Merge pull request #2068 from jkczyz/2023-03-doc-fixes
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
24
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
28
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
32
33 use crate::chain;
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
38 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
39 // construct one themselves.
40 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
41 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
42 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
43 #[cfg(any(feature = "_test_utils", test))]
44 use crate::ln::features::InvoiceFeatures;
45 use crate::routing::gossip::NetworkGraph;
46 use crate::routing::router::{DefaultRouter, InFlightHtlcs, PaymentParameters, Route, RouteHop, RouteParameters, RoutePath, Router};
47 use crate::routing::scoring::ProbabilisticScorer;
48 use crate::ln::msgs;
49 use crate::ln::onion_utils;
50 use crate::ln::onion_utils::HTLCFailReason;
51 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
52 #[cfg(test)]
53 use crate::ln::outbound_payment;
54 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
55 use crate::ln::wire::Encode;
56 use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner};
57 use crate::util::config::{UserConfig, ChannelConfig};
58 use crate::util::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination};
59 use crate::util::events;
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
63 use crate::util::logger::{Level, Logger};
64 use crate::util::errors::APIError;
65
66 use alloc::collections::BTreeMap;
67
68 use crate::io;
69 use crate::prelude::*;
70 use core::{cmp, mem};
71 use core::cell::RefCell;
72 use crate::io::Read;
73 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
74 use core::sync::atomic::{AtomicUsize, Ordering};
75 use core::time::Duration;
76 use core::ops::Deref;
77
78 // Re-export this for use in the public API.
79 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure};
80
81 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
82 //
83 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
84 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
85 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
86 //
87 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
88 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
89 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
90 // before we forward it.
91 //
92 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
93 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
94 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
95 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
96 // our payment, which we can use to decode errors or inform the user that the payment was sent.
97
98 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
99 pub(super) enum PendingHTLCRouting {
100         Forward {
101                 onion_packet: msgs::OnionPacket,
102                 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
103                 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
104                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
105         },
106         Receive {
107                 payment_data: msgs::FinalOnionHopData,
108                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
109                 phantom_shared_secret: Option<[u8; 32]>,
110         },
111         ReceiveKeysend {
112                 payment_preimage: PaymentPreimage,
113                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
114         },
115 }
116
117 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
118 pub(super) struct PendingHTLCInfo {
119         pub(super) routing: PendingHTLCRouting,
120         pub(super) incoming_shared_secret: [u8; 32],
121         payment_hash: PaymentHash,
122         pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
123         pub(super) outgoing_amt_msat: u64,
124         pub(super) outgoing_cltv_value: u32,
125 }
126
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 pub(super) enum HTLCFailureMsg {
129         Relay(msgs::UpdateFailHTLC),
130         Malformed(msgs::UpdateFailMalformedHTLC),
131 }
132
133 /// Stores whether we can't forward an HTLC or relevant forwarding info
134 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
135 pub(super) enum PendingHTLCStatus {
136         Forward(PendingHTLCInfo),
137         Fail(HTLCFailureMsg),
138 }
139
140 pub(super) struct PendingAddHTLCInfo {
141         pub(super) forward_info: PendingHTLCInfo,
142
143         // These fields are produced in `forward_htlcs()` and consumed in
144         // `process_pending_htlc_forwards()` for constructing the
145         // `HTLCSource::PreviousHopData` for failed and forwarded
146         // HTLCs.
147         //
148         // Note that this may be an outbound SCID alias for the associated channel.
149         prev_short_channel_id: u64,
150         prev_htlc_id: u64,
151         prev_funding_outpoint: OutPoint,
152         prev_user_channel_id: u128,
153 }
154
155 pub(super) enum HTLCForwardInfo {
156         AddHTLC(PendingAddHTLCInfo),
157         FailHTLC {
158                 htlc_id: u64,
159                 err_packet: msgs::OnionErrorPacket,
160         },
161 }
162
163 /// Tracks the inbound corresponding to an outbound HTLC
164 #[derive(Clone, Hash, PartialEq, Eq)]
165 pub(crate) struct HTLCPreviousHopData {
166         // Note that this may be an outbound SCID alias for the associated channel.
167         short_channel_id: u64,
168         htlc_id: u64,
169         incoming_packet_shared_secret: [u8; 32],
170         phantom_shared_secret: Option<[u8; 32]>,
171
172         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
173         // channel with a preimage provided by the forward channel.
174         outpoint: OutPoint,
175 }
176
177 enum OnionPayload {
178         /// Indicates this incoming onion payload is for the purpose of paying an invoice.
179         Invoice {
180                 /// This is only here for backwards-compatibility in serialization, in the future it can be
181                 /// removed, breaking clients running 0.0.106 and earlier.
182                 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
183         },
184         /// Contains the payer-provided preimage.
185         Spontaneous(PaymentPreimage),
186 }
187
188 /// HTLCs that are to us and can be failed/claimed by the user
189 struct ClaimableHTLC {
190         prev_hop: HTLCPreviousHopData,
191         cltv_expiry: u32,
192         /// The amount (in msats) of this MPP part
193         value: u64,
194         onion_payload: OnionPayload,
195         timer_ticks: u8,
196         /// The sum total of all MPP parts
197         total_msat: u64,
198 }
199
200 /// A payment identifier used to uniquely identify a payment to LDK.
201 /// (C-not exported) as we just use [u8; 32] directly
202 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
203 pub struct PaymentId(pub [u8; 32]);
204
205 impl Writeable for PaymentId {
206         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
207                 self.0.write(w)
208         }
209 }
210
211 impl Readable for PaymentId {
212         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
213                 let buf: [u8; 32] = Readable::read(r)?;
214                 Ok(PaymentId(buf))
215         }
216 }
217
218 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
219 /// (C-not exported) as we just use [u8; 32] directly
220 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
221 pub struct InterceptId(pub [u8; 32]);
222
223 impl Writeable for InterceptId {
224         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
225                 self.0.write(w)
226         }
227 }
228
229 impl Readable for InterceptId {
230         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
231                 let buf: [u8; 32] = Readable::read(r)?;
232                 Ok(InterceptId(buf))
233         }
234 }
235
236 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
237 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
238 pub(crate) enum SentHTLCId {
239         PreviousHopData { short_channel_id: u64, htlc_id: u64 },
240         OutboundRoute { session_priv: SecretKey },
241 }
242 impl SentHTLCId {
243         pub(crate) fn from_source(source: &HTLCSource) -> Self {
244                 match source {
245                         HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
246                                 short_channel_id: hop_data.short_channel_id,
247                                 htlc_id: hop_data.htlc_id,
248                         },
249                         HTLCSource::OutboundRoute { session_priv, .. } =>
250                                 Self::OutboundRoute { session_priv: *session_priv },
251                 }
252         }
253 }
254 impl_writeable_tlv_based_enum!(SentHTLCId,
255         (0, PreviousHopData) => {
256                 (0, short_channel_id, required),
257                 (2, htlc_id, required),
258         },
259         (2, OutboundRoute) => {
260                 (0, session_priv, required),
261         };
262 );
263
264
265 /// Tracks the inbound corresponding to an outbound HTLC
266 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
267 #[derive(Clone, PartialEq, Eq)]
268 pub(crate) enum HTLCSource {
269         PreviousHopData(HTLCPreviousHopData),
270         OutboundRoute {
271                 path: Vec<RouteHop>,
272                 session_priv: SecretKey,
273                 /// Technically we can recalculate this from the route, but we cache it here to avoid
274                 /// doing a double-pass on route when we get a failure back
275                 first_hop_htlc_msat: u64,
276                 payment_id: PaymentId,
277                 payment_secret: Option<PaymentSecret>,
278                 /// Note that this is now "deprecated" - we write it for forwards (and read it for
279                 /// backwards) compatibility reasons, but prefer to use the data in the
280                 /// [`super::outbound_payment`] module, which stores per-payment data once instead of in
281                 /// each HTLC.
282                 payment_params: Option<PaymentParameters>,
283         },
284 }
285 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
286 impl core::hash::Hash for HTLCSource {
287         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
288                 match self {
289                         HTLCSource::PreviousHopData(prev_hop_data) => {
290                                 0u8.hash(hasher);
291                                 prev_hop_data.hash(hasher);
292                         },
293                         HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payment_params } => {
294                                 1u8.hash(hasher);
295                                 path.hash(hasher);
296                                 session_priv[..].hash(hasher);
297                                 payment_id.hash(hasher);
298                                 payment_secret.hash(hasher);
299                                 first_hop_htlc_msat.hash(hasher);
300                                 payment_params.hash(hasher);
301                         },
302                 }
303         }
304 }
305 #[cfg(not(feature = "grind_signatures"))]
306 #[cfg(test)]
307 impl HTLCSource {
308         pub fn dummy() -> Self {
309                 HTLCSource::OutboundRoute {
310                         path: Vec::new(),
311                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
312                         first_hop_htlc_msat: 0,
313                         payment_id: PaymentId([2; 32]),
314                         payment_secret: None,
315                         payment_params: None,
316                 }
317         }
318 }
319
320 struct ReceiveError {
321         err_code: u16,
322         err_data: Vec<u8>,
323         msg: &'static str,
324 }
325
326 /// This enum is used to specify which error data to send to peers when failing back an HTLC
327 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
328 ///
329 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
330 #[derive(Clone, Copy)]
331 pub enum FailureCode {
332         /// We had a temporary error processing the payment. Useful if no other error codes fit
333         /// and you want to indicate that the payer may want to retry.
334         TemporaryNodeFailure             = 0x2000 | 2,
335         /// We have a required feature which was not in this onion. For example, you may require
336         /// some additional metadata that was not provided with this payment.
337         RequiredNodeFeatureMissing       = 0x4000 | 0x2000 | 3,
338         /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
339         /// the HTLC is too close to the current block height for safe handling.
340         /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
341         /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
342         IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
343 }
344
345 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
346
347 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
348 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
349 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
350 /// peer_state lock. We then return the set of things that need to be done outside the lock in
351 /// this struct and call handle_error!() on it.
352
353 struct MsgHandleErrInternal {
354         err: msgs::LightningError,
355         chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
356         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
357 }
358 impl MsgHandleErrInternal {
359         #[inline]
360         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
361                 Self {
362                         err: LightningError {
363                                 err: err.clone(),
364                                 action: msgs::ErrorAction::SendErrorMessage {
365                                         msg: msgs::ErrorMessage {
366                                                 channel_id,
367                                                 data: err
368                                         },
369                                 },
370                         },
371                         chan_id: None,
372                         shutdown_finish: None,
373                 }
374         }
375         #[inline]
376         fn from_no_close(err: msgs::LightningError) -> Self {
377                 Self { err, chan_id: None, shutdown_finish: None }
378         }
379         #[inline]
380         fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
381                 Self {
382                         err: LightningError {
383                                 err: err.clone(),
384                                 action: msgs::ErrorAction::SendErrorMessage {
385                                         msg: msgs::ErrorMessage {
386                                                 channel_id,
387                                                 data: err
388                                         },
389                                 },
390                         },
391                         chan_id: Some((channel_id, user_channel_id)),
392                         shutdown_finish: Some((shutdown_res, channel_update)),
393                 }
394         }
395         #[inline]
396         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
397                 Self {
398                         err: match err {
399                                 ChannelError::Warn(msg) =>  LightningError {
400                                         err: msg.clone(),
401                                         action: msgs::ErrorAction::SendWarningMessage {
402                                                 msg: msgs::WarningMessage {
403                                                         channel_id,
404                                                         data: msg
405                                                 },
406                                                 log_level: Level::Warn,
407                                         },
408                                 },
409                                 ChannelError::Ignore(msg) => LightningError {
410                                         err: msg,
411                                         action: msgs::ErrorAction::IgnoreError,
412                                 },
413                                 ChannelError::Close(msg) => LightningError {
414                                         err: msg.clone(),
415                                         action: msgs::ErrorAction::SendErrorMessage {
416                                                 msg: msgs::ErrorMessage {
417                                                         channel_id,
418                                                         data: msg
419                                                 },
420                                         },
421                                 },
422                         },
423                         chan_id: None,
424                         shutdown_finish: None,
425                 }
426         }
427 }
428
429 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
430 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
431 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
432 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
433 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
434
435 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
436 /// be sent in the order they appear in the return value, however sometimes the order needs to be
437 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
438 /// they were originally sent). In those cases, this enum is also returned.
439 #[derive(Clone, PartialEq)]
440 pub(super) enum RAACommitmentOrder {
441         /// Send the CommitmentUpdate messages first
442         CommitmentFirst,
443         /// Send the RevokeAndACK message first
444         RevokeAndACKFirst,
445 }
446
447 /// Information about a payment which is currently being claimed.
448 struct ClaimingPayment {
449         amount_msat: u64,
450         payment_purpose: events::PaymentPurpose,
451         receiver_node_id: PublicKey,
452 }
453 impl_writeable_tlv_based!(ClaimingPayment, {
454         (0, amount_msat, required),
455         (2, payment_purpose, required),
456         (4, receiver_node_id, required),
457 });
458
459 /// Information about claimable or being-claimed payments
460 struct ClaimablePayments {
461         /// Map from payment hash to the payment data and any HTLCs which are to us and can be
462         /// failed/claimed by the user.
463         ///
464         /// Note that, no consistency guarantees are made about the channels given here actually
465         /// existing anymore by the time you go to read them!
466         ///
467         /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
468         /// we don't get a duplicate payment.
469         claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
470
471         /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
472         /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
473         /// as an [`events::Event::PaymentClaimed`].
474         pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
475 }
476
477 /// Events which we process internally but cannot be procsesed immediately at the generation site
478 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
479 /// quite some time lag.
480 enum BackgroundEvent {
481         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
482         /// commitment transaction.
483         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
484 }
485
486 #[derive(Debug)]
487 pub(crate) enum MonitorUpdateCompletionAction {
488         /// Indicates that a payment ultimately destined for us was claimed and we should emit an
489         /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
490         /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
491         /// event can be generated.
492         PaymentClaimed { payment_hash: PaymentHash },
493         /// Indicates an [`events::Event`] should be surfaced to the user.
494         EmitEvent { event: events::Event },
495 }
496
497 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
498         (0, PaymentClaimed) => { (0, payment_hash, required) },
499         (2, EmitEvent) => { (0, event, upgradable_required) },
500 );
501
502 /// State we hold per-peer.
503 pub(super) struct PeerState<Signer: ChannelSigner> {
504         /// `temporary_channel_id` or `channel_id` -> `channel`.
505         ///
506         /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
507         /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
508         /// `channel_id`.
509         pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
510         /// The latest `InitFeatures` we heard from the peer.
511         latest_features: InitFeatures,
512         /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
513         /// for broadcast messages, where ordering isn't as strict).
514         pub(super) pending_msg_events: Vec<MessageSendEvent>,
515         /// Map from a specific channel to some action(s) that should be taken when all pending
516         /// [`ChannelMonitorUpdate`]s for the channel complete updating.
517         ///
518         /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
519         /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
520         /// channels with a peer this will just be one allocation and will amount to a linear list of
521         /// channels to walk, avoiding the whole hashing rigmarole.
522         ///
523         /// Note that the channel may no longer exist. For example, if a channel was closed but we
524         /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
525         /// for a missing channel. While a malicious peer could construct a second channel with the
526         /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
527         /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
528         /// duplicates do not occur, so such channels should fail without a monitor update completing.
529         monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
530         /// The peer is currently connected (i.e. we've seen a
531         /// [`ChannelMessageHandler::peer_connected`] and no corresponding
532         /// [`ChannelMessageHandler::peer_disconnected`].
533         is_connected: bool,
534 }
535
536 impl <Signer: ChannelSigner> PeerState<Signer> {
537         /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
538         /// If true is passed for `require_disconnected`, the function will return false if we haven't
539         /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
540         fn ok_to_remove(&self, require_disconnected: bool) -> bool {
541                 if require_disconnected && self.is_connected {
542                         return false
543                 }
544                 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
545         }
546 }
547
548 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
549 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
550 ///
551 /// For users who don't want to bother doing their own payment preimage storage, we also store that
552 /// here.
553 ///
554 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
555 /// and instead encoding it in the payment secret.
556 struct PendingInboundPayment {
557         /// The payment secret that the sender must use for us to accept this payment
558         payment_secret: PaymentSecret,
559         /// Time at which this HTLC expires - blocks with a header time above this value will result in
560         /// this payment being removed.
561         expiry_time: u64,
562         /// Arbitrary identifier the user specifies (or not)
563         user_payment_id: u64,
564         // Other required attributes of the payment, optionally enforced:
565         payment_preimage: Option<PaymentPreimage>,
566         min_value_msat: Option<u64>,
567 }
568
569 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
570 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
571 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
572 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
573 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
574 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
575 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
576 ///
577 /// (C-not exported) as Arcs don't make sense in bindings
578 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
579         Arc<M>,
580         Arc<T>,
581         Arc<KeysManager>,
582         Arc<KeysManager>,
583         Arc<KeysManager>,
584         Arc<F>,
585         Arc<DefaultRouter<
586                 Arc<NetworkGraph<Arc<L>>>,
587                 Arc<L>,
588                 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
589         >>,
590         Arc<L>
591 >;
592
593 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
594 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
595 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
596 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
597 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
598 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
599 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
600 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
601 ///
602 /// (C-not exported) as Arcs don't make sense in bindings
603 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
604
605 /// Manager which keeps track of a number of channels and sends messages to the appropriate
606 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
607 ///
608 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
609 /// to individual Channels.
610 ///
611 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
612 /// all peers during write/read (though does not modify this instance, only the instance being
613 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
614 /// called funding_transaction_generated for outbound channels).
615 ///
616 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
617 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
618 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
619 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
620 /// the serialization process). If the deserialized version is out-of-date compared to the
621 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
622 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
623 ///
624 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
625 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
626 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
627 /// block_connected() to step towards your best block) upon deserialization before using the
628 /// object!
629 ///
630 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
631 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
632 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
633 /// offline for a full minute. In order to track this, you must call
634 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
635 ///
636 /// To avoid trivial DoS issues, ChannelManager limits the number of inbound connections and
637 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
638 /// not have a channel with being unable to connect to us or open new channels with us if we have
639 /// many peers with unfunded channels.
640 ///
641 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
642 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
643 /// never limited. Please ensure you limit the count of such channels yourself.
644 ///
645 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
646 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
647 /// essentially you should default to using a SimpleRefChannelManager, and use a
648 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
649 /// you're using lightning-net-tokio.
650 //
651 // Lock order:
652 // The tree structure below illustrates the lock order requirements for the different locks of the
653 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
654 // and should then be taken in the order of the lowest to the highest level in the tree.
655 // Note that locks on different branches shall not be taken at the same time, as doing so will
656 // create a new lock order for those specific locks in the order they were taken.
657 //
658 // Lock order tree:
659 //
660 // `total_consistency_lock`
661 //  |
662 //  |__`forward_htlcs`
663 //  |   |
664 //  |   |__`pending_intercepted_htlcs`
665 //  |
666 //  |__`per_peer_state`
667 //  |   |
668 //  |   |__`pending_inbound_payments`
669 //  |       |
670 //  |       |__`claimable_payments`
671 //  |       |
672 //  |       |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
673 //  |           |
674 //  |           |__`peer_state`
675 //  |               |
676 //  |               |__`id_to_peer`
677 //  |               |
678 //  |               |__`short_to_chan_info`
679 //  |               |
680 //  |               |__`outbound_scid_aliases`
681 //  |               |
682 //  |               |__`best_block`
683 //  |               |
684 //  |               |__`pending_events`
685 //  |                   |
686 //  |                   |__`pending_background_events`
687 //
688 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
689 where
690         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
691         T::Target: BroadcasterInterface,
692         ES::Target: EntropySource,
693         NS::Target: NodeSigner,
694         SP::Target: SignerProvider,
695         F::Target: FeeEstimator,
696         R::Target: Router,
697         L::Target: Logger,
698 {
699         default_configuration: UserConfig,
700         genesis_hash: BlockHash,
701         fee_estimator: LowerBoundedFeeEstimator<F>,
702         chain_monitor: M,
703         tx_broadcaster: T,
704         #[allow(unused)]
705         router: R,
706
707         /// See `ChannelManager` struct-level documentation for lock order requirements.
708         #[cfg(test)]
709         pub(super) best_block: RwLock<BestBlock>,
710         #[cfg(not(test))]
711         best_block: RwLock<BestBlock>,
712         secp_ctx: Secp256k1<secp256k1::All>,
713
714         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
715         /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
716         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
717         /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
718         ///
719         /// See `ChannelManager` struct-level documentation for lock order requirements.
720         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
721
722         /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
723         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
724         /// (if the channel has been force-closed), however we track them here to prevent duplicative
725         /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
726         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
727         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
728         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
729         /// after reloading from disk while replaying blocks against ChannelMonitors.
730         ///
731         /// See `PendingOutboundPayment` documentation for more info.
732         ///
733         /// See `ChannelManager` struct-level documentation for lock order requirements.
734         pending_outbound_payments: OutboundPayments,
735
736         /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
737         ///
738         /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
739         /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
740         /// and via the classic SCID.
741         ///
742         /// Note that no consistency guarantees are made about the existence of a channel with the
743         /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
744         ///
745         /// See `ChannelManager` struct-level documentation for lock order requirements.
746         #[cfg(test)]
747         pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
748         #[cfg(not(test))]
749         forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
750         /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
751         /// until the user tells us what we should do with them.
752         ///
753         /// See `ChannelManager` struct-level documentation for lock order requirements.
754         pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
755
756         /// The sets of payments which are claimable or currently being claimed. See
757         /// [`ClaimablePayments`]' individual field docs for more info.
758         ///
759         /// See `ChannelManager` struct-level documentation for lock order requirements.
760         claimable_payments: Mutex<ClaimablePayments>,
761
762         /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
763         /// and some closed channels which reached a usable state prior to being closed. This is used
764         /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
765         /// active channel list on load.
766         ///
767         /// See `ChannelManager` struct-level documentation for lock order requirements.
768         outbound_scid_aliases: Mutex<HashSet<u64>>,
769
770         /// `channel_id` -> `counterparty_node_id`.
771         ///
772         /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
773         /// multiple channels with the same `temporary_channel_id` to different peers can exist,
774         /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
775         ///
776         /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
777         /// the corresponding channel for the event, as we only have access to the `channel_id` during
778         /// the handling of the events.
779         ///
780         /// Note that no consistency guarantees are made about the existence of a peer with the
781         /// `counterparty_node_id` in our other maps.
782         ///
783         /// TODO:
784         /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
785         /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
786         /// would break backwards compatability.
787         /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
788         /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
789         /// required to access the channel with the `counterparty_node_id`.
790         ///
791         /// See `ChannelManager` struct-level documentation for lock order requirements.
792         id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
793
794         /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
795         ///
796         /// Outbound SCID aliases are added here once the channel is available for normal use, with
797         /// SCIDs being added once the funding transaction is confirmed at the channel's required
798         /// confirmation depth.
799         ///
800         /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
801         /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
802         /// channel with the `channel_id` in our other maps.
803         ///
804         /// See `ChannelManager` struct-level documentation for lock order requirements.
805         #[cfg(test)]
806         pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
807         #[cfg(not(test))]
808         short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
809
810         our_network_pubkey: PublicKey,
811
812         inbound_payment_key: inbound_payment::ExpandedKey,
813
814         /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
815         /// incoming payment. To make it harder for a third-party to identify the type of a payment,
816         /// we encrypt the namespace identifier using these bytes.
817         ///
818         /// [fake scids]: crate::util::scid_utils::fake_scid
819         fake_scid_rand_bytes: [u8; 32],
820
821         /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
822         /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
823         /// keeping additional state.
824         probing_cookie_secret: [u8; 32],
825
826         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
827         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
828         /// very far in the past, and can only ever be up to two hours in the future.
829         highest_seen_timestamp: AtomicUsize,
830
831         /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
832         /// basis, as well as the peer's latest features.
833         ///
834         /// If we are connected to a peer we always at least have an entry here, even if no channels
835         /// are currently open with that peer.
836         ///
837         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
838         /// operate on the inner value freely. This opens up for parallel per-peer operation for
839         /// channels.
840         ///
841         /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
842         ///
843         /// See `ChannelManager` struct-level documentation for lock order requirements.
844         #[cfg(not(any(test, feature = "_test_utils")))]
845         per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
846         #[cfg(any(test, feature = "_test_utils"))]
847         pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
848
849         /// See `ChannelManager` struct-level documentation for lock order requirements.
850         pending_events: Mutex<Vec<events::Event>>,
851         /// See `ChannelManager` struct-level documentation for lock order requirements.
852         pending_background_events: Mutex<Vec<BackgroundEvent>>,
853         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
854         /// Essentially just when we're serializing ourselves out.
855         /// Taken first everywhere where we are making changes before any other locks.
856         /// When acquiring this lock in read mode, rather than acquiring it directly, call
857         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
858         /// Notifier the lock contains sends out a notification when the lock is released.
859         total_consistency_lock: RwLock<()>,
860
861         persistence_notifier: Notifier,
862
863         entropy_source: ES,
864         node_signer: NS,
865         signer_provider: SP,
866
867         logger: L,
868 }
869
870 /// Chain-related parameters used to construct a new `ChannelManager`.
871 ///
872 /// Typically, the block-specific parameters are derived from the best block hash for the network,
873 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
874 /// are not needed when deserializing a previously constructed `ChannelManager`.
875 #[derive(Clone, Copy, PartialEq)]
876 pub struct ChainParameters {
877         /// The network for determining the `chain_hash` in Lightning messages.
878         pub network: Network,
879
880         /// The hash and height of the latest block successfully connected.
881         ///
882         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
883         pub best_block: BestBlock,
884 }
885
886 #[derive(Copy, Clone, PartialEq)]
887 enum NotifyOption {
888         DoPersist,
889         SkipPersist,
890 }
891
892 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
893 /// desirable to notify any listeners on `await_persistable_update_timeout`/
894 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
895 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
896 /// sending the aforementioned notification (since the lock being released indicates that the
897 /// updates are ready for persistence).
898 ///
899 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
900 /// notify or not based on whether relevant changes have been made, providing a closure to
901 /// `optionally_notify` which returns a `NotifyOption`.
902 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
903         persistence_notifier: &'a Notifier,
904         should_persist: F,
905         // We hold onto this result so the lock doesn't get released immediately.
906         _read_guard: RwLockReadGuard<'a, ()>,
907 }
908
909 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
910         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
911                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
912         }
913
914         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
915                 let read_guard = lock.read().unwrap();
916
917                 PersistenceNotifierGuard {
918                         persistence_notifier: notifier,
919                         should_persist: persist_check,
920                         _read_guard: read_guard,
921                 }
922         }
923 }
924
925 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
926         fn drop(&mut self) {
927                 if (self.should_persist)() == NotifyOption::DoPersist {
928                         self.persistence_notifier.notify();
929                 }
930         }
931 }
932
933 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
934 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
935 ///
936 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
937 ///
938 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
939 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
940 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
941 /// the maximum required amount in lnd as of March 2021.
942 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
943
944 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
945 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
946 ///
947 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
948 ///
949 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
950 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
951 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
952 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
953 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
954 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
955 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
956 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
957 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
958 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
959 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
960 // routing failure for any HTLC sender picking up an LDK node among the first hops.
961 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
962
963 /// Minimum CLTV difference between the current block height and received inbound payments.
964 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
965 /// this value.
966 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
967 // any payments to succeed. Further, we don't want payments to fail if a block was found while
968 // a payment was being routed, so we add an extra block to be safe.
969 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
970
971 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
972 // ie that if the next-hop peer fails the HTLC within
973 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
974 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
975 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
976 // LATENCY_GRACE_PERIOD_BLOCKS.
977 #[deny(const_err)]
978 #[allow(dead_code)]
979 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
980
981 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
982 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
983 #[deny(const_err)]
984 #[allow(dead_code)]
985 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
986
987 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
988 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
989
990 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
991 /// idempotency of payments by [`PaymentId`]. See
992 /// [`OutboundPayments::remove_stale_resolved_payments`].
993 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
994
995 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
996 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
997 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
998 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
999
1000 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1001 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1002 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1003
1004 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1005 /// many peers we reject new (inbound) connections.
1006 const MAX_NO_CHANNEL_PEERS: usize = 250;
1007
1008 /// Information needed for constructing an invoice route hint for this channel.
1009 #[derive(Clone, Debug, PartialEq)]
1010 pub struct CounterpartyForwardingInfo {
1011         /// Base routing fee in millisatoshis.
1012         pub fee_base_msat: u32,
1013         /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1014         pub fee_proportional_millionths: u32,
1015         /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1016         /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1017         /// `cltv_expiry_delta` for more details.
1018         pub cltv_expiry_delta: u16,
1019 }
1020
1021 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1022 /// to better separate parameters.
1023 #[derive(Clone, Debug, PartialEq)]
1024 pub struct ChannelCounterparty {
1025         /// The node_id of our counterparty
1026         pub node_id: PublicKey,
1027         /// The Features the channel counterparty provided upon last connection.
1028         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1029         /// many routing-relevant features are present in the init context.
1030         pub features: InitFeatures,
1031         /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1032         /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1033         /// claiming at least this value on chain.
1034         ///
1035         /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1036         ///
1037         /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1038         pub unspendable_punishment_reserve: u64,
1039         /// Information on the fees and requirements that the counterparty requires when forwarding
1040         /// payments to us through this channel.
1041         pub forwarding_info: Option<CounterpartyForwardingInfo>,
1042         /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1043         /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1044         /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1045         pub outbound_htlc_minimum_msat: Option<u64>,
1046         /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1047         pub outbound_htlc_maximum_msat: Option<u64>,
1048 }
1049
1050 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
1051 #[derive(Clone, Debug, PartialEq)]
1052 pub struct ChannelDetails {
1053         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1054         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1055         /// Note that this means this value is *not* persistent - it can change once during the
1056         /// lifetime of the channel.
1057         pub channel_id: [u8; 32],
1058         /// Parameters which apply to our counterparty. See individual fields for more information.
1059         pub counterparty: ChannelCounterparty,
1060         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1061         /// our counterparty already.
1062         ///
1063         /// Note that, if this has been set, `channel_id` will be equivalent to
1064         /// `funding_txo.unwrap().to_channel_id()`.
1065         pub funding_txo: Option<OutPoint>,
1066         /// The features which this channel operates with. See individual features for more info.
1067         ///
1068         /// `None` until negotiation completes and the channel type is finalized.
1069         pub channel_type: Option<ChannelTypeFeatures>,
1070         /// The position of the funding transaction in the chain. None if the funding transaction has
1071         /// not yet been confirmed and the channel fully opened.
1072         ///
1073         /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1074         /// payments instead of this. See [`get_inbound_payment_scid`].
1075         ///
1076         /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1077         /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1078         ///
1079         /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1080         /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1081         /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1082         /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1083         /// [`confirmations_required`]: Self::confirmations_required
1084         pub short_channel_id: Option<u64>,
1085         /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1086         /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1087         /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1088         /// `Some(0)`).
1089         ///
1090         /// This will be `None` as long as the channel is not available for routing outbound payments.
1091         ///
1092         /// [`short_channel_id`]: Self::short_channel_id
1093         /// [`confirmations_required`]: Self::confirmations_required
1094         pub outbound_scid_alias: Option<u64>,
1095         /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1096         /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1097         /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1098         /// when they see a payment to be routed to us.
1099         ///
1100         /// Our counterparty may choose to rotate this value at any time, though will always recognize
1101         /// previous values for inbound payment forwarding.
1102         ///
1103         /// [`short_channel_id`]: Self::short_channel_id
1104         pub inbound_scid_alias: Option<u64>,
1105         /// The value, in satoshis, of this channel as appears in the funding output
1106         pub channel_value_satoshis: u64,
1107         /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1108         /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1109         /// this value on chain.
1110         ///
1111         /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1112         ///
1113         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1114         ///
1115         /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1116         pub unspendable_punishment_reserve: Option<u64>,
1117         /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1118         /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1119         /// 0.0.113.
1120         pub user_channel_id: u128,
1121         /// Our total balance.  This is the amount we would get if we close the channel.
1122         /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1123         /// amount is not likely to be recoverable on close.
1124         ///
1125         /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1126         /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1127         /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1128         /// This does not consider any on-chain fees.
1129         ///
1130         /// See also [`ChannelDetails::outbound_capacity_msat`]
1131         pub balance_msat: u64,
1132         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1133         /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1134         /// available for inclusion in new outbound HTLCs). This further does not include any pending
1135         /// outgoing HTLCs which are awaiting some other resolution to be sent.
1136         ///
1137         /// See also [`ChannelDetails::balance_msat`]
1138         ///
1139         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1140         /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1141         /// should be able to spend nearly this amount.
1142         pub outbound_capacity_msat: u64,
1143         /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1144         /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1145         /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1146         /// to use a limit as close as possible to the HTLC limit we can currently send.
1147         ///
1148         /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1149         pub next_outbound_htlc_limit_msat: u64,
1150         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1151         /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1152         /// available for inclusion in new inbound HTLCs).
1153         /// Note that there are some corner cases not fully handled here, so the actual available
1154         /// inbound capacity may be slightly higher than this.
1155         ///
1156         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1157         /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1158         /// However, our counterparty should be able to spend nearly this amount.
1159         pub inbound_capacity_msat: u64,
1160         /// The number of required confirmations on the funding transaction before the funding will be
1161         /// considered "locked". This number is selected by the channel fundee (i.e. us if
1162         /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1163         /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1164         /// [`ChannelHandshakeLimits::max_minimum_depth`].
1165         ///
1166         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1167         ///
1168         /// [`is_outbound`]: ChannelDetails::is_outbound
1169         /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1170         /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1171         pub confirmations_required: Option<u32>,
1172         /// The current number of confirmations on the funding transaction.
1173         ///
1174         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1175         pub confirmations: Option<u32>,
1176         /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1177         /// until we can claim our funds after we force-close the channel. During this time our
1178         /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1179         /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1180         /// time to claim our non-HTLC-encumbered funds.
1181         ///
1182         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1183         pub force_close_spend_delay: Option<u16>,
1184         /// True if the channel was initiated (and thus funded) by us.
1185         pub is_outbound: bool,
1186         /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1187         /// channel is not currently being shut down. `channel_ready` message exchange implies the
1188         /// required confirmation count has been reached (and we were connected to the peer at some
1189         /// point after the funding transaction received enough confirmations). The required
1190         /// confirmation count is provided in [`confirmations_required`].
1191         ///
1192         /// [`confirmations_required`]: ChannelDetails::confirmations_required
1193         pub is_channel_ready: bool,
1194         /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1195         /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1196         ///
1197         /// This is a strict superset of `is_channel_ready`.
1198         pub is_usable: bool,
1199         /// True if this channel is (or will be) publicly-announced.
1200         pub is_public: bool,
1201         /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1202         /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1203         pub inbound_htlc_minimum_msat: Option<u64>,
1204         /// The largest value HTLC (in msat) we currently will accept, for this channel.
1205         pub inbound_htlc_maximum_msat: Option<u64>,
1206         /// Set of configurable parameters that affect channel operation.
1207         ///
1208         /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1209         pub config: Option<ChannelConfig>,
1210 }
1211
1212 impl ChannelDetails {
1213         /// Gets the current SCID which should be used to identify this channel for inbound payments.
1214         /// This should be used for providing invoice hints or in any other context where our
1215         /// counterparty will forward a payment to us.
1216         ///
1217         /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1218         /// [`ChannelDetails::short_channel_id`]. See those for more information.
1219         pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1220                 self.inbound_scid_alias.or(self.short_channel_id)
1221         }
1222
1223         /// Gets the current SCID which should be used to identify this channel for outbound payments.
1224         /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1225         /// we're sending or forwarding a payment outbound over this channel.
1226         ///
1227         /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1228         /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1229         pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1230                 self.short_channel_id.or(self.outbound_scid_alias)
1231         }
1232 }
1233
1234 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1235 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1236 #[derive(Debug, PartialEq)]
1237 pub enum RecentPaymentDetails {
1238         /// When a payment is still being sent and awaiting successful delivery.
1239         Pending {
1240                 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1241                 /// abandoned.
1242                 payment_hash: PaymentHash,
1243                 /// Total amount (in msat, excluding fees) across all paths for this payment,
1244                 /// not just the amount currently inflight.
1245                 total_msat: u64,
1246         },
1247         /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1248         /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1249         /// payment is removed from tracking.
1250         Fulfilled {
1251                 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1252                 /// made before LDK version 0.0.104.
1253                 payment_hash: Option<PaymentHash>,
1254         },
1255         /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1256         /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1257         /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1258         Abandoned {
1259                 /// Hash of the payment that we have given up trying to send.
1260                 payment_hash: PaymentHash,
1261         },
1262 }
1263
1264 /// Route hints used in constructing invoices for [phantom node payents].
1265 ///
1266 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1267 #[derive(Clone)]
1268 pub struct PhantomRouteHints {
1269         /// The list of channels to be included in the invoice route hints.
1270         pub channels: Vec<ChannelDetails>,
1271         /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1272         /// route hints.
1273         pub phantom_scid: u64,
1274         /// The pubkey of the real backing node that would ultimately receive the payment.
1275         pub real_node_pubkey: PublicKey,
1276 }
1277
1278 macro_rules! handle_error {
1279         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1280                 match $internal {
1281                         Ok(msg) => Ok(msg),
1282                         Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1283                                 // In testing, ensure there are no deadlocks where the lock is already held upon
1284                                 // entering the macro.
1285                                 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1286                                 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1287
1288                                 let mut msg_events = Vec::with_capacity(2);
1289
1290                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
1291                                         $self.finish_force_close_channel(shutdown_res);
1292                                         if let Some(update) = update_option {
1293                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1294                                                         msg: update
1295                                                 });
1296                                         }
1297                                         if let Some((channel_id, user_channel_id)) = chan_id {
1298                                                 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1299                                                         channel_id, user_channel_id,
1300                                                         reason: ClosureReason::ProcessingError { err: err.err.clone() }
1301                                                 });
1302                                         }
1303                                 }
1304
1305                                 log_error!($self.logger, "{}", err.err);
1306                                 if let msgs::ErrorAction::IgnoreError = err.action {
1307                                 } else {
1308                                         msg_events.push(events::MessageSendEvent::HandleError {
1309                                                 node_id: $counterparty_node_id,
1310                                                 action: err.action.clone()
1311                                         });
1312                                 }
1313
1314                                 if !msg_events.is_empty() {
1315                                         let per_peer_state = $self.per_peer_state.read().unwrap();
1316                                         if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1317                                                 let mut peer_state = peer_state_mutex.lock().unwrap();
1318                                                 peer_state.pending_msg_events.append(&mut msg_events);
1319                                         }
1320                                 }
1321
1322                                 // Return error in case higher-API need one
1323                                 Err(err)
1324                         },
1325                 }
1326         }
1327 }
1328
1329 macro_rules! update_maps_on_chan_removal {
1330         ($self: expr, $channel: expr) => {{
1331                 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1332                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1333                 if let Some(short_id) = $channel.get_short_channel_id() {
1334                         short_to_chan_info.remove(&short_id);
1335                 } else {
1336                         // If the channel was never confirmed on-chain prior to its closure, remove the
1337                         // outbound SCID alias we used for it from the collision-prevention set. While we
1338                         // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1339                         // also don't want a counterparty to be able to trivially cause a memory leak by simply
1340                         // opening a million channels with us which are closed before we ever reach the funding
1341                         // stage.
1342                         let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1343                         debug_assert!(alias_removed);
1344                 }
1345                 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1346         }}
1347 }
1348
1349 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1350 macro_rules! convert_chan_err {
1351         ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1352                 match $err {
1353                         ChannelError::Warn(msg) => {
1354                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1355                         },
1356                         ChannelError::Ignore(msg) => {
1357                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1358                         },
1359                         ChannelError::Close(msg) => {
1360                                 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1361                                 update_maps_on_chan_removal!($self, $channel);
1362                                 let shutdown_res = $channel.force_shutdown(true);
1363                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1364                                         shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1365                         },
1366                 }
1367         }
1368 }
1369
1370 macro_rules! break_chan_entry {
1371         ($self: ident, $res: expr, $entry: expr) => {
1372                 match $res {
1373                         Ok(res) => res,
1374                         Err(e) => {
1375                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1376                                 if drop {
1377                                         $entry.remove_entry();
1378                                 }
1379                                 break Err(res);
1380                         }
1381                 }
1382         }
1383 }
1384
1385 macro_rules! try_chan_entry {
1386         ($self: ident, $res: expr, $entry: expr) => {
1387                 match $res {
1388                         Ok(res) => res,
1389                         Err(e) => {
1390                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1391                                 if drop {
1392                                         $entry.remove_entry();
1393                                 }
1394                                 return Err(res);
1395                         }
1396                 }
1397         }
1398 }
1399
1400 macro_rules! remove_channel {
1401         ($self: expr, $entry: expr) => {
1402                 {
1403                         let channel = $entry.remove_entry().1;
1404                         update_maps_on_chan_removal!($self, channel);
1405                         channel
1406                 }
1407         }
1408 }
1409
1410 macro_rules! send_channel_ready {
1411         ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1412                 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1413                         node_id: $channel.get_counterparty_node_id(),
1414                         msg: $channel_ready_msg,
1415                 });
1416                 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1417                 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1418                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1419                 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1420                 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1421                         "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1422                 if let Some(real_scid) = $channel.get_short_channel_id() {
1423                         let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1424                         assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1425                                 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1426                 }
1427         }}
1428 }
1429
1430 macro_rules! emit_channel_ready_event {
1431         ($self: expr, $channel: expr) => {
1432                 if $channel.should_emit_channel_ready_event() {
1433                         {
1434                                 let mut pending_events = $self.pending_events.lock().unwrap();
1435                                 pending_events.push(events::Event::ChannelReady {
1436                                         channel_id: $channel.channel_id(),
1437                                         user_channel_id: $channel.get_user_id(),
1438                                         counterparty_node_id: $channel.get_counterparty_node_id(),
1439                                         channel_type: $channel.get_channel_type().clone(),
1440                                 });
1441                         }
1442                         $channel.set_channel_ready_event_emitted();
1443                 }
1444         }
1445 }
1446
1447 macro_rules! handle_monitor_update_completion {
1448         ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1449                 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1450                         &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1451                         $self.best_block.read().unwrap().height());
1452                 let counterparty_node_id = $chan.get_counterparty_node_id();
1453                 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1454                         // We only send a channel_update in the case where we are just now sending a
1455                         // channel_ready and the channel is in a usable state. We may re-send a
1456                         // channel_update later through the announcement_signatures process for public
1457                         // channels, but there's no reason not to just inform our counterparty of our fees
1458                         // now.
1459                         if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1460                                 Some(events::MessageSendEvent::SendChannelUpdate {
1461                                         node_id: counterparty_node_id,
1462                                         msg,
1463                                 })
1464                         } else { None }
1465                 } else { None };
1466
1467                 let update_actions = $peer_state.monitor_update_blocked_actions
1468                         .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1469
1470                 let htlc_forwards = $self.handle_channel_resumption(
1471                         &mut $peer_state.pending_msg_events, $chan, updates.raa,
1472                         updates.commitment_update, updates.order, updates.accepted_htlcs,
1473                         updates.funding_broadcastable, updates.channel_ready,
1474                         updates.announcement_sigs);
1475                 if let Some(upd) = channel_update {
1476                         $peer_state.pending_msg_events.push(upd);
1477                 }
1478
1479                 let channel_id = $chan.channel_id();
1480                 core::mem::drop($peer_state_lock);
1481                 core::mem::drop($per_peer_state_lock);
1482
1483                 $self.handle_monitor_update_completion_actions(update_actions);
1484
1485                 if let Some(forwards) = htlc_forwards {
1486                         $self.forward_htlcs(&mut [forwards][..]);
1487                 }
1488                 $self.finalize_claims(updates.finalized_claimed_htlcs);
1489                 for failure in updates.failed_htlcs.drain(..) {
1490                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1491                         $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1492                 }
1493         } }
1494 }
1495
1496 macro_rules! handle_new_monitor_update {
1497         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1498                 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1499                 // any case so that it won't deadlock.
1500                 debug_assert!($self.id_to_peer.try_lock().is_ok());
1501                 match $update_res {
1502                         ChannelMonitorUpdateStatus::InProgress => {
1503                                 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1504                                         log_bytes!($chan.channel_id()[..]));
1505                                 Ok(())
1506                         },
1507                         ChannelMonitorUpdateStatus::PermanentFailure => {
1508                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1509                                         log_bytes!($chan.channel_id()[..]));
1510                                 update_maps_on_chan_removal!($self, $chan);
1511                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1512                                         "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1513                                         $chan.get_user_id(), $chan.force_shutdown(false),
1514                                         $self.get_channel_update_for_broadcast(&$chan).ok()));
1515                                 $remove;
1516                                 res
1517                         },
1518                         ChannelMonitorUpdateStatus::Completed => {
1519                                 if ($update_id == 0 || $chan.get_next_monitor_update()
1520                                         .expect("We can't be processing a monitor update if it isn't queued")
1521                                         .update_id == $update_id) &&
1522                                         $chan.get_latest_monitor_update_id() == $update_id
1523                                 {
1524                                         handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1525                                 }
1526                                 Ok(())
1527                         },
1528                 }
1529         } };
1530         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1531                 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1532         }
1533 }
1534
1535 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1536 where
1537         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1538         T::Target: BroadcasterInterface,
1539         ES::Target: EntropySource,
1540         NS::Target: NodeSigner,
1541         SP::Target: SignerProvider,
1542         F::Target: FeeEstimator,
1543         R::Target: Router,
1544         L::Target: Logger,
1545 {
1546         /// Constructs a new ChannelManager to hold several channels and route between them.
1547         ///
1548         /// This is the main "logic hub" for all channel-related actions, and implements
1549         /// ChannelMessageHandler.
1550         ///
1551         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1552         ///
1553         /// Users need to notify the new ChannelManager when a new block is connected or
1554         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1555         /// from after `params.latest_hash`.
1556         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1557                 let mut secp_ctx = Secp256k1::new();
1558                 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1559                 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1560                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1561                 ChannelManager {
1562                         default_configuration: config.clone(),
1563                         genesis_hash: genesis_block(params.network).header.block_hash(),
1564                         fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1565                         chain_monitor,
1566                         tx_broadcaster,
1567                         router,
1568
1569                         best_block: RwLock::new(params.best_block),
1570
1571                         outbound_scid_aliases: Mutex::new(HashSet::new()),
1572                         pending_inbound_payments: Mutex::new(HashMap::new()),
1573                         pending_outbound_payments: OutboundPayments::new(),
1574                         forward_htlcs: Mutex::new(HashMap::new()),
1575                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1576                         pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1577                         id_to_peer: Mutex::new(HashMap::new()),
1578                         short_to_chan_info: FairRwLock::new(HashMap::new()),
1579
1580                         our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1581                         secp_ctx,
1582
1583                         inbound_payment_key: expanded_inbound_key,
1584                         fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1585
1586                         probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1587
1588                         highest_seen_timestamp: AtomicUsize::new(0),
1589
1590                         per_peer_state: FairRwLock::new(HashMap::new()),
1591
1592                         pending_events: Mutex::new(Vec::new()),
1593                         pending_background_events: Mutex::new(Vec::new()),
1594                         total_consistency_lock: RwLock::new(()),
1595                         persistence_notifier: Notifier::new(),
1596
1597                         entropy_source,
1598                         node_signer,
1599                         signer_provider,
1600
1601                         logger,
1602                 }
1603         }
1604
1605         /// Gets the current configuration applied to all new channels.
1606         pub fn get_current_default_configuration(&self) -> &UserConfig {
1607                 &self.default_configuration
1608         }
1609
1610         fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1611                 let height = self.best_block.read().unwrap().height();
1612                 let mut outbound_scid_alias = 0;
1613                 let mut i = 0;
1614                 loop {
1615                         if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1616                                 outbound_scid_alias += 1;
1617                         } else {
1618                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1619                         }
1620                         if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1621                                 break;
1622                         }
1623                         i += 1;
1624                         if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1625                 }
1626                 outbound_scid_alias
1627         }
1628
1629         /// Creates a new outbound channel to the given remote node and with the given value.
1630         ///
1631         /// `user_channel_id` will be provided back as in
1632         /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1633         /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1634         /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1635         /// is simply copied to events and otherwise ignored.
1636         ///
1637         /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1638         /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1639         ///
1640         /// Note that we do not check if you are currently connected to the given peer. If no
1641         /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1642         /// the channel eventually being silently forgotten (dropped on reload).
1643         ///
1644         /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1645         /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1646         /// [`ChannelDetails::channel_id`] until after
1647         /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1648         /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1649         /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1650         ///
1651         /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1652         /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1653         /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1654         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1655                 if channel_value_satoshis < 1000 {
1656                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1657                 }
1658
1659                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1660                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1661                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1662
1663                 let per_peer_state = self.per_peer_state.read().unwrap();
1664
1665                 let peer_state_mutex = per_peer_state.get(&their_network_key)
1666                         .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1667
1668                 let mut peer_state = peer_state_mutex.lock().unwrap();
1669                 let channel = {
1670                         let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1671                         let their_features = &peer_state.latest_features;
1672                         let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1673                         match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1674                                 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1675                                 self.best_block.read().unwrap().height(), outbound_scid_alias)
1676                         {
1677                                 Ok(res) => res,
1678                                 Err(e) => {
1679                                         self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1680                                         return Err(e);
1681                                 },
1682                         }
1683                 };
1684                 let res = channel.get_open_channel(self.genesis_hash.clone());
1685
1686                 let temporary_channel_id = channel.channel_id();
1687                 match peer_state.channel_by_id.entry(temporary_channel_id) {
1688                         hash_map::Entry::Occupied(_) => {
1689                                 if cfg!(fuzzing) {
1690                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1691                                 } else {
1692                                         panic!("RNG is bad???");
1693                                 }
1694                         },
1695                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1696                 }
1697
1698                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1699                         node_id: their_network_key,
1700                         msg: res,
1701                 });
1702                 Ok(temporary_channel_id)
1703         }
1704
1705         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1706                 // Allocate our best estimate of the number of channels we have in the `res`
1707                 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1708                 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1709                 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1710                 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1711                 // the same channel.
1712                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1713                 {
1714                         let best_block_height = self.best_block.read().unwrap().height();
1715                         let per_peer_state = self.per_peer_state.read().unwrap();
1716                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1717                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1718                                 let peer_state = &mut *peer_state_lock;
1719                                 for (channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1720                                         let balance = channel.get_available_balances();
1721                                         let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1722                                                 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1723                                         res.push(ChannelDetails {
1724                                                 channel_id: (*channel_id).clone(),
1725                                                 counterparty: ChannelCounterparty {
1726                                                         node_id: channel.get_counterparty_node_id(),
1727                                                         features: peer_state.latest_features.clone(),
1728                                                         unspendable_punishment_reserve: to_remote_reserve_satoshis,
1729                                                         forwarding_info: channel.counterparty_forwarding_info(),
1730                                                         // Ensures that we have actually received the `htlc_minimum_msat` value
1731                                                         // from the counterparty through the `OpenChannel` or `AcceptChannel`
1732                                                         // message (as they are always the first message from the counterparty).
1733                                                         // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1734                                                         // default `0` value set by `Channel::new_outbound`.
1735                                                         outbound_htlc_minimum_msat: if channel.have_received_message() {
1736                                                                 Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1737                                                         outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1738                                                 },
1739                                                 funding_txo: channel.get_funding_txo(),
1740                                                 // Note that accept_channel (or open_channel) is always the first message, so
1741                                                 // `have_received_message` indicates that type negotiation has completed.
1742                                                 channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1743                                                 short_channel_id: channel.get_short_channel_id(),
1744                                                 outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1745                                                 inbound_scid_alias: channel.latest_inbound_scid_alias(),
1746                                                 channel_value_satoshis: channel.get_value_satoshis(),
1747                                                 unspendable_punishment_reserve: to_self_reserve_satoshis,
1748                                                 balance_msat: balance.balance_msat,
1749                                                 inbound_capacity_msat: balance.inbound_capacity_msat,
1750                                                 outbound_capacity_msat: balance.outbound_capacity_msat,
1751                                                 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1752                                                 user_channel_id: channel.get_user_id(),
1753                                                 confirmations_required: channel.minimum_depth(),
1754                                                 confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1755                                                 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1756                                                 is_outbound: channel.is_outbound(),
1757                                                 is_channel_ready: channel.is_usable(),
1758                                                 is_usable: channel.is_live(),
1759                                                 is_public: channel.should_announce(),
1760                                                 inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1761                                                 inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1762                                                 config: Some(channel.config()),
1763                                         });
1764                                 }
1765                         }
1766                 }
1767                 res
1768         }
1769
1770         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1771         /// more information.
1772         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1773                 self.list_channels_with_filter(|_| true)
1774         }
1775
1776         /// Gets the list of usable channels, in random order. Useful as an argument to
1777         /// [`Router::find_route`] to ensure non-announced channels are used.
1778         ///
1779         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1780         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1781         /// are.
1782         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1783                 // Note we use is_live here instead of usable which leads to somewhat confused
1784                 // internal/external nomenclature, but that's ok cause that's probably what the user
1785                 // really wanted anyway.
1786                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1787         }
1788
1789         /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
1790         /// successful path, or have unresolved HTLCs.
1791         ///
1792         /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
1793         /// result of a crash. If such a payment exists, is not listed here, and an
1794         /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
1795         ///
1796         /// [`Event::PaymentSent`]: events::Event::PaymentSent
1797         pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
1798                 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
1799                         .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
1800                                 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
1801                                         Some(RecentPaymentDetails::Pending {
1802                                                 payment_hash: *payment_hash,
1803                                                 total_msat: *total_msat,
1804                                         })
1805                                 },
1806                                 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
1807                                         Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
1808                                 },
1809                                 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
1810                                         Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
1811                                 },
1812                                 PendingOutboundPayment::Legacy { .. } => None
1813                         })
1814                         .collect()
1815         }
1816
1817         /// Helper function that issues the channel close events
1818         fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
1819                 let mut pending_events_lock = self.pending_events.lock().unwrap();
1820                 match channel.unbroadcasted_funding() {
1821                         Some(transaction) => {
1822                                 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1823                         },
1824                         None => {},
1825                 }
1826                 pending_events_lock.push(events::Event::ChannelClosed {
1827                         channel_id: channel.channel_id(),
1828                         user_channel_id: channel.get_user_id(),
1829                         reason: closure_reason
1830                 });
1831         }
1832
1833         fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1834                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1835
1836                 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1837                 let result: Result<(), _> = loop {
1838                         let per_peer_state = self.per_peer_state.read().unwrap();
1839
1840                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
1841                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
1842
1843                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1844                         let peer_state = &mut *peer_state_lock;
1845                         match peer_state.channel_by_id.entry(channel_id.clone()) {
1846                                 hash_map::Entry::Occupied(mut chan_entry) => {
1847                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
1848                                         let their_features = &peer_state.latest_features;
1849                                         let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
1850                                                 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
1851                                         failed_htlcs = htlcs;
1852
1853                                         // We can send the `shutdown` message before updating the `ChannelMonitor`
1854                                         // here as we don't need the monitor update to complete until we send a
1855                                         // `shutdown_signed`, which we'll delay if we're pending a monitor update.
1856                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1857                                                 node_id: *counterparty_node_id,
1858                                                 msg: shutdown_msg,
1859                                         });
1860
1861                                         // Update the monitor with the shutdown script if necessary.
1862                                         if let Some(monitor_update) = monitor_update_opt.take() {
1863                                                 let update_id = monitor_update.update_id;
1864                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
1865                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
1866                                         }
1867
1868                                         if chan_entry.get().is_shutdown() {
1869                                                 let channel = remove_channel!(self, chan_entry);
1870                                                 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1871                                                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1872                                                                 msg: channel_update
1873                                                         });
1874                                                 }
1875                                                 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1876                                         }
1877                                         break Ok(());
1878                                 },
1879                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
1880                         }
1881                 };
1882
1883                 for htlc_source in failed_htlcs.drain(..) {
1884                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1885                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
1886                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
1887                 }
1888
1889                 let _ = handle_error!(self, result, *counterparty_node_id);
1890                 Ok(())
1891         }
1892
1893         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1894         /// will be accepted on the given channel, and after additional timeout/the closing of all
1895         /// pending HTLCs, the channel will be closed on chain.
1896         ///
1897         ///  * If we are the channel initiator, we will pay between our [`Background`] and
1898         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1899         ///    estimate.
1900         ///  * If our counterparty is the channel initiator, we will require a channel closing
1901         ///    transaction feerate of at least our [`Background`] feerate or the feerate which
1902         ///    would appear on a force-closure transaction, whichever is lower. We will allow our
1903         ///    counterparty to pay as much fee as they'd like, however.
1904         ///
1905         /// May generate a SendShutdown message event on success, which should be relayed.
1906         ///
1907         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1908         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1909         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1910         pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1911                 self.close_channel_internal(channel_id, counterparty_node_id, None)
1912         }
1913
1914         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1915         /// will be accepted on the given channel, and after additional timeout/the closing of all
1916         /// pending HTLCs, the channel will be closed on chain.
1917         ///
1918         /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1919         /// the channel being closed or not:
1920         ///  * If we are the channel initiator, we will pay at least this feerate on the closing
1921         ///    transaction. The upper-bound is set by
1922         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1923         ///    estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1924         ///  * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1925         ///    transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1926         ///    will appear on a force-closure transaction, whichever is lower).
1927         ///
1928         /// May generate a SendShutdown message event on success, which should be relayed.
1929         ///
1930         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1931         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1932         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1933         pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1934                 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
1935         }
1936
1937         #[inline]
1938         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1939                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1940                 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1941                 for htlc_source in failed_htlcs.drain(..) {
1942                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
1943                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1944                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1945                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
1946                 }
1947                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1948                         // There isn't anything we can do if we get an update failure - we're already
1949                         // force-closing. The monitor update on the required in-memory copy should broadcast
1950                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1951                         // ignore the result here.
1952                         let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
1953                 }
1954         }
1955
1956         /// `peer_msg` should be set when we receive a message from a peer, but not set when the
1957         /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1958         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
1959         -> Result<PublicKey, APIError> {
1960                 let per_peer_state = self.per_peer_state.read().unwrap();
1961                 let peer_state_mutex = per_peer_state.get(peer_node_id)
1962                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
1963                 let mut chan = {
1964                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1965                         let peer_state = &mut *peer_state_lock;
1966                         if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
1967                                 if let Some(peer_msg) = peer_msg {
1968                                         self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
1969                                 } else {
1970                                         self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
1971                                 }
1972                                 remove_channel!(self, chan)
1973                         } else {
1974                                 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
1975                         }
1976                 };
1977                 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1978                 self.finish_force_close_channel(chan.force_shutdown(broadcast));
1979                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
1980                         let mut peer_state = peer_state_mutex.lock().unwrap();
1981                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1982                                 msg: update
1983                         });
1984                 }
1985
1986                 Ok(chan.get_counterparty_node_id())
1987         }
1988
1989         fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
1990                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1991                 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
1992                         Ok(counterparty_node_id) => {
1993                                 let per_peer_state = self.per_peer_state.read().unwrap();
1994                                 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
1995                                         let mut peer_state = peer_state_mutex.lock().unwrap();
1996                                         peer_state.pending_msg_events.push(
1997                                                 events::MessageSendEvent::HandleError {
1998                                                         node_id: counterparty_node_id,
1999                                                         action: msgs::ErrorAction::SendErrorMessage {
2000                                                                 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2001                                                         },
2002                                                 }
2003                                         );
2004                                 }
2005                                 Ok(())
2006                         },
2007                         Err(e) => Err(e)
2008                 }
2009         }
2010
2011         /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2012         /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2013         /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2014         /// channel.
2015         pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2016         -> Result<(), APIError> {
2017                 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2018         }
2019
2020         /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2021         /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2022         /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2023         ///
2024         /// You can always get the latest local transaction(s) to broadcast from
2025         /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2026         pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2027         -> Result<(), APIError> {
2028                 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2029         }
2030
2031         /// Force close all channels, immediately broadcasting the latest local commitment transaction
2032         /// for each to the chain and rejecting new HTLCs on each.
2033         pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2034                 for chan in self.list_channels() {
2035                         let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2036                 }
2037         }
2038
2039         /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2040         /// local transaction(s).
2041         pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2042                 for chan in self.list_channels() {
2043                         let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2044                 }
2045         }
2046
2047         fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2048                 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2049         {
2050                 // final_incorrect_cltv_expiry
2051                 if hop_data.outgoing_cltv_value != cltv_expiry {
2052                         return Err(ReceiveError {
2053                                 msg: "Upstream node set CLTV to the wrong value",
2054                                 err_code: 18,
2055                                 err_data: cltv_expiry.to_be_bytes().to_vec()
2056                         })
2057                 }
2058                 // final_expiry_too_soon
2059                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2060                 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2061                 //
2062                 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2063                 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2064                 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2065                 let current_height: u32 = self.best_block.read().unwrap().height();
2066                 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2067                         let mut err_data = Vec::with_capacity(12);
2068                         err_data.extend_from_slice(&amt_msat.to_be_bytes());
2069                         err_data.extend_from_slice(&current_height.to_be_bytes());
2070                         return Err(ReceiveError {
2071                                 err_code: 0x4000 | 15, err_data,
2072                                 msg: "The final CLTV expiry is too soon to handle",
2073                         });
2074                 }
2075                 if hop_data.amt_to_forward > amt_msat {
2076                         return Err(ReceiveError {
2077                                 err_code: 19,
2078                                 err_data: amt_msat.to_be_bytes().to_vec(),
2079                                 msg: "Upstream node sent less than we were supposed to receive in payment",
2080                         });
2081                 }
2082
2083                 let routing = match hop_data.format {
2084                         msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2085                                 return Err(ReceiveError {
2086                                         err_code: 0x4000|22,
2087                                         err_data: Vec::new(),
2088                                         msg: "Got non final data with an HMAC of 0",
2089                                 });
2090                         },
2091                         msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2092                                 if payment_data.is_some() && keysend_preimage.is_some() {
2093                                         return Err(ReceiveError {
2094                                                 err_code: 0x4000|22,
2095                                                 err_data: Vec::new(),
2096                                                 msg: "We don't support MPP keysend payments",
2097                                         });
2098                                 } else if let Some(data) = payment_data {
2099                                         PendingHTLCRouting::Receive {
2100                                                 payment_data: data,
2101                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2102                                                 phantom_shared_secret,
2103                                         }
2104                                 } else if let Some(payment_preimage) = keysend_preimage {
2105                                         // We need to check that the sender knows the keysend preimage before processing this
2106                                         // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2107                                         // could discover the final destination of X, by probing the adjacent nodes on the route
2108                                         // with a keysend payment of identical payment hash to X and observing the processing
2109                                         // time discrepancies due to a hash collision with X.
2110                                         let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2111                                         if hashed_preimage != payment_hash {
2112                                                 return Err(ReceiveError {
2113                                                         err_code: 0x4000|22,
2114                                                         err_data: Vec::new(),
2115                                                         msg: "Payment preimage didn't match payment hash",
2116                                                 });
2117                                         }
2118
2119                                         PendingHTLCRouting::ReceiveKeysend {
2120                                                 payment_preimage,
2121                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2122                                         }
2123                                 } else {
2124                                         return Err(ReceiveError {
2125                                                 err_code: 0x4000|0x2000|3,
2126                                                 err_data: Vec::new(),
2127                                                 msg: "We require payment_secrets",
2128                                         });
2129                                 }
2130                         },
2131                 };
2132                 Ok(PendingHTLCInfo {
2133                         routing,
2134                         payment_hash,
2135                         incoming_shared_secret: shared_secret,
2136                         incoming_amt_msat: Some(amt_msat),
2137                         outgoing_amt_msat: amt_msat,
2138                         outgoing_cltv_value: hop_data.outgoing_cltv_value,
2139                 })
2140         }
2141
2142         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2143                 macro_rules! return_malformed_err {
2144                         ($msg: expr, $err_code: expr) => {
2145                                 {
2146                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2147                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2148                                                 channel_id: msg.channel_id,
2149                                                 htlc_id: msg.htlc_id,
2150                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2151                                                 failure_code: $err_code,
2152                                         }));
2153                                 }
2154                         }
2155                 }
2156
2157                 if let Err(_) = msg.onion_routing_packet.public_key {
2158                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2159                 }
2160
2161                 let shared_secret = self.node_signer.ecdh(
2162                         Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2163                 ).unwrap().secret_bytes();
2164
2165                 if msg.onion_routing_packet.version != 0 {
2166                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2167                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2168                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
2169                         //receiving node would have to brute force to figure out which version was put in the
2170                         //packet by the node that send us the message, in the case of hashing the hop_data, the
2171                         //node knows the HMAC matched, so they already know what is there...
2172                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2173                 }
2174                 macro_rules! return_err {
2175                         ($msg: expr, $err_code: expr, $data: expr) => {
2176                                 {
2177                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2178                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2179                                                 channel_id: msg.channel_id,
2180                                                 htlc_id: msg.htlc_id,
2181                                                 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2182                                                         .get_encrypted_failure_packet(&shared_secret, &None),
2183                                         }));
2184                                 }
2185                         }
2186                 }
2187
2188                 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2189                         Ok(res) => res,
2190                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2191                                 return_malformed_err!(err_msg, err_code);
2192                         },
2193                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2194                                 return_err!(err_msg, err_code, &[0; 0]);
2195                         },
2196                 };
2197
2198                 let pending_forward_info = match next_hop {
2199                         onion_utils::Hop::Receive(next_hop_data) => {
2200                                 // OUR PAYMENT!
2201                                 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2202                                         Ok(info) => {
2203                                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
2204                                                 // message, however that would leak that we are the recipient of this payment, so
2205                                                 // instead we stay symmetric with the forwarding case, only responding (after a
2206                                                 // delay) once they've send us a commitment_signed!
2207                                                 PendingHTLCStatus::Forward(info)
2208                                         },
2209                                         Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2210                                 }
2211                         },
2212                         onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2213                                 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2214                                 let outgoing_packet = msgs::OnionPacket {
2215                                         version: 0,
2216                                         public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2217                                         hop_data: new_packet_bytes,
2218                                         hmac: next_hop_hmac.clone(),
2219                                 };
2220
2221                                 let short_channel_id = match next_hop_data.format {
2222                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2223                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
2224                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2225                                         },
2226                                 };
2227
2228                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
2229                                         routing: PendingHTLCRouting::Forward {
2230                                                 onion_packet: outgoing_packet,
2231                                                 short_channel_id,
2232                                         },
2233                                         payment_hash: msg.payment_hash.clone(),
2234                                         incoming_shared_secret: shared_secret,
2235                                         incoming_amt_msat: Some(msg.amount_msat),
2236                                         outgoing_amt_msat: next_hop_data.amt_to_forward,
2237                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2238                                 })
2239                         }
2240                 };
2241
2242                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2243                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2244                         // with a short_channel_id of 0. This is important as various things later assume
2245                         // short_channel_id is non-0 in any ::Forward.
2246                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2247                                 if let Some((err, mut code, chan_update)) = loop {
2248                                         let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2249                                         let forwarding_chan_info_opt = match id_option {
2250                                                 None => { // unknown_next_peer
2251                                                         // Note that this is likely a timing oracle for detecting whether an scid is a
2252                                                         // phantom or an intercept.
2253                                                         if (self.default_configuration.accept_intercept_htlcs &&
2254                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2255                                                            fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2256                                                         {
2257                                                                 None
2258                                                         } else {
2259                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2260                                                         }
2261                                                 },
2262                                                 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2263                                         };
2264                                         let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2265                                                 let per_peer_state = self.per_peer_state.read().unwrap();
2266                                                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2267                                                 if peer_state_mutex_opt.is_none() {
2268                                                         break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2269                                                 }
2270                                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2271                                                 let peer_state = &mut *peer_state_lock;
2272                                                 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2273                                                         None => {
2274                                                                 // Channel was removed. The short_to_chan_info and channel_by_id maps
2275                                                                 // have no consistency guarantees.
2276                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2277                                                         },
2278                                                         Some(chan) => chan
2279                                                 };
2280                                                 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2281                                                         // Note that the behavior here should be identical to the above block - we
2282                                                         // should NOT reveal the existence or non-existence of a private channel if
2283                                                         // we don't allow forwards outbound over them.
2284                                                         break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2285                                                 }
2286                                                 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2287                                                         // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2288                                                         // "refuse to forward unless the SCID alias was used", so we pretend
2289                                                         // we don't have the channel here.
2290                                                         break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2291                                                 }
2292                                                 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2293
2294                                                 // Note that we could technically not return an error yet here and just hope
2295                                                 // that the connection is reestablished or monitor updated by the time we get
2296                                                 // around to doing the actual forward, but better to fail early if we can and
2297                                                 // hopefully an attacker trying to path-trace payments cannot make this occur
2298                                                 // on a small/per-node/per-channel scale.
2299                                                 if !chan.is_live() { // channel_disabled
2300                                                         break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2301                                                 }
2302                                                 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2303                                                         break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2304                                                 }
2305                                                 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2306                                                         break Some((err, code, chan_update_opt));
2307                                                 }
2308                                                 chan_update_opt
2309                                         } else {
2310                                                 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2311                                                         // We really should set `incorrect_cltv_expiry` here but as we're not
2312                                                         // forwarding over a real channel we can't generate a channel_update
2313                                                         // for it. Instead we just return a generic temporary_node_failure.
2314                                                         break Some((
2315                                                                 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2316                                                                 0x2000 | 2, None,
2317                                                         ));
2318                                                 }
2319                                                 None
2320                                         };
2321
2322                                         let cur_height = self.best_block.read().unwrap().height() + 1;
2323                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2324                                         // but we want to be robust wrt to counterparty packet sanitization (see
2325                                         // HTLC_FAIL_BACK_BUFFER rationale).
2326                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2327                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2328                                         }
2329                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2330                                                 break Some(("CLTV expiry is too far in the future", 21, None));
2331                                         }
2332                                         // If the HTLC expires ~now, don't bother trying to forward it to our
2333                                         // counterparty. They should fail it anyway, but we don't want to bother with
2334                                         // the round-trips or risk them deciding they definitely want the HTLC and
2335                                         // force-closing to ensure they get it if we're offline.
2336                                         // We previously had a much more aggressive check here which tried to ensure
2337                                         // our counterparty receives an HTLC which has *our* risk threshold met on it,
2338                                         // but there is no need to do that, and since we're a bit conservative with our
2339                                         // risk threshold it just results in failing to forward payments.
2340                                         if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2341                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2342                                         }
2343
2344                                         break None;
2345                                 }
2346                                 {
2347                                         let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2348                                         if let Some(chan_update) = chan_update {
2349                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2350                                                         msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2351                                                 }
2352                                                 else if code == 0x1000 | 13 {
2353                                                         msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2354                                                 }
2355                                                 else if code == 0x1000 | 20 {
2356                                                         // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2357                                                         0u16.write(&mut res).expect("Writes cannot fail");
2358                                                 }
2359                                                 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2360                                                 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2361                                                 chan_update.write(&mut res).expect("Writes cannot fail");
2362                                         } else if code & 0x1000 == 0x1000 {
2363                                                 // If we're trying to return an error that requires a `channel_update` but
2364                                                 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2365                                                 // generate an update), just use the generic "temporary_node_failure"
2366                                                 // instead.
2367                                                 code = 0x2000 | 2;
2368                                         }
2369                                         return_err!(err, code, &res.0[..]);
2370                                 }
2371                         }
2372                 }
2373
2374                 pending_forward_info
2375         }
2376
2377         /// Gets the current channel_update for the given channel. This first checks if the channel is
2378         /// public, and thus should be called whenever the result is going to be passed out in a
2379         /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2380         ///
2381         /// Note that in `internal_closing_signed`, this function is called without the `peer_state`
2382         /// corresponding to the channel's counterparty locked, as the channel been removed from the
2383         /// storage and the `peer_state` lock has been dropped.
2384         fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2385                 if !chan.should_announce() {
2386                         return Err(LightningError {
2387                                 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2388                                 action: msgs::ErrorAction::IgnoreError
2389                         });
2390                 }
2391                 if chan.get_short_channel_id().is_none() {
2392                         return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2393                 }
2394                 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2395                 self.get_channel_update_for_unicast(chan)
2396         }
2397
2398         /// Gets the current channel_update for the given channel. This does not check if the channel
2399         /// is public (only returning an Err if the channel does not yet have an assigned short_id),
2400         /// and thus MUST NOT be called unless the recipient of the resulting message has already
2401         /// provided evidence that they know about the existence of the channel.
2402         ///
2403         /// Note that through `internal_closing_signed`, this function is called without the
2404         /// `peer_state`  corresponding to the channel's counterparty locked, as the channel been
2405         /// removed from the storage and the `peer_state` lock has been dropped.
2406         fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2407                 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2408                 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2409                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2410                         Some(id) => id,
2411                 };
2412
2413                 self.get_channel_update_for_onion(short_channel_id, chan)
2414         }
2415         fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2416                 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2417                 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2418
2419                 let unsigned = msgs::UnsignedChannelUpdate {
2420                         chain_hash: self.genesis_hash,
2421                         short_channel_id,
2422                         timestamp: chan.get_update_time_counter(),
2423                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2424                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2425                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2426                         htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2427                         fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2428                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2429                         excess_data: Vec::new(),
2430                 };
2431                 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2432                 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2433                 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2434                 // channel.
2435                 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2436
2437                 Ok(msgs::ChannelUpdate {
2438                         signature: sig,
2439                         contents: unsigned
2440                 })
2441         }
2442
2443         #[cfg(test)]
2444         pub(crate) fn test_send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2445                 let _lck = self.total_consistency_lock.read().unwrap();
2446                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
2447         }
2448
2449         fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2450                 // The top-level caller should hold the total_consistency_lock read lock.
2451                 debug_assert!(self.total_consistency_lock.try_write().is_err());
2452
2453                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2454                 let prng_seed = self.entropy_source.get_secure_random_bytes();
2455                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2456
2457                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2458                         .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2459                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2460                 if onion_utils::route_size_insane(&onion_payloads) {
2461                         return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
2462                 }
2463                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2464
2465                 let err: Result<(), _> = loop {
2466                         let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.first().unwrap().short_channel_id) {
2467                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2468                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2469                         };
2470
2471                         let per_peer_state = self.per_peer_state.read().unwrap();
2472                         let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2473                                 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2474                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2475                         let peer_state = &mut *peer_state_lock;
2476                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2477                                 if !chan.get().is_live() {
2478                                         return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2479                                 }
2480                                 let funding_txo = chan.get().get_funding_txo().unwrap();
2481                                 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2482                                         htlc_cltv, HTLCSource::OutboundRoute {
2483                                                 path: path.clone(),
2484                                                 session_priv: session_priv.clone(),
2485                                                 first_hop_htlc_msat: htlc_msat,
2486                                                 payment_id,
2487                                                 payment_secret: payment_secret.clone(),
2488                                                 payment_params: payment_params.clone(),
2489                                         }, onion_packet, &self.logger);
2490                                 match break_chan_entry!(self, send_res, chan) {
2491                                         Some(monitor_update) => {
2492                                                 let update_id = monitor_update.update_id;
2493                                                 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2494                                                 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
2495                                                         break Err(e);
2496                                                 }
2497                                                 if update_res == ChannelMonitorUpdateStatus::InProgress {
2498                                                         // Note that MonitorUpdateInProgress here indicates (per function
2499                                                         // docs) that we will resend the commitment update once monitor
2500                                                         // updating completes. Therefore, we must return an error
2501                                                         // indicating that it is unsafe to retry the payment wholesale,
2502                                                         // which we do in the send_payment check for
2503                                                         // MonitorUpdateInProgress, below.
2504                                                         return Err(APIError::MonitorUpdateInProgress);
2505                                                 }
2506                                         },
2507                                         None => { },
2508                                 }
2509                         } else {
2510                                 // The channel was likely removed after we fetched the id from the
2511                                 // `short_to_chan_info` map, but before we successfully locked the
2512                                 // `channel_by_id` map.
2513                                 // This can occur as no consistency guarantees exists between the two maps.
2514                                 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2515                         }
2516                         return Ok(());
2517                 };
2518
2519                 match handle_error!(self, err, path.first().unwrap().pubkey) {
2520                         Ok(_) => unreachable!(),
2521                         Err(e) => {
2522                                 Err(APIError::ChannelUnavailable { err: e.err })
2523                         },
2524                 }
2525         }
2526
2527         /// Sends a payment along a given route.
2528         ///
2529         /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2530         /// fields for more info.
2531         ///
2532         /// May generate SendHTLCs message(s) event on success, which should be relayed (e.g. via
2533         /// [`PeerManager::process_events`]).
2534         ///
2535         /// # Avoiding Duplicate Payments
2536         ///
2537         /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2538         /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2539         /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2540         /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2541         /// second payment with the same [`PaymentId`].
2542         ///
2543         /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2544         /// tracking of payments, including state to indicate once a payment has completed. Because you
2545         /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2546         /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2547         /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2548         ///
2549         /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2550         /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2551         /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2552         /// [`ChannelManager::list_recent_payments`] for more information.
2553         ///
2554         /// # Possible Error States on [`PaymentSendFailure`]
2555         ///
2556         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2557         /// each entry matching the corresponding-index entry in the route paths, see
2558         /// [`PaymentSendFailure`] for more info.
2559         ///
2560         /// In general, a path may raise:
2561         ///  * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2562         ///    node public key) is specified.
2563         ///  * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2564         ///    (including due to previous monitor update failure or new permanent monitor update
2565         ///    failure).
2566         ///  * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2567         ///    relevant updates.
2568         ///
2569         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2570         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2571         /// different route unless you intend to pay twice!
2572         ///
2573         /// # A caution on `payment_secret`
2574         ///
2575         /// `payment_secret` is unrelated to `payment_hash` (or [`PaymentPreimage`]) and exists to
2576         /// authenticate the sender to the recipient and prevent payment-probing (deanonymization)
2577         /// attacks. For newer nodes, it will be provided to you in the invoice. If you do not have one,
2578         /// the [`Route`] must not contain multiple paths as multi-path payments require a
2579         /// recipient-provided `payment_secret`.
2580         ///
2581         /// If a `payment_secret` *is* provided, we assume that the invoice had the payment_secret
2582         /// feature bit set (either as required or as available). If multiple paths are present in the
2583         /// [`Route`], we assume the invoice had the basic_mpp feature set.
2584         ///
2585         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2586         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2587         /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2588         /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2589         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2590                 let best_block_height = self.best_block.read().unwrap().height();
2591                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2592                 self.pending_outbound_payments
2593                         .send_payment_with_route(route, payment_hash, payment_secret, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2594                                 |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2595                                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2596         }
2597
2598         /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2599         /// `route_params` and retry failed payment paths based on `retry_strategy`.
2600         pub fn send_payment_with_retry(&self, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2601                 let best_block_height = self.best_block.read().unwrap().height();
2602                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2603                 self.pending_outbound_payments
2604                         .send_payment(payment_hash, payment_secret, payment_id, retry_strategy, route_params,
2605                                 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2606                                 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2607                                 &self.pending_events,
2608                                 |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2609                                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2610         }
2611
2612         #[cfg(test)]
2613         fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2614                 let best_block_height = self.best_block.read().unwrap().height();
2615                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2616                 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, payment_secret, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2617                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2618                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2619         }
2620
2621         #[cfg(test)]
2622         pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, payment_secret: Option<PaymentSecret>, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2623                 let best_block_height = self.best_block.read().unwrap().height();
2624                 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, payment_secret, payment_id, route, None, &self.entropy_source, best_block_height)
2625         }
2626
2627
2628         /// Signals that no further retries for the given payment should occur. Useful if you have a
2629         /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2630         /// retries are exhausted.
2631         ///
2632         /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2633         /// as there are no remaining pending HTLCs for this payment.
2634         ///
2635         /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2636         /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2637         /// determine the ultimate status of a payment.
2638         ///
2639         /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2640         /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2641         ///
2642         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2643         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2644         pub fn abandon_payment(&self, payment_id: PaymentId) {
2645                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2646                 self.pending_outbound_payments.abandon_payment(payment_id, &self.pending_events);
2647         }
2648
2649         /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2650         /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2651         /// the preimage, it must be a cryptographically secure random value that no intermediate node
2652         /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2653         /// never reach the recipient.
2654         ///
2655         /// See [`send_payment`] documentation for more details on the return value of this function
2656         /// and idempotency guarantees provided by the [`PaymentId`] key.
2657         ///
2658         /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2659         /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2660         ///
2661         /// Note that `route` must have exactly one path.
2662         ///
2663         /// [`send_payment`]: Self::send_payment
2664         pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2665                 let best_block_height = self.best_block.read().unwrap().height();
2666                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2667                 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2668                         route, payment_preimage, payment_id, &self.entropy_source, &self.node_signer,
2669                         best_block_height,
2670                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2671                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2672         }
2673
2674         /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2675         /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2676         ///
2677         /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2678         /// payments.
2679         ///
2680         /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2681         pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2682                 let best_block_height = self.best_block.read().unwrap().height();
2683                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2684                 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, payment_id,
2685                         retry_strategy, route_params, &self.router, self.list_usable_channels(),
2686                         || self.compute_inflight_htlcs(),  &self.entropy_source, &self.node_signer, best_block_height,
2687                         &self.logger, &self.pending_events,
2688                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2689                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2690         }
2691
2692         /// Send a payment that is probing the given route for liquidity. We calculate the
2693         /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2694         /// us to easily discern them from real payments.
2695         pub fn send_probe(&self, hops: Vec<RouteHop>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2696                 let best_block_height = self.best_block.read().unwrap().height();
2697                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2698                 self.pending_outbound_payments.send_probe(hops, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2699                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2700                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2701         }
2702
2703         /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2704         /// payment probe.
2705         #[cfg(test)]
2706         pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2707                 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2708         }
2709
2710         /// Handles the generation of a funding transaction, optionally (for tests) with a function
2711         /// which checks the correctness of the funding transaction given the associated channel.
2712         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2713                 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2714         ) -> Result<(), APIError> {
2715                 let per_peer_state = self.per_peer_state.read().unwrap();
2716                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2717                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2718
2719                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2720                 let peer_state = &mut *peer_state_lock;
2721                 let (chan, msg) = {
2722                         let (res, chan) = {
2723                                 match peer_state.channel_by_id.remove(temporary_channel_id) {
2724                                         Some(mut chan) => {
2725                                                 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2726
2727                                                 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2728                                                         .map_err(|e| if let ChannelError::Close(msg) = e {
2729                                                                 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2730                                                         } else { unreachable!(); })
2731                                                 , chan)
2732                                         },
2733                                         None => { return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) }) },
2734                                 }
2735                         };
2736                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
2737                                 Ok(funding_msg) => {
2738                                         (chan, funding_msg)
2739                                 },
2740                                 Err(_) => { return Err(APIError::ChannelUnavailable {
2741                                         err: "Signer refused to sign the initial commitment transaction".to_owned()
2742                                 }) },
2743                         }
2744                 };
2745
2746                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2747                         node_id: chan.get_counterparty_node_id(),
2748                         msg,
2749                 });
2750                 match peer_state.channel_by_id.entry(chan.channel_id()) {
2751                         hash_map::Entry::Occupied(_) => {
2752                                 panic!("Generated duplicate funding txid?");
2753                         },
2754                         hash_map::Entry::Vacant(e) => {
2755                                 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2756                                 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2757                                         panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2758                                 }
2759                                 e.insert(chan);
2760                         }
2761                 }
2762                 Ok(())
2763         }
2764
2765         #[cfg(test)]
2766         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2767                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2768                         Ok(OutPoint { txid: tx.txid(), index: output_index })
2769                 })
2770         }
2771
2772         /// Call this upon creation of a funding transaction for the given channel.
2773         ///
2774         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2775         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2776         ///
2777         /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2778         /// across the p2p network.
2779         ///
2780         /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2781         /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2782         ///
2783         /// May panic if the output found in the funding transaction is duplicative with some other
2784         /// channel (note that this should be trivially prevented by using unique funding transaction
2785         /// keys per-channel).
2786         ///
2787         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2788         /// counterparty's signature the funding transaction will automatically be broadcast via the
2789         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2790         ///
2791         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2792         /// not currently support replacing a funding transaction on an existing channel. Instead,
2793         /// create a new channel with a conflicting funding transaction.
2794         ///
2795         /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
2796         /// the wallet software generating the funding transaction to apply anti-fee sniping as
2797         /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
2798         /// for more details.
2799         ///
2800         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2801         /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
2802         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2803                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2804
2805                 for inp in funding_transaction.input.iter() {
2806                         if inp.witness.is_empty() {
2807                                 return Err(APIError::APIMisuseError {
2808                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2809                                 });
2810                         }
2811                 }
2812                 {
2813                         let height = self.best_block.read().unwrap().height();
2814                         // Transactions are evaluated as final by network mempools at the next block. However, the modules
2815                         // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
2816                         // the wallet module is in advance on the LDK view, allow one more block of headroom.
2817                         if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 2 {
2818                                 return Err(APIError::APIMisuseError {
2819                                         err: "Funding transaction absolute timelock is non-final".to_owned()
2820                                 });
2821                         }
2822                 }
2823                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
2824                         let mut output_index = None;
2825                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2826                         for (idx, outp) in tx.output.iter().enumerate() {
2827                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2828                                         if output_index.is_some() {
2829                                                 return Err(APIError::APIMisuseError {
2830                                                         err: "Multiple outputs matched the expected script and value".to_owned()
2831                                                 });
2832                                         }
2833                                         if idx > u16::max_value() as usize {
2834                                                 return Err(APIError::APIMisuseError {
2835                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2836                                                 });
2837                                         }
2838                                         output_index = Some(idx as u16);
2839                                 }
2840                         }
2841                         if output_index.is_none() {
2842                                 return Err(APIError::APIMisuseError {
2843                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2844                                 });
2845                         }
2846                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2847                 })
2848         }
2849
2850         /// Atomically updates the [`ChannelConfig`] for the given channels.
2851         ///
2852         /// Once the updates are applied, each eligible channel (advertised with a known short channel
2853         /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
2854         /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
2855         /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
2856         ///
2857         /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
2858         /// `counterparty_node_id` is provided.
2859         ///
2860         /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
2861         /// below [`MIN_CLTV_EXPIRY_DELTA`].
2862         ///
2863         /// If an error is returned, none of the updates should be considered applied.
2864         ///
2865         /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
2866         /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
2867         /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
2868         /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
2869         /// [`ChannelUpdate`]: msgs::ChannelUpdate
2870         /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
2871         /// [`APIMisuseError`]: APIError::APIMisuseError
2872         pub fn update_channel_config(
2873                 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
2874         ) -> Result<(), APIError> {
2875                 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
2876                         return Err(APIError::APIMisuseError {
2877                                 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
2878                         });
2879                 }
2880
2881                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
2882                         &self.total_consistency_lock, &self.persistence_notifier,
2883                 );
2884                 let per_peer_state = self.per_peer_state.read().unwrap();
2885                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2886                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2887                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2888                 let peer_state = &mut *peer_state_lock;
2889                 for channel_id in channel_ids {
2890                         if !peer_state.channel_by_id.contains_key(channel_id) {
2891                                 return Err(APIError::ChannelUnavailable {
2892                                         err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
2893                                 });
2894                         }
2895                 }
2896                 for channel_id in channel_ids {
2897                         let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
2898                         if !channel.update_config(config) {
2899                                 continue;
2900                         }
2901                         if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
2902                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
2903                         } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
2904                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
2905                                         node_id: channel.get_counterparty_node_id(),
2906                                         msg,
2907                                 });
2908                         }
2909                 }
2910                 Ok(())
2911         }
2912
2913         /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
2914         /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
2915         ///
2916         /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
2917         /// channel to a receiving node if the node lacks sufficient inbound liquidity.
2918         ///
2919         /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
2920         /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
2921         /// receiver's invoice route hints. These route hints will signal to LDK to generate an
2922         /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
2923         /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
2924         ///
2925         /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
2926         /// you from forwarding more than you received.
2927         ///
2928         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
2929         /// backwards.
2930         ///
2931         /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
2932         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
2933         // TODO: when we move to deciding the best outbound channel at forward time, only take
2934         // `next_node_id` and not `next_hop_channel_id`
2935         pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
2936                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2937
2938                 let next_hop_scid = {
2939                         let peer_state_lock = self.per_peer_state.read().unwrap();
2940                         let peer_state_mutex = peer_state_lock.get(&next_node_id)
2941                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
2942                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2943                         let peer_state = &mut *peer_state_lock;
2944                         match peer_state.channel_by_id.get(next_hop_channel_id) {
2945                                 Some(chan) => {
2946                                         if !chan.is_usable() {
2947                                                 return Err(APIError::ChannelUnavailable {
2948                                                         err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
2949                                                 })
2950                                         }
2951                                         chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
2952                                 },
2953                                 None => return Err(APIError::ChannelUnavailable {
2954                                         err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
2955                                 })
2956                         }
2957                 };
2958
2959                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
2960                         .ok_or_else(|| APIError::APIMisuseError {
2961                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
2962                         })?;
2963
2964                 let routing = match payment.forward_info.routing {
2965                         PendingHTLCRouting::Forward { onion_packet, .. } => {
2966                                 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
2967                         },
2968                         _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
2969                 };
2970                 let pending_htlc_info = PendingHTLCInfo {
2971                         outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
2972                 };
2973
2974                 let mut per_source_pending_forward = [(
2975                         payment.prev_short_channel_id,
2976                         payment.prev_funding_outpoint,
2977                         payment.prev_user_channel_id,
2978                         vec![(pending_htlc_info, payment.prev_htlc_id)]
2979                 )];
2980                 self.forward_htlcs(&mut per_source_pending_forward);
2981                 Ok(())
2982         }
2983
2984         /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
2985         /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
2986         ///
2987         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
2988         /// backwards.
2989         ///
2990         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
2991         pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
2992                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2993
2994                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
2995                         .ok_or_else(|| APIError::APIMisuseError {
2996                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
2997                         })?;
2998
2999                 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3000                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3001                                 short_channel_id: payment.prev_short_channel_id,
3002                                 outpoint: payment.prev_funding_outpoint,
3003                                 htlc_id: payment.prev_htlc_id,
3004                                 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3005                                 phantom_shared_secret: None,
3006                         });
3007
3008                         let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3009                         let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3010                         self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3011                 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3012
3013                 Ok(())
3014         }
3015
3016         /// Processes HTLCs which are pending waiting on random forward delay.
3017         ///
3018         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3019         /// Will likely generate further events.
3020         pub fn process_pending_htlc_forwards(&self) {
3021                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3022
3023                 let mut new_events = Vec::new();
3024                 let mut failed_forwards = Vec::new();
3025                 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3026                 {
3027                         let mut forward_htlcs = HashMap::new();
3028                         mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3029
3030                         for (short_chan_id, mut pending_forwards) in forward_htlcs {
3031                                 if short_chan_id != 0 {
3032                                         macro_rules! forwarding_channel_not_found {
3033                                                 () => {
3034                                                         for forward_info in pending_forwards.drain(..) {
3035                                                                 match forward_info {
3036                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3037                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3038                                                                                 forward_info: PendingHTLCInfo {
3039                                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3040                                                                                         outgoing_cltv_value, incoming_amt_msat: _
3041                                                                                 }
3042                                                                         }) => {
3043                                                                                 macro_rules! failure_handler {
3044                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3045                                                                                                 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3046
3047                                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3048                                                                                                         short_channel_id: prev_short_channel_id,
3049                                                                                                         outpoint: prev_funding_outpoint,
3050                                                                                                         htlc_id: prev_htlc_id,
3051                                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3052                                                                                                         phantom_shared_secret: $phantom_ss,
3053                                                                                                 });
3054
3055                                                                                                 let reason = if $next_hop_unknown {
3056                                                                                                         HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3057                                                                                                 } else {
3058                                                                                                         HTLCDestination::FailedPayment{ payment_hash }
3059                                                                                                 };
3060
3061                                                                                                 failed_forwards.push((htlc_source, payment_hash,
3062                                                                                                         HTLCFailReason::reason($err_code, $err_data),
3063                                                                                                         reason
3064                                                                                                 ));
3065                                                                                                 continue;
3066                                                                                         }
3067                                                                                 }
3068                                                                                 macro_rules! fail_forward {
3069                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3070                                                                                                 {
3071                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3072                                                                                                 }
3073                                                                                         }
3074                                                                                 }
3075                                                                                 macro_rules! failed_payment {
3076                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3077                                                                                                 {
3078                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3079                                                                                                 }
3080                                                                                         }
3081                                                                                 }
3082                                                                                 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3083                                                                                         let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3084                                                                                         if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3085                                                                                                 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3086                                                                                                 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3087                                                                                                         Ok(res) => res,
3088                                                                                                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3089                                                                                                                 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3090                                                                                                                 // In this scenario, the phantom would have sent us an
3091                                                                                                                 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3092                                                                                                                 // if it came from us (the second-to-last hop) but contains the sha256
3093                                                                                                                 // of the onion.
3094                                                                                                                 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3095                                                                                                         },
3096                                                                                                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3097                                                                                                                 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3098                                                                                                         },
3099                                                                                                 };
3100                                                                                                 match next_hop {
3101                                                                                                         onion_utils::Hop::Receive(hop_data) => {
3102                                                                                                                 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3103                                                                                                                         Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3104                                                                                                                         Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3105                                                                                                                 }
3106                                                                                                         },
3107                                                                                                         _ => panic!(),
3108                                                                                                 }
3109                                                                                         } else {
3110                                                                                                 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3111                                                                                         }
3112                                                                                 } else {
3113                                                                                         fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3114                                                                                 }
3115                                                                         },
3116                                                                         HTLCForwardInfo::FailHTLC { .. } => {
3117                                                                                 // Channel went away before we could fail it. This implies
3118                                                                                 // the channel is now on chain and our counterparty is
3119                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
3120                                                                                 // problem, not ours.
3121                                                                         }
3122                                                                 }
3123                                                         }
3124                                                 }
3125                                         }
3126                                         let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3127                                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3128                                                 None => {
3129                                                         forwarding_channel_not_found!();
3130                                                         continue;
3131                                                 }
3132                                         };
3133                                         let per_peer_state = self.per_peer_state.read().unwrap();
3134                                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3135                                         if peer_state_mutex_opt.is_none() {
3136                                                 forwarding_channel_not_found!();
3137                                                 continue;
3138                                         }
3139                                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3140                                         let peer_state = &mut *peer_state_lock;
3141                                         match peer_state.channel_by_id.entry(forward_chan_id) {
3142                                                 hash_map::Entry::Vacant(_) => {
3143                                                         forwarding_channel_not_found!();
3144                                                         continue;
3145                                                 },
3146                                                 hash_map::Entry::Occupied(mut chan) => {
3147                                                         for forward_info in pending_forwards.drain(..) {
3148                                                                 match forward_info {
3149                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3150                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3151                                                                                 forward_info: PendingHTLCInfo {
3152                                                                                         incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3153                                                                                         routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3154                                                                                 },
3155                                                                         }) => {
3156                                                                                 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3157                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3158                                                                                         short_channel_id: prev_short_channel_id,
3159                                                                                         outpoint: prev_funding_outpoint,
3160                                                                                         htlc_id: prev_htlc_id,
3161                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3162                                                                                         // Phantom payments are only PendingHTLCRouting::Receive.
3163                                                                                         phantom_shared_secret: None,
3164                                                                                 });
3165                                                                                 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3166                                                                                         payment_hash, outgoing_cltv_value, htlc_source.clone(),
3167                                                                                         onion_packet, &self.logger)
3168                                                                                 {
3169                                                                                         if let ChannelError::Ignore(msg) = e {
3170                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3171                                                                                         } else {
3172                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
3173                                                                                         }
3174                                                                                         let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3175                                                                                         failed_forwards.push((htlc_source, payment_hash,
3176                                                                                                 HTLCFailReason::reason(failure_code, data),
3177                                                                                                 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3178                                                                                         ));
3179                                                                                         continue;
3180                                                                                 }
3181                                                                         },
3182                                                                         HTLCForwardInfo::AddHTLC { .. } => {
3183                                                                                 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3184                                                                         },
3185                                                                         HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3186                                                                                 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3187                                                                                 if let Err(e) = chan.get_mut().queue_fail_htlc(
3188                                                                                         htlc_id, err_packet, &self.logger
3189                                                                                 ) {
3190                                                                                         if let ChannelError::Ignore(msg) = e {
3191                                                                                                 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3192                                                                                         } else {
3193                                                                                                 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3194                                                                                         }
3195                                                                                         // fail-backs are best-effort, we probably already have one
3196                                                                                         // pending, and if not that's OK, if not, the channel is on
3197                                                                                         // the chain and sending the HTLC-Timeout is their problem.
3198                                                                                         continue;
3199                                                                                 }
3200                                                                         },
3201                                                                 }
3202                                                         }
3203                                                 }
3204                                         }
3205                                 } else {
3206                                         for forward_info in pending_forwards.drain(..) {
3207                                                 match forward_info {
3208                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3209                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3210                                                                 forward_info: PendingHTLCInfo {
3211                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat, ..
3212                                                                 }
3213                                                         }) => {
3214                                                                 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3215                                                                         PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3216                                                                                 let _legacy_hop_data = Some(payment_data.clone());
3217                                                                                 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3218                                                                         },
3219                                                                         PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3220                                                                                 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3221                                                                         _ => {
3222                                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3223                                                                         }
3224                                                                 };
3225                                                                 let claimable_htlc = ClaimableHTLC {
3226                                                                         prev_hop: HTLCPreviousHopData {
3227                                                                                 short_channel_id: prev_short_channel_id,
3228                                                                                 outpoint: prev_funding_outpoint,
3229                                                                                 htlc_id: prev_htlc_id,
3230                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
3231                                                                                 phantom_shared_secret,
3232                                                                         },
3233                                                                         value: outgoing_amt_msat,
3234                                                                         timer_ticks: 0,
3235                                                                         total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3236                                                                         cltv_expiry,
3237                                                                         onion_payload,
3238                                                                 };
3239
3240                                                                 macro_rules! fail_htlc {
3241                                                                         ($htlc: expr, $payment_hash: expr) => {
3242                                                                                 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3243                                                                                 htlc_msat_height_data.extend_from_slice(
3244                                                                                         &self.best_block.read().unwrap().height().to_be_bytes(),
3245                                                                                 );
3246                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3247                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
3248                                                                                                 outpoint: prev_funding_outpoint,
3249                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
3250                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3251                                                                                                 phantom_shared_secret,
3252                                                                                         }), payment_hash,
3253                                                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3254                                                                                         HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3255                                                                                 ));
3256                                                                         }
3257                                                                 }
3258                                                                 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3259                                                                 let mut receiver_node_id = self.our_network_pubkey;
3260                                                                 if phantom_shared_secret.is_some() {
3261                                                                         receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3262                                                                                 .expect("Failed to get node_id for phantom node recipient");
3263                                                                 }
3264
3265                                                                 macro_rules! check_total_value {
3266                                                                         ($payment_data: expr, $payment_preimage: expr) => {{
3267                                                                                 let mut payment_claimable_generated = false;
3268                                                                                 let purpose = || {
3269                                                                                         events::PaymentPurpose::InvoicePayment {
3270                                                                                                 payment_preimage: $payment_preimage,
3271                                                                                                 payment_secret: $payment_data.payment_secret,
3272                                                                                         }
3273                                                                                 };
3274                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3275                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3276                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3277                                                                                         continue
3278                                                                                 }
3279                                                                                 let (_, htlcs) = claimable_payments.claimable_htlcs.entry(payment_hash)
3280                                                                                         .or_insert_with(|| (purpose(), Vec::new()));
3281                                                                                 if htlcs.len() == 1 {
3282                                                                                         if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3283                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3284                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3285                                                                                                 continue
3286                                                                                         }
3287                                                                                 }
3288                                                                                 let mut total_value = claimable_htlc.value;
3289                                                                                 for htlc in htlcs.iter() {
3290                                                                                         total_value += htlc.value;
3291                                                                                         match &htlc.onion_payload {
3292                                                                                                 OnionPayload::Invoice { .. } => {
3293                                                                                                         if htlc.total_msat != $payment_data.total_msat {
3294                                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3295                                                                                                                         log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3296                                                                                                                 total_value = msgs::MAX_VALUE_MSAT;
3297                                                                                                         }
3298                                                                                                         if total_value >= msgs::MAX_VALUE_MSAT { break; }
3299                                                                                                 },
3300                                                                                                 _ => unreachable!(),
3301                                                                                         }
3302                                                                                 }
3303                                                                                 if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data.total_msat {
3304                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
3305                                                                                                 log_bytes!(payment_hash.0), total_value, $payment_data.total_msat);
3306                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3307                                                                                 } else if total_value == $payment_data.total_msat {
3308                                                                                         let prev_channel_id = prev_funding_outpoint.to_channel_id();
3309                                                                                         htlcs.push(claimable_htlc);
3310                                                                                         new_events.push(events::Event::PaymentClaimable {
3311                                                                                                 receiver_node_id: Some(receiver_node_id),
3312                                                                                                 payment_hash,
3313                                                                                                 purpose: purpose(),
3314                                                                                                 amount_msat: total_value,
3315                                                                                                 via_channel_id: Some(prev_channel_id),
3316                                                                                                 via_user_channel_id: Some(prev_user_channel_id),
3317                                                                                         });
3318                                                                                         payment_claimable_generated = true;
3319                                                                                 } else {
3320                                                                                         // Nothing to do - we haven't reached the total
3321                                                                                         // payment value yet, wait until we receive more
3322                                                                                         // MPP parts.
3323                                                                                         htlcs.push(claimable_htlc);
3324                                                                                 }
3325                                                                                 payment_claimable_generated
3326                                                                         }}
3327                                                                 }
3328
3329                                                                 // Check that the payment hash and secret are known. Note that we
3330                                                                 // MUST take care to handle the "unknown payment hash" and
3331                                                                 // "incorrect payment secret" cases here identically or we'd expose
3332                                                                 // that we are the ultimate recipient of the given payment hash.
3333                                                                 // Further, we must not expose whether we have any other HTLCs
3334                                                                 // associated with the same payment_hash pending or not.
3335                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3336                                                                 match payment_secrets.entry(payment_hash) {
3337                                                                         hash_map::Entry::Vacant(_) => {
3338                                                                                 match claimable_htlc.onion_payload {
3339                                                                                         OnionPayload::Invoice { .. } => {
3340                                                                                                 let payment_data = payment_data.unwrap();
3341                                                                                                 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3342                                                                                                         Ok(result) => result,
3343                                                                                                         Err(()) => {
3344                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3345                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3346                                                                                                                 continue
3347                                                                                                         }
3348                                                                                                 };
3349                                                                                                 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3350                                                                                                         let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3351                                                                                                         if (cltv_expiry as u64) < expected_min_expiry_height {
3352                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3353                                                                                                                         log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3354                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3355                                                                                                                 continue;
3356                                                                                                         }
3357                                                                                                 }
3358                                                                                                 check_total_value!(payment_data, payment_preimage);
3359                                                                                         },
3360                                                                                         OnionPayload::Spontaneous(preimage) => {
3361                                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3362                                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3363                                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3364                                                                                                         continue
3365                                                                                                 }
3366                                                                                                 match claimable_payments.claimable_htlcs.entry(payment_hash) {
3367                                                                                                         hash_map::Entry::Vacant(e) => {
3368                                                                                                                 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3369                                                                                                                 e.insert((purpose.clone(), vec![claimable_htlc]));
3370                                                                                                                 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3371                                                                                                                 new_events.push(events::Event::PaymentClaimable {
3372                                                                                                                         receiver_node_id: Some(receiver_node_id),
3373                                                                                                                         payment_hash,
3374                                                                                                                         amount_msat: outgoing_amt_msat,
3375                                                                                                                         purpose,
3376                                                                                                                         via_channel_id: Some(prev_channel_id),
3377                                                                                                                         via_user_channel_id: Some(prev_user_channel_id),
3378                                                                                                                 });
3379                                                                                                         },
3380                                                                                                         hash_map::Entry::Occupied(_) => {
3381                                                                                                                 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3382                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3383                                                                                                         }
3384                                                                                                 }
3385                                                                                         }
3386                                                                                 }
3387                                                                         },
3388                                                                         hash_map::Entry::Occupied(inbound_payment) => {
3389                                                                                 if payment_data.is_none() {
3390                                                                                         log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3391                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3392                                                                                         continue
3393                                                                                 };
3394                                                                                 let payment_data = payment_data.unwrap();
3395                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3396                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3397                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3398                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3399                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3400                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3401                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3402                                                                                 } else {
3403                                                                                         let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3404                                                                                         if payment_claimable_generated {
3405                                                                                                 inbound_payment.remove_entry();
3406                                                                                         }
3407                                                                                 }
3408                                                                         },
3409                                                                 };
3410                                                         },
3411                                                         HTLCForwardInfo::FailHTLC { .. } => {
3412                                                                 panic!("Got pending fail of our own HTLC");
3413                                                         }
3414                                                 }
3415                                         }
3416                                 }
3417                         }
3418                 }
3419
3420                 let best_block_height = self.best_block.read().unwrap().height();
3421                 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3422                         || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3423                         &self.pending_events, &self.logger,
3424                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3425                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3426
3427                 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3428                         self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3429                 }
3430                 self.forward_htlcs(&mut phantom_receives);
3431
3432                 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3433                 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3434                 // nice to do the work now if we can rather than while we're trying to get messages in the
3435                 // network stack.
3436                 self.check_free_holding_cells();
3437
3438                 if new_events.is_empty() { return }
3439                 let mut events = self.pending_events.lock().unwrap();
3440                 events.append(&mut new_events);
3441         }
3442
3443         /// Free the background events, generally called from timer_tick_occurred.
3444         ///
3445         /// Exposed for testing to allow us to process events quickly without generating accidental
3446         /// BroadcastChannelUpdate events in timer_tick_occurred.
3447         ///
3448         /// Expects the caller to have a total_consistency_lock read lock.
3449         fn process_background_events(&self) -> bool {
3450                 let mut background_events = Vec::new();
3451                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3452                 if background_events.is_empty() {
3453                         return false;
3454                 }
3455
3456                 for event in background_events.drain(..) {
3457                         match event {
3458                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3459                                         // The channel has already been closed, so no use bothering to care about the
3460                                         // monitor updating completing.
3461                                         let _ = self.chain_monitor.update_channel(funding_txo, &update);
3462                                 },
3463                         }
3464                 }
3465                 true
3466         }
3467
3468         #[cfg(any(test, feature = "_test_utils"))]
3469         /// Process background events, for functional testing
3470         pub fn test_process_background_events(&self) {
3471                 self.process_background_events();
3472         }
3473
3474         fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3475                 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3476                 // If the feerate has decreased by less than half, don't bother
3477                 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
3478                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3479                                 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3480                         return NotifyOption::SkipPersist;
3481                 }
3482                 if !chan.is_live() {
3483                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3484                                 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3485                         return NotifyOption::SkipPersist;
3486                 }
3487                 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3488                         log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3489
3490                 chan.queue_update_fee(new_feerate, &self.logger);
3491                 NotifyOption::DoPersist
3492         }
3493
3494         #[cfg(fuzzing)]
3495         /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3496         /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3497         /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3498         /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3499         pub fn maybe_update_chan_fees(&self) {
3500                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3501                         let mut should_persist = NotifyOption::SkipPersist;
3502
3503                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3504
3505                         let per_peer_state = self.per_peer_state.read().unwrap();
3506                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3507                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3508                                 let peer_state = &mut *peer_state_lock;
3509                                 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3510                                         let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3511                                         if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3512                                 }
3513                         }
3514
3515                         should_persist
3516                 });
3517         }
3518
3519         /// Performs actions which should happen on startup and roughly once per minute thereafter.
3520         ///
3521         /// This currently includes:
3522         ///  * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3523         ///  * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
3524         ///    than a minute, informing the network that they should no longer attempt to route over
3525         ///    the channel.
3526         ///  * Expiring a channel's previous `ChannelConfig` if necessary to only allow forwarding HTLCs
3527         ///    with the current `ChannelConfig`.
3528         ///  * Removing peers which have disconnected but and no longer have any channels.
3529         ///
3530         /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
3531         /// estimate fetches.
3532         pub fn timer_tick_occurred(&self) {
3533                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3534                         let mut should_persist = NotifyOption::SkipPersist;
3535                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3536
3537                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3538
3539                         let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3540                         let mut timed_out_mpp_htlcs = Vec::new();
3541                         let mut pending_peers_awaiting_removal = Vec::new();
3542                         {
3543                                 let per_peer_state = self.per_peer_state.read().unwrap();
3544                                 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3545                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3546                                         let peer_state = &mut *peer_state_lock;
3547                                         let pending_msg_events = &mut peer_state.pending_msg_events;
3548                                         let counterparty_node_id = *counterparty_node_id;
3549                                         peer_state.channel_by_id.retain(|chan_id, chan| {
3550                                                 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3551                                                 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3552
3553                                                 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3554                                                         let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3555                                                         handle_errors.push((Err(err), counterparty_node_id));
3556                                                         if needs_close { return false; }
3557                                                 }
3558
3559                                                 match chan.channel_update_status() {
3560                                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3561                                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3562                                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3563                                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3564                                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3565                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3566                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3567                                                                                 msg: update
3568                                                                         });
3569                                                                 }
3570                                                                 should_persist = NotifyOption::DoPersist;
3571                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3572                                                         },
3573                                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3574                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3575                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3576                                                                                 msg: update
3577                                                                         });
3578                                                                 }
3579                                                                 should_persist = NotifyOption::DoPersist;
3580                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3581                                                         },
3582                                                         _ => {},
3583                                                 }
3584
3585                                                 chan.maybe_expire_prev_config();
3586
3587                                                 true
3588                                         });
3589                                         if peer_state.ok_to_remove(true) {
3590                                                 pending_peers_awaiting_removal.push(counterparty_node_id);
3591                                         }
3592                                 }
3593                         }
3594
3595                         // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3596                         // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3597                         // of to that peer is later closed while still being disconnected (i.e. force closed),
3598                         // we therefore need to remove the peer from `peer_state` separately.
3599                         // To avoid having to take the `per_peer_state` `write` lock once the channels are
3600                         // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3601                         // negative effects on parallelism as much as possible.
3602                         if pending_peers_awaiting_removal.len() > 0 {
3603                                 let mut per_peer_state = self.per_peer_state.write().unwrap();
3604                                 for counterparty_node_id in pending_peers_awaiting_removal {
3605                                         match per_peer_state.entry(counterparty_node_id) {
3606                                                 hash_map::Entry::Occupied(entry) => {
3607                                                         // Remove the entry if the peer is still disconnected and we still
3608                                                         // have no channels to the peer.
3609                                                         let remove_entry = {
3610                                                                 let peer_state = entry.get().lock().unwrap();
3611                                                                 peer_state.ok_to_remove(true)
3612                                                         };
3613                                                         if remove_entry {
3614                                                                 entry.remove_entry();
3615                                                         }
3616                                                 },
3617                                                 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3618                                         }
3619                                 }
3620                         }
3621
3622                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3623                                 if htlcs.is_empty() {
3624                                         // This should be unreachable
3625                                         debug_assert!(false);
3626                                         return false;
3627                                 }
3628                                 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3629                                         // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3630                                         // In this case we're not going to handle any timeouts of the parts here.
3631                                         if htlcs[0].total_msat == htlcs.iter().fold(0, |total, htlc| total + htlc.value) {
3632                                                 return true;
3633                                         } else if htlcs.into_iter().any(|htlc| {
3634                                                 htlc.timer_ticks += 1;
3635                                                 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3636                                         }) {
3637                                                 timed_out_mpp_htlcs.extend(htlcs.drain(..).map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3638                                                 return false;
3639                                         }
3640                                 }
3641                                 true
3642                         });
3643
3644                         for htlc_source in timed_out_mpp_htlcs.drain(..) {
3645                                 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3646                                 let reason = HTLCFailReason::from_failure_code(23);
3647                                 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3648                                 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3649                         }
3650
3651                         for (err, counterparty_node_id) in handle_errors.drain(..) {
3652                                 let _ = handle_error!(self, err, counterparty_node_id);
3653                         }
3654
3655                         self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3656
3657                         // Technically we don't need to do this here, but if we have holding cell entries in a
3658                         // channel that need freeing, it's better to do that here and block a background task
3659                         // than block the message queueing pipeline.
3660                         if self.check_free_holding_cells() {
3661                                 should_persist = NotifyOption::DoPersist;
3662                         }
3663
3664                         should_persist
3665                 });
3666         }
3667
3668         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3669         /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
3670         /// along the path (including in our own channel on which we received it).
3671         ///
3672         /// Note that in some cases around unclean shutdown, it is possible the payment may have
3673         /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3674         /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
3675         /// may have already been failed automatically by LDK if it was nearing its expiration time.
3676         ///
3677         /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3678         /// [`ChannelManager::claim_funds`]), you should still monitor for
3679         /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3680         /// startup during which time claims that were in-progress at shutdown may be replayed.
3681         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3682                 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
3683         }
3684
3685         /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
3686         /// reason for the failure.
3687         ///
3688         /// See [`FailureCode`] for valid failure codes.
3689         pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
3690                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3691
3692                 let removed_source = self.claimable_payments.lock().unwrap().claimable_htlcs.remove(payment_hash);
3693                 if let Some((_, mut sources)) = removed_source {
3694                         for htlc in sources.drain(..) {
3695                                 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
3696                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3697                                 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
3698                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3699                         }
3700                 }
3701         }
3702
3703         /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
3704         fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
3705                 match failure_code {
3706                         FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
3707                         FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
3708                         FailureCode::IncorrectOrUnknownPaymentDetails => {
3709                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3710                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3711                                 HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
3712                         }
3713                 }
3714         }
3715
3716         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3717         /// that we want to return and a channel.
3718         ///
3719         /// This is for failures on the channel on which the HTLC was *received*, not failures
3720         /// forwarding
3721         fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3722                 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3723                 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3724                 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3725                 // an inbound SCID alias before the real SCID.
3726                 let scid_pref = if chan.should_announce() {
3727                         chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3728                 } else {
3729                         chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3730                 };
3731                 if let Some(scid) = scid_pref {
3732                         self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3733                 } else {
3734                         (0x4000|10, Vec::new())
3735                 }
3736         }
3737
3738
3739         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3740         /// that we want to return and a channel.
3741         fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3742                 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3743                 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3744                         let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3745                         if desired_err_code == 0x1000 | 20 {
3746                                 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
3747                                 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
3748                                 0u16.write(&mut enc).expect("Writes cannot fail");
3749                         }
3750                         (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3751                         msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3752                         upd.write(&mut enc).expect("Writes cannot fail");
3753                         (desired_err_code, enc.0)
3754                 } else {
3755                         // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3756                         // which means we really shouldn't have gotten a payment to be forwarded over this
3757                         // channel yet, or if we did it's from a route hint. Either way, returning an error of
3758                         // PERM|no_such_channel should be fine.
3759                         (0x4000|10, Vec::new())
3760                 }
3761         }
3762
3763         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3764         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3765         // be surfaced to the user.
3766         fn fail_holding_cell_htlcs(
3767                 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3768                 counterparty_node_id: &PublicKey
3769         ) {
3770                 let (failure_code, onion_failure_data) = {
3771                         let per_peer_state = self.per_peer_state.read().unwrap();
3772                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3773                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3774                                 let peer_state = &mut *peer_state_lock;
3775                                 match peer_state.channel_by_id.entry(channel_id) {
3776                                         hash_map::Entry::Occupied(chan_entry) => {
3777                                                 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3778                                         },
3779                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3780                                 }
3781                         } else { (0x4000|10, Vec::new()) }
3782                 };
3783
3784                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3785                         let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
3786                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
3787                         self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
3788                 }
3789         }
3790
3791         /// Fails an HTLC backwards to the sender of it to us.
3792         /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
3793         fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
3794                 // Ensure that no peer state channel storage lock is held when calling this function.
3795                 // This ensures that future code doesn't introduce a lock-order requirement for
3796                 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
3797                 // this function with any `per_peer_state` peer lock acquired would.
3798                 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3799                         debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3800                 }
3801
3802                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3803                 //identify whether we sent it or not based on the (I presume) very different runtime
3804                 //between the branches here. We should make this async and move it into the forward HTLCs
3805                 //timer handling.
3806
3807                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3808                 // from block_connected which may run during initialization prior to the chain_monitor
3809                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3810                 match source {
3811                         HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, ref payment_params, .. } => {
3812                                 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
3813                                         session_priv, payment_id, payment_params, self.probing_cookie_secret, &self.secp_ctx,
3814                                         &self.pending_events, &self.logger)
3815                                 { self.push_pending_forwards_ev(); }
3816                         },
3817                         HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
3818                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
3819                                 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
3820
3821                                 let mut push_forward_ev = false;
3822                                 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
3823                                 if forward_htlcs.is_empty() {
3824                                         push_forward_ev = true;
3825                                 }
3826                                 match forward_htlcs.entry(*short_channel_id) {
3827                                         hash_map::Entry::Occupied(mut entry) => {
3828                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
3829                                         },
3830                                         hash_map::Entry::Vacant(entry) => {
3831                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
3832                                         }
3833                                 }
3834                                 mem::drop(forward_htlcs);
3835                                 if push_forward_ev { self.push_pending_forwards_ev(); }
3836                                 let mut pending_events = self.pending_events.lock().unwrap();
3837                                 pending_events.push(events::Event::HTLCHandlingFailed {
3838                                         prev_channel_id: outpoint.to_channel_id(),
3839                                         failed_next_destination: destination,
3840                                 });
3841                         },
3842                 }
3843         }
3844
3845         /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
3846         /// [`MessageSendEvent`]s needed to claim the payment.
3847         ///
3848         /// Note that calling this method does *not* guarantee that the payment has been claimed. You
3849         /// *must* wait for an [`Event::PaymentClaimed`] event which upon a successful claim will be
3850         /// provided to your [`EventHandler`] when [`process_pending_events`] is next called.
3851         ///
3852         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3853         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
3854         /// event matches your expectation. If you fail to do so and call this method, you may provide
3855         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3856         ///
3857         /// [`Event::PaymentClaimable`]: crate::util::events::Event::PaymentClaimable
3858         /// [`Event::PaymentClaimed`]: crate::util::events::Event::PaymentClaimed
3859         /// [`process_pending_events`]: EventsProvider::process_pending_events
3860         /// [`create_inbound_payment`]: Self::create_inbound_payment
3861         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3862         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
3863                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3864
3865                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3866
3867                 let mut sources = {
3868                         let mut claimable_payments = self.claimable_payments.lock().unwrap();
3869                         if let Some((payment_purpose, sources)) = claimable_payments.claimable_htlcs.remove(&payment_hash) {
3870                                 let mut receiver_node_id = self.our_network_pubkey;
3871                                 for htlc in sources.iter() {
3872                                         if htlc.prev_hop.phantom_shared_secret.is_some() {
3873                                                 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
3874                                                         .expect("Failed to get node_id for phantom node recipient");
3875                                                 receiver_node_id = phantom_pubkey;
3876                                                 break;
3877                                         }
3878                                 }
3879
3880                                 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
3881                                         ClaimingPayment { amount_msat: sources.iter().map(|source| source.value).sum(),
3882                                         payment_purpose, receiver_node_id,
3883                                 });
3884                                 if dup_purpose.is_some() {
3885                                         debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
3886                                         log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
3887                                                 log_bytes!(payment_hash.0));
3888                                 }
3889                                 sources
3890                         } else { return; }
3891                 };
3892                 debug_assert!(!sources.is_empty());
3893
3894                 // If we are claiming an MPP payment, we check that all channels which contain a claimable
3895                 // HTLC still exist. While this isn't guaranteed to remain true if a channel closes while
3896                 // we're claiming (or even after we claim, before the commitment update dance completes),
3897                 // it should be a relatively rare race, and we'd rather not claim HTLCs that require us to
3898                 // go on-chain (and lose the on-chain fee to do so) than just reject the payment.
3899                 //
3900                 // Note that we'll still always get our funds - as long as the generated
3901                 // `ChannelMonitorUpdate` makes it out to the relevant monitor we can claim on-chain.
3902                 //
3903                 // If we find an HTLC which we would need to claim but for which we do not have a
3904                 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3905                 // the sender retries the already-failed path(s), it should be a pretty rare case where
3906                 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3907                 // provide the preimage, so worrying too much about the optimal handling isn't worth
3908                 // it.
3909                 let mut claimable_amt_msat = 0;
3910                 let mut expected_amt_msat = None;
3911                 let mut valid_mpp = true;
3912                 let mut errs = Vec::new();
3913                 let per_peer_state = self.per_peer_state.read().unwrap();
3914                 for htlc in sources.iter() {
3915                         let (counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&htlc.prev_hop.short_channel_id) {
3916                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3917                                 None => {
3918                                         valid_mpp = false;
3919                                         break;
3920                                 }
3921                         };
3922
3923                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3924                         if peer_state_mutex_opt.is_none() {
3925                                 valid_mpp = false;
3926                                 break;
3927                         }
3928
3929                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3930                         let peer_state = &mut *peer_state_lock;
3931
3932                         if peer_state.channel_by_id.get(&chan_id).is_none() {
3933                                 valid_mpp = false;
3934                                 break;
3935                         }
3936
3937                         if expected_amt_msat.is_some() && expected_amt_msat != Some(htlc.total_msat) {
3938                                 log_error!(self.logger, "Somehow ended up with an MPP payment with different total amounts - this should not be reachable!");
3939                                 debug_assert!(false);
3940                                 valid_mpp = false;
3941                                 break;
3942                         }
3943
3944                         expected_amt_msat = Some(htlc.total_msat);
3945                         if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
3946                                 // We don't currently support MPP for spontaneous payments, so just check
3947                                 // that there's one payment here and move on.
3948                                 if sources.len() != 1 {
3949                                         log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
3950                                         debug_assert!(false);
3951                                         valid_mpp = false;
3952                                         break;
3953                                 }
3954                         }
3955
3956                         claimable_amt_msat += htlc.value;
3957                 }
3958                 mem::drop(per_peer_state);
3959                 if sources.is_empty() || expected_amt_msat.is_none() {
3960                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3961                         log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
3962                         return;
3963                 }
3964                 if claimable_amt_msat != expected_amt_msat.unwrap() {
3965                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3966                         log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
3967                                 expected_amt_msat.unwrap(), claimable_amt_msat);
3968                         return;
3969                 }
3970                 if valid_mpp {
3971                         for htlc in sources.drain(..) {
3972                                 if let Err((pk, err)) = self.claim_funds_from_hop(
3973                                         htlc.prev_hop, payment_preimage,
3974                                         |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
3975                                 {
3976                                         if let msgs::ErrorAction::IgnoreError = err.err.action {
3977                                                 // We got a temporary failure updating monitor, but will claim the
3978                                                 // HTLC when the monitor updating is restored (or on chain).
3979                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
3980                                         } else { errs.push((pk, err)); }
3981                                 }
3982                         }
3983                 }
3984                 if !valid_mpp {
3985                         for htlc in sources.drain(..) {
3986                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3987                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3988                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3989                                 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
3990                                 let receiver = HTLCDestination::FailedPayment { payment_hash };
3991                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3992                         }
3993                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3994                 }
3995
3996                 // Now we can handle any errors which were generated.
3997                 for (counterparty_node_id, err) in errs.drain(..) {
3998                         let res: Result<(), _> = Err(err);
3999                         let _ = handle_error!(self, res, counterparty_node_id);
4000                 }
4001         }
4002
4003         fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
4004                 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
4005         -> Result<(), (PublicKey, MsgHandleErrInternal)> {
4006                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4007
4008                 let per_peer_state = self.per_peer_state.read().unwrap();
4009                 let chan_id = prev_hop.outpoint.to_channel_id();
4010                 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
4011                         Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
4012                         None => None
4013                 };
4014
4015                 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
4016                         |counterparty_node_id| per_peer_state.get(counterparty_node_id).map(
4017                                 |peer_mutex| peer_mutex.lock().unwrap()
4018                         )
4019                 ).unwrap_or(None);
4020
4021                 if peer_state_opt.is_some() {
4022                         let mut peer_state_lock = peer_state_opt.unwrap();
4023                         let peer_state = &mut *peer_state_lock;
4024                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
4025                                 let counterparty_node_id = chan.get().get_counterparty_node_id();
4026                                 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
4027
4028                                 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
4029                                         if let Some(action) = completion_action(Some(htlc_value_msat)) {
4030                                                 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4031                                                         log_bytes!(chan_id), action);
4032                                                 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4033                                         }
4034                                         let update_id = monitor_update.update_id;
4035                                         let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
4036                                         let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4037                                                 peer_state, per_peer_state, chan);
4038                                         if let Err(e) = res {
4039                                                 // TODO: This is a *critical* error - we probably updated the outbound edge
4040                                                 // of the HTLC's monitor with a preimage. We should retry this monitor
4041                                                 // update over and over again until morale improves.
4042                                                 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4043                                                 return Err((counterparty_node_id, e));
4044                                         }
4045                                 }
4046                                 return Ok(());
4047                         }
4048                 }
4049                 let preimage_update = ChannelMonitorUpdate {
4050                         update_id: CLOSED_CHANNEL_UPDATE_ID,
4051                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4052                                 payment_preimage,
4053                         }],
4054                 };
4055                 // We update the ChannelMonitor on the backward link, after
4056                 // receiving an `update_fulfill_htlc` from the forward link.
4057                 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4058                 if update_res != ChannelMonitorUpdateStatus::Completed {
4059                         // TODO: This needs to be handled somehow - if we receive a monitor update
4060                         // with a preimage we *must* somehow manage to propagate it to the upstream
4061                         // channel, or we must have an ability to receive the same event and try
4062                         // again on restart.
4063                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4064                                 payment_preimage, update_res);
4065                 }
4066                 // Note that we do process the completion action here. This totally could be a
4067                 // duplicate claim, but we have no way of knowing without interrogating the
4068                 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4069                 // generally always allowed to be duplicative (and it's specifically noted in
4070                 // `PaymentForwarded`).
4071                 self.handle_monitor_update_completion_actions(completion_action(None));
4072                 Ok(())
4073         }
4074
4075         fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4076                 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4077         }
4078
4079         fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4080                 match source {
4081                         HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4082                                 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4083                         },
4084                         HTLCSource::PreviousHopData(hop_data) => {
4085                                 let prev_outpoint = hop_data.outpoint;
4086                                 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4087                                         |htlc_claim_value_msat| {
4088                                                 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4089                                                         let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4090                                                                 Some(claimed_htlc_value - forwarded_htlc_value)
4091                                                         } else { None };
4092
4093                                                         let prev_channel_id = Some(prev_outpoint.to_channel_id());
4094                                                         let next_channel_id = Some(next_channel_id);
4095
4096                                                         Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4097                                                                 fee_earned_msat,
4098                                                                 claim_from_onchain_tx: from_onchain,
4099                                                                 prev_channel_id,
4100                                                                 next_channel_id,
4101                                                         }})
4102                                                 } else { None }
4103                                         });
4104                                 if let Err((pk, err)) = res {
4105                                         let result: Result<(), _> = Err(err);
4106                                         let _ = handle_error!(self, result, pk);
4107                                 }
4108                         },
4109                 }
4110         }
4111
4112         /// Gets the node_id held by this ChannelManager
4113         pub fn get_our_node_id(&self) -> PublicKey {
4114                 self.our_network_pubkey.clone()
4115         }
4116
4117         fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4118                 for action in actions.into_iter() {
4119                         match action {
4120                                 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4121                                         let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4122                                         if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4123                                                 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4124                                                         payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4125                                                 });
4126                                         }
4127                                 },
4128                                 MonitorUpdateCompletionAction::EmitEvent { event } => {
4129                                         self.pending_events.lock().unwrap().push(event);
4130                                 },
4131                         }
4132                 }
4133         }
4134
4135         /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4136         /// update completion.
4137         fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4138                 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4139                 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4140                 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4141                 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4142         -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4143                 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4144                         log_bytes!(channel.channel_id()),
4145                         if raa.is_some() { "an" } else { "no" },
4146                         if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4147                         if funding_broadcastable.is_some() { "" } else { "not " },
4148                         if channel_ready.is_some() { "sending" } else { "without" },
4149                         if announcement_sigs.is_some() { "sending" } else { "without" });
4150
4151                 let mut htlc_forwards = None;
4152
4153                 let counterparty_node_id = channel.get_counterparty_node_id();
4154                 if !pending_forwards.is_empty() {
4155                         htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4156                                 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4157                 }
4158
4159                 if let Some(msg) = channel_ready {
4160                         send_channel_ready!(self, pending_msg_events, channel, msg);
4161                 }
4162                 if let Some(msg) = announcement_sigs {
4163                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4164                                 node_id: counterparty_node_id,
4165                                 msg,
4166                         });
4167                 }
4168
4169                 emit_channel_ready_event!(self, channel);
4170
4171                 macro_rules! handle_cs { () => {
4172                         if let Some(update) = commitment_update {
4173                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4174                                         node_id: counterparty_node_id,
4175                                         updates: update,
4176                                 });
4177                         }
4178                 } }
4179                 macro_rules! handle_raa { () => {
4180                         if let Some(revoke_and_ack) = raa {
4181                                 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4182                                         node_id: counterparty_node_id,
4183                                         msg: revoke_and_ack,
4184                                 });
4185                         }
4186                 } }
4187                 match order {
4188                         RAACommitmentOrder::CommitmentFirst => {
4189                                 handle_cs!();
4190                                 handle_raa!();
4191                         },
4192                         RAACommitmentOrder::RevokeAndACKFirst => {
4193                                 handle_raa!();
4194                                 handle_cs!();
4195                         },
4196                 }
4197
4198                 if let Some(tx) = funding_broadcastable {
4199                         log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4200                         self.tx_broadcaster.broadcast_transaction(&tx);
4201                 }
4202
4203                 htlc_forwards
4204         }
4205
4206         fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4207                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4208
4209                 let counterparty_node_id = match counterparty_node_id {
4210                         Some(cp_id) => cp_id.clone(),
4211                         None => {
4212                                 // TODO: Once we can rely on the counterparty_node_id from the
4213                                 // monitor event, this and the id_to_peer map should be removed.
4214                                 let id_to_peer = self.id_to_peer.lock().unwrap();
4215                                 match id_to_peer.get(&funding_txo.to_channel_id()) {
4216                                         Some(cp_id) => cp_id.clone(),
4217                                         None => return,
4218                                 }
4219                         }
4220                 };
4221                 let per_peer_state = self.per_peer_state.read().unwrap();
4222                 let mut peer_state_lock;
4223                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4224                 if peer_state_mutex_opt.is_none() { return }
4225                 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4226                 let peer_state = &mut *peer_state_lock;
4227                 let mut channel = {
4228                         match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4229                                 hash_map::Entry::Occupied(chan) => chan,
4230                                 hash_map::Entry::Vacant(_) => return,
4231                         }
4232                 };
4233                 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4234                         highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4235                 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4236                         return;
4237                 }
4238                 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4239         }
4240
4241         /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4242         ///
4243         /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4244         /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4245         /// the channel.
4246         ///
4247         /// The `user_channel_id` parameter will be provided back in
4248         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4249         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4250         ///
4251         /// Note that this method will return an error and reject the channel, if it requires support
4252         /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4253         /// used to accept such channels.
4254         ///
4255         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4256         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4257         pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4258                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4259         }
4260
4261         /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4262         /// it as confirmed immediately.
4263         ///
4264         /// The `user_channel_id` parameter will be provided back in
4265         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4266         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4267         ///
4268         /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4269         /// and (if the counterparty agrees), enables forwarding of payments immediately.
4270         ///
4271         /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4272         /// transaction and blindly assumes that it will eventually confirm.
4273         ///
4274         /// If it does not confirm before we decide to close the channel, or if the funding transaction
4275         /// does not pay to the correct script the correct amount, *you will lose funds*.
4276         ///
4277         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4278         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4279         pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4280                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4281         }
4282
4283         fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4284                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4285
4286                 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4287                 let per_peer_state = self.per_peer_state.read().unwrap();
4288                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4289                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4290                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4291                 let peer_state = &mut *peer_state_lock;
4292                 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4293                 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4294                         hash_map::Entry::Occupied(mut channel) => {
4295                                 if !channel.get().inbound_is_awaiting_accept() {
4296                                         return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4297                                 }
4298                                 if accept_0conf {
4299                                         channel.get_mut().set_0conf();
4300                                 } else if channel.get().get_channel_type().requires_zero_conf() {
4301                                         let send_msg_err_event = events::MessageSendEvent::HandleError {
4302                                                 node_id: channel.get().get_counterparty_node_id(),
4303                                                 action: msgs::ErrorAction::SendErrorMessage{
4304                                                         msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4305                                                 }
4306                                         };
4307                                         peer_state.pending_msg_events.push(send_msg_err_event);
4308                                         let _ = remove_channel!(self, channel);
4309                                         return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4310                                 } else {
4311                                         // If this peer already has some channels, a new channel won't increase our number of peers
4312                                         // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4313                                         // channels per-peer we can accept channels from a peer with existing ones.
4314                                         if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4315                                                 let send_msg_err_event = events::MessageSendEvent::HandleError {
4316                                                         node_id: channel.get().get_counterparty_node_id(),
4317                                                         action: msgs::ErrorAction::SendErrorMessage{
4318                                                                 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4319                                                         }
4320                                                 };
4321                                                 peer_state.pending_msg_events.push(send_msg_err_event);
4322                                                 let _ = remove_channel!(self, channel);
4323                                                 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4324                                         }
4325                                 }
4326
4327                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4328                                         node_id: channel.get().get_counterparty_node_id(),
4329                                         msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4330                                 });
4331                         }
4332                         hash_map::Entry::Vacant(_) => {
4333                                 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4334                         }
4335                 }
4336                 Ok(())
4337         }
4338
4339         /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4340         /// or 0-conf channels.
4341         ///
4342         /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4343         /// non-0-conf channels we have with the peer.
4344         fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4345         where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4346                 let mut peers_without_funded_channels = 0;
4347                 let best_block_height = self.best_block.read().unwrap().height();
4348                 {
4349                         let peer_state_lock = self.per_peer_state.read().unwrap();
4350                         for (_, peer_mtx) in peer_state_lock.iter() {
4351                                 let peer = peer_mtx.lock().unwrap();
4352                                 if !maybe_count_peer(&*peer) { continue; }
4353                                 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4354                                 if num_unfunded_channels == peer.channel_by_id.len() {
4355                                         peers_without_funded_channels += 1;
4356                                 }
4357                         }
4358                 }
4359                 return peers_without_funded_channels;
4360         }
4361
4362         fn unfunded_channel_count(
4363                 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4364         ) -> usize {
4365                 let mut num_unfunded_channels = 0;
4366                 for (_, chan) in peer.channel_by_id.iter() {
4367                         if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4368                                 chan.get_funding_tx_confirmations(best_block_height) == 0
4369                         {
4370                                 num_unfunded_channels += 1;
4371                         }
4372                 }
4373                 num_unfunded_channels
4374         }
4375
4376         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4377                 if msg.chain_hash != self.genesis_hash {
4378                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4379                 }
4380
4381                 if !self.default_configuration.accept_inbound_channels {
4382                         return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4383                 }
4384
4385                 let mut random_bytes = [0u8; 16];
4386                 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4387                 let user_channel_id = u128::from_be_bytes(random_bytes);
4388                 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4389
4390                 // Get the number of peers with channels, but without funded ones. We don't care too much
4391                 // about peers that never open a channel, so we filter by peers that have at least one
4392                 // channel, and then limit the number of those with unfunded channels.
4393                 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4394
4395                 let per_peer_state = self.per_peer_state.read().unwrap();
4396                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4397                     .ok_or_else(|| {
4398                                 debug_assert!(false);
4399                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4400                         })?;
4401                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4402                 let peer_state = &mut *peer_state_lock;
4403
4404                 // If this peer already has some channels, a new channel won't increase our number of peers
4405                 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4406                 // channels per-peer we can accept channels from a peer with existing ones.
4407                 if peer_state.channel_by_id.is_empty() &&
4408                         channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4409                         !self.default_configuration.manually_accept_inbound_channels
4410                 {
4411                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4412                                 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4413                                 msg.temporary_channel_id.clone()));
4414                 }
4415
4416                 let best_block_height = self.best_block.read().unwrap().height();
4417                 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4418                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4419                                 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4420                                 msg.temporary_channel_id.clone()));
4421                 }
4422
4423                 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4424                         counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4425                         &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4426                 {
4427                         Err(e) => {
4428                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4429                                 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4430                         },
4431                         Ok(res) => res
4432                 };
4433                 match peer_state.channel_by_id.entry(channel.channel_id()) {
4434                         hash_map::Entry::Occupied(_) => {
4435                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4436                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4437                         },
4438                         hash_map::Entry::Vacant(entry) => {
4439                                 if !self.default_configuration.manually_accept_inbound_channels {
4440                                         if channel.get_channel_type().requires_zero_conf() {
4441                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4442                                         }
4443                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4444                                                 node_id: counterparty_node_id.clone(),
4445                                                 msg: channel.accept_inbound_channel(user_channel_id),
4446                                         });
4447                                 } else {
4448                                         let mut pending_events = self.pending_events.lock().unwrap();
4449                                         pending_events.push(
4450                                                 events::Event::OpenChannelRequest {
4451                                                         temporary_channel_id: msg.temporary_channel_id.clone(),
4452                                                         counterparty_node_id: counterparty_node_id.clone(),
4453                                                         funding_satoshis: msg.funding_satoshis,
4454                                                         push_msat: msg.push_msat,
4455                                                         channel_type: channel.get_channel_type().clone(),
4456                                                 }
4457                                         );
4458                                 }
4459
4460                                 entry.insert(channel);
4461                         }
4462                 }
4463                 Ok(())
4464         }
4465
4466         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4467                 let (value, output_script, user_id) = {
4468                         let per_peer_state = self.per_peer_state.read().unwrap();
4469                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4470                                 .ok_or_else(|| {
4471                                         debug_assert!(false);
4472                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4473                                 })?;
4474                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4475                         let peer_state = &mut *peer_state_lock;
4476                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4477                                 hash_map::Entry::Occupied(mut chan) => {
4478                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4479                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4480                                 },
4481                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4482                         }
4483                 };
4484                 let mut pending_events = self.pending_events.lock().unwrap();
4485                 pending_events.push(events::Event::FundingGenerationReady {
4486                         temporary_channel_id: msg.temporary_channel_id,
4487                         counterparty_node_id: *counterparty_node_id,
4488                         channel_value_satoshis: value,
4489                         output_script,
4490                         user_channel_id: user_id,
4491                 });
4492                 Ok(())
4493         }
4494
4495         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4496                 let best_block = *self.best_block.read().unwrap();
4497
4498                 let per_peer_state = self.per_peer_state.read().unwrap();
4499                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4500                         .ok_or_else(|| {
4501                                 debug_assert!(false);
4502                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4503                         })?;
4504
4505                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4506                 let peer_state = &mut *peer_state_lock;
4507                 let ((funding_msg, monitor), chan) =
4508                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4509                                 hash_map::Entry::Occupied(mut chan) => {
4510                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4511                                 },
4512                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4513                         };
4514
4515                 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4516                         hash_map::Entry::Occupied(_) => {
4517                                 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4518                         },
4519                         hash_map::Entry::Vacant(e) => {
4520                                 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4521                                         hash_map::Entry::Occupied(_) => {
4522                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4523                                                         "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4524                                                         funding_msg.channel_id))
4525                                         },
4526                                         hash_map::Entry::Vacant(i_e) => {
4527                                                 i_e.insert(chan.get_counterparty_node_id());
4528                                         }
4529                                 }
4530
4531                                 // There's no problem signing a counterparty's funding transaction if our monitor
4532                                 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4533                                 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4534                                 // until we have persisted our monitor.
4535                                 let new_channel_id = funding_msg.channel_id;
4536                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4537                                         node_id: counterparty_node_id.clone(),
4538                                         msg: funding_msg,
4539                                 });
4540
4541                                 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4542
4543                                 let chan = e.insert(chan);
4544                                 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
4545                                         per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4546
4547                                 // Note that we reply with the new channel_id in error messages if we gave up on the
4548                                 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4549                                 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4550                                 // any messages referencing a previously-closed channel anyway.
4551                                 // We do not propagate the monitor update to the user as it would be for a monitor
4552                                 // that we didn't manage to store (and that we don't care about - we don't respond
4553                                 // with the funding_signed so the channel can never go on chain).
4554                                 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4555                                         res.0 = None;
4556                                 }
4557                                 res
4558                         }
4559                 }
4560         }
4561
4562         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4563                 let best_block = *self.best_block.read().unwrap();
4564                 let per_peer_state = self.per_peer_state.read().unwrap();
4565                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4566                         .ok_or_else(|| {
4567                                 debug_assert!(false);
4568                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4569                         })?;
4570
4571                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4572                 let peer_state = &mut *peer_state_lock;
4573                 match peer_state.channel_by_id.entry(msg.channel_id) {
4574                         hash_map::Entry::Occupied(mut chan) => {
4575                                 let monitor = try_chan_entry!(self,
4576                                         chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4577                                 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4578                                 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
4579                                 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4580                                         // We weren't able to watch the channel to begin with, so no updates should be made on
4581                                         // it. Previously, full_stack_target found an (unreachable) panic when the
4582                                         // monitor update contained within `shutdown_finish` was applied.
4583                                         if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4584                                                 shutdown_finish.0.take();
4585                                         }
4586                                 }
4587                                 res
4588                         },
4589                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4590                 }
4591         }
4592
4593         fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4594                 let per_peer_state = self.per_peer_state.read().unwrap();
4595                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4596                         .ok_or_else(|| {
4597                                 debug_assert!(false);
4598                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4599                         })?;
4600                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4601                 let peer_state = &mut *peer_state_lock;
4602                 match peer_state.channel_by_id.entry(msg.channel_id) {
4603                         hash_map::Entry::Occupied(mut chan) => {
4604                                 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4605                                         self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4606                                 if let Some(announcement_sigs) = announcement_sigs_opt {
4607                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4608                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4609                                                 node_id: counterparty_node_id.clone(),
4610                                                 msg: announcement_sigs,
4611                                         });
4612                                 } else if chan.get().is_usable() {
4613                                         // If we're sending an announcement_signatures, we'll send the (public)
4614                                         // channel_update after sending a channel_announcement when we receive our
4615                                         // counterparty's announcement_signatures. Thus, we only bother to send a
4616                                         // channel_update here if the channel is not public, i.e. we're not sending an
4617                                         // announcement_signatures.
4618                                         log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4619                                         if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4620                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4621                                                         node_id: counterparty_node_id.clone(),
4622                                                         msg,
4623                                                 });
4624                                         }
4625                                 }
4626
4627                                 emit_channel_ready_event!(self, chan.get_mut());
4628
4629                                 Ok(())
4630                         },
4631                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4632                 }
4633         }
4634
4635         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4636                 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4637                 let result: Result<(), _> = loop {
4638                         let per_peer_state = self.per_peer_state.read().unwrap();
4639                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4640                                 .ok_or_else(|| {
4641                                         debug_assert!(false);
4642                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4643                                 })?;
4644                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4645                         let peer_state = &mut *peer_state_lock;
4646                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4647                                 hash_map::Entry::Occupied(mut chan_entry) => {
4648
4649                                         if !chan_entry.get().received_shutdown() {
4650                                                 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4651                                                         log_bytes!(msg.channel_id),
4652                                                         if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4653                                         }
4654
4655                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
4656                                         let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4657                                                 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4658                                         dropped_htlcs = htlcs;
4659
4660                                         if let Some(msg) = shutdown {
4661                                                 // We can send the `shutdown` message before updating the `ChannelMonitor`
4662                                                 // here as we don't need the monitor update to complete until we send a
4663                                                 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4664                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4665                                                         node_id: *counterparty_node_id,
4666                                                         msg,
4667                                                 });
4668                                         }
4669
4670                                         // Update the monitor with the shutdown script if necessary.
4671                                         if let Some(monitor_update) = monitor_update_opt {
4672                                                 let update_id = monitor_update.update_id;
4673                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
4674                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
4675                                         }
4676                                         break Ok(());
4677                                 },
4678                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4679                         }
4680                 };
4681                 for htlc_source in dropped_htlcs.drain(..) {
4682                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4683                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
4684                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
4685                 }
4686
4687                 result
4688         }
4689
4690         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4691                 let per_peer_state = self.per_peer_state.read().unwrap();
4692                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4693                         .ok_or_else(|| {
4694                                 debug_assert!(false);
4695                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4696                         })?;
4697                 let (tx, chan_option) = {
4698                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4699                         let peer_state = &mut *peer_state_lock;
4700                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4701                                 hash_map::Entry::Occupied(mut chan_entry) => {
4702                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
4703                                         if let Some(msg) = closing_signed {
4704                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4705                                                         node_id: counterparty_node_id.clone(),
4706                                                         msg,
4707                                                 });
4708                                         }
4709                                         if tx.is_some() {
4710                                                 // We're done with this channel, we've got a signed closing transaction and
4711                                                 // will send the closing_signed back to the remote peer upon return. This
4712                                                 // also implies there are no pending HTLCs left on the channel, so we can
4713                                                 // fully delete it from tracking (the channel monitor is still around to
4714                                                 // watch for old state broadcasts)!
4715                                                 (tx, Some(remove_channel!(self, chan_entry)))
4716                                         } else { (tx, None) }
4717                                 },
4718                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4719                         }
4720                 };
4721                 if let Some(broadcast_tx) = tx {
4722                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4723                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4724                 }
4725                 if let Some(chan) = chan_option {
4726                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4727                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4728                                 let peer_state = &mut *peer_state_lock;
4729                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4730                                         msg: update
4731                                 });
4732                         }
4733                         self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4734                 }
4735                 Ok(())
4736         }
4737
4738         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4739                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4740                 //determine the state of the payment based on our response/if we forward anything/the time
4741                 //we take to respond. We should take care to avoid allowing such an attack.
4742                 //
4743                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4744                 //us repeatedly garbled in different ways, and compare our error messages, which are
4745                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4746                 //but we should prevent it anyway.
4747
4748                 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
4749                 let per_peer_state = self.per_peer_state.read().unwrap();
4750                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4751                         .ok_or_else(|| {
4752                                 debug_assert!(false);
4753                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4754                         })?;
4755                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4756                 let peer_state = &mut *peer_state_lock;
4757                 match peer_state.channel_by_id.entry(msg.channel_id) {
4758                         hash_map::Entry::Occupied(mut chan) => {
4759
4760                                 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4761                                         // If the update_add is completely bogus, the call will Err and we will close,
4762                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4763                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
4764                                         match pending_forward_info {
4765                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4766                                                         let reason = if (error_code & 0x1000) != 0 {
4767                                                                 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4768                                                                 HTLCFailReason::reason(real_code, error_data)
4769                                                         } else {
4770                                                                 HTLCFailReason::from_failure_code(error_code)
4771                                                         }.get_encrypted_failure_packet(incoming_shared_secret, &None);
4772                                                         let msg = msgs::UpdateFailHTLC {
4773                                                                 channel_id: msg.channel_id,
4774                                                                 htlc_id: msg.htlc_id,
4775                                                                 reason
4776                                                         };
4777                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4778                                                 },
4779                                                 _ => pending_forward_info
4780                                         }
4781                                 };
4782                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
4783                         },
4784                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4785                 }
4786                 Ok(())
4787         }
4788
4789         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4790                 let (htlc_source, forwarded_htlc_value) = {
4791                         let per_peer_state = self.per_peer_state.read().unwrap();
4792                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4793                                 .ok_or_else(|| {
4794                                         debug_assert!(false);
4795                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4796                                 })?;
4797                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4798                         let peer_state = &mut *peer_state_lock;
4799                         match peer_state.channel_by_id.entry(msg.channel_id) {
4800                                 hash_map::Entry::Occupied(mut chan) => {
4801                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
4802                                 },
4803                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4804                         }
4805                 };
4806                 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
4807                 Ok(())
4808         }
4809
4810         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4811                 let per_peer_state = self.per_peer_state.read().unwrap();
4812                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4813                         .ok_or_else(|| {
4814                                 debug_assert!(false);
4815                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4816                         })?;
4817                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4818                 let peer_state = &mut *peer_state_lock;
4819                 match peer_state.channel_by_id.entry(msg.channel_id) {
4820                         hash_map::Entry::Occupied(mut chan) => {
4821                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
4822                         },
4823                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4824                 }
4825                 Ok(())
4826         }
4827
4828         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4829                 let per_peer_state = self.per_peer_state.read().unwrap();
4830                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4831                         .ok_or_else(|| {
4832                                 debug_assert!(false);
4833                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4834                         })?;
4835                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4836                 let peer_state = &mut *peer_state_lock;
4837                 match peer_state.channel_by_id.entry(msg.channel_id) {
4838                         hash_map::Entry::Occupied(mut chan) => {
4839                                 if (msg.failure_code & 0x8000) == 0 {
4840                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4841                                         try_chan_entry!(self, Err(chan_err), chan);
4842                                 }
4843                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
4844                                 Ok(())
4845                         },
4846                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4847                 }
4848         }
4849
4850         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4851                 let per_peer_state = self.per_peer_state.read().unwrap();
4852                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4853                         .ok_or_else(|| {
4854                                 debug_assert!(false);
4855                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4856                         })?;
4857                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4858                 let peer_state = &mut *peer_state_lock;
4859                 match peer_state.channel_by_id.entry(msg.channel_id) {
4860                         hash_map::Entry::Occupied(mut chan) => {
4861                                 let funding_txo = chan.get().get_funding_txo();
4862                                 let monitor_update = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
4863                                 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4864                                 let update_id = monitor_update.update_id;
4865                                 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4866                                         peer_state, per_peer_state, chan)
4867                         },
4868                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4869                 }
4870         }
4871
4872         #[inline]
4873         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
4874                 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
4875                         let mut push_forward_event = false;
4876                         let mut new_intercept_events = Vec::new();
4877                         let mut failed_intercept_forwards = Vec::new();
4878                         if !pending_forwards.is_empty() {
4879                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4880                                         let scid = match forward_info.routing {
4881                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
4882                                                 PendingHTLCRouting::Receive { .. } => 0,
4883                                                 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
4884                                         };
4885                                         // Pull this now to avoid introducing a lock order with `forward_htlcs`.
4886                                         let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
4887
4888                                         let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4889                                         let forward_htlcs_empty = forward_htlcs.is_empty();
4890                                         match forward_htlcs.entry(scid) {
4891                                                 hash_map::Entry::Occupied(mut entry) => {
4892                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4893                                                                 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
4894                                                 },
4895                                                 hash_map::Entry::Vacant(entry) => {
4896                                                         if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
4897                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
4898                                                         {
4899                                                                 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
4900                                                                 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
4901                                                                 match pending_intercepts.entry(intercept_id) {
4902                                                                         hash_map::Entry::Vacant(entry) => {
4903                                                                                 new_intercept_events.push(events::Event::HTLCIntercepted {
4904                                                                                         requested_next_hop_scid: scid,
4905                                                                                         payment_hash: forward_info.payment_hash,
4906                                                                                         inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
4907                                                                                         expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
4908                                                                                         intercept_id
4909                                                                                 });
4910                                                                                 entry.insert(PendingAddHTLCInfo {
4911                                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
4912                                                                         },
4913                                                                         hash_map::Entry::Occupied(_) => {
4914                                                                                 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
4915                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4916                                                                                         short_channel_id: prev_short_channel_id,
4917                                                                                         outpoint: prev_funding_outpoint,
4918                                                                                         htlc_id: prev_htlc_id,
4919                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
4920                                                                                         phantom_shared_secret: None,
4921                                                                                 });
4922
4923                                                                                 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
4924                                                                                                 HTLCFailReason::from_failure_code(0x4000 | 10),
4925                                                                                                 HTLCDestination::InvalidForward { requested_forward_scid: scid },
4926                                                                                 ));
4927                                                                         }
4928                                                                 }
4929                                                         } else {
4930                                                                 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
4931                                                                 // payments are being processed.
4932                                                                 if forward_htlcs_empty {
4933                                                                         push_forward_event = true;
4934                                                                 }
4935                                                                 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4936                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
4937                                                         }
4938                                                 }
4939                                         }
4940                                 }
4941                         }
4942
4943                         for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
4944                                 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4945                         }
4946
4947                         if !new_intercept_events.is_empty() {
4948                                 let mut events = self.pending_events.lock().unwrap();
4949                                 events.append(&mut new_intercept_events);
4950                         }
4951                         if push_forward_event { self.push_pending_forwards_ev() }
4952                 }
4953         }
4954
4955         // We only want to push a PendingHTLCsForwardable event if no others are queued.
4956         fn push_pending_forwards_ev(&self) {
4957                 let mut pending_events = self.pending_events.lock().unwrap();
4958                 let forward_ev_exists = pending_events.iter()
4959                         .find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
4960                         .is_some();
4961                 if !forward_ev_exists {
4962                         pending_events.push(events::Event::PendingHTLCsForwardable {
4963                                 time_forwardable:
4964                                         Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
4965                         });
4966                 }
4967         }
4968
4969         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
4970                 let (htlcs_to_fail, res) = {
4971                         let per_peer_state = self.per_peer_state.read().unwrap();
4972                         let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
4973                                 .ok_or_else(|| {
4974                                         debug_assert!(false);
4975                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4976                                 }).map(|mtx| mtx.lock().unwrap())?;
4977                         let peer_state = &mut *peer_state_lock;
4978                         match peer_state.channel_by_id.entry(msg.channel_id) {
4979                                 hash_map::Entry::Occupied(mut chan) => {
4980                                         let funding_txo = chan.get().get_funding_txo();
4981                                         let (htlcs_to_fail, monitor_update) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
4982                                         let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4983                                         let update_id = monitor_update.update_id;
4984                                         let res = handle_new_monitor_update!(self, update_res, update_id,
4985                                                 peer_state_lock, peer_state, per_peer_state, chan);
4986                                         (htlcs_to_fail, res)
4987                                 },
4988                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4989                         }
4990                 };
4991                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
4992                 res
4993         }
4994
4995         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
4996                 let per_peer_state = self.per_peer_state.read().unwrap();
4997                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4998                         .ok_or_else(|| {
4999                                 debug_assert!(false);
5000                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5001                         })?;
5002                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5003                 let peer_state = &mut *peer_state_lock;
5004                 match peer_state.channel_by_id.entry(msg.channel_id) {
5005                         hash_map::Entry::Occupied(mut chan) => {
5006                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
5007                         },
5008                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5009                 }
5010                 Ok(())
5011         }
5012
5013         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5014                 let per_peer_state = self.per_peer_state.read().unwrap();
5015                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5016                         .ok_or_else(|| {
5017                                 debug_assert!(false);
5018                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5019                         })?;
5020                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5021                 let peer_state = &mut *peer_state_lock;
5022                 match peer_state.channel_by_id.entry(msg.channel_id) {
5023                         hash_map::Entry::Occupied(mut chan) => {
5024                                 if !chan.get().is_usable() {
5025                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5026                                 }
5027
5028                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5029                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5030                                                 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5031                                                 msg, &self.default_configuration
5032                                         ), chan),
5033                                         // Note that announcement_signatures fails if the channel cannot be announced,
5034                                         // so get_channel_update_for_broadcast will never fail by the time we get here.
5035                                         update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5036                                 });
5037                         },
5038                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5039                 }
5040                 Ok(())
5041         }
5042
5043         /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5044         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5045                 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5046                         Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5047                         None => {
5048                                 // It's not a local channel
5049                                 return Ok(NotifyOption::SkipPersist)
5050                         }
5051                 };
5052                 let per_peer_state = self.per_peer_state.read().unwrap();
5053                 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5054                 if peer_state_mutex_opt.is_none() {
5055                         return Ok(NotifyOption::SkipPersist)
5056                 }
5057                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5058                 let peer_state = &mut *peer_state_lock;
5059                 match peer_state.channel_by_id.entry(chan_id) {
5060                         hash_map::Entry::Occupied(mut chan) => {
5061                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5062                                         if chan.get().should_announce() {
5063                                                 // If the announcement is about a channel of ours which is public, some
5064                                                 // other peer may simply be forwarding all its gossip to us. Don't provide
5065                                                 // a scary-looking error message and return Ok instead.
5066                                                 return Ok(NotifyOption::SkipPersist);
5067                                         }
5068                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5069                                 }
5070                                 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5071                                 let msg_from_node_one = msg.contents.flags & 1 == 0;
5072                                 if were_node_one == msg_from_node_one {
5073                                         return Ok(NotifyOption::SkipPersist);
5074                                 } else {
5075                                         log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5076                                         try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5077                                 }
5078                         },
5079                         hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5080                 }
5081                 Ok(NotifyOption::DoPersist)
5082         }
5083
5084         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5085                 let htlc_forwards;
5086                 let need_lnd_workaround = {
5087                         let per_peer_state = self.per_peer_state.read().unwrap();
5088
5089                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5090                                 .ok_or_else(|| {
5091                                         debug_assert!(false);
5092                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5093                                 })?;
5094                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5095                         let peer_state = &mut *peer_state_lock;
5096                         match peer_state.channel_by_id.entry(msg.channel_id) {
5097                                 hash_map::Entry::Occupied(mut chan) => {
5098                                         // Currently, we expect all holding cell update_adds to be dropped on peer
5099                                         // disconnect, so Channel's reestablish will never hand us any holding cell
5100                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
5101                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5102                                         let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5103                                                 msg, &self.logger, &self.node_signer, self.genesis_hash,
5104                                                 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5105                                         let mut channel_update = None;
5106                                         if let Some(msg) = responses.shutdown_msg {
5107                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5108                                                         node_id: counterparty_node_id.clone(),
5109                                                         msg,
5110                                                 });
5111                                         } else if chan.get().is_usable() {
5112                                                 // If the channel is in a usable state (ie the channel is not being shut
5113                                                 // down), send a unicast channel_update to our counterparty to make sure
5114                                                 // they have the latest channel parameters.
5115                                                 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5116                                                         channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5117                                                                 node_id: chan.get().get_counterparty_node_id(),
5118                                                                 msg,
5119                                                         });
5120                                                 }
5121                                         }
5122                                         let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5123                                         htlc_forwards = self.handle_channel_resumption(
5124                                                 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5125                                                 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5126                                         if let Some(upd) = channel_update {
5127                                                 peer_state.pending_msg_events.push(upd);
5128                                         }
5129                                         need_lnd_workaround
5130                                 },
5131                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5132                         }
5133                 };
5134
5135                 if let Some(forwards) = htlc_forwards {
5136                         self.forward_htlcs(&mut [forwards][..]);
5137                 }
5138
5139                 if let Some(channel_ready_msg) = need_lnd_workaround {
5140                         self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5141                 }
5142                 Ok(())
5143         }
5144
5145         /// Process pending events from the `chain::Watch`, returning whether any events were processed.
5146         fn process_pending_monitor_events(&self) -> bool {
5147                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5148
5149                 let mut failed_channels = Vec::new();
5150                 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5151                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5152                 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5153                         for monitor_event in monitor_events.drain(..) {
5154                                 match monitor_event {
5155                                         MonitorEvent::HTLCEvent(htlc_update) => {
5156                                                 if let Some(preimage) = htlc_update.payment_preimage {
5157                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5158                                                         self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5159                                                 } else {
5160                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5161                                                         let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5162                                                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5163                                                         self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5164                                                 }
5165                                         },
5166                                         MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5167                                         MonitorEvent::UpdateFailed(funding_outpoint) => {
5168                                                 let counterparty_node_id_opt = match counterparty_node_id {
5169                                                         Some(cp_id) => Some(cp_id),
5170                                                         None => {
5171                                                                 // TODO: Once we can rely on the counterparty_node_id from the
5172                                                                 // monitor event, this and the id_to_peer map should be removed.
5173                                                                 let id_to_peer = self.id_to_peer.lock().unwrap();
5174                                                                 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5175                                                         }
5176                                                 };
5177                                                 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5178                                                         let per_peer_state = self.per_peer_state.read().unwrap();
5179                                                         if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5180                                                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5181                                                                 let peer_state = &mut *peer_state_lock;
5182                                                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5183                                                                 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5184                                                                         let mut chan = remove_channel!(self, chan_entry);
5185                                                                         failed_channels.push(chan.force_shutdown(false));
5186                                                                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5187                                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5188                                                                                         msg: update
5189                                                                                 });
5190                                                                         }
5191                                                                         let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5192                                                                                 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5193                                                                         } else {
5194                                                                                 ClosureReason::CommitmentTxConfirmed
5195                                                                         };
5196                                                                         self.issue_channel_close_events(&chan, reason);
5197                                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
5198                                                                                 node_id: chan.get_counterparty_node_id(),
5199                                                                                 action: msgs::ErrorAction::SendErrorMessage {
5200                                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5201                                                                                 },
5202                                                                         });
5203                                                                 }
5204                                                         }
5205                                                 }
5206                                         },
5207                                         MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5208                                                 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5209                                         },
5210                                 }
5211                         }
5212                 }
5213
5214                 for failure in failed_channels.drain(..) {
5215                         self.finish_force_close_channel(failure);
5216                 }
5217
5218                 has_pending_monitor_events
5219         }
5220
5221         /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5222         /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5223         /// update events as a separate process method here.
5224         #[cfg(fuzzing)]
5225         pub fn process_monitor_events(&self) {
5226                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5227                         if self.process_pending_monitor_events() {
5228                                 NotifyOption::DoPersist
5229                         } else {
5230                                 NotifyOption::SkipPersist
5231                         }
5232                 });
5233         }
5234
5235         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5236         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5237         /// update was applied.
5238         fn check_free_holding_cells(&self) -> bool {
5239                 let mut has_monitor_update = false;
5240                 let mut failed_htlcs = Vec::new();
5241                 let mut handle_errors = Vec::new();
5242
5243                 // Walk our list of channels and find any that need to update. Note that when we do find an
5244                 // update, if it includes actions that must be taken afterwards, we have to drop the
5245                 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5246                 // manage to go through all our peers without finding a single channel to update.
5247                 'peer_loop: loop {
5248                         let per_peer_state = self.per_peer_state.read().unwrap();
5249                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5250                                 'chan_loop: loop {
5251                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5252                                         let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5253                                         for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5254                                                 let counterparty_node_id = chan.get_counterparty_node_id();
5255                                                 let funding_txo = chan.get_funding_txo();
5256                                                 let (monitor_opt, holding_cell_failed_htlcs) =
5257                                                         chan.maybe_free_holding_cell_htlcs(&self.logger);
5258                                                 if !holding_cell_failed_htlcs.is_empty() {
5259                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5260                                                 }
5261                                                 if let Some(monitor_update) = monitor_opt {
5262                                                         has_monitor_update = true;
5263
5264                                                         let update_res = self.chain_monitor.update_channel(
5265                                                                 funding_txo.expect("channel is live"), monitor_update);
5266                                                         let update_id = monitor_update.update_id;
5267                                                         let channel_id: [u8; 32] = *channel_id;
5268                                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5269                                                                 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
5270                                                                 peer_state.channel_by_id.remove(&channel_id));
5271                                                         if res.is_err() {
5272                                                                 handle_errors.push((counterparty_node_id, res));
5273                                                         }
5274                                                         continue 'peer_loop;
5275                                                 }
5276                                         }
5277                                         break 'chan_loop;
5278                                 }
5279                         }
5280                         break 'peer_loop;
5281                 }
5282
5283                 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5284                 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5285                         self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5286                 }
5287
5288                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5289                         let _ = handle_error!(self, err, counterparty_node_id);
5290                 }
5291
5292                 has_update
5293         }
5294
5295         /// Check whether any channels have finished removing all pending updates after a shutdown
5296         /// exchange and can now send a closing_signed.
5297         /// Returns whether any closing_signed messages were generated.
5298         fn maybe_generate_initial_closing_signed(&self) -> bool {
5299                 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5300                 let mut has_update = false;
5301                 {
5302                         let per_peer_state = self.per_peer_state.read().unwrap();
5303
5304                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5305                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5306                                 let peer_state = &mut *peer_state_lock;
5307                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5308                                 peer_state.channel_by_id.retain(|channel_id, chan| {
5309                                         match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5310                                                 Ok((msg_opt, tx_opt)) => {
5311                                                         if let Some(msg) = msg_opt {
5312                                                                 has_update = true;
5313                                                                 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5314                                                                         node_id: chan.get_counterparty_node_id(), msg,
5315                                                                 });
5316                                                         }
5317                                                         if let Some(tx) = tx_opt {
5318                                                                 // We're done with this channel. We got a closing_signed and sent back
5319                                                                 // a closing_signed with a closing transaction to broadcast.
5320                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5321                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5322                                                                                 msg: update
5323                                                                         });
5324                                                                 }
5325
5326                                                                 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5327
5328                                                                 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5329                                                                 self.tx_broadcaster.broadcast_transaction(&tx);
5330                                                                 update_maps_on_chan_removal!(self, chan);
5331                                                                 false
5332                                                         } else { true }
5333                                                 },
5334                                                 Err(e) => {
5335                                                         has_update = true;
5336                                                         let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5337                                                         handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5338                                                         !close_channel
5339                                                 }
5340                                         }
5341                                 });
5342                         }
5343                 }
5344
5345                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5346                         let _ = handle_error!(self, err, counterparty_node_id);
5347                 }
5348
5349                 has_update
5350         }
5351
5352         /// Handle a list of channel failures during a block_connected or block_disconnected call,
5353         /// pushing the channel monitor update (if any) to the background events queue and removing the
5354         /// Channel object.
5355         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5356                 for mut failure in failed_channels.drain(..) {
5357                         // Either a commitment transactions has been confirmed on-chain or
5358                         // Channel::block_disconnected detected that the funding transaction has been
5359                         // reorganized out of the main chain.
5360                         // We cannot broadcast our latest local state via monitor update (as
5361                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5362                         // so we track the update internally and handle it when the user next calls
5363                         // timer_tick_occurred, guaranteeing we're running normally.
5364                         if let Some((funding_txo, update)) = failure.0.take() {
5365                                 assert_eq!(update.updates.len(), 1);
5366                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5367                                         assert!(should_broadcast);
5368                                 } else { unreachable!(); }
5369                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5370                         }
5371                         self.finish_force_close_channel(failure);
5372                 }
5373         }
5374
5375         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5376                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5377
5378                 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5379                         return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5380                 }
5381
5382                 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5383
5384                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5385                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5386                 match payment_secrets.entry(payment_hash) {
5387                         hash_map::Entry::Vacant(e) => {
5388                                 e.insert(PendingInboundPayment {
5389                                         payment_secret, min_value_msat, payment_preimage,
5390                                         user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5391                                         // We assume that highest_seen_timestamp is pretty close to the current time -
5392                                         // it's updated when we receive a new block with the maximum time we've seen in
5393                                         // a header. It should never be more than two hours in the future.
5394                                         // Thus, we add two hours here as a buffer to ensure we absolutely
5395                                         // never fail a payment too early.
5396                                         // Note that we assume that received blocks have reasonably up-to-date
5397                                         // timestamps.
5398                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5399                                 });
5400                         },
5401                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5402                 }
5403                 Ok(payment_secret)
5404         }
5405
5406         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5407         /// to pay us.
5408         ///
5409         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5410         /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5411         ///
5412         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5413         /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5414         /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5415         /// passed directly to [`claim_funds`].
5416         ///
5417         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5418         ///
5419         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5420         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5421         ///
5422         /// # Note
5423         ///
5424         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5425         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5426         ///
5427         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5428         ///
5429         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5430         /// on versions of LDK prior to 0.0.114.
5431         ///
5432         /// [`claim_funds`]: Self::claim_funds
5433         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5434         /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5435         /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5436         /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5437         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5438         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5439                 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5440                 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5441                         &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5442                         min_final_cltv_expiry_delta)
5443         }
5444
5445         /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5446         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5447         ///
5448         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5449         ///
5450         /// # Note
5451         /// This method is deprecated and will be removed soon.
5452         ///
5453         /// [`create_inbound_payment`]: Self::create_inbound_payment
5454         #[deprecated]
5455         pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5456                 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5457                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5458                 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5459                 Ok((payment_hash, payment_secret))
5460         }
5461
5462         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5463         /// stored external to LDK.
5464         ///
5465         /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5466         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5467         /// the `min_value_msat` provided here, if one is provided.
5468         ///
5469         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5470         /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5471         /// payments.
5472         ///
5473         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5474         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5475         /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5476         /// sender "proof-of-payment" unless they have paid the required amount.
5477         ///
5478         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5479         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5480         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5481         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5482         /// invoices when no timeout is set.
5483         ///
5484         /// Note that we use block header time to time-out pending inbound payments (with some margin
5485         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5486         /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5487         /// If you need exact expiry semantics, you should enforce them upon receipt of
5488         /// [`PaymentClaimable`].
5489         ///
5490         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5491         /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5492         ///
5493         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5494         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5495         ///
5496         /// # Note
5497         ///
5498         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5499         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5500         ///
5501         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5502         ///
5503         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5504         /// on versions of LDK prior to 0.0.114.
5505         ///
5506         /// [`create_inbound_payment`]: Self::create_inbound_payment
5507         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5508         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5509                 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5510                 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5511                         invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5512                         min_final_cltv_expiry)
5513         }
5514
5515         /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5516         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5517         ///
5518         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5519         ///
5520         /// # Note
5521         /// This method is deprecated and will be removed soon.
5522         ///
5523         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5524         #[deprecated]
5525         pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5526                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5527         }
5528
5529         /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5530         /// previously returned from [`create_inbound_payment`].
5531         ///
5532         /// [`create_inbound_payment`]: Self::create_inbound_payment
5533         pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5534                 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5535         }
5536
5537         /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5538         /// are used when constructing the phantom invoice's route hints.
5539         ///
5540         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5541         pub fn get_phantom_scid(&self) -> u64 {
5542                 let best_block_height = self.best_block.read().unwrap().height();
5543                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5544                 loop {
5545                         let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5546                         // Ensure the generated scid doesn't conflict with a real channel.
5547                         match short_to_chan_info.get(&scid_candidate) {
5548                                 Some(_) => continue,
5549                                 None => return scid_candidate
5550                         }
5551                 }
5552         }
5553
5554         /// Gets route hints for use in receiving [phantom node payments].
5555         ///
5556         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5557         pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5558                 PhantomRouteHints {
5559                         channels: self.list_usable_channels(),
5560                         phantom_scid: self.get_phantom_scid(),
5561                         real_node_pubkey: self.get_our_node_id(),
5562                 }
5563         }
5564
5565         /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5566         /// used when constructing the route hints for HTLCs intended to be intercepted. See
5567         /// [`ChannelManager::forward_intercepted_htlc`].
5568         ///
5569         /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5570         /// times to get a unique scid.
5571         pub fn get_intercept_scid(&self) -> u64 {
5572                 let best_block_height = self.best_block.read().unwrap().height();
5573                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5574                 loop {
5575                         let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5576                         // Ensure the generated scid doesn't conflict with a real channel.
5577                         if short_to_chan_info.contains_key(&scid_candidate) { continue }
5578                         return scid_candidate
5579                 }
5580         }
5581
5582         /// Gets inflight HTLC information by processing pending outbound payments that are in
5583         /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5584         pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5585                 let mut inflight_htlcs = InFlightHtlcs::new();
5586
5587                 let per_peer_state = self.per_peer_state.read().unwrap();
5588                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5589                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5590                         let peer_state = &mut *peer_state_lock;
5591                         for chan in peer_state.channel_by_id.values() {
5592                                 for (htlc_source, _) in chan.inflight_htlc_sources() {
5593                                         if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5594                                                 inflight_htlcs.process_path(path, self.get_our_node_id());
5595                                         }
5596                                 }
5597                         }
5598                 }
5599
5600                 inflight_htlcs
5601         }
5602
5603         #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5604         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5605                 let events = core::cell::RefCell::new(Vec::new());
5606                 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5607                 self.process_pending_events(&event_handler);
5608                 events.into_inner()
5609         }
5610
5611         #[cfg(feature = "_test_utils")]
5612         pub fn push_pending_event(&self, event: events::Event) {
5613                 let mut events = self.pending_events.lock().unwrap();
5614                 events.push(event);
5615         }
5616
5617         #[cfg(test)]
5618         pub fn pop_pending_event(&self) -> Option<events::Event> {
5619                 let mut events = self.pending_events.lock().unwrap();
5620                 if events.is_empty() { None } else { Some(events.remove(0)) }
5621         }
5622
5623         #[cfg(test)]
5624         pub fn has_pending_payments(&self) -> bool {
5625                 self.pending_outbound_payments.has_pending_payments()
5626         }
5627
5628         #[cfg(test)]
5629         pub fn clear_pending_payments(&self) {
5630                 self.pending_outbound_payments.clear_pending_payments()
5631         }
5632
5633         /// Processes any events asynchronously in the order they were generated since the last call
5634         /// using the given event handler.
5635         ///
5636         /// See the trait-level documentation of [`EventsProvider`] for requirements.
5637         pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
5638                 &self, handler: H
5639         ) {
5640                 // We'll acquire our total consistency lock until the returned future completes so that
5641                 // we can be sure no other persists happen while processing events.
5642                 let _read_guard = self.total_consistency_lock.read().unwrap();
5643
5644                 let mut result = NotifyOption::SkipPersist;
5645
5646                 // TODO: This behavior should be documented. It's unintuitive that we query
5647                 // ChannelMonitors when clearing other events.
5648                 if self.process_pending_monitor_events() {
5649                         result = NotifyOption::DoPersist;
5650                 }
5651
5652                 let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5653                 if !pending_events.is_empty() {
5654                         result = NotifyOption::DoPersist;
5655                 }
5656
5657                 for event in pending_events {
5658                         handler(event).await;
5659                 }
5660
5661                 if result == NotifyOption::DoPersist {
5662                         self.persistence_notifier.notify();
5663                 }
5664         }
5665 }
5666
5667 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5668 where
5669         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5670         T::Target: BroadcasterInterface,
5671         ES::Target: EntropySource,
5672         NS::Target: NodeSigner,
5673         SP::Target: SignerProvider,
5674         F::Target: FeeEstimator,
5675         R::Target: Router,
5676         L::Target: Logger,
5677 {
5678         /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
5679         /// The returned array will contain `MessageSendEvent`s for different peers if
5680         /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
5681         /// is always placed next to each other.
5682         ///
5683         /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
5684         /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
5685         /// `MessageSendEvent`s  for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
5686         /// will randomly be placed first or last in the returned array.
5687         ///
5688         /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
5689         /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
5690         /// the `MessageSendEvent`s to the specific peer they were generated under.
5691         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5692                 let events = RefCell::new(Vec::new());
5693                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5694                         let mut result = NotifyOption::SkipPersist;
5695
5696                         // TODO: This behavior should be documented. It's unintuitive that we query
5697                         // ChannelMonitors when clearing other events.
5698                         if self.process_pending_monitor_events() {
5699                                 result = NotifyOption::DoPersist;
5700                         }
5701
5702                         if self.check_free_holding_cells() {
5703                                 result = NotifyOption::DoPersist;
5704                         }
5705                         if self.maybe_generate_initial_closing_signed() {
5706                                 result = NotifyOption::DoPersist;
5707                         }
5708
5709                         let mut pending_events = Vec::new();
5710                         let per_peer_state = self.per_peer_state.read().unwrap();
5711                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5712                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5713                                 let peer_state = &mut *peer_state_lock;
5714                                 if peer_state.pending_msg_events.len() > 0 {
5715                                         pending_events.append(&mut peer_state.pending_msg_events);
5716                                 }
5717                         }
5718
5719                         if !pending_events.is_empty() {
5720                                 events.replace(pending_events);
5721                         }
5722
5723                         result
5724                 });
5725                 events.into_inner()
5726         }
5727 }
5728
5729 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5730 where
5731         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5732         T::Target: BroadcasterInterface,
5733         ES::Target: EntropySource,
5734         NS::Target: NodeSigner,
5735         SP::Target: SignerProvider,
5736         F::Target: FeeEstimator,
5737         R::Target: Router,
5738         L::Target: Logger,
5739 {
5740         /// Processes events that must be periodically handled.
5741         ///
5742         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5743         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5744         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5745                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5746                         let mut result = NotifyOption::SkipPersist;
5747
5748                         // TODO: This behavior should be documented. It's unintuitive that we query
5749                         // ChannelMonitors when clearing other events.
5750                         if self.process_pending_monitor_events() {
5751                                 result = NotifyOption::DoPersist;
5752                         }
5753
5754                         let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5755                         if !pending_events.is_empty() {
5756                                 result = NotifyOption::DoPersist;
5757                         }
5758
5759                         for event in pending_events {
5760                                 handler.handle_event(event);
5761                         }
5762
5763                         result
5764                 });
5765         }
5766 }
5767
5768 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
5769 where
5770         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5771         T::Target: BroadcasterInterface,
5772         ES::Target: EntropySource,
5773         NS::Target: NodeSigner,
5774         SP::Target: SignerProvider,
5775         F::Target: FeeEstimator,
5776         R::Target: Router,
5777         L::Target: Logger,
5778 {
5779         fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5780                 {
5781                         let best_block = self.best_block.read().unwrap();
5782                         assert_eq!(best_block.block_hash(), header.prev_blockhash,
5783                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5784                         assert_eq!(best_block.height(), height - 1,
5785                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5786                 }
5787
5788                 self.transactions_confirmed(header, txdata, height);
5789                 self.best_block_updated(header, height);
5790         }
5791
5792         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5793                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5794                 let new_height = height - 1;
5795                 {
5796                         let mut best_block = self.best_block.write().unwrap();
5797                         assert_eq!(best_block.block_hash(), header.block_hash(),
5798                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5799                         assert_eq!(best_block.height(), height,
5800                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5801                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
5802                 }
5803
5804                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5805         }
5806 }
5807
5808 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
5809 where
5810         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5811         T::Target: BroadcasterInterface,
5812         ES::Target: EntropySource,
5813         NS::Target: NodeSigner,
5814         SP::Target: SignerProvider,
5815         F::Target: FeeEstimator,
5816         R::Target: Router,
5817         L::Target: Logger,
5818 {
5819         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5820                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5821                 // during initialization prior to the chain_monitor being fully configured in some cases.
5822                 // See the docs for `ChannelManagerReadArgs` for more.
5823
5824                 let block_hash = header.block_hash();
5825                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5826
5827                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5828                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
5829                         .map(|(a, b)| (a, Vec::new(), b)));
5830
5831                 let last_best_block_height = self.best_block.read().unwrap().height();
5832                 if height < last_best_block_height {
5833                         let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5834                         self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5835                 }
5836         }
5837
5838         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5839                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5840                 // during initialization prior to the chain_monitor being fully configured in some cases.
5841                 // See the docs for `ChannelManagerReadArgs` for more.
5842
5843                 let block_hash = header.block_hash();
5844                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5845
5846                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5847
5848                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5849
5850                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5851
5852                 macro_rules! max_time {
5853                         ($timestamp: expr) => {
5854                                 loop {
5855                                         // Update $timestamp to be the max of its current value and the block
5856                                         // timestamp. This should keep us close to the current time without relying on
5857                                         // having an explicit local time source.
5858                                         // Just in case we end up in a race, we loop until we either successfully
5859                                         // update $timestamp or decide we don't need to.
5860                                         let old_serial = $timestamp.load(Ordering::Acquire);
5861                                         if old_serial >= header.time as usize { break; }
5862                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5863                                                 break;
5864                                         }
5865                                 }
5866                         }
5867                 }
5868                 max_time!(self.highest_seen_timestamp);
5869                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5870                 payment_secrets.retain(|_, inbound_payment| {
5871                         inbound_payment.expiry_time > header.time as u64
5872                 });
5873         }
5874
5875         fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
5876                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
5877                 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
5878                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5879                         let peer_state = &mut *peer_state_lock;
5880                         for chan in peer_state.channel_by_id.values() {
5881                                 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
5882                                         res.push((funding_txo.txid, Some(block_hash)));
5883                                 }
5884                         }
5885                 }
5886                 res
5887         }
5888
5889         fn transaction_unconfirmed(&self, txid: &Txid) {
5890                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5891                 self.do_chain_event(None, |channel| {
5892                         if let Some(funding_txo) = channel.get_funding_txo() {
5893                                 if funding_txo.txid == *txid {
5894                                         channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
5895                                 } else { Ok((None, Vec::new(), None)) }
5896                         } else { Ok((None, Vec::new(), None)) }
5897                 });
5898         }
5899 }
5900
5901 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
5902 where
5903         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5904         T::Target: BroadcasterInterface,
5905         ES::Target: EntropySource,
5906         NS::Target: NodeSigner,
5907         SP::Target: SignerProvider,
5908         F::Target: FeeEstimator,
5909         R::Target: Router,
5910         L::Target: Logger,
5911 {
5912         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
5913         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
5914         /// the function.
5915         fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
5916                         (&self, height_opt: Option<u32>, f: FN) {
5917                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5918                 // during initialization prior to the chain_monitor being fully configured in some cases.
5919                 // See the docs for `ChannelManagerReadArgs` for more.
5920
5921                 let mut failed_channels = Vec::new();
5922                 let mut timed_out_htlcs = Vec::new();
5923                 {
5924                         let per_peer_state = self.per_peer_state.read().unwrap();
5925                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5926                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5927                                 let peer_state = &mut *peer_state_lock;
5928                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5929                                 peer_state.channel_by_id.retain(|_, channel| {
5930                                         let res = f(channel);
5931                                         if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
5932                                                 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
5933                                                         let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
5934                                                         timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
5935                                                                 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
5936                                                 }
5937                                                 if let Some(channel_ready) = channel_ready_opt {
5938                                                         send_channel_ready!(self, pending_msg_events, channel, channel_ready);
5939                                                         if channel.is_usable() {
5940                                                                 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
5941                                                                 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
5942                                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5943                                                                                 node_id: channel.get_counterparty_node_id(),
5944                                                                                 msg,
5945                                                                         });
5946                                                                 }
5947                                                         } else {
5948                                                                 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
5949                                                         }
5950                                                 }
5951
5952                                                 emit_channel_ready_event!(self, channel);
5953
5954                                                 if let Some(announcement_sigs) = announcement_sigs {
5955                                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
5956                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5957                                                                 node_id: channel.get_counterparty_node_id(),
5958                                                                 msg: announcement_sigs,
5959                                                         });
5960                                                         if let Some(height) = height_opt {
5961                                                                 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
5962                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5963                                                                                 msg: announcement,
5964                                                                                 // Note that announcement_signatures fails if the channel cannot be announced,
5965                                                                                 // so get_channel_update_for_broadcast will never fail by the time we get here.
5966                                                                                 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
5967                                                                         });
5968                                                                 }
5969                                                         }
5970                                                 }
5971                                                 if channel.is_our_channel_ready() {
5972                                                         if let Some(real_scid) = channel.get_short_channel_id() {
5973                                                                 // If we sent a 0conf channel_ready, and now have an SCID, we add it
5974                                                                 // to the short_to_chan_info map here. Note that we check whether we
5975                                                                 // can relay using the real SCID at relay-time (i.e.
5976                                                                 // enforce option_scid_alias then), and if the funding tx is ever
5977                                                                 // un-confirmed we force-close the channel, ensuring short_to_chan_info
5978                                                                 // is always consistent.
5979                                                                 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
5980                                                                 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
5981                                                                 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
5982                                                                         "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
5983                                                                         fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
5984                                                         }
5985                                                 }
5986                                         } else if let Err(reason) = res {
5987                                                 update_maps_on_chan_removal!(self, channel);
5988                                                 // It looks like our counterparty went on-chain or funding transaction was
5989                                                 // reorged out of the main chain. Close the channel.
5990                                                 failed_channels.push(channel.force_shutdown(true));
5991                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
5992                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5993                                                                 msg: update
5994                                                         });
5995                                                 }
5996                                                 let reason_message = format!("{}", reason);
5997                                                 self.issue_channel_close_events(channel, reason);
5998                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
5999                                                         node_id: channel.get_counterparty_node_id(),
6000                                                         action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
6001                                                                 channel_id: channel.channel_id(),
6002                                                                 data: reason_message,
6003                                                         } },
6004                                                 });
6005                                                 return false;
6006                                         }
6007                                         true
6008                                 });
6009                         }
6010                 }
6011
6012                 if let Some(height) = height_opt {
6013                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
6014                                 htlcs.retain(|htlc| {
6015                                         // If height is approaching the number of blocks we think it takes us to get
6016                                         // our commitment transaction confirmed before the HTLC expires, plus the
6017                                         // number of blocks we generally consider it to take to do a commitment update,
6018                                         // just give up on it and fail the HTLC.
6019                                         if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
6020                                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6021                                                 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
6022
6023                                                 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
6024                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
6025                                                         HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6026                                                 false
6027                                         } else { true }
6028                                 });
6029                                 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6030                         });
6031
6032                         let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6033                         intercepted_htlcs.retain(|_, htlc| {
6034                                 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6035                                         let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6036                                                 short_channel_id: htlc.prev_short_channel_id,
6037                                                 htlc_id: htlc.prev_htlc_id,
6038                                                 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6039                                                 phantom_shared_secret: None,
6040                                                 outpoint: htlc.prev_funding_outpoint,
6041                                         });
6042
6043                                         let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6044                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6045                                                 _ => unreachable!(),
6046                                         };
6047                                         timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6048                                                         HTLCFailReason::from_failure_code(0x2000 | 2),
6049                                                         HTLCDestination::InvalidForward { requested_forward_scid }));
6050                                         log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6051                                         false
6052                                 } else { true }
6053                         });
6054                 }
6055
6056                 self.handle_init_event_channel_failures(failed_channels);
6057
6058                 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6059                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6060                 }
6061         }
6062
6063         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
6064         /// indicating whether persistence is necessary. Only one listener on
6065         /// [`await_persistable_update`], [`await_persistable_update_timeout`], or a future returned by
6066         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6067         ///
6068         /// Note that this method is not available with the `no-std` feature.
6069         ///
6070         /// [`await_persistable_update`]: Self::await_persistable_update
6071         /// [`await_persistable_update_timeout`]: Self::await_persistable_update_timeout
6072         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6073         #[cfg(any(test, feature = "std"))]
6074         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
6075                 self.persistence_notifier.wait_timeout(max_wait)
6076         }
6077
6078         /// Blocks until ChannelManager needs to be persisted. Only one listener on
6079         /// [`await_persistable_update`], `await_persistable_update_timeout`, or a future returned by
6080         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6081         ///
6082         /// [`await_persistable_update`]: Self::await_persistable_update
6083         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6084         pub fn await_persistable_update(&self) {
6085                 self.persistence_notifier.wait()
6086         }
6087
6088         /// Gets a [`Future`] that completes when a persistable update is available. Note that
6089         /// callbacks registered on the [`Future`] MUST NOT call back into this [`ChannelManager`] and
6090         /// should instead register actions to be taken later.
6091         pub fn get_persistable_update_future(&self) -> Future {
6092                 self.persistence_notifier.get_future()
6093         }
6094
6095         #[cfg(any(test, feature = "_test_utils"))]
6096         pub fn get_persistence_condvar_value(&self) -> bool {
6097                 self.persistence_notifier.notify_pending()
6098         }
6099
6100         /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6101         /// [`chain::Confirm`] interfaces.
6102         pub fn current_best_block(&self) -> BestBlock {
6103                 self.best_block.read().unwrap().clone()
6104         }
6105
6106         /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6107         /// [`ChannelManager`].
6108         pub fn node_features(&self) -> NodeFeatures {
6109                 provided_node_features(&self.default_configuration)
6110         }
6111
6112         /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6113         /// [`ChannelManager`].
6114         ///
6115         /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6116         /// or not. Thus, this method is not public.
6117         #[cfg(any(feature = "_test_utils", test))]
6118         pub fn invoice_features(&self) -> InvoiceFeatures {
6119                 provided_invoice_features(&self.default_configuration)
6120         }
6121
6122         /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6123         /// [`ChannelManager`].
6124         pub fn channel_features(&self) -> ChannelFeatures {
6125                 provided_channel_features(&self.default_configuration)
6126         }
6127
6128         /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6129         /// [`ChannelManager`].
6130         pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6131                 provided_channel_type_features(&self.default_configuration)
6132         }
6133
6134         /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6135         /// [`ChannelManager`].
6136         pub fn init_features(&self) -> InitFeatures {
6137                 provided_init_features(&self.default_configuration)
6138         }
6139 }
6140
6141 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6142         ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6143 where
6144         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6145         T::Target: BroadcasterInterface,
6146         ES::Target: EntropySource,
6147         NS::Target: NodeSigner,
6148         SP::Target: SignerProvider,
6149         F::Target: FeeEstimator,
6150         R::Target: Router,
6151         L::Target: Logger,
6152 {
6153         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6154                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6155                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6156         }
6157
6158         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6159                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6160                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6161         }
6162
6163         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6164                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6165                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6166         }
6167
6168         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6169                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6170                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6171         }
6172
6173         fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6174                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6175                 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6176         }
6177
6178         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6179                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6180                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6181         }
6182
6183         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6184                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6185                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6186         }
6187
6188         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6189                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6190                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6191         }
6192
6193         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6194                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6195                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6196         }
6197
6198         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6199                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6200                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6201         }
6202
6203         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6204                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6205                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6206         }
6207
6208         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6209                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6210                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6211         }
6212
6213         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6214                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6215                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6216         }
6217
6218         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6219                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6220                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6221         }
6222
6223         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6224                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6225                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6226         }
6227
6228         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6229                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6230                         if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6231                                 persist
6232                         } else {
6233                                 NotifyOption::SkipPersist
6234                         }
6235                 });
6236         }
6237
6238         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6239                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6240                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6241         }
6242
6243         fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6244                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6245                 let mut failed_channels = Vec::new();
6246                 let mut per_peer_state = self.per_peer_state.write().unwrap();
6247                 let remove_peer = {
6248                         log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6249                                 log_pubkey!(counterparty_node_id));
6250                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6251                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6252                                 let peer_state = &mut *peer_state_lock;
6253                                 let pending_msg_events = &mut peer_state.pending_msg_events;
6254                                 peer_state.channel_by_id.retain(|_, chan| {
6255                                         chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6256                                         if chan.is_shutdown() {
6257                                                 update_maps_on_chan_removal!(self, chan);
6258                                                 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6259                                                 return false;
6260                                         }
6261                                         true
6262                                 });
6263                                 pending_msg_events.retain(|msg| {
6264                                         match msg {
6265                                                 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6266                                                 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6267                                                 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6268                                                 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6269                                                 &events::MessageSendEvent::SendChannelReady { .. } => false,
6270                                                 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6271                                                 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6272                                                 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6273                                                 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6274                                                 &events::MessageSendEvent::SendShutdown { .. } => false,
6275                                                 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6276                                                 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6277                                                 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6278                                                 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6279                                                 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6280                                                 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6281                                                 &events::MessageSendEvent::HandleError { .. } => false,
6282                                                 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6283                                                 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6284                                                 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6285                                                 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6286                                         }
6287                                 });
6288                                 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6289                                 peer_state.is_connected = false;
6290                                 peer_state.ok_to_remove(true)
6291                         } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6292                 };
6293                 if remove_peer {
6294                         per_peer_state.remove(counterparty_node_id);
6295                 }
6296                 mem::drop(per_peer_state);
6297
6298                 for failure in failed_channels.drain(..) {
6299                         self.finish_force_close_channel(failure);
6300                 }
6301         }
6302
6303         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6304                 if !init_msg.features.supports_static_remote_key() {
6305                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6306                         return Err(());
6307                 }
6308
6309                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6310
6311                 // If we have too many peers connected which don't have funded channels, disconnect the
6312                 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6313                 // unfunded channels taking up space in memory for disconnected peers, we still let new
6314                 // peers connect, but we'll reject new channels from them.
6315                 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6316                 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6317
6318                 {
6319                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
6320                         match peer_state_lock.entry(counterparty_node_id.clone()) {
6321                                 hash_map::Entry::Vacant(e) => {
6322                                         if inbound_peer_limited {
6323                                                 return Err(());
6324                                         }
6325                                         e.insert(Mutex::new(PeerState {
6326                                                 channel_by_id: HashMap::new(),
6327                                                 latest_features: init_msg.features.clone(),
6328                                                 pending_msg_events: Vec::new(),
6329                                                 monitor_update_blocked_actions: BTreeMap::new(),
6330                                                 is_connected: true,
6331                                         }));
6332                                 },
6333                                 hash_map::Entry::Occupied(e) => {
6334                                         let mut peer_state = e.get().lock().unwrap();
6335                                         peer_state.latest_features = init_msg.features.clone();
6336
6337                                         let best_block_height = self.best_block.read().unwrap().height();
6338                                         if inbound_peer_limited &&
6339                                                 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6340                                                 peer_state.channel_by_id.len()
6341                                         {
6342                                                 return Err(());
6343                                         }
6344
6345                                         debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6346                                         peer_state.is_connected = true;
6347                                 },
6348                         }
6349                 }
6350
6351                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6352
6353                 let per_peer_state = self.per_peer_state.read().unwrap();
6354                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6355                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6356                         let peer_state = &mut *peer_state_lock;
6357                         let pending_msg_events = &mut peer_state.pending_msg_events;
6358                         peer_state.channel_by_id.retain(|_, chan| {
6359                                 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6360                                         if !chan.have_received_message() {
6361                                                 // If we created this (outbound) channel while we were disconnected from the
6362                                                 // peer we probably failed to send the open_channel message, which is now
6363                                                 // lost. We can't have had anything pending related to this channel, so we just
6364                                                 // drop it.
6365                                                 false
6366                                         } else {
6367                                                 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6368                                                         node_id: chan.get_counterparty_node_id(),
6369                                                         msg: chan.get_channel_reestablish(&self.logger),
6370                                                 });
6371                                                 true
6372                                         }
6373                                 } else { true };
6374                                 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6375                                         if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6376                                                 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6377                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6378                                                                 node_id: *counterparty_node_id,
6379                                                                 msg, update_msg,
6380                                                         });
6381                                                 }
6382                                         }
6383                                 }
6384                                 retain
6385                         });
6386                 }
6387                 //TODO: Also re-broadcast announcement_signatures
6388                 Ok(())
6389         }
6390
6391         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6392                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6393
6394                 if msg.channel_id == [0; 32] {
6395                         let channel_ids: Vec<[u8; 32]> = {
6396                                 let per_peer_state = self.per_peer_state.read().unwrap();
6397                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6398                                 if peer_state_mutex_opt.is_none() { return; }
6399                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6400                                 let peer_state = &mut *peer_state_lock;
6401                                 peer_state.channel_by_id.keys().cloned().collect()
6402                         };
6403                         for channel_id in channel_ids {
6404                                 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6405                                 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6406                         }
6407                 } else {
6408                         {
6409                                 // First check if we can advance the channel type and try again.
6410                                 let per_peer_state = self.per_peer_state.read().unwrap();
6411                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6412                                 if peer_state_mutex_opt.is_none() { return; }
6413                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6414                                 let peer_state = &mut *peer_state_lock;
6415                                 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6416                                         if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6417                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6418                                                         node_id: *counterparty_node_id,
6419                                                         msg,
6420                                                 });
6421                                                 return;
6422                                         }
6423                                 }
6424                         }
6425
6426                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6427                         let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6428                 }
6429         }
6430
6431         fn provided_node_features(&self) -> NodeFeatures {
6432                 provided_node_features(&self.default_configuration)
6433         }
6434
6435         fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6436                 provided_init_features(&self.default_configuration)
6437         }
6438 }
6439
6440 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6441 /// [`ChannelManager`].
6442 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6443         provided_init_features(config).to_context()
6444 }
6445
6446 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6447 /// [`ChannelManager`].
6448 ///
6449 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6450 /// or not. Thus, this method is not public.
6451 #[cfg(any(feature = "_test_utils", test))]
6452 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6453         provided_init_features(config).to_context()
6454 }
6455
6456 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6457 /// [`ChannelManager`].
6458 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6459         provided_init_features(config).to_context()
6460 }
6461
6462 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6463 /// [`ChannelManager`].
6464 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6465         ChannelTypeFeatures::from_init(&provided_init_features(config))
6466 }
6467
6468 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6469 /// [`ChannelManager`].
6470 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6471         // Note that if new features are added here which other peers may (eventually) require, we
6472         // should also add the corresponding (optional) bit to the ChannelMessageHandler impl for
6473         // ErroringMessageHandler.
6474         let mut features = InitFeatures::empty();
6475         features.set_data_loss_protect_optional();
6476         features.set_upfront_shutdown_script_optional();
6477         features.set_variable_length_onion_required();
6478         features.set_static_remote_key_required();
6479         features.set_payment_secret_required();
6480         features.set_basic_mpp_optional();
6481         features.set_wumbo_optional();
6482         features.set_shutdown_any_segwit_optional();
6483         features.set_channel_type_optional();
6484         features.set_scid_privacy_optional();
6485         features.set_zero_conf_optional();
6486         #[cfg(anchors)]
6487         { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6488                 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6489                         features.set_anchors_zero_fee_htlc_tx_optional();
6490                 }
6491         }
6492         features
6493 }
6494
6495 const SERIALIZATION_VERSION: u8 = 1;
6496 const MIN_SERIALIZATION_VERSION: u8 = 1;
6497
6498 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6499         (2, fee_base_msat, required),
6500         (4, fee_proportional_millionths, required),
6501         (6, cltv_expiry_delta, required),
6502 });
6503
6504 impl_writeable_tlv_based!(ChannelCounterparty, {
6505         (2, node_id, required),
6506         (4, features, required),
6507         (6, unspendable_punishment_reserve, required),
6508         (8, forwarding_info, option),
6509         (9, outbound_htlc_minimum_msat, option),
6510         (11, outbound_htlc_maximum_msat, option),
6511 });
6512
6513 impl Writeable for ChannelDetails {
6514         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6515                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6516                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6517                 let user_channel_id_low = self.user_channel_id as u64;
6518                 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6519                 write_tlv_fields!(writer, {
6520                         (1, self.inbound_scid_alias, option),
6521                         (2, self.channel_id, required),
6522                         (3, self.channel_type, option),
6523                         (4, self.counterparty, required),
6524                         (5, self.outbound_scid_alias, option),
6525                         (6, self.funding_txo, option),
6526                         (7, self.config, option),
6527                         (8, self.short_channel_id, option),
6528                         (9, self.confirmations, option),
6529                         (10, self.channel_value_satoshis, required),
6530                         (12, self.unspendable_punishment_reserve, option),
6531                         (14, user_channel_id_low, required),
6532                         (16, self.balance_msat, required),
6533                         (18, self.outbound_capacity_msat, required),
6534                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6535                         // filled in, so we can safely unwrap it here.
6536                         (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6537                         (20, self.inbound_capacity_msat, required),
6538                         (22, self.confirmations_required, option),
6539                         (24, self.force_close_spend_delay, option),
6540                         (26, self.is_outbound, required),
6541                         (28, self.is_channel_ready, required),
6542                         (30, self.is_usable, required),
6543                         (32, self.is_public, required),
6544                         (33, self.inbound_htlc_minimum_msat, option),
6545                         (35, self.inbound_htlc_maximum_msat, option),
6546                         (37, user_channel_id_high_opt, option),
6547                 });
6548                 Ok(())
6549         }
6550 }
6551
6552 impl Readable for ChannelDetails {
6553         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6554                 _init_and_read_tlv_fields!(reader, {
6555                         (1, inbound_scid_alias, option),
6556                         (2, channel_id, required),
6557                         (3, channel_type, option),
6558                         (4, counterparty, required),
6559                         (5, outbound_scid_alias, option),
6560                         (6, funding_txo, option),
6561                         (7, config, option),
6562                         (8, short_channel_id, option),
6563                         (9, confirmations, option),
6564                         (10, channel_value_satoshis, required),
6565                         (12, unspendable_punishment_reserve, option),
6566                         (14, user_channel_id_low, required),
6567                         (16, balance_msat, required),
6568                         (18, outbound_capacity_msat, required),
6569                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6570                         // filled in, so we can safely unwrap it here.
6571                         (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6572                         (20, inbound_capacity_msat, required),
6573                         (22, confirmations_required, option),
6574                         (24, force_close_spend_delay, option),
6575                         (26, is_outbound, required),
6576                         (28, is_channel_ready, required),
6577                         (30, is_usable, required),
6578                         (32, is_public, required),
6579                         (33, inbound_htlc_minimum_msat, option),
6580                         (35, inbound_htlc_maximum_msat, option),
6581                         (37, user_channel_id_high_opt, option),
6582                 });
6583
6584                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6585                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6586                 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
6587                 let user_channel_id = user_channel_id_low as u128 +
6588                         ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
6589
6590                 Ok(Self {
6591                         inbound_scid_alias,
6592                         channel_id: channel_id.0.unwrap(),
6593                         channel_type,
6594                         counterparty: counterparty.0.unwrap(),
6595                         outbound_scid_alias,
6596                         funding_txo,
6597                         config,
6598                         short_channel_id,
6599                         channel_value_satoshis: channel_value_satoshis.0.unwrap(),
6600                         unspendable_punishment_reserve,
6601                         user_channel_id,
6602                         balance_msat: balance_msat.0.unwrap(),
6603                         outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
6604                         next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
6605                         inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
6606                         confirmations_required,
6607                         confirmations,
6608                         force_close_spend_delay,
6609                         is_outbound: is_outbound.0.unwrap(),
6610                         is_channel_ready: is_channel_ready.0.unwrap(),
6611                         is_usable: is_usable.0.unwrap(),
6612                         is_public: is_public.0.unwrap(),
6613                         inbound_htlc_minimum_msat,
6614                         inbound_htlc_maximum_msat,
6615                 })
6616         }
6617 }
6618
6619 impl_writeable_tlv_based!(PhantomRouteHints, {
6620         (2, channels, vec_type),
6621         (4, phantom_scid, required),
6622         (6, real_node_pubkey, required),
6623 });
6624
6625 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6626         (0, Forward) => {
6627                 (0, onion_packet, required),
6628                 (2, short_channel_id, required),
6629         },
6630         (1, Receive) => {
6631                 (0, payment_data, required),
6632                 (1, phantom_shared_secret, option),
6633                 (2, incoming_cltv_expiry, required),
6634         },
6635         (2, ReceiveKeysend) => {
6636                 (0, payment_preimage, required),
6637                 (2, incoming_cltv_expiry, required),
6638         },
6639 ;);
6640
6641 impl_writeable_tlv_based!(PendingHTLCInfo, {
6642         (0, routing, required),
6643         (2, incoming_shared_secret, required),
6644         (4, payment_hash, required),
6645         (6, outgoing_amt_msat, required),
6646         (8, outgoing_cltv_value, required),
6647         (9, incoming_amt_msat, option),
6648 });
6649
6650
6651 impl Writeable for HTLCFailureMsg {
6652         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6653                 match self {
6654                         HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6655                                 0u8.write(writer)?;
6656                                 channel_id.write(writer)?;
6657                                 htlc_id.write(writer)?;
6658                                 reason.write(writer)?;
6659                         },
6660                         HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6661                                 channel_id, htlc_id, sha256_of_onion, failure_code
6662                         }) => {
6663                                 1u8.write(writer)?;
6664                                 channel_id.write(writer)?;
6665                                 htlc_id.write(writer)?;
6666                                 sha256_of_onion.write(writer)?;
6667                                 failure_code.write(writer)?;
6668                         },
6669                 }
6670                 Ok(())
6671         }
6672 }
6673
6674 impl Readable for HTLCFailureMsg {
6675         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6676                 let id: u8 = Readable::read(reader)?;
6677                 match id {
6678                         0 => {
6679                                 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6680                                         channel_id: Readable::read(reader)?,
6681                                         htlc_id: Readable::read(reader)?,
6682                                         reason: Readable::read(reader)?,
6683                                 }))
6684                         },
6685                         1 => {
6686                                 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6687                                         channel_id: Readable::read(reader)?,
6688                                         htlc_id: Readable::read(reader)?,
6689                                         sha256_of_onion: Readable::read(reader)?,
6690                                         failure_code: Readable::read(reader)?,
6691                                 }))
6692                         },
6693                         // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6694                         // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6695                         // messages contained in the variants.
6696                         // In version 0.0.101, support for reading the variants with these types was added, and
6697                         // we should migrate to writing these variants when UpdateFailHTLC or
6698                         // UpdateFailMalformedHTLC get TLV fields.
6699                         2 => {
6700                                 let length: BigSize = Readable::read(reader)?;
6701                                 let mut s = FixedLengthReader::new(reader, length.0);
6702                                 let res = Readable::read(&mut s)?;
6703                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6704                                 Ok(HTLCFailureMsg::Relay(res))
6705                         },
6706                         3 => {
6707                                 let length: BigSize = Readable::read(reader)?;
6708                                 let mut s = FixedLengthReader::new(reader, length.0);
6709                                 let res = Readable::read(&mut s)?;
6710                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6711                                 Ok(HTLCFailureMsg::Malformed(res))
6712                         },
6713                         _ => Err(DecodeError::UnknownRequiredFeature),
6714                 }
6715         }
6716 }
6717
6718 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6719         (0, Forward),
6720         (1, Fail),
6721 );
6722
6723 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6724         (0, short_channel_id, required),
6725         (1, phantom_shared_secret, option),
6726         (2, outpoint, required),
6727         (4, htlc_id, required),
6728         (6, incoming_packet_shared_secret, required)
6729 });
6730
6731 impl Writeable for ClaimableHTLC {
6732         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6733                 let (payment_data, keysend_preimage) = match &self.onion_payload {
6734                         OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6735                         OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6736                 };
6737                 write_tlv_fields!(writer, {
6738                         (0, self.prev_hop, required),
6739                         (1, self.total_msat, required),
6740                         (2, self.value, required),
6741                         (4, payment_data, option),
6742                         (6, self.cltv_expiry, required),
6743                         (8, keysend_preimage, option),
6744                 });
6745                 Ok(())
6746         }
6747 }
6748
6749 impl Readable for ClaimableHTLC {
6750         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6751                 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
6752                 let mut value = 0;
6753                 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6754                 let mut cltv_expiry = 0;
6755                 let mut total_msat = None;
6756                 let mut keysend_preimage: Option<PaymentPreimage> = None;
6757                 read_tlv_fields!(reader, {
6758                         (0, prev_hop, required),
6759                         (1, total_msat, option),
6760                         (2, value, required),
6761                         (4, payment_data, option),
6762                         (6, cltv_expiry, required),
6763                         (8, keysend_preimage, option)
6764                 });
6765                 let onion_payload = match keysend_preimage {
6766                         Some(p) => {
6767                                 if payment_data.is_some() {
6768                                         return Err(DecodeError::InvalidValue)
6769                                 }
6770                                 if total_msat.is_none() {
6771                                         total_msat = Some(value);
6772                                 }
6773                                 OnionPayload::Spontaneous(p)
6774                         },
6775                         None => {
6776                                 if total_msat.is_none() {
6777                                         if payment_data.is_none() {
6778                                                 return Err(DecodeError::InvalidValue)
6779                                         }
6780                                         total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6781                                 }
6782                                 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6783                         },
6784                 };
6785                 Ok(Self {
6786                         prev_hop: prev_hop.0.unwrap(),
6787                         timer_ticks: 0,
6788                         value,
6789                         total_msat: total_msat.unwrap(),
6790                         onion_payload,
6791                         cltv_expiry,
6792                 })
6793         }
6794 }
6795
6796 impl Readable for HTLCSource {
6797         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6798                 let id: u8 = Readable::read(reader)?;
6799                 match id {
6800                         0 => {
6801                                 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
6802                                 let mut first_hop_htlc_msat: u64 = 0;
6803                                 let mut path: Option<Vec<RouteHop>> = Some(Vec::new());
6804                                 let mut payment_id = None;
6805                                 let mut payment_secret = None;
6806                                 let mut payment_params: Option<PaymentParameters> = None;
6807                                 read_tlv_fields!(reader, {
6808                                         (0, session_priv, required),
6809                                         (1, payment_id, option),
6810                                         (2, first_hop_htlc_msat, required),
6811                                         (3, payment_secret, option),
6812                                         (4, path, vec_type),
6813                                         (5, payment_params, (option: ReadableArgs, 0)),
6814                                 });
6815                                 if payment_id.is_none() {
6816                                         // For backwards compat, if there was no payment_id written, use the session_priv bytes
6817                                         // instead.
6818                                         payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6819                                 }
6820                                 if path.is_none() || path.as_ref().unwrap().is_empty() {
6821                                         return Err(DecodeError::InvalidValue);
6822                                 }
6823                                 let path = path.unwrap();
6824                                 if let Some(params) = payment_params.as_mut() {
6825                                         if params.final_cltv_expiry_delta == 0 {
6826                                                 params.final_cltv_expiry_delta = path.last().unwrap().cltv_expiry_delta;
6827                                         }
6828                                 }
6829                                 Ok(HTLCSource::OutboundRoute {
6830                                         session_priv: session_priv.0.unwrap(),
6831                                         first_hop_htlc_msat,
6832                                         path,
6833                                         payment_id: payment_id.unwrap(),
6834                                         payment_secret,
6835                                         payment_params,
6836                                 })
6837                         }
6838                         1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6839                         _ => Err(DecodeError::UnknownRequiredFeature),
6840                 }
6841         }
6842 }
6843
6844 impl Writeable for HTLCSource {
6845         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
6846                 match self {
6847                         HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payment_params } => {
6848                                 0u8.write(writer)?;
6849                                 let payment_id_opt = Some(payment_id);
6850                                 write_tlv_fields!(writer, {
6851                                         (0, session_priv, required),
6852                                         (1, payment_id_opt, option),
6853                                         (2, first_hop_htlc_msat, required),
6854                                         (3, payment_secret, option),
6855                                         (4, *path, vec_type),
6856                                         (5, payment_params, option),
6857                                  });
6858                         }
6859                         HTLCSource::PreviousHopData(ref field) => {
6860                                 1u8.write(writer)?;
6861                                 field.write(writer)?;
6862                         }
6863                 }
6864                 Ok(())
6865         }
6866 }
6867
6868 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
6869         (0, forward_info, required),
6870         (1, prev_user_channel_id, (default_value, 0)),
6871         (2, prev_short_channel_id, required),
6872         (4, prev_htlc_id, required),
6873         (6, prev_funding_outpoint, required),
6874 });
6875
6876 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6877         (1, FailHTLC) => {
6878                 (0, htlc_id, required),
6879                 (2, err_packet, required),
6880         };
6881         (0, AddHTLC)
6882 );
6883
6884 impl_writeable_tlv_based!(PendingInboundPayment, {
6885         (0, payment_secret, required),
6886         (2, expiry_time, required),
6887         (4, user_payment_id, required),
6888         (6, payment_preimage, required),
6889         (8, min_value_msat, required),
6890 });
6891
6892 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
6893 where
6894         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6895         T::Target: BroadcasterInterface,
6896         ES::Target: EntropySource,
6897         NS::Target: NodeSigner,
6898         SP::Target: SignerProvider,
6899         F::Target: FeeEstimator,
6900         R::Target: Router,
6901         L::Target: Logger,
6902 {
6903         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6904                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
6905
6906                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
6907
6908                 self.genesis_hash.write(writer)?;
6909                 {
6910                         let best_block = self.best_block.read().unwrap();
6911                         best_block.height().write(writer)?;
6912                         best_block.block_hash().write(writer)?;
6913                 }
6914
6915                 let mut serializable_peer_count: u64 = 0;
6916                 {
6917                         let per_peer_state = self.per_peer_state.read().unwrap();
6918                         let mut unfunded_channels = 0;
6919                         let mut number_of_channels = 0;
6920                         for (_, peer_state_mutex) in per_peer_state.iter() {
6921                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6922                                 let peer_state = &mut *peer_state_lock;
6923                                 if !peer_state.ok_to_remove(false) {
6924                                         serializable_peer_count += 1;
6925                                 }
6926                                 number_of_channels += peer_state.channel_by_id.len();
6927                                 for (_, channel) in peer_state.channel_by_id.iter() {
6928                                         if !channel.is_funding_initiated() {
6929                                                 unfunded_channels += 1;
6930                                         }
6931                                 }
6932                         }
6933
6934                         ((number_of_channels - unfunded_channels) as u64).write(writer)?;
6935
6936                         for (_, peer_state_mutex) in per_peer_state.iter() {
6937                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6938                                 let peer_state = &mut *peer_state_lock;
6939                                 for (_, channel) in peer_state.channel_by_id.iter() {
6940                                         if channel.is_funding_initiated() {
6941                                                 channel.write(writer)?;
6942                                         }
6943                                 }
6944                         }
6945                 }
6946
6947                 {
6948                         let forward_htlcs = self.forward_htlcs.lock().unwrap();
6949                         (forward_htlcs.len() as u64).write(writer)?;
6950                         for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
6951                                 short_channel_id.write(writer)?;
6952                                 (pending_forwards.len() as u64).write(writer)?;
6953                                 for forward in pending_forwards {
6954                                         forward.write(writer)?;
6955                                 }
6956                         }
6957                 }
6958
6959                 let per_peer_state = self.per_peer_state.write().unwrap();
6960
6961                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
6962                 let claimable_payments = self.claimable_payments.lock().unwrap();
6963                 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
6964
6965                 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
6966                 (claimable_payments.claimable_htlcs.len() as u64).write(writer)?;
6967                 for (payment_hash, (purpose, previous_hops)) in claimable_payments.claimable_htlcs.iter() {
6968                         payment_hash.write(writer)?;
6969                         (previous_hops.len() as u64).write(writer)?;
6970                         for htlc in previous_hops.iter() {
6971                                 htlc.write(writer)?;
6972                         }
6973                         htlc_purposes.push(purpose);
6974                 }
6975
6976                 let mut monitor_update_blocked_actions_per_peer = None;
6977                 let mut peer_states = Vec::new();
6978                 for (_, peer_state_mutex) in per_peer_state.iter() {
6979                         // Because we're holding the owning `per_peer_state` write lock here there's no chance
6980                         // of a lockorder violation deadlock - no other thread can be holding any
6981                         // per_peer_state lock at all.
6982                         peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
6983                 }
6984
6985                 (serializable_peer_count).write(writer)?;
6986                 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
6987                         // Peers which we have no channels to should be dropped once disconnected. As we
6988                         // disconnect all peers when shutting down and serializing the ChannelManager, we
6989                         // consider all peers as disconnected here. There's therefore no need write peers with
6990                         // no channels.
6991                         if !peer_state.ok_to_remove(false) {
6992                                 peer_pubkey.write(writer)?;
6993                                 peer_state.latest_features.write(writer)?;
6994                                 if !peer_state.monitor_update_blocked_actions.is_empty() {
6995                                         monitor_update_blocked_actions_per_peer
6996                                                 .get_or_insert_with(Vec::new)
6997                                                 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
6998                                 }
6999                         }
7000                 }
7001
7002                 let events = self.pending_events.lock().unwrap();
7003                 (events.len() as u64).write(writer)?;
7004                 for event in events.iter() {
7005                         event.write(writer)?;
7006                 }
7007
7008                 let background_events = self.pending_background_events.lock().unwrap();
7009                 (background_events.len() as u64).write(writer)?;
7010                 for event in background_events.iter() {
7011                         match event {
7012                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
7013                                         0u8.write(writer)?;
7014                                         funding_txo.write(writer)?;
7015                                         monitor_update.write(writer)?;
7016                                 },
7017                         }
7018                 }
7019
7020                 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
7021                 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
7022                 // likely to be identical.
7023                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7024                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7025
7026                 (pending_inbound_payments.len() as u64).write(writer)?;
7027                 for (hash, pending_payment) in pending_inbound_payments.iter() {
7028                         hash.write(writer)?;
7029                         pending_payment.write(writer)?;
7030                 }
7031
7032                 // For backwards compat, write the session privs and their total length.
7033                 let mut num_pending_outbounds_compat: u64 = 0;
7034                 for (_, outbound) in pending_outbound_payments.iter() {
7035                         if !outbound.is_fulfilled() && !outbound.abandoned() {
7036                                 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7037                         }
7038                 }
7039                 num_pending_outbounds_compat.write(writer)?;
7040                 for (_, outbound) in pending_outbound_payments.iter() {
7041                         match outbound {
7042                                 PendingOutboundPayment::Legacy { session_privs } |
7043                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7044                                         for session_priv in session_privs.iter() {
7045                                                 session_priv.write(writer)?;
7046                                         }
7047                                 }
7048                                 PendingOutboundPayment::Fulfilled { .. } => {},
7049                                 PendingOutboundPayment::Abandoned { .. } => {},
7050                         }
7051                 }
7052
7053                 // Encode without retry info for 0.0.101 compatibility.
7054                 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7055                 for (id, outbound) in pending_outbound_payments.iter() {
7056                         match outbound {
7057                                 PendingOutboundPayment::Legacy { session_privs } |
7058                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7059                                         pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7060                                 },
7061                                 _ => {},
7062                         }
7063                 }
7064
7065                 let mut pending_intercepted_htlcs = None;
7066                 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7067                 if our_pending_intercepts.len() != 0 {
7068                         pending_intercepted_htlcs = Some(our_pending_intercepts);
7069                 }
7070
7071                 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7072                 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7073                         // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7074                         // map. Thus, if there are no entries we skip writing a TLV for it.
7075                         pending_claiming_payments = None;
7076                 }
7077
7078                 write_tlv_fields!(writer, {
7079                         (1, pending_outbound_payments_no_retry, required),
7080                         (2, pending_intercepted_htlcs, option),
7081                         (3, pending_outbound_payments, required),
7082                         (4, pending_claiming_payments, option),
7083                         (5, self.our_network_pubkey, required),
7084                         (6, monitor_update_blocked_actions_per_peer, option),
7085                         (7, self.fake_scid_rand_bytes, required),
7086                         (9, htlc_purposes, vec_type),
7087                         (11, self.probing_cookie_secret, required),
7088                 });
7089
7090                 Ok(())
7091         }
7092 }
7093
7094 /// Arguments for the creation of a ChannelManager that are not deserialized.
7095 ///
7096 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7097 /// is:
7098 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7099 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7100 ///    `<(BlockHash, ChannelManager)>::read(reader, args)`
7101 ///    This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7102 ///    [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7103 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7104 ///    same way you would handle a [`chain::Filter`] call using
7105 ///    [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7106 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7107 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7108 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7109 ///    Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7110 ///    will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7111 ///    the next step.
7112 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7113 ///    [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7114 ///
7115 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7116 /// call any other methods on the newly-deserialized [`ChannelManager`].
7117 ///
7118 /// Note that because some channels may be closed during deserialization, it is critical that you
7119 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7120 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7121 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7122 /// not force-close the same channels but consider them live), you may end up revoking a state for
7123 /// which you've already broadcasted the transaction.
7124 ///
7125 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7126 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7127 where
7128         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7129         T::Target: BroadcasterInterface,
7130         ES::Target: EntropySource,
7131         NS::Target: NodeSigner,
7132         SP::Target: SignerProvider,
7133         F::Target: FeeEstimator,
7134         R::Target: Router,
7135         L::Target: Logger,
7136 {
7137         /// A cryptographically secure source of entropy.
7138         pub entropy_source: ES,
7139
7140         /// A signer that is able to perform node-scoped cryptographic operations.
7141         pub node_signer: NS,
7142
7143         /// The keys provider which will give us relevant keys. Some keys will be loaded during
7144         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7145         /// signing data.
7146         pub signer_provider: SP,
7147
7148         /// The fee_estimator for use in the ChannelManager in the future.
7149         ///
7150         /// No calls to the FeeEstimator will be made during deserialization.
7151         pub fee_estimator: F,
7152         /// The chain::Watch for use in the ChannelManager in the future.
7153         ///
7154         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7155         /// you have deserialized ChannelMonitors separately and will add them to your
7156         /// chain::Watch after deserializing this ChannelManager.
7157         pub chain_monitor: M,
7158
7159         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7160         /// used to broadcast the latest local commitment transactions of channels which must be
7161         /// force-closed during deserialization.
7162         pub tx_broadcaster: T,
7163         /// The router which will be used in the ChannelManager in the future for finding routes
7164         /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7165         ///
7166         /// No calls to the router will be made during deserialization.
7167         pub router: R,
7168         /// The Logger for use in the ChannelManager and which may be used to log information during
7169         /// deserialization.
7170         pub logger: L,
7171         /// Default settings used for new channels. Any existing channels will continue to use the
7172         /// runtime settings which were stored when the ChannelManager was serialized.
7173         pub default_config: UserConfig,
7174
7175         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7176         /// value.get_funding_txo() should be the key).
7177         ///
7178         /// If a monitor is inconsistent with the channel state during deserialization the channel will
7179         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7180         /// is true for missing channels as well. If there is a monitor missing for which we find
7181         /// channel data Err(DecodeError::InvalidValue) will be returned.
7182         ///
7183         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7184         /// this struct.
7185         ///
7186         /// (C-not exported) because we have no HashMap bindings
7187         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7188 }
7189
7190 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7191                 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7192 where
7193         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7194         T::Target: BroadcasterInterface,
7195         ES::Target: EntropySource,
7196         NS::Target: NodeSigner,
7197         SP::Target: SignerProvider,
7198         F::Target: FeeEstimator,
7199         R::Target: Router,
7200         L::Target: Logger,
7201 {
7202         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7203         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7204         /// populate a HashMap directly from C.
7205         pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7206                         mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7207                 Self {
7208                         entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7209                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7210                 }
7211         }
7212 }
7213
7214 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7215 // SipmleArcChannelManager type:
7216 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7217         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7218 where
7219         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7220         T::Target: BroadcasterInterface,
7221         ES::Target: EntropySource,
7222         NS::Target: NodeSigner,
7223         SP::Target: SignerProvider,
7224         F::Target: FeeEstimator,
7225         R::Target: Router,
7226         L::Target: Logger,
7227 {
7228         fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7229                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7230                 Ok((blockhash, Arc::new(chan_manager)))
7231         }
7232 }
7233
7234 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7235         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7236 where
7237         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7238         T::Target: BroadcasterInterface,
7239         ES::Target: EntropySource,
7240         NS::Target: NodeSigner,
7241         SP::Target: SignerProvider,
7242         F::Target: FeeEstimator,
7243         R::Target: Router,
7244         L::Target: Logger,
7245 {
7246         fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7247                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7248
7249                 let genesis_hash: BlockHash = Readable::read(reader)?;
7250                 let best_block_height: u32 = Readable::read(reader)?;
7251                 let best_block_hash: BlockHash = Readable::read(reader)?;
7252
7253                 let mut failed_htlcs = Vec::new();
7254
7255                 let channel_count: u64 = Readable::read(reader)?;
7256                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7257                 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7258                 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7259                 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7260                 let mut channel_closures = Vec::new();
7261                 for _ in 0..channel_count {
7262                         let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7263                                 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7264                         ))?;
7265                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7266                         funding_txo_set.insert(funding_txo.clone());
7267                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7268                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
7269                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
7270                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
7271                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
7272                                         // If the channel is ahead of the monitor, return InvalidValue:
7273                                         log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7274                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7275                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7276                                         log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7277                                         log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7278                                         log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7279                                         log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7280                                         return Err(DecodeError::InvalidValue);
7281                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7282                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7283                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7284                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7285                                         // But if the channel is behind of the monitor, close the channel:
7286                                         log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7287                                         log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7288                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7289                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7290                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
7291                                         failed_htlcs.append(&mut new_failed_htlcs);
7292                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7293                                         channel_closures.push(events::Event::ChannelClosed {
7294                                                 channel_id: channel.channel_id(),
7295                                                 user_channel_id: channel.get_user_id(),
7296                                                 reason: ClosureReason::OutdatedChannelManager
7297                                         });
7298                                         for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7299                                                 let mut found_htlc = false;
7300                                                 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7301                                                         if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7302                                                 }
7303                                                 if !found_htlc {
7304                                                         // If we have some HTLCs in the channel which are not present in the newer
7305                                                         // ChannelMonitor, they have been removed and should be failed back to
7306                                                         // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7307                                                         // were actually claimed we'd have generated and ensured the previous-hop
7308                                                         // claim update ChannelMonitor updates were persisted prior to persising
7309                                                         // the ChannelMonitor update for the forward leg, so attempting to fail the
7310                                                         // backwards leg of the HTLC will simply be rejected.
7311                                                         log_info!(args.logger,
7312                                                                 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7313                                                                 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7314                                                         failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7315                                                 }
7316                                         }
7317                                 } else {
7318                                         log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7319                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
7320                                                 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7321                                         }
7322                                         if channel.is_funding_initiated() {
7323                                                 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7324                                         }
7325                                         match peer_channels.entry(channel.get_counterparty_node_id()) {
7326                                                 hash_map::Entry::Occupied(mut entry) => {
7327                                                         let by_id_map = entry.get_mut();
7328                                                         by_id_map.insert(channel.channel_id(), channel);
7329                                                 },
7330                                                 hash_map::Entry::Vacant(entry) => {
7331                                                         let mut by_id_map = HashMap::new();
7332                                                         by_id_map.insert(channel.channel_id(), channel);
7333                                                         entry.insert(by_id_map);
7334                                                 }
7335                                         }
7336                                 }
7337                         } else if channel.is_awaiting_initial_mon_persist() {
7338                                 // If we were persisted and shut down while the initial ChannelMonitor persistence
7339                                 // was in-progress, we never broadcasted the funding transaction and can still
7340                                 // safely discard the channel.
7341                                 let _ = channel.force_shutdown(false);
7342                                 channel_closures.push(events::Event::ChannelClosed {
7343                                         channel_id: channel.channel_id(),
7344                                         user_channel_id: channel.get_user_id(),
7345                                         reason: ClosureReason::DisconnectedPeer,
7346                                 });
7347                         } else {
7348                                 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7349                                 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7350                                 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7351                                 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7352                                 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7353                                 return Err(DecodeError::InvalidValue);
7354                         }
7355                 }
7356
7357                 for (funding_txo, monitor) in args.channel_monitors.iter_mut() {
7358                         if !funding_txo_set.contains(funding_txo) {
7359                                 log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
7360                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7361                         }
7362                 }
7363
7364                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7365                 let forward_htlcs_count: u64 = Readable::read(reader)?;
7366                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7367                 for _ in 0..forward_htlcs_count {
7368                         let short_channel_id = Readable::read(reader)?;
7369                         let pending_forwards_count: u64 = Readable::read(reader)?;
7370                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7371                         for _ in 0..pending_forwards_count {
7372                                 pending_forwards.push(Readable::read(reader)?);
7373                         }
7374                         forward_htlcs.insert(short_channel_id, pending_forwards);
7375                 }
7376
7377                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7378                 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7379                 for _ in 0..claimable_htlcs_count {
7380                         let payment_hash = Readable::read(reader)?;
7381                         let previous_hops_len: u64 = Readable::read(reader)?;
7382                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7383                         for _ in 0..previous_hops_len {
7384                                 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7385                         }
7386                         claimable_htlcs_list.push((payment_hash, previous_hops));
7387                 }
7388
7389                 let peer_count: u64 = Readable::read(reader)?;
7390                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7391                 for _ in 0..peer_count {
7392                         let peer_pubkey = Readable::read(reader)?;
7393                         let peer_state = PeerState {
7394                                 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7395                                 latest_features: Readable::read(reader)?,
7396                                 pending_msg_events: Vec::new(),
7397                                 monitor_update_blocked_actions: BTreeMap::new(),
7398                                 is_connected: false,
7399                         };
7400                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7401                 }
7402
7403                 let event_count: u64 = Readable::read(reader)?;
7404                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7405                 for _ in 0..event_count {
7406                         match MaybeReadable::read(reader)? {
7407                                 Some(event) => pending_events_read.push(event),
7408                                 None => continue,
7409                         }
7410                 }
7411
7412                 let background_event_count: u64 = Readable::read(reader)?;
7413                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
7414                 for _ in 0..background_event_count {
7415                         match <u8 as Readable>::read(reader)? {
7416                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
7417                                 _ => return Err(DecodeError::InvalidValue),
7418                         }
7419                 }
7420
7421                 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7422                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7423
7424                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7425                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7426                 for _ in 0..pending_inbound_payment_count {
7427                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7428                                 return Err(DecodeError::InvalidValue);
7429                         }
7430                 }
7431
7432                 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7433                 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7434                         HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7435                 for _ in 0..pending_outbound_payments_count_compat {
7436                         let session_priv = Readable::read(reader)?;
7437                         let payment = PendingOutboundPayment::Legacy {
7438                                 session_privs: [session_priv].iter().cloned().collect()
7439                         };
7440                         if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7441                                 return Err(DecodeError::InvalidValue)
7442                         };
7443                 }
7444
7445                 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7446                 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7447                 let mut pending_outbound_payments = None;
7448                 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7449                 let mut received_network_pubkey: Option<PublicKey> = None;
7450                 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7451                 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7452                 let mut claimable_htlc_purposes = None;
7453                 let mut pending_claiming_payments = Some(HashMap::new());
7454                 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7455                 read_tlv_fields!(reader, {
7456                         (1, pending_outbound_payments_no_retry, option),
7457                         (2, pending_intercepted_htlcs, option),
7458                         (3, pending_outbound_payments, option),
7459                         (4, pending_claiming_payments, option),
7460                         (5, received_network_pubkey, option),
7461                         (6, monitor_update_blocked_actions_per_peer, option),
7462                         (7, fake_scid_rand_bytes, option),
7463                         (9, claimable_htlc_purposes, vec_type),
7464                         (11, probing_cookie_secret, option),
7465                 });
7466                 if fake_scid_rand_bytes.is_none() {
7467                         fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7468                 }
7469
7470                 if probing_cookie_secret.is_none() {
7471                         probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7472                 }
7473
7474                 if !channel_closures.is_empty() {
7475                         pending_events_read.append(&mut channel_closures);
7476                 }
7477
7478                 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7479                         pending_outbound_payments = Some(pending_outbound_payments_compat);
7480                 } else if pending_outbound_payments.is_none() {
7481                         let mut outbounds = HashMap::new();
7482                         for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7483                                 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7484                         }
7485                         pending_outbound_payments = Some(outbounds);
7486                 }
7487                 let pending_outbounds = OutboundPayments {
7488                         pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7489                         retry_lock: Mutex::new(())
7490                 };
7491
7492                 {
7493                         // If we're tracking pending payments, ensure we haven't lost any by looking at the
7494                         // ChannelMonitor data for any channels for which we do not have authorative state
7495                         // (i.e. those for which we just force-closed above or we otherwise don't have a
7496                         // corresponding `Channel` at all).
7497                         // This avoids several edge-cases where we would otherwise "forget" about pending
7498                         // payments which are still in-flight via their on-chain state.
7499                         // We only rebuild the pending payments map if we were most recently serialized by
7500                         // 0.0.102+
7501                         for (_, monitor) in args.channel_monitors.iter() {
7502                                 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7503                                         for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
7504                                                 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
7505                                                         if path.is_empty() {
7506                                                                 log_error!(args.logger, "Got an empty path for a pending payment");
7507                                                                 return Err(DecodeError::InvalidValue);
7508                                                         }
7509
7510                                                         let path_amt = path.last().unwrap().fee_msat;
7511                                                         let mut session_priv_bytes = [0; 32];
7512                                                         session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7513                                                         match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
7514                                                                 hash_map::Entry::Occupied(mut entry) => {
7515                                                                         let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7516                                                                         log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7517                                                                                 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7518                                                                 },
7519                                                                 hash_map::Entry::Vacant(entry) => {
7520                                                                         let path_fee = path.get_path_fees();
7521                                                                         entry.insert(PendingOutboundPayment::Retryable {
7522                                                                                 retry_strategy: None,
7523                                                                                 attempts: PaymentAttempts::new(),
7524                                                                                 payment_params: None,
7525                                                                                 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7526                                                                                 payment_hash: htlc.payment_hash,
7527                                                                                 payment_secret,
7528                                                                                 keysend_preimage: None, // only used for retries, and we'll never retry on startup
7529                                                                                 pending_amt_msat: path_amt,
7530                                                                                 pending_fee_msat: Some(path_fee),
7531                                                                                 total_msat: path_amt,
7532                                                                                 starting_block_height: best_block_height,
7533                                                                         });
7534                                                                         log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7535                                                                                 path_amt, log_bytes!(htlc.payment_hash.0),  log_bytes!(session_priv_bytes));
7536                                                                 }
7537                                                         }
7538                                                 }
7539                                         }
7540                                         for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
7541                                                 match htlc_source {
7542                                                         HTLCSource::PreviousHopData(prev_hop_data) => {
7543                                                                 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
7544                                                                         info.prev_funding_outpoint == prev_hop_data.outpoint &&
7545                                                                                 info.prev_htlc_id == prev_hop_data.htlc_id
7546                                                                 };
7547                                                                 // The ChannelMonitor is now responsible for this HTLC's
7548                                                                 // failure/success and will let us know what its outcome is. If we
7549                                                                 // still have an entry for this HTLC in `forward_htlcs` or
7550                                                                 // `pending_intercepted_htlcs`, we were apparently not persisted after
7551                                                                 // the monitor was when forwarding the payment.
7552                                                                 forward_htlcs.retain(|_, forwards| {
7553                                                                         forwards.retain(|forward| {
7554                                                                                 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
7555                                                                                         if pending_forward_matches_htlc(&htlc_info) {
7556                                                                                                 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
7557                                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7558                                                                                                 false
7559                                                                                         } else { true }
7560                                                                                 } else { true }
7561                                                                         });
7562                                                                         !forwards.is_empty()
7563                                                                 });
7564                                                                 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
7565                                                                         if pending_forward_matches_htlc(&htlc_info) {
7566                                                                                 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
7567                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7568                                                                                 pending_events_read.retain(|event| {
7569                                                                                         if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
7570                                                                                                 intercepted_id != ev_id
7571                                                                                         } else { true }
7572                                                                                 });
7573                                                                                 false
7574                                                                         } else { true }
7575                                                                 });
7576                                                         },
7577                                                         HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
7578                                                                 if let Some(preimage) = preimage_opt {
7579                                                                         let pending_events = Mutex::new(pending_events_read);
7580                                                                         // Note that we set `from_onchain` to "false" here,
7581                                                                         // deliberately keeping the pending payment around forever.
7582                                                                         // Given it should only occur when we have a channel we're
7583                                                                         // force-closing for being stale that's okay.
7584                                                                         // The alternative would be to wipe the state when claiming,
7585                                                                         // generating a `PaymentPathSuccessful` event but regenerating
7586                                                                         // it and the `PaymentSent` on every restart until the
7587                                                                         // `ChannelMonitor` is removed.
7588                                                                         pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
7589                                                                         pending_events_read = pending_events.into_inner().unwrap();
7590                                                                 }
7591                                                         },
7592                                                 }
7593                                         }
7594                                 }
7595                         }
7596                 }
7597
7598                 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
7599                         // If we have pending HTLCs to forward, assume we either dropped a
7600                         // `PendingHTLCsForwardable` or the user received it but never processed it as they
7601                         // shut down before the timer hit. Either way, set the time_forwardable to a small
7602                         // constant as enough time has likely passed that we should simply handle the forwards
7603                         // now, or at least after the user gets a chance to reconnect to our peers.
7604                         pending_events_read.push(events::Event::PendingHTLCsForwardable {
7605                                 time_forwardable: Duration::from_secs(2),
7606                         });
7607                 }
7608
7609                 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
7610                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7611
7612                 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
7613                 if let Some(mut purposes) = claimable_htlc_purposes {
7614                         if purposes.len() != claimable_htlcs_list.len() {
7615                                 return Err(DecodeError::InvalidValue);
7616                         }
7617                         for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
7618                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7619                         }
7620                 } else {
7621                         // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7622                         // include a `_legacy_hop_data` in the `OnionPayload`.
7623                         for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
7624                                 if previous_hops.is_empty() {
7625                                         return Err(DecodeError::InvalidValue);
7626                                 }
7627                                 let purpose = match &previous_hops[0].onion_payload {
7628                                         OnionPayload::Invoice { _legacy_hop_data } => {
7629                                                 if let Some(hop_data) = _legacy_hop_data {
7630                                                         events::PaymentPurpose::InvoicePayment {
7631                                                                 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7632                                                                         Some(inbound_payment) => inbound_payment.payment_preimage,
7633                                                                         None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7634                                                                                 Ok((payment_preimage, _)) => payment_preimage,
7635                                                                                 Err(()) => {
7636                                                                                         log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7637                                                                                         return Err(DecodeError::InvalidValue);
7638                                                                                 }
7639                                                                         }
7640                                                                 },
7641                                                                 payment_secret: hop_data.payment_secret,
7642                                                         }
7643                                                 } else { return Err(DecodeError::InvalidValue); }
7644                                         },
7645                                         OnionPayload::Spontaneous(payment_preimage) =>
7646                                                 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7647                                 };
7648                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7649                         }
7650                 }
7651
7652                 let mut secp_ctx = Secp256k1::new();
7653                 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
7654
7655                 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
7656                         Ok(key) => key,
7657                         Err(()) => return Err(DecodeError::InvalidValue)
7658                 };
7659                 if let Some(network_pubkey) = received_network_pubkey {
7660                         if network_pubkey != our_network_pubkey {
7661                                 log_error!(args.logger, "Key that was generated does not match the existing key.");
7662                                 return Err(DecodeError::InvalidValue);
7663                         }
7664                 }
7665
7666                 let mut outbound_scid_aliases = HashSet::new();
7667                 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
7668                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7669                         let peer_state = &mut *peer_state_lock;
7670                         for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
7671                                 if chan.outbound_scid_alias() == 0 {
7672                                         let mut outbound_scid_alias;
7673                                         loop {
7674                                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7675                                                         .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
7676                                                 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7677                                         }
7678                                         chan.set_outbound_scid_alias(outbound_scid_alias);
7679                                 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7680                                         // Note that in rare cases its possible to hit this while reading an older
7681                                         // channel if we just happened to pick a colliding outbound alias above.
7682                                         log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7683                                         return Err(DecodeError::InvalidValue);
7684                                 }
7685                                 if chan.is_usable() {
7686                                         if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7687                                                 // Note that in rare cases its possible to hit this while reading an older
7688                                                 // channel if we just happened to pick a colliding outbound alias above.
7689                                                 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7690                                                 return Err(DecodeError::InvalidValue);
7691                                         }
7692                                 }
7693                         }
7694                 }
7695
7696                 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7697
7698                 for (_, monitor) in args.channel_monitors.iter() {
7699                         for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7700                                 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7701                                         log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7702                                         let mut claimable_amt_msat = 0;
7703                                         let mut receiver_node_id = Some(our_network_pubkey);
7704                                         let phantom_shared_secret = claimable_htlcs[0].prev_hop.phantom_shared_secret;
7705                                         if phantom_shared_secret.is_some() {
7706                                                 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
7707                                                         .expect("Failed to get node_id for phantom node recipient");
7708                                                 receiver_node_id = Some(phantom_pubkey)
7709                                         }
7710                                         for claimable_htlc in claimable_htlcs {
7711                                                 claimable_amt_msat += claimable_htlc.value;
7712
7713                                                 // Add a holding-cell claim of the payment to the Channel, which should be
7714                                                 // applied ~immediately on peer reconnection. Because it won't generate a
7715                                                 // new commitment transaction we can just provide the payment preimage to
7716                                                 // the corresponding ChannelMonitor and nothing else.
7717                                                 //
7718                                                 // We do so directly instead of via the normal ChannelMonitor update
7719                                                 // procedure as the ChainMonitor hasn't yet been initialized, implying
7720                                                 // we're not allowed to call it directly yet. Further, we do the update
7721                                                 // without incrementing the ChannelMonitor update ID as there isn't any
7722                                                 // reason to.
7723                                                 // If we were to generate a new ChannelMonitor update ID here and then
7724                                                 // crash before the user finishes block connect we'd end up force-closing
7725                                                 // this channel as well. On the flip side, there's no harm in restarting
7726                                                 // without the new monitor persisted - we'll end up right back here on
7727                                                 // restart.
7728                                                 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7729                                                 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
7730                                                         let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
7731                                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7732                                                         let peer_state = &mut *peer_state_lock;
7733                                                         if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
7734                                                                 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7735                                                         }
7736                                                 }
7737                                                 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7738                                                         previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
7739                                                 }
7740                                         }
7741                                         pending_events_read.push(events::Event::PaymentClaimed {
7742                                                 receiver_node_id,
7743                                                 payment_hash,
7744                                                 purpose: payment_purpose,
7745                                                 amount_msat: claimable_amt_msat,
7746                                         });
7747                                 }
7748                         }
7749                 }
7750
7751                 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
7752                         if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
7753                                 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
7754                         } else {
7755                                 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
7756                                 return Err(DecodeError::InvalidValue);
7757                         }
7758                 }
7759
7760                 let channel_manager = ChannelManager {
7761                         genesis_hash,
7762                         fee_estimator: bounded_fee_estimator,
7763                         chain_monitor: args.chain_monitor,
7764                         tx_broadcaster: args.tx_broadcaster,
7765                         router: args.router,
7766
7767                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7768
7769                         inbound_payment_key: expanded_inbound_key,
7770                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
7771                         pending_outbound_payments: pending_outbounds,
7772                         pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
7773
7774                         forward_htlcs: Mutex::new(forward_htlcs),
7775                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs, pending_claiming_payments: pending_claiming_payments.unwrap() }),
7776                         outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7777                         id_to_peer: Mutex::new(id_to_peer),
7778                         short_to_chan_info: FairRwLock::new(short_to_chan_info),
7779                         fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7780
7781                         probing_cookie_secret: probing_cookie_secret.unwrap(),
7782
7783                         our_network_pubkey,
7784                         secp_ctx,
7785
7786                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7787
7788                         per_peer_state: FairRwLock::new(per_peer_state),
7789
7790                         pending_events: Mutex::new(pending_events_read),
7791                         pending_background_events: Mutex::new(pending_background_events_read),
7792                         total_consistency_lock: RwLock::new(()),
7793                         persistence_notifier: Notifier::new(),
7794
7795                         entropy_source: args.entropy_source,
7796                         node_signer: args.node_signer,
7797                         signer_provider: args.signer_provider,
7798
7799                         logger: args.logger,
7800                         default_configuration: args.default_config,
7801                 };
7802
7803                 for htlc_source in failed_htlcs.drain(..) {
7804                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
7805                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
7806                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7807                         channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
7808                 }
7809
7810                 //TODO: Broadcast channel update for closed channels, but only after we've made a
7811                 //connection or two.
7812
7813                 Ok((best_block_hash.clone(), channel_manager))
7814         }
7815 }
7816
7817 #[cfg(test)]
7818 mod tests {
7819         use bitcoin::hashes::Hash;
7820         use bitcoin::hashes::sha256::Hash as Sha256;
7821         use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
7822         use core::time::Duration;
7823         use core::sync::atomic::Ordering;
7824         use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7825         use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, InterceptId};
7826         use crate::ln::functional_test_utils::*;
7827         use crate::ln::msgs;
7828         use crate::ln::msgs::ChannelMessageHandler;
7829         use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
7830         use crate::util::errors::APIError;
7831         use crate::util::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
7832         use crate::util::test_utils;
7833         use crate::util::config::ChannelConfig;
7834         use crate::chain::keysinterface::EntropySource;
7835
7836         #[test]
7837         fn test_notify_limits() {
7838                 // Check that a few cases which don't require the persistence of a new ChannelManager,
7839                 // indeed, do not cause the persistence of a new ChannelManager.
7840                 let chanmon_cfgs = create_chanmon_cfgs(3);
7841                 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
7842                 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
7843                 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
7844
7845                 // All nodes start with a persistable update pending as `create_network` connects each node
7846                 // with all other nodes to make most tests simpler.
7847                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7848                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7849                 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7850
7851                 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
7852
7853                 // We check that the channel info nodes have doesn't change too early, even though we try
7854                 // to connect messages with new values
7855                 chan.0.contents.fee_base_msat *= 2;
7856                 chan.1.contents.fee_base_msat *= 2;
7857                 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
7858                 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
7859
7860                 // The first two nodes (which opened a channel) should now require fresh persistence
7861                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7862                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7863                 // ... but the last node should not.
7864                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7865                 // After persisting the first two nodes they should no longer need fresh persistence.
7866                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7867                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7868
7869                 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
7870                 // about the channel.
7871                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
7872                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
7873                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7874
7875                 // The nodes which are a party to the channel should also ignore messages from unrelated
7876                 // parties.
7877                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7878                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7879                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7880                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7881                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7882                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7883
7884                 // At this point the channel info given by peers should still be the same.
7885                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7886                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7887
7888                 // An earlier version of handle_channel_update didn't check the directionality of the
7889                 // update message and would always update the local fee info, even if our peer was
7890                 // (spuriously) forwarding us our own channel_update.
7891                 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
7892                 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
7893                 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
7894
7895                 // First deliver each peers' own message, checking that the node doesn't need to be
7896                 // persisted and that its channel info remains the same.
7897                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
7898                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
7899                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7900                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7901                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7902                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7903
7904                 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
7905                 // the channel info has updated.
7906                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
7907                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
7908                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7909                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7910                 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
7911                 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
7912         }
7913
7914         #[test]
7915         fn test_keysend_dup_hash_partial_mpp() {
7916                 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
7917                 // expected.
7918                 let chanmon_cfgs = create_chanmon_cfgs(2);
7919                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7920                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7921                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7922                 create_announced_chan_between_nodes(&nodes, 0, 1);
7923
7924                 // First, send a partial MPP payment.
7925                 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
7926                 let mut mpp_route = route.clone();
7927                 mpp_route.paths.push(mpp_route.paths[0].clone());
7928
7929                 let payment_id = PaymentId([42; 32]);
7930                 // Use the utility function send_payment_along_path to send the payment with MPP data which
7931                 // indicates there are more HTLCs coming.
7932                 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
7933                 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash, Some(payment_secret), payment_id, &mpp_route).unwrap();
7934                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
7935                 check_added_monitors!(nodes[0], 1);
7936                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7937                 assert_eq!(events.len(), 1);
7938                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
7939
7940                 // Next, send a keysend payment with the same payment_hash and make sure it fails.
7941                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
7942                 check_added_monitors!(nodes[0], 1);
7943                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7944                 assert_eq!(events.len(), 1);
7945                 let ev = events.drain(..).next().unwrap();
7946                 let payment_event = SendEvent::from_event(ev);
7947                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7948                 check_added_monitors!(nodes[1], 0);
7949                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7950                 expect_pending_htlcs_forwardable!(nodes[1]);
7951                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
7952                 check_added_monitors!(nodes[1], 1);
7953                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7954                 assert!(updates.update_add_htlcs.is_empty());
7955                 assert!(updates.update_fulfill_htlcs.is_empty());
7956                 assert_eq!(updates.update_fail_htlcs.len(), 1);
7957                 assert!(updates.update_fail_malformed_htlcs.is_empty());
7958                 assert!(updates.update_fee.is_none());
7959                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7960                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7961                 expect_payment_failed!(nodes[0], our_payment_hash, true);
7962
7963                 // Send the second half of the original MPP payment.
7964                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
7965                 check_added_monitors!(nodes[0], 1);
7966                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7967                 assert_eq!(events.len(), 1);
7968                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
7969
7970                 // Claim the full MPP payment. Note that we can't use a test utility like
7971                 // claim_funds_along_route because the ordering of the messages causes the second half of the
7972                 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
7973                 // lightning messages manually.
7974                 nodes[1].node.claim_funds(payment_preimage);
7975                 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
7976                 check_added_monitors!(nodes[1], 2);
7977
7978                 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7979                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
7980                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
7981                 check_added_monitors!(nodes[0], 1);
7982                 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7983                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
7984                 check_added_monitors!(nodes[1], 1);
7985                 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7986                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
7987                 check_added_monitors!(nodes[1], 1);
7988                 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7989                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
7990                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
7991                 check_added_monitors!(nodes[0], 1);
7992                 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
7993                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
7994                 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7995                 check_added_monitors!(nodes[0], 1);
7996                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
7997                 check_added_monitors!(nodes[1], 1);
7998                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
7999                 check_added_monitors!(nodes[1], 1);
8000                 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8001                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
8002                 check_added_monitors!(nodes[0], 1);
8003
8004                 // Note that successful MPP payments will generate a single PaymentSent event upon the first
8005                 // path's success and a PaymentPathSuccessful event for each path's success.
8006                 let events = nodes[0].node.get_and_clear_pending_events();
8007                 assert_eq!(events.len(), 3);
8008                 match events[0] {
8009                         Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
8010                                 assert_eq!(Some(payment_id), *id);
8011                                 assert_eq!(payment_preimage, *preimage);
8012                                 assert_eq!(our_payment_hash, *hash);
8013                         },
8014                         _ => panic!("Unexpected event"),
8015                 }
8016                 match events[1] {
8017                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8018                                 assert_eq!(payment_id, *actual_payment_id);
8019                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8020                                 assert_eq!(route.paths[0], *path);
8021                         },
8022                         _ => panic!("Unexpected event"),
8023                 }
8024                 match events[2] {
8025                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8026                                 assert_eq!(payment_id, *actual_payment_id);
8027                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8028                                 assert_eq!(route.paths[0], *path);
8029                         },
8030                         _ => panic!("Unexpected event"),
8031                 }
8032         }
8033
8034         #[test]
8035         fn test_keysend_dup_payment_hash() {
8036                 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
8037                 //      outbound regular payment fails as expected.
8038                 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
8039                 //      fails as expected.
8040                 let chanmon_cfgs = create_chanmon_cfgs(2);
8041                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8042                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8043                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8044                 create_announced_chan_between_nodes(&nodes, 0, 1);
8045                 let scorer = test_utils::TestScorer::new();
8046                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8047
8048                 // To start (1), send a regular payment but don't claim it.
8049                 let expected_route = [&nodes[1]];
8050                 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
8051
8052                 // Next, attempt a keysend payment and make sure it fails.
8053                 let route_params = RouteParameters {
8054                         payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
8055                         final_value_msat: 100_000,
8056                 };
8057                 let route = find_route(
8058                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8059                         None, nodes[0].logger, &scorer, &random_seed_bytes
8060                 ).unwrap();
8061                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8062                 check_added_monitors!(nodes[0], 1);
8063                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8064                 assert_eq!(events.len(), 1);
8065                 let ev = events.drain(..).next().unwrap();
8066                 let payment_event = SendEvent::from_event(ev);
8067                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8068                 check_added_monitors!(nodes[1], 0);
8069                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8070                 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
8071                 // fails), the second will process the resulting failure and fail the HTLC backward
8072                 expect_pending_htlcs_forwardable!(nodes[1]);
8073                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8074                 check_added_monitors!(nodes[1], 1);
8075                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8076                 assert!(updates.update_add_htlcs.is_empty());
8077                 assert!(updates.update_fulfill_htlcs.is_empty());
8078                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8079                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8080                 assert!(updates.update_fee.is_none());
8081                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8082                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8083                 expect_payment_failed!(nodes[0], payment_hash, true);
8084
8085                 // Finally, claim the original payment.
8086                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8087
8088                 // To start (2), send a keysend payment but don't claim it.
8089                 let payment_preimage = PaymentPreimage([42; 32]);
8090                 let route = find_route(
8091                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8092                         None, nodes[0].logger, &scorer, &random_seed_bytes
8093                 ).unwrap();
8094                 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8095                 check_added_monitors!(nodes[0], 1);
8096                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8097                 assert_eq!(events.len(), 1);
8098                 let event = events.pop().unwrap();
8099                 let path = vec![&nodes[1]];
8100                 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8101
8102                 // Next, attempt a regular payment and make sure it fails.
8103                 let payment_secret = PaymentSecret([43; 32]);
8104                 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8105                 check_added_monitors!(nodes[0], 1);
8106                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8107                 assert_eq!(events.len(), 1);
8108                 let ev = events.drain(..).next().unwrap();
8109                 let payment_event = SendEvent::from_event(ev);
8110                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8111                 check_added_monitors!(nodes[1], 0);
8112                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8113                 expect_pending_htlcs_forwardable!(nodes[1]);
8114                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8115                 check_added_monitors!(nodes[1], 1);
8116                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8117                 assert!(updates.update_add_htlcs.is_empty());
8118                 assert!(updates.update_fulfill_htlcs.is_empty());
8119                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8120                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8121                 assert!(updates.update_fee.is_none());
8122                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8123                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8124                 expect_payment_failed!(nodes[0], payment_hash, true);
8125
8126                 // Finally, succeed the keysend payment.
8127                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8128         }
8129
8130         #[test]
8131         fn test_keysend_hash_mismatch() {
8132                 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8133                 // preimage doesn't match the msg's payment hash.
8134                 let chanmon_cfgs = create_chanmon_cfgs(2);
8135                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8136                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8137                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8138
8139                 let payer_pubkey = nodes[0].node.get_our_node_id();
8140                 let payee_pubkey = nodes[1].node.get_our_node_id();
8141
8142                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8143                 let route_params = RouteParameters {
8144                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8145                         final_value_msat: 10_000,
8146                 };
8147                 let network_graph = nodes[0].network_graph.clone();
8148                 let first_hops = nodes[0].node.list_usable_channels();
8149                 let scorer = test_utils::TestScorer::new();
8150                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8151                 let route = find_route(
8152                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8153                         nodes[0].logger, &scorer, &random_seed_bytes
8154                 ).unwrap();
8155
8156                 let test_preimage = PaymentPreimage([42; 32]);
8157                 let mismatch_payment_hash = PaymentHash([43; 32]);
8158                 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash, None, PaymentId(mismatch_payment_hash.0), &route).unwrap();
8159                 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8160                 check_added_monitors!(nodes[0], 1);
8161
8162                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8163                 assert_eq!(updates.update_add_htlcs.len(), 1);
8164                 assert!(updates.update_fulfill_htlcs.is_empty());
8165                 assert!(updates.update_fail_htlcs.is_empty());
8166                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8167                 assert!(updates.update_fee.is_none());
8168                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8169
8170                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
8171         }
8172
8173         #[test]
8174         fn test_keysend_msg_with_secret_err() {
8175                 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8176                 let chanmon_cfgs = create_chanmon_cfgs(2);
8177                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8178                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8179                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8180
8181                 let payer_pubkey = nodes[0].node.get_our_node_id();
8182                 let payee_pubkey = nodes[1].node.get_our_node_id();
8183
8184                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8185                 let route_params = RouteParameters {
8186                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8187                         final_value_msat: 10_000,
8188                 };
8189                 let network_graph = nodes[0].network_graph.clone();
8190                 let first_hops = nodes[0].node.list_usable_channels();
8191                 let scorer = test_utils::TestScorer::new();
8192                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8193                 let route = find_route(
8194                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8195                         nodes[0].logger, &scorer, &random_seed_bytes
8196                 ).unwrap();
8197
8198                 let test_preimage = PaymentPreimage([42; 32]);
8199                 let test_secret = PaymentSecret([43; 32]);
8200                 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8201                 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash, Some(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8202                 nodes[0].node.test_send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), PaymentId(payment_hash.0), None, session_privs).unwrap();
8203                 check_added_monitors!(nodes[0], 1);
8204
8205                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8206                 assert_eq!(updates.update_add_htlcs.len(), 1);
8207                 assert!(updates.update_fulfill_htlcs.is_empty());
8208                 assert!(updates.update_fail_htlcs.is_empty());
8209                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8210                 assert!(updates.update_fee.is_none());
8211                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8212
8213                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
8214         }
8215
8216         #[test]
8217         fn test_multi_hop_missing_secret() {
8218                 let chanmon_cfgs = create_chanmon_cfgs(4);
8219                 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8220                 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8221                 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8222
8223                 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8224                 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8225                 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8226                 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8227
8228                 // Marshall an MPP route.
8229                 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8230                 let path = route.paths[0].clone();
8231                 route.paths.push(path);
8232                 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
8233                 route.paths[0][0].short_channel_id = chan_1_id;
8234                 route.paths[0][1].short_channel_id = chan_3_id;
8235                 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
8236                 route.paths[1][0].short_channel_id = chan_2_id;
8237                 route.paths[1][1].short_channel_id = chan_4_id;
8238
8239                 match nodes[0].node.send_payment(&route, payment_hash, &None, PaymentId(payment_hash.0)).unwrap_err() {
8240                         PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8241                                 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))                        },
8242                         _ => panic!("unexpected error")
8243                 }
8244         }
8245
8246         #[test]
8247         fn test_drop_disconnected_peers_when_removing_channels() {
8248                 let chanmon_cfgs = create_chanmon_cfgs(2);
8249                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8250                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8251                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8252
8253                 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8254
8255                 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8256                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8257
8258                 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8259                 check_closed_broadcast!(nodes[0], true);
8260                 check_added_monitors!(nodes[0], 1);
8261                 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8262
8263                 {
8264                         // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8265                         // disconnected and the channel between has been force closed.
8266                         let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8267                         // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8268                         assert_eq!(nodes_0_per_peer_state.len(), 1);
8269                         assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8270                 }
8271
8272                 nodes[0].node.timer_tick_occurred();
8273
8274                 {
8275                         // Assert that nodes[1] has now been removed.
8276                         assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8277                 }
8278         }
8279
8280         #[test]
8281         fn bad_inbound_payment_hash() {
8282                 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8283                 let chanmon_cfgs = create_chanmon_cfgs(2);
8284                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8285                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8286                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8287
8288                 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8289                 let payment_data = msgs::FinalOnionHopData {
8290                         payment_secret,
8291                         total_msat: 100_000,
8292                 };
8293
8294                 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8295                 // payment verification fails as expected.
8296                 let mut bad_payment_hash = payment_hash.clone();
8297                 bad_payment_hash.0[0] += 1;
8298                 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8299                         Ok(_) => panic!("Unexpected ok"),
8300                         Err(()) => {
8301                                 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
8302                         }
8303                 }
8304
8305                 // Check that using the original payment hash succeeds.
8306                 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8307         }
8308
8309         #[test]
8310         fn test_id_to_peer_coverage() {
8311                 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8312                 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8313                 // the channel is successfully closed.
8314                 let chanmon_cfgs = create_chanmon_cfgs(2);
8315                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8316                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8317                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8318
8319                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8320                 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8321                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8322                 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8323                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8324
8325                 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8326                 let channel_id = &tx.txid().into_inner();
8327                 {
8328                         // Ensure that the `id_to_peer` map is empty until either party has received the
8329                         // funding transaction, and have the real `channel_id`.
8330                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8331                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8332                 }
8333
8334                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8335                 {
8336                         // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8337                         // as it has the funding transaction.
8338                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8339                         assert_eq!(nodes_0_lock.len(), 1);
8340                         assert!(nodes_0_lock.contains_key(channel_id));
8341                 }
8342
8343                 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8344
8345                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8346
8347                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8348                 {
8349                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8350                         assert_eq!(nodes_0_lock.len(), 1);
8351                         assert!(nodes_0_lock.contains_key(channel_id));
8352                 }
8353
8354                 {
8355                         // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8356                         // as it has the funding transaction.
8357                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8358                         assert_eq!(nodes_1_lock.len(), 1);
8359                         assert!(nodes_1_lock.contains_key(channel_id));
8360                 }
8361                 check_added_monitors!(nodes[1], 1);
8362                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8363                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8364                 check_added_monitors!(nodes[0], 1);
8365                 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8366                 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8367                 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8368
8369                 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8370                 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8371                 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8372                 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8373
8374                 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8375                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8376                 {
8377                         // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8378                         // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8379                         // fee for the closing transaction has been negotiated and the parties has the other
8380                         // party's signature for the fee negotiated closing transaction.)
8381                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8382                         assert_eq!(nodes_0_lock.len(), 1);
8383                         assert!(nodes_0_lock.contains_key(channel_id));
8384                 }
8385
8386                 {
8387                         // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8388                         // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8389                         // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8390                         // kept in the `nodes[1]`'s `id_to_peer` map.
8391                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8392                         assert_eq!(nodes_1_lock.len(), 1);
8393                         assert!(nodes_1_lock.contains_key(channel_id));
8394                 }
8395
8396                 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8397                 {
8398                         // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8399                         // therefore has all it needs to fully close the channel (both signatures for the
8400                         // closing transaction).
8401                         // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8402                         // fully closed by `nodes[0]`.
8403                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8404
8405                         // Assert that the channel is still in `nodes[1]`'s  `id_to_peer` map, as `nodes[1]`
8406                         // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8407                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8408                         assert_eq!(nodes_1_lock.len(), 1);
8409                         assert!(nodes_1_lock.contains_key(channel_id));
8410                 }
8411
8412                 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8413
8414                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8415                 {
8416                         // Assert that the channel has now been removed from both parties `id_to_peer` map once
8417                         // they both have everything required to fully close the channel.
8418                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8419                 }
8420                 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8421
8422                 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8423                 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8424         }
8425
8426         fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8427                 let expected_message = format!("Not connected to node: {}", expected_public_key);
8428                 check_api_error_message(expected_message, res_err)
8429         }
8430
8431         fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8432                 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8433                 check_api_error_message(expected_message, res_err)
8434         }
8435
8436         fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8437                 match res_err {
8438                         Err(APIError::APIMisuseError { err }) => {
8439                                 assert_eq!(err, expected_err_message);
8440                         },
8441                         Err(APIError::ChannelUnavailable { err }) => {
8442                                 assert_eq!(err, expected_err_message);
8443                         },
8444                         Ok(_) => panic!("Unexpected Ok"),
8445                         Err(_) => panic!("Unexpected Error"),
8446                 }
8447         }
8448
8449         #[test]
8450         fn test_api_calls_with_unkown_counterparty_node() {
8451                 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8452                 // expected if the `counterparty_node_id` is an unkown peer in the
8453                 // `ChannelManager::per_peer_state` map.
8454                 let chanmon_cfg = create_chanmon_cfgs(2);
8455                 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8456                 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8457                 let nodes = create_network(2, &node_cfg, &node_chanmgr);
8458
8459                 // Dummy values
8460                 let channel_id = [4; 32];
8461                 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
8462                 let intercept_id = InterceptId([0; 32]);
8463
8464                 // Test the API functions.
8465                 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
8466
8467                 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
8468
8469                 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
8470
8471                 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
8472
8473                 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
8474
8475                 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
8476
8477                 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
8478         }
8479
8480         #[test]
8481         fn test_connection_limiting() {
8482                 // Test that we limit un-channel'd peers and un-funded channels properly.
8483                 let chanmon_cfgs = create_chanmon_cfgs(2);
8484                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8485                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8486                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8487
8488                 // Note that create_network connects the nodes together for us
8489
8490                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8491                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8492
8493                 let mut funding_tx = None;
8494                 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8495                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8496                         let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8497
8498                         if idx == 0 {
8499                                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8500                                 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
8501                                 funding_tx = Some(tx.clone());
8502                                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
8503                                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8504
8505                                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8506                                 check_added_monitors!(nodes[1], 1);
8507                                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8508
8509                                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8510                                 check_added_monitors!(nodes[0], 1);
8511                         }
8512                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8513                 }
8514
8515                 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
8516                 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8517                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8518                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8519                         open_channel_msg.temporary_channel_id);
8520
8521                 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
8522                 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
8523                 // limit.
8524                 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
8525                 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
8526                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8527                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8528                         peer_pks.push(random_pk);
8529                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8530                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8531                 }
8532                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8533                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8534                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8535                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8536
8537                 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
8538                 // them if we have too many un-channel'd peers.
8539                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8540                 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
8541                 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
8542                 for ev in chan_closed_events {
8543                         if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
8544                 }
8545                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8546                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8547                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8548                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8549
8550                 // but of course if the connection is outbound its allowed...
8551                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8552                         features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
8553                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8554
8555                 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
8556                 // Even though we accept one more connection from new peers, we won't actually let them
8557                 // open channels.
8558                 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
8559                 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8560                         nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
8561                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
8562                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8563                 }
8564                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8565                 assert_eq!(get_err_msg!(nodes[1], last_random_pk).channel_id,
8566                         open_channel_msg.temporary_channel_id);
8567
8568                 // Of course, however, outbound channels are always allowed
8569                 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
8570                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
8571
8572                 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
8573                 // "protected" and can connect again.
8574                 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
8575                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8576                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8577                 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
8578
8579                 // Further, because the first channel was funded, we can open another channel with
8580                 // last_random_pk.
8581                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8582                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8583         }
8584
8585         #[test]
8586         fn test_outbound_chans_unlimited() {
8587                 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
8588                 let chanmon_cfgs = create_chanmon_cfgs(2);
8589                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8590                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8591                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8592
8593                 // Note that create_network connects the nodes together for us
8594
8595                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8596                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8597
8598                 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8599                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8600                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8601                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8602                 }
8603
8604                 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
8605                 // rejected.
8606                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8607                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8608                         open_channel_msg.temporary_channel_id);
8609
8610                 // but we can still open an outbound channel.
8611                 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8612                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
8613
8614                 // but even with such an outbound channel, additional inbound channels will still fail.
8615                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8616                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8617                         open_channel_msg.temporary_channel_id);
8618         }
8619
8620         #[test]
8621         fn test_0conf_limiting() {
8622                 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
8623                 // flag set and (sometimes) accept channels as 0conf.
8624                 let chanmon_cfgs = create_chanmon_cfgs(2);
8625                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8626                 let mut settings = test_default_channel_config();
8627                 settings.manually_accept_inbound_channels = true;
8628                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
8629                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8630
8631                 // Note that create_network connects the nodes together for us
8632
8633                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8634                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8635
8636                 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
8637                 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8638                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8639                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8640                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8641                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8642
8643                         nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
8644                         let events = nodes[1].node.get_and_clear_pending_events();
8645                         match events[0] {
8646                                 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8647                                         nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
8648                                 }
8649                                 _ => panic!("Unexpected event"),
8650                         }
8651                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
8652                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8653                 }
8654
8655                 // If we try to accept a channel from another peer non-0conf it will fail.
8656                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8657                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8658                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8659                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8660                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8661                 let events = nodes[1].node.get_and_clear_pending_events();
8662                 match events[0] {
8663                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8664                                 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
8665                                         Err(APIError::APIMisuseError { err }) =>
8666                                                 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
8667                                         _ => panic!(),
8668                                 }
8669                         }
8670                         _ => panic!("Unexpected event"),
8671                 }
8672                 assert_eq!(get_err_msg!(nodes[1], last_random_pk).channel_id,
8673                         open_channel_msg.temporary_channel_id);
8674
8675                 // ...however if we accept the same channel 0conf it should work just fine.
8676                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8677                 let events = nodes[1].node.get_and_clear_pending_events();
8678                 match events[0] {
8679                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8680                                 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
8681                         }
8682                         _ => panic!("Unexpected event"),
8683                 }
8684                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8685         }
8686
8687         #[cfg(anchors)]
8688         #[test]
8689         fn test_anchors_zero_fee_htlc_tx_fallback() {
8690                 // Tests that if both nodes support anchors, but the remote node does not want to accept
8691                 // anchor channels at the moment, an error it sent to the local node such that it can retry
8692                 // the channel without the anchors feature.
8693                 let chanmon_cfgs = create_chanmon_cfgs(2);
8694                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8695                 let mut anchors_config = test_default_channel_config();
8696                 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
8697                 anchors_config.manually_accept_inbound_channels = true;
8698                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
8699                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8700
8701                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
8702                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8703                 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
8704
8705                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8706                 let events = nodes[1].node.get_and_clear_pending_events();
8707                 match events[0] {
8708                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8709                                 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
8710                         }
8711                         _ => panic!("Unexpected event"),
8712                 }
8713
8714                 let error_msg = get_err_msg!(nodes[1], nodes[0].node.get_our_node_id());
8715                 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
8716
8717                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8718                 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
8719
8720                 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
8721         }
8722 }
8723
8724 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
8725 pub mod bench {
8726         use crate::chain::Listen;
8727         use crate::chain::chainmonitor::{ChainMonitor, Persist};
8728         use crate::chain::keysinterface::{EntropySource, KeysManager, InMemorySigner};
8729         use crate::ln::channelmanager::{self, BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId};
8730         use crate::ln::functional_test_utils::*;
8731         use crate::ln::msgs::{ChannelMessageHandler, Init};
8732         use crate::routing::gossip::NetworkGraph;
8733         use crate::routing::router::{PaymentParameters, get_route};
8734         use crate::util::test_utils;
8735         use crate::util::config::UserConfig;
8736         use crate::util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
8737
8738         use bitcoin::hashes::Hash;
8739         use bitcoin::hashes::sha256::Hash as Sha256;
8740         use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
8741
8742         use crate::sync::{Arc, Mutex};
8743
8744         use test::Bencher;
8745
8746         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
8747                 node: &'a ChannelManager<
8748                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
8749                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
8750                                 &'a test_utils::TestLogger, &'a P>,
8751                         &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
8752                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
8753                         &'a test_utils::TestLogger>,
8754         }
8755
8756         #[cfg(test)]
8757         #[bench]
8758         fn bench_sends(bench: &mut Bencher) {
8759                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
8760         }
8761
8762         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
8763                 // Do a simple benchmark of sending a payment back and forth between two nodes.
8764                 // Note that this is unrealistic as each payment send will require at least two fsync
8765                 // calls per node.
8766                 let network = bitcoin::Network::Testnet;
8767
8768                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
8769                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
8770                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
8771                 let scorer = Mutex::new(test_utils::TestScorer::new());
8772                 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
8773
8774                 let mut config: UserConfig = Default::default();
8775                 config.channel_handshake_config.minimum_depth = 1;
8776
8777                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
8778                 let seed_a = [1u8; 32];
8779                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
8780                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
8781                         network,
8782                         best_block: BestBlock::from_network(network),
8783                 });
8784                 let node_a_holder = NodeHolder { node: &node_a };
8785
8786                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
8787                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
8788                 let seed_b = [2u8; 32];
8789                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
8790                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
8791                         network,
8792                         best_block: BestBlock::from_network(network),
8793                 });
8794                 let node_b_holder = NodeHolder { node: &node_b };
8795
8796                 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
8797                 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
8798                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
8799                 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
8800                 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
8801
8802                 let tx;
8803                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
8804                         tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
8805                                 value: 8_000_000, script_pubkey: output_script,
8806                         }]};
8807                         node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
8808                 } else { panic!(); }
8809
8810                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
8811                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
8812
8813                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
8814
8815                 let block = Block {
8816                         header: BlockHeader { version: 0x20000000, prev_blockhash: BestBlock::from_network(network).block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
8817                         txdata: vec![tx],
8818                 };
8819                 Listen::block_connected(&node_a, &block, 1);
8820                 Listen::block_connected(&node_b, &block, 1);
8821
8822                 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
8823                 let msg_events = node_a.get_and_clear_pending_msg_events();
8824                 assert_eq!(msg_events.len(), 2);
8825                 match msg_events[0] {
8826                         MessageSendEvent::SendChannelReady { ref msg, .. } => {
8827                                 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
8828                                 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
8829                         },
8830                         _ => panic!(),
8831                 }
8832                 match msg_events[1] {
8833                         MessageSendEvent::SendChannelUpdate { .. } => {},
8834                         _ => panic!(),
8835                 }
8836
8837                 let events_a = node_a.get_and_clear_pending_events();
8838                 assert_eq!(events_a.len(), 1);
8839                 match events_a[0] {
8840                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8841                                 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
8842                         },
8843                         _ => panic!("Unexpected event"),
8844                 }
8845
8846                 let events_b = node_b.get_and_clear_pending_events();
8847                 assert_eq!(events_b.len(), 1);
8848                 match events_b[0] {
8849                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8850                                 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
8851                         },
8852                         _ => panic!("Unexpected event"),
8853                 }
8854
8855                 let dummy_graph = NetworkGraph::new(network, &logger_a);
8856
8857                 let mut payment_count: u64 = 0;
8858                 macro_rules! send_payment {
8859                         ($node_a: expr, $node_b: expr) => {
8860                                 let usable_channels = $node_a.list_usable_channels();
8861                                 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
8862                                         .with_features($node_b.invoice_features());
8863                                 let scorer = test_utils::TestScorer::new();
8864                                 let seed = [3u8; 32];
8865                                 let keys_manager = KeysManager::new(&seed, 42, 42);
8866                                 let random_seed_bytes = keys_manager.get_secure_random_bytes();
8867                                 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
8868                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
8869
8870                                 let mut payment_preimage = PaymentPreimage([0; 32]);
8871                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
8872                                 payment_count += 1;
8873                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
8874                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
8875
8876                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8877                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
8878                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
8879                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
8880                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
8881                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
8882                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
8883                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
8884
8885                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
8886                                 expect_payment_claimable!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
8887                                 $node_b.claim_funds(payment_preimage);
8888                                 expect_payment_claimed!(NodeHolder { node: &$node_b }, payment_hash, 10_000);
8889
8890                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
8891                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
8892                                                 assert_eq!(node_id, $node_a.get_our_node_id());
8893                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
8894                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
8895                                         },
8896                                         _ => panic!("Failed to generate claim event"),
8897                                 }
8898
8899                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
8900                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
8901                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
8902                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
8903
8904                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
8905                         }
8906                 }
8907
8908                 bench.iter(|| {
8909                         send_payment!(node_a, node_b);
8910                         send_payment!(node_b, node_a);
8911                 });
8912         }
8913 }