62891cc415a32d45467253f7f0fc00b15a542f0e
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
24
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
28
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
32
33 use crate::chain;
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
38 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
39 // construct one themselves.
40 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
41 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
42 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
43 #[cfg(any(feature = "_test_utils", test))]
44 use crate::ln::features::InvoiceFeatures;
45 use crate::routing::gossip::NetworkGraph;
46 use crate::routing::router::{DefaultRouter, InFlightHtlcs, PaymentParameters, Route, RouteHop, RouteParameters, RoutePath, Router};
47 use crate::routing::scoring::ProbabilisticScorer;
48 use crate::ln::msgs;
49 use crate::ln::onion_utils;
50 use crate::ln::onion_utils::HTLCFailReason;
51 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
52 #[cfg(test)]
53 use crate::ln::outbound_payment;
54 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
55 use crate::ln::wire::Encode;
56 use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner, WriteableEcdsaChannelSigner};
57 use crate::util::config::{UserConfig, ChannelConfig};
58 use crate::util::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination};
59 use crate::util::events;
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
63 use crate::util::logger::{Level, Logger};
64 use crate::util::errors::APIError;
65
66 use alloc::collections::BTreeMap;
67
68 use crate::io;
69 use crate::prelude::*;
70 use core::{cmp, mem};
71 use core::cell::RefCell;
72 use crate::io::Read;
73 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
74 use core::sync::atomic::{AtomicUsize, Ordering};
75 use core::time::Duration;
76 use core::ops::Deref;
77
78 // Re-export this for use in the public API.
79 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure};
80
81 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
82 //
83 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
84 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
85 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
86 //
87 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
88 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
89 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
90 // before we forward it.
91 //
92 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
93 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
94 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
95 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
96 // our payment, which we can use to decode errors or inform the user that the payment was sent.
97
98 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
99 pub(super) enum PendingHTLCRouting {
100         Forward {
101                 onion_packet: msgs::OnionPacket,
102                 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
103                 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
104                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
105         },
106         Receive {
107                 payment_data: msgs::FinalOnionHopData,
108                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
109                 phantom_shared_secret: Option<[u8; 32]>,
110         },
111         ReceiveKeysend {
112                 payment_preimage: PaymentPreimage,
113                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
114         },
115 }
116
117 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
118 pub(super) struct PendingHTLCInfo {
119         pub(super) routing: PendingHTLCRouting,
120         pub(super) incoming_shared_secret: [u8; 32],
121         payment_hash: PaymentHash,
122         pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
123         pub(super) outgoing_amt_msat: u64,
124         pub(super) outgoing_cltv_value: u32,
125 }
126
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 pub(super) enum HTLCFailureMsg {
129         Relay(msgs::UpdateFailHTLC),
130         Malformed(msgs::UpdateFailMalformedHTLC),
131 }
132
133 /// Stores whether we can't forward an HTLC or relevant forwarding info
134 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
135 pub(super) enum PendingHTLCStatus {
136         Forward(PendingHTLCInfo),
137         Fail(HTLCFailureMsg),
138 }
139
140 pub(super) struct PendingAddHTLCInfo {
141         pub(super) forward_info: PendingHTLCInfo,
142
143         // These fields are produced in `forward_htlcs()` and consumed in
144         // `process_pending_htlc_forwards()` for constructing the
145         // `HTLCSource::PreviousHopData` for failed and forwarded
146         // HTLCs.
147         //
148         // Note that this may be an outbound SCID alias for the associated channel.
149         prev_short_channel_id: u64,
150         prev_htlc_id: u64,
151         prev_funding_outpoint: OutPoint,
152         prev_user_channel_id: u128,
153 }
154
155 pub(super) enum HTLCForwardInfo {
156         AddHTLC(PendingAddHTLCInfo),
157         FailHTLC {
158                 htlc_id: u64,
159                 err_packet: msgs::OnionErrorPacket,
160         },
161 }
162
163 /// Tracks the inbound corresponding to an outbound HTLC
164 #[derive(Clone, Hash, PartialEq, Eq)]
165 pub(crate) struct HTLCPreviousHopData {
166         // Note that this may be an outbound SCID alias for the associated channel.
167         short_channel_id: u64,
168         htlc_id: u64,
169         incoming_packet_shared_secret: [u8; 32],
170         phantom_shared_secret: Option<[u8; 32]>,
171
172         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
173         // channel with a preimage provided by the forward channel.
174         outpoint: OutPoint,
175 }
176
177 enum OnionPayload {
178         /// Indicates this incoming onion payload is for the purpose of paying an invoice.
179         Invoice {
180                 /// This is only here for backwards-compatibility in serialization, in the future it can be
181                 /// removed, breaking clients running 0.0.106 and earlier.
182                 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
183         },
184         /// Contains the payer-provided preimage.
185         Spontaneous(PaymentPreimage),
186 }
187
188 /// HTLCs that are to us and can be failed/claimed by the user
189 struct ClaimableHTLC {
190         prev_hop: HTLCPreviousHopData,
191         cltv_expiry: u32,
192         /// The amount (in msats) of this MPP part
193         value: u64,
194         onion_payload: OnionPayload,
195         timer_ticks: u8,
196         /// The sum total of all MPP parts
197         total_msat: u64,
198 }
199
200 /// A payment identifier used to uniquely identify a payment to LDK.
201 /// (C-not exported) as we just use [u8; 32] directly
202 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
203 pub struct PaymentId(pub [u8; 32]);
204
205 impl Writeable for PaymentId {
206         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
207                 self.0.write(w)
208         }
209 }
210
211 impl Readable for PaymentId {
212         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
213                 let buf: [u8; 32] = Readable::read(r)?;
214                 Ok(PaymentId(buf))
215         }
216 }
217
218 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
219 /// (C-not exported) as we just use [u8; 32] directly
220 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
221 pub struct InterceptId(pub [u8; 32]);
222
223 impl Writeable for InterceptId {
224         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
225                 self.0.write(w)
226         }
227 }
228
229 impl Readable for InterceptId {
230         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
231                 let buf: [u8; 32] = Readable::read(r)?;
232                 Ok(InterceptId(buf))
233         }
234 }
235
236 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
237 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
238 pub(crate) enum SentHTLCId {
239         PreviousHopData { short_channel_id: u64, htlc_id: u64 },
240         OutboundRoute { session_priv: SecretKey },
241 }
242 impl SentHTLCId {
243         pub(crate) fn from_source(source: &HTLCSource) -> Self {
244                 match source {
245                         HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
246                                 short_channel_id: hop_data.short_channel_id,
247                                 htlc_id: hop_data.htlc_id,
248                         },
249                         HTLCSource::OutboundRoute { session_priv, .. } =>
250                                 Self::OutboundRoute { session_priv: *session_priv },
251                 }
252         }
253 }
254 impl_writeable_tlv_based_enum!(SentHTLCId,
255         (0, PreviousHopData) => {
256                 (0, short_channel_id, required),
257                 (2, htlc_id, required),
258         },
259         (2, OutboundRoute) => {
260                 (0, session_priv, required),
261         };
262 );
263
264
265 /// Tracks the inbound corresponding to an outbound HTLC
266 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
267 #[derive(Clone, PartialEq, Eq)]
268 pub(crate) enum HTLCSource {
269         PreviousHopData(HTLCPreviousHopData),
270         OutboundRoute {
271                 path: Vec<RouteHop>,
272                 session_priv: SecretKey,
273                 /// Technically we can recalculate this from the route, but we cache it here to avoid
274                 /// doing a double-pass on route when we get a failure back
275                 first_hop_htlc_msat: u64,
276                 payment_id: PaymentId,
277                 payment_secret: Option<PaymentSecret>,
278         },
279 }
280 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
281 impl core::hash::Hash for HTLCSource {
282         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
283                 match self {
284                         HTLCSource::PreviousHopData(prev_hop_data) => {
285                                 0u8.hash(hasher);
286                                 prev_hop_data.hash(hasher);
287                         },
288                         HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat } => {
289                                 1u8.hash(hasher);
290                                 path.hash(hasher);
291                                 session_priv[..].hash(hasher);
292                                 payment_id.hash(hasher);
293                                 payment_secret.hash(hasher);
294                                 first_hop_htlc_msat.hash(hasher);
295                         },
296                 }
297         }
298 }
299 #[cfg(not(feature = "grind_signatures"))]
300 #[cfg(test)]
301 impl HTLCSource {
302         pub fn dummy() -> Self {
303                 HTLCSource::OutboundRoute {
304                         path: Vec::new(),
305                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
306                         first_hop_htlc_msat: 0,
307                         payment_id: PaymentId([2; 32]),
308                         payment_secret: None,
309                 }
310         }
311 }
312
313 struct ReceiveError {
314         err_code: u16,
315         err_data: Vec<u8>,
316         msg: &'static str,
317 }
318
319 /// This enum is used to specify which error data to send to peers when failing back an HTLC
320 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
321 ///
322 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
323 #[derive(Clone, Copy)]
324 pub enum FailureCode {
325         /// We had a temporary error processing the payment. Useful if no other error codes fit
326         /// and you want to indicate that the payer may want to retry.
327         TemporaryNodeFailure             = 0x2000 | 2,
328         /// We have a required feature which was not in this onion. For example, you may require
329         /// some additional metadata that was not provided with this payment.
330         RequiredNodeFeatureMissing       = 0x4000 | 0x2000 | 3,
331         /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
332         /// the HTLC is too close to the current block height for safe handling.
333         /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
334         /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
335         IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
336 }
337
338 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
339
340 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
341 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
342 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
343 /// peer_state lock. We then return the set of things that need to be done outside the lock in
344 /// this struct and call handle_error!() on it.
345
346 struct MsgHandleErrInternal {
347         err: msgs::LightningError,
348         chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
349         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
350 }
351 impl MsgHandleErrInternal {
352         #[inline]
353         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
354                 Self {
355                         err: LightningError {
356                                 err: err.clone(),
357                                 action: msgs::ErrorAction::SendErrorMessage {
358                                         msg: msgs::ErrorMessage {
359                                                 channel_id,
360                                                 data: err
361                                         },
362                                 },
363                         },
364                         chan_id: None,
365                         shutdown_finish: None,
366                 }
367         }
368         #[inline]
369         fn from_no_close(err: msgs::LightningError) -> Self {
370                 Self { err, chan_id: None, shutdown_finish: None }
371         }
372         #[inline]
373         fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
374                 Self {
375                         err: LightningError {
376                                 err: err.clone(),
377                                 action: msgs::ErrorAction::SendErrorMessage {
378                                         msg: msgs::ErrorMessage {
379                                                 channel_id,
380                                                 data: err
381                                         },
382                                 },
383                         },
384                         chan_id: Some((channel_id, user_channel_id)),
385                         shutdown_finish: Some((shutdown_res, channel_update)),
386                 }
387         }
388         #[inline]
389         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
390                 Self {
391                         err: match err {
392                                 ChannelError::Warn(msg) =>  LightningError {
393                                         err: msg.clone(),
394                                         action: msgs::ErrorAction::SendWarningMessage {
395                                                 msg: msgs::WarningMessage {
396                                                         channel_id,
397                                                         data: msg
398                                                 },
399                                                 log_level: Level::Warn,
400                                         },
401                                 },
402                                 ChannelError::Ignore(msg) => LightningError {
403                                         err: msg,
404                                         action: msgs::ErrorAction::IgnoreError,
405                                 },
406                                 ChannelError::Close(msg) => LightningError {
407                                         err: msg.clone(),
408                                         action: msgs::ErrorAction::SendErrorMessage {
409                                                 msg: msgs::ErrorMessage {
410                                                         channel_id,
411                                                         data: msg
412                                                 },
413                                         },
414                                 },
415                         },
416                         chan_id: None,
417                         shutdown_finish: None,
418                 }
419         }
420 }
421
422 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
423 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
424 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
425 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
426 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
427
428 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
429 /// be sent in the order they appear in the return value, however sometimes the order needs to be
430 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
431 /// they were originally sent). In those cases, this enum is also returned.
432 #[derive(Clone, PartialEq)]
433 pub(super) enum RAACommitmentOrder {
434         /// Send the CommitmentUpdate messages first
435         CommitmentFirst,
436         /// Send the RevokeAndACK message first
437         RevokeAndACKFirst,
438 }
439
440 /// Information about a payment which is currently being claimed.
441 struct ClaimingPayment {
442         amount_msat: u64,
443         payment_purpose: events::PaymentPurpose,
444         receiver_node_id: PublicKey,
445 }
446 impl_writeable_tlv_based!(ClaimingPayment, {
447         (0, amount_msat, required),
448         (2, payment_purpose, required),
449         (4, receiver_node_id, required),
450 });
451
452 /// Information about claimable or being-claimed payments
453 struct ClaimablePayments {
454         /// Map from payment hash to the payment data and any HTLCs which are to us and can be
455         /// failed/claimed by the user.
456         ///
457         /// Note that, no consistency guarantees are made about the channels given here actually
458         /// existing anymore by the time you go to read them!
459         ///
460         /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
461         /// we don't get a duplicate payment.
462         claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
463
464         /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
465         /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
466         /// as an [`events::Event::PaymentClaimed`].
467         pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
468 }
469
470 /// Events which we process internally but cannot be procsesed immediately at the generation site
471 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
472 /// quite some time lag.
473 enum BackgroundEvent {
474         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
475         /// commitment transaction.
476         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
477 }
478
479 #[derive(Debug)]
480 pub(crate) enum MonitorUpdateCompletionAction {
481         /// Indicates that a payment ultimately destined for us was claimed and we should emit an
482         /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
483         /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
484         /// event can be generated.
485         PaymentClaimed { payment_hash: PaymentHash },
486         /// Indicates an [`events::Event`] should be surfaced to the user.
487         EmitEvent { event: events::Event },
488 }
489
490 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
491         (0, PaymentClaimed) => { (0, payment_hash, required) },
492         (2, EmitEvent) => { (0, event, upgradable_required) },
493 );
494
495 /// State we hold per-peer.
496 pub(super) struct PeerState<Signer: ChannelSigner> {
497         /// `temporary_channel_id` or `channel_id` -> `channel`.
498         ///
499         /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
500         /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
501         /// `channel_id`.
502         pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
503         /// The latest `InitFeatures` we heard from the peer.
504         latest_features: InitFeatures,
505         /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
506         /// for broadcast messages, where ordering isn't as strict).
507         pub(super) pending_msg_events: Vec<MessageSendEvent>,
508         /// Map from a specific channel to some action(s) that should be taken when all pending
509         /// [`ChannelMonitorUpdate`]s for the channel complete updating.
510         ///
511         /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
512         /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
513         /// channels with a peer this will just be one allocation and will amount to a linear list of
514         /// channels to walk, avoiding the whole hashing rigmarole.
515         ///
516         /// Note that the channel may no longer exist. For example, if a channel was closed but we
517         /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
518         /// for a missing channel. While a malicious peer could construct a second channel with the
519         /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
520         /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
521         /// duplicates do not occur, so such channels should fail without a monitor update completing.
522         monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
523         /// The peer is currently connected (i.e. we've seen a
524         /// [`ChannelMessageHandler::peer_connected`] and no corresponding
525         /// [`ChannelMessageHandler::peer_disconnected`].
526         is_connected: bool,
527 }
528
529 impl <Signer: ChannelSigner> PeerState<Signer> {
530         /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
531         /// If true is passed for `require_disconnected`, the function will return false if we haven't
532         /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
533         fn ok_to_remove(&self, require_disconnected: bool) -> bool {
534                 if require_disconnected && self.is_connected {
535                         return false
536                 }
537                 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
538         }
539 }
540
541 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
542 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
543 ///
544 /// For users who don't want to bother doing their own payment preimage storage, we also store that
545 /// here.
546 ///
547 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
548 /// and instead encoding it in the payment secret.
549 struct PendingInboundPayment {
550         /// The payment secret that the sender must use for us to accept this payment
551         payment_secret: PaymentSecret,
552         /// Time at which this HTLC expires - blocks with a header time above this value will result in
553         /// this payment being removed.
554         expiry_time: u64,
555         /// Arbitrary identifier the user specifies (or not)
556         user_payment_id: u64,
557         // Other required attributes of the payment, optionally enforced:
558         payment_preimage: Option<PaymentPreimage>,
559         min_value_msat: Option<u64>,
560 }
561
562 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
563 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
564 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
565 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
566 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
567 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
568 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
569 ///
570 /// (C-not exported) as Arcs don't make sense in bindings
571 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
572         Arc<M>,
573         Arc<T>,
574         Arc<KeysManager>,
575         Arc<KeysManager>,
576         Arc<KeysManager>,
577         Arc<F>,
578         Arc<DefaultRouter<
579                 Arc<NetworkGraph<Arc<L>>>,
580                 Arc<L>,
581                 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
582         >>,
583         Arc<L>
584 >;
585
586 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
587 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
588 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
589 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
590 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
591 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
592 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
593 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
594 ///
595 /// (C-not exported) as Arcs don't make sense in bindings
596 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
597
598 /// Manager which keeps track of a number of channels and sends messages to the appropriate
599 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
600 ///
601 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
602 /// to individual Channels.
603 ///
604 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
605 /// all peers during write/read (though does not modify this instance, only the instance being
606 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
607 /// called funding_transaction_generated for outbound channels).
608 ///
609 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
610 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
611 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
612 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
613 /// the serialization process). If the deserialized version is out-of-date compared to the
614 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
615 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
616 ///
617 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
618 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
619 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
620 /// block_connected() to step towards your best block) upon deserialization before using the
621 /// object!
622 ///
623 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
624 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
625 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
626 /// offline for a full minute. In order to track this, you must call
627 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
628 ///
629 /// To avoid trivial DoS issues, ChannelManager limits the number of inbound connections and
630 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
631 /// not have a channel with being unable to connect to us or open new channels with us if we have
632 /// many peers with unfunded channels.
633 ///
634 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
635 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
636 /// never limited. Please ensure you limit the count of such channels yourself.
637 ///
638 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
639 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
640 /// essentially you should default to using a SimpleRefChannelManager, and use a
641 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
642 /// you're using lightning-net-tokio.
643 //
644 // Lock order:
645 // The tree structure below illustrates the lock order requirements for the different locks of the
646 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
647 // and should then be taken in the order of the lowest to the highest level in the tree.
648 // Note that locks on different branches shall not be taken at the same time, as doing so will
649 // create a new lock order for those specific locks in the order they were taken.
650 //
651 // Lock order tree:
652 //
653 // `total_consistency_lock`
654 //  |
655 //  |__`forward_htlcs`
656 //  |   |
657 //  |   |__`pending_intercepted_htlcs`
658 //  |
659 //  |__`per_peer_state`
660 //  |   |
661 //  |   |__`pending_inbound_payments`
662 //  |       |
663 //  |       |__`claimable_payments`
664 //  |       |
665 //  |       |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
666 //  |           |
667 //  |           |__`peer_state`
668 //  |               |
669 //  |               |__`id_to_peer`
670 //  |               |
671 //  |               |__`short_to_chan_info`
672 //  |               |
673 //  |               |__`outbound_scid_aliases`
674 //  |               |
675 //  |               |__`best_block`
676 //  |               |
677 //  |               |__`pending_events`
678 //  |                   |
679 //  |                   |__`pending_background_events`
680 //
681 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
682 where
683         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
684         T::Target: BroadcasterInterface,
685         ES::Target: EntropySource,
686         NS::Target: NodeSigner,
687         SP::Target: SignerProvider,
688         F::Target: FeeEstimator,
689         R::Target: Router,
690         L::Target: Logger,
691 {
692         default_configuration: UserConfig,
693         genesis_hash: BlockHash,
694         fee_estimator: LowerBoundedFeeEstimator<F>,
695         chain_monitor: M,
696         tx_broadcaster: T,
697         #[allow(unused)]
698         router: R,
699
700         /// See `ChannelManager` struct-level documentation for lock order requirements.
701         #[cfg(test)]
702         pub(super) best_block: RwLock<BestBlock>,
703         #[cfg(not(test))]
704         best_block: RwLock<BestBlock>,
705         secp_ctx: Secp256k1<secp256k1::All>,
706
707         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
708         /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
709         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
710         /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
711         ///
712         /// See `ChannelManager` struct-level documentation for lock order requirements.
713         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
714
715         /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
716         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
717         /// (if the channel has been force-closed), however we track them here to prevent duplicative
718         /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
719         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
720         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
721         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
722         /// after reloading from disk while replaying blocks against ChannelMonitors.
723         ///
724         /// See `PendingOutboundPayment` documentation for more info.
725         ///
726         /// See `ChannelManager` struct-level documentation for lock order requirements.
727         pending_outbound_payments: OutboundPayments,
728
729         /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
730         ///
731         /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
732         /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
733         /// and via the classic SCID.
734         ///
735         /// Note that no consistency guarantees are made about the existence of a channel with the
736         /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
737         ///
738         /// See `ChannelManager` struct-level documentation for lock order requirements.
739         #[cfg(test)]
740         pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
741         #[cfg(not(test))]
742         forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
743         /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
744         /// until the user tells us what we should do with them.
745         ///
746         /// See `ChannelManager` struct-level documentation for lock order requirements.
747         pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
748
749         /// The sets of payments which are claimable or currently being claimed. See
750         /// [`ClaimablePayments`]' individual field docs for more info.
751         ///
752         /// See `ChannelManager` struct-level documentation for lock order requirements.
753         claimable_payments: Mutex<ClaimablePayments>,
754
755         /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
756         /// and some closed channels which reached a usable state prior to being closed. This is used
757         /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
758         /// active channel list on load.
759         ///
760         /// See `ChannelManager` struct-level documentation for lock order requirements.
761         outbound_scid_aliases: Mutex<HashSet<u64>>,
762
763         /// `channel_id` -> `counterparty_node_id`.
764         ///
765         /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
766         /// multiple channels with the same `temporary_channel_id` to different peers can exist,
767         /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
768         ///
769         /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
770         /// the corresponding channel for the event, as we only have access to the `channel_id` during
771         /// the handling of the events.
772         ///
773         /// Note that no consistency guarantees are made about the existence of a peer with the
774         /// `counterparty_node_id` in our other maps.
775         ///
776         /// TODO:
777         /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
778         /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
779         /// would break backwards compatability.
780         /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
781         /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
782         /// required to access the channel with the `counterparty_node_id`.
783         ///
784         /// See `ChannelManager` struct-level documentation for lock order requirements.
785         id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
786
787         /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
788         ///
789         /// Outbound SCID aliases are added here once the channel is available for normal use, with
790         /// SCIDs being added once the funding transaction is confirmed at the channel's required
791         /// confirmation depth.
792         ///
793         /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
794         /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
795         /// channel with the `channel_id` in our other maps.
796         ///
797         /// See `ChannelManager` struct-level documentation for lock order requirements.
798         #[cfg(test)]
799         pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
800         #[cfg(not(test))]
801         short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
802
803         our_network_pubkey: PublicKey,
804
805         inbound_payment_key: inbound_payment::ExpandedKey,
806
807         /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
808         /// incoming payment. To make it harder for a third-party to identify the type of a payment,
809         /// we encrypt the namespace identifier using these bytes.
810         ///
811         /// [fake scids]: crate::util::scid_utils::fake_scid
812         fake_scid_rand_bytes: [u8; 32],
813
814         /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
815         /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
816         /// keeping additional state.
817         probing_cookie_secret: [u8; 32],
818
819         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
820         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
821         /// very far in the past, and can only ever be up to two hours in the future.
822         highest_seen_timestamp: AtomicUsize,
823
824         /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
825         /// basis, as well as the peer's latest features.
826         ///
827         /// If we are connected to a peer we always at least have an entry here, even if no channels
828         /// are currently open with that peer.
829         ///
830         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
831         /// operate on the inner value freely. This opens up for parallel per-peer operation for
832         /// channels.
833         ///
834         /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
835         ///
836         /// See `ChannelManager` struct-level documentation for lock order requirements.
837         #[cfg(not(any(test, feature = "_test_utils")))]
838         per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
839         #[cfg(any(test, feature = "_test_utils"))]
840         pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
841
842         /// See `ChannelManager` struct-level documentation for lock order requirements.
843         pending_events: Mutex<Vec<events::Event>>,
844         /// See `ChannelManager` struct-level documentation for lock order requirements.
845         pending_background_events: Mutex<Vec<BackgroundEvent>>,
846         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
847         /// Essentially just when we're serializing ourselves out.
848         /// Taken first everywhere where we are making changes before any other locks.
849         /// When acquiring this lock in read mode, rather than acquiring it directly, call
850         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
851         /// Notifier the lock contains sends out a notification when the lock is released.
852         total_consistency_lock: RwLock<()>,
853
854         persistence_notifier: Notifier,
855
856         entropy_source: ES,
857         node_signer: NS,
858         signer_provider: SP,
859
860         logger: L,
861 }
862
863 /// Chain-related parameters used to construct a new `ChannelManager`.
864 ///
865 /// Typically, the block-specific parameters are derived from the best block hash for the network,
866 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
867 /// are not needed when deserializing a previously constructed `ChannelManager`.
868 #[derive(Clone, Copy, PartialEq)]
869 pub struct ChainParameters {
870         /// The network for determining the `chain_hash` in Lightning messages.
871         pub network: Network,
872
873         /// The hash and height of the latest block successfully connected.
874         ///
875         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
876         pub best_block: BestBlock,
877 }
878
879 #[derive(Copy, Clone, PartialEq)]
880 enum NotifyOption {
881         DoPersist,
882         SkipPersist,
883 }
884
885 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
886 /// desirable to notify any listeners on `await_persistable_update_timeout`/
887 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
888 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
889 /// sending the aforementioned notification (since the lock being released indicates that the
890 /// updates are ready for persistence).
891 ///
892 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
893 /// notify or not based on whether relevant changes have been made, providing a closure to
894 /// `optionally_notify` which returns a `NotifyOption`.
895 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
896         persistence_notifier: &'a Notifier,
897         should_persist: F,
898         // We hold onto this result so the lock doesn't get released immediately.
899         _read_guard: RwLockReadGuard<'a, ()>,
900 }
901
902 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
903         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
904                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
905         }
906
907         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
908                 let read_guard = lock.read().unwrap();
909
910                 PersistenceNotifierGuard {
911                         persistence_notifier: notifier,
912                         should_persist: persist_check,
913                         _read_guard: read_guard,
914                 }
915         }
916 }
917
918 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
919         fn drop(&mut self) {
920                 if (self.should_persist)() == NotifyOption::DoPersist {
921                         self.persistence_notifier.notify();
922                 }
923         }
924 }
925
926 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
927 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
928 ///
929 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
930 ///
931 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
932 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
933 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
934 /// the maximum required amount in lnd as of March 2021.
935 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
936
937 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
938 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
939 ///
940 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
941 ///
942 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
943 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
944 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
945 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
946 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
947 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
948 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
949 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
950 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
951 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
952 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
953 // routing failure for any HTLC sender picking up an LDK node among the first hops.
954 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
955
956 /// Minimum CLTV difference between the current block height and received inbound payments.
957 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
958 /// this value.
959 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
960 // any payments to succeed. Further, we don't want payments to fail if a block was found while
961 // a payment was being routed, so we add an extra block to be safe.
962 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
963
964 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
965 // ie that if the next-hop peer fails the HTLC within
966 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
967 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
968 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
969 // LATENCY_GRACE_PERIOD_BLOCKS.
970 #[deny(const_err)]
971 #[allow(dead_code)]
972 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
973
974 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
975 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
976 #[deny(const_err)]
977 #[allow(dead_code)]
978 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
979
980 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
981 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
982
983 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
984 /// idempotency of payments by [`PaymentId`]. See
985 /// [`OutboundPayments::remove_stale_resolved_payments`].
986 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
987
988 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
989 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
990 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
991 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
992
993 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
994 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
995 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
996
997 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
998 /// many peers we reject new (inbound) connections.
999 const MAX_NO_CHANNEL_PEERS: usize = 250;
1000
1001 /// Information needed for constructing an invoice route hint for this channel.
1002 #[derive(Clone, Debug, PartialEq)]
1003 pub struct CounterpartyForwardingInfo {
1004         /// Base routing fee in millisatoshis.
1005         pub fee_base_msat: u32,
1006         /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1007         pub fee_proportional_millionths: u32,
1008         /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1009         /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1010         /// `cltv_expiry_delta` for more details.
1011         pub cltv_expiry_delta: u16,
1012 }
1013
1014 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1015 /// to better separate parameters.
1016 #[derive(Clone, Debug, PartialEq)]
1017 pub struct ChannelCounterparty {
1018         /// The node_id of our counterparty
1019         pub node_id: PublicKey,
1020         /// The Features the channel counterparty provided upon last connection.
1021         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1022         /// many routing-relevant features are present in the init context.
1023         pub features: InitFeatures,
1024         /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1025         /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1026         /// claiming at least this value on chain.
1027         ///
1028         /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1029         ///
1030         /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1031         pub unspendable_punishment_reserve: u64,
1032         /// Information on the fees and requirements that the counterparty requires when forwarding
1033         /// payments to us through this channel.
1034         pub forwarding_info: Option<CounterpartyForwardingInfo>,
1035         /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1036         /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1037         /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1038         pub outbound_htlc_minimum_msat: Option<u64>,
1039         /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1040         pub outbound_htlc_maximum_msat: Option<u64>,
1041 }
1042
1043 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
1044 #[derive(Clone, Debug, PartialEq)]
1045 pub struct ChannelDetails {
1046         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1047         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1048         /// Note that this means this value is *not* persistent - it can change once during the
1049         /// lifetime of the channel.
1050         pub channel_id: [u8; 32],
1051         /// Parameters which apply to our counterparty. See individual fields for more information.
1052         pub counterparty: ChannelCounterparty,
1053         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1054         /// our counterparty already.
1055         ///
1056         /// Note that, if this has been set, `channel_id` will be equivalent to
1057         /// `funding_txo.unwrap().to_channel_id()`.
1058         pub funding_txo: Option<OutPoint>,
1059         /// The features which this channel operates with. See individual features for more info.
1060         ///
1061         /// `None` until negotiation completes and the channel type is finalized.
1062         pub channel_type: Option<ChannelTypeFeatures>,
1063         /// The position of the funding transaction in the chain. None if the funding transaction has
1064         /// not yet been confirmed and the channel fully opened.
1065         ///
1066         /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1067         /// payments instead of this. See [`get_inbound_payment_scid`].
1068         ///
1069         /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1070         /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1071         ///
1072         /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1073         /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1074         /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1075         /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1076         /// [`confirmations_required`]: Self::confirmations_required
1077         pub short_channel_id: Option<u64>,
1078         /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1079         /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1080         /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1081         /// `Some(0)`).
1082         ///
1083         /// This will be `None` as long as the channel is not available for routing outbound payments.
1084         ///
1085         /// [`short_channel_id`]: Self::short_channel_id
1086         /// [`confirmations_required`]: Self::confirmations_required
1087         pub outbound_scid_alias: Option<u64>,
1088         /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1089         /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1090         /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1091         /// when they see a payment to be routed to us.
1092         ///
1093         /// Our counterparty may choose to rotate this value at any time, though will always recognize
1094         /// previous values for inbound payment forwarding.
1095         ///
1096         /// [`short_channel_id`]: Self::short_channel_id
1097         pub inbound_scid_alias: Option<u64>,
1098         /// The value, in satoshis, of this channel as appears in the funding output
1099         pub channel_value_satoshis: u64,
1100         /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1101         /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1102         /// this value on chain.
1103         ///
1104         /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1105         ///
1106         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1107         ///
1108         /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1109         pub unspendable_punishment_reserve: Option<u64>,
1110         /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1111         /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1112         /// 0.0.113.
1113         pub user_channel_id: u128,
1114         /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1115         /// which is applied to commitment and HTLC transactions.
1116         ///
1117         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1118         pub feerate_sat_per_1000_weight: Option<u32>,
1119         /// Our total balance.  This is the amount we would get if we close the channel.
1120         /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1121         /// amount is not likely to be recoverable on close.
1122         ///
1123         /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1124         /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1125         /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1126         /// This does not consider any on-chain fees.
1127         ///
1128         /// See also [`ChannelDetails::outbound_capacity_msat`]
1129         pub balance_msat: u64,
1130         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1131         /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1132         /// available for inclusion in new outbound HTLCs). This further does not include any pending
1133         /// outgoing HTLCs which are awaiting some other resolution to be sent.
1134         ///
1135         /// See also [`ChannelDetails::balance_msat`]
1136         ///
1137         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1138         /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1139         /// should be able to spend nearly this amount.
1140         pub outbound_capacity_msat: u64,
1141         /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1142         /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1143         /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1144         /// to use a limit as close as possible to the HTLC limit we can currently send.
1145         ///
1146         /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1147         pub next_outbound_htlc_limit_msat: u64,
1148         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1149         /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1150         /// available for inclusion in new inbound HTLCs).
1151         /// Note that there are some corner cases not fully handled here, so the actual available
1152         /// inbound capacity may be slightly higher than this.
1153         ///
1154         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1155         /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1156         /// However, our counterparty should be able to spend nearly this amount.
1157         pub inbound_capacity_msat: u64,
1158         /// The number of required confirmations on the funding transaction before the funding will be
1159         /// considered "locked". This number is selected by the channel fundee (i.e. us if
1160         /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1161         /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1162         /// [`ChannelHandshakeLimits::max_minimum_depth`].
1163         ///
1164         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1165         ///
1166         /// [`is_outbound`]: ChannelDetails::is_outbound
1167         /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1168         /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1169         pub confirmations_required: Option<u32>,
1170         /// The current number of confirmations on the funding transaction.
1171         ///
1172         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1173         pub confirmations: Option<u32>,
1174         /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1175         /// until we can claim our funds after we force-close the channel. During this time our
1176         /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1177         /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1178         /// time to claim our non-HTLC-encumbered funds.
1179         ///
1180         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1181         pub force_close_spend_delay: Option<u16>,
1182         /// True if the channel was initiated (and thus funded) by us.
1183         pub is_outbound: bool,
1184         /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1185         /// channel is not currently being shut down. `channel_ready` message exchange implies the
1186         /// required confirmation count has been reached (and we were connected to the peer at some
1187         /// point after the funding transaction received enough confirmations). The required
1188         /// confirmation count is provided in [`confirmations_required`].
1189         ///
1190         /// [`confirmations_required`]: ChannelDetails::confirmations_required
1191         pub is_channel_ready: bool,
1192         /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1193         /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1194         ///
1195         /// This is a strict superset of `is_channel_ready`.
1196         pub is_usable: bool,
1197         /// True if this channel is (or will be) publicly-announced.
1198         pub is_public: bool,
1199         /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1200         /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1201         pub inbound_htlc_minimum_msat: Option<u64>,
1202         /// The largest value HTLC (in msat) we currently will accept, for this channel.
1203         pub inbound_htlc_maximum_msat: Option<u64>,
1204         /// Set of configurable parameters that affect channel operation.
1205         ///
1206         /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1207         pub config: Option<ChannelConfig>,
1208 }
1209
1210 impl ChannelDetails {
1211         /// Gets the current SCID which should be used to identify this channel for inbound payments.
1212         /// This should be used for providing invoice hints or in any other context where our
1213         /// counterparty will forward a payment to us.
1214         ///
1215         /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1216         /// [`ChannelDetails::short_channel_id`]. See those for more information.
1217         pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1218                 self.inbound_scid_alias.or(self.short_channel_id)
1219         }
1220
1221         /// Gets the current SCID which should be used to identify this channel for outbound payments.
1222         /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1223         /// we're sending or forwarding a payment outbound over this channel.
1224         ///
1225         /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1226         /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1227         pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1228                 self.short_channel_id.or(self.outbound_scid_alias)
1229         }
1230
1231         fn from_channel<Signer: WriteableEcdsaChannelSigner>(channel: &Channel<Signer>,
1232                 best_block_height: u32, latest_features: InitFeatures) -> Self {
1233
1234                 let balance = channel.get_available_balances();
1235                 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1236                         channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1237                 ChannelDetails {
1238                         channel_id: channel.channel_id(),
1239                         counterparty: ChannelCounterparty {
1240                                 node_id: channel.get_counterparty_node_id(),
1241                                 features: latest_features,
1242                                 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1243                                 forwarding_info: channel.counterparty_forwarding_info(),
1244                                 // Ensures that we have actually received the `htlc_minimum_msat` value
1245                                 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1246                                 // message (as they are always the first message from the counterparty).
1247                                 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1248                                 // default `0` value set by `Channel::new_outbound`.
1249                                 outbound_htlc_minimum_msat: if channel.have_received_message() {
1250                                         Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1251                                 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1252                         },
1253                         funding_txo: channel.get_funding_txo(),
1254                         // Note that accept_channel (or open_channel) is always the first message, so
1255                         // `have_received_message` indicates that type negotiation has completed.
1256                         channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1257                         short_channel_id: channel.get_short_channel_id(),
1258                         outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1259                         inbound_scid_alias: channel.latest_inbound_scid_alias(),
1260                         channel_value_satoshis: channel.get_value_satoshis(),
1261                         feerate_sat_per_1000_weight: Some(channel.get_feerate_sat_per_1000_weight()),
1262                         unspendable_punishment_reserve: to_self_reserve_satoshis,
1263                         balance_msat: balance.balance_msat,
1264                         inbound_capacity_msat: balance.inbound_capacity_msat,
1265                         outbound_capacity_msat: balance.outbound_capacity_msat,
1266                         next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1267                         user_channel_id: channel.get_user_id(),
1268                         confirmations_required: channel.minimum_depth(),
1269                         confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1270                         force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1271                         is_outbound: channel.is_outbound(),
1272                         is_channel_ready: channel.is_usable(),
1273                         is_usable: channel.is_live(),
1274                         is_public: channel.should_announce(),
1275                         inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1276                         inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1277                         config: Some(channel.config()),
1278                 }
1279         }
1280 }
1281
1282 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1283 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1284 #[derive(Debug, PartialEq)]
1285 pub enum RecentPaymentDetails {
1286         /// When a payment is still being sent and awaiting successful delivery.
1287         Pending {
1288                 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1289                 /// abandoned.
1290                 payment_hash: PaymentHash,
1291                 /// Total amount (in msat, excluding fees) across all paths for this payment,
1292                 /// not just the amount currently inflight.
1293                 total_msat: u64,
1294         },
1295         /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1296         /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1297         /// payment is removed from tracking.
1298         Fulfilled {
1299                 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1300                 /// made before LDK version 0.0.104.
1301                 payment_hash: Option<PaymentHash>,
1302         },
1303         /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1304         /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1305         /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1306         Abandoned {
1307                 /// Hash of the payment that we have given up trying to send.
1308                 payment_hash: PaymentHash,
1309         },
1310 }
1311
1312 /// Route hints used in constructing invoices for [phantom node payents].
1313 ///
1314 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1315 #[derive(Clone)]
1316 pub struct PhantomRouteHints {
1317         /// The list of channels to be included in the invoice route hints.
1318         pub channels: Vec<ChannelDetails>,
1319         /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1320         /// route hints.
1321         pub phantom_scid: u64,
1322         /// The pubkey of the real backing node that would ultimately receive the payment.
1323         pub real_node_pubkey: PublicKey,
1324 }
1325
1326 macro_rules! handle_error {
1327         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1328                 match $internal {
1329                         Ok(msg) => Ok(msg),
1330                         Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1331                                 // In testing, ensure there are no deadlocks where the lock is already held upon
1332                                 // entering the macro.
1333                                 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1334                                 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1335
1336                                 let mut msg_events = Vec::with_capacity(2);
1337
1338                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
1339                                         $self.finish_force_close_channel(shutdown_res);
1340                                         if let Some(update) = update_option {
1341                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1342                                                         msg: update
1343                                                 });
1344                                         }
1345                                         if let Some((channel_id, user_channel_id)) = chan_id {
1346                                                 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1347                                                         channel_id, user_channel_id,
1348                                                         reason: ClosureReason::ProcessingError { err: err.err.clone() }
1349                                                 });
1350                                         }
1351                                 }
1352
1353                                 log_error!($self.logger, "{}", err.err);
1354                                 if let msgs::ErrorAction::IgnoreError = err.action {
1355                                 } else {
1356                                         msg_events.push(events::MessageSendEvent::HandleError {
1357                                                 node_id: $counterparty_node_id,
1358                                                 action: err.action.clone()
1359                                         });
1360                                 }
1361
1362                                 if !msg_events.is_empty() {
1363                                         let per_peer_state = $self.per_peer_state.read().unwrap();
1364                                         if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1365                                                 let mut peer_state = peer_state_mutex.lock().unwrap();
1366                                                 peer_state.pending_msg_events.append(&mut msg_events);
1367                                         }
1368                                 }
1369
1370                                 // Return error in case higher-API need one
1371                                 Err(err)
1372                         },
1373                 }
1374         }
1375 }
1376
1377 macro_rules! update_maps_on_chan_removal {
1378         ($self: expr, $channel: expr) => {{
1379                 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1380                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1381                 if let Some(short_id) = $channel.get_short_channel_id() {
1382                         short_to_chan_info.remove(&short_id);
1383                 } else {
1384                         // If the channel was never confirmed on-chain prior to its closure, remove the
1385                         // outbound SCID alias we used for it from the collision-prevention set. While we
1386                         // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1387                         // also don't want a counterparty to be able to trivially cause a memory leak by simply
1388                         // opening a million channels with us which are closed before we ever reach the funding
1389                         // stage.
1390                         let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1391                         debug_assert!(alias_removed);
1392                 }
1393                 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1394         }}
1395 }
1396
1397 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1398 macro_rules! convert_chan_err {
1399         ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1400                 match $err {
1401                         ChannelError::Warn(msg) => {
1402                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1403                         },
1404                         ChannelError::Ignore(msg) => {
1405                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1406                         },
1407                         ChannelError::Close(msg) => {
1408                                 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1409                                 update_maps_on_chan_removal!($self, $channel);
1410                                 let shutdown_res = $channel.force_shutdown(true);
1411                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1412                                         shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1413                         },
1414                 }
1415         }
1416 }
1417
1418 macro_rules! break_chan_entry {
1419         ($self: ident, $res: expr, $entry: expr) => {
1420                 match $res {
1421                         Ok(res) => res,
1422                         Err(e) => {
1423                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1424                                 if drop {
1425                                         $entry.remove_entry();
1426                                 }
1427                                 break Err(res);
1428                         }
1429                 }
1430         }
1431 }
1432
1433 macro_rules! try_chan_entry {
1434         ($self: ident, $res: expr, $entry: expr) => {
1435                 match $res {
1436                         Ok(res) => res,
1437                         Err(e) => {
1438                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1439                                 if drop {
1440                                         $entry.remove_entry();
1441                                 }
1442                                 return Err(res);
1443                         }
1444                 }
1445         }
1446 }
1447
1448 macro_rules! remove_channel {
1449         ($self: expr, $entry: expr) => {
1450                 {
1451                         let channel = $entry.remove_entry().1;
1452                         update_maps_on_chan_removal!($self, channel);
1453                         channel
1454                 }
1455         }
1456 }
1457
1458 macro_rules! send_channel_ready {
1459         ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1460                 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1461                         node_id: $channel.get_counterparty_node_id(),
1462                         msg: $channel_ready_msg,
1463                 });
1464                 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1465                 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1466                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1467                 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1468                 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1469                         "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1470                 if let Some(real_scid) = $channel.get_short_channel_id() {
1471                         let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1472                         assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1473                                 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1474                 }
1475         }}
1476 }
1477
1478 macro_rules! emit_channel_ready_event {
1479         ($self: expr, $channel: expr) => {
1480                 if $channel.should_emit_channel_ready_event() {
1481                         {
1482                                 let mut pending_events = $self.pending_events.lock().unwrap();
1483                                 pending_events.push(events::Event::ChannelReady {
1484                                         channel_id: $channel.channel_id(),
1485                                         user_channel_id: $channel.get_user_id(),
1486                                         counterparty_node_id: $channel.get_counterparty_node_id(),
1487                                         channel_type: $channel.get_channel_type().clone(),
1488                                 });
1489                         }
1490                         $channel.set_channel_ready_event_emitted();
1491                 }
1492         }
1493 }
1494
1495 macro_rules! handle_monitor_update_completion {
1496         ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1497                 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1498                         &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1499                         $self.best_block.read().unwrap().height());
1500                 let counterparty_node_id = $chan.get_counterparty_node_id();
1501                 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1502                         // We only send a channel_update in the case where we are just now sending a
1503                         // channel_ready and the channel is in a usable state. We may re-send a
1504                         // channel_update later through the announcement_signatures process for public
1505                         // channels, but there's no reason not to just inform our counterparty of our fees
1506                         // now.
1507                         if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1508                                 Some(events::MessageSendEvent::SendChannelUpdate {
1509                                         node_id: counterparty_node_id,
1510                                         msg,
1511                                 })
1512                         } else { None }
1513                 } else { None };
1514
1515                 let update_actions = $peer_state.monitor_update_blocked_actions
1516                         .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1517
1518                 let htlc_forwards = $self.handle_channel_resumption(
1519                         &mut $peer_state.pending_msg_events, $chan, updates.raa,
1520                         updates.commitment_update, updates.order, updates.accepted_htlcs,
1521                         updates.funding_broadcastable, updates.channel_ready,
1522                         updates.announcement_sigs);
1523                 if let Some(upd) = channel_update {
1524                         $peer_state.pending_msg_events.push(upd);
1525                 }
1526
1527                 let channel_id = $chan.channel_id();
1528                 core::mem::drop($peer_state_lock);
1529                 core::mem::drop($per_peer_state_lock);
1530
1531                 $self.handle_monitor_update_completion_actions(update_actions);
1532
1533                 if let Some(forwards) = htlc_forwards {
1534                         $self.forward_htlcs(&mut [forwards][..]);
1535                 }
1536                 $self.finalize_claims(updates.finalized_claimed_htlcs);
1537                 for failure in updates.failed_htlcs.drain(..) {
1538                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1539                         $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1540                 }
1541         } }
1542 }
1543
1544 macro_rules! handle_new_monitor_update {
1545         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1546                 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1547                 // any case so that it won't deadlock.
1548                 debug_assert!($self.id_to_peer.try_lock().is_ok());
1549                 match $update_res {
1550                         ChannelMonitorUpdateStatus::InProgress => {
1551                                 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1552                                         log_bytes!($chan.channel_id()[..]));
1553                                 Ok(())
1554                         },
1555                         ChannelMonitorUpdateStatus::PermanentFailure => {
1556                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1557                                         log_bytes!($chan.channel_id()[..]));
1558                                 update_maps_on_chan_removal!($self, $chan);
1559                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1560                                         "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1561                                         $chan.get_user_id(), $chan.force_shutdown(false),
1562                                         $self.get_channel_update_for_broadcast(&$chan).ok()));
1563                                 $remove;
1564                                 res
1565                         },
1566                         ChannelMonitorUpdateStatus::Completed => {
1567                                 if ($update_id == 0 || $chan.get_next_monitor_update()
1568                                         .expect("We can't be processing a monitor update if it isn't queued")
1569                                         .update_id == $update_id) &&
1570                                         $chan.get_latest_monitor_update_id() == $update_id
1571                                 {
1572                                         handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1573                                 }
1574                                 Ok(())
1575                         },
1576                 }
1577         } };
1578         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1579                 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1580         }
1581 }
1582
1583 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1584 where
1585         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1586         T::Target: BroadcasterInterface,
1587         ES::Target: EntropySource,
1588         NS::Target: NodeSigner,
1589         SP::Target: SignerProvider,
1590         F::Target: FeeEstimator,
1591         R::Target: Router,
1592         L::Target: Logger,
1593 {
1594         /// Constructs a new ChannelManager to hold several channels and route between them.
1595         ///
1596         /// This is the main "logic hub" for all channel-related actions, and implements
1597         /// ChannelMessageHandler.
1598         ///
1599         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1600         ///
1601         /// Users need to notify the new ChannelManager when a new block is connected or
1602         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1603         /// from after `params.latest_hash`.
1604         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1605                 let mut secp_ctx = Secp256k1::new();
1606                 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1607                 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1608                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1609                 ChannelManager {
1610                         default_configuration: config.clone(),
1611                         genesis_hash: genesis_block(params.network).header.block_hash(),
1612                         fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1613                         chain_monitor,
1614                         tx_broadcaster,
1615                         router,
1616
1617                         best_block: RwLock::new(params.best_block),
1618
1619                         outbound_scid_aliases: Mutex::new(HashSet::new()),
1620                         pending_inbound_payments: Mutex::new(HashMap::new()),
1621                         pending_outbound_payments: OutboundPayments::new(),
1622                         forward_htlcs: Mutex::new(HashMap::new()),
1623                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1624                         pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1625                         id_to_peer: Mutex::new(HashMap::new()),
1626                         short_to_chan_info: FairRwLock::new(HashMap::new()),
1627
1628                         our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1629                         secp_ctx,
1630
1631                         inbound_payment_key: expanded_inbound_key,
1632                         fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1633
1634                         probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1635
1636                         highest_seen_timestamp: AtomicUsize::new(0),
1637
1638                         per_peer_state: FairRwLock::new(HashMap::new()),
1639
1640                         pending_events: Mutex::new(Vec::new()),
1641                         pending_background_events: Mutex::new(Vec::new()),
1642                         total_consistency_lock: RwLock::new(()),
1643                         persistence_notifier: Notifier::new(),
1644
1645                         entropy_source,
1646                         node_signer,
1647                         signer_provider,
1648
1649                         logger,
1650                 }
1651         }
1652
1653         /// Gets the current configuration applied to all new channels.
1654         pub fn get_current_default_configuration(&self) -> &UserConfig {
1655                 &self.default_configuration
1656         }
1657
1658         fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1659                 let height = self.best_block.read().unwrap().height();
1660                 let mut outbound_scid_alias = 0;
1661                 let mut i = 0;
1662                 loop {
1663                         if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1664                                 outbound_scid_alias += 1;
1665                         } else {
1666                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1667                         }
1668                         if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1669                                 break;
1670                         }
1671                         i += 1;
1672                         if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1673                 }
1674                 outbound_scid_alias
1675         }
1676
1677         /// Creates a new outbound channel to the given remote node and with the given value.
1678         ///
1679         /// `user_channel_id` will be provided back as in
1680         /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1681         /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1682         /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1683         /// is simply copied to events and otherwise ignored.
1684         ///
1685         /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1686         /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1687         ///
1688         /// Note that we do not check if you are currently connected to the given peer. If no
1689         /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1690         /// the channel eventually being silently forgotten (dropped on reload).
1691         ///
1692         /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1693         /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1694         /// [`ChannelDetails::channel_id`] until after
1695         /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1696         /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1697         /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1698         ///
1699         /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1700         /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1701         /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1702         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1703                 if channel_value_satoshis < 1000 {
1704                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1705                 }
1706
1707                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1708                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1709                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1710
1711                 let per_peer_state = self.per_peer_state.read().unwrap();
1712
1713                 let peer_state_mutex = per_peer_state.get(&their_network_key)
1714                         .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1715
1716                 let mut peer_state = peer_state_mutex.lock().unwrap();
1717                 let channel = {
1718                         let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1719                         let their_features = &peer_state.latest_features;
1720                         let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1721                         match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1722                                 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1723                                 self.best_block.read().unwrap().height(), outbound_scid_alias)
1724                         {
1725                                 Ok(res) => res,
1726                                 Err(e) => {
1727                                         self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1728                                         return Err(e);
1729                                 },
1730                         }
1731                 };
1732                 let res = channel.get_open_channel(self.genesis_hash.clone());
1733
1734                 let temporary_channel_id = channel.channel_id();
1735                 match peer_state.channel_by_id.entry(temporary_channel_id) {
1736                         hash_map::Entry::Occupied(_) => {
1737                                 if cfg!(fuzzing) {
1738                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1739                                 } else {
1740                                         panic!("RNG is bad???");
1741                                 }
1742                         },
1743                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1744                 }
1745
1746                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1747                         node_id: their_network_key,
1748                         msg: res,
1749                 });
1750                 Ok(temporary_channel_id)
1751         }
1752
1753         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1754                 // Allocate our best estimate of the number of channels we have in the `res`
1755                 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1756                 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1757                 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1758                 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1759                 // the same channel.
1760                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1761                 {
1762                         let best_block_height = self.best_block.read().unwrap().height();
1763                         let per_peer_state = self.per_peer_state.read().unwrap();
1764                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1765                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1766                                 let peer_state = &mut *peer_state_lock;
1767                                 for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1768                                         let details = ChannelDetails::from_channel(channel, best_block_height,
1769                                                 peer_state.latest_features.clone());
1770                                         res.push(details);
1771                                 }
1772                         }
1773                 }
1774                 res
1775         }
1776
1777         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1778         /// more information.
1779         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1780                 self.list_channels_with_filter(|_| true)
1781         }
1782
1783         /// Gets the list of usable channels, in random order. Useful as an argument to
1784         /// [`Router::find_route`] to ensure non-announced channels are used.
1785         ///
1786         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1787         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1788         /// are.
1789         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1790                 // Note we use is_live here instead of usable which leads to somewhat confused
1791                 // internal/external nomenclature, but that's ok cause that's probably what the user
1792                 // really wanted anyway.
1793                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1794         }
1795
1796         /// Gets the list of channels we have with a given counterparty, in random order.
1797         pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
1798                 let best_block_height = self.best_block.read().unwrap().height();
1799                 let per_peer_state = self.per_peer_state.read().unwrap();
1800
1801                 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
1802                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1803                         let peer_state = &mut *peer_state_lock;
1804                         let features = &peer_state.latest_features;
1805                         return peer_state.channel_by_id
1806                                 .iter()
1807                                 .map(|(_, channel)|
1808                                         ChannelDetails::from_channel(channel, best_block_height, features.clone()))
1809                                 .collect();
1810                 }
1811                 vec![]
1812         }
1813
1814         /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
1815         /// successful path, or have unresolved HTLCs.
1816         ///
1817         /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
1818         /// result of a crash. If such a payment exists, is not listed here, and an
1819         /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
1820         ///
1821         /// [`Event::PaymentSent`]: events::Event::PaymentSent
1822         pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
1823                 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
1824                         .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
1825                                 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
1826                                         Some(RecentPaymentDetails::Pending {
1827                                                 payment_hash: *payment_hash,
1828                                                 total_msat: *total_msat,
1829                                         })
1830                                 },
1831                                 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
1832                                         Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
1833                                 },
1834                                 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
1835                                         Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
1836                                 },
1837                                 PendingOutboundPayment::Legacy { .. } => None
1838                         })
1839                         .collect()
1840         }
1841
1842         /// Helper function that issues the channel close events
1843         fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
1844                 let mut pending_events_lock = self.pending_events.lock().unwrap();
1845                 match channel.unbroadcasted_funding() {
1846                         Some(transaction) => {
1847                                 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1848                         },
1849                         None => {},
1850                 }
1851                 pending_events_lock.push(events::Event::ChannelClosed {
1852                         channel_id: channel.channel_id(),
1853                         user_channel_id: channel.get_user_id(),
1854                         reason: closure_reason
1855                 });
1856         }
1857
1858         fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1859                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1860
1861                 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1862                 let result: Result<(), _> = loop {
1863                         let per_peer_state = self.per_peer_state.read().unwrap();
1864
1865                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
1866                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
1867
1868                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1869                         let peer_state = &mut *peer_state_lock;
1870                         match peer_state.channel_by_id.entry(channel_id.clone()) {
1871                                 hash_map::Entry::Occupied(mut chan_entry) => {
1872                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
1873                                         let their_features = &peer_state.latest_features;
1874                                         let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
1875                                                 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
1876                                         failed_htlcs = htlcs;
1877
1878                                         // We can send the `shutdown` message before updating the `ChannelMonitor`
1879                                         // here as we don't need the monitor update to complete until we send a
1880                                         // `shutdown_signed`, which we'll delay if we're pending a monitor update.
1881                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1882                                                 node_id: *counterparty_node_id,
1883                                                 msg: shutdown_msg,
1884                                         });
1885
1886                                         // Update the monitor with the shutdown script if necessary.
1887                                         if let Some(monitor_update) = monitor_update_opt.take() {
1888                                                 let update_id = monitor_update.update_id;
1889                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
1890                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
1891                                         }
1892
1893                                         if chan_entry.get().is_shutdown() {
1894                                                 let channel = remove_channel!(self, chan_entry);
1895                                                 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1896                                                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1897                                                                 msg: channel_update
1898                                                         });
1899                                                 }
1900                                                 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1901                                         }
1902                                         break Ok(());
1903                                 },
1904                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
1905                         }
1906                 };
1907
1908                 for htlc_source in failed_htlcs.drain(..) {
1909                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1910                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
1911                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
1912                 }
1913
1914                 let _ = handle_error!(self, result, *counterparty_node_id);
1915                 Ok(())
1916         }
1917
1918         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1919         /// will be accepted on the given channel, and after additional timeout/the closing of all
1920         /// pending HTLCs, the channel will be closed on chain.
1921         ///
1922         ///  * If we are the channel initiator, we will pay between our [`Background`] and
1923         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1924         ///    estimate.
1925         ///  * If our counterparty is the channel initiator, we will require a channel closing
1926         ///    transaction feerate of at least our [`Background`] feerate or the feerate which
1927         ///    would appear on a force-closure transaction, whichever is lower. We will allow our
1928         ///    counterparty to pay as much fee as they'd like, however.
1929         ///
1930         /// May generate a SendShutdown message event on success, which should be relayed.
1931         ///
1932         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1933         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1934         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1935         pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1936                 self.close_channel_internal(channel_id, counterparty_node_id, None)
1937         }
1938
1939         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1940         /// will be accepted on the given channel, and after additional timeout/the closing of all
1941         /// pending HTLCs, the channel will be closed on chain.
1942         ///
1943         /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1944         /// the channel being closed or not:
1945         ///  * If we are the channel initiator, we will pay at least this feerate on the closing
1946         ///    transaction. The upper-bound is set by
1947         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1948         ///    estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1949         ///  * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1950         ///    transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1951         ///    will appear on a force-closure transaction, whichever is lower).
1952         ///
1953         /// May generate a SendShutdown message event on success, which should be relayed.
1954         ///
1955         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1956         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1957         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1958         pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1959                 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
1960         }
1961
1962         #[inline]
1963         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1964                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1965                 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1966                 for htlc_source in failed_htlcs.drain(..) {
1967                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
1968                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1969                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1970                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
1971                 }
1972                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1973                         // There isn't anything we can do if we get an update failure - we're already
1974                         // force-closing. The monitor update on the required in-memory copy should broadcast
1975                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1976                         // ignore the result here.
1977                         let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
1978                 }
1979         }
1980
1981         /// `peer_msg` should be set when we receive a message from a peer, but not set when the
1982         /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1983         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
1984         -> Result<PublicKey, APIError> {
1985                 let per_peer_state = self.per_peer_state.read().unwrap();
1986                 let peer_state_mutex = per_peer_state.get(peer_node_id)
1987                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
1988                 let mut chan = {
1989                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1990                         let peer_state = &mut *peer_state_lock;
1991                         if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
1992                                 if let Some(peer_msg) = peer_msg {
1993                                         self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
1994                                 } else {
1995                                         self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
1996                                 }
1997                                 remove_channel!(self, chan)
1998                         } else {
1999                                 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
2000                         }
2001                 };
2002                 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2003                 self.finish_force_close_channel(chan.force_shutdown(broadcast));
2004                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2005                         let mut peer_state = peer_state_mutex.lock().unwrap();
2006                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2007                                 msg: update
2008                         });
2009                 }
2010
2011                 Ok(chan.get_counterparty_node_id())
2012         }
2013
2014         fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2015                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2016                 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2017                         Ok(counterparty_node_id) => {
2018                                 let per_peer_state = self.per_peer_state.read().unwrap();
2019                                 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2020                                         let mut peer_state = peer_state_mutex.lock().unwrap();
2021                                         peer_state.pending_msg_events.push(
2022                                                 events::MessageSendEvent::HandleError {
2023                                                         node_id: counterparty_node_id,
2024                                                         action: msgs::ErrorAction::SendErrorMessage {
2025                                                                 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2026                                                         },
2027                                                 }
2028                                         );
2029                                 }
2030                                 Ok(())
2031                         },
2032                         Err(e) => Err(e)
2033                 }
2034         }
2035
2036         /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2037         /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2038         /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2039         /// channel.
2040         pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2041         -> Result<(), APIError> {
2042                 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2043         }
2044
2045         /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2046         /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2047         /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2048         ///
2049         /// You can always get the latest local transaction(s) to broadcast from
2050         /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2051         pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2052         -> Result<(), APIError> {
2053                 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2054         }
2055
2056         /// Force close all channels, immediately broadcasting the latest local commitment transaction
2057         /// for each to the chain and rejecting new HTLCs on each.
2058         pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2059                 for chan in self.list_channels() {
2060                         let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2061                 }
2062         }
2063
2064         /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2065         /// local transaction(s).
2066         pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2067                 for chan in self.list_channels() {
2068                         let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2069                 }
2070         }
2071
2072         fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2073                 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2074         {
2075                 // final_incorrect_cltv_expiry
2076                 if hop_data.outgoing_cltv_value != cltv_expiry {
2077                         return Err(ReceiveError {
2078                                 msg: "Upstream node set CLTV to the wrong value",
2079                                 err_code: 18,
2080                                 err_data: cltv_expiry.to_be_bytes().to_vec()
2081                         })
2082                 }
2083                 // final_expiry_too_soon
2084                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2085                 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2086                 //
2087                 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2088                 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2089                 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2090                 let current_height: u32 = self.best_block.read().unwrap().height();
2091                 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2092                         let mut err_data = Vec::with_capacity(12);
2093                         err_data.extend_from_slice(&amt_msat.to_be_bytes());
2094                         err_data.extend_from_slice(&current_height.to_be_bytes());
2095                         return Err(ReceiveError {
2096                                 err_code: 0x4000 | 15, err_data,
2097                                 msg: "The final CLTV expiry is too soon to handle",
2098                         });
2099                 }
2100                 if hop_data.amt_to_forward > amt_msat {
2101                         return Err(ReceiveError {
2102                                 err_code: 19,
2103                                 err_data: amt_msat.to_be_bytes().to_vec(),
2104                                 msg: "Upstream node sent less than we were supposed to receive in payment",
2105                         });
2106                 }
2107
2108                 let routing = match hop_data.format {
2109                         msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2110                                 return Err(ReceiveError {
2111                                         err_code: 0x4000|22,
2112                                         err_data: Vec::new(),
2113                                         msg: "Got non final data with an HMAC of 0",
2114                                 });
2115                         },
2116                         msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2117                                 if payment_data.is_some() && keysend_preimage.is_some() {
2118                                         return Err(ReceiveError {
2119                                                 err_code: 0x4000|22,
2120                                                 err_data: Vec::new(),
2121                                                 msg: "We don't support MPP keysend payments",
2122                                         });
2123                                 } else if let Some(data) = payment_data {
2124                                         PendingHTLCRouting::Receive {
2125                                                 payment_data: data,
2126                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2127                                                 phantom_shared_secret,
2128                                         }
2129                                 } else if let Some(payment_preimage) = keysend_preimage {
2130                                         // We need to check that the sender knows the keysend preimage before processing this
2131                                         // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2132                                         // could discover the final destination of X, by probing the adjacent nodes on the route
2133                                         // with a keysend payment of identical payment hash to X and observing the processing
2134                                         // time discrepancies due to a hash collision with X.
2135                                         let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2136                                         if hashed_preimage != payment_hash {
2137                                                 return Err(ReceiveError {
2138                                                         err_code: 0x4000|22,
2139                                                         err_data: Vec::new(),
2140                                                         msg: "Payment preimage didn't match payment hash",
2141                                                 });
2142                                         }
2143
2144                                         PendingHTLCRouting::ReceiveKeysend {
2145                                                 payment_preimage,
2146                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2147                                         }
2148                                 } else {
2149                                         return Err(ReceiveError {
2150                                                 err_code: 0x4000|0x2000|3,
2151                                                 err_data: Vec::new(),
2152                                                 msg: "We require payment_secrets",
2153                                         });
2154                                 }
2155                         },
2156                 };
2157                 Ok(PendingHTLCInfo {
2158                         routing,
2159                         payment_hash,
2160                         incoming_shared_secret: shared_secret,
2161                         incoming_amt_msat: Some(amt_msat),
2162                         outgoing_amt_msat: amt_msat,
2163                         outgoing_cltv_value: hop_data.outgoing_cltv_value,
2164                 })
2165         }
2166
2167         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2168                 macro_rules! return_malformed_err {
2169                         ($msg: expr, $err_code: expr) => {
2170                                 {
2171                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2172                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2173                                                 channel_id: msg.channel_id,
2174                                                 htlc_id: msg.htlc_id,
2175                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2176                                                 failure_code: $err_code,
2177                                         }));
2178                                 }
2179                         }
2180                 }
2181
2182                 if let Err(_) = msg.onion_routing_packet.public_key {
2183                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2184                 }
2185
2186                 let shared_secret = self.node_signer.ecdh(
2187                         Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2188                 ).unwrap().secret_bytes();
2189
2190                 if msg.onion_routing_packet.version != 0 {
2191                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2192                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2193                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
2194                         //receiving node would have to brute force to figure out which version was put in the
2195                         //packet by the node that send us the message, in the case of hashing the hop_data, the
2196                         //node knows the HMAC matched, so they already know what is there...
2197                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2198                 }
2199                 macro_rules! return_err {
2200                         ($msg: expr, $err_code: expr, $data: expr) => {
2201                                 {
2202                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2203                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2204                                                 channel_id: msg.channel_id,
2205                                                 htlc_id: msg.htlc_id,
2206                                                 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2207                                                         .get_encrypted_failure_packet(&shared_secret, &None),
2208                                         }));
2209                                 }
2210                         }
2211                 }
2212
2213                 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2214                         Ok(res) => res,
2215                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2216                                 return_malformed_err!(err_msg, err_code);
2217                         },
2218                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2219                                 return_err!(err_msg, err_code, &[0; 0]);
2220                         },
2221                 };
2222
2223                 let pending_forward_info = match next_hop {
2224                         onion_utils::Hop::Receive(next_hop_data) => {
2225                                 // OUR PAYMENT!
2226                                 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2227                                         Ok(info) => {
2228                                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
2229                                                 // message, however that would leak that we are the recipient of this payment, so
2230                                                 // instead we stay symmetric with the forwarding case, only responding (after a
2231                                                 // delay) once they've send us a commitment_signed!
2232                                                 PendingHTLCStatus::Forward(info)
2233                                         },
2234                                         Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2235                                 }
2236                         },
2237                         onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2238                                 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2239                                 let outgoing_packet = msgs::OnionPacket {
2240                                         version: 0,
2241                                         public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2242                                         hop_data: new_packet_bytes,
2243                                         hmac: next_hop_hmac.clone(),
2244                                 };
2245
2246                                 let short_channel_id = match next_hop_data.format {
2247                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2248                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
2249                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2250                                         },
2251                                 };
2252
2253                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
2254                                         routing: PendingHTLCRouting::Forward {
2255                                                 onion_packet: outgoing_packet,
2256                                                 short_channel_id,
2257                                         },
2258                                         payment_hash: msg.payment_hash.clone(),
2259                                         incoming_shared_secret: shared_secret,
2260                                         incoming_amt_msat: Some(msg.amount_msat),
2261                                         outgoing_amt_msat: next_hop_data.amt_to_forward,
2262                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2263                                 })
2264                         }
2265                 };
2266
2267                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2268                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2269                         // with a short_channel_id of 0. This is important as various things later assume
2270                         // short_channel_id is non-0 in any ::Forward.
2271                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2272                                 if let Some((err, mut code, chan_update)) = loop {
2273                                         let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2274                                         let forwarding_chan_info_opt = match id_option {
2275                                                 None => { // unknown_next_peer
2276                                                         // Note that this is likely a timing oracle for detecting whether an scid is a
2277                                                         // phantom or an intercept.
2278                                                         if (self.default_configuration.accept_intercept_htlcs &&
2279                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2280                                                            fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2281                                                         {
2282                                                                 None
2283                                                         } else {
2284                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2285                                                         }
2286                                                 },
2287                                                 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2288                                         };
2289                                         let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2290                                                 let per_peer_state = self.per_peer_state.read().unwrap();
2291                                                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2292                                                 if peer_state_mutex_opt.is_none() {
2293                                                         break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2294                                                 }
2295                                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2296                                                 let peer_state = &mut *peer_state_lock;
2297                                                 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2298                                                         None => {
2299                                                                 // Channel was removed. The short_to_chan_info and channel_by_id maps
2300                                                                 // have no consistency guarantees.
2301                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2302                                                         },
2303                                                         Some(chan) => chan
2304                                                 };
2305                                                 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2306                                                         // Note that the behavior here should be identical to the above block - we
2307                                                         // should NOT reveal the existence or non-existence of a private channel if
2308                                                         // we don't allow forwards outbound over them.
2309                                                         break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2310                                                 }
2311                                                 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2312                                                         // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2313                                                         // "refuse to forward unless the SCID alias was used", so we pretend
2314                                                         // we don't have the channel here.
2315                                                         break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2316                                                 }
2317                                                 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2318
2319                                                 // Note that we could technically not return an error yet here and just hope
2320                                                 // that the connection is reestablished or monitor updated by the time we get
2321                                                 // around to doing the actual forward, but better to fail early if we can and
2322                                                 // hopefully an attacker trying to path-trace payments cannot make this occur
2323                                                 // on a small/per-node/per-channel scale.
2324                                                 if !chan.is_live() { // channel_disabled
2325                                                         break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2326                                                 }
2327                                                 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2328                                                         break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2329                                                 }
2330                                                 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2331                                                         break Some((err, code, chan_update_opt));
2332                                                 }
2333                                                 chan_update_opt
2334                                         } else {
2335                                                 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2336                                                         // We really should set `incorrect_cltv_expiry` here but as we're not
2337                                                         // forwarding over a real channel we can't generate a channel_update
2338                                                         // for it. Instead we just return a generic temporary_node_failure.
2339                                                         break Some((
2340                                                                 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2341                                                                 0x2000 | 2, None,
2342                                                         ));
2343                                                 }
2344                                                 None
2345                                         };
2346
2347                                         let cur_height = self.best_block.read().unwrap().height() + 1;
2348                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2349                                         // but we want to be robust wrt to counterparty packet sanitization (see
2350                                         // HTLC_FAIL_BACK_BUFFER rationale).
2351                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2352                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2353                                         }
2354                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2355                                                 break Some(("CLTV expiry is too far in the future", 21, None));
2356                                         }
2357                                         // If the HTLC expires ~now, don't bother trying to forward it to our
2358                                         // counterparty. They should fail it anyway, but we don't want to bother with
2359                                         // the round-trips or risk them deciding they definitely want the HTLC and
2360                                         // force-closing to ensure they get it if we're offline.
2361                                         // We previously had a much more aggressive check here which tried to ensure
2362                                         // our counterparty receives an HTLC which has *our* risk threshold met on it,
2363                                         // but there is no need to do that, and since we're a bit conservative with our
2364                                         // risk threshold it just results in failing to forward payments.
2365                                         if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2366                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2367                                         }
2368
2369                                         break None;
2370                                 }
2371                                 {
2372                                         let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2373                                         if let Some(chan_update) = chan_update {
2374                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2375                                                         msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2376                                                 }
2377                                                 else if code == 0x1000 | 13 {
2378                                                         msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2379                                                 }
2380                                                 else if code == 0x1000 | 20 {
2381                                                         // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2382                                                         0u16.write(&mut res).expect("Writes cannot fail");
2383                                                 }
2384                                                 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2385                                                 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2386                                                 chan_update.write(&mut res).expect("Writes cannot fail");
2387                                         } else if code & 0x1000 == 0x1000 {
2388                                                 // If we're trying to return an error that requires a `channel_update` but
2389                                                 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2390                                                 // generate an update), just use the generic "temporary_node_failure"
2391                                                 // instead.
2392                                                 code = 0x2000 | 2;
2393                                         }
2394                                         return_err!(err, code, &res.0[..]);
2395                                 }
2396                         }
2397                 }
2398
2399                 pending_forward_info
2400         }
2401
2402         /// Gets the current channel_update for the given channel. This first checks if the channel is
2403         /// public, and thus should be called whenever the result is going to be passed out in a
2404         /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2405         ///
2406         /// Note that in `internal_closing_signed`, this function is called without the `peer_state`
2407         /// corresponding to the channel's counterparty locked, as the channel been removed from the
2408         /// storage and the `peer_state` lock has been dropped.
2409         fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2410                 if !chan.should_announce() {
2411                         return Err(LightningError {
2412                                 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2413                                 action: msgs::ErrorAction::IgnoreError
2414                         });
2415                 }
2416                 if chan.get_short_channel_id().is_none() {
2417                         return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2418                 }
2419                 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2420                 self.get_channel_update_for_unicast(chan)
2421         }
2422
2423         /// Gets the current channel_update for the given channel. This does not check if the channel
2424         /// is public (only returning an Err if the channel does not yet have an assigned short_id),
2425         /// and thus MUST NOT be called unless the recipient of the resulting message has already
2426         /// provided evidence that they know about the existence of the channel.
2427         ///
2428         /// Note that through `internal_closing_signed`, this function is called without the
2429         /// `peer_state`  corresponding to the channel's counterparty locked, as the channel been
2430         /// removed from the storage and the `peer_state` lock has been dropped.
2431         fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2432                 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2433                 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2434                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2435                         Some(id) => id,
2436                 };
2437
2438                 self.get_channel_update_for_onion(short_channel_id, chan)
2439         }
2440         fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2441                 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2442                 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2443
2444                 let unsigned = msgs::UnsignedChannelUpdate {
2445                         chain_hash: self.genesis_hash,
2446                         short_channel_id,
2447                         timestamp: chan.get_update_time_counter(),
2448                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2449                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2450                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2451                         htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2452                         fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2453                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2454                         excess_data: Vec::new(),
2455                 };
2456                 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2457                 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2458                 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2459                 // channel.
2460                 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2461
2462                 Ok(msgs::ChannelUpdate {
2463                         signature: sig,
2464                         contents: unsigned
2465                 })
2466         }
2467
2468         #[cfg(test)]
2469         pub(crate) fn test_send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2470                 let _lck = self.total_consistency_lock.read().unwrap();
2471                 self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
2472         }
2473
2474         fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2475                 // The top-level caller should hold the total_consistency_lock read lock.
2476                 debug_assert!(self.total_consistency_lock.try_write().is_err());
2477
2478                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2479                 let prng_seed = self.entropy_source.get_secure_random_bytes();
2480                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2481
2482                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2483                         .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2484                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2485                 if onion_utils::route_size_insane(&onion_payloads) {
2486                         return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
2487                 }
2488                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2489
2490                 let err: Result<(), _> = loop {
2491                         let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.first().unwrap().short_channel_id) {
2492                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2493                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2494                         };
2495
2496                         let per_peer_state = self.per_peer_state.read().unwrap();
2497                         let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2498                                 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2499                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2500                         let peer_state = &mut *peer_state_lock;
2501                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2502                                 if !chan.get().is_live() {
2503                                         return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2504                                 }
2505                                 let funding_txo = chan.get().get_funding_txo().unwrap();
2506                                 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2507                                         htlc_cltv, HTLCSource::OutboundRoute {
2508                                                 path: path.clone(),
2509                                                 session_priv: session_priv.clone(),
2510                                                 first_hop_htlc_msat: htlc_msat,
2511                                                 payment_id,
2512                                                 payment_secret: payment_secret.clone(),
2513                                         }, onion_packet, &self.logger);
2514                                 match break_chan_entry!(self, send_res, chan) {
2515                                         Some(monitor_update) => {
2516                                                 let update_id = monitor_update.update_id;
2517                                                 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2518                                                 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
2519                                                         break Err(e);
2520                                                 }
2521                                                 if update_res == ChannelMonitorUpdateStatus::InProgress {
2522                                                         // Note that MonitorUpdateInProgress here indicates (per function
2523                                                         // docs) that we will resend the commitment update once monitor
2524                                                         // updating completes. Therefore, we must return an error
2525                                                         // indicating that it is unsafe to retry the payment wholesale,
2526                                                         // which we do in the send_payment check for
2527                                                         // MonitorUpdateInProgress, below.
2528                                                         return Err(APIError::MonitorUpdateInProgress);
2529                                                 }
2530                                         },
2531                                         None => { },
2532                                 }
2533                         } else {
2534                                 // The channel was likely removed after we fetched the id from the
2535                                 // `short_to_chan_info` map, but before we successfully locked the
2536                                 // `channel_by_id` map.
2537                                 // This can occur as no consistency guarantees exists between the two maps.
2538                                 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2539                         }
2540                         return Ok(());
2541                 };
2542
2543                 match handle_error!(self, err, path.first().unwrap().pubkey) {
2544                         Ok(_) => unreachable!(),
2545                         Err(e) => {
2546                                 Err(APIError::ChannelUnavailable { err: e.err })
2547                         },
2548                 }
2549         }
2550
2551         /// Sends a payment along a given route.
2552         ///
2553         /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2554         /// fields for more info.
2555         ///
2556         /// May generate SendHTLCs message(s) event on success, which should be relayed (e.g. via
2557         /// [`PeerManager::process_events`]).
2558         ///
2559         /// # Avoiding Duplicate Payments
2560         ///
2561         /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2562         /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2563         /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2564         /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2565         /// second payment with the same [`PaymentId`].
2566         ///
2567         /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2568         /// tracking of payments, including state to indicate once a payment has completed. Because you
2569         /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2570         /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2571         /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2572         ///
2573         /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2574         /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2575         /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2576         /// [`ChannelManager::list_recent_payments`] for more information.
2577         ///
2578         /// # Possible Error States on [`PaymentSendFailure`]
2579         ///
2580         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2581         /// each entry matching the corresponding-index entry in the route paths, see
2582         /// [`PaymentSendFailure`] for more info.
2583         ///
2584         /// In general, a path may raise:
2585         ///  * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2586         ///    node public key) is specified.
2587         ///  * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2588         ///    (including due to previous monitor update failure or new permanent monitor update
2589         ///    failure).
2590         ///  * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2591         ///    relevant updates.
2592         ///
2593         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2594         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2595         /// different route unless you intend to pay twice!
2596         ///
2597         /// # A caution on `payment_secret`
2598         ///
2599         /// `payment_secret` is unrelated to `payment_hash` (or [`PaymentPreimage`]) and exists to
2600         /// authenticate the sender to the recipient and prevent payment-probing (deanonymization)
2601         /// attacks. For newer nodes, it will be provided to you in the invoice. If you do not have one,
2602         /// the [`Route`] must not contain multiple paths as multi-path payments require a
2603         /// recipient-provided `payment_secret`.
2604         ///
2605         /// If a `payment_secret` *is* provided, we assume that the invoice had the payment_secret
2606         /// feature bit set (either as required or as available). If multiple paths are present in the
2607         /// [`Route`], we assume the invoice had the basic_mpp feature set.
2608         ///
2609         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2610         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2611         /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2612         /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2613         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2614                 let best_block_height = self.best_block.read().unwrap().height();
2615                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2616                 self.pending_outbound_payments
2617                         .send_payment_with_route(route, payment_hash, payment_secret, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2618                                 |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2619                                 self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2620         }
2621
2622         /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2623         /// `route_params` and retry failed payment paths based on `retry_strategy`.
2624         pub fn send_payment_with_retry(&self, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2625                 let best_block_height = self.best_block.read().unwrap().height();
2626                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2627                 self.pending_outbound_payments
2628                         .send_payment(payment_hash, payment_secret, payment_id, retry_strategy, route_params,
2629                                 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2630                                 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2631                                 &self.pending_events,
2632                                 |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2633                                 self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2634         }
2635
2636         #[cfg(test)]
2637         fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2638                 let best_block_height = self.best_block.read().unwrap().height();
2639                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2640                 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, payment_secret, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2641                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2642                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2643         }
2644
2645         #[cfg(test)]
2646         pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, payment_secret: Option<PaymentSecret>, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2647                 let best_block_height = self.best_block.read().unwrap().height();
2648                 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, payment_secret, payment_id, route, None, &self.entropy_source, best_block_height)
2649         }
2650
2651
2652         /// Signals that no further retries for the given payment should occur. Useful if you have a
2653         /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2654         /// retries are exhausted.
2655         ///
2656         /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2657         /// as there are no remaining pending HTLCs for this payment.
2658         ///
2659         /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2660         /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2661         /// determine the ultimate status of a payment.
2662         ///
2663         /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2664         /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2665         ///
2666         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2667         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2668         pub fn abandon_payment(&self, payment_id: PaymentId) {
2669                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2670                 self.pending_outbound_payments.abandon_payment(payment_id, &self.pending_events);
2671         }
2672
2673         /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2674         /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2675         /// the preimage, it must be a cryptographically secure random value that no intermediate node
2676         /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2677         /// never reach the recipient.
2678         ///
2679         /// See [`send_payment`] documentation for more details on the return value of this function
2680         /// and idempotency guarantees provided by the [`PaymentId`] key.
2681         ///
2682         /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2683         /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2684         ///
2685         /// Note that `route` must have exactly one path.
2686         ///
2687         /// [`send_payment`]: Self::send_payment
2688         pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2689                 let best_block_height = self.best_block.read().unwrap().height();
2690                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2691                 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2692                         route, payment_preimage, payment_id, &self.entropy_source, &self.node_signer,
2693                         best_block_height,
2694                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2695                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2696         }
2697
2698         /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2699         /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2700         ///
2701         /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2702         /// payments.
2703         ///
2704         /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2705         pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2706                 let best_block_height = self.best_block.read().unwrap().height();
2707                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2708                 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, payment_id,
2709                         retry_strategy, route_params, &self.router, self.list_usable_channels(),
2710                         || self.compute_inflight_htlcs(),  &self.entropy_source, &self.node_signer, best_block_height,
2711                         &self.logger, &self.pending_events,
2712                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2713                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2714         }
2715
2716         /// Send a payment that is probing the given route for liquidity. We calculate the
2717         /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2718         /// us to easily discern them from real payments.
2719         pub fn send_probe(&self, hops: Vec<RouteHop>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2720                 let best_block_height = self.best_block.read().unwrap().height();
2721                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2722                 self.pending_outbound_payments.send_probe(hops, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2723                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2724                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2725         }
2726
2727         /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2728         /// payment probe.
2729         #[cfg(test)]
2730         pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2731                 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2732         }
2733
2734         /// Handles the generation of a funding transaction, optionally (for tests) with a function
2735         /// which checks the correctness of the funding transaction given the associated channel.
2736         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2737                 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2738         ) -> Result<(), APIError> {
2739                 let per_peer_state = self.per_peer_state.read().unwrap();
2740                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2741                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2742
2743                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2744                 let peer_state = &mut *peer_state_lock;
2745                 let (chan, msg) = {
2746                         let (res, chan) = {
2747                                 match peer_state.channel_by_id.remove(temporary_channel_id) {
2748                                         Some(mut chan) => {
2749                                                 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2750
2751                                                 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2752                                                         .map_err(|e| if let ChannelError::Close(msg) = e {
2753                                                                 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2754                                                         } else { unreachable!(); })
2755                                                 , chan)
2756                                         },
2757                                         None => { return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) }) },
2758                                 }
2759                         };
2760                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
2761                                 Ok(funding_msg) => {
2762                                         (chan, funding_msg)
2763                                 },
2764                                 Err(_) => { return Err(APIError::ChannelUnavailable {
2765                                         err: "Signer refused to sign the initial commitment transaction".to_owned()
2766                                 }) },
2767                         }
2768                 };
2769
2770                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2771                         node_id: chan.get_counterparty_node_id(),
2772                         msg,
2773                 });
2774                 match peer_state.channel_by_id.entry(chan.channel_id()) {
2775                         hash_map::Entry::Occupied(_) => {
2776                                 panic!("Generated duplicate funding txid?");
2777                         },
2778                         hash_map::Entry::Vacant(e) => {
2779                                 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2780                                 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2781                                         panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2782                                 }
2783                                 e.insert(chan);
2784                         }
2785                 }
2786                 Ok(())
2787         }
2788
2789         #[cfg(test)]
2790         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2791                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2792                         Ok(OutPoint { txid: tx.txid(), index: output_index })
2793                 })
2794         }
2795
2796         /// Call this upon creation of a funding transaction for the given channel.
2797         ///
2798         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2799         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2800         ///
2801         /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2802         /// across the p2p network.
2803         ///
2804         /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2805         /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2806         ///
2807         /// May panic if the output found in the funding transaction is duplicative with some other
2808         /// channel (note that this should be trivially prevented by using unique funding transaction
2809         /// keys per-channel).
2810         ///
2811         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2812         /// counterparty's signature the funding transaction will automatically be broadcast via the
2813         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2814         ///
2815         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2816         /// not currently support replacing a funding transaction on an existing channel. Instead,
2817         /// create a new channel with a conflicting funding transaction.
2818         ///
2819         /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
2820         /// the wallet software generating the funding transaction to apply anti-fee sniping as
2821         /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
2822         /// for more details.
2823         ///
2824         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2825         /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
2826         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2827                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2828
2829                 for inp in funding_transaction.input.iter() {
2830                         if inp.witness.is_empty() {
2831                                 return Err(APIError::APIMisuseError {
2832                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2833                                 });
2834                         }
2835                 }
2836                 {
2837                         let height = self.best_block.read().unwrap().height();
2838                         // Transactions are evaluated as final by network mempools at the next block. However, the modules
2839                         // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
2840                         // the wallet module is in advance on the LDK view, allow one more block of headroom.
2841                         if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 2 {
2842                                 return Err(APIError::APIMisuseError {
2843                                         err: "Funding transaction absolute timelock is non-final".to_owned()
2844                                 });
2845                         }
2846                 }
2847                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
2848                         let mut output_index = None;
2849                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2850                         for (idx, outp) in tx.output.iter().enumerate() {
2851                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2852                                         if output_index.is_some() {
2853                                                 return Err(APIError::APIMisuseError {
2854                                                         err: "Multiple outputs matched the expected script and value".to_owned()
2855                                                 });
2856                                         }
2857                                         if idx > u16::max_value() as usize {
2858                                                 return Err(APIError::APIMisuseError {
2859                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2860                                                 });
2861                                         }
2862                                         output_index = Some(idx as u16);
2863                                 }
2864                         }
2865                         if output_index.is_none() {
2866                                 return Err(APIError::APIMisuseError {
2867                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2868                                 });
2869                         }
2870                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2871                 })
2872         }
2873
2874         /// Atomically updates the [`ChannelConfig`] for the given channels.
2875         ///
2876         /// Once the updates are applied, each eligible channel (advertised with a known short channel
2877         /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
2878         /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
2879         /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
2880         ///
2881         /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
2882         /// `counterparty_node_id` is provided.
2883         ///
2884         /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
2885         /// below [`MIN_CLTV_EXPIRY_DELTA`].
2886         ///
2887         /// If an error is returned, none of the updates should be considered applied.
2888         ///
2889         /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
2890         /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
2891         /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
2892         /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
2893         /// [`ChannelUpdate`]: msgs::ChannelUpdate
2894         /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
2895         /// [`APIMisuseError`]: APIError::APIMisuseError
2896         pub fn update_channel_config(
2897                 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
2898         ) -> Result<(), APIError> {
2899                 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
2900                         return Err(APIError::APIMisuseError {
2901                                 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
2902                         });
2903                 }
2904
2905                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
2906                         &self.total_consistency_lock, &self.persistence_notifier,
2907                 );
2908                 let per_peer_state = self.per_peer_state.read().unwrap();
2909                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2910                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2911                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2912                 let peer_state = &mut *peer_state_lock;
2913                 for channel_id in channel_ids {
2914                         if !peer_state.channel_by_id.contains_key(channel_id) {
2915                                 return Err(APIError::ChannelUnavailable {
2916                                         err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
2917                                 });
2918                         }
2919                 }
2920                 for channel_id in channel_ids {
2921                         let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
2922                         if !channel.update_config(config) {
2923                                 continue;
2924                         }
2925                         if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
2926                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
2927                         } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
2928                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
2929                                         node_id: channel.get_counterparty_node_id(),
2930                                         msg,
2931                                 });
2932                         }
2933                 }
2934                 Ok(())
2935         }
2936
2937         /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
2938         /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
2939         ///
2940         /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
2941         /// channel to a receiving node if the node lacks sufficient inbound liquidity.
2942         ///
2943         /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
2944         /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
2945         /// receiver's invoice route hints. These route hints will signal to LDK to generate an
2946         /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
2947         /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
2948         ///
2949         /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
2950         /// you from forwarding more than you received.
2951         ///
2952         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
2953         /// backwards.
2954         ///
2955         /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
2956         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
2957         // TODO: when we move to deciding the best outbound channel at forward time, only take
2958         // `next_node_id` and not `next_hop_channel_id`
2959         pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
2960                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2961
2962                 let next_hop_scid = {
2963                         let peer_state_lock = self.per_peer_state.read().unwrap();
2964                         let peer_state_mutex = peer_state_lock.get(&next_node_id)
2965                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
2966                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2967                         let peer_state = &mut *peer_state_lock;
2968                         match peer_state.channel_by_id.get(next_hop_channel_id) {
2969                                 Some(chan) => {
2970                                         if !chan.is_usable() {
2971                                                 return Err(APIError::ChannelUnavailable {
2972                                                         err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
2973                                                 })
2974                                         }
2975                                         chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
2976                                 },
2977                                 None => return Err(APIError::ChannelUnavailable {
2978                                         err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
2979                                 })
2980                         }
2981                 };
2982
2983                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
2984                         .ok_or_else(|| APIError::APIMisuseError {
2985                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
2986                         })?;
2987
2988                 let routing = match payment.forward_info.routing {
2989                         PendingHTLCRouting::Forward { onion_packet, .. } => {
2990                                 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
2991                         },
2992                         _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
2993                 };
2994                 let pending_htlc_info = PendingHTLCInfo {
2995                         outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
2996                 };
2997
2998                 let mut per_source_pending_forward = [(
2999                         payment.prev_short_channel_id,
3000                         payment.prev_funding_outpoint,
3001                         payment.prev_user_channel_id,
3002                         vec![(pending_htlc_info, payment.prev_htlc_id)]
3003                 )];
3004                 self.forward_htlcs(&mut per_source_pending_forward);
3005                 Ok(())
3006         }
3007
3008         /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3009         /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3010         ///
3011         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3012         /// backwards.
3013         ///
3014         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3015         pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3016                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3017
3018                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3019                         .ok_or_else(|| APIError::APIMisuseError {
3020                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3021                         })?;
3022
3023                 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3024                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3025                                 short_channel_id: payment.prev_short_channel_id,
3026                                 outpoint: payment.prev_funding_outpoint,
3027                                 htlc_id: payment.prev_htlc_id,
3028                                 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3029                                 phantom_shared_secret: None,
3030                         });
3031
3032                         let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3033                         let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3034                         self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3035                 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3036
3037                 Ok(())
3038         }
3039
3040         /// Processes HTLCs which are pending waiting on random forward delay.
3041         ///
3042         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3043         /// Will likely generate further events.
3044         pub fn process_pending_htlc_forwards(&self) {
3045                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3046
3047                 let mut new_events = Vec::new();
3048                 let mut failed_forwards = Vec::new();
3049                 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3050                 {
3051                         let mut forward_htlcs = HashMap::new();
3052                         mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3053
3054                         for (short_chan_id, mut pending_forwards) in forward_htlcs {
3055                                 if short_chan_id != 0 {
3056                                         macro_rules! forwarding_channel_not_found {
3057                                                 () => {
3058                                                         for forward_info in pending_forwards.drain(..) {
3059                                                                 match forward_info {
3060                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3061                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3062                                                                                 forward_info: PendingHTLCInfo {
3063                                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3064                                                                                         outgoing_cltv_value, incoming_amt_msat: _
3065                                                                                 }
3066                                                                         }) => {
3067                                                                                 macro_rules! failure_handler {
3068                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3069                                                                                                 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3070
3071                                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3072                                                                                                         short_channel_id: prev_short_channel_id,
3073                                                                                                         outpoint: prev_funding_outpoint,
3074                                                                                                         htlc_id: prev_htlc_id,
3075                                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3076                                                                                                         phantom_shared_secret: $phantom_ss,
3077                                                                                                 });
3078
3079                                                                                                 let reason = if $next_hop_unknown {
3080                                                                                                         HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3081                                                                                                 } else {
3082                                                                                                         HTLCDestination::FailedPayment{ payment_hash }
3083                                                                                                 };
3084
3085                                                                                                 failed_forwards.push((htlc_source, payment_hash,
3086                                                                                                         HTLCFailReason::reason($err_code, $err_data),
3087                                                                                                         reason
3088                                                                                                 ));
3089                                                                                                 continue;
3090                                                                                         }
3091                                                                                 }
3092                                                                                 macro_rules! fail_forward {
3093                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3094                                                                                                 {
3095                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3096                                                                                                 }
3097                                                                                         }
3098                                                                                 }
3099                                                                                 macro_rules! failed_payment {
3100                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3101                                                                                                 {
3102                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3103                                                                                                 }
3104                                                                                         }
3105                                                                                 }
3106                                                                                 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3107                                                                                         let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3108                                                                                         if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3109                                                                                                 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3110                                                                                                 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3111                                                                                                         Ok(res) => res,
3112                                                                                                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3113                                                                                                                 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3114                                                                                                                 // In this scenario, the phantom would have sent us an
3115                                                                                                                 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3116                                                                                                                 // if it came from us (the second-to-last hop) but contains the sha256
3117                                                                                                                 // of the onion.
3118                                                                                                                 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3119                                                                                                         },
3120                                                                                                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3121                                                                                                                 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3122                                                                                                         },
3123                                                                                                 };
3124                                                                                                 match next_hop {
3125                                                                                                         onion_utils::Hop::Receive(hop_data) => {
3126                                                                                                                 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3127                                                                                                                         Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3128                                                                                                                         Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3129                                                                                                                 }
3130                                                                                                         },
3131                                                                                                         _ => panic!(),
3132                                                                                                 }
3133                                                                                         } else {
3134                                                                                                 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3135                                                                                         }
3136                                                                                 } else {
3137                                                                                         fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3138                                                                                 }
3139                                                                         },
3140                                                                         HTLCForwardInfo::FailHTLC { .. } => {
3141                                                                                 // Channel went away before we could fail it. This implies
3142                                                                                 // the channel is now on chain and our counterparty is
3143                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
3144                                                                                 // problem, not ours.
3145                                                                         }
3146                                                                 }
3147                                                         }
3148                                                 }
3149                                         }
3150                                         let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3151                                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3152                                                 None => {
3153                                                         forwarding_channel_not_found!();
3154                                                         continue;
3155                                                 }
3156                                         };
3157                                         let per_peer_state = self.per_peer_state.read().unwrap();
3158                                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3159                                         if peer_state_mutex_opt.is_none() {
3160                                                 forwarding_channel_not_found!();
3161                                                 continue;
3162                                         }
3163                                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3164                                         let peer_state = &mut *peer_state_lock;
3165                                         match peer_state.channel_by_id.entry(forward_chan_id) {
3166                                                 hash_map::Entry::Vacant(_) => {
3167                                                         forwarding_channel_not_found!();
3168                                                         continue;
3169                                                 },
3170                                                 hash_map::Entry::Occupied(mut chan) => {
3171                                                         for forward_info in pending_forwards.drain(..) {
3172                                                                 match forward_info {
3173                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3174                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3175                                                                                 forward_info: PendingHTLCInfo {
3176                                                                                         incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3177                                                                                         routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3178                                                                                 },
3179                                                                         }) => {
3180                                                                                 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3181                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3182                                                                                         short_channel_id: prev_short_channel_id,
3183                                                                                         outpoint: prev_funding_outpoint,
3184                                                                                         htlc_id: prev_htlc_id,
3185                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3186                                                                                         // Phantom payments are only PendingHTLCRouting::Receive.
3187                                                                                         phantom_shared_secret: None,
3188                                                                                 });
3189                                                                                 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3190                                                                                         payment_hash, outgoing_cltv_value, htlc_source.clone(),
3191                                                                                         onion_packet, &self.logger)
3192                                                                                 {
3193                                                                                         if let ChannelError::Ignore(msg) = e {
3194                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3195                                                                                         } else {
3196                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
3197                                                                                         }
3198                                                                                         let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3199                                                                                         failed_forwards.push((htlc_source, payment_hash,
3200                                                                                                 HTLCFailReason::reason(failure_code, data),
3201                                                                                                 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3202                                                                                         ));
3203                                                                                         continue;
3204                                                                                 }
3205                                                                         },
3206                                                                         HTLCForwardInfo::AddHTLC { .. } => {
3207                                                                                 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3208                                                                         },
3209                                                                         HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3210                                                                                 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3211                                                                                 if let Err(e) = chan.get_mut().queue_fail_htlc(
3212                                                                                         htlc_id, err_packet, &self.logger
3213                                                                                 ) {
3214                                                                                         if let ChannelError::Ignore(msg) = e {
3215                                                                                                 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3216                                                                                         } else {
3217                                                                                                 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3218                                                                                         }
3219                                                                                         // fail-backs are best-effort, we probably already have one
3220                                                                                         // pending, and if not that's OK, if not, the channel is on
3221                                                                                         // the chain and sending the HTLC-Timeout is their problem.
3222                                                                                         continue;
3223                                                                                 }
3224                                                                         },
3225                                                                 }
3226                                                         }
3227                                                 }
3228                                         }
3229                                 } else {
3230                                         for forward_info in pending_forwards.drain(..) {
3231                                                 match forward_info {
3232                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3233                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3234                                                                 forward_info: PendingHTLCInfo {
3235                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat, ..
3236                                                                 }
3237                                                         }) => {
3238                                                                 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3239                                                                         PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3240                                                                                 let _legacy_hop_data = Some(payment_data.clone());
3241                                                                                 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3242                                                                         },
3243                                                                         PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3244                                                                                 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3245                                                                         _ => {
3246                                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3247                                                                         }
3248                                                                 };
3249                                                                 let claimable_htlc = ClaimableHTLC {
3250                                                                         prev_hop: HTLCPreviousHopData {
3251                                                                                 short_channel_id: prev_short_channel_id,
3252                                                                                 outpoint: prev_funding_outpoint,
3253                                                                                 htlc_id: prev_htlc_id,
3254                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
3255                                                                                 phantom_shared_secret,
3256                                                                         },
3257                                                                         value: outgoing_amt_msat,
3258                                                                         timer_ticks: 0,
3259                                                                         total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3260                                                                         cltv_expiry,
3261                                                                         onion_payload,
3262                                                                 };
3263
3264                                                                 macro_rules! fail_htlc {
3265                                                                         ($htlc: expr, $payment_hash: expr) => {
3266                                                                                 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3267                                                                                 htlc_msat_height_data.extend_from_slice(
3268                                                                                         &self.best_block.read().unwrap().height().to_be_bytes(),
3269                                                                                 );
3270                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3271                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
3272                                                                                                 outpoint: prev_funding_outpoint,
3273                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
3274                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3275                                                                                                 phantom_shared_secret,
3276                                                                                         }), payment_hash,
3277                                                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3278                                                                                         HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3279                                                                                 ));
3280                                                                         }
3281                                                                 }
3282                                                                 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3283                                                                 let mut receiver_node_id = self.our_network_pubkey;
3284                                                                 if phantom_shared_secret.is_some() {
3285                                                                         receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3286                                                                                 .expect("Failed to get node_id for phantom node recipient");
3287                                                                 }
3288
3289                                                                 macro_rules! check_total_value {
3290                                                                         ($payment_data: expr, $payment_preimage: expr) => {{
3291                                                                                 let mut payment_claimable_generated = false;
3292                                                                                 let purpose = || {
3293                                                                                         events::PaymentPurpose::InvoicePayment {
3294                                                                                                 payment_preimage: $payment_preimage,
3295                                                                                                 payment_secret: $payment_data.payment_secret,
3296                                                                                         }
3297                                                                                 };
3298                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3299                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3300                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3301                                                                                         continue
3302                                                                                 }
3303                                                                                 let (_, htlcs) = claimable_payments.claimable_htlcs.entry(payment_hash)
3304                                                                                         .or_insert_with(|| (purpose(), Vec::new()));
3305                                                                                 if htlcs.len() == 1 {
3306                                                                                         if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3307                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3308                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3309                                                                                                 continue
3310                                                                                         }
3311                                                                                 }
3312                                                                                 let mut total_value = claimable_htlc.value;
3313                                                                                 for htlc in htlcs.iter() {
3314                                                                                         total_value += htlc.value;
3315                                                                                         match &htlc.onion_payload {
3316                                                                                                 OnionPayload::Invoice { .. } => {
3317                                                                                                         if htlc.total_msat != $payment_data.total_msat {
3318                                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3319                                                                                                                         log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3320                                                                                                                 total_value = msgs::MAX_VALUE_MSAT;
3321                                                                                                         }
3322                                                                                                         if total_value >= msgs::MAX_VALUE_MSAT { break; }
3323                                                                                                 },
3324                                                                                                 _ => unreachable!(),
3325                                                                                         }
3326                                                                                 }
3327                                                                                 if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data.total_msat {
3328                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
3329                                                                                                 log_bytes!(payment_hash.0), total_value, $payment_data.total_msat);
3330                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3331                                                                                 } else if total_value == $payment_data.total_msat {
3332                                                                                         let prev_channel_id = prev_funding_outpoint.to_channel_id();
3333                                                                                         htlcs.push(claimable_htlc);
3334                                                                                         new_events.push(events::Event::PaymentClaimable {
3335                                                                                                 receiver_node_id: Some(receiver_node_id),
3336                                                                                                 payment_hash,
3337                                                                                                 purpose: purpose(),
3338                                                                                                 amount_msat: total_value,
3339                                                                                                 via_channel_id: Some(prev_channel_id),
3340                                                                                                 via_user_channel_id: Some(prev_user_channel_id),
3341                                                                                         });
3342                                                                                         payment_claimable_generated = true;
3343                                                                                 } else {
3344                                                                                         // Nothing to do - we haven't reached the total
3345                                                                                         // payment value yet, wait until we receive more
3346                                                                                         // MPP parts.
3347                                                                                         htlcs.push(claimable_htlc);
3348                                                                                 }
3349                                                                                 payment_claimable_generated
3350                                                                         }}
3351                                                                 }
3352
3353                                                                 // Check that the payment hash and secret are known. Note that we
3354                                                                 // MUST take care to handle the "unknown payment hash" and
3355                                                                 // "incorrect payment secret" cases here identically or we'd expose
3356                                                                 // that we are the ultimate recipient of the given payment hash.
3357                                                                 // Further, we must not expose whether we have any other HTLCs
3358                                                                 // associated with the same payment_hash pending or not.
3359                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3360                                                                 match payment_secrets.entry(payment_hash) {
3361                                                                         hash_map::Entry::Vacant(_) => {
3362                                                                                 match claimable_htlc.onion_payload {
3363                                                                                         OnionPayload::Invoice { .. } => {
3364                                                                                                 let payment_data = payment_data.unwrap();
3365                                                                                                 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3366                                                                                                         Ok(result) => result,
3367                                                                                                         Err(()) => {
3368                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3369                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3370                                                                                                                 continue
3371                                                                                                         }
3372                                                                                                 };
3373                                                                                                 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3374                                                                                                         let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3375                                                                                                         if (cltv_expiry as u64) < expected_min_expiry_height {
3376                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3377                                                                                                                         log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3378                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3379                                                                                                                 continue;
3380                                                                                                         }
3381                                                                                                 }
3382                                                                                                 check_total_value!(payment_data, payment_preimage);
3383                                                                                         },
3384                                                                                         OnionPayload::Spontaneous(preimage) => {
3385                                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3386                                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3387                                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3388                                                                                                         continue
3389                                                                                                 }
3390                                                                                                 match claimable_payments.claimable_htlcs.entry(payment_hash) {
3391                                                                                                         hash_map::Entry::Vacant(e) => {
3392                                                                                                                 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3393                                                                                                                 e.insert((purpose.clone(), vec![claimable_htlc]));
3394                                                                                                                 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3395                                                                                                                 new_events.push(events::Event::PaymentClaimable {
3396                                                                                                                         receiver_node_id: Some(receiver_node_id),
3397                                                                                                                         payment_hash,
3398                                                                                                                         amount_msat: outgoing_amt_msat,
3399                                                                                                                         purpose,
3400                                                                                                                         via_channel_id: Some(prev_channel_id),
3401                                                                                                                         via_user_channel_id: Some(prev_user_channel_id),
3402                                                                                                                 });
3403                                                                                                         },
3404                                                                                                         hash_map::Entry::Occupied(_) => {
3405                                                                                                                 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3406                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3407                                                                                                         }
3408                                                                                                 }
3409                                                                                         }
3410                                                                                 }
3411                                                                         },
3412                                                                         hash_map::Entry::Occupied(inbound_payment) => {
3413                                                                                 if payment_data.is_none() {
3414                                                                                         log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3415                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3416                                                                                         continue
3417                                                                                 };
3418                                                                                 let payment_data = payment_data.unwrap();
3419                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3420                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3421                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3422                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3423                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3424                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3425                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3426                                                                                 } else {
3427                                                                                         let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3428                                                                                         if payment_claimable_generated {
3429                                                                                                 inbound_payment.remove_entry();
3430                                                                                         }
3431                                                                                 }
3432                                                                         },
3433                                                                 };
3434                                                         },
3435                                                         HTLCForwardInfo::FailHTLC { .. } => {
3436                                                                 panic!("Got pending fail of our own HTLC");
3437                                                         }
3438                                                 }
3439                                         }
3440                                 }
3441                         }
3442                 }
3443
3444                 let best_block_height = self.best_block.read().unwrap().height();
3445                 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3446                         || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3447                         &self.pending_events, &self.logger,
3448                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3449                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3450
3451                 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3452                         self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3453                 }
3454                 self.forward_htlcs(&mut phantom_receives);
3455
3456                 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3457                 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3458                 // nice to do the work now if we can rather than while we're trying to get messages in the
3459                 // network stack.
3460                 self.check_free_holding_cells();
3461
3462                 if new_events.is_empty() { return }
3463                 let mut events = self.pending_events.lock().unwrap();
3464                 events.append(&mut new_events);
3465         }
3466
3467         /// Free the background events, generally called from timer_tick_occurred.
3468         ///
3469         /// Exposed for testing to allow us to process events quickly without generating accidental
3470         /// BroadcastChannelUpdate events in timer_tick_occurred.
3471         ///
3472         /// Expects the caller to have a total_consistency_lock read lock.
3473         fn process_background_events(&self) -> bool {
3474                 let mut background_events = Vec::new();
3475                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3476                 if background_events.is_empty() {
3477                         return false;
3478                 }
3479
3480                 for event in background_events.drain(..) {
3481                         match event {
3482                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3483                                         // The channel has already been closed, so no use bothering to care about the
3484                                         // monitor updating completing.
3485                                         let _ = self.chain_monitor.update_channel(funding_txo, &update);
3486                                 },
3487                         }
3488                 }
3489                 true
3490         }
3491
3492         #[cfg(any(test, feature = "_test_utils"))]
3493         /// Process background events, for functional testing
3494         pub fn test_process_background_events(&self) {
3495                 self.process_background_events();
3496         }
3497
3498         fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3499                 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3500                 // If the feerate has decreased by less than half, don't bother
3501                 if new_feerate <= chan.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.get_feerate_sat_per_1000_weight() {
3502                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3503                                 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3504                         return NotifyOption::SkipPersist;
3505                 }
3506                 if !chan.is_live() {
3507                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3508                                 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3509                         return NotifyOption::SkipPersist;
3510                 }
3511                 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3512                         log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3513
3514                 chan.queue_update_fee(new_feerate, &self.logger);
3515                 NotifyOption::DoPersist
3516         }
3517
3518         #[cfg(fuzzing)]
3519         /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3520         /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3521         /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3522         /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3523         pub fn maybe_update_chan_fees(&self) {
3524                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3525                         let mut should_persist = NotifyOption::SkipPersist;
3526
3527                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3528
3529                         let per_peer_state = self.per_peer_state.read().unwrap();
3530                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3531                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3532                                 let peer_state = &mut *peer_state_lock;
3533                                 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3534                                         let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3535                                         if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3536                                 }
3537                         }
3538
3539                         should_persist
3540                 });
3541         }
3542
3543         /// Performs actions which should happen on startup and roughly once per minute thereafter.
3544         ///
3545         /// This currently includes:
3546         ///  * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3547         ///  * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
3548         ///    than a minute, informing the network that they should no longer attempt to route over
3549         ///    the channel.
3550         ///  * Expiring a channel's previous `ChannelConfig` if necessary to only allow forwarding HTLCs
3551         ///    with the current `ChannelConfig`.
3552         ///  * Removing peers which have disconnected but and no longer have any channels.
3553         ///
3554         /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
3555         /// estimate fetches.
3556         pub fn timer_tick_occurred(&self) {
3557                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3558                         let mut should_persist = NotifyOption::SkipPersist;
3559                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3560
3561                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3562
3563                         let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3564                         let mut timed_out_mpp_htlcs = Vec::new();
3565                         let mut pending_peers_awaiting_removal = Vec::new();
3566                         {
3567                                 let per_peer_state = self.per_peer_state.read().unwrap();
3568                                 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3569                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3570                                         let peer_state = &mut *peer_state_lock;
3571                                         let pending_msg_events = &mut peer_state.pending_msg_events;
3572                                         let counterparty_node_id = *counterparty_node_id;
3573                                         peer_state.channel_by_id.retain(|chan_id, chan| {
3574                                                 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3575                                                 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3576
3577                                                 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3578                                                         let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3579                                                         handle_errors.push((Err(err), counterparty_node_id));
3580                                                         if needs_close { return false; }
3581                                                 }
3582
3583                                                 match chan.channel_update_status() {
3584                                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3585                                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3586                                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3587                                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3588                                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3589                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3590                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3591                                                                                 msg: update
3592                                                                         });
3593                                                                 }
3594                                                                 should_persist = NotifyOption::DoPersist;
3595                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3596                                                         },
3597                                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3598                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3599                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3600                                                                                 msg: update
3601                                                                         });
3602                                                                 }
3603                                                                 should_persist = NotifyOption::DoPersist;
3604                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3605                                                         },
3606                                                         _ => {},
3607                                                 }
3608
3609                                                 chan.maybe_expire_prev_config();
3610
3611                                                 true
3612                                         });
3613                                         if peer_state.ok_to_remove(true) {
3614                                                 pending_peers_awaiting_removal.push(counterparty_node_id);
3615                                         }
3616                                 }
3617                         }
3618
3619                         // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3620                         // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3621                         // of to that peer is later closed while still being disconnected (i.e. force closed),
3622                         // we therefore need to remove the peer from `peer_state` separately.
3623                         // To avoid having to take the `per_peer_state` `write` lock once the channels are
3624                         // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3625                         // negative effects on parallelism as much as possible.
3626                         if pending_peers_awaiting_removal.len() > 0 {
3627                                 let mut per_peer_state = self.per_peer_state.write().unwrap();
3628                                 for counterparty_node_id in pending_peers_awaiting_removal {
3629                                         match per_peer_state.entry(counterparty_node_id) {
3630                                                 hash_map::Entry::Occupied(entry) => {
3631                                                         // Remove the entry if the peer is still disconnected and we still
3632                                                         // have no channels to the peer.
3633                                                         let remove_entry = {
3634                                                                 let peer_state = entry.get().lock().unwrap();
3635                                                                 peer_state.ok_to_remove(true)
3636                                                         };
3637                                                         if remove_entry {
3638                                                                 entry.remove_entry();
3639                                                         }
3640                                                 },
3641                                                 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3642                                         }
3643                                 }
3644                         }
3645
3646                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3647                                 if htlcs.is_empty() {
3648                                         // This should be unreachable
3649                                         debug_assert!(false);
3650                                         return false;
3651                                 }
3652                                 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3653                                         // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3654                                         // In this case we're not going to handle any timeouts of the parts here.
3655                                         if htlcs[0].total_msat == htlcs.iter().fold(0, |total, htlc| total + htlc.value) {
3656                                                 return true;
3657                                         } else if htlcs.into_iter().any(|htlc| {
3658                                                 htlc.timer_ticks += 1;
3659                                                 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3660                                         }) {
3661                                                 timed_out_mpp_htlcs.extend(htlcs.drain(..).map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3662                                                 return false;
3663                                         }
3664                                 }
3665                                 true
3666                         });
3667
3668                         for htlc_source in timed_out_mpp_htlcs.drain(..) {
3669                                 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3670                                 let reason = HTLCFailReason::from_failure_code(23);
3671                                 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3672                                 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3673                         }
3674
3675                         for (err, counterparty_node_id) in handle_errors.drain(..) {
3676                                 let _ = handle_error!(self, err, counterparty_node_id);
3677                         }
3678
3679                         self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3680
3681                         // Technically we don't need to do this here, but if we have holding cell entries in a
3682                         // channel that need freeing, it's better to do that here and block a background task
3683                         // than block the message queueing pipeline.
3684                         if self.check_free_holding_cells() {
3685                                 should_persist = NotifyOption::DoPersist;
3686                         }
3687
3688                         should_persist
3689                 });
3690         }
3691
3692         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3693         /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
3694         /// along the path (including in our own channel on which we received it).
3695         ///
3696         /// Note that in some cases around unclean shutdown, it is possible the payment may have
3697         /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3698         /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
3699         /// may have already been failed automatically by LDK if it was nearing its expiration time.
3700         ///
3701         /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3702         /// [`ChannelManager::claim_funds`]), you should still monitor for
3703         /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3704         /// startup during which time claims that were in-progress at shutdown may be replayed.
3705         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3706                 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
3707         }
3708
3709         /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
3710         /// reason for the failure.
3711         ///
3712         /// See [`FailureCode`] for valid failure codes.
3713         pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
3714                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3715
3716                 let removed_source = self.claimable_payments.lock().unwrap().claimable_htlcs.remove(payment_hash);
3717                 if let Some((_, mut sources)) = removed_source {
3718                         for htlc in sources.drain(..) {
3719                                 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
3720                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3721                                 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
3722                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3723                         }
3724                 }
3725         }
3726
3727         /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
3728         fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
3729                 match failure_code {
3730                         FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
3731                         FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
3732                         FailureCode::IncorrectOrUnknownPaymentDetails => {
3733                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3734                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3735                                 HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
3736                         }
3737                 }
3738         }
3739
3740         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3741         /// that we want to return and a channel.
3742         ///
3743         /// This is for failures on the channel on which the HTLC was *received*, not failures
3744         /// forwarding
3745         fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3746                 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3747                 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3748                 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3749                 // an inbound SCID alias before the real SCID.
3750                 let scid_pref = if chan.should_announce() {
3751                         chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3752                 } else {
3753                         chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3754                 };
3755                 if let Some(scid) = scid_pref {
3756                         self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3757                 } else {
3758                         (0x4000|10, Vec::new())
3759                 }
3760         }
3761
3762
3763         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3764         /// that we want to return and a channel.
3765         fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3766                 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3767                 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3768                         let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3769                         if desired_err_code == 0x1000 | 20 {
3770                                 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
3771                                 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
3772                                 0u16.write(&mut enc).expect("Writes cannot fail");
3773                         }
3774                         (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3775                         msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3776                         upd.write(&mut enc).expect("Writes cannot fail");
3777                         (desired_err_code, enc.0)
3778                 } else {
3779                         // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3780                         // which means we really shouldn't have gotten a payment to be forwarded over this
3781                         // channel yet, or if we did it's from a route hint. Either way, returning an error of
3782                         // PERM|no_such_channel should be fine.
3783                         (0x4000|10, Vec::new())
3784                 }
3785         }
3786
3787         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3788         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3789         // be surfaced to the user.
3790         fn fail_holding_cell_htlcs(
3791                 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3792                 counterparty_node_id: &PublicKey
3793         ) {
3794                 let (failure_code, onion_failure_data) = {
3795                         let per_peer_state = self.per_peer_state.read().unwrap();
3796                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3797                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3798                                 let peer_state = &mut *peer_state_lock;
3799                                 match peer_state.channel_by_id.entry(channel_id) {
3800                                         hash_map::Entry::Occupied(chan_entry) => {
3801                                                 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3802                                         },
3803                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3804                                 }
3805                         } else { (0x4000|10, Vec::new()) }
3806                 };
3807
3808                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3809                         let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
3810                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
3811                         self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
3812                 }
3813         }
3814
3815         /// Fails an HTLC backwards to the sender of it to us.
3816         /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
3817         fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
3818                 // Ensure that no peer state channel storage lock is held when calling this function.
3819                 // This ensures that future code doesn't introduce a lock-order requirement for
3820                 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
3821                 // this function with any `per_peer_state` peer lock acquired would.
3822                 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3823                         debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3824                 }
3825
3826                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3827                 //identify whether we sent it or not based on the (I presume) very different runtime
3828                 //between the branches here. We should make this async and move it into the forward HTLCs
3829                 //timer handling.
3830
3831                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3832                 // from block_connected which may run during initialization prior to the chain_monitor
3833                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3834                 match source {
3835                         HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
3836                                 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
3837                                         session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
3838                                         &self.pending_events, &self.logger)
3839                                 { self.push_pending_forwards_ev(); }
3840                         },
3841                         HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
3842                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
3843                                 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
3844
3845                                 let mut push_forward_ev = false;
3846                                 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
3847                                 if forward_htlcs.is_empty() {
3848                                         push_forward_ev = true;
3849                                 }
3850                                 match forward_htlcs.entry(*short_channel_id) {
3851                                         hash_map::Entry::Occupied(mut entry) => {
3852                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
3853                                         },
3854                                         hash_map::Entry::Vacant(entry) => {
3855                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
3856                                         }
3857                                 }
3858                                 mem::drop(forward_htlcs);
3859                                 if push_forward_ev { self.push_pending_forwards_ev(); }
3860                                 let mut pending_events = self.pending_events.lock().unwrap();
3861                                 pending_events.push(events::Event::HTLCHandlingFailed {
3862                                         prev_channel_id: outpoint.to_channel_id(),
3863                                         failed_next_destination: destination,
3864                                 });
3865                         },
3866                 }
3867         }
3868
3869         /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
3870         /// [`MessageSendEvent`]s needed to claim the payment.
3871         ///
3872         /// Note that calling this method does *not* guarantee that the payment has been claimed. You
3873         /// *must* wait for an [`Event::PaymentClaimed`] event which upon a successful claim will be
3874         /// provided to your [`EventHandler`] when [`process_pending_events`] is next called.
3875         ///
3876         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3877         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
3878         /// event matches your expectation. If you fail to do so and call this method, you may provide
3879         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3880         ///
3881         /// [`Event::PaymentClaimable`]: crate::util::events::Event::PaymentClaimable
3882         /// [`Event::PaymentClaimed`]: crate::util::events::Event::PaymentClaimed
3883         /// [`process_pending_events`]: EventsProvider::process_pending_events
3884         /// [`create_inbound_payment`]: Self::create_inbound_payment
3885         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3886         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
3887                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3888
3889                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3890
3891                 let mut sources = {
3892                         let mut claimable_payments = self.claimable_payments.lock().unwrap();
3893                         if let Some((payment_purpose, sources)) = claimable_payments.claimable_htlcs.remove(&payment_hash) {
3894                                 let mut receiver_node_id = self.our_network_pubkey;
3895                                 for htlc in sources.iter() {
3896                                         if htlc.prev_hop.phantom_shared_secret.is_some() {
3897                                                 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
3898                                                         .expect("Failed to get node_id for phantom node recipient");
3899                                                 receiver_node_id = phantom_pubkey;
3900                                                 break;
3901                                         }
3902                                 }
3903
3904                                 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
3905                                         ClaimingPayment { amount_msat: sources.iter().map(|source| source.value).sum(),
3906                                         payment_purpose, receiver_node_id,
3907                                 });
3908                                 if dup_purpose.is_some() {
3909                                         debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
3910                                         log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
3911                                                 log_bytes!(payment_hash.0));
3912                                 }
3913                                 sources
3914                         } else { return; }
3915                 };
3916                 debug_assert!(!sources.is_empty());
3917
3918                 // If we are claiming an MPP payment, we check that all channels which contain a claimable
3919                 // HTLC still exist. While this isn't guaranteed to remain true if a channel closes while
3920                 // we're claiming (or even after we claim, before the commitment update dance completes),
3921                 // it should be a relatively rare race, and we'd rather not claim HTLCs that require us to
3922                 // go on-chain (and lose the on-chain fee to do so) than just reject the payment.
3923                 //
3924                 // Note that we'll still always get our funds - as long as the generated
3925                 // `ChannelMonitorUpdate` makes it out to the relevant monitor we can claim on-chain.
3926                 //
3927                 // If we find an HTLC which we would need to claim but for which we do not have a
3928                 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3929                 // the sender retries the already-failed path(s), it should be a pretty rare case where
3930                 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3931                 // provide the preimage, so worrying too much about the optimal handling isn't worth
3932                 // it.
3933                 let mut claimable_amt_msat = 0;
3934                 let mut expected_amt_msat = None;
3935                 let mut valid_mpp = true;
3936                 let mut errs = Vec::new();
3937                 let per_peer_state = self.per_peer_state.read().unwrap();
3938                 for htlc in sources.iter() {
3939                         let (counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&htlc.prev_hop.short_channel_id) {
3940                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3941                                 None => {
3942                                         valid_mpp = false;
3943                                         break;
3944                                 }
3945                         };
3946
3947                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3948                         if peer_state_mutex_opt.is_none() {
3949                                 valid_mpp = false;
3950                                 break;
3951                         }
3952
3953                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3954                         let peer_state = &mut *peer_state_lock;
3955
3956                         if peer_state.channel_by_id.get(&chan_id).is_none() {
3957                                 valid_mpp = false;
3958                                 break;
3959                         }
3960
3961                         if expected_amt_msat.is_some() && expected_amt_msat != Some(htlc.total_msat) {
3962                                 log_error!(self.logger, "Somehow ended up with an MPP payment with different total amounts - this should not be reachable!");
3963                                 debug_assert!(false);
3964                                 valid_mpp = false;
3965                                 break;
3966                         }
3967
3968                         expected_amt_msat = Some(htlc.total_msat);
3969                         if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
3970                                 // We don't currently support MPP for spontaneous payments, so just check
3971                                 // that there's one payment here and move on.
3972                                 if sources.len() != 1 {
3973                                         log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
3974                                         debug_assert!(false);
3975                                         valid_mpp = false;
3976                                         break;
3977                                 }
3978                         }
3979
3980                         claimable_amt_msat += htlc.value;
3981                 }
3982                 mem::drop(per_peer_state);
3983                 if sources.is_empty() || expected_amt_msat.is_none() {
3984                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3985                         log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
3986                         return;
3987                 }
3988                 if claimable_amt_msat != expected_amt_msat.unwrap() {
3989                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3990                         log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
3991                                 expected_amt_msat.unwrap(), claimable_amt_msat);
3992                         return;
3993                 }
3994                 if valid_mpp {
3995                         for htlc in sources.drain(..) {
3996                                 if let Err((pk, err)) = self.claim_funds_from_hop(
3997                                         htlc.prev_hop, payment_preimage,
3998                                         |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
3999                                 {
4000                                         if let msgs::ErrorAction::IgnoreError = err.err.action {
4001                                                 // We got a temporary failure updating monitor, but will claim the
4002                                                 // HTLC when the monitor updating is restored (or on chain).
4003                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
4004                                         } else { errs.push((pk, err)); }
4005                                 }
4006                         }
4007                 }
4008                 if !valid_mpp {
4009                         for htlc in sources.drain(..) {
4010                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4011                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4012                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4013                                 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
4014                                 let receiver = HTLCDestination::FailedPayment { payment_hash };
4015                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4016                         }
4017                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4018                 }
4019
4020                 // Now we can handle any errors which were generated.
4021                 for (counterparty_node_id, err) in errs.drain(..) {
4022                         let res: Result<(), _> = Err(err);
4023                         let _ = handle_error!(self, res, counterparty_node_id);
4024                 }
4025         }
4026
4027         fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
4028                 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
4029         -> Result<(), (PublicKey, MsgHandleErrInternal)> {
4030                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4031
4032                 let per_peer_state = self.per_peer_state.read().unwrap();
4033                 let chan_id = prev_hop.outpoint.to_channel_id();
4034                 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
4035                         Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
4036                         None => None
4037                 };
4038
4039                 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
4040                         |counterparty_node_id| per_peer_state.get(counterparty_node_id).map(
4041                                 |peer_mutex| peer_mutex.lock().unwrap()
4042                         )
4043                 ).unwrap_or(None);
4044
4045                 if peer_state_opt.is_some() {
4046                         let mut peer_state_lock = peer_state_opt.unwrap();
4047                         let peer_state = &mut *peer_state_lock;
4048                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
4049                                 let counterparty_node_id = chan.get().get_counterparty_node_id();
4050                                 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
4051
4052                                 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
4053                                         if let Some(action) = completion_action(Some(htlc_value_msat)) {
4054                                                 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4055                                                         log_bytes!(chan_id), action);
4056                                                 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4057                                         }
4058                                         let update_id = monitor_update.update_id;
4059                                         let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
4060                                         let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4061                                                 peer_state, per_peer_state, chan);
4062                                         if let Err(e) = res {
4063                                                 // TODO: This is a *critical* error - we probably updated the outbound edge
4064                                                 // of the HTLC's monitor with a preimage. We should retry this monitor
4065                                                 // update over and over again until morale improves.
4066                                                 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4067                                                 return Err((counterparty_node_id, e));
4068                                         }
4069                                 }
4070                                 return Ok(());
4071                         }
4072                 }
4073                 let preimage_update = ChannelMonitorUpdate {
4074                         update_id: CLOSED_CHANNEL_UPDATE_ID,
4075                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4076                                 payment_preimage,
4077                         }],
4078                 };
4079                 // We update the ChannelMonitor on the backward link, after
4080                 // receiving an `update_fulfill_htlc` from the forward link.
4081                 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4082                 if update_res != ChannelMonitorUpdateStatus::Completed {
4083                         // TODO: This needs to be handled somehow - if we receive a monitor update
4084                         // with a preimage we *must* somehow manage to propagate it to the upstream
4085                         // channel, or we must have an ability to receive the same event and try
4086                         // again on restart.
4087                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4088                                 payment_preimage, update_res);
4089                 }
4090                 // Note that we do process the completion action here. This totally could be a
4091                 // duplicate claim, but we have no way of knowing without interrogating the
4092                 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4093                 // generally always allowed to be duplicative (and it's specifically noted in
4094                 // `PaymentForwarded`).
4095                 self.handle_monitor_update_completion_actions(completion_action(None));
4096                 Ok(())
4097         }
4098
4099         fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4100                 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4101         }
4102
4103         fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4104                 match source {
4105                         HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4106                                 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4107                         },
4108                         HTLCSource::PreviousHopData(hop_data) => {
4109                                 let prev_outpoint = hop_data.outpoint;
4110                                 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4111                                         |htlc_claim_value_msat| {
4112                                                 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4113                                                         let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4114                                                                 Some(claimed_htlc_value - forwarded_htlc_value)
4115                                                         } else { None };
4116
4117                                                         let prev_channel_id = Some(prev_outpoint.to_channel_id());
4118                                                         let next_channel_id = Some(next_channel_id);
4119
4120                                                         Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4121                                                                 fee_earned_msat,
4122                                                                 claim_from_onchain_tx: from_onchain,
4123                                                                 prev_channel_id,
4124                                                                 next_channel_id,
4125                                                         }})
4126                                                 } else { None }
4127                                         });
4128                                 if let Err((pk, err)) = res {
4129                                         let result: Result<(), _> = Err(err);
4130                                         let _ = handle_error!(self, result, pk);
4131                                 }
4132                         },
4133                 }
4134         }
4135
4136         /// Gets the node_id held by this ChannelManager
4137         pub fn get_our_node_id(&self) -> PublicKey {
4138                 self.our_network_pubkey.clone()
4139         }
4140
4141         fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4142                 for action in actions.into_iter() {
4143                         match action {
4144                                 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4145                                         let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4146                                         if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4147                                                 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4148                                                         payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4149                                                 });
4150                                         }
4151                                 },
4152                                 MonitorUpdateCompletionAction::EmitEvent { event } => {
4153                                         self.pending_events.lock().unwrap().push(event);
4154                                 },
4155                         }
4156                 }
4157         }
4158
4159         /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4160         /// update completion.
4161         fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4162                 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4163                 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4164                 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4165                 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4166         -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4167                 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4168                         log_bytes!(channel.channel_id()),
4169                         if raa.is_some() { "an" } else { "no" },
4170                         if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4171                         if funding_broadcastable.is_some() { "" } else { "not " },
4172                         if channel_ready.is_some() { "sending" } else { "without" },
4173                         if announcement_sigs.is_some() { "sending" } else { "without" });
4174
4175                 let mut htlc_forwards = None;
4176
4177                 let counterparty_node_id = channel.get_counterparty_node_id();
4178                 if !pending_forwards.is_empty() {
4179                         htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4180                                 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4181                 }
4182
4183                 if let Some(msg) = channel_ready {
4184                         send_channel_ready!(self, pending_msg_events, channel, msg);
4185                 }
4186                 if let Some(msg) = announcement_sigs {
4187                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4188                                 node_id: counterparty_node_id,
4189                                 msg,
4190                         });
4191                 }
4192
4193                 emit_channel_ready_event!(self, channel);
4194
4195                 macro_rules! handle_cs { () => {
4196                         if let Some(update) = commitment_update {
4197                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4198                                         node_id: counterparty_node_id,
4199                                         updates: update,
4200                                 });
4201                         }
4202                 } }
4203                 macro_rules! handle_raa { () => {
4204                         if let Some(revoke_and_ack) = raa {
4205                                 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4206                                         node_id: counterparty_node_id,
4207                                         msg: revoke_and_ack,
4208                                 });
4209                         }
4210                 } }
4211                 match order {
4212                         RAACommitmentOrder::CommitmentFirst => {
4213                                 handle_cs!();
4214                                 handle_raa!();
4215                         },
4216                         RAACommitmentOrder::RevokeAndACKFirst => {
4217                                 handle_raa!();
4218                                 handle_cs!();
4219                         },
4220                 }
4221
4222                 if let Some(tx) = funding_broadcastable {
4223                         log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4224                         self.tx_broadcaster.broadcast_transaction(&tx);
4225                 }
4226
4227                 htlc_forwards
4228         }
4229
4230         fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4231                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4232
4233                 let counterparty_node_id = match counterparty_node_id {
4234                         Some(cp_id) => cp_id.clone(),
4235                         None => {
4236                                 // TODO: Once we can rely on the counterparty_node_id from the
4237                                 // monitor event, this and the id_to_peer map should be removed.
4238                                 let id_to_peer = self.id_to_peer.lock().unwrap();
4239                                 match id_to_peer.get(&funding_txo.to_channel_id()) {
4240                                         Some(cp_id) => cp_id.clone(),
4241                                         None => return,
4242                                 }
4243                         }
4244                 };
4245                 let per_peer_state = self.per_peer_state.read().unwrap();
4246                 let mut peer_state_lock;
4247                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4248                 if peer_state_mutex_opt.is_none() { return }
4249                 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4250                 let peer_state = &mut *peer_state_lock;
4251                 let mut channel = {
4252                         match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4253                                 hash_map::Entry::Occupied(chan) => chan,
4254                                 hash_map::Entry::Vacant(_) => return,
4255                         }
4256                 };
4257                 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4258                         highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4259                 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4260                         return;
4261                 }
4262                 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4263         }
4264
4265         /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4266         ///
4267         /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4268         /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4269         /// the channel.
4270         ///
4271         /// The `user_channel_id` parameter will be provided back in
4272         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4273         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4274         ///
4275         /// Note that this method will return an error and reject the channel, if it requires support
4276         /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4277         /// used to accept such channels.
4278         ///
4279         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4280         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4281         pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4282                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4283         }
4284
4285         /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4286         /// it as confirmed immediately.
4287         ///
4288         /// The `user_channel_id` parameter will be provided back in
4289         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4290         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4291         ///
4292         /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4293         /// and (if the counterparty agrees), enables forwarding of payments immediately.
4294         ///
4295         /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4296         /// transaction and blindly assumes that it will eventually confirm.
4297         ///
4298         /// If it does not confirm before we decide to close the channel, or if the funding transaction
4299         /// does not pay to the correct script the correct amount, *you will lose funds*.
4300         ///
4301         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4302         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4303         pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4304                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4305         }
4306
4307         fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4308                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4309
4310                 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4311                 let per_peer_state = self.per_peer_state.read().unwrap();
4312                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4313                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4314                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4315                 let peer_state = &mut *peer_state_lock;
4316                 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4317                 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4318                         hash_map::Entry::Occupied(mut channel) => {
4319                                 if !channel.get().inbound_is_awaiting_accept() {
4320                                         return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4321                                 }
4322                                 if accept_0conf {
4323                                         channel.get_mut().set_0conf();
4324                                 } else if channel.get().get_channel_type().requires_zero_conf() {
4325                                         let send_msg_err_event = events::MessageSendEvent::HandleError {
4326                                                 node_id: channel.get().get_counterparty_node_id(),
4327                                                 action: msgs::ErrorAction::SendErrorMessage{
4328                                                         msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4329                                                 }
4330                                         };
4331                                         peer_state.pending_msg_events.push(send_msg_err_event);
4332                                         let _ = remove_channel!(self, channel);
4333                                         return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4334                                 } else {
4335                                         // If this peer already has some channels, a new channel won't increase our number of peers
4336                                         // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4337                                         // channels per-peer we can accept channels from a peer with existing ones.
4338                                         if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4339                                                 let send_msg_err_event = events::MessageSendEvent::HandleError {
4340                                                         node_id: channel.get().get_counterparty_node_id(),
4341                                                         action: msgs::ErrorAction::SendErrorMessage{
4342                                                                 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4343                                                         }
4344                                                 };
4345                                                 peer_state.pending_msg_events.push(send_msg_err_event);
4346                                                 let _ = remove_channel!(self, channel);
4347                                                 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4348                                         }
4349                                 }
4350
4351                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4352                                         node_id: channel.get().get_counterparty_node_id(),
4353                                         msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4354                                 });
4355                         }
4356                         hash_map::Entry::Vacant(_) => {
4357                                 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4358                         }
4359                 }
4360                 Ok(())
4361         }
4362
4363         /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4364         /// or 0-conf channels.
4365         ///
4366         /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4367         /// non-0-conf channels we have with the peer.
4368         fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4369         where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4370                 let mut peers_without_funded_channels = 0;
4371                 let best_block_height = self.best_block.read().unwrap().height();
4372                 {
4373                         let peer_state_lock = self.per_peer_state.read().unwrap();
4374                         for (_, peer_mtx) in peer_state_lock.iter() {
4375                                 let peer = peer_mtx.lock().unwrap();
4376                                 if !maybe_count_peer(&*peer) { continue; }
4377                                 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4378                                 if num_unfunded_channels == peer.channel_by_id.len() {
4379                                         peers_without_funded_channels += 1;
4380                                 }
4381                         }
4382                 }
4383                 return peers_without_funded_channels;
4384         }
4385
4386         fn unfunded_channel_count(
4387                 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4388         ) -> usize {
4389                 let mut num_unfunded_channels = 0;
4390                 for (_, chan) in peer.channel_by_id.iter() {
4391                         if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4392                                 chan.get_funding_tx_confirmations(best_block_height) == 0
4393                         {
4394                                 num_unfunded_channels += 1;
4395                         }
4396                 }
4397                 num_unfunded_channels
4398         }
4399
4400         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4401                 if msg.chain_hash != self.genesis_hash {
4402                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4403                 }
4404
4405                 if !self.default_configuration.accept_inbound_channels {
4406                         return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4407                 }
4408
4409                 let mut random_bytes = [0u8; 16];
4410                 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4411                 let user_channel_id = u128::from_be_bytes(random_bytes);
4412                 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4413
4414                 // Get the number of peers with channels, but without funded ones. We don't care too much
4415                 // about peers that never open a channel, so we filter by peers that have at least one
4416                 // channel, and then limit the number of those with unfunded channels.
4417                 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4418
4419                 let per_peer_state = self.per_peer_state.read().unwrap();
4420                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4421                     .ok_or_else(|| {
4422                                 debug_assert!(false);
4423                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4424                         })?;
4425                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4426                 let peer_state = &mut *peer_state_lock;
4427
4428                 // If this peer already has some channels, a new channel won't increase our number of peers
4429                 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4430                 // channels per-peer we can accept channels from a peer with existing ones.
4431                 if peer_state.channel_by_id.is_empty() &&
4432                         channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4433                         !self.default_configuration.manually_accept_inbound_channels
4434                 {
4435                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4436                                 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4437                                 msg.temporary_channel_id.clone()));
4438                 }
4439
4440                 let best_block_height = self.best_block.read().unwrap().height();
4441                 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4442                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4443                                 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4444                                 msg.temporary_channel_id.clone()));
4445                 }
4446
4447                 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4448                         counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4449                         &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4450                 {
4451                         Err(e) => {
4452                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4453                                 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4454                         },
4455                         Ok(res) => res
4456                 };
4457                 match peer_state.channel_by_id.entry(channel.channel_id()) {
4458                         hash_map::Entry::Occupied(_) => {
4459                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4460                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4461                         },
4462                         hash_map::Entry::Vacant(entry) => {
4463                                 if !self.default_configuration.manually_accept_inbound_channels {
4464                                         if channel.get_channel_type().requires_zero_conf() {
4465                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4466                                         }
4467                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4468                                                 node_id: counterparty_node_id.clone(),
4469                                                 msg: channel.accept_inbound_channel(user_channel_id),
4470                                         });
4471                                 } else {
4472                                         let mut pending_events = self.pending_events.lock().unwrap();
4473                                         pending_events.push(
4474                                                 events::Event::OpenChannelRequest {
4475                                                         temporary_channel_id: msg.temporary_channel_id.clone(),
4476                                                         counterparty_node_id: counterparty_node_id.clone(),
4477                                                         funding_satoshis: msg.funding_satoshis,
4478                                                         push_msat: msg.push_msat,
4479                                                         channel_type: channel.get_channel_type().clone(),
4480                                                 }
4481                                         );
4482                                 }
4483
4484                                 entry.insert(channel);
4485                         }
4486                 }
4487                 Ok(())
4488         }
4489
4490         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4491                 let (value, output_script, user_id) = {
4492                         let per_peer_state = self.per_peer_state.read().unwrap();
4493                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4494                                 .ok_or_else(|| {
4495                                         debug_assert!(false);
4496                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4497                                 })?;
4498                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4499                         let peer_state = &mut *peer_state_lock;
4500                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4501                                 hash_map::Entry::Occupied(mut chan) => {
4502                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4503                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4504                                 },
4505                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4506                         }
4507                 };
4508                 let mut pending_events = self.pending_events.lock().unwrap();
4509                 pending_events.push(events::Event::FundingGenerationReady {
4510                         temporary_channel_id: msg.temporary_channel_id,
4511                         counterparty_node_id: *counterparty_node_id,
4512                         channel_value_satoshis: value,
4513                         output_script,
4514                         user_channel_id: user_id,
4515                 });
4516                 Ok(())
4517         }
4518
4519         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4520                 let best_block = *self.best_block.read().unwrap();
4521
4522                 let per_peer_state = self.per_peer_state.read().unwrap();
4523                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4524                         .ok_or_else(|| {
4525                                 debug_assert!(false);
4526                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4527                         })?;
4528
4529                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4530                 let peer_state = &mut *peer_state_lock;
4531                 let ((funding_msg, monitor), chan) =
4532                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4533                                 hash_map::Entry::Occupied(mut chan) => {
4534                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4535                                 },
4536                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4537                         };
4538
4539                 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4540                         hash_map::Entry::Occupied(_) => {
4541                                 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4542                         },
4543                         hash_map::Entry::Vacant(e) => {
4544                                 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4545                                         hash_map::Entry::Occupied(_) => {
4546                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4547                                                         "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4548                                                         funding_msg.channel_id))
4549                                         },
4550                                         hash_map::Entry::Vacant(i_e) => {
4551                                                 i_e.insert(chan.get_counterparty_node_id());
4552                                         }
4553                                 }
4554
4555                                 // There's no problem signing a counterparty's funding transaction if our monitor
4556                                 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4557                                 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4558                                 // until we have persisted our monitor.
4559                                 let new_channel_id = funding_msg.channel_id;
4560                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4561                                         node_id: counterparty_node_id.clone(),
4562                                         msg: funding_msg,
4563                                 });
4564
4565                                 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4566
4567                                 let chan = e.insert(chan);
4568                                 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
4569                                         per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4570
4571                                 // Note that we reply with the new channel_id in error messages if we gave up on the
4572                                 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4573                                 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4574                                 // any messages referencing a previously-closed channel anyway.
4575                                 // We do not propagate the monitor update to the user as it would be for a monitor
4576                                 // that we didn't manage to store (and that we don't care about - we don't respond
4577                                 // with the funding_signed so the channel can never go on chain).
4578                                 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4579                                         res.0 = None;
4580                                 }
4581                                 res
4582                         }
4583                 }
4584         }
4585
4586         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4587                 let best_block = *self.best_block.read().unwrap();
4588                 let per_peer_state = self.per_peer_state.read().unwrap();
4589                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4590                         .ok_or_else(|| {
4591                                 debug_assert!(false);
4592                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4593                         })?;
4594
4595                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4596                 let peer_state = &mut *peer_state_lock;
4597                 match peer_state.channel_by_id.entry(msg.channel_id) {
4598                         hash_map::Entry::Occupied(mut chan) => {
4599                                 let monitor = try_chan_entry!(self,
4600                                         chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4601                                 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4602                                 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
4603                                 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4604                                         // We weren't able to watch the channel to begin with, so no updates should be made on
4605                                         // it. Previously, full_stack_target found an (unreachable) panic when the
4606                                         // monitor update contained within `shutdown_finish` was applied.
4607                                         if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4608                                                 shutdown_finish.0.take();
4609                                         }
4610                                 }
4611                                 res
4612                         },
4613                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4614                 }
4615         }
4616
4617         fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4618                 let per_peer_state = self.per_peer_state.read().unwrap();
4619                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4620                         .ok_or_else(|| {
4621                                 debug_assert!(false);
4622                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4623                         })?;
4624                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4625                 let peer_state = &mut *peer_state_lock;
4626                 match peer_state.channel_by_id.entry(msg.channel_id) {
4627                         hash_map::Entry::Occupied(mut chan) => {
4628                                 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4629                                         self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4630                                 if let Some(announcement_sigs) = announcement_sigs_opt {
4631                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4632                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4633                                                 node_id: counterparty_node_id.clone(),
4634                                                 msg: announcement_sigs,
4635                                         });
4636                                 } else if chan.get().is_usable() {
4637                                         // If we're sending an announcement_signatures, we'll send the (public)
4638                                         // channel_update after sending a channel_announcement when we receive our
4639                                         // counterparty's announcement_signatures. Thus, we only bother to send a
4640                                         // channel_update here if the channel is not public, i.e. we're not sending an
4641                                         // announcement_signatures.
4642                                         log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4643                                         if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4644                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4645                                                         node_id: counterparty_node_id.clone(),
4646                                                         msg,
4647                                                 });
4648                                         }
4649                                 }
4650
4651                                 emit_channel_ready_event!(self, chan.get_mut());
4652
4653                                 Ok(())
4654                         },
4655                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4656                 }
4657         }
4658
4659         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4660                 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4661                 let result: Result<(), _> = loop {
4662                         let per_peer_state = self.per_peer_state.read().unwrap();
4663                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4664                                 .ok_or_else(|| {
4665                                         debug_assert!(false);
4666                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4667                                 })?;
4668                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4669                         let peer_state = &mut *peer_state_lock;
4670                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4671                                 hash_map::Entry::Occupied(mut chan_entry) => {
4672
4673                                         if !chan_entry.get().received_shutdown() {
4674                                                 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4675                                                         log_bytes!(msg.channel_id),
4676                                                         if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4677                                         }
4678
4679                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
4680                                         let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4681                                                 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4682                                         dropped_htlcs = htlcs;
4683
4684                                         if let Some(msg) = shutdown {
4685                                                 // We can send the `shutdown` message before updating the `ChannelMonitor`
4686                                                 // here as we don't need the monitor update to complete until we send a
4687                                                 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4688                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4689                                                         node_id: *counterparty_node_id,
4690                                                         msg,
4691                                                 });
4692                                         }
4693
4694                                         // Update the monitor with the shutdown script if necessary.
4695                                         if let Some(monitor_update) = monitor_update_opt {
4696                                                 let update_id = monitor_update.update_id;
4697                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
4698                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
4699                                         }
4700                                         break Ok(());
4701                                 },
4702                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4703                         }
4704                 };
4705                 for htlc_source in dropped_htlcs.drain(..) {
4706                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4707                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
4708                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
4709                 }
4710
4711                 result
4712         }
4713
4714         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4715                 let per_peer_state = self.per_peer_state.read().unwrap();
4716                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4717                         .ok_or_else(|| {
4718                                 debug_assert!(false);
4719                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4720                         })?;
4721                 let (tx, chan_option) = {
4722                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4723                         let peer_state = &mut *peer_state_lock;
4724                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4725                                 hash_map::Entry::Occupied(mut chan_entry) => {
4726                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
4727                                         if let Some(msg) = closing_signed {
4728                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4729                                                         node_id: counterparty_node_id.clone(),
4730                                                         msg,
4731                                                 });
4732                                         }
4733                                         if tx.is_some() {
4734                                                 // We're done with this channel, we've got a signed closing transaction and
4735                                                 // will send the closing_signed back to the remote peer upon return. This
4736                                                 // also implies there are no pending HTLCs left on the channel, so we can
4737                                                 // fully delete it from tracking (the channel monitor is still around to
4738                                                 // watch for old state broadcasts)!
4739                                                 (tx, Some(remove_channel!(self, chan_entry)))
4740                                         } else { (tx, None) }
4741                                 },
4742                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4743                         }
4744                 };
4745                 if let Some(broadcast_tx) = tx {
4746                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4747                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4748                 }
4749                 if let Some(chan) = chan_option {
4750                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4751                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4752                                 let peer_state = &mut *peer_state_lock;
4753                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4754                                         msg: update
4755                                 });
4756                         }
4757                         self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4758                 }
4759                 Ok(())
4760         }
4761
4762         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4763                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4764                 //determine the state of the payment based on our response/if we forward anything/the time
4765                 //we take to respond. We should take care to avoid allowing such an attack.
4766                 //
4767                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4768                 //us repeatedly garbled in different ways, and compare our error messages, which are
4769                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4770                 //but we should prevent it anyway.
4771
4772                 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
4773                 let per_peer_state = self.per_peer_state.read().unwrap();
4774                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4775                         .ok_or_else(|| {
4776                                 debug_assert!(false);
4777                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4778                         })?;
4779                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4780                 let peer_state = &mut *peer_state_lock;
4781                 match peer_state.channel_by_id.entry(msg.channel_id) {
4782                         hash_map::Entry::Occupied(mut chan) => {
4783
4784                                 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4785                                         // If the update_add is completely bogus, the call will Err and we will close,
4786                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4787                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
4788                                         match pending_forward_info {
4789                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4790                                                         let reason = if (error_code & 0x1000) != 0 {
4791                                                                 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4792                                                                 HTLCFailReason::reason(real_code, error_data)
4793                                                         } else {
4794                                                                 HTLCFailReason::from_failure_code(error_code)
4795                                                         }.get_encrypted_failure_packet(incoming_shared_secret, &None);
4796                                                         let msg = msgs::UpdateFailHTLC {
4797                                                                 channel_id: msg.channel_id,
4798                                                                 htlc_id: msg.htlc_id,
4799                                                                 reason
4800                                                         };
4801                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4802                                                 },
4803                                                 _ => pending_forward_info
4804                                         }
4805                                 };
4806                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
4807                         },
4808                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4809                 }
4810                 Ok(())
4811         }
4812
4813         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4814                 let (htlc_source, forwarded_htlc_value) = {
4815                         let per_peer_state = self.per_peer_state.read().unwrap();
4816                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4817                                 .ok_or_else(|| {
4818                                         debug_assert!(false);
4819                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4820                                 })?;
4821                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4822                         let peer_state = &mut *peer_state_lock;
4823                         match peer_state.channel_by_id.entry(msg.channel_id) {
4824                                 hash_map::Entry::Occupied(mut chan) => {
4825                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
4826                                 },
4827                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4828                         }
4829                 };
4830                 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
4831                 Ok(())
4832         }
4833
4834         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4835                 let per_peer_state = self.per_peer_state.read().unwrap();
4836                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4837                         .ok_or_else(|| {
4838                                 debug_assert!(false);
4839                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4840                         })?;
4841                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4842                 let peer_state = &mut *peer_state_lock;
4843                 match peer_state.channel_by_id.entry(msg.channel_id) {
4844                         hash_map::Entry::Occupied(mut chan) => {
4845                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
4846                         },
4847                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4848                 }
4849                 Ok(())
4850         }
4851
4852         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4853                 let per_peer_state = self.per_peer_state.read().unwrap();
4854                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4855                         .ok_or_else(|| {
4856                                 debug_assert!(false);
4857                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4858                         })?;
4859                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4860                 let peer_state = &mut *peer_state_lock;
4861                 match peer_state.channel_by_id.entry(msg.channel_id) {
4862                         hash_map::Entry::Occupied(mut chan) => {
4863                                 if (msg.failure_code & 0x8000) == 0 {
4864                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4865                                         try_chan_entry!(self, Err(chan_err), chan);
4866                                 }
4867                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
4868                                 Ok(())
4869                         },
4870                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4871                 }
4872         }
4873
4874         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4875                 let per_peer_state = self.per_peer_state.read().unwrap();
4876                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4877                         .ok_or_else(|| {
4878                                 debug_assert!(false);
4879                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4880                         })?;
4881                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4882                 let peer_state = &mut *peer_state_lock;
4883                 match peer_state.channel_by_id.entry(msg.channel_id) {
4884                         hash_map::Entry::Occupied(mut chan) => {
4885                                 let funding_txo = chan.get().get_funding_txo();
4886                                 let monitor_update = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
4887                                 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4888                                 let update_id = monitor_update.update_id;
4889                                 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4890                                         peer_state, per_peer_state, chan)
4891                         },
4892                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4893                 }
4894         }
4895
4896         #[inline]
4897         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
4898                 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
4899                         let mut push_forward_event = false;
4900                         let mut new_intercept_events = Vec::new();
4901                         let mut failed_intercept_forwards = Vec::new();
4902                         if !pending_forwards.is_empty() {
4903                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4904                                         let scid = match forward_info.routing {
4905                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
4906                                                 PendingHTLCRouting::Receive { .. } => 0,
4907                                                 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
4908                                         };
4909                                         // Pull this now to avoid introducing a lock order with `forward_htlcs`.
4910                                         let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
4911
4912                                         let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4913                                         let forward_htlcs_empty = forward_htlcs.is_empty();
4914                                         match forward_htlcs.entry(scid) {
4915                                                 hash_map::Entry::Occupied(mut entry) => {
4916                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4917                                                                 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
4918                                                 },
4919                                                 hash_map::Entry::Vacant(entry) => {
4920                                                         if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
4921                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
4922                                                         {
4923                                                                 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
4924                                                                 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
4925                                                                 match pending_intercepts.entry(intercept_id) {
4926                                                                         hash_map::Entry::Vacant(entry) => {
4927                                                                                 new_intercept_events.push(events::Event::HTLCIntercepted {
4928                                                                                         requested_next_hop_scid: scid,
4929                                                                                         payment_hash: forward_info.payment_hash,
4930                                                                                         inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
4931                                                                                         expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
4932                                                                                         intercept_id
4933                                                                                 });
4934                                                                                 entry.insert(PendingAddHTLCInfo {
4935                                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
4936                                                                         },
4937                                                                         hash_map::Entry::Occupied(_) => {
4938                                                                                 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
4939                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4940                                                                                         short_channel_id: prev_short_channel_id,
4941                                                                                         outpoint: prev_funding_outpoint,
4942                                                                                         htlc_id: prev_htlc_id,
4943                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
4944                                                                                         phantom_shared_secret: None,
4945                                                                                 });
4946
4947                                                                                 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
4948                                                                                                 HTLCFailReason::from_failure_code(0x4000 | 10),
4949                                                                                                 HTLCDestination::InvalidForward { requested_forward_scid: scid },
4950                                                                                 ));
4951                                                                         }
4952                                                                 }
4953                                                         } else {
4954                                                                 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
4955                                                                 // payments are being processed.
4956                                                                 if forward_htlcs_empty {
4957                                                                         push_forward_event = true;
4958                                                                 }
4959                                                                 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4960                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
4961                                                         }
4962                                                 }
4963                                         }
4964                                 }
4965                         }
4966
4967                         for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
4968                                 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4969                         }
4970
4971                         if !new_intercept_events.is_empty() {
4972                                 let mut events = self.pending_events.lock().unwrap();
4973                                 events.append(&mut new_intercept_events);
4974                         }
4975                         if push_forward_event { self.push_pending_forwards_ev() }
4976                 }
4977         }
4978
4979         // We only want to push a PendingHTLCsForwardable event if no others are queued.
4980         fn push_pending_forwards_ev(&self) {
4981                 let mut pending_events = self.pending_events.lock().unwrap();
4982                 let forward_ev_exists = pending_events.iter()
4983                         .find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
4984                         .is_some();
4985                 if !forward_ev_exists {
4986                         pending_events.push(events::Event::PendingHTLCsForwardable {
4987                                 time_forwardable:
4988                                         Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
4989                         });
4990                 }
4991         }
4992
4993         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
4994                 let (htlcs_to_fail, res) = {
4995                         let per_peer_state = self.per_peer_state.read().unwrap();
4996                         let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
4997                                 .ok_or_else(|| {
4998                                         debug_assert!(false);
4999                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5000                                 }).map(|mtx| mtx.lock().unwrap())?;
5001                         let peer_state = &mut *peer_state_lock;
5002                         match peer_state.channel_by_id.entry(msg.channel_id) {
5003                                 hash_map::Entry::Occupied(mut chan) => {
5004                                         let funding_txo = chan.get().get_funding_txo();
5005                                         let (htlcs_to_fail, monitor_update) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
5006                                         let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5007                                         let update_id = monitor_update.update_id;
5008                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5009                                                 peer_state_lock, peer_state, per_peer_state, chan);
5010                                         (htlcs_to_fail, res)
5011                                 },
5012                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5013                         }
5014                 };
5015                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
5016                 res
5017         }
5018
5019         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
5020                 let per_peer_state = self.per_peer_state.read().unwrap();
5021                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5022                         .ok_or_else(|| {
5023                                 debug_assert!(false);
5024                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5025                         })?;
5026                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5027                 let peer_state = &mut *peer_state_lock;
5028                 match peer_state.channel_by_id.entry(msg.channel_id) {
5029                         hash_map::Entry::Occupied(mut chan) => {
5030                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
5031                         },
5032                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5033                 }
5034                 Ok(())
5035         }
5036
5037         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5038                 let per_peer_state = self.per_peer_state.read().unwrap();
5039                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5040                         .ok_or_else(|| {
5041                                 debug_assert!(false);
5042                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5043                         })?;
5044                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5045                 let peer_state = &mut *peer_state_lock;
5046                 match peer_state.channel_by_id.entry(msg.channel_id) {
5047                         hash_map::Entry::Occupied(mut chan) => {
5048                                 if !chan.get().is_usable() {
5049                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5050                                 }
5051
5052                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5053                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5054                                                 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5055                                                 msg, &self.default_configuration
5056                                         ), chan),
5057                                         // Note that announcement_signatures fails if the channel cannot be announced,
5058                                         // so get_channel_update_for_broadcast will never fail by the time we get here.
5059                                         update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5060                                 });
5061                         },
5062                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5063                 }
5064                 Ok(())
5065         }
5066
5067         /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5068         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5069                 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5070                         Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5071                         None => {
5072                                 // It's not a local channel
5073                                 return Ok(NotifyOption::SkipPersist)
5074                         }
5075                 };
5076                 let per_peer_state = self.per_peer_state.read().unwrap();
5077                 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5078                 if peer_state_mutex_opt.is_none() {
5079                         return Ok(NotifyOption::SkipPersist)
5080                 }
5081                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5082                 let peer_state = &mut *peer_state_lock;
5083                 match peer_state.channel_by_id.entry(chan_id) {
5084                         hash_map::Entry::Occupied(mut chan) => {
5085                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5086                                         if chan.get().should_announce() {
5087                                                 // If the announcement is about a channel of ours which is public, some
5088                                                 // other peer may simply be forwarding all its gossip to us. Don't provide
5089                                                 // a scary-looking error message and return Ok instead.
5090                                                 return Ok(NotifyOption::SkipPersist);
5091                                         }
5092                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5093                                 }
5094                                 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5095                                 let msg_from_node_one = msg.contents.flags & 1 == 0;
5096                                 if were_node_one == msg_from_node_one {
5097                                         return Ok(NotifyOption::SkipPersist);
5098                                 } else {
5099                                         log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5100                                         try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5101                                 }
5102                         },
5103                         hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5104                 }
5105                 Ok(NotifyOption::DoPersist)
5106         }
5107
5108         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5109                 let htlc_forwards;
5110                 let need_lnd_workaround = {
5111                         let per_peer_state = self.per_peer_state.read().unwrap();
5112
5113                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5114                                 .ok_or_else(|| {
5115                                         debug_assert!(false);
5116                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5117                                 })?;
5118                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5119                         let peer_state = &mut *peer_state_lock;
5120                         match peer_state.channel_by_id.entry(msg.channel_id) {
5121                                 hash_map::Entry::Occupied(mut chan) => {
5122                                         // Currently, we expect all holding cell update_adds to be dropped on peer
5123                                         // disconnect, so Channel's reestablish will never hand us any holding cell
5124                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
5125                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5126                                         let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5127                                                 msg, &self.logger, &self.node_signer, self.genesis_hash,
5128                                                 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5129                                         let mut channel_update = None;
5130                                         if let Some(msg) = responses.shutdown_msg {
5131                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5132                                                         node_id: counterparty_node_id.clone(),
5133                                                         msg,
5134                                                 });
5135                                         } else if chan.get().is_usable() {
5136                                                 // If the channel is in a usable state (ie the channel is not being shut
5137                                                 // down), send a unicast channel_update to our counterparty to make sure
5138                                                 // they have the latest channel parameters.
5139                                                 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5140                                                         channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5141                                                                 node_id: chan.get().get_counterparty_node_id(),
5142                                                                 msg,
5143                                                         });
5144                                                 }
5145                                         }
5146                                         let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5147                                         htlc_forwards = self.handle_channel_resumption(
5148                                                 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5149                                                 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5150                                         if let Some(upd) = channel_update {
5151                                                 peer_state.pending_msg_events.push(upd);
5152                                         }
5153                                         need_lnd_workaround
5154                                 },
5155                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5156                         }
5157                 };
5158
5159                 if let Some(forwards) = htlc_forwards {
5160                         self.forward_htlcs(&mut [forwards][..]);
5161                 }
5162
5163                 if let Some(channel_ready_msg) = need_lnd_workaround {
5164                         self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5165                 }
5166                 Ok(())
5167         }
5168
5169         /// Process pending events from the `chain::Watch`, returning whether any events were processed.
5170         fn process_pending_monitor_events(&self) -> bool {
5171                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5172
5173                 let mut failed_channels = Vec::new();
5174                 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5175                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5176                 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5177                         for monitor_event in monitor_events.drain(..) {
5178                                 match monitor_event {
5179                                         MonitorEvent::HTLCEvent(htlc_update) => {
5180                                                 if let Some(preimage) = htlc_update.payment_preimage {
5181                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5182                                                         self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5183                                                 } else {
5184                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5185                                                         let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5186                                                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5187                                                         self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5188                                                 }
5189                                         },
5190                                         MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5191                                         MonitorEvent::UpdateFailed(funding_outpoint) => {
5192                                                 let counterparty_node_id_opt = match counterparty_node_id {
5193                                                         Some(cp_id) => Some(cp_id),
5194                                                         None => {
5195                                                                 // TODO: Once we can rely on the counterparty_node_id from the
5196                                                                 // monitor event, this and the id_to_peer map should be removed.
5197                                                                 let id_to_peer = self.id_to_peer.lock().unwrap();
5198                                                                 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5199                                                         }
5200                                                 };
5201                                                 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5202                                                         let per_peer_state = self.per_peer_state.read().unwrap();
5203                                                         if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5204                                                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5205                                                                 let peer_state = &mut *peer_state_lock;
5206                                                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5207                                                                 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5208                                                                         let mut chan = remove_channel!(self, chan_entry);
5209                                                                         failed_channels.push(chan.force_shutdown(false));
5210                                                                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5211                                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5212                                                                                         msg: update
5213                                                                                 });
5214                                                                         }
5215                                                                         let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5216                                                                                 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5217                                                                         } else {
5218                                                                                 ClosureReason::CommitmentTxConfirmed
5219                                                                         };
5220                                                                         self.issue_channel_close_events(&chan, reason);
5221                                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
5222                                                                                 node_id: chan.get_counterparty_node_id(),
5223                                                                                 action: msgs::ErrorAction::SendErrorMessage {
5224                                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5225                                                                                 },
5226                                                                         });
5227                                                                 }
5228                                                         }
5229                                                 }
5230                                         },
5231                                         MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5232                                                 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5233                                         },
5234                                 }
5235                         }
5236                 }
5237
5238                 for failure in failed_channels.drain(..) {
5239                         self.finish_force_close_channel(failure);
5240                 }
5241
5242                 has_pending_monitor_events
5243         }
5244
5245         /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5246         /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5247         /// update events as a separate process method here.
5248         #[cfg(fuzzing)]
5249         pub fn process_monitor_events(&self) {
5250                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5251                         if self.process_pending_monitor_events() {
5252                                 NotifyOption::DoPersist
5253                         } else {
5254                                 NotifyOption::SkipPersist
5255                         }
5256                 });
5257         }
5258
5259         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5260         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5261         /// update was applied.
5262         fn check_free_holding_cells(&self) -> bool {
5263                 let mut has_monitor_update = false;
5264                 let mut failed_htlcs = Vec::new();
5265                 let mut handle_errors = Vec::new();
5266
5267                 // Walk our list of channels and find any that need to update. Note that when we do find an
5268                 // update, if it includes actions that must be taken afterwards, we have to drop the
5269                 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5270                 // manage to go through all our peers without finding a single channel to update.
5271                 'peer_loop: loop {
5272                         let per_peer_state = self.per_peer_state.read().unwrap();
5273                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5274                                 'chan_loop: loop {
5275                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5276                                         let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5277                                         for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5278                                                 let counterparty_node_id = chan.get_counterparty_node_id();
5279                                                 let funding_txo = chan.get_funding_txo();
5280                                                 let (monitor_opt, holding_cell_failed_htlcs) =
5281                                                         chan.maybe_free_holding_cell_htlcs(&self.logger);
5282                                                 if !holding_cell_failed_htlcs.is_empty() {
5283                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5284                                                 }
5285                                                 if let Some(monitor_update) = monitor_opt {
5286                                                         has_monitor_update = true;
5287
5288                                                         let update_res = self.chain_monitor.update_channel(
5289                                                                 funding_txo.expect("channel is live"), monitor_update);
5290                                                         let update_id = monitor_update.update_id;
5291                                                         let channel_id: [u8; 32] = *channel_id;
5292                                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5293                                                                 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
5294                                                                 peer_state.channel_by_id.remove(&channel_id));
5295                                                         if res.is_err() {
5296                                                                 handle_errors.push((counterparty_node_id, res));
5297                                                         }
5298                                                         continue 'peer_loop;
5299                                                 }
5300                                         }
5301                                         break 'chan_loop;
5302                                 }
5303                         }
5304                         break 'peer_loop;
5305                 }
5306
5307                 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5308                 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5309                         self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5310                 }
5311
5312                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5313                         let _ = handle_error!(self, err, counterparty_node_id);
5314                 }
5315
5316                 has_update
5317         }
5318
5319         /// Check whether any channels have finished removing all pending updates after a shutdown
5320         /// exchange and can now send a closing_signed.
5321         /// Returns whether any closing_signed messages were generated.
5322         fn maybe_generate_initial_closing_signed(&self) -> bool {
5323                 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5324                 let mut has_update = false;
5325                 {
5326                         let per_peer_state = self.per_peer_state.read().unwrap();
5327
5328                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5329                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5330                                 let peer_state = &mut *peer_state_lock;
5331                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5332                                 peer_state.channel_by_id.retain(|channel_id, chan| {
5333                                         match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5334                                                 Ok((msg_opt, tx_opt)) => {
5335                                                         if let Some(msg) = msg_opt {
5336                                                                 has_update = true;
5337                                                                 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5338                                                                         node_id: chan.get_counterparty_node_id(), msg,
5339                                                                 });
5340                                                         }
5341                                                         if let Some(tx) = tx_opt {
5342                                                                 // We're done with this channel. We got a closing_signed and sent back
5343                                                                 // a closing_signed with a closing transaction to broadcast.
5344                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5345                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5346                                                                                 msg: update
5347                                                                         });
5348                                                                 }
5349
5350                                                                 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5351
5352                                                                 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5353                                                                 self.tx_broadcaster.broadcast_transaction(&tx);
5354                                                                 update_maps_on_chan_removal!(self, chan);
5355                                                                 false
5356                                                         } else { true }
5357                                                 },
5358                                                 Err(e) => {
5359                                                         has_update = true;
5360                                                         let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5361                                                         handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5362                                                         !close_channel
5363                                                 }
5364                                         }
5365                                 });
5366                         }
5367                 }
5368
5369                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5370                         let _ = handle_error!(self, err, counterparty_node_id);
5371                 }
5372
5373                 has_update
5374         }
5375
5376         /// Handle a list of channel failures during a block_connected or block_disconnected call,
5377         /// pushing the channel monitor update (if any) to the background events queue and removing the
5378         /// Channel object.
5379         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5380                 for mut failure in failed_channels.drain(..) {
5381                         // Either a commitment transactions has been confirmed on-chain or
5382                         // Channel::block_disconnected detected that the funding transaction has been
5383                         // reorganized out of the main chain.
5384                         // We cannot broadcast our latest local state via monitor update (as
5385                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5386                         // so we track the update internally and handle it when the user next calls
5387                         // timer_tick_occurred, guaranteeing we're running normally.
5388                         if let Some((funding_txo, update)) = failure.0.take() {
5389                                 assert_eq!(update.updates.len(), 1);
5390                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5391                                         assert!(should_broadcast);
5392                                 } else { unreachable!(); }
5393                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5394                         }
5395                         self.finish_force_close_channel(failure);
5396                 }
5397         }
5398
5399         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5400                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5401
5402                 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5403                         return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5404                 }
5405
5406                 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5407
5408                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5409                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5410                 match payment_secrets.entry(payment_hash) {
5411                         hash_map::Entry::Vacant(e) => {
5412                                 e.insert(PendingInboundPayment {
5413                                         payment_secret, min_value_msat, payment_preimage,
5414                                         user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5415                                         // We assume that highest_seen_timestamp is pretty close to the current time -
5416                                         // it's updated when we receive a new block with the maximum time we've seen in
5417                                         // a header. It should never be more than two hours in the future.
5418                                         // Thus, we add two hours here as a buffer to ensure we absolutely
5419                                         // never fail a payment too early.
5420                                         // Note that we assume that received blocks have reasonably up-to-date
5421                                         // timestamps.
5422                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5423                                 });
5424                         },
5425                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5426                 }
5427                 Ok(payment_secret)
5428         }
5429
5430         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5431         /// to pay us.
5432         ///
5433         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5434         /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5435         ///
5436         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5437         /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5438         /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5439         /// passed directly to [`claim_funds`].
5440         ///
5441         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5442         ///
5443         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5444         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5445         ///
5446         /// # Note
5447         ///
5448         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5449         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5450         ///
5451         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5452         ///
5453         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5454         /// on versions of LDK prior to 0.0.114.
5455         ///
5456         /// [`claim_funds`]: Self::claim_funds
5457         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5458         /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5459         /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5460         /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5461         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5462         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5463                 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5464                 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5465                         &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5466                         min_final_cltv_expiry_delta)
5467         }
5468
5469         /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5470         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5471         ///
5472         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5473         ///
5474         /// # Note
5475         /// This method is deprecated and will be removed soon.
5476         ///
5477         /// [`create_inbound_payment`]: Self::create_inbound_payment
5478         #[deprecated]
5479         pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5480                 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5481                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5482                 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5483                 Ok((payment_hash, payment_secret))
5484         }
5485
5486         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5487         /// stored external to LDK.
5488         ///
5489         /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5490         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5491         /// the `min_value_msat` provided here, if one is provided.
5492         ///
5493         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5494         /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5495         /// payments.
5496         ///
5497         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5498         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5499         /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5500         /// sender "proof-of-payment" unless they have paid the required amount.
5501         ///
5502         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5503         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5504         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5505         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5506         /// invoices when no timeout is set.
5507         ///
5508         /// Note that we use block header time to time-out pending inbound payments (with some margin
5509         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5510         /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5511         /// If you need exact expiry semantics, you should enforce them upon receipt of
5512         /// [`PaymentClaimable`].
5513         ///
5514         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5515         /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5516         ///
5517         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5518         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5519         ///
5520         /// # Note
5521         ///
5522         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5523         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5524         ///
5525         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5526         ///
5527         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5528         /// on versions of LDK prior to 0.0.114.
5529         ///
5530         /// [`create_inbound_payment`]: Self::create_inbound_payment
5531         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5532         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5533                 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5534                 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5535                         invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5536                         min_final_cltv_expiry)
5537         }
5538
5539         /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5540         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5541         ///
5542         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5543         ///
5544         /// # Note
5545         /// This method is deprecated and will be removed soon.
5546         ///
5547         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5548         #[deprecated]
5549         pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5550                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5551         }
5552
5553         /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5554         /// previously returned from [`create_inbound_payment`].
5555         ///
5556         /// [`create_inbound_payment`]: Self::create_inbound_payment
5557         pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5558                 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5559         }
5560
5561         /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5562         /// are used when constructing the phantom invoice's route hints.
5563         ///
5564         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5565         pub fn get_phantom_scid(&self) -> u64 {
5566                 let best_block_height = self.best_block.read().unwrap().height();
5567                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5568                 loop {
5569                         let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5570                         // Ensure the generated scid doesn't conflict with a real channel.
5571                         match short_to_chan_info.get(&scid_candidate) {
5572                                 Some(_) => continue,
5573                                 None => return scid_candidate
5574                         }
5575                 }
5576         }
5577
5578         /// Gets route hints for use in receiving [phantom node payments].
5579         ///
5580         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5581         pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5582                 PhantomRouteHints {
5583                         channels: self.list_usable_channels(),
5584                         phantom_scid: self.get_phantom_scid(),
5585                         real_node_pubkey: self.get_our_node_id(),
5586                 }
5587         }
5588
5589         /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5590         /// used when constructing the route hints for HTLCs intended to be intercepted. See
5591         /// [`ChannelManager::forward_intercepted_htlc`].
5592         ///
5593         /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5594         /// times to get a unique scid.
5595         pub fn get_intercept_scid(&self) -> u64 {
5596                 let best_block_height = self.best_block.read().unwrap().height();
5597                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5598                 loop {
5599                         let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5600                         // Ensure the generated scid doesn't conflict with a real channel.
5601                         if short_to_chan_info.contains_key(&scid_candidate) { continue }
5602                         return scid_candidate
5603                 }
5604         }
5605
5606         /// Gets inflight HTLC information by processing pending outbound payments that are in
5607         /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5608         pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5609                 let mut inflight_htlcs = InFlightHtlcs::new();
5610
5611                 let per_peer_state = self.per_peer_state.read().unwrap();
5612                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5613                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5614                         let peer_state = &mut *peer_state_lock;
5615                         for chan in peer_state.channel_by_id.values() {
5616                                 for (htlc_source, _) in chan.inflight_htlc_sources() {
5617                                         if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5618                                                 inflight_htlcs.process_path(path, self.get_our_node_id());
5619                                         }
5620                                 }
5621                         }
5622                 }
5623
5624                 inflight_htlcs
5625         }
5626
5627         #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5628         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5629                 let events = core::cell::RefCell::new(Vec::new());
5630                 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5631                 self.process_pending_events(&event_handler);
5632                 events.into_inner()
5633         }
5634
5635         #[cfg(feature = "_test_utils")]
5636         pub fn push_pending_event(&self, event: events::Event) {
5637                 let mut events = self.pending_events.lock().unwrap();
5638                 events.push(event);
5639         }
5640
5641         #[cfg(test)]
5642         pub fn pop_pending_event(&self) -> Option<events::Event> {
5643                 let mut events = self.pending_events.lock().unwrap();
5644                 if events.is_empty() { None } else { Some(events.remove(0)) }
5645         }
5646
5647         #[cfg(test)]
5648         pub fn has_pending_payments(&self) -> bool {
5649                 self.pending_outbound_payments.has_pending_payments()
5650         }
5651
5652         #[cfg(test)]
5653         pub fn clear_pending_payments(&self) {
5654                 self.pending_outbound_payments.clear_pending_payments()
5655         }
5656
5657         /// Processes any events asynchronously in the order they were generated since the last call
5658         /// using the given event handler.
5659         ///
5660         /// See the trait-level documentation of [`EventsProvider`] for requirements.
5661         pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
5662                 &self, handler: H
5663         ) {
5664                 // We'll acquire our total consistency lock until the returned future completes so that
5665                 // we can be sure no other persists happen while processing events.
5666                 let _read_guard = self.total_consistency_lock.read().unwrap();
5667
5668                 let mut result = NotifyOption::SkipPersist;
5669
5670                 // TODO: This behavior should be documented. It's unintuitive that we query
5671                 // ChannelMonitors when clearing other events.
5672                 if self.process_pending_monitor_events() {
5673                         result = NotifyOption::DoPersist;
5674                 }
5675
5676                 let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5677                 if !pending_events.is_empty() {
5678                         result = NotifyOption::DoPersist;
5679                 }
5680
5681                 for event in pending_events {
5682                         handler(event).await;
5683                 }
5684
5685                 if result == NotifyOption::DoPersist {
5686                         self.persistence_notifier.notify();
5687                 }
5688         }
5689 }
5690
5691 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5692 where
5693         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5694         T::Target: BroadcasterInterface,
5695         ES::Target: EntropySource,
5696         NS::Target: NodeSigner,
5697         SP::Target: SignerProvider,
5698         F::Target: FeeEstimator,
5699         R::Target: Router,
5700         L::Target: Logger,
5701 {
5702         /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
5703         /// The returned array will contain `MessageSendEvent`s for different peers if
5704         /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
5705         /// is always placed next to each other.
5706         ///
5707         /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
5708         /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
5709         /// `MessageSendEvent`s  for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
5710         /// will randomly be placed first or last in the returned array.
5711         ///
5712         /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
5713         /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
5714         /// the `MessageSendEvent`s to the specific peer they were generated under.
5715         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5716                 let events = RefCell::new(Vec::new());
5717                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5718                         let mut result = NotifyOption::SkipPersist;
5719
5720                         // TODO: This behavior should be documented. It's unintuitive that we query
5721                         // ChannelMonitors when clearing other events.
5722                         if self.process_pending_monitor_events() {
5723                                 result = NotifyOption::DoPersist;
5724                         }
5725
5726                         if self.check_free_holding_cells() {
5727                                 result = NotifyOption::DoPersist;
5728                         }
5729                         if self.maybe_generate_initial_closing_signed() {
5730                                 result = NotifyOption::DoPersist;
5731                         }
5732
5733                         let mut pending_events = Vec::new();
5734                         let per_peer_state = self.per_peer_state.read().unwrap();
5735                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5736                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5737                                 let peer_state = &mut *peer_state_lock;
5738                                 if peer_state.pending_msg_events.len() > 0 {
5739                                         pending_events.append(&mut peer_state.pending_msg_events);
5740                                 }
5741                         }
5742
5743                         if !pending_events.is_empty() {
5744                                 events.replace(pending_events);
5745                         }
5746
5747                         result
5748                 });
5749                 events.into_inner()
5750         }
5751 }
5752
5753 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5754 where
5755         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5756         T::Target: BroadcasterInterface,
5757         ES::Target: EntropySource,
5758         NS::Target: NodeSigner,
5759         SP::Target: SignerProvider,
5760         F::Target: FeeEstimator,
5761         R::Target: Router,
5762         L::Target: Logger,
5763 {
5764         /// Processes events that must be periodically handled.
5765         ///
5766         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5767         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5768         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5769                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5770                         let mut result = NotifyOption::SkipPersist;
5771
5772                         // TODO: This behavior should be documented. It's unintuitive that we query
5773                         // ChannelMonitors when clearing other events.
5774                         if self.process_pending_monitor_events() {
5775                                 result = NotifyOption::DoPersist;
5776                         }
5777
5778                         let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5779                         if !pending_events.is_empty() {
5780                                 result = NotifyOption::DoPersist;
5781                         }
5782
5783                         for event in pending_events {
5784                                 handler.handle_event(event);
5785                         }
5786
5787                         result
5788                 });
5789         }
5790 }
5791
5792 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
5793 where
5794         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5795         T::Target: BroadcasterInterface,
5796         ES::Target: EntropySource,
5797         NS::Target: NodeSigner,
5798         SP::Target: SignerProvider,
5799         F::Target: FeeEstimator,
5800         R::Target: Router,
5801         L::Target: Logger,
5802 {
5803         fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5804                 {
5805                         let best_block = self.best_block.read().unwrap();
5806                         assert_eq!(best_block.block_hash(), header.prev_blockhash,
5807                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5808                         assert_eq!(best_block.height(), height - 1,
5809                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5810                 }
5811
5812                 self.transactions_confirmed(header, txdata, height);
5813                 self.best_block_updated(header, height);
5814         }
5815
5816         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5817                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5818                 let new_height = height - 1;
5819                 {
5820                         let mut best_block = self.best_block.write().unwrap();
5821                         assert_eq!(best_block.block_hash(), header.block_hash(),
5822                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5823                         assert_eq!(best_block.height(), height,
5824                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5825                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
5826                 }
5827
5828                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5829         }
5830 }
5831
5832 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
5833 where
5834         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5835         T::Target: BroadcasterInterface,
5836         ES::Target: EntropySource,
5837         NS::Target: NodeSigner,
5838         SP::Target: SignerProvider,
5839         F::Target: FeeEstimator,
5840         R::Target: Router,
5841         L::Target: Logger,
5842 {
5843         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5844                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5845                 // during initialization prior to the chain_monitor being fully configured in some cases.
5846                 // See the docs for `ChannelManagerReadArgs` for more.
5847
5848                 let block_hash = header.block_hash();
5849                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5850
5851                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5852                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
5853                         .map(|(a, b)| (a, Vec::new(), b)));
5854
5855                 let last_best_block_height = self.best_block.read().unwrap().height();
5856                 if height < last_best_block_height {
5857                         let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5858                         self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5859                 }
5860         }
5861
5862         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5863                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5864                 // during initialization prior to the chain_monitor being fully configured in some cases.
5865                 // See the docs for `ChannelManagerReadArgs` for more.
5866
5867                 let block_hash = header.block_hash();
5868                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5869
5870                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5871
5872                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5873
5874                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5875
5876                 macro_rules! max_time {
5877                         ($timestamp: expr) => {
5878                                 loop {
5879                                         // Update $timestamp to be the max of its current value and the block
5880                                         // timestamp. This should keep us close to the current time without relying on
5881                                         // having an explicit local time source.
5882                                         // Just in case we end up in a race, we loop until we either successfully
5883                                         // update $timestamp or decide we don't need to.
5884                                         let old_serial = $timestamp.load(Ordering::Acquire);
5885                                         if old_serial >= header.time as usize { break; }
5886                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5887                                                 break;
5888                                         }
5889                                 }
5890                         }
5891                 }
5892                 max_time!(self.highest_seen_timestamp);
5893                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5894                 payment_secrets.retain(|_, inbound_payment| {
5895                         inbound_payment.expiry_time > header.time as u64
5896                 });
5897         }
5898
5899         fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
5900                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
5901                 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
5902                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5903                         let peer_state = &mut *peer_state_lock;
5904                         for chan in peer_state.channel_by_id.values() {
5905                                 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
5906                                         res.push((funding_txo.txid, Some(block_hash)));
5907                                 }
5908                         }
5909                 }
5910                 res
5911         }
5912
5913         fn transaction_unconfirmed(&self, txid: &Txid) {
5914                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5915                 self.do_chain_event(None, |channel| {
5916                         if let Some(funding_txo) = channel.get_funding_txo() {
5917                                 if funding_txo.txid == *txid {
5918                                         channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
5919                                 } else { Ok((None, Vec::new(), None)) }
5920                         } else { Ok((None, Vec::new(), None)) }
5921                 });
5922         }
5923 }
5924
5925 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
5926 where
5927         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5928         T::Target: BroadcasterInterface,
5929         ES::Target: EntropySource,
5930         NS::Target: NodeSigner,
5931         SP::Target: SignerProvider,
5932         F::Target: FeeEstimator,
5933         R::Target: Router,
5934         L::Target: Logger,
5935 {
5936         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
5937         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
5938         /// the function.
5939         fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
5940                         (&self, height_opt: Option<u32>, f: FN) {
5941                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5942                 // during initialization prior to the chain_monitor being fully configured in some cases.
5943                 // See the docs for `ChannelManagerReadArgs` for more.
5944
5945                 let mut failed_channels = Vec::new();
5946                 let mut timed_out_htlcs = Vec::new();
5947                 {
5948                         let per_peer_state = self.per_peer_state.read().unwrap();
5949                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5950                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5951                                 let peer_state = &mut *peer_state_lock;
5952                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5953                                 peer_state.channel_by_id.retain(|_, channel| {
5954                                         let res = f(channel);
5955                                         if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
5956                                                 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
5957                                                         let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
5958                                                         timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
5959                                                                 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
5960                                                 }
5961                                                 if let Some(channel_ready) = channel_ready_opt {
5962                                                         send_channel_ready!(self, pending_msg_events, channel, channel_ready);
5963                                                         if channel.is_usable() {
5964                                                                 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
5965                                                                 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
5966                                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5967                                                                                 node_id: channel.get_counterparty_node_id(),
5968                                                                                 msg,
5969                                                                         });
5970                                                                 }
5971                                                         } else {
5972                                                                 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
5973                                                         }
5974                                                 }
5975
5976                                                 emit_channel_ready_event!(self, channel);
5977
5978                                                 if let Some(announcement_sigs) = announcement_sigs {
5979                                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
5980                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5981                                                                 node_id: channel.get_counterparty_node_id(),
5982                                                                 msg: announcement_sigs,
5983                                                         });
5984                                                         if let Some(height) = height_opt {
5985                                                                 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
5986                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5987                                                                                 msg: announcement,
5988                                                                                 // Note that announcement_signatures fails if the channel cannot be announced,
5989                                                                                 // so get_channel_update_for_broadcast will never fail by the time we get here.
5990                                                                                 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
5991                                                                         });
5992                                                                 }
5993                                                         }
5994                                                 }
5995                                                 if channel.is_our_channel_ready() {
5996                                                         if let Some(real_scid) = channel.get_short_channel_id() {
5997                                                                 // If we sent a 0conf channel_ready, and now have an SCID, we add it
5998                                                                 // to the short_to_chan_info map here. Note that we check whether we
5999                                                                 // can relay using the real SCID at relay-time (i.e.
6000                                                                 // enforce option_scid_alias then), and if the funding tx is ever
6001                                                                 // un-confirmed we force-close the channel, ensuring short_to_chan_info
6002                                                                 // is always consistent.
6003                                                                 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
6004                                                                 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
6005                                                                 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
6006                                                                         "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
6007                                                                         fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
6008                                                         }
6009                                                 }
6010                                         } else if let Err(reason) = res {
6011                                                 update_maps_on_chan_removal!(self, channel);
6012                                                 // It looks like our counterparty went on-chain or funding transaction was
6013                                                 // reorged out of the main chain. Close the channel.
6014                                                 failed_channels.push(channel.force_shutdown(true));
6015                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
6016                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6017                                                                 msg: update
6018                                                         });
6019                                                 }
6020                                                 let reason_message = format!("{}", reason);
6021                                                 self.issue_channel_close_events(channel, reason);
6022                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
6023                                                         node_id: channel.get_counterparty_node_id(),
6024                                                         action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
6025                                                                 channel_id: channel.channel_id(),
6026                                                                 data: reason_message,
6027                                                         } },
6028                                                 });
6029                                                 return false;
6030                                         }
6031                                         true
6032                                 });
6033                         }
6034                 }
6035
6036                 if let Some(height) = height_opt {
6037                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
6038                                 htlcs.retain(|htlc| {
6039                                         // If height is approaching the number of blocks we think it takes us to get
6040                                         // our commitment transaction confirmed before the HTLC expires, plus the
6041                                         // number of blocks we generally consider it to take to do a commitment update,
6042                                         // just give up on it and fail the HTLC.
6043                                         if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
6044                                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6045                                                 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
6046
6047                                                 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
6048                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
6049                                                         HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6050                                                 false
6051                                         } else { true }
6052                                 });
6053                                 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6054                         });
6055
6056                         let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6057                         intercepted_htlcs.retain(|_, htlc| {
6058                                 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6059                                         let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6060                                                 short_channel_id: htlc.prev_short_channel_id,
6061                                                 htlc_id: htlc.prev_htlc_id,
6062                                                 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6063                                                 phantom_shared_secret: None,
6064                                                 outpoint: htlc.prev_funding_outpoint,
6065                                         });
6066
6067                                         let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6068                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6069                                                 _ => unreachable!(),
6070                                         };
6071                                         timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6072                                                         HTLCFailReason::from_failure_code(0x2000 | 2),
6073                                                         HTLCDestination::InvalidForward { requested_forward_scid }));
6074                                         log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6075                                         false
6076                                 } else { true }
6077                         });
6078                 }
6079
6080                 self.handle_init_event_channel_failures(failed_channels);
6081
6082                 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6083                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6084                 }
6085         }
6086
6087         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
6088         /// indicating whether persistence is necessary. Only one listener on
6089         /// [`await_persistable_update`], [`await_persistable_update_timeout`], or a future returned by
6090         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6091         ///
6092         /// Note that this method is not available with the `no-std` feature.
6093         ///
6094         /// [`await_persistable_update`]: Self::await_persistable_update
6095         /// [`await_persistable_update_timeout`]: Self::await_persistable_update_timeout
6096         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6097         #[cfg(any(test, feature = "std"))]
6098         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
6099                 self.persistence_notifier.wait_timeout(max_wait)
6100         }
6101
6102         /// Blocks until ChannelManager needs to be persisted. Only one listener on
6103         /// [`await_persistable_update`], `await_persistable_update_timeout`, or a future returned by
6104         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6105         ///
6106         /// [`await_persistable_update`]: Self::await_persistable_update
6107         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6108         pub fn await_persistable_update(&self) {
6109                 self.persistence_notifier.wait()
6110         }
6111
6112         /// Gets a [`Future`] that completes when a persistable update is available. Note that
6113         /// callbacks registered on the [`Future`] MUST NOT call back into this [`ChannelManager`] and
6114         /// should instead register actions to be taken later.
6115         pub fn get_persistable_update_future(&self) -> Future {
6116                 self.persistence_notifier.get_future()
6117         }
6118
6119         #[cfg(any(test, feature = "_test_utils"))]
6120         pub fn get_persistence_condvar_value(&self) -> bool {
6121                 self.persistence_notifier.notify_pending()
6122         }
6123
6124         /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6125         /// [`chain::Confirm`] interfaces.
6126         pub fn current_best_block(&self) -> BestBlock {
6127                 self.best_block.read().unwrap().clone()
6128         }
6129
6130         /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6131         /// [`ChannelManager`].
6132         pub fn node_features(&self) -> NodeFeatures {
6133                 provided_node_features(&self.default_configuration)
6134         }
6135
6136         /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6137         /// [`ChannelManager`].
6138         ///
6139         /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6140         /// or not. Thus, this method is not public.
6141         #[cfg(any(feature = "_test_utils", test))]
6142         pub fn invoice_features(&self) -> InvoiceFeatures {
6143                 provided_invoice_features(&self.default_configuration)
6144         }
6145
6146         /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6147         /// [`ChannelManager`].
6148         pub fn channel_features(&self) -> ChannelFeatures {
6149                 provided_channel_features(&self.default_configuration)
6150         }
6151
6152         /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6153         /// [`ChannelManager`].
6154         pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6155                 provided_channel_type_features(&self.default_configuration)
6156         }
6157
6158         /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6159         /// [`ChannelManager`].
6160         pub fn init_features(&self) -> InitFeatures {
6161                 provided_init_features(&self.default_configuration)
6162         }
6163 }
6164
6165 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6166         ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6167 where
6168         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6169         T::Target: BroadcasterInterface,
6170         ES::Target: EntropySource,
6171         NS::Target: NodeSigner,
6172         SP::Target: SignerProvider,
6173         F::Target: FeeEstimator,
6174         R::Target: Router,
6175         L::Target: Logger,
6176 {
6177         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6178                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6179                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6180         }
6181
6182         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6183                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6184                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6185         }
6186
6187         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6188                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6189                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6190         }
6191
6192         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6193                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6194                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6195         }
6196
6197         fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6198                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6199                 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6200         }
6201
6202         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6203                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6204                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6205         }
6206
6207         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6208                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6209                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6210         }
6211
6212         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6213                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6214                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6215         }
6216
6217         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6218                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6219                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6220         }
6221
6222         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6223                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6224                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6225         }
6226
6227         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6228                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6229                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6230         }
6231
6232         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6233                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6234                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6235         }
6236
6237         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6238                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6239                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6240         }
6241
6242         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6243                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6244                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6245         }
6246
6247         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6248                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6249                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6250         }
6251
6252         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6253                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6254                         if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6255                                 persist
6256                         } else {
6257                                 NotifyOption::SkipPersist
6258                         }
6259                 });
6260         }
6261
6262         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6263                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6264                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6265         }
6266
6267         fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6268                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6269                 let mut failed_channels = Vec::new();
6270                 let mut per_peer_state = self.per_peer_state.write().unwrap();
6271                 let remove_peer = {
6272                         log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6273                                 log_pubkey!(counterparty_node_id));
6274                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6275                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6276                                 let peer_state = &mut *peer_state_lock;
6277                                 let pending_msg_events = &mut peer_state.pending_msg_events;
6278                                 peer_state.channel_by_id.retain(|_, chan| {
6279                                         chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6280                                         if chan.is_shutdown() {
6281                                                 update_maps_on_chan_removal!(self, chan);
6282                                                 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6283                                                 return false;
6284                                         }
6285                                         true
6286                                 });
6287                                 pending_msg_events.retain(|msg| {
6288                                         match msg {
6289                                                 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6290                                                 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6291                                                 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6292                                                 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6293                                                 &events::MessageSendEvent::SendChannelReady { .. } => false,
6294                                                 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6295                                                 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6296                                                 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6297                                                 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6298                                                 &events::MessageSendEvent::SendShutdown { .. } => false,
6299                                                 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6300                                                 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6301                                                 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6302                                                 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6303                                                 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6304                                                 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6305                                                 &events::MessageSendEvent::HandleError { .. } => false,
6306                                                 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6307                                                 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6308                                                 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6309                                                 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6310                                         }
6311                                 });
6312                                 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6313                                 peer_state.is_connected = false;
6314                                 peer_state.ok_to_remove(true)
6315                         } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6316                 };
6317                 if remove_peer {
6318                         per_peer_state.remove(counterparty_node_id);
6319                 }
6320                 mem::drop(per_peer_state);
6321
6322                 for failure in failed_channels.drain(..) {
6323                         self.finish_force_close_channel(failure);
6324                 }
6325         }
6326
6327         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6328                 if !init_msg.features.supports_static_remote_key() {
6329                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6330                         return Err(());
6331                 }
6332
6333                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6334
6335                 // If we have too many peers connected which don't have funded channels, disconnect the
6336                 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6337                 // unfunded channels taking up space in memory for disconnected peers, we still let new
6338                 // peers connect, but we'll reject new channels from them.
6339                 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6340                 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6341
6342                 {
6343                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
6344                         match peer_state_lock.entry(counterparty_node_id.clone()) {
6345                                 hash_map::Entry::Vacant(e) => {
6346                                         if inbound_peer_limited {
6347                                                 return Err(());
6348                                         }
6349                                         e.insert(Mutex::new(PeerState {
6350                                                 channel_by_id: HashMap::new(),
6351                                                 latest_features: init_msg.features.clone(),
6352                                                 pending_msg_events: Vec::new(),
6353                                                 monitor_update_blocked_actions: BTreeMap::new(),
6354                                                 is_connected: true,
6355                                         }));
6356                                 },
6357                                 hash_map::Entry::Occupied(e) => {
6358                                         let mut peer_state = e.get().lock().unwrap();
6359                                         peer_state.latest_features = init_msg.features.clone();
6360
6361                                         let best_block_height = self.best_block.read().unwrap().height();
6362                                         if inbound_peer_limited &&
6363                                                 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6364                                                 peer_state.channel_by_id.len()
6365                                         {
6366                                                 return Err(());
6367                                         }
6368
6369                                         debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6370                                         peer_state.is_connected = true;
6371                                 },
6372                         }
6373                 }
6374
6375                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6376
6377                 let per_peer_state = self.per_peer_state.read().unwrap();
6378                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6379                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6380                         let peer_state = &mut *peer_state_lock;
6381                         let pending_msg_events = &mut peer_state.pending_msg_events;
6382                         peer_state.channel_by_id.retain(|_, chan| {
6383                                 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6384                                         if !chan.have_received_message() {
6385                                                 // If we created this (outbound) channel while we were disconnected from the
6386                                                 // peer we probably failed to send the open_channel message, which is now
6387                                                 // lost. We can't have had anything pending related to this channel, so we just
6388                                                 // drop it.
6389                                                 false
6390                                         } else {
6391                                                 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6392                                                         node_id: chan.get_counterparty_node_id(),
6393                                                         msg: chan.get_channel_reestablish(&self.logger),
6394                                                 });
6395                                                 true
6396                                         }
6397                                 } else { true };
6398                                 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6399                                         if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6400                                                 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6401                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6402                                                                 node_id: *counterparty_node_id,
6403                                                                 msg, update_msg,
6404                                                         });
6405                                                 }
6406                                         }
6407                                 }
6408                                 retain
6409                         });
6410                 }
6411                 //TODO: Also re-broadcast announcement_signatures
6412                 Ok(())
6413         }
6414
6415         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6416                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6417
6418                 if msg.channel_id == [0; 32] {
6419                         let channel_ids: Vec<[u8; 32]> = {
6420                                 let per_peer_state = self.per_peer_state.read().unwrap();
6421                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6422                                 if peer_state_mutex_opt.is_none() { return; }
6423                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6424                                 let peer_state = &mut *peer_state_lock;
6425                                 peer_state.channel_by_id.keys().cloned().collect()
6426                         };
6427                         for channel_id in channel_ids {
6428                                 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6429                                 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6430                         }
6431                 } else {
6432                         {
6433                                 // First check if we can advance the channel type and try again.
6434                                 let per_peer_state = self.per_peer_state.read().unwrap();
6435                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6436                                 if peer_state_mutex_opt.is_none() { return; }
6437                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6438                                 let peer_state = &mut *peer_state_lock;
6439                                 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6440                                         if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6441                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6442                                                         node_id: *counterparty_node_id,
6443                                                         msg,
6444                                                 });
6445                                                 return;
6446                                         }
6447                                 }
6448                         }
6449
6450                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6451                         let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6452                 }
6453         }
6454
6455         fn provided_node_features(&self) -> NodeFeatures {
6456                 provided_node_features(&self.default_configuration)
6457         }
6458
6459         fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6460                 provided_init_features(&self.default_configuration)
6461         }
6462 }
6463
6464 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6465 /// [`ChannelManager`].
6466 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6467         provided_init_features(config).to_context()
6468 }
6469
6470 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6471 /// [`ChannelManager`].
6472 ///
6473 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6474 /// or not. Thus, this method is not public.
6475 #[cfg(any(feature = "_test_utils", test))]
6476 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6477         provided_init_features(config).to_context()
6478 }
6479
6480 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6481 /// [`ChannelManager`].
6482 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6483         provided_init_features(config).to_context()
6484 }
6485
6486 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6487 /// [`ChannelManager`].
6488 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6489         ChannelTypeFeatures::from_init(&provided_init_features(config))
6490 }
6491
6492 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6493 /// [`ChannelManager`].
6494 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6495         // Note that if new features are added here which other peers may (eventually) require, we
6496         // should also add the corresponding (optional) bit to the ChannelMessageHandler impl for
6497         // ErroringMessageHandler.
6498         let mut features = InitFeatures::empty();
6499         features.set_data_loss_protect_optional();
6500         features.set_upfront_shutdown_script_optional();
6501         features.set_variable_length_onion_required();
6502         features.set_static_remote_key_required();
6503         features.set_payment_secret_required();
6504         features.set_basic_mpp_optional();
6505         features.set_wumbo_optional();
6506         features.set_shutdown_any_segwit_optional();
6507         features.set_channel_type_optional();
6508         features.set_scid_privacy_optional();
6509         features.set_zero_conf_optional();
6510         #[cfg(anchors)]
6511         { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6512                 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6513                         features.set_anchors_zero_fee_htlc_tx_optional();
6514                 }
6515         }
6516         features
6517 }
6518
6519 const SERIALIZATION_VERSION: u8 = 1;
6520 const MIN_SERIALIZATION_VERSION: u8 = 1;
6521
6522 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6523         (2, fee_base_msat, required),
6524         (4, fee_proportional_millionths, required),
6525         (6, cltv_expiry_delta, required),
6526 });
6527
6528 impl_writeable_tlv_based!(ChannelCounterparty, {
6529         (2, node_id, required),
6530         (4, features, required),
6531         (6, unspendable_punishment_reserve, required),
6532         (8, forwarding_info, option),
6533         (9, outbound_htlc_minimum_msat, option),
6534         (11, outbound_htlc_maximum_msat, option),
6535 });
6536
6537 impl Writeable for ChannelDetails {
6538         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6539                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6540                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6541                 let user_channel_id_low = self.user_channel_id as u64;
6542                 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6543                 write_tlv_fields!(writer, {
6544                         (1, self.inbound_scid_alias, option),
6545                         (2, self.channel_id, required),
6546                         (3, self.channel_type, option),
6547                         (4, self.counterparty, required),
6548                         (5, self.outbound_scid_alias, option),
6549                         (6, self.funding_txo, option),
6550                         (7, self.config, option),
6551                         (8, self.short_channel_id, option),
6552                         (9, self.confirmations, option),
6553                         (10, self.channel_value_satoshis, required),
6554                         (12, self.unspendable_punishment_reserve, option),
6555                         (14, user_channel_id_low, required),
6556                         (16, self.balance_msat, required),
6557                         (18, self.outbound_capacity_msat, required),
6558                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6559                         // filled in, so we can safely unwrap it here.
6560                         (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6561                         (20, self.inbound_capacity_msat, required),
6562                         (22, self.confirmations_required, option),
6563                         (24, self.force_close_spend_delay, option),
6564                         (26, self.is_outbound, required),
6565                         (28, self.is_channel_ready, required),
6566                         (30, self.is_usable, required),
6567                         (32, self.is_public, required),
6568                         (33, self.inbound_htlc_minimum_msat, option),
6569                         (35, self.inbound_htlc_maximum_msat, option),
6570                         (37, user_channel_id_high_opt, option),
6571                         (39, self.feerate_sat_per_1000_weight, option),
6572                 });
6573                 Ok(())
6574         }
6575 }
6576
6577 impl Readable for ChannelDetails {
6578         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6579                 _init_and_read_tlv_fields!(reader, {
6580                         (1, inbound_scid_alias, option),
6581                         (2, channel_id, required),
6582                         (3, channel_type, option),
6583                         (4, counterparty, required),
6584                         (5, outbound_scid_alias, option),
6585                         (6, funding_txo, option),
6586                         (7, config, option),
6587                         (8, short_channel_id, option),
6588                         (9, confirmations, option),
6589                         (10, channel_value_satoshis, required),
6590                         (12, unspendable_punishment_reserve, option),
6591                         (14, user_channel_id_low, required),
6592                         (16, balance_msat, required),
6593                         (18, outbound_capacity_msat, required),
6594                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6595                         // filled in, so we can safely unwrap it here.
6596                         (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6597                         (20, inbound_capacity_msat, required),
6598                         (22, confirmations_required, option),
6599                         (24, force_close_spend_delay, option),
6600                         (26, is_outbound, required),
6601                         (28, is_channel_ready, required),
6602                         (30, is_usable, required),
6603                         (32, is_public, required),
6604                         (33, inbound_htlc_minimum_msat, option),
6605                         (35, inbound_htlc_maximum_msat, option),
6606                         (37, user_channel_id_high_opt, option),
6607                         (39, feerate_sat_per_1000_weight, option),
6608                 });
6609
6610                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6611                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6612                 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
6613                 let user_channel_id = user_channel_id_low as u128 +
6614                         ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
6615
6616                 Ok(Self {
6617                         inbound_scid_alias,
6618                         channel_id: channel_id.0.unwrap(),
6619                         channel_type,
6620                         counterparty: counterparty.0.unwrap(),
6621                         outbound_scid_alias,
6622                         funding_txo,
6623                         config,
6624                         short_channel_id,
6625                         channel_value_satoshis: channel_value_satoshis.0.unwrap(),
6626                         unspendable_punishment_reserve,
6627                         user_channel_id,
6628                         balance_msat: balance_msat.0.unwrap(),
6629                         outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
6630                         next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
6631                         inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
6632                         confirmations_required,
6633                         confirmations,
6634                         force_close_spend_delay,
6635                         is_outbound: is_outbound.0.unwrap(),
6636                         is_channel_ready: is_channel_ready.0.unwrap(),
6637                         is_usable: is_usable.0.unwrap(),
6638                         is_public: is_public.0.unwrap(),
6639                         inbound_htlc_minimum_msat,
6640                         inbound_htlc_maximum_msat,
6641                         feerate_sat_per_1000_weight,
6642                 })
6643         }
6644 }
6645
6646 impl_writeable_tlv_based!(PhantomRouteHints, {
6647         (2, channels, vec_type),
6648         (4, phantom_scid, required),
6649         (6, real_node_pubkey, required),
6650 });
6651
6652 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6653         (0, Forward) => {
6654                 (0, onion_packet, required),
6655                 (2, short_channel_id, required),
6656         },
6657         (1, Receive) => {
6658                 (0, payment_data, required),
6659                 (1, phantom_shared_secret, option),
6660                 (2, incoming_cltv_expiry, required),
6661         },
6662         (2, ReceiveKeysend) => {
6663                 (0, payment_preimage, required),
6664                 (2, incoming_cltv_expiry, required),
6665         },
6666 ;);
6667
6668 impl_writeable_tlv_based!(PendingHTLCInfo, {
6669         (0, routing, required),
6670         (2, incoming_shared_secret, required),
6671         (4, payment_hash, required),
6672         (6, outgoing_amt_msat, required),
6673         (8, outgoing_cltv_value, required),
6674         (9, incoming_amt_msat, option),
6675 });
6676
6677
6678 impl Writeable for HTLCFailureMsg {
6679         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6680                 match self {
6681                         HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6682                                 0u8.write(writer)?;
6683                                 channel_id.write(writer)?;
6684                                 htlc_id.write(writer)?;
6685                                 reason.write(writer)?;
6686                         },
6687                         HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6688                                 channel_id, htlc_id, sha256_of_onion, failure_code
6689                         }) => {
6690                                 1u8.write(writer)?;
6691                                 channel_id.write(writer)?;
6692                                 htlc_id.write(writer)?;
6693                                 sha256_of_onion.write(writer)?;
6694                                 failure_code.write(writer)?;
6695                         },
6696                 }
6697                 Ok(())
6698         }
6699 }
6700
6701 impl Readable for HTLCFailureMsg {
6702         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6703                 let id: u8 = Readable::read(reader)?;
6704                 match id {
6705                         0 => {
6706                                 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6707                                         channel_id: Readable::read(reader)?,
6708                                         htlc_id: Readable::read(reader)?,
6709                                         reason: Readable::read(reader)?,
6710                                 }))
6711                         },
6712                         1 => {
6713                                 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6714                                         channel_id: Readable::read(reader)?,
6715                                         htlc_id: Readable::read(reader)?,
6716                                         sha256_of_onion: Readable::read(reader)?,
6717                                         failure_code: Readable::read(reader)?,
6718                                 }))
6719                         },
6720                         // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6721                         // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6722                         // messages contained in the variants.
6723                         // In version 0.0.101, support for reading the variants with these types was added, and
6724                         // we should migrate to writing these variants when UpdateFailHTLC or
6725                         // UpdateFailMalformedHTLC get TLV fields.
6726                         2 => {
6727                                 let length: BigSize = Readable::read(reader)?;
6728                                 let mut s = FixedLengthReader::new(reader, length.0);
6729                                 let res = Readable::read(&mut s)?;
6730                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6731                                 Ok(HTLCFailureMsg::Relay(res))
6732                         },
6733                         3 => {
6734                                 let length: BigSize = Readable::read(reader)?;
6735                                 let mut s = FixedLengthReader::new(reader, length.0);
6736                                 let res = Readable::read(&mut s)?;
6737                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6738                                 Ok(HTLCFailureMsg::Malformed(res))
6739                         },
6740                         _ => Err(DecodeError::UnknownRequiredFeature),
6741                 }
6742         }
6743 }
6744
6745 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6746         (0, Forward),
6747         (1, Fail),
6748 );
6749
6750 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6751         (0, short_channel_id, required),
6752         (1, phantom_shared_secret, option),
6753         (2, outpoint, required),
6754         (4, htlc_id, required),
6755         (6, incoming_packet_shared_secret, required)
6756 });
6757
6758 impl Writeable for ClaimableHTLC {
6759         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6760                 let (payment_data, keysend_preimage) = match &self.onion_payload {
6761                         OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6762                         OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6763                 };
6764                 write_tlv_fields!(writer, {
6765                         (0, self.prev_hop, required),
6766                         (1, self.total_msat, required),
6767                         (2, self.value, required),
6768                         (4, payment_data, option),
6769                         (6, self.cltv_expiry, required),
6770                         (8, keysend_preimage, option),
6771                 });
6772                 Ok(())
6773         }
6774 }
6775
6776 impl Readable for ClaimableHTLC {
6777         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6778                 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
6779                 let mut value = 0;
6780                 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6781                 let mut cltv_expiry = 0;
6782                 let mut total_msat = None;
6783                 let mut keysend_preimage: Option<PaymentPreimage> = None;
6784                 read_tlv_fields!(reader, {
6785                         (0, prev_hop, required),
6786                         (1, total_msat, option),
6787                         (2, value, required),
6788                         (4, payment_data, option),
6789                         (6, cltv_expiry, required),
6790                         (8, keysend_preimage, option)
6791                 });
6792                 let onion_payload = match keysend_preimage {
6793                         Some(p) => {
6794                                 if payment_data.is_some() {
6795                                         return Err(DecodeError::InvalidValue)
6796                                 }
6797                                 if total_msat.is_none() {
6798                                         total_msat = Some(value);
6799                                 }
6800                                 OnionPayload::Spontaneous(p)
6801                         },
6802                         None => {
6803                                 if total_msat.is_none() {
6804                                         if payment_data.is_none() {
6805                                                 return Err(DecodeError::InvalidValue)
6806                                         }
6807                                         total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6808                                 }
6809                                 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6810                         },
6811                 };
6812                 Ok(Self {
6813                         prev_hop: prev_hop.0.unwrap(),
6814                         timer_ticks: 0,
6815                         value,
6816                         total_msat: total_msat.unwrap(),
6817                         onion_payload,
6818                         cltv_expiry,
6819                 })
6820         }
6821 }
6822
6823 impl Readable for HTLCSource {
6824         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6825                 let id: u8 = Readable::read(reader)?;
6826                 match id {
6827                         0 => {
6828                                 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
6829                                 let mut first_hop_htlc_msat: u64 = 0;
6830                                 let mut path: Option<Vec<RouteHop>> = Some(Vec::new());
6831                                 let mut payment_id = None;
6832                                 let mut payment_secret = None;
6833                                 let mut payment_params: Option<PaymentParameters> = None;
6834                                 read_tlv_fields!(reader, {
6835                                         (0, session_priv, required),
6836                                         (1, payment_id, option),
6837                                         (2, first_hop_htlc_msat, required),
6838                                         (3, payment_secret, option),
6839                                         (4, path, vec_type),
6840                                         (5, payment_params, (option: ReadableArgs, 0)),
6841                                 });
6842                                 if payment_id.is_none() {
6843                                         // For backwards compat, if there was no payment_id written, use the session_priv bytes
6844                                         // instead.
6845                                         payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6846                                 }
6847                                 if path.is_none() || path.as_ref().unwrap().is_empty() {
6848                                         return Err(DecodeError::InvalidValue);
6849                                 }
6850                                 let path = path.unwrap();
6851                                 if let Some(params) = payment_params.as_mut() {
6852                                         if params.final_cltv_expiry_delta == 0 {
6853                                                 params.final_cltv_expiry_delta = path.last().unwrap().cltv_expiry_delta;
6854                                         }
6855                                 }
6856                                 Ok(HTLCSource::OutboundRoute {
6857                                         session_priv: session_priv.0.unwrap(),
6858                                         first_hop_htlc_msat,
6859                                         path,
6860                                         payment_id: payment_id.unwrap(),
6861                                         payment_secret,
6862                                 })
6863                         }
6864                         1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6865                         _ => Err(DecodeError::UnknownRequiredFeature),
6866                 }
6867         }
6868 }
6869
6870 impl Writeable for HTLCSource {
6871         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
6872                 match self {
6873                         HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret } => {
6874                                 0u8.write(writer)?;
6875                                 let payment_id_opt = Some(payment_id);
6876                                 write_tlv_fields!(writer, {
6877                                         (0, session_priv, required),
6878                                         (1, payment_id_opt, option),
6879                                         (2, first_hop_htlc_msat, required),
6880                                         (3, payment_secret, option),
6881                                         (4, *path, vec_type),
6882                                         (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
6883                                  });
6884                         }
6885                         HTLCSource::PreviousHopData(ref field) => {
6886                                 1u8.write(writer)?;
6887                                 field.write(writer)?;
6888                         }
6889                 }
6890                 Ok(())
6891         }
6892 }
6893
6894 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
6895         (0, forward_info, required),
6896         (1, prev_user_channel_id, (default_value, 0)),
6897         (2, prev_short_channel_id, required),
6898         (4, prev_htlc_id, required),
6899         (6, prev_funding_outpoint, required),
6900 });
6901
6902 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6903         (1, FailHTLC) => {
6904                 (0, htlc_id, required),
6905                 (2, err_packet, required),
6906         };
6907         (0, AddHTLC)
6908 );
6909
6910 impl_writeable_tlv_based!(PendingInboundPayment, {
6911         (0, payment_secret, required),
6912         (2, expiry_time, required),
6913         (4, user_payment_id, required),
6914         (6, payment_preimage, required),
6915         (8, min_value_msat, required),
6916 });
6917
6918 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
6919 where
6920         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6921         T::Target: BroadcasterInterface,
6922         ES::Target: EntropySource,
6923         NS::Target: NodeSigner,
6924         SP::Target: SignerProvider,
6925         F::Target: FeeEstimator,
6926         R::Target: Router,
6927         L::Target: Logger,
6928 {
6929         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6930                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
6931
6932                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
6933
6934                 self.genesis_hash.write(writer)?;
6935                 {
6936                         let best_block = self.best_block.read().unwrap();
6937                         best_block.height().write(writer)?;
6938                         best_block.block_hash().write(writer)?;
6939                 }
6940
6941                 let mut serializable_peer_count: u64 = 0;
6942                 {
6943                         let per_peer_state = self.per_peer_state.read().unwrap();
6944                         let mut unfunded_channels = 0;
6945                         let mut number_of_channels = 0;
6946                         for (_, peer_state_mutex) in per_peer_state.iter() {
6947                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6948                                 let peer_state = &mut *peer_state_lock;
6949                                 if !peer_state.ok_to_remove(false) {
6950                                         serializable_peer_count += 1;
6951                                 }
6952                                 number_of_channels += peer_state.channel_by_id.len();
6953                                 for (_, channel) in peer_state.channel_by_id.iter() {
6954                                         if !channel.is_funding_initiated() {
6955                                                 unfunded_channels += 1;
6956                                         }
6957                                 }
6958                         }
6959
6960                         ((number_of_channels - unfunded_channels) as u64).write(writer)?;
6961
6962                         for (_, peer_state_mutex) in per_peer_state.iter() {
6963                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6964                                 let peer_state = &mut *peer_state_lock;
6965                                 for (_, channel) in peer_state.channel_by_id.iter() {
6966                                         if channel.is_funding_initiated() {
6967                                                 channel.write(writer)?;
6968                                         }
6969                                 }
6970                         }
6971                 }
6972
6973                 {
6974                         let forward_htlcs = self.forward_htlcs.lock().unwrap();
6975                         (forward_htlcs.len() as u64).write(writer)?;
6976                         for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
6977                                 short_channel_id.write(writer)?;
6978                                 (pending_forwards.len() as u64).write(writer)?;
6979                                 for forward in pending_forwards {
6980                                         forward.write(writer)?;
6981                                 }
6982                         }
6983                 }
6984
6985                 let per_peer_state = self.per_peer_state.write().unwrap();
6986
6987                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
6988                 let claimable_payments = self.claimable_payments.lock().unwrap();
6989                 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
6990
6991                 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
6992                 (claimable_payments.claimable_htlcs.len() as u64).write(writer)?;
6993                 for (payment_hash, (purpose, previous_hops)) in claimable_payments.claimable_htlcs.iter() {
6994                         payment_hash.write(writer)?;
6995                         (previous_hops.len() as u64).write(writer)?;
6996                         for htlc in previous_hops.iter() {
6997                                 htlc.write(writer)?;
6998                         }
6999                         htlc_purposes.push(purpose);
7000                 }
7001
7002                 let mut monitor_update_blocked_actions_per_peer = None;
7003                 let mut peer_states = Vec::new();
7004                 for (_, peer_state_mutex) in per_peer_state.iter() {
7005                         // Because we're holding the owning `per_peer_state` write lock here there's no chance
7006                         // of a lockorder violation deadlock - no other thread can be holding any
7007                         // per_peer_state lock at all.
7008                         peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
7009                 }
7010
7011                 (serializable_peer_count).write(writer)?;
7012                 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
7013                         // Peers which we have no channels to should be dropped once disconnected. As we
7014                         // disconnect all peers when shutting down and serializing the ChannelManager, we
7015                         // consider all peers as disconnected here. There's therefore no need write peers with
7016                         // no channels.
7017                         if !peer_state.ok_to_remove(false) {
7018                                 peer_pubkey.write(writer)?;
7019                                 peer_state.latest_features.write(writer)?;
7020                                 if !peer_state.monitor_update_blocked_actions.is_empty() {
7021                                         monitor_update_blocked_actions_per_peer
7022                                                 .get_or_insert_with(Vec::new)
7023                                                 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
7024                                 }
7025                         }
7026                 }
7027
7028                 let events = self.pending_events.lock().unwrap();
7029                 (events.len() as u64).write(writer)?;
7030                 for event in events.iter() {
7031                         event.write(writer)?;
7032                 }
7033
7034                 let background_events = self.pending_background_events.lock().unwrap();
7035                 (background_events.len() as u64).write(writer)?;
7036                 for event in background_events.iter() {
7037                         match event {
7038                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
7039                                         0u8.write(writer)?;
7040                                         funding_txo.write(writer)?;
7041                                         monitor_update.write(writer)?;
7042                                 },
7043                         }
7044                 }
7045
7046                 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
7047                 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
7048                 // likely to be identical.
7049                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7050                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7051
7052                 (pending_inbound_payments.len() as u64).write(writer)?;
7053                 for (hash, pending_payment) in pending_inbound_payments.iter() {
7054                         hash.write(writer)?;
7055                         pending_payment.write(writer)?;
7056                 }
7057
7058                 // For backwards compat, write the session privs and their total length.
7059                 let mut num_pending_outbounds_compat: u64 = 0;
7060                 for (_, outbound) in pending_outbound_payments.iter() {
7061                         if !outbound.is_fulfilled() && !outbound.abandoned() {
7062                                 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7063                         }
7064                 }
7065                 num_pending_outbounds_compat.write(writer)?;
7066                 for (_, outbound) in pending_outbound_payments.iter() {
7067                         match outbound {
7068                                 PendingOutboundPayment::Legacy { session_privs } |
7069                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7070                                         for session_priv in session_privs.iter() {
7071                                                 session_priv.write(writer)?;
7072                                         }
7073                                 }
7074                                 PendingOutboundPayment::Fulfilled { .. } => {},
7075                                 PendingOutboundPayment::Abandoned { .. } => {},
7076                         }
7077                 }
7078
7079                 // Encode without retry info for 0.0.101 compatibility.
7080                 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7081                 for (id, outbound) in pending_outbound_payments.iter() {
7082                         match outbound {
7083                                 PendingOutboundPayment::Legacy { session_privs } |
7084                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7085                                         pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7086                                 },
7087                                 _ => {},
7088                         }
7089                 }
7090
7091                 let mut pending_intercepted_htlcs = None;
7092                 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7093                 if our_pending_intercepts.len() != 0 {
7094                         pending_intercepted_htlcs = Some(our_pending_intercepts);
7095                 }
7096
7097                 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7098                 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7099                         // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7100                         // map. Thus, if there are no entries we skip writing a TLV for it.
7101                         pending_claiming_payments = None;
7102                 }
7103
7104                 write_tlv_fields!(writer, {
7105                         (1, pending_outbound_payments_no_retry, required),
7106                         (2, pending_intercepted_htlcs, option),
7107                         (3, pending_outbound_payments, required),
7108                         (4, pending_claiming_payments, option),
7109                         (5, self.our_network_pubkey, required),
7110                         (6, monitor_update_blocked_actions_per_peer, option),
7111                         (7, self.fake_scid_rand_bytes, required),
7112                         (9, htlc_purposes, vec_type),
7113                         (11, self.probing_cookie_secret, required),
7114                 });
7115
7116                 Ok(())
7117         }
7118 }
7119
7120 /// Arguments for the creation of a ChannelManager that are not deserialized.
7121 ///
7122 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7123 /// is:
7124 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7125 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7126 ///    `<(BlockHash, ChannelManager)>::read(reader, args)`
7127 ///    This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7128 ///    [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7129 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7130 ///    same way you would handle a [`chain::Filter`] call using
7131 ///    [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7132 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7133 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7134 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7135 ///    Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7136 ///    will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7137 ///    the next step.
7138 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7139 ///    [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7140 ///
7141 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7142 /// call any other methods on the newly-deserialized [`ChannelManager`].
7143 ///
7144 /// Note that because some channels may be closed during deserialization, it is critical that you
7145 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7146 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7147 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7148 /// not force-close the same channels but consider them live), you may end up revoking a state for
7149 /// which you've already broadcasted the transaction.
7150 ///
7151 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7152 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7153 where
7154         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7155         T::Target: BroadcasterInterface,
7156         ES::Target: EntropySource,
7157         NS::Target: NodeSigner,
7158         SP::Target: SignerProvider,
7159         F::Target: FeeEstimator,
7160         R::Target: Router,
7161         L::Target: Logger,
7162 {
7163         /// A cryptographically secure source of entropy.
7164         pub entropy_source: ES,
7165
7166         /// A signer that is able to perform node-scoped cryptographic operations.
7167         pub node_signer: NS,
7168
7169         /// The keys provider which will give us relevant keys. Some keys will be loaded during
7170         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7171         /// signing data.
7172         pub signer_provider: SP,
7173
7174         /// The fee_estimator for use in the ChannelManager in the future.
7175         ///
7176         /// No calls to the FeeEstimator will be made during deserialization.
7177         pub fee_estimator: F,
7178         /// The chain::Watch for use in the ChannelManager in the future.
7179         ///
7180         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7181         /// you have deserialized ChannelMonitors separately and will add them to your
7182         /// chain::Watch after deserializing this ChannelManager.
7183         pub chain_monitor: M,
7184
7185         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7186         /// used to broadcast the latest local commitment transactions of channels which must be
7187         /// force-closed during deserialization.
7188         pub tx_broadcaster: T,
7189         /// The router which will be used in the ChannelManager in the future for finding routes
7190         /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7191         ///
7192         /// No calls to the router will be made during deserialization.
7193         pub router: R,
7194         /// The Logger for use in the ChannelManager and which may be used to log information during
7195         /// deserialization.
7196         pub logger: L,
7197         /// Default settings used for new channels. Any existing channels will continue to use the
7198         /// runtime settings which were stored when the ChannelManager was serialized.
7199         pub default_config: UserConfig,
7200
7201         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7202         /// value.get_funding_txo() should be the key).
7203         ///
7204         /// If a monitor is inconsistent with the channel state during deserialization the channel will
7205         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7206         /// is true for missing channels as well. If there is a monitor missing for which we find
7207         /// channel data Err(DecodeError::InvalidValue) will be returned.
7208         ///
7209         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7210         /// this struct.
7211         ///
7212         /// (C-not exported) because we have no HashMap bindings
7213         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7214 }
7215
7216 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7217                 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7218 where
7219         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7220         T::Target: BroadcasterInterface,
7221         ES::Target: EntropySource,
7222         NS::Target: NodeSigner,
7223         SP::Target: SignerProvider,
7224         F::Target: FeeEstimator,
7225         R::Target: Router,
7226         L::Target: Logger,
7227 {
7228         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7229         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7230         /// populate a HashMap directly from C.
7231         pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7232                         mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7233                 Self {
7234                         entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7235                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7236                 }
7237         }
7238 }
7239
7240 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7241 // SipmleArcChannelManager type:
7242 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7243         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7244 where
7245         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7246         T::Target: BroadcasterInterface,
7247         ES::Target: EntropySource,
7248         NS::Target: NodeSigner,
7249         SP::Target: SignerProvider,
7250         F::Target: FeeEstimator,
7251         R::Target: Router,
7252         L::Target: Logger,
7253 {
7254         fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7255                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7256                 Ok((blockhash, Arc::new(chan_manager)))
7257         }
7258 }
7259
7260 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7261         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7262 where
7263         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7264         T::Target: BroadcasterInterface,
7265         ES::Target: EntropySource,
7266         NS::Target: NodeSigner,
7267         SP::Target: SignerProvider,
7268         F::Target: FeeEstimator,
7269         R::Target: Router,
7270         L::Target: Logger,
7271 {
7272         fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7273                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7274
7275                 let genesis_hash: BlockHash = Readable::read(reader)?;
7276                 let best_block_height: u32 = Readable::read(reader)?;
7277                 let best_block_hash: BlockHash = Readable::read(reader)?;
7278
7279                 let mut failed_htlcs = Vec::new();
7280
7281                 let channel_count: u64 = Readable::read(reader)?;
7282                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7283                 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7284                 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7285                 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7286                 let mut channel_closures = Vec::new();
7287                 for _ in 0..channel_count {
7288                         let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7289                                 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7290                         ))?;
7291                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7292                         funding_txo_set.insert(funding_txo.clone());
7293                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7294                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
7295                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
7296                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
7297                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
7298                                         // If the channel is ahead of the monitor, return InvalidValue:
7299                                         log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7300                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7301                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7302                                         log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7303                                         log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7304                                         log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7305                                         log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7306                                         return Err(DecodeError::InvalidValue);
7307                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7308                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7309                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7310                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7311                                         // But if the channel is behind of the monitor, close the channel:
7312                                         log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7313                                         log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7314                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7315                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7316                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
7317                                         failed_htlcs.append(&mut new_failed_htlcs);
7318                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7319                                         channel_closures.push(events::Event::ChannelClosed {
7320                                                 channel_id: channel.channel_id(),
7321                                                 user_channel_id: channel.get_user_id(),
7322                                                 reason: ClosureReason::OutdatedChannelManager
7323                                         });
7324                                         for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7325                                                 let mut found_htlc = false;
7326                                                 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7327                                                         if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7328                                                 }
7329                                                 if !found_htlc {
7330                                                         // If we have some HTLCs in the channel which are not present in the newer
7331                                                         // ChannelMonitor, they have been removed and should be failed back to
7332                                                         // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7333                                                         // were actually claimed we'd have generated and ensured the previous-hop
7334                                                         // claim update ChannelMonitor updates were persisted prior to persising
7335                                                         // the ChannelMonitor update for the forward leg, so attempting to fail the
7336                                                         // backwards leg of the HTLC will simply be rejected.
7337                                                         log_info!(args.logger,
7338                                                                 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7339                                                                 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7340                                                         failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7341                                                 }
7342                                         }
7343                                 } else {
7344                                         log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7345                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
7346                                                 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7347                                         }
7348                                         if channel.is_funding_initiated() {
7349                                                 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7350                                         }
7351                                         match peer_channels.entry(channel.get_counterparty_node_id()) {
7352                                                 hash_map::Entry::Occupied(mut entry) => {
7353                                                         let by_id_map = entry.get_mut();
7354                                                         by_id_map.insert(channel.channel_id(), channel);
7355                                                 },
7356                                                 hash_map::Entry::Vacant(entry) => {
7357                                                         let mut by_id_map = HashMap::new();
7358                                                         by_id_map.insert(channel.channel_id(), channel);
7359                                                         entry.insert(by_id_map);
7360                                                 }
7361                                         }
7362                                 }
7363                         } else if channel.is_awaiting_initial_mon_persist() {
7364                                 // If we were persisted and shut down while the initial ChannelMonitor persistence
7365                                 // was in-progress, we never broadcasted the funding transaction and can still
7366                                 // safely discard the channel.
7367                                 let _ = channel.force_shutdown(false);
7368                                 channel_closures.push(events::Event::ChannelClosed {
7369                                         channel_id: channel.channel_id(),
7370                                         user_channel_id: channel.get_user_id(),
7371                                         reason: ClosureReason::DisconnectedPeer,
7372                                 });
7373                         } else {
7374                                 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7375                                 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7376                                 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7377                                 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7378                                 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7379                                 return Err(DecodeError::InvalidValue);
7380                         }
7381                 }
7382
7383                 for (funding_txo, monitor) in args.channel_monitors.iter_mut() {
7384                         if !funding_txo_set.contains(funding_txo) {
7385                                 log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
7386                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7387                         }
7388                 }
7389
7390                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7391                 let forward_htlcs_count: u64 = Readable::read(reader)?;
7392                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7393                 for _ in 0..forward_htlcs_count {
7394                         let short_channel_id = Readable::read(reader)?;
7395                         let pending_forwards_count: u64 = Readable::read(reader)?;
7396                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7397                         for _ in 0..pending_forwards_count {
7398                                 pending_forwards.push(Readable::read(reader)?);
7399                         }
7400                         forward_htlcs.insert(short_channel_id, pending_forwards);
7401                 }
7402
7403                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7404                 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7405                 for _ in 0..claimable_htlcs_count {
7406                         let payment_hash = Readable::read(reader)?;
7407                         let previous_hops_len: u64 = Readable::read(reader)?;
7408                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7409                         for _ in 0..previous_hops_len {
7410                                 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7411                         }
7412                         claimable_htlcs_list.push((payment_hash, previous_hops));
7413                 }
7414
7415                 let peer_count: u64 = Readable::read(reader)?;
7416                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7417                 for _ in 0..peer_count {
7418                         let peer_pubkey = Readable::read(reader)?;
7419                         let peer_state = PeerState {
7420                                 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7421                                 latest_features: Readable::read(reader)?,
7422                                 pending_msg_events: Vec::new(),
7423                                 monitor_update_blocked_actions: BTreeMap::new(),
7424                                 is_connected: false,
7425                         };
7426                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7427                 }
7428
7429                 let event_count: u64 = Readable::read(reader)?;
7430                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7431                 for _ in 0..event_count {
7432                         match MaybeReadable::read(reader)? {
7433                                 Some(event) => pending_events_read.push(event),
7434                                 None => continue,
7435                         }
7436                 }
7437
7438                 let background_event_count: u64 = Readable::read(reader)?;
7439                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
7440                 for _ in 0..background_event_count {
7441                         match <u8 as Readable>::read(reader)? {
7442                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
7443                                 _ => return Err(DecodeError::InvalidValue),
7444                         }
7445                 }
7446
7447                 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7448                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7449
7450                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7451                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7452                 for _ in 0..pending_inbound_payment_count {
7453                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7454                                 return Err(DecodeError::InvalidValue);
7455                         }
7456                 }
7457
7458                 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7459                 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7460                         HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7461                 for _ in 0..pending_outbound_payments_count_compat {
7462                         let session_priv = Readable::read(reader)?;
7463                         let payment = PendingOutboundPayment::Legacy {
7464                                 session_privs: [session_priv].iter().cloned().collect()
7465                         };
7466                         if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7467                                 return Err(DecodeError::InvalidValue)
7468                         };
7469                 }
7470
7471                 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7472                 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7473                 let mut pending_outbound_payments = None;
7474                 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7475                 let mut received_network_pubkey: Option<PublicKey> = None;
7476                 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7477                 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7478                 let mut claimable_htlc_purposes = None;
7479                 let mut pending_claiming_payments = Some(HashMap::new());
7480                 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7481                 read_tlv_fields!(reader, {
7482                         (1, pending_outbound_payments_no_retry, option),
7483                         (2, pending_intercepted_htlcs, option),
7484                         (3, pending_outbound_payments, option),
7485                         (4, pending_claiming_payments, option),
7486                         (5, received_network_pubkey, option),
7487                         (6, monitor_update_blocked_actions_per_peer, option),
7488                         (7, fake_scid_rand_bytes, option),
7489                         (9, claimable_htlc_purposes, vec_type),
7490                         (11, probing_cookie_secret, option),
7491                 });
7492                 if fake_scid_rand_bytes.is_none() {
7493                         fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7494                 }
7495
7496                 if probing_cookie_secret.is_none() {
7497                         probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7498                 }
7499
7500                 if !channel_closures.is_empty() {
7501                         pending_events_read.append(&mut channel_closures);
7502                 }
7503
7504                 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7505                         pending_outbound_payments = Some(pending_outbound_payments_compat);
7506                 } else if pending_outbound_payments.is_none() {
7507                         let mut outbounds = HashMap::new();
7508                         for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7509                                 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7510                         }
7511                         pending_outbound_payments = Some(outbounds);
7512                 }
7513                 let pending_outbounds = OutboundPayments {
7514                         pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7515                         retry_lock: Mutex::new(())
7516                 };
7517
7518                 {
7519                         // If we're tracking pending payments, ensure we haven't lost any by looking at the
7520                         // ChannelMonitor data for any channels for which we do not have authorative state
7521                         // (i.e. those for which we just force-closed above or we otherwise don't have a
7522                         // corresponding `Channel` at all).
7523                         // This avoids several edge-cases where we would otherwise "forget" about pending
7524                         // payments which are still in-flight via their on-chain state.
7525                         // We only rebuild the pending payments map if we were most recently serialized by
7526                         // 0.0.102+
7527                         for (_, monitor) in args.channel_monitors.iter() {
7528                                 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7529                                         for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
7530                                                 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
7531                                                         if path.is_empty() {
7532                                                                 log_error!(args.logger, "Got an empty path for a pending payment");
7533                                                                 return Err(DecodeError::InvalidValue);
7534                                                         }
7535
7536                                                         let path_amt = path.last().unwrap().fee_msat;
7537                                                         let mut session_priv_bytes = [0; 32];
7538                                                         session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7539                                                         match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
7540                                                                 hash_map::Entry::Occupied(mut entry) => {
7541                                                                         let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7542                                                                         log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7543                                                                                 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7544                                                                 },
7545                                                                 hash_map::Entry::Vacant(entry) => {
7546                                                                         let path_fee = path.get_path_fees();
7547                                                                         entry.insert(PendingOutboundPayment::Retryable {
7548                                                                                 retry_strategy: None,
7549                                                                                 attempts: PaymentAttempts::new(),
7550                                                                                 payment_params: None,
7551                                                                                 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7552                                                                                 payment_hash: htlc.payment_hash,
7553                                                                                 payment_secret,
7554                                                                                 keysend_preimage: None, // only used for retries, and we'll never retry on startup
7555                                                                                 pending_amt_msat: path_amt,
7556                                                                                 pending_fee_msat: Some(path_fee),
7557                                                                                 total_msat: path_amt,
7558                                                                                 starting_block_height: best_block_height,
7559                                                                         });
7560                                                                         log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7561                                                                                 path_amt, log_bytes!(htlc.payment_hash.0),  log_bytes!(session_priv_bytes));
7562                                                                 }
7563                                                         }
7564                                                 }
7565                                         }
7566                                         for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
7567                                                 match htlc_source {
7568                                                         HTLCSource::PreviousHopData(prev_hop_data) => {
7569                                                                 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
7570                                                                         info.prev_funding_outpoint == prev_hop_data.outpoint &&
7571                                                                                 info.prev_htlc_id == prev_hop_data.htlc_id
7572                                                                 };
7573                                                                 // The ChannelMonitor is now responsible for this HTLC's
7574                                                                 // failure/success and will let us know what its outcome is. If we
7575                                                                 // still have an entry for this HTLC in `forward_htlcs` or
7576                                                                 // `pending_intercepted_htlcs`, we were apparently not persisted after
7577                                                                 // the monitor was when forwarding the payment.
7578                                                                 forward_htlcs.retain(|_, forwards| {
7579                                                                         forwards.retain(|forward| {
7580                                                                                 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
7581                                                                                         if pending_forward_matches_htlc(&htlc_info) {
7582                                                                                                 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
7583                                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7584                                                                                                 false
7585                                                                                         } else { true }
7586                                                                                 } else { true }
7587                                                                         });
7588                                                                         !forwards.is_empty()
7589                                                                 });
7590                                                                 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
7591                                                                         if pending_forward_matches_htlc(&htlc_info) {
7592                                                                                 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
7593                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7594                                                                                 pending_events_read.retain(|event| {
7595                                                                                         if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
7596                                                                                                 intercepted_id != ev_id
7597                                                                                         } else { true }
7598                                                                                 });
7599                                                                                 false
7600                                                                         } else { true }
7601                                                                 });
7602                                                         },
7603                                                         HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
7604                                                                 if let Some(preimage) = preimage_opt {
7605                                                                         let pending_events = Mutex::new(pending_events_read);
7606                                                                         // Note that we set `from_onchain` to "false" here,
7607                                                                         // deliberately keeping the pending payment around forever.
7608                                                                         // Given it should only occur when we have a channel we're
7609                                                                         // force-closing for being stale that's okay.
7610                                                                         // The alternative would be to wipe the state when claiming,
7611                                                                         // generating a `PaymentPathSuccessful` event but regenerating
7612                                                                         // it and the `PaymentSent` on every restart until the
7613                                                                         // `ChannelMonitor` is removed.
7614                                                                         pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
7615                                                                         pending_events_read = pending_events.into_inner().unwrap();
7616                                                                 }
7617                                                         },
7618                                                 }
7619                                         }
7620                                 }
7621                         }
7622                 }
7623
7624                 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
7625                         // If we have pending HTLCs to forward, assume we either dropped a
7626                         // `PendingHTLCsForwardable` or the user received it but never processed it as they
7627                         // shut down before the timer hit. Either way, set the time_forwardable to a small
7628                         // constant as enough time has likely passed that we should simply handle the forwards
7629                         // now, or at least after the user gets a chance to reconnect to our peers.
7630                         pending_events_read.push(events::Event::PendingHTLCsForwardable {
7631                                 time_forwardable: Duration::from_secs(2),
7632                         });
7633                 }
7634
7635                 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
7636                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7637
7638                 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
7639                 if let Some(mut purposes) = claimable_htlc_purposes {
7640                         if purposes.len() != claimable_htlcs_list.len() {
7641                                 return Err(DecodeError::InvalidValue);
7642                         }
7643                         for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
7644                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7645                         }
7646                 } else {
7647                         // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7648                         // include a `_legacy_hop_data` in the `OnionPayload`.
7649                         for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
7650                                 if previous_hops.is_empty() {
7651                                         return Err(DecodeError::InvalidValue);
7652                                 }
7653                                 let purpose = match &previous_hops[0].onion_payload {
7654                                         OnionPayload::Invoice { _legacy_hop_data } => {
7655                                                 if let Some(hop_data) = _legacy_hop_data {
7656                                                         events::PaymentPurpose::InvoicePayment {
7657                                                                 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7658                                                                         Some(inbound_payment) => inbound_payment.payment_preimage,
7659                                                                         None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7660                                                                                 Ok((payment_preimage, _)) => payment_preimage,
7661                                                                                 Err(()) => {
7662                                                                                         log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7663                                                                                         return Err(DecodeError::InvalidValue);
7664                                                                                 }
7665                                                                         }
7666                                                                 },
7667                                                                 payment_secret: hop_data.payment_secret,
7668                                                         }
7669                                                 } else { return Err(DecodeError::InvalidValue); }
7670                                         },
7671                                         OnionPayload::Spontaneous(payment_preimage) =>
7672                                                 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7673                                 };
7674                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7675                         }
7676                 }
7677
7678                 let mut secp_ctx = Secp256k1::new();
7679                 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
7680
7681                 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
7682                         Ok(key) => key,
7683                         Err(()) => return Err(DecodeError::InvalidValue)
7684                 };
7685                 if let Some(network_pubkey) = received_network_pubkey {
7686                         if network_pubkey != our_network_pubkey {
7687                                 log_error!(args.logger, "Key that was generated does not match the existing key.");
7688                                 return Err(DecodeError::InvalidValue);
7689                         }
7690                 }
7691
7692                 let mut outbound_scid_aliases = HashSet::new();
7693                 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
7694                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7695                         let peer_state = &mut *peer_state_lock;
7696                         for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
7697                                 if chan.outbound_scid_alias() == 0 {
7698                                         let mut outbound_scid_alias;
7699                                         loop {
7700                                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7701                                                         .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
7702                                                 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7703                                         }
7704                                         chan.set_outbound_scid_alias(outbound_scid_alias);
7705                                 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7706                                         // Note that in rare cases its possible to hit this while reading an older
7707                                         // channel if we just happened to pick a colliding outbound alias above.
7708                                         log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7709                                         return Err(DecodeError::InvalidValue);
7710                                 }
7711                                 if chan.is_usable() {
7712                                         if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7713                                                 // Note that in rare cases its possible to hit this while reading an older
7714                                                 // channel if we just happened to pick a colliding outbound alias above.
7715                                                 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7716                                                 return Err(DecodeError::InvalidValue);
7717                                         }
7718                                 }
7719                         }
7720                 }
7721
7722                 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7723
7724                 for (_, monitor) in args.channel_monitors.iter() {
7725                         for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7726                                 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7727                                         log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7728                                         let mut claimable_amt_msat = 0;
7729                                         let mut receiver_node_id = Some(our_network_pubkey);
7730                                         let phantom_shared_secret = claimable_htlcs[0].prev_hop.phantom_shared_secret;
7731                                         if phantom_shared_secret.is_some() {
7732                                                 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
7733                                                         .expect("Failed to get node_id for phantom node recipient");
7734                                                 receiver_node_id = Some(phantom_pubkey)
7735                                         }
7736                                         for claimable_htlc in claimable_htlcs {
7737                                                 claimable_amt_msat += claimable_htlc.value;
7738
7739                                                 // Add a holding-cell claim of the payment to the Channel, which should be
7740                                                 // applied ~immediately on peer reconnection. Because it won't generate a
7741                                                 // new commitment transaction we can just provide the payment preimage to
7742                                                 // the corresponding ChannelMonitor and nothing else.
7743                                                 //
7744                                                 // We do so directly instead of via the normal ChannelMonitor update
7745                                                 // procedure as the ChainMonitor hasn't yet been initialized, implying
7746                                                 // we're not allowed to call it directly yet. Further, we do the update
7747                                                 // without incrementing the ChannelMonitor update ID as there isn't any
7748                                                 // reason to.
7749                                                 // If we were to generate a new ChannelMonitor update ID here and then
7750                                                 // crash before the user finishes block connect we'd end up force-closing
7751                                                 // this channel as well. On the flip side, there's no harm in restarting
7752                                                 // without the new monitor persisted - we'll end up right back here on
7753                                                 // restart.
7754                                                 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7755                                                 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
7756                                                         let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
7757                                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7758                                                         let peer_state = &mut *peer_state_lock;
7759                                                         if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
7760                                                                 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7761                                                         }
7762                                                 }
7763                                                 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7764                                                         previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
7765                                                 }
7766                                         }
7767                                         pending_events_read.push(events::Event::PaymentClaimed {
7768                                                 receiver_node_id,
7769                                                 payment_hash,
7770                                                 purpose: payment_purpose,
7771                                                 amount_msat: claimable_amt_msat,
7772                                         });
7773                                 }
7774                         }
7775                 }
7776
7777                 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
7778                         if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
7779                                 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
7780                         } else {
7781                                 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
7782                                 return Err(DecodeError::InvalidValue);
7783                         }
7784                 }
7785
7786                 let channel_manager = ChannelManager {
7787                         genesis_hash,
7788                         fee_estimator: bounded_fee_estimator,
7789                         chain_monitor: args.chain_monitor,
7790                         tx_broadcaster: args.tx_broadcaster,
7791                         router: args.router,
7792
7793                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7794
7795                         inbound_payment_key: expanded_inbound_key,
7796                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
7797                         pending_outbound_payments: pending_outbounds,
7798                         pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
7799
7800                         forward_htlcs: Mutex::new(forward_htlcs),
7801                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs, pending_claiming_payments: pending_claiming_payments.unwrap() }),
7802                         outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7803                         id_to_peer: Mutex::new(id_to_peer),
7804                         short_to_chan_info: FairRwLock::new(short_to_chan_info),
7805                         fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7806
7807                         probing_cookie_secret: probing_cookie_secret.unwrap(),
7808
7809                         our_network_pubkey,
7810                         secp_ctx,
7811
7812                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7813
7814                         per_peer_state: FairRwLock::new(per_peer_state),
7815
7816                         pending_events: Mutex::new(pending_events_read),
7817                         pending_background_events: Mutex::new(pending_background_events_read),
7818                         total_consistency_lock: RwLock::new(()),
7819                         persistence_notifier: Notifier::new(),
7820
7821                         entropy_source: args.entropy_source,
7822                         node_signer: args.node_signer,
7823                         signer_provider: args.signer_provider,
7824
7825                         logger: args.logger,
7826                         default_configuration: args.default_config,
7827                 };
7828
7829                 for htlc_source in failed_htlcs.drain(..) {
7830                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
7831                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
7832                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7833                         channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
7834                 }
7835
7836                 //TODO: Broadcast channel update for closed channels, but only after we've made a
7837                 //connection or two.
7838
7839                 Ok((best_block_hash.clone(), channel_manager))
7840         }
7841 }
7842
7843 #[cfg(test)]
7844 mod tests {
7845         use bitcoin::hashes::Hash;
7846         use bitcoin::hashes::sha256::Hash as Sha256;
7847         use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
7848         use core::time::Duration;
7849         use core::sync::atomic::Ordering;
7850         use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7851         use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, InterceptId};
7852         use crate::ln::functional_test_utils::*;
7853         use crate::ln::msgs;
7854         use crate::ln::msgs::ChannelMessageHandler;
7855         use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
7856         use crate::util::errors::APIError;
7857         use crate::util::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
7858         use crate::util::test_utils;
7859         use crate::util::config::ChannelConfig;
7860         use crate::chain::keysinterface::EntropySource;
7861
7862         #[test]
7863         fn test_notify_limits() {
7864                 // Check that a few cases which don't require the persistence of a new ChannelManager,
7865                 // indeed, do not cause the persistence of a new ChannelManager.
7866                 let chanmon_cfgs = create_chanmon_cfgs(3);
7867                 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
7868                 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
7869                 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
7870
7871                 // All nodes start with a persistable update pending as `create_network` connects each node
7872                 // with all other nodes to make most tests simpler.
7873                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7874                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7875                 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7876
7877                 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
7878
7879                 // We check that the channel info nodes have doesn't change too early, even though we try
7880                 // to connect messages with new values
7881                 chan.0.contents.fee_base_msat *= 2;
7882                 chan.1.contents.fee_base_msat *= 2;
7883                 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
7884                         &nodes[1].node.get_our_node_id()).pop().unwrap();
7885                 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
7886                         &nodes[0].node.get_our_node_id()).pop().unwrap();
7887
7888                 // The first two nodes (which opened a channel) should now require fresh persistence
7889                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7890                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7891                 // ... but the last node should not.
7892                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7893                 // After persisting the first two nodes they should no longer need fresh persistence.
7894                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7895                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7896
7897                 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
7898                 // about the channel.
7899                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
7900                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
7901                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7902
7903                 // The nodes which are a party to the channel should also ignore messages from unrelated
7904                 // parties.
7905                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7906                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7907                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7908                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7909                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7910                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7911
7912                 // At this point the channel info given by peers should still be the same.
7913                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7914                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7915
7916                 // An earlier version of handle_channel_update didn't check the directionality of the
7917                 // update message and would always update the local fee info, even if our peer was
7918                 // (spuriously) forwarding us our own channel_update.
7919                 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
7920                 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
7921                 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
7922
7923                 // First deliver each peers' own message, checking that the node doesn't need to be
7924                 // persisted and that its channel info remains the same.
7925                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
7926                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
7927                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7928                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7929                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7930                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7931
7932                 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
7933                 // the channel info has updated.
7934                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
7935                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
7936                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7937                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7938                 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
7939                 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
7940         }
7941
7942         #[test]
7943         fn test_keysend_dup_hash_partial_mpp() {
7944                 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
7945                 // expected.
7946                 let chanmon_cfgs = create_chanmon_cfgs(2);
7947                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7948                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7949                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7950                 create_announced_chan_between_nodes(&nodes, 0, 1);
7951
7952                 // First, send a partial MPP payment.
7953                 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
7954                 let mut mpp_route = route.clone();
7955                 mpp_route.paths.push(mpp_route.paths[0].clone());
7956
7957                 let payment_id = PaymentId([42; 32]);
7958                 // Use the utility function send_payment_along_path to send the payment with MPP data which
7959                 // indicates there are more HTLCs coming.
7960                 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
7961                 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash, Some(payment_secret), payment_id, &mpp_route).unwrap();
7962                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
7963                 check_added_monitors!(nodes[0], 1);
7964                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7965                 assert_eq!(events.len(), 1);
7966                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
7967
7968                 // Next, send a keysend payment with the same payment_hash and make sure it fails.
7969                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
7970                 check_added_monitors!(nodes[0], 1);
7971                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7972                 assert_eq!(events.len(), 1);
7973                 let ev = events.drain(..).next().unwrap();
7974                 let payment_event = SendEvent::from_event(ev);
7975                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7976                 check_added_monitors!(nodes[1], 0);
7977                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7978                 expect_pending_htlcs_forwardable!(nodes[1]);
7979                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
7980                 check_added_monitors!(nodes[1], 1);
7981                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7982                 assert!(updates.update_add_htlcs.is_empty());
7983                 assert!(updates.update_fulfill_htlcs.is_empty());
7984                 assert_eq!(updates.update_fail_htlcs.len(), 1);
7985                 assert!(updates.update_fail_malformed_htlcs.is_empty());
7986                 assert!(updates.update_fee.is_none());
7987                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7988                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7989                 expect_payment_failed!(nodes[0], our_payment_hash, true);
7990
7991                 // Send the second half of the original MPP payment.
7992                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
7993                 check_added_monitors!(nodes[0], 1);
7994                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7995                 assert_eq!(events.len(), 1);
7996                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
7997
7998                 // Claim the full MPP payment. Note that we can't use a test utility like
7999                 // claim_funds_along_route because the ordering of the messages causes the second half of the
8000                 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
8001                 // lightning messages manually.
8002                 nodes[1].node.claim_funds(payment_preimage);
8003                 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
8004                 check_added_monitors!(nodes[1], 2);
8005
8006                 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8007                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
8008                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
8009                 check_added_monitors!(nodes[0], 1);
8010                 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8011                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
8012                 check_added_monitors!(nodes[1], 1);
8013                 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8014                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
8015                 check_added_monitors!(nodes[1], 1);
8016                 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8017                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
8018                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
8019                 check_added_monitors!(nodes[0], 1);
8020                 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
8021                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
8022                 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8023                 check_added_monitors!(nodes[0], 1);
8024                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
8025                 check_added_monitors!(nodes[1], 1);
8026                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
8027                 check_added_monitors!(nodes[1], 1);
8028                 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8029                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
8030                 check_added_monitors!(nodes[0], 1);
8031
8032                 // Note that successful MPP payments will generate a single PaymentSent event upon the first
8033                 // path's success and a PaymentPathSuccessful event for each path's success.
8034                 let events = nodes[0].node.get_and_clear_pending_events();
8035                 assert_eq!(events.len(), 3);
8036                 match events[0] {
8037                         Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
8038                                 assert_eq!(Some(payment_id), *id);
8039                                 assert_eq!(payment_preimage, *preimage);
8040                                 assert_eq!(our_payment_hash, *hash);
8041                         },
8042                         _ => panic!("Unexpected event"),
8043                 }
8044                 match events[1] {
8045                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8046                                 assert_eq!(payment_id, *actual_payment_id);
8047                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8048                                 assert_eq!(route.paths[0], *path);
8049                         },
8050                         _ => panic!("Unexpected event"),
8051                 }
8052                 match events[2] {
8053                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8054                                 assert_eq!(payment_id, *actual_payment_id);
8055                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8056                                 assert_eq!(route.paths[0], *path);
8057                         },
8058                         _ => panic!("Unexpected event"),
8059                 }
8060         }
8061
8062         #[test]
8063         fn test_keysend_dup_payment_hash() {
8064                 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
8065                 //      outbound regular payment fails as expected.
8066                 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
8067                 //      fails as expected.
8068                 let chanmon_cfgs = create_chanmon_cfgs(2);
8069                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8070                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8071                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8072                 create_announced_chan_between_nodes(&nodes, 0, 1);
8073                 let scorer = test_utils::TestScorer::new();
8074                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8075
8076                 // To start (1), send a regular payment but don't claim it.
8077                 let expected_route = [&nodes[1]];
8078                 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
8079
8080                 // Next, attempt a keysend payment and make sure it fails.
8081                 let route_params = RouteParameters {
8082                         payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
8083                         final_value_msat: 100_000,
8084                 };
8085                 let route = find_route(
8086                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8087                         None, nodes[0].logger, &scorer, &random_seed_bytes
8088                 ).unwrap();
8089                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8090                 check_added_monitors!(nodes[0], 1);
8091                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8092                 assert_eq!(events.len(), 1);
8093                 let ev = events.drain(..).next().unwrap();
8094                 let payment_event = SendEvent::from_event(ev);
8095                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8096                 check_added_monitors!(nodes[1], 0);
8097                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8098                 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
8099                 // fails), the second will process the resulting failure and fail the HTLC backward
8100                 expect_pending_htlcs_forwardable!(nodes[1]);
8101                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8102                 check_added_monitors!(nodes[1], 1);
8103                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8104                 assert!(updates.update_add_htlcs.is_empty());
8105                 assert!(updates.update_fulfill_htlcs.is_empty());
8106                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8107                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8108                 assert!(updates.update_fee.is_none());
8109                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8110                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8111                 expect_payment_failed!(nodes[0], payment_hash, true);
8112
8113                 // Finally, claim the original payment.
8114                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8115
8116                 // To start (2), send a keysend payment but don't claim it.
8117                 let payment_preimage = PaymentPreimage([42; 32]);
8118                 let route = find_route(
8119                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8120                         None, nodes[0].logger, &scorer, &random_seed_bytes
8121                 ).unwrap();
8122                 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8123                 check_added_monitors!(nodes[0], 1);
8124                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8125                 assert_eq!(events.len(), 1);
8126                 let event = events.pop().unwrap();
8127                 let path = vec![&nodes[1]];
8128                 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8129
8130                 // Next, attempt a regular payment and make sure it fails.
8131                 let payment_secret = PaymentSecret([43; 32]);
8132                 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8133                 check_added_monitors!(nodes[0], 1);
8134                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8135                 assert_eq!(events.len(), 1);
8136                 let ev = events.drain(..).next().unwrap();
8137                 let payment_event = SendEvent::from_event(ev);
8138                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8139                 check_added_monitors!(nodes[1], 0);
8140                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8141                 expect_pending_htlcs_forwardable!(nodes[1]);
8142                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8143                 check_added_monitors!(nodes[1], 1);
8144                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8145                 assert!(updates.update_add_htlcs.is_empty());
8146                 assert!(updates.update_fulfill_htlcs.is_empty());
8147                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8148                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8149                 assert!(updates.update_fee.is_none());
8150                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8151                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8152                 expect_payment_failed!(nodes[0], payment_hash, true);
8153
8154                 // Finally, succeed the keysend payment.
8155                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8156         }
8157
8158         #[test]
8159         fn test_keysend_hash_mismatch() {
8160                 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8161                 // preimage doesn't match the msg's payment hash.
8162                 let chanmon_cfgs = create_chanmon_cfgs(2);
8163                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8164                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8165                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8166
8167                 let payer_pubkey = nodes[0].node.get_our_node_id();
8168                 let payee_pubkey = nodes[1].node.get_our_node_id();
8169
8170                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8171                 let route_params = RouteParameters {
8172                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8173                         final_value_msat: 10_000,
8174                 };
8175                 let network_graph = nodes[0].network_graph.clone();
8176                 let first_hops = nodes[0].node.list_usable_channels();
8177                 let scorer = test_utils::TestScorer::new();
8178                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8179                 let route = find_route(
8180                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8181                         nodes[0].logger, &scorer, &random_seed_bytes
8182                 ).unwrap();
8183
8184                 let test_preimage = PaymentPreimage([42; 32]);
8185                 let mismatch_payment_hash = PaymentHash([43; 32]);
8186                 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash, None, PaymentId(mismatch_payment_hash.0), &route).unwrap();
8187                 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8188                 check_added_monitors!(nodes[0], 1);
8189
8190                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8191                 assert_eq!(updates.update_add_htlcs.len(), 1);
8192                 assert!(updates.update_fulfill_htlcs.is_empty());
8193                 assert!(updates.update_fail_htlcs.is_empty());
8194                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8195                 assert!(updates.update_fee.is_none());
8196                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8197
8198                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
8199         }
8200
8201         #[test]
8202         fn test_keysend_msg_with_secret_err() {
8203                 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8204                 let chanmon_cfgs = create_chanmon_cfgs(2);
8205                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8206                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8207                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8208
8209                 let payer_pubkey = nodes[0].node.get_our_node_id();
8210                 let payee_pubkey = nodes[1].node.get_our_node_id();
8211
8212                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8213                 let route_params = RouteParameters {
8214                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8215                         final_value_msat: 10_000,
8216                 };
8217                 let network_graph = nodes[0].network_graph.clone();
8218                 let first_hops = nodes[0].node.list_usable_channels();
8219                 let scorer = test_utils::TestScorer::new();
8220                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8221                 let route = find_route(
8222                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8223                         nodes[0].logger, &scorer, &random_seed_bytes
8224                 ).unwrap();
8225
8226                 let test_preimage = PaymentPreimage([42; 32]);
8227                 let test_secret = PaymentSecret([43; 32]);
8228                 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8229                 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash, Some(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8230                 nodes[0].node.test_send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), PaymentId(payment_hash.0), None, session_privs).unwrap();
8231                 check_added_monitors!(nodes[0], 1);
8232
8233                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8234                 assert_eq!(updates.update_add_htlcs.len(), 1);
8235                 assert!(updates.update_fulfill_htlcs.is_empty());
8236                 assert!(updates.update_fail_htlcs.is_empty());
8237                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8238                 assert!(updates.update_fee.is_none());
8239                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8240
8241                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
8242         }
8243
8244         #[test]
8245         fn test_multi_hop_missing_secret() {
8246                 let chanmon_cfgs = create_chanmon_cfgs(4);
8247                 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8248                 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8249                 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8250
8251                 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8252                 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8253                 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8254                 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8255
8256                 // Marshall an MPP route.
8257                 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8258                 let path = route.paths[0].clone();
8259                 route.paths.push(path);
8260                 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
8261                 route.paths[0][0].short_channel_id = chan_1_id;
8262                 route.paths[0][1].short_channel_id = chan_3_id;
8263                 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
8264                 route.paths[1][0].short_channel_id = chan_2_id;
8265                 route.paths[1][1].short_channel_id = chan_4_id;
8266
8267                 match nodes[0].node.send_payment(&route, payment_hash, &None, PaymentId(payment_hash.0)).unwrap_err() {
8268                         PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8269                                 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))                        },
8270                         _ => panic!("unexpected error")
8271                 }
8272         }
8273
8274         #[test]
8275         fn test_drop_disconnected_peers_when_removing_channels() {
8276                 let chanmon_cfgs = create_chanmon_cfgs(2);
8277                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8278                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8279                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8280
8281                 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8282
8283                 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8284                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8285
8286                 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8287                 check_closed_broadcast!(nodes[0], true);
8288                 check_added_monitors!(nodes[0], 1);
8289                 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8290
8291                 {
8292                         // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8293                         // disconnected and the channel between has been force closed.
8294                         let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8295                         // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8296                         assert_eq!(nodes_0_per_peer_state.len(), 1);
8297                         assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8298                 }
8299
8300                 nodes[0].node.timer_tick_occurred();
8301
8302                 {
8303                         // Assert that nodes[1] has now been removed.
8304                         assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8305                 }
8306         }
8307
8308         #[test]
8309         fn bad_inbound_payment_hash() {
8310                 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8311                 let chanmon_cfgs = create_chanmon_cfgs(2);
8312                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8313                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8314                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8315
8316                 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8317                 let payment_data = msgs::FinalOnionHopData {
8318                         payment_secret,
8319                         total_msat: 100_000,
8320                 };
8321
8322                 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8323                 // payment verification fails as expected.
8324                 let mut bad_payment_hash = payment_hash.clone();
8325                 bad_payment_hash.0[0] += 1;
8326                 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8327                         Ok(_) => panic!("Unexpected ok"),
8328                         Err(()) => {
8329                                 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
8330                         }
8331                 }
8332
8333                 // Check that using the original payment hash succeeds.
8334                 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8335         }
8336
8337         #[test]
8338         fn test_id_to_peer_coverage() {
8339                 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8340                 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8341                 // the channel is successfully closed.
8342                 let chanmon_cfgs = create_chanmon_cfgs(2);
8343                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8344                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8345                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8346
8347                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8348                 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8349                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8350                 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8351                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8352
8353                 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8354                 let channel_id = &tx.txid().into_inner();
8355                 {
8356                         // Ensure that the `id_to_peer` map is empty until either party has received the
8357                         // funding transaction, and have the real `channel_id`.
8358                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8359                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8360                 }
8361
8362                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8363                 {
8364                         // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8365                         // as it has the funding transaction.
8366                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8367                         assert_eq!(nodes_0_lock.len(), 1);
8368                         assert!(nodes_0_lock.contains_key(channel_id));
8369                 }
8370
8371                 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8372
8373                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8374
8375                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8376                 {
8377                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8378                         assert_eq!(nodes_0_lock.len(), 1);
8379                         assert!(nodes_0_lock.contains_key(channel_id));
8380                 }
8381
8382                 {
8383                         // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8384                         // as it has the funding transaction.
8385                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8386                         assert_eq!(nodes_1_lock.len(), 1);
8387                         assert!(nodes_1_lock.contains_key(channel_id));
8388                 }
8389                 check_added_monitors!(nodes[1], 1);
8390                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8391                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8392                 check_added_monitors!(nodes[0], 1);
8393                 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8394                 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8395                 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8396
8397                 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8398                 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8399                 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8400                 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8401
8402                 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8403                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8404                 {
8405                         // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8406                         // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8407                         // fee for the closing transaction has been negotiated and the parties has the other
8408                         // party's signature for the fee negotiated closing transaction.)
8409                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8410                         assert_eq!(nodes_0_lock.len(), 1);
8411                         assert!(nodes_0_lock.contains_key(channel_id));
8412                 }
8413
8414                 {
8415                         // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8416                         // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8417                         // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8418                         // kept in the `nodes[1]`'s `id_to_peer` map.
8419                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8420                         assert_eq!(nodes_1_lock.len(), 1);
8421                         assert!(nodes_1_lock.contains_key(channel_id));
8422                 }
8423
8424                 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8425                 {
8426                         // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8427                         // therefore has all it needs to fully close the channel (both signatures for the
8428                         // closing transaction).
8429                         // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8430                         // fully closed by `nodes[0]`.
8431                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8432
8433                         // Assert that the channel is still in `nodes[1]`'s  `id_to_peer` map, as `nodes[1]`
8434                         // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8435                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8436                         assert_eq!(nodes_1_lock.len(), 1);
8437                         assert!(nodes_1_lock.contains_key(channel_id));
8438                 }
8439
8440                 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8441
8442                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8443                 {
8444                         // Assert that the channel has now been removed from both parties `id_to_peer` map once
8445                         // they both have everything required to fully close the channel.
8446                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8447                 }
8448                 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8449
8450                 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8451                 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8452         }
8453
8454         fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8455                 let expected_message = format!("Not connected to node: {}", expected_public_key);
8456                 check_api_error_message(expected_message, res_err)
8457         }
8458
8459         fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8460                 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8461                 check_api_error_message(expected_message, res_err)
8462         }
8463
8464         fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8465                 match res_err {
8466                         Err(APIError::APIMisuseError { err }) => {
8467                                 assert_eq!(err, expected_err_message);
8468                         },
8469                         Err(APIError::ChannelUnavailable { err }) => {
8470                                 assert_eq!(err, expected_err_message);
8471                         },
8472                         Ok(_) => panic!("Unexpected Ok"),
8473                         Err(_) => panic!("Unexpected Error"),
8474                 }
8475         }
8476
8477         #[test]
8478         fn test_api_calls_with_unkown_counterparty_node() {
8479                 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8480                 // expected if the `counterparty_node_id` is an unkown peer in the
8481                 // `ChannelManager::per_peer_state` map.
8482                 let chanmon_cfg = create_chanmon_cfgs(2);
8483                 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8484                 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8485                 let nodes = create_network(2, &node_cfg, &node_chanmgr);
8486
8487                 // Dummy values
8488                 let channel_id = [4; 32];
8489                 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
8490                 let intercept_id = InterceptId([0; 32]);
8491
8492                 // Test the API functions.
8493                 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
8494
8495                 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
8496
8497                 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
8498
8499                 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
8500
8501                 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
8502
8503                 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
8504
8505                 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
8506         }
8507
8508         #[test]
8509         fn test_connection_limiting() {
8510                 // Test that we limit un-channel'd peers and un-funded channels properly.
8511                 let chanmon_cfgs = create_chanmon_cfgs(2);
8512                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8513                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8514                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8515
8516                 // Note that create_network connects the nodes together for us
8517
8518                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8519                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8520
8521                 let mut funding_tx = None;
8522                 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8523                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8524                         let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8525
8526                         if idx == 0 {
8527                                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8528                                 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
8529                                 funding_tx = Some(tx.clone());
8530                                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
8531                                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8532
8533                                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8534                                 check_added_monitors!(nodes[1], 1);
8535                                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8536
8537                                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8538                                 check_added_monitors!(nodes[0], 1);
8539                         }
8540                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8541                 }
8542
8543                 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
8544                 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8545                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8546                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8547                         open_channel_msg.temporary_channel_id);
8548
8549                 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
8550                 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
8551                 // limit.
8552                 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
8553                 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
8554                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8555                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8556                         peer_pks.push(random_pk);
8557                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8558                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8559                 }
8560                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8561                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8562                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8563                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8564
8565                 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
8566                 // them if we have too many un-channel'd peers.
8567                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8568                 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
8569                 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
8570                 for ev in chan_closed_events {
8571                         if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
8572                 }
8573                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8574                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8575                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8576                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8577
8578                 // but of course if the connection is outbound its allowed...
8579                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8580                         features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
8581                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8582
8583                 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
8584                 // Even though we accept one more connection from new peers, we won't actually let them
8585                 // open channels.
8586                 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
8587                 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8588                         nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
8589                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
8590                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8591                 }
8592                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8593                 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8594                         open_channel_msg.temporary_channel_id);
8595
8596                 // Of course, however, outbound channels are always allowed
8597                 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
8598                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
8599
8600                 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
8601                 // "protected" and can connect again.
8602                 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
8603                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8604                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8605                 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
8606
8607                 // Further, because the first channel was funded, we can open another channel with
8608                 // last_random_pk.
8609                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8610                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8611         }
8612
8613         #[test]
8614         fn test_outbound_chans_unlimited() {
8615                 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
8616                 let chanmon_cfgs = create_chanmon_cfgs(2);
8617                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8618                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8619                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8620
8621                 // Note that create_network connects the nodes together for us
8622
8623                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8624                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8625
8626                 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8627                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8628                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8629                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8630                 }
8631
8632                 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
8633                 // rejected.
8634                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8635                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8636                         open_channel_msg.temporary_channel_id);
8637
8638                 // but we can still open an outbound channel.
8639                 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8640                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
8641
8642                 // but even with such an outbound channel, additional inbound channels will still fail.
8643                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8644                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8645                         open_channel_msg.temporary_channel_id);
8646         }
8647
8648         #[test]
8649         fn test_0conf_limiting() {
8650                 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
8651                 // flag set and (sometimes) accept channels as 0conf.
8652                 let chanmon_cfgs = create_chanmon_cfgs(2);
8653                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8654                 let mut settings = test_default_channel_config();
8655                 settings.manually_accept_inbound_channels = true;
8656                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
8657                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8658
8659                 // Note that create_network connects the nodes together for us
8660
8661                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8662                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8663
8664                 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
8665                 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8666                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8667                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8668                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8669                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8670
8671                         nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
8672                         let events = nodes[1].node.get_and_clear_pending_events();
8673                         match events[0] {
8674                                 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8675                                         nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
8676                                 }
8677                                 _ => panic!("Unexpected event"),
8678                         }
8679                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
8680                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8681                 }
8682
8683                 // If we try to accept a channel from another peer non-0conf it will fail.
8684                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8685                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8686                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8687                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8688                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8689                 let events = nodes[1].node.get_and_clear_pending_events();
8690                 match events[0] {
8691                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8692                                 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
8693                                         Err(APIError::APIMisuseError { err }) =>
8694                                                 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
8695                                         _ => panic!(),
8696                                 }
8697                         }
8698                         _ => panic!("Unexpected event"),
8699                 }
8700                 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8701                         open_channel_msg.temporary_channel_id);
8702
8703                 // ...however if we accept the same channel 0conf it should work just fine.
8704                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8705                 let events = nodes[1].node.get_and_clear_pending_events();
8706                 match events[0] {
8707                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8708                                 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
8709                         }
8710                         _ => panic!("Unexpected event"),
8711                 }
8712                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8713         }
8714
8715         #[cfg(anchors)]
8716         #[test]
8717         fn test_anchors_zero_fee_htlc_tx_fallback() {
8718                 // Tests that if both nodes support anchors, but the remote node does not want to accept
8719                 // anchor channels at the moment, an error it sent to the local node such that it can retry
8720                 // the channel without the anchors feature.
8721                 let chanmon_cfgs = create_chanmon_cfgs(2);
8722                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8723                 let mut anchors_config = test_default_channel_config();
8724                 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
8725                 anchors_config.manually_accept_inbound_channels = true;
8726                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
8727                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8728
8729                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
8730                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8731                 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
8732
8733                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8734                 let events = nodes[1].node.get_and_clear_pending_events();
8735                 match events[0] {
8736                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8737                                 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
8738                         }
8739                         _ => panic!("Unexpected event"),
8740                 }
8741
8742                 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
8743                 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
8744
8745                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8746                 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
8747
8748                 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
8749         }
8750 }
8751
8752 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
8753 pub mod bench {
8754         use crate::chain::Listen;
8755         use crate::chain::chainmonitor::{ChainMonitor, Persist};
8756         use crate::chain::keysinterface::{EntropySource, KeysManager, InMemorySigner};
8757         use crate::ln::channelmanager::{self, BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId};
8758         use crate::ln::functional_test_utils::*;
8759         use crate::ln::msgs::{ChannelMessageHandler, Init};
8760         use crate::routing::gossip::NetworkGraph;
8761         use crate::routing::router::{PaymentParameters, get_route};
8762         use crate::util::test_utils;
8763         use crate::util::config::UserConfig;
8764         use crate::util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
8765
8766         use bitcoin::hashes::Hash;
8767         use bitcoin::hashes::sha256::Hash as Sha256;
8768         use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
8769
8770         use crate::sync::{Arc, Mutex};
8771
8772         use test::Bencher;
8773
8774         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
8775                 node: &'a ChannelManager<
8776                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
8777                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
8778                                 &'a test_utils::TestLogger, &'a P>,
8779                         &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
8780                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
8781                         &'a test_utils::TestLogger>,
8782         }
8783
8784         #[cfg(test)]
8785         #[bench]
8786         fn bench_sends(bench: &mut Bencher) {
8787                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
8788         }
8789
8790         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
8791                 // Do a simple benchmark of sending a payment back and forth between two nodes.
8792                 // Note that this is unrealistic as each payment send will require at least two fsync
8793                 // calls per node.
8794                 let network = bitcoin::Network::Testnet;
8795
8796                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
8797                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
8798                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
8799                 let scorer = Mutex::new(test_utils::TestScorer::new());
8800                 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
8801
8802                 let mut config: UserConfig = Default::default();
8803                 config.channel_handshake_config.minimum_depth = 1;
8804
8805                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
8806                 let seed_a = [1u8; 32];
8807                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
8808                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
8809                         network,
8810                         best_block: BestBlock::from_network(network),
8811                 });
8812                 let node_a_holder = NodeHolder { node: &node_a };
8813
8814                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
8815                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
8816                 let seed_b = [2u8; 32];
8817                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
8818                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
8819                         network,
8820                         best_block: BestBlock::from_network(network),
8821                 });
8822                 let node_b_holder = NodeHolder { node: &node_b };
8823
8824                 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
8825                 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
8826                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
8827                 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
8828                 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
8829
8830                 let tx;
8831                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
8832                         tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
8833                                 value: 8_000_000, script_pubkey: output_script,
8834                         }]};
8835                         node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
8836                 } else { panic!(); }
8837
8838                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
8839                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
8840
8841                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
8842
8843                 let block = Block {
8844                         header: BlockHeader { version: 0x20000000, prev_blockhash: BestBlock::from_network(network).block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
8845                         txdata: vec![tx],
8846                 };
8847                 Listen::block_connected(&node_a, &block, 1);
8848                 Listen::block_connected(&node_b, &block, 1);
8849
8850                 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
8851                 let msg_events = node_a.get_and_clear_pending_msg_events();
8852                 assert_eq!(msg_events.len(), 2);
8853                 match msg_events[0] {
8854                         MessageSendEvent::SendChannelReady { ref msg, .. } => {
8855                                 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
8856                                 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
8857                         },
8858                         _ => panic!(),
8859                 }
8860                 match msg_events[1] {
8861                         MessageSendEvent::SendChannelUpdate { .. } => {},
8862                         _ => panic!(),
8863                 }
8864
8865                 let events_a = node_a.get_and_clear_pending_events();
8866                 assert_eq!(events_a.len(), 1);
8867                 match events_a[0] {
8868                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8869                                 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
8870                         },
8871                         _ => panic!("Unexpected event"),
8872                 }
8873
8874                 let events_b = node_b.get_and_clear_pending_events();
8875                 assert_eq!(events_b.len(), 1);
8876                 match events_b[0] {
8877                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8878                                 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
8879                         },
8880                         _ => panic!("Unexpected event"),
8881                 }
8882
8883                 let dummy_graph = NetworkGraph::new(network, &logger_a);
8884
8885                 let mut payment_count: u64 = 0;
8886                 macro_rules! send_payment {
8887                         ($node_a: expr, $node_b: expr) => {
8888                                 let usable_channels = $node_a.list_usable_channels();
8889                                 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
8890                                         .with_features($node_b.invoice_features());
8891                                 let scorer = test_utils::TestScorer::new();
8892                                 let seed = [3u8; 32];
8893                                 let keys_manager = KeysManager::new(&seed, 42, 42);
8894                                 let random_seed_bytes = keys_manager.get_secure_random_bytes();
8895                                 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
8896                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
8897
8898                                 let mut payment_preimage = PaymentPreimage([0; 32]);
8899                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
8900                                 payment_count += 1;
8901                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
8902                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
8903
8904                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8905                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
8906                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
8907                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
8908                                 let (raa, cs) = do_get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
8909                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
8910                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
8911                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
8912
8913                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
8914                                 expect_payment_claimable!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
8915                                 $node_b.claim_funds(payment_preimage);
8916                                 expect_payment_claimed!(NodeHolder { node: &$node_b }, payment_hash, 10_000);
8917
8918                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
8919                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
8920                                                 assert_eq!(node_id, $node_a.get_our_node_id());
8921                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
8922                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
8923                                         },
8924                                         _ => panic!("Failed to generate claim event"),
8925                                 }
8926
8927                                 let (raa, cs) = do_get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
8928                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
8929                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
8930                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
8931
8932                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
8933                         }
8934                 }
8935
8936                 bench.iter(|| {
8937                         send_payment!(node_a, node_b);
8938                         send_payment!(node_b, node_a);
8939                 });
8940         }
8941 }