeError::InvalidValue)
8822 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
8823 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
8824 let mut pending_outbound_payments = None;
8825 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
8826 let mut received_network_pubkey: Option<PublicKey> = None;
8827 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
8828 let mut probing_cookie_secret: Option<[u8; 32]> = None;
8829 let mut claimable_htlc_purposes = None;
8830 let mut claimable_htlc_onion_fields = None;
8831 let mut pending_claiming_payments = Some(HashMap::new());
8832 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
8833 let mut events_override = None;
8834 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
8835 read_tlv_fields!(reader, {
8836 (1, pending_outbound_payments_no_retry, option),
8837 (2, pending_intercepted_htlcs, option),
8838 (3, pending_outbound_payments, option),
8839 (4, pending_claiming_payments, option),
8840 (5, received_network_pubkey, option),
8841 (6, monitor_update_blocked_actions_per_peer, option),
8842 (7, fake_scid_rand_bytes, option),
8843 (8, events_override, option),
8844 (9, claimable_htlc_purposes, optional_vec),
8845 (10, in_flight_monitor_updates, option),
8846 (11, probing_cookie_secret, option),
8847 (13, claimable_htlc_onion_fields, optional_vec),
8849 if fake_scid_rand_bytes.is_none() {
8850 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
8853 if probing_cookie_secret.is_none() {
8854 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
8857 if let Some(events) = events_override {
8858 pending_events_read = events;
8861 if !channel_closures.is_empty() {
8862 pending_events_read.append(&mut channel_closures);
8865 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
8866 pending_outbound_payments = Some(pending_outbound_payments_compat);
8867 } else if pending_outbound_payments.is_none() {
8868 let mut outbounds = HashMap::new();
8869 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
8870 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
8872 pending_outbound_payments = Some(outbounds);
8874 let pending_outbounds = OutboundPayments {
8875 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
8876 retry_lock: Mutex::new(())
8879 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
8880 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
8881 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
8882 // replayed, and for each monitor update we have to replay we have to ensure there's a
8883 // `ChannelMonitor` for it.
8885 // In order to do so we first walk all of our live channels (so that we can check their
8886 // state immediately after doing the update replays, when we have the `update_id`s
8887 // available) and then walk any remaining in-flight updates.
8889 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
8890 let mut pending_background_events = Vec::new();
8891 macro_rules! handle_in_flight_updates {
8892 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
8893 $monitor: expr, $peer_state: expr, $channel_info_log: expr
8895 let mut max_in_flight_update_id = 0;
8896 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
8897 for update in $chan_in_flight_upds.iter() {
8898 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
8899 update.update_id, $channel_info_log, log_bytes!($funding_txo.to_channel_id()));
8900 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
8901 pending_background_events.push(
8902 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8903 counterparty_node_id: $counterparty_node_id,
8904 funding_txo: $funding_txo,
8905 update: update.clone(),
8908 if $chan_in_flight_upds.is_empty() {
8909 // We had some updates to apply, but it turns out they had completed before we
8910 // were serialized, we just weren't notified of that. Thus, we may have to run
8911 // the completion actions for any monitor updates, but otherwise are done.
8912 pending_background_events.push(
8913 BackgroundEvent::MonitorUpdatesComplete {
8914 counterparty_node_id: $counterparty_node_id,
8915 channel_id: $funding_txo.to_channel_id(),
8918 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
8919 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
8920 return Err(DecodeError::InvalidValue);
8922 max_in_flight_update_id
8926 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
8927 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
8928 let peer_state = &mut *peer_state_lock;
8929 for (_, chan) in peer_state.channel_by_id.iter() {
8930 // Channels that were persisted have to be funded, otherwise they should have been
8932 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
8933 let monitor = args.channel_monitors.get(&funding_txo)
8934 .expect("We already checked for monitor presence when loading channels");
8935 let mut max_in_flight_update_id = monitor.get_latest_update_id();
8936 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
8937 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
8938 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
8939 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
8940 funding_txo, monitor, peer_state, ""));
8943 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
8944 // If the channel is ahead of the monitor, return InvalidValue:
8945 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
8946 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
8947 log_bytes!(chan.context.channel_id()), monitor.get_latest_update_id(), max_in_flight_update_id);
8948 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
8949 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
8950 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
8951 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
8952 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
8953 return Err(DecodeError::InvalidValue);
8958 if let Some(in_flight_upds) = in_flight_monitor_updates {
8959 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
8960 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
8961 // Now that we've removed all the in-flight monitor updates for channels that are
8962 // still open, we need to replay any monitor updates that are for closed channels,
8963 // creating the neccessary peer_state entries as we go.
8964 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
8965 Mutex::new(peer_state_from_chans(HashMap::new()))
8967 let mut peer_state = peer_state_mutex.lock().unwrap();
8968 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
8969 funding_txo, monitor, peer_state, "closed ");
8971 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
8972 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
8973 log_bytes!(funding_txo.to_channel_id()));
8974 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
8975 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
8976 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
8977 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
8978 return Err(DecodeError::InvalidValue);
8983 // Note that we have to do the above replays before we push new monitor updates.
8984 pending_background_events.append(&mut close_background_events);
8986 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
8987 // should ensure we try them again on the inbound edge. We put them here and do so after we
8988 // have a fully-constructed `ChannelManager` at the end.
8989 let mut pending_claims_to_replay = Vec::new();
8992 // If we're tracking pending payments, ensure we haven't lost any by looking at the
8993 // ChannelMonitor data for any channels for which we do not have authorative state
8994 // (i.e. those for which we just force-closed above or we otherwise don't have a
8995 // corresponding `Channel` at all).
8996 // This avoids several edge-cases where we would otherwise "forget" about pending
8997 // payments which are still in-flight via their on-chain state.
8998 // We only rebuild the pending payments map if we were most recently serialized by
9000 for (_, monitor) in args.channel_monitors.iter() {
9001 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
9002 if counterparty_opt.is_none() {
9003 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
9004 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
9005 if path.hops.is_empty() {
9006 log_error!(args.logger, "Got an empty path for a pending payment");
9007 return Err(DecodeError::InvalidValue);
9010 let path_amt = path.final_value_msat();
9011 let mut session_priv_bytes = [0; 32];
9012 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
9013 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
9014 hash_map::Entry::Occupied(mut entry) => {
9015 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
9016 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
9017 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
9019 hash_map::Entry::Vacant(entry) => {
9020 let path_fee = path.fee_msat();
9021 entry.insert(PendingOutboundPayment::Retryable {
9022 retry_strategy: None,
9023 attempts: PaymentAttempts::new(),
9024 payment_params: None,
9025 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
9026 payment_hash: htlc.payment_hash,
9027 payment_secret: None, // only used for retries, and we'll never retry on startup
9028 payment_metadata: None, // only used for retries, and we'll never retry on startup
9029 keysend_preimage: None, // only used for retries, and we'll never retry on startup
9030 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
9031 pending_amt_msat: path_amt,
9032 pending_fee_msat: Some(path_fee),
9033 total_msat: path_amt,
9034 starting_block_height: best_block_height,
9036 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
9037 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
9042 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
9044 HTLCSource::PreviousHopData(prev_hop_data) => {
9045 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
9046 info.prev_funding_outpoint == prev_hop_data.outpoint &&
9047 info.prev_htlc_id == prev_hop_data.htlc_id
9049 // The ChannelMonitor is now responsible for this HTLC's
9050 // failure/success and will let us know what its outcome is. If we
9051 // still have an entry for this HTLC in `forward_htlcs` or
9052 // `pending_intercepted_htlcs`, we were apparently not persisted after
9053 // the monitor was when forwarding the payment.
9054 forward_htlcs.retain(|_, forwards| {
9055 forwards.retain(|forward| {
9056 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
9057 if pending_forward_matches_htlc(&htlc_info) {
9058 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
9059 &htlc.payment_hash, log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
9064 !forwards.is_empty()
9066 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
9067 if pending_forward_matches_htlc(&htlc_info) {
9068 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
9069 &htlc.payment_hash, log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
9070 pending_events_read.retain(|(event, _)| {
9071 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
9072 intercepted_id != ev_id
9079 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
9080 if let Some(preimage) = preimage_opt {
9081 let pending_events = Mutex::new(pending_events_read);
9082 // Note that we set `from_onchain` to "false" here,
9083 // deliberately keeping the pending payment around forever.
9084 // Given it should only occur when we have a channel we're
9085 // force-closing for being stale that's okay.
9086 // The alternative would be to wipe the state when claiming,
9087 // generating a `PaymentPathSuccessful` event but regenerating
9088 // it and the `PaymentSent` on every restart until the
9089 // `ChannelMonitor` is removed.
9091 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9092 channel_funding_outpoint: monitor.get_funding_txo().0,
9093 counterparty_node_id: path.hops[0].pubkey,
9095 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
9096 path, false, compl_action, &pending_events, &args.logger);
9097 pending_events_read = pending_events.into_inner().unwrap();
9104 // Whether the downstream channel was closed or not, try to re-apply any payment
9105 // preimages from it which may be needed in upstream channels for forwarded
9107 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
9109 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
9110 if let HTLCSource::PreviousHopData(_) = htlc_source {
9111 if let Some(payment_preimage) = preimage_opt {
9112 Some((htlc_source, payment_preimage, htlc.amount_msat,
9113 // Check if `counterparty_opt.is_none()` to see if the
9114 // downstream chan is closed (because we don't have a
9115 // channel_id -> peer map entry).
9116 counterparty_opt.is_none(),
9117 monitor.get_funding_txo().0))
9120 // If it was an outbound payment, we've handled it above - if a preimage
9121 // came in and we persisted the `ChannelManager` we either handled it and
9122 // are good to go or the channel force-closed - we don't have to handle the
9123 // channel still live case here.
9127 for tuple in outbound_claimed_htlcs_iter {
9128 pending_claims_to_replay.push(tuple);
9133 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
9134 // If we have pending HTLCs to forward, assume we either dropped a
9135 // `PendingHTLCsForwardable` or the user received it but never processed it as they
9136 // shut down before the timer hit. Either way, set the time_forwardable to a small
9137 // constant as enough time has likely passed that we should simply handle the forwards
9138 // now, or at least after the user gets a chance to reconnect to our peers.
9139 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
9140 time_forwardable: Duration::from_secs(2),
9144 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
9145 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
9147 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
9148 if let Some(purposes) = claimable_htlc_purposes {
9149 if purposes.len() != claimable_htlcs_list.len() {
9150 return Err(DecodeError::InvalidValue);
9152 if let Some(onion_fields) = claimable_htlc_onion_fields {
9153 if onion_fields.len() != claimable_htlcs_list.len() {
9154 return Err(DecodeError::InvalidValue);
9156 for (purpose, (onion, (payment_hash, htlcs))) in
9157 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
9159 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9160 purpose, htlcs, onion_fields: onion,
9162 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9165 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
9166 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9167 purpose, htlcs, onion_fields: None,
9169 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9173 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
9174 // include a `_legacy_hop_data` in the `OnionPayload`.
9175 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
9176 if htlcs.is_empty() {
9177 return Err(DecodeError::InvalidValue);
9179 let purpose = match &htlcs[0].onion_payload {
9180 OnionPayload::Invoice { _legacy_hop_data } => {
9181 if let Some(hop_data) = _legacy_hop_data {
9182 events::PaymentPurpose::InvoicePayment {
9183 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
9184 Some(inbound_payment) => inbound_payment.payment_preimage,
9185 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
9186 Ok((payment_preimage, _)) => payment_preimage,
9188 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
9189 return Err(DecodeError::InvalidValue);
9193 payment_secret: hop_data.payment_secret,
9195 } else { return Err(DecodeError::InvalidValue); }
9197 OnionPayload::Spontaneous(payment_preimage) =>
9198 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
9200 claimable_payments.insert(payment_hash, ClaimablePayment {
9201 purpose, htlcs, onion_fields: None,
9206 let mut secp_ctx = Secp256k1::new();
9207 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
9209 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
9211 Err(()) => return Err(DecodeError::InvalidValue)
9213 if let Some(network_pubkey) = received_network_pubkey {
9214 if network_pubkey != our_network_pubkey {
9215 log_error!(args.logger, "Key that was generated does not match the existing key.");
9216 return Err(DecodeError::InvalidValue);
9220 let mut outbound_scid_aliases = HashSet::new();
9221 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
9222 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9223 let peer_state = &mut *peer_state_lock;
9224 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
9225 if chan.context.outbound_scid_alias() == 0 {
9226 let mut outbound_scid_alias;
9228 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
9229 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
9230 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
9232 chan.context.set_outbound_scid_alias(outbound_scid_alias);
9233 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
9234 // Note that in rare cases its possible to hit this while reading an older
9235 // channel if we just happened to pick a colliding outbound alias above.
9236 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
9237 return Err(DecodeError::InvalidValue);
9239 if chan.context.is_usable() {
9240 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
9241 // Note that in rare cases its possible to hit this while reading an older
9242 // channel if we just happened to pick a colliding outbound alias above.
9243 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
9244 return Err(DecodeError::InvalidValue);
9250 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
9252 for (_, monitor) in args.channel_monitors.iter() {
9253 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
9254 if let Some(payment) = claimable_payments.remove(&payment_hash) {
9255 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
9256 let mut claimable_amt_msat = 0;
9257 let mut receiver_node_id = Some(our_network_pubkey);
9258 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
9259 if phantom_shared_secret.is_some() {
9260 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
9261 .expect("Failed to get node_id for phantom node recipient");
9262 receiver_node_id = Some(phantom_pubkey)
9264 for claimable_htlc in &payment.htlcs {
9265 claimable_amt_msat += claimable_htlc.value;
9267 // Add a holding-cell claim of the payment to the Channel, which should be
9268 // applied ~immediately on peer reconnection. Because it won't generate a
9269 // new commitment transaction we can just provide the payment preimage to
9270 // the corresponding ChannelMonitor and nothing else.
9272 // We do so directly instead of via the normal ChannelMonitor update
9273 // procedure as the ChainMonitor hasn't yet been initialized, implying
9274 // we're not allowed to call it directly yet. Further, we do the update
9275 // without incrementing the ChannelMonitor update ID as there isn't any
9277 // If we were to generate a new ChannelMonitor update ID here and then
9278 // crash before the user finishes block connect we'd end up force-closing
9279 // this channel as well. On the flip side, there's no harm in restarting
9280 // without the new monitor persisted - we'll end up right back here on
9282 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
9283 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
9284 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
9285 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9286 let peer_state = &mut *peer_state_lock;
9287 if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
9288 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
9291 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
9292 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
9295 pending_events_read.push_back((events::Event::PaymentClaimed {
9298 purpose: payment.purpose,
9299 amount_msat: claimable_amt_msat,
9300 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
9301 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
9307 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
9308 if let Some(peer_state) = per_peer_state.get(&node_id) {
9309 for (_, actions) in monitor_update_blocked_actions.iter() {
9310 for action in actions.iter() {
9311 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
9312 downstream_counterparty_and_funding_outpoint:
9313 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
9315 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
9316 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
9317 .entry(blocked_channel_outpoint.to_channel_id())
9318 .or_insert_with(Vec::new).push(blocking_action.clone());
9320 // If the channel we were blocking has closed, we don't need to
9321 // worry about it - the blocked monitor update should never have
9322 // been released from the `Channel` object so it can't have
9323 // completed, and if the channel closed there's no reason to bother
9329 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
9331 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
9332 return Err(DecodeError::InvalidValue);
9336 let channel_manager = ChannelManager {
9338 fee_estimator: bounded_fee_estimator,
9339 chain_monitor: args.chain_monitor,
9340 tx_broadcaster: args.tx_broadcaster,
9341 router: args.router,
9343 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
9345 inbound_payment_key: expanded_inbound_key,
9346 pending_inbound_payments: Mutex::new(pending_inbound_payments),
9347 pending_outbound_payments: pending_outbounds,
9348 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
9350 forward_htlcs: Mutex::new(forward_htlcs),
9351 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
9352 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
9353 id_to_peer: Mutex::new(id_to_peer),
9354 short_to_chan_info: FairRwLock::new(short_to_chan_info),
9355 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
9357 probing_cookie_secret: probing_cookie_secret.unwrap(),
9362 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
9364 per_peer_state: FairRwLock::new(per_peer_state),
9366 pending_events: Mutex::new(pending_events_read),
9367 pending_events_processor: AtomicBool::new(false),
9368 pending_background_events: Mutex::new(pending_background_events),
9369 total_consistency_lock: RwLock::new(()),
9370 background_events_processed_since_startup: AtomicBool::new(false),
9371 persistence_notifier: Notifier::new(),
9373 entropy_source: args.entropy_source,
9374 node_signer: args.node_signer,
9375 signer_provider: args.signer_provider,
9377 logger: args.logger,
9378 default_configuration: args.default_config,
9381 for htlc_source in failed_htlcs.drain(..) {
9382 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
9383 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
9384 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
9385 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
9388 for (source, preimage, downstream_value, downstream_closed, downstream_funding) in pending_claims_to_replay {
9389 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
9390 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
9391 // channel is closed we just assume that it probably came from an on-chain claim.
9392 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
9393 downstream_closed, downstream_funding);
9396 //TODO: Broadcast channel update for closed channels, but only after we've made a
9397 //connection or two.
9399 Ok((best_block_hash.clone(), channel_manager))
9405 use bitcoin::hashes::Hash;
9406 use bitcoin::hashes::sha256::Hash as Sha256;
9407 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
9408 use core::sync::atomic::Ordering;
9409 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
9410 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
9411 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
9412 use crate::ln::functional_test_utils::*;
9413 use crate::ln::msgs::{self, ErrorAction};
9414 use crate::ln::msgs::ChannelMessageHandler;
9415 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
9416 use crate::util::errors::APIError;
9417 use crate::util::test_utils;
9418 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
9419 use crate::sign::EntropySource;
9422 fn test_notify_limits() {
9423 // Check that a few cases which don't require the persistence of a new ChannelManager,
9424 // indeed, do not cause the persistence of a new ChannelManager.
9425 let chanmon_cfgs = create_chanmon_cfgs(3);
9426 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
9427 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
9428 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
9430 // All nodes start with a persistable update pending as `create_network` connects each node
9431 // with all other nodes to make most tests simpler.
9432 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
9433 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
9434 assert!(nodes[2].node.get_persistable_update_future().poll_is_complete());
9436 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
9438 // We check that the channel info nodes have doesn't change too early, even though we try
9439 // to connect messages with new values
9440 chan.0.contents.fee_base_msat *= 2;
9441 chan.1.contents.fee_base_msat *= 2;
9442 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
9443 &nodes[1].node.get_our_node_id()).pop().unwrap();
9444 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
9445 &nodes[0].node.get_our_node_id()).pop().unwrap();
9447 // The first two nodes (which opened a channel) should now require fresh persistence
9448 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
9449 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
9450 // ... but the last node should not.
9451 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
9452 // After persisting the first two nodes they should no longer need fresh persistence.
9453 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
9454 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
9456 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
9457 // about the channel.
9458 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
9459 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
9460 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
9462 // The nodes which are a party to the channel should also ignore messages from unrelated
9464 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
9465 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
9466 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
9467 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
9468 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
9469 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
9471 // At this point the channel info given by peers should still be the same.
9472 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
9473 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
9475 // An earlier version of handle_channel_update didn't check the directionality of the
9476 // update message and would always update the local fee info, even if our peer was
9477 // (spuriously) forwarding us our own channel_update.
9478 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
9479 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
9480 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
9482 // First deliver each peers' own message, checking that the node doesn't need to be
9483 // persisted and that its channel info remains the same.
9484 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
9485 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
9486 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
9487 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
9488 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
9489 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
9491 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
9492 // the channel info has updated.
9493 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
9494 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
9495 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
9496 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
9497 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
9498 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
9502 fn test_keysend_dup_hash_partial_mpp() {
9503 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
9505 let chanmon_cfgs = create_chanmon_cfgs(2);
9506 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9507 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9508 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9509 create_announced_chan_between_nodes(&nodes, 0, 1);
9511 // First, send a partial MPP payment.
9512 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
9513 let mut mpp_route = route.clone();
9514 mpp_route.paths.push(mpp_route.paths[0].clone());
9516 let payment_id = PaymentId([42; 32]);
9517 // Use the utility function send_payment_along_path to send the payment with MPP data which
9518 // indicates there are more HTLCs coming.
9519 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
9520 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
9521 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
9522 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
9523 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
9524 check_added_monitors!(nodes[0], 1);
9525 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9526 assert_eq!(events.len(), 1);
9527 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
9529 // Next, send a keysend payment with the same payment_hash and make sure it fails.
9530 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
9531 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
9532 check_added_monitors!(nodes[0], 1);
9533 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9534 assert_eq!(events.len(), 1);
9535 let ev = events.drain(..).next().unwrap();
9536 let payment_event = SendEvent::from_event(ev);
9537 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
9538 check_added_monitors!(nodes[1], 0);
9539 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
9540 expect_pending_htlcs_forwardable!(nodes[1]);
9541 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
9542 check_added_monitors!(nodes[1], 1);
9543 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9544 assert!(updates.update_add_htlcs.is_empty());
9545 assert!(updates.update_fulfill_htlcs.is_empty());
9546 assert_eq!(updates.update_fail_htlcs.len(), 1);
9547 assert!(updates.update_fail_malformed_htlcs.is_empty());
9548 assert!(updates.update_fee.is_none());
9549 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
9550 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
9551 expect_payment_failed!(nodes[0], our_payment_hash, true);
9553 // Send the second half of the original MPP payment.
9554 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
9555 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
9556 check_added_monitors!(nodes[0], 1);
9557 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9558 assert_eq!(events.len(), 1);
9559 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
9561 // Claim the full MPP payment. Note that we can't use a test utility like
9562 // claim_funds_along_route because the ordering of the messages causes the second half of the
9563 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
9564 // lightning messages manually.
9565 nodes[1].node.claim_funds(payment_preimage);
9566 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
9567 check_added_monitors!(nodes[1], 2);
9569 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9570 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
9571 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
9572 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
9573 check_added_monitors!(nodes[0], 1);
9574 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
9575 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
9576 check_added_monitors!(nodes[1], 1);
9577 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9578 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
9579 check_added_monitors!(nodes[1], 1);
9580 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
9581 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
9582 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
9583 check_added_monitors!(nodes[0], 1);
9584 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
9585 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
9586 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
9587 check_added_monitors!(nodes[0], 1);
9588 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
9589 check_added_monitors!(nodes[1], 1);
9590 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
9591 check_added_monitors!(nodes[1], 1);
9592 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
9593 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
9594 check_added_monitors!(nodes[0], 1);
9596 // Note that successful MPP payments will generate a single PaymentSent event upon the first
9597 // path's success and a PaymentPathSuccessful event for each path's success.
9598 let events = nodes[0].node.get_and_clear_pending_events();
9599 assert_eq!(events.len(), 2);
9601 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
9602 assert_eq!(payment_id, *actual_payment_id);
9603 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
9604 assert_eq!(route.paths[0], *path);
9606 _ => panic!("Unexpected event"),
9609 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
9610 assert_eq!(payment_id, *actual_payment_id);
9611 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
9612 assert_eq!(route.paths[0], *path);
9614 _ => panic!("Unexpected event"),
9619 fn test_keysend_dup_payment_hash() {
9620 do_test_keysend_dup_payment_hash(false);
9621 do_test_keysend_dup_payment_hash(true);
9624 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
9625 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
9626 // outbound regular payment fails as expected.
9627 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
9628 // fails as expected.
9629 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
9630 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
9631 // reject MPP keysend payments, since in this case where the payment has no payment
9632 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
9633 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
9634 // payment secrets and reject otherwise.
9635 let chanmon_cfgs = create_chanmon_cfgs(2);
9636 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9637 let mut mpp_keysend_cfg = test_default_channel_config();
9638 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
9639 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
9640 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9641 create_announced_chan_between_nodes(&nodes, 0, 1);
9642 let scorer = test_utils::TestScorer::new();
9643 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
9645 // To start (1), send a regular payment but don't claim it.
9646 let expected_route = [&nodes[1]];
9647 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
9649 // Next, attempt a keysend payment and make sure it fails.
9650 let route_params = RouteParameters {
9651 payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
9652 final_value_msat: 100_000,
9654 let route = find_route(
9655 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
9656 None, nodes[0].logger, &scorer, &(), &random_seed_bytes
9658 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
9659 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
9660 check_added_monitors!(nodes[0], 1);
9661 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9662 assert_eq!(events.len(), 1);
9663 let ev = events.drain(..).next().unwrap();
9664 let payment_event = SendEvent::from_event(ev);
9665 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
9666 check_added_monitors!(nodes[1], 0);
9667 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
9668 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
9669 // fails), the second will process the resulting failure and fail the HTLC backward
9670 expect_pending_htlcs_forwardable!(nodes[1]);
9671 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
9672 check_added_monitors!(nodes[1], 1);
9673 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9674 assert!(updates.update_add_htlcs.is_empty());
9675 assert!(updates.update_fulfill_htlcs.is_empty());
9676 assert_eq!(updates.update_fail_htlcs.len(), 1);
9677 assert!(updates.update_fail_malformed_htlcs.is_empty());
9678 assert!(updates.update_fee.is_none());
9679 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
9680 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
9681 expect_payment_failed!(nodes[0], payment_hash, true);
9683 // Finally, claim the original payment.
9684 claim_payment(&nodes[0], &expected_route, payment_preimage);
9686 // To start (2), send a keysend payment but don't claim it.
9687 let payment_preimage = PaymentPreimage([42; 32]);
9688 let route = find_route(
9689 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
9690 None, nodes[0].logger, &scorer, &(), &random_seed_bytes
9692 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
9693 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
9694 check_added_monitors!(nodes[0], 1);
9695 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9696 assert_eq!(events.len(), 1);
9697 let event = events.pop().unwrap();
9698 let path = vec![&nodes[1]];
9699 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
9701 // Next, attempt a regular payment and make sure it fails.
9702 let payment_secret = PaymentSecret([43; 32]);
9703 nodes[0].node.send_payment_with_route(&route, payment_hash,
9704 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
9705 check_added_monitors!(nodes[0], 1);
9706 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9707 assert_eq!(events.len(), 1);
9708 let ev = events.drain(..).next().unwrap();
9709 let payment_event = SendEvent::from_event(ev);
9710 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
9711 check_added_monitors!(nodes[1], 0);
9712 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
9713 expect_pending_htlcs_forwardable!(nodes[1]);
9714 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
9715 check_added_monitors!(nodes[1], 1);
9716 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9717 assert!(updates.update_add_htlcs.is_empty());
9718 assert!(updates.update_fulfill_htlcs.is_empty());
9719 assert_eq!(updates.update_fail_htlcs.len(), 1);
9720 assert!(updates.update_fail_malformed_htlcs.is_empty());
9721 assert!(updates.update_fee.is_none());
9722 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
9723 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
9724 expect_payment_failed!(nodes[0], payment_hash, true);
9726 // Finally, succeed the keysend payment.
9727 claim_payment(&nodes[0], &expected_route, payment_preimage);
9729 // To start (3), send a keysend payment but don't claim it.
9730 let payment_id_1 = PaymentId([44; 32]);
9731 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
9732 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
9733 check_added_monitors!(nodes[0], 1);
9734 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9735 assert_eq!(events.len(), 1);
9736 let event = events.pop().unwrap();
9737 let path = vec![&nodes[1]];
9738 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
9740 // Next, attempt a keysend payment and make sure it fails.
9741 let route_params = RouteParameters {
9742 payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
9743 final_value_msat: 100_000,
9745 let route = find_route(
9746 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
9747 None, nodes[0].logger, &scorer, &(), &random_seed_bytes
9749 let payment_id_2 = PaymentId([45; 32]);
9750 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
9751 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
9752 check_added_monitors!(nodes[0], 1);
9753 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9754 assert_eq!(events.len(), 1);
9755 let ev = events.drain(..).next().unwrap();
9756 let payment_event = SendEvent::from_event(ev);
9757 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
9758 check_added_monitors!(nodes[1], 0);
9759 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
9760 expect_pending_htlcs_forwardable!(nodes[1]);
9761 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
9762 check_added_monitors!(nodes[1], 1);
9763 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9764 assert!(updates.update_add_htlcs.is_empty());
9765 assert!(updates.update_fulfill_htlcs.is_empty());
9766 assert_eq!(updates.update_fail_htlcs.len(), 1);
9767 assert!(updates.update_fail_malformed_htlcs.is_empty());
9768 assert!(updates.update_fee.is_none());
9769 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
9770 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
9771 expect_payment_failed!(nodes[0], payment_hash, true);
9773 // Finally, claim the original payment.
9774 claim_payment(&nodes[0], &expected_route, payment_preimage);
9778 fn test_keysend_hash_mismatch() {
9779 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
9780 // preimage doesn't match the msg's payment hash.
9781 let chanmon_cfgs = create_chanmon_cfgs(2);
9782 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9783 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9784 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9786 let payer_pubkey = nodes[0].node.get_our_node_id();
9787 let payee_pubkey = nodes[1].node.get_our_node_id();
9789 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
9790 let route_params = RouteParameters {
9791 payment_params: PaymentParameters::for_keysend(payee_pubkey, 40, false),
9792 final_value_msat: 10_000,
9794 let network_graph = nodes[0].network_graph.clone();
9795 let first_hops = nodes[0].node.list_usable_channels();
9796 let scorer = test_utils::TestScorer::new();
9797 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
9798 let route = find_route(
9799 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
9800 nodes[0].logger, &scorer, &(), &random_seed_bytes
9803 let test_preimage = PaymentPreimage([42; 32]);
9804 let mismatch_payment_hash = PaymentHash([43; 32]);
9805 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
9806 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
9807 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
9808 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
9809 check_added_monitors!(nodes[0], 1);
9811 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
9812 assert_eq!(updates.update_add_htlcs.len(), 1);
9813 assert!(updates.update_fulfill_htlcs.is_empty());
9814 assert!(updates.update_fail_htlcs.is_empty());
9815 assert!(updates.update_fail_malformed_htlcs.is_empty());
9816 assert!(updates.update_fee.is_none());
9817 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
9819 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
9823 fn test_keysend_msg_with_secret_err() {
9824 // Test that we error as expected if we receive a keysend payment that includes a payment
9825 // secret when we don't support MPP keysend.
9826 let mut reject_mpp_keysend_cfg = test_default_channel_config();
9827 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
9828 let chanmon_cfgs = create_chanmon_cfgs(2);
9829 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9830 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
9831 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9833 let payer_pubkey = nodes[0].node.get_our_node_id();
9834 let payee_pubkey = nodes[1].node.get_our_node_id();
9836 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
9837 let route_params = RouteParameters {
9838 payment_params: PaymentParameters::for_keysend(payee_pubkey, 40, false),
9839 final_value_msat: 10_000,
9841 let network_graph = nodes[0].network_graph.clone();
9842 let first_hops = nodes[0].node.list_usable_channels();
9843 let scorer = test_utils::TestScorer::new();
9844 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
9845 let route = find_route(
9846 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
9847 nodes[0].logger, &scorer, &(), &random_seed_bytes
9850 let test_preimage = PaymentPreimage([42; 32]);
9851 let test_secret = PaymentSecret([43; 32]);
9852 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
9853 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
9854 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
9855 nodes[0].node.test_send_payment_internal(&route, payment_hash,
9856 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
9857 PaymentId(payment_hash.0), None, session_privs).unwrap();
9858 check_added_monitors!(nodes[0], 1);
9860 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
9861 assert_eq!(updates.update_add_htlcs.len(), 1);
9862 assert!(updates.update_fulfill_htlcs.is_empty());
9863 assert!(updates.update_fail_htlcs.is_empty());
9864 assert!(updates.update_fail_malformed_htlcs.is_empty());
9865 assert!(updates.update_fee.is_none());
9866 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
9868 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
9872 fn test_multi_hop_missing_secret() {
9873 let chanmon_cfgs = create_chanmon_cfgs(4);
9874 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
9875 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
9876 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
9878 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
9879 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
9880 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
9881 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
9883 // Marshall an MPP route.
9884 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
9885 let path = route.paths[0].clone();
9886 route.paths.push(path);
9887 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
9888 route.paths[0].hops[0].short_channel_id = chan_1_id;
9889 route.paths[0].hops[1].short_channel_id = chan_3_id;
9890 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
9891 route.paths[1].hops[0].short_channel_id = chan_2_id;
9892 route.paths[1].hops[1].short_channel_id = chan_4_id;
9894 match nodes[0].node.send_payment_with_route(&route, payment_hash,
9895 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
9897 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
9898 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
9900 _ => panic!("unexpected error")
9905 fn test_drop_disconnected_peers_when_removing_channels() {
9906 let chanmon_cfgs = create_chanmon_cfgs(2);
9907 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9908 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9909 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9911 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
9913 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
9914 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
9916 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
9917 check_closed_broadcast!(nodes[0], true);
9918 check_added_monitors!(nodes[0], 1);
9919 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
9922 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
9923 // disconnected and the channel between has been force closed.
9924 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
9925 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
9926 assert_eq!(nodes_0_per_peer_state.len(), 1);
9927 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
9930 nodes[0].node.timer_tick_occurred();
9933 // Assert that nodes[1] has now been removed.
9934 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
9939 fn bad_inbound_payment_hash() {
9940 // Add coverage for checking that a user-provided payment hash matches the payment secret.
9941 let chanmon_cfgs = create_chanmon_cfgs(2);
9942 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9943 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9944 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9946 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
9947 let payment_data = msgs::FinalOnionHopData {
9949 total_msat: 100_000,
9952 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
9953 // payment verification fails as expected.
9954 let mut bad_payment_hash = payment_hash.clone();
9955 bad_payment_hash.0[0] += 1;
9956 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
9957 Ok(_) => panic!("Unexpected ok"),
9959 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
9963 // Check that using the original payment hash succeeds.
9964 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
9968 fn test_id_to_peer_coverage() {
9969 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
9970 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
9971 // the channel is successfully closed.
9972 let chanmon_cfgs = create_chanmon_cfgs(2);
9973 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9974 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9975 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9977 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
9978 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9979 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
9980 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
9981 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
9983 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
9984 let channel_id = &tx.txid().into_inner();
9986 // Ensure that the `id_to_peer` map is empty until either party has received the
9987 // funding transaction, and have the real `channel_id`.
9988 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
9989 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
9992 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
9994 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
9995 // as it has the funding transaction.
9996 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
9997 assert_eq!(nodes_0_lock.len(), 1);
9998 assert!(nodes_0_lock.contains_key(channel_id));
10001 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10003 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10005 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10007 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10008 assert_eq!(nodes_0_lock.len(), 1);
10009 assert!(nodes_0_lock.contains_key(channel_id));
10011 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10014 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
10015 // as it has the funding transaction.
10016 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10017 assert_eq!(nodes_1_lock.len(), 1);
10018 assert!(nodes_1_lock.contains_key(channel_id));
10020 check_added_monitors!(nodes[1], 1);
10021 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10022 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
10023 check_added_monitors!(nodes[0], 1);
10024 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
10025 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
10026 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
10027 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
10029 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
10030 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
10031 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
10032 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
10034 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
10035 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
10037 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
10038 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
10039 // fee for the closing transaction has been negotiated and the parties has the other
10040 // party's signature for the fee negotiated closing transaction.)
10041 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10042 assert_eq!(nodes_0_lock.len(), 1);
10043 assert!(nodes_0_lock.contains_key(channel_id));
10047 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
10048 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
10049 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
10050 // kept in the `nodes[1]`'s `id_to_peer` map.
10051 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10052 assert_eq!(nodes_1_lock.len(), 1);
10053 assert!(nodes_1_lock.contains_key(channel_id));
10056 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
10058 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
10059 // therefore has all it needs to fully close the channel (both signatures for the
10060 // closing transaction).
10061 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
10062 // fully closed by `nodes[0]`.
10063 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
10065 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
10066 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
10067 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10068 assert_eq!(nodes_1_lock.len(), 1);
10069 assert!(nodes_1_lock.contains_key(channel_id));
10072 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
10074 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
10076 // Assert that the channel has now been removed from both parties `id_to_peer` map once
10077 // they both have everything required to fully close the channel.
10078 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10080 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
10082 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
10083 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
10086 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10087 let expected_message = format!("Not connected to node: {}", expected_public_key);
10088 check_api_error_message(expected_message, res_err)
10091 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10092 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
10093 check_api_error_message(expected_message, res_err)
10096 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
10098 Err(APIError::APIMisuseError { err }) => {
10099 assert_eq!(err, expected_err_message);
10101 Err(APIError::ChannelUnavailable { err }) => {
10102 assert_eq!(err, expected_err_message);
10104 Ok(_) => panic!("Unexpected Ok"),
10105 Err(_) => panic!("Unexpected Error"),
10110 fn test_api_calls_with_unkown_counterparty_node() {
10111 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
10112 // expected if the `counterparty_node_id` is an unkown peer in the
10113 // `ChannelManager::per_peer_state` map.
10114 let chanmon_cfg = create_chanmon_cfgs(2);
10115 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10116 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
10117 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10120 let channel_id = [4; 32];
10121 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
10122 let intercept_id = InterceptId([0; 32]);
10124 // Test the API functions.
10125 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
10127 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
10129 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
10131 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
10133 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
10135 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
10137 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
10141 fn test_connection_limiting() {
10142 // Test that we limit un-channel'd peers and un-funded channels properly.
10143 let chanmon_cfgs = create_chanmon_cfgs(2);
10144 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10145 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10146 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10148 // Note that create_network connects the nodes together for us
10150 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10151 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10153 let mut funding_tx = None;
10154 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
10155 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10156 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10159 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
10160 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
10161 funding_tx = Some(tx.clone());
10162 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
10163 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10165 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10166 check_added_monitors!(nodes[1], 1);
10167 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10169 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10171 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
10172 check_added_monitors!(nodes[0], 1);
10173 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
10175 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
10178 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
10179 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
10180 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10181 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10182 open_channel_msg.temporary_channel_id);
10184 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
10185 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
10187 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
10188 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
10189 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10190 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10191 peer_pks.push(random_pk);
10192 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
10193 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10196 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10197 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10198 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10199 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10200 }, true).unwrap_err();
10202 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
10203 // them if we have too many un-channel'd peers.
10204 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10205 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
10206 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
10207 for ev in chan_closed_events {
10208 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
10210 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10211 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10213 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10214 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10215 }, true).unwrap_err();
10217 // but of course if the connection is outbound its allowed...
10218 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10219 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10220 }, false).unwrap();
10221 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10223 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
10224 // Even though we accept one more connection from new peers, we won't actually let them
10226 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
10227 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
10228 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
10229 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
10230 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
10232 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10233 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
10234 open_channel_msg.temporary_channel_id);
10236 // Of course, however, outbound channels are always allowed
10237 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
10238 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
10240 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
10241 // "protected" and can connect again.
10242 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
10243 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10244 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10246 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
10248 // Further, because the first channel was funded, we can open another channel with
10250 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10251 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
10255 fn test_outbound_chans_unlimited() {
10256 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
10257 let chanmon_cfgs = create_chanmon_cfgs(2);
10258 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10259 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10260 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10262 // Note that create_network connects the nodes together for us
10264 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10265 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10267 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
10268 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10269 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10270 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
10273 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
10275 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10276 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10277 open_channel_msg.temporary_channel_id);
10279 // but we can still open an outbound channel.
10280 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10281 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
10283 // but even with such an outbound channel, additional inbound channels will still fail.
10284 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10285 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10286 open_channel_msg.temporary_channel_id);
10290 fn test_0conf_limiting() {
10291 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
10292 // flag set and (sometimes) accept channels as 0conf.
10293 let chanmon_cfgs = create_chanmon_cfgs(2);
10294 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10295 let mut settings = test_default_channel_config();
10296 settings.manually_accept_inbound_channels = true;
10297 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
10298 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10300 // Note that create_network connects the nodes together for us
10302 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10303 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10305 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
10306 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
10307 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10308 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10309 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
10310 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10313 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
10314 let events = nodes[1].node.get_and_clear_pending_events();
10316 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10317 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
10319 _ => panic!("Unexpected event"),
10321 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
10322 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
10325 // If we try to accept a channel from another peer non-0conf it will fail.
10326 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10327 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10328 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10329 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10331 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10332 let events = nodes[1].node.get_and_clear_pending_events();
10334 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10335 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
10336 Err(APIError::APIMisuseError { err }) =>
10337 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
10341 _ => panic!("Unexpected event"),
10343 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
10344 open_channel_msg.temporary_channel_id);
10346 // ...however if we accept the same channel 0conf it should work just fine.
10347 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10348 let events = nodes[1].node.get_and_clear_pending_events();
10350 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10351 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
10353 _ => panic!("Unexpected event"),
10355 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
10359 fn reject_excessively_underpaying_htlcs() {
10360 let chanmon_cfg = create_chanmon_cfgs(1);
10361 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
10362 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
10363 let node = create_network(1, &node_cfg, &node_chanmgr);
10364 let sender_intended_amt_msat = 100;
10365 let extra_fee_msat = 10;
10366 let hop_data = msgs::InboundOnionPayload::Receive {
10368 outgoing_cltv_value: 42,
10369 payment_metadata: None,
10370 keysend_preimage: None,
10371 payment_data: Some(msgs::FinalOnionHopData {
10372 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
10374 custom_tlvs: Vec::new(),
10376 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
10377 // intended amount, we fail the payment.
10378 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
10379 node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
10380 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat))
10382 assert_eq!(err_code, 19);
10383 } else { panic!(); }
10385 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
10386 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
10388 outgoing_cltv_value: 42,
10389 payment_metadata: None,
10390 keysend_preimage: None,
10391 payment_data: Some(msgs::FinalOnionHopData {
10392 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
10394 custom_tlvs: Vec::new(),
10396 assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
10397 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok());
10401 fn test_inbound_anchors_manual_acceptance() {
10402 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
10403 // flag set and (sometimes) accept channels as 0conf.
10404 let mut anchors_cfg = test_default_channel_config();
10405 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
10407 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
10408 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
10410 let chanmon_cfgs = create_chanmon_cfgs(3);
10411 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10412 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
10413 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
10414 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10416 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10417 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10419 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10420 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
10421 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
10422 match &msg_events[0] {
10423 MessageSendEvent::HandleError { node_id, action } => {
10424 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
10426 ErrorAction::SendErrorMessage { msg } =>
10427 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
10428 _ => panic!("Unexpected error action"),
10431 _ => panic!("Unexpected event"),
10434 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10435 let events = nodes[2].node.get_and_clear_pending_events();
10437 Event::OpenChannelRequest { temporary_channel_id, .. } =>
10438 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
10439 _ => panic!("Unexpected event"),
10441 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10445 fn test_anchors_zero_fee_htlc_tx_fallback() {
10446 // Tests that if both nodes support anchors, but the remote node does not want to accept
10447 // anchor channels at the moment, an error it sent to the local node such that it can retry
10448 // the channel without the anchors feature.
10449 let chanmon_cfgs = create_chanmon_cfgs(2);
10450 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10451 let mut anchors_config = test_default_channel_config();
10452 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
10453 anchors_config.manually_accept_inbound_channels = true;
10454 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
10455 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10457 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
10458 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10459 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
10461 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10462 let events = nodes[1].node.get_and_clear_pending_events();
10464 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10465 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
10467 _ => panic!("Unexpected event"),
10470 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
10471 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
10473 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10474 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
10476 // Since nodes[1] should not have accepted the channel, it should
10477 // not have generated any events.
10478 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
10482 fn test_update_channel_config() {
10483 let chanmon_cfg = create_chanmon_cfgs(2);
10484 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10485 let mut user_config = test_default_channel_config();
10486 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
10487 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10488 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
10489 let channel = &nodes[0].node.list_channels()[0];
10491 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
10492 let events = nodes[0].node.get_and_clear_pending_msg_events();
10493 assert_eq!(events.len(), 0);
10495 user_config.channel_config.forwarding_fee_base_msat += 10;
10496 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
10497 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
10498 let events = nodes[0].node.get_and_clear_pending_msg_events();
10499 assert_eq!(events.len(), 1);
10501 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
10502 _ => panic!("expected BroadcastChannelUpdate event"),
10505 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
10506 let events = nodes[0].node.get_and_clear_pending_msg_events();
10507 assert_eq!(events.len(), 0);
10509 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
10510 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
10511 cltv_expiry_delta: Some(new_cltv_expiry_delta),
10512 ..Default::default()
10514 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
10515 let events = nodes[0].node.get_and_clear_pending_msg_events();
10516 assert_eq!(events.len(), 1);
10518 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
10519 _ => panic!("expected BroadcastChannelUpdate event"),
10522 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
10523 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
10524 forwarding_fee_proportional_millionths: Some(new_fee),
10525 ..Default::default()
10527 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
10528 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
10529 let events = nodes[0].node.get_and_clear_pending_msg_events();
10530 assert_eq!(events.len(), 1);
10532 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
10533 _ => panic!("expected BroadcastChannelUpdate event"),
10536 // If we provide a channel_id not associated with the peer, we should get an error and no updates
10537 // should be applied to ensure update atomicity as specified in the API docs.
10538 let bad_channel_id = [10; 32];
10539 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
10540 let new_fee = current_fee + 100;
10543 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
10544 forwarding_fee_proportional_millionths: Some(new_fee),
10545 ..Default::default()
10547 Err(APIError::ChannelUnavailable { err: _ }),
10550 // Check that the fee hasn't changed for the channel that exists.
10551 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
10552 let events = nodes[0].node.get_and_clear_pending_msg_events();
10553 assert_eq!(events.len(), 0);
10557 fn test_payment_display() {
10558 let payment_id = PaymentId([42; 32]);
10559 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
10560 let payment_hash = PaymentHash([42; 32]);
10561 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
10562 let payment_preimage = PaymentPreimage([42; 32]);
10563 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
10569 use crate::chain::Listen;
10570 use crate::chain::chainmonitor::{ChainMonitor, Persist};
10571 use crate::sign::{KeysManager, InMemorySigner};
10572 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
10573 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
10574 use crate::ln::functional_test_utils::*;
10575 use crate::ln::msgs::{ChannelMessageHandler, Init};
10576 use crate::routing::gossip::NetworkGraph;
10577 use crate::routing::router::{PaymentParameters, RouteParameters};
10578 use crate::util::test_utils;
10579 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
10581 use bitcoin::hashes::Hash;
10582 use bitcoin::hashes::sha256::Hash as Sha256;
10583 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
10585 use crate::sync::{Arc, Mutex};
10587 use criterion::Criterion;
10589 type Manager<'a, P> = ChannelManager<
10590 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
10591 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
10592 &'a test_utils::TestLogger, &'a P>,
10593 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
10594 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
10595 &'a test_utils::TestLogger>;
10597 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
10598 node: &'node_cfg Manager<'chan_mon_cfg, P>,
10600 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
10601 type CM = Manager<'chan_mon_cfg, P>;
10603 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
10605 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
10608 pub fn bench_sends(bench: &mut Criterion) {
10609 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
10612 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
10613 // Do a simple benchmark of sending a payment back and forth between two nodes.
10614 // Note that this is unrealistic as each payment send will require at least two fsync
10616 let network = bitcoin::Network::Testnet;
10617 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
10619 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
10620 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
10621 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
10622 let scorer = Mutex::new(test_utils::TestScorer::new());
10623 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
10625 let mut config: UserConfig = Default::default();
10626 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
10627 config.channel_handshake_config.minimum_depth = 1;
10629 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
10630 let seed_a = [1u8; 32];
10631 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
10632 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
10634 best_block: BestBlock::from_network(network),
10635 }, genesis_block.header.time);
10636 let node_a_holder = ANodeHolder { node: &node_a };
10638 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
10639 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
10640 let seed_b = [2u8; 32];
10641 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
10642 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
10644 best_block: BestBlock::from_network(network),
10645 }, genesis_block.header.time);
10646 let node_b_holder = ANodeHolder { node: &node_b };
10648 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
10649 features: node_b.init_features(), networks: None, remote_network_address: None
10651 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
10652 features: node_a.init_features(), networks: None, remote_network_address: None
10653 }, false).unwrap();
10654 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
10655 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
10656 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
10659 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
10660 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
10661 value: 8_000_000, script_pubkey: output_script,
10663 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
10664 } else { panic!(); }
10666 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
10667 let events_b = node_b.get_and_clear_pending_events();
10668 assert_eq!(events_b.len(), 1);
10669 match events_b[0] {
10670 Event::ChannelPending{ ref counterparty_node_id, .. } => {
10671 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
10673 _ => panic!("Unexpected event"),
10676 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
10677 let events_a = node_a.get_and_clear_pending_events();
10678 assert_eq!(events_a.len(), 1);
10679 match events_a[0] {
10680 Event::ChannelPending{ ref counterparty_node_id, .. } => {
10681 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
10683 _ => panic!("Unexpected event"),
10686 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
10688 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
10689 Listen::block_connected(&node_a, &block, 1);
10690 Listen::block_connected(&node_b, &block, 1);
10692 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
10693 let msg_events = node_a.get_and_clear_pending_msg_events();
10694 assert_eq!(msg_events.len(), 2);
10695 match msg_events[0] {
10696 MessageSendEvent::SendChannelReady { ref msg, .. } => {
10697 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
10698 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
10702 match msg_events[1] {
10703 MessageSendEvent::SendChannelUpdate { .. } => {},
10707 let events_a = node_a.get_and_clear_pending_events();
10708 assert_eq!(events_a.len(), 1);
10709 match events_a[0] {
10710 Event::ChannelReady{ ref counterparty_node_id, .. } => {
10711 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
10713 _ => panic!("Unexpected event"),
10716 let events_b = node_b.get_and_clear_pending_events();
10717 assert_eq!(events_b.len(), 1);
10718 match events_b[0] {
10719 Event::ChannelReady{ ref counterparty_node_id, .. } => {
10720 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
10722 _ => panic!("Unexpected event"),
10725 let mut payment_count: u64 = 0;
10726 macro_rules! send_payment {
10727 ($node_a: expr, $node_b: expr) => {
10728 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
10729 .with_bolt11_features($node_b.invoice_features()).unwrap();
10730 let mut payment_preimage = PaymentPreimage([0; 32]);
10731 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
10732 payment_count += 1;
10733 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
10734 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
10736 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
10737 PaymentId(payment_hash.0), RouteParameters {
10738 payment_params, final_value_msat: 10_000,
10739 }, Retry::Attempts(0)).unwrap();
10740 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
10741 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
10742 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
10743 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
10744 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
10745 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
10746 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
10748 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
10749 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
10750 $node_b.claim_funds(payment_preimage);
10751 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
10753 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
10754 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
10755 assert_eq!(node_id, $node_a.get_our_node_id());
10756 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
10757 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
10759 _ => panic!("Failed to generate claim event"),
10762 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
10763 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
10764 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
10765 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
10767 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
10771 bench.bench_function(bench_name, |b| b.iter(|| {
10772 send_payment!(node_a, node_b);
10773 send_payment!(node_b, node_a);