1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::{genesis_block, ChainHash};
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
39 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::Bolt11InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
49 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs};
57 use crate::ln::wire::Encode;
58 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, WriteableEcdsaChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::string::UntrustedString;
63 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
64 use crate::util::logger::{Level, Logger};
65 use crate::util::errors::APIError;
67 use alloc::collections::{btree_map, BTreeMap};
70 use crate::prelude::*;
72 use core::cell::RefCell;
74 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
75 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
76 use core::time::Duration;
79 // Re-export this for use in the public API.
80 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
81 use crate::ln::script::ShutdownScript;
83 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
85 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
86 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
87 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
89 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
90 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
91 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
92 // before we forward it.
94 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
95 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
96 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
97 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
98 // our payment, which we can use to decode errors or inform the user that the payment was sent.
100 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
101 pub(super) enum PendingHTLCRouting {
103 onion_packet: msgs::OnionPacket,
104 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
105 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
106 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
109 payment_data: msgs::FinalOnionHopData,
110 payment_metadata: Option<Vec<u8>>,
111 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
112 phantom_shared_secret: Option<[u8; 32]>,
113 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
114 custom_tlvs: Vec<(u64, Vec<u8>)>,
117 /// This was added in 0.0.116 and will break deserialization on downgrades.
118 payment_data: Option<msgs::FinalOnionHopData>,
119 payment_preimage: PaymentPreimage,
120 payment_metadata: Option<Vec<u8>>,
121 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
122 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
123 custom_tlvs: Vec<(u64, Vec<u8>)>,
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 pub(super) struct PendingHTLCInfo {
129 pub(super) routing: PendingHTLCRouting,
130 pub(super) incoming_shared_secret: [u8; 32],
131 payment_hash: PaymentHash,
133 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
134 /// Sender intended amount to forward or receive (actual amount received
135 /// may overshoot this in either case)
136 pub(super) outgoing_amt_msat: u64,
137 pub(super) outgoing_cltv_value: u32,
138 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
139 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
140 pub(super) skimmed_fee_msat: Option<u64>,
143 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
144 pub(super) enum HTLCFailureMsg {
145 Relay(msgs::UpdateFailHTLC),
146 Malformed(msgs::UpdateFailMalformedHTLC),
149 /// Stores whether we can't forward an HTLC or relevant forwarding info
150 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
151 pub(super) enum PendingHTLCStatus {
152 Forward(PendingHTLCInfo),
153 Fail(HTLCFailureMsg),
156 pub(super) struct PendingAddHTLCInfo {
157 pub(super) forward_info: PendingHTLCInfo,
159 // These fields are produced in `forward_htlcs()` and consumed in
160 // `process_pending_htlc_forwards()` for constructing the
161 // `HTLCSource::PreviousHopData` for failed and forwarded
164 // Note that this may be an outbound SCID alias for the associated channel.
165 prev_short_channel_id: u64,
167 prev_funding_outpoint: OutPoint,
168 prev_user_channel_id: u128,
171 pub(super) enum HTLCForwardInfo {
172 AddHTLC(PendingAddHTLCInfo),
175 err_packet: msgs::OnionErrorPacket,
179 /// Tracks the inbound corresponding to an outbound HTLC
180 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
181 pub(crate) struct HTLCPreviousHopData {
182 // Note that this may be an outbound SCID alias for the associated channel.
183 short_channel_id: u64,
184 user_channel_id: Option<u128>,
186 incoming_packet_shared_secret: [u8; 32],
187 phantom_shared_secret: Option<[u8; 32]>,
189 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
190 // channel with a preimage provided by the forward channel.
195 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
197 /// This is only here for backwards-compatibility in serialization, in the future it can be
198 /// removed, breaking clients running 0.0.106 and earlier.
199 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
201 /// Contains the payer-provided preimage.
202 Spontaneous(PaymentPreimage),
205 /// HTLCs that are to us and can be failed/claimed by the user
206 struct ClaimableHTLC {
207 prev_hop: HTLCPreviousHopData,
209 /// The amount (in msats) of this MPP part
211 /// The amount (in msats) that the sender intended to be sent in this MPP
212 /// part (used for validating total MPP amount)
213 sender_intended_value: u64,
214 onion_payload: OnionPayload,
216 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
217 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
218 total_value_received: Option<u64>,
219 /// The sender intended sum total of all MPP parts specified in the onion
221 /// The extra fee our counterparty skimmed off the top of this HTLC.
222 counterparty_skimmed_fee_msat: Option<u64>,
225 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
226 fn from(val: &ClaimableHTLC) -> Self {
227 events::ClaimedHTLC {
228 channel_id: val.prev_hop.outpoint.to_channel_id(),
229 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
230 cltv_expiry: val.cltv_expiry,
231 value_msat: val.value,
236 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
237 /// a payment and ensure idempotency in LDK.
239 /// This is not exported to bindings users as we just use [u8; 32] directly
240 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
241 pub struct PaymentId(pub [u8; Self::LENGTH]);
244 /// Number of bytes in the id.
245 pub const LENGTH: usize = 32;
248 impl Writeable for PaymentId {
249 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
254 impl Readable for PaymentId {
255 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
256 let buf: [u8; 32] = Readable::read(r)?;
261 impl core::fmt::Display for PaymentId {
262 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
263 crate::util::logger::DebugBytes(&self.0).fmt(f)
267 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
269 /// This is not exported to bindings users as we just use [u8; 32] directly
270 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
271 pub struct InterceptId(pub [u8; 32]);
273 impl Writeable for InterceptId {
274 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
279 impl Readable for InterceptId {
280 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
281 let buf: [u8; 32] = Readable::read(r)?;
286 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
287 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
288 pub(crate) enum SentHTLCId {
289 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
290 OutboundRoute { session_priv: SecretKey },
293 pub(crate) fn from_source(source: &HTLCSource) -> Self {
295 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
296 short_channel_id: hop_data.short_channel_id,
297 htlc_id: hop_data.htlc_id,
299 HTLCSource::OutboundRoute { session_priv, .. } =>
300 Self::OutboundRoute { session_priv: *session_priv },
304 impl_writeable_tlv_based_enum!(SentHTLCId,
305 (0, PreviousHopData) => {
306 (0, short_channel_id, required),
307 (2, htlc_id, required),
309 (2, OutboundRoute) => {
310 (0, session_priv, required),
315 /// Tracks the inbound corresponding to an outbound HTLC
316 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
317 #[derive(Clone, Debug, PartialEq, Eq)]
318 pub(crate) enum HTLCSource {
319 PreviousHopData(HTLCPreviousHopData),
322 session_priv: SecretKey,
323 /// Technically we can recalculate this from the route, but we cache it here to avoid
324 /// doing a double-pass on route when we get a failure back
325 first_hop_htlc_msat: u64,
326 payment_id: PaymentId,
329 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
330 impl core::hash::Hash for HTLCSource {
331 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
333 HTLCSource::PreviousHopData(prev_hop_data) => {
335 prev_hop_data.hash(hasher);
337 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
340 session_priv[..].hash(hasher);
341 payment_id.hash(hasher);
342 first_hop_htlc_msat.hash(hasher);
348 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
350 pub fn dummy() -> Self {
351 HTLCSource::OutboundRoute {
352 path: Path { hops: Vec::new(), blinded_tail: None },
353 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
354 first_hop_htlc_msat: 0,
355 payment_id: PaymentId([2; 32]),
359 #[cfg(debug_assertions)]
360 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
361 /// transaction. Useful to ensure different datastructures match up.
362 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
363 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
364 *first_hop_htlc_msat == htlc.amount_msat
366 // There's nothing we can check for forwarded HTLCs
372 struct InboundOnionErr {
378 /// This enum is used to specify which error data to send to peers when failing back an HTLC
379 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
381 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
382 #[derive(Clone, Copy)]
383 pub enum FailureCode {
384 /// We had a temporary error processing the payment. Useful if no other error codes fit
385 /// and you want to indicate that the payer may want to retry.
386 TemporaryNodeFailure,
387 /// We have a required feature which was not in this onion. For example, you may require
388 /// some additional metadata that was not provided with this payment.
389 RequiredNodeFeatureMissing,
390 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
391 /// the HTLC is too close to the current block height for safe handling.
392 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
393 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
394 IncorrectOrUnknownPaymentDetails,
395 /// We failed to process the payload after the onion was decrypted. You may wish to
396 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
398 /// If available, the tuple data may include the type number and byte offset in the
399 /// decrypted byte stream where the failure occurred.
400 InvalidOnionPayload(Option<(u64, u16)>),
403 impl Into<u16> for FailureCode {
404 fn into(self) -> u16 {
406 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
407 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
408 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
409 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
414 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
415 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
416 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
417 /// peer_state lock. We then return the set of things that need to be done outside the lock in
418 /// this struct and call handle_error!() on it.
420 struct MsgHandleErrInternal {
421 err: msgs::LightningError,
422 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
423 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
424 channel_capacity: Option<u64>,
426 impl MsgHandleErrInternal {
428 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
430 err: LightningError {
432 action: msgs::ErrorAction::SendErrorMessage {
433 msg: msgs::ErrorMessage {
440 shutdown_finish: None,
441 channel_capacity: None,
445 fn from_no_close(err: msgs::LightningError) -> Self {
446 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
449 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
451 err: LightningError {
453 action: msgs::ErrorAction::SendErrorMessage {
454 msg: msgs::ErrorMessage {
460 chan_id: Some((channel_id, user_channel_id)),
461 shutdown_finish: Some((shutdown_res, channel_update)),
462 channel_capacity: Some(channel_capacity)
466 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
469 ChannelError::Warn(msg) => LightningError {
471 action: msgs::ErrorAction::SendWarningMessage {
472 msg: msgs::WarningMessage {
476 log_level: Level::Warn,
479 ChannelError::Ignore(msg) => LightningError {
481 action: msgs::ErrorAction::IgnoreError,
483 ChannelError::Close(msg) => LightningError {
485 action: msgs::ErrorAction::SendErrorMessage {
486 msg: msgs::ErrorMessage {
494 shutdown_finish: None,
495 channel_capacity: None,
499 fn closes_channel(&self) -> bool {
500 self.chan_id.is_some()
504 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
505 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
506 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
507 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
508 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
510 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
511 /// be sent in the order they appear in the return value, however sometimes the order needs to be
512 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
513 /// they were originally sent). In those cases, this enum is also returned.
514 #[derive(Clone, PartialEq)]
515 pub(super) enum RAACommitmentOrder {
516 /// Send the CommitmentUpdate messages first
518 /// Send the RevokeAndACK message first
522 /// Information about a payment which is currently being claimed.
523 struct ClaimingPayment {
525 payment_purpose: events::PaymentPurpose,
526 receiver_node_id: PublicKey,
527 htlcs: Vec<events::ClaimedHTLC>,
528 sender_intended_value: Option<u64>,
530 impl_writeable_tlv_based!(ClaimingPayment, {
531 (0, amount_msat, required),
532 (2, payment_purpose, required),
533 (4, receiver_node_id, required),
534 (5, htlcs, optional_vec),
535 (7, sender_intended_value, option),
538 struct ClaimablePayment {
539 purpose: events::PaymentPurpose,
540 onion_fields: Option<RecipientOnionFields>,
541 htlcs: Vec<ClaimableHTLC>,
544 /// Information about claimable or being-claimed payments
545 struct ClaimablePayments {
546 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
547 /// failed/claimed by the user.
549 /// Note that, no consistency guarantees are made about the channels given here actually
550 /// existing anymore by the time you go to read them!
552 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
553 /// we don't get a duplicate payment.
554 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
556 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
557 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
558 /// as an [`events::Event::PaymentClaimed`].
559 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
562 /// Events which we process internally but cannot be processed immediately at the generation site
563 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
564 /// running normally, and specifically must be processed before any other non-background
565 /// [`ChannelMonitorUpdate`]s are applied.
566 enum BackgroundEvent {
567 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
568 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
569 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
570 /// channel has been force-closed we do not need the counterparty node_id.
572 /// Note that any such events are lost on shutdown, so in general they must be updates which
573 /// are regenerated on startup.
574 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
575 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
576 /// channel to continue normal operation.
578 /// In general this should be used rather than
579 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
580 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
581 /// error the other variant is acceptable.
583 /// Note that any such events are lost on shutdown, so in general they must be updates which
584 /// are regenerated on startup.
585 MonitorUpdateRegeneratedOnStartup {
586 counterparty_node_id: PublicKey,
587 funding_txo: OutPoint,
588 update: ChannelMonitorUpdate
590 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
591 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
593 MonitorUpdatesComplete {
594 counterparty_node_id: PublicKey,
595 channel_id: ChannelId,
600 pub(crate) enum MonitorUpdateCompletionAction {
601 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
602 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
603 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
604 /// event can be generated.
605 PaymentClaimed { payment_hash: PaymentHash },
606 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
607 /// operation of another channel.
609 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
610 /// from completing a monitor update which removes the payment preimage until the inbound edge
611 /// completes a monitor update containing the payment preimage. In that case, after the inbound
612 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
614 EmitEventAndFreeOtherChannel {
615 event: events::Event,
616 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
620 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
621 (0, PaymentClaimed) => { (0, payment_hash, required) },
622 (2, EmitEventAndFreeOtherChannel) => {
623 (0, event, upgradable_required),
624 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
625 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
626 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
627 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
628 // downgrades to prior versions.
629 (1, downstream_counterparty_and_funding_outpoint, option),
633 #[derive(Clone, Debug, PartialEq, Eq)]
634 pub(crate) enum EventCompletionAction {
635 ReleaseRAAChannelMonitorUpdate {
636 counterparty_node_id: PublicKey,
637 channel_funding_outpoint: OutPoint,
640 impl_writeable_tlv_based_enum!(EventCompletionAction,
641 (0, ReleaseRAAChannelMonitorUpdate) => {
642 (0, channel_funding_outpoint, required),
643 (2, counterparty_node_id, required),
647 #[derive(Clone, PartialEq, Eq, Debug)]
648 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
649 /// the blocked action here. See enum variants for more info.
650 pub(crate) enum RAAMonitorUpdateBlockingAction {
651 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
652 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
654 ForwardedPaymentInboundClaim {
655 /// The upstream channel ID (i.e. the inbound edge).
656 channel_id: ChannelId,
657 /// The HTLC ID on the inbound edge.
662 impl RAAMonitorUpdateBlockingAction {
663 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
664 Self::ForwardedPaymentInboundClaim {
665 channel_id: prev_hop.outpoint.to_channel_id(),
666 htlc_id: prev_hop.htlc_id,
671 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
672 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
676 /// State we hold per-peer.
677 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
678 /// `channel_id` -> `ChannelPhase`
680 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
681 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
682 /// `temporary_channel_id` -> `InboundChannelRequest`.
684 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
685 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
686 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
687 /// the channel is rejected, then the entry is simply removed.
688 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
689 /// The latest `InitFeatures` we heard from the peer.
690 latest_features: InitFeatures,
691 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
692 /// for broadcast messages, where ordering isn't as strict).
693 pub(super) pending_msg_events: Vec<MessageSendEvent>,
694 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
695 /// user but which have not yet completed.
697 /// Note that the channel may no longer exist. For example if the channel was closed but we
698 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
699 /// for a missing channel.
700 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
701 /// Map from a specific channel to some action(s) that should be taken when all pending
702 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
704 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
705 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
706 /// channels with a peer this will just be one allocation and will amount to a linear list of
707 /// channels to walk, avoiding the whole hashing rigmarole.
709 /// Note that the channel may no longer exist. For example, if a channel was closed but we
710 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
711 /// for a missing channel. While a malicious peer could construct a second channel with the
712 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
713 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
714 /// duplicates do not occur, so such channels should fail without a monitor update completing.
715 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
716 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
717 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
718 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
719 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
720 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
721 /// The peer is currently connected (i.e. we've seen a
722 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
723 /// [`ChannelMessageHandler::peer_disconnected`].
727 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
728 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
729 /// If true is passed for `require_disconnected`, the function will return false if we haven't
730 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
731 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
732 if require_disconnected && self.is_connected {
735 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
736 && self.monitor_update_blocked_actions.is_empty()
737 && self.in_flight_monitor_updates.is_empty()
740 // Returns a count of all channels we have with this peer, including unfunded channels.
741 fn total_channel_count(&self) -> usize {
742 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
745 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
746 fn has_channel(&self, channel_id: &ChannelId) -> bool {
747 self.channel_by_id.contains_key(channel_id) ||
748 self.inbound_channel_request_by_id.contains_key(channel_id)
752 /// A not-yet-accepted inbound (from counterparty) channel. Once
753 /// accepted, the parameters will be used to construct a channel.
754 pub(super) struct InboundChannelRequest {
755 /// The original OpenChannel message.
756 pub open_channel_msg: msgs::OpenChannel,
757 /// The number of ticks remaining before the request expires.
758 pub ticks_remaining: i32,
761 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
762 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
763 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
765 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
766 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
768 /// For users who don't want to bother doing their own payment preimage storage, we also store that
771 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
772 /// and instead encoding it in the payment secret.
773 struct PendingInboundPayment {
774 /// The payment secret that the sender must use for us to accept this payment
775 payment_secret: PaymentSecret,
776 /// Time at which this HTLC expires - blocks with a header time above this value will result in
777 /// this payment being removed.
779 /// Arbitrary identifier the user specifies (or not)
780 user_payment_id: u64,
781 // Other required attributes of the payment, optionally enforced:
782 payment_preimage: Option<PaymentPreimage>,
783 min_value_msat: Option<u64>,
786 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
787 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
788 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
789 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
790 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
791 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
792 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
793 /// of [`KeysManager`] and [`DefaultRouter`].
795 /// This is not exported to bindings users as Arcs don't make sense in bindings
796 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
804 Arc<NetworkGraph<Arc<L>>>,
806 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
807 ProbabilisticScoringFeeParameters,
808 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
813 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
814 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
815 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
816 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
817 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
818 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
819 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
820 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
821 /// of [`KeysManager`] and [`DefaultRouter`].
823 /// This is not exported to bindings users as Arcs don't make sense in bindings
824 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
833 &'f NetworkGraph<&'g L>,
835 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
836 ProbabilisticScoringFeeParameters,
837 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
842 /// A trivial trait which describes any [`ChannelManager`].
844 /// This is not exported to bindings users as general cover traits aren't useful in other
846 pub trait AChannelManager {
847 /// A type implementing [`chain::Watch`].
848 type Watch: chain::Watch<Self::Signer> + ?Sized;
849 /// A type that may be dereferenced to [`Self::Watch`].
850 type M: Deref<Target = Self::Watch>;
851 /// A type implementing [`BroadcasterInterface`].
852 type Broadcaster: BroadcasterInterface + ?Sized;
853 /// A type that may be dereferenced to [`Self::Broadcaster`].
854 type T: Deref<Target = Self::Broadcaster>;
855 /// A type implementing [`EntropySource`].
856 type EntropySource: EntropySource + ?Sized;
857 /// A type that may be dereferenced to [`Self::EntropySource`].
858 type ES: Deref<Target = Self::EntropySource>;
859 /// A type implementing [`NodeSigner`].
860 type NodeSigner: NodeSigner + ?Sized;
861 /// A type that may be dereferenced to [`Self::NodeSigner`].
862 type NS: Deref<Target = Self::NodeSigner>;
863 /// A type implementing [`WriteableEcdsaChannelSigner`].
864 type Signer: WriteableEcdsaChannelSigner + Sized;
865 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
866 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
867 /// A type that may be dereferenced to [`Self::SignerProvider`].
868 type SP: Deref<Target = Self::SignerProvider>;
869 /// A type implementing [`FeeEstimator`].
870 type FeeEstimator: FeeEstimator + ?Sized;
871 /// A type that may be dereferenced to [`Self::FeeEstimator`].
872 type F: Deref<Target = Self::FeeEstimator>;
873 /// A type implementing [`Router`].
874 type Router: Router + ?Sized;
875 /// A type that may be dereferenced to [`Self::Router`].
876 type R: Deref<Target = Self::Router>;
877 /// A type implementing [`Logger`].
878 type Logger: Logger + ?Sized;
879 /// A type that may be dereferenced to [`Self::Logger`].
880 type L: Deref<Target = Self::Logger>;
881 /// Returns a reference to the actual [`ChannelManager`] object.
882 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
885 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
886 for ChannelManager<M, T, ES, NS, SP, F, R, L>
888 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
889 T::Target: BroadcasterInterface,
890 ES::Target: EntropySource,
891 NS::Target: NodeSigner,
892 SP::Target: SignerProvider,
893 F::Target: FeeEstimator,
897 type Watch = M::Target;
899 type Broadcaster = T::Target;
901 type EntropySource = ES::Target;
903 type NodeSigner = NS::Target;
905 type Signer = <SP::Target as SignerProvider>::Signer;
906 type SignerProvider = SP::Target;
908 type FeeEstimator = F::Target;
910 type Router = R::Target;
912 type Logger = L::Target;
914 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
917 /// Manager which keeps track of a number of channels and sends messages to the appropriate
918 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
920 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
921 /// to individual Channels.
923 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
924 /// all peers during write/read (though does not modify this instance, only the instance being
925 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
926 /// called [`funding_transaction_generated`] for outbound channels) being closed.
928 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
929 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
930 /// [`ChannelMonitorUpdate`] before returning from
931 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
932 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
933 /// `ChannelManager` operations from occurring during the serialization process). If the
934 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
935 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
936 /// will be lost (modulo on-chain transaction fees).
938 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
939 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
940 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
942 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
943 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
944 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
945 /// offline for a full minute. In order to track this, you must call
946 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
948 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
949 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
950 /// not have a channel with being unable to connect to us or open new channels with us if we have
951 /// many peers with unfunded channels.
953 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
954 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
955 /// never limited. Please ensure you limit the count of such channels yourself.
957 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
958 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
959 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
960 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
961 /// you're using lightning-net-tokio.
963 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
964 /// [`funding_created`]: msgs::FundingCreated
965 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
966 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
967 /// [`update_channel`]: chain::Watch::update_channel
968 /// [`ChannelUpdate`]: msgs::ChannelUpdate
969 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
970 /// [`read`]: ReadableArgs::read
973 // The tree structure below illustrates the lock order requirements for the different locks of the
974 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
975 // and should then be taken in the order of the lowest to the highest level in the tree.
976 // Note that locks on different branches shall not be taken at the same time, as doing so will
977 // create a new lock order for those specific locks in the order they were taken.
981 // `total_consistency_lock`
983 // |__`forward_htlcs`
985 // | |__`pending_intercepted_htlcs`
987 // |__`per_peer_state`
989 // | |__`pending_inbound_payments`
991 // | |__`claimable_payments`
993 // | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
999 // | |__`short_to_chan_info`
1001 // | |__`outbound_scid_aliases`
1003 // | |__`best_block`
1005 // | |__`pending_events`
1007 // | |__`pending_background_events`
1009 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1011 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1012 T::Target: BroadcasterInterface,
1013 ES::Target: EntropySource,
1014 NS::Target: NodeSigner,
1015 SP::Target: SignerProvider,
1016 F::Target: FeeEstimator,
1020 default_configuration: UserConfig,
1021 genesis_hash: BlockHash,
1022 fee_estimator: LowerBoundedFeeEstimator<F>,
1028 /// See `ChannelManager` struct-level documentation for lock order requirements.
1030 pub(super) best_block: RwLock<BestBlock>,
1032 best_block: RwLock<BestBlock>,
1033 secp_ctx: Secp256k1<secp256k1::All>,
1035 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1036 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1037 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1038 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1040 /// See `ChannelManager` struct-level documentation for lock order requirements.
1041 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1043 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1044 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1045 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1046 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1047 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1048 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1049 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1050 /// after reloading from disk while replaying blocks against ChannelMonitors.
1052 /// See `PendingOutboundPayment` documentation for more info.
1054 /// See `ChannelManager` struct-level documentation for lock order requirements.
1055 pending_outbound_payments: OutboundPayments,
1057 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1059 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1060 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1061 /// and via the classic SCID.
1063 /// Note that no consistency guarantees are made about the existence of a channel with the
1064 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1066 /// See `ChannelManager` struct-level documentation for lock order requirements.
1068 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1070 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1071 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1072 /// until the user tells us what we should do with them.
1074 /// See `ChannelManager` struct-level documentation for lock order requirements.
1075 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1077 /// The sets of payments which are claimable or currently being claimed. See
1078 /// [`ClaimablePayments`]' individual field docs for more info.
1080 /// See `ChannelManager` struct-level documentation for lock order requirements.
1081 claimable_payments: Mutex<ClaimablePayments>,
1083 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1084 /// and some closed channels which reached a usable state prior to being closed. This is used
1085 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1086 /// active channel list on load.
1088 /// See `ChannelManager` struct-level documentation for lock order requirements.
1089 outbound_scid_aliases: Mutex<HashSet<u64>>,
1091 /// `channel_id` -> `counterparty_node_id`.
1093 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1094 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1095 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1097 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1098 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1099 /// the handling of the events.
1101 /// Note that no consistency guarantees are made about the existence of a peer with the
1102 /// `counterparty_node_id` in our other maps.
1105 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1106 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1107 /// would break backwards compatability.
1108 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1109 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1110 /// required to access the channel with the `counterparty_node_id`.
1112 /// See `ChannelManager` struct-level documentation for lock order requirements.
1113 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1115 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1117 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1118 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1119 /// confirmation depth.
1121 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1122 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1123 /// channel with the `channel_id` in our other maps.
1125 /// See `ChannelManager` struct-level documentation for lock order requirements.
1127 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1129 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1131 our_network_pubkey: PublicKey,
1133 inbound_payment_key: inbound_payment::ExpandedKey,
1135 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1136 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1137 /// we encrypt the namespace identifier using these bytes.
1139 /// [fake scids]: crate::util::scid_utils::fake_scid
1140 fake_scid_rand_bytes: [u8; 32],
1142 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1143 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1144 /// keeping additional state.
1145 probing_cookie_secret: [u8; 32],
1147 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1148 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1149 /// very far in the past, and can only ever be up to two hours in the future.
1150 highest_seen_timestamp: AtomicUsize,
1152 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1153 /// basis, as well as the peer's latest features.
1155 /// If we are connected to a peer we always at least have an entry here, even if no channels
1156 /// are currently open with that peer.
1158 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1159 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1162 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1164 /// See `ChannelManager` struct-level documentation for lock order requirements.
1165 #[cfg(not(any(test, feature = "_test_utils")))]
1166 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1167 #[cfg(any(test, feature = "_test_utils"))]
1168 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1170 /// The set of events which we need to give to the user to handle. In some cases an event may
1171 /// require some further action after the user handles it (currently only blocking a monitor
1172 /// update from being handed to the user to ensure the included changes to the channel state
1173 /// are handled by the user before they're persisted durably to disk). In that case, the second
1174 /// element in the tuple is set to `Some` with further details of the action.
1176 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1177 /// could be in the middle of being processed without the direct mutex held.
1179 /// See `ChannelManager` struct-level documentation for lock order requirements.
1180 #[cfg(not(any(test, feature = "_test_utils")))]
1181 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1182 #[cfg(any(test, feature = "_test_utils"))]
1183 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1185 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1186 pending_events_processor: AtomicBool,
1188 /// If we are running during init (either directly during the deserialization method or in
1189 /// block connection methods which run after deserialization but before normal operation) we
1190 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1191 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1192 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1194 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1196 /// See `ChannelManager` struct-level documentation for lock order requirements.
1198 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1199 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1200 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1201 /// Essentially just when we're serializing ourselves out.
1202 /// Taken first everywhere where we are making changes before any other locks.
1203 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1204 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1205 /// Notifier the lock contains sends out a notification when the lock is released.
1206 total_consistency_lock: RwLock<()>,
1207 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1208 /// received and the monitor has been persisted.
1210 /// This information does not need to be persisted as funding nodes can forget
1211 /// unfunded channels upon disconnection.
1212 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1214 background_events_processed_since_startup: AtomicBool,
1216 event_persist_notifier: Notifier,
1217 needs_persist_flag: AtomicBool,
1221 signer_provider: SP,
1226 /// Chain-related parameters used to construct a new `ChannelManager`.
1228 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1229 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1230 /// are not needed when deserializing a previously constructed `ChannelManager`.
1231 #[derive(Clone, Copy, PartialEq)]
1232 pub struct ChainParameters {
1233 /// The network for determining the `chain_hash` in Lightning messages.
1234 pub network: Network,
1236 /// The hash and height of the latest block successfully connected.
1238 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1239 pub best_block: BestBlock,
1242 #[derive(Copy, Clone, PartialEq)]
1246 SkipPersistHandleEvents,
1247 SkipPersistNoEvents,
1250 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1251 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1252 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1253 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1254 /// sending the aforementioned notification (since the lock being released indicates that the
1255 /// updates are ready for persistence).
1257 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1258 /// notify or not based on whether relevant changes have been made, providing a closure to
1259 /// `optionally_notify` which returns a `NotifyOption`.
1260 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1261 event_persist_notifier: &'a Notifier,
1262 needs_persist_flag: &'a AtomicBool,
1264 // We hold onto this result so the lock doesn't get released immediately.
1265 _read_guard: RwLockReadGuard<'a, ()>,
1268 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1269 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1270 /// events to handle.
1272 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1273 /// other cases where losing the changes on restart may result in a force-close or otherwise
1275 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1276 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1279 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1280 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1281 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1282 let force_notify = cm.get_cm().process_background_events();
1284 PersistenceNotifierGuard {
1285 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1286 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1287 should_persist: move || {
1288 // Pick the "most" action between `persist_check` and the background events
1289 // processing and return that.
1290 let notify = persist_check();
1291 match (notify, force_notify) {
1292 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1293 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1294 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1295 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1296 _ => NotifyOption::SkipPersistNoEvents,
1299 _read_guard: read_guard,
1303 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1304 /// [`ChannelManager::process_background_events`] MUST be called first (or
1305 /// [`Self::optionally_notify`] used).
1306 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1307 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1308 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1310 PersistenceNotifierGuard {
1311 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1312 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1313 should_persist: persist_check,
1314 _read_guard: read_guard,
1319 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1320 fn drop(&mut self) {
1321 match (self.should_persist)() {
1322 NotifyOption::DoPersist => {
1323 self.needs_persist_flag.store(true, Ordering::Release);
1324 self.event_persist_notifier.notify()
1326 NotifyOption::SkipPersistHandleEvents =>
1327 self.event_persist_notifier.notify(),
1328 NotifyOption::SkipPersistNoEvents => {},
1333 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1334 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1336 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1338 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1339 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1340 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1341 /// the maximum required amount in lnd as of March 2021.
1342 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1344 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1345 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1347 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1349 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1350 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1351 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1352 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1353 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1354 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1355 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1356 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1357 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1358 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1359 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1360 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1361 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1363 /// Minimum CLTV difference between the current block height and received inbound payments.
1364 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1366 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1367 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1368 // a payment was being routed, so we add an extra block to be safe.
1369 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1371 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1372 // ie that if the next-hop peer fails the HTLC within
1373 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1374 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1375 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1376 // LATENCY_GRACE_PERIOD_BLOCKS.
1379 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1381 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1382 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1385 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1387 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1388 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1390 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1391 /// until we mark the channel disabled and gossip the update.
1392 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1394 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1395 /// we mark the channel enabled and gossip the update.
1396 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1398 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1399 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1400 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1401 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1403 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1404 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1405 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1407 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1408 /// many peers we reject new (inbound) connections.
1409 const MAX_NO_CHANNEL_PEERS: usize = 250;
1411 /// Information needed for constructing an invoice route hint for this channel.
1412 #[derive(Clone, Debug, PartialEq)]
1413 pub struct CounterpartyForwardingInfo {
1414 /// Base routing fee in millisatoshis.
1415 pub fee_base_msat: u32,
1416 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1417 pub fee_proportional_millionths: u32,
1418 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1419 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1420 /// `cltv_expiry_delta` for more details.
1421 pub cltv_expiry_delta: u16,
1424 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1425 /// to better separate parameters.
1426 #[derive(Clone, Debug, PartialEq)]
1427 pub struct ChannelCounterparty {
1428 /// The node_id of our counterparty
1429 pub node_id: PublicKey,
1430 /// The Features the channel counterparty provided upon last connection.
1431 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1432 /// many routing-relevant features are present in the init context.
1433 pub features: InitFeatures,
1434 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1435 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1436 /// claiming at least this value on chain.
1438 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1440 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1441 pub unspendable_punishment_reserve: u64,
1442 /// Information on the fees and requirements that the counterparty requires when forwarding
1443 /// payments to us through this channel.
1444 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1445 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1446 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1447 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1448 pub outbound_htlc_minimum_msat: Option<u64>,
1449 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1450 pub outbound_htlc_maximum_msat: Option<u64>,
1453 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1454 #[derive(Clone, Debug, PartialEq)]
1455 pub struct ChannelDetails {
1456 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1457 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1458 /// Note that this means this value is *not* persistent - it can change once during the
1459 /// lifetime of the channel.
1460 pub channel_id: ChannelId,
1461 /// Parameters which apply to our counterparty. See individual fields for more information.
1462 pub counterparty: ChannelCounterparty,
1463 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1464 /// our counterparty already.
1466 /// Note that, if this has been set, `channel_id` will be equivalent to
1467 /// `funding_txo.unwrap().to_channel_id()`.
1468 pub funding_txo: Option<OutPoint>,
1469 /// The features which this channel operates with. See individual features for more info.
1471 /// `None` until negotiation completes and the channel type is finalized.
1472 pub channel_type: Option<ChannelTypeFeatures>,
1473 /// The position of the funding transaction in the chain. None if the funding transaction has
1474 /// not yet been confirmed and the channel fully opened.
1476 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1477 /// payments instead of this. See [`get_inbound_payment_scid`].
1479 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1480 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1482 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1483 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1484 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1485 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1486 /// [`confirmations_required`]: Self::confirmations_required
1487 pub short_channel_id: Option<u64>,
1488 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1489 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1490 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1493 /// This will be `None` as long as the channel is not available for routing outbound payments.
1495 /// [`short_channel_id`]: Self::short_channel_id
1496 /// [`confirmations_required`]: Self::confirmations_required
1497 pub outbound_scid_alias: Option<u64>,
1498 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1499 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1500 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1501 /// when they see a payment to be routed to us.
1503 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1504 /// previous values for inbound payment forwarding.
1506 /// [`short_channel_id`]: Self::short_channel_id
1507 pub inbound_scid_alias: Option<u64>,
1508 /// The value, in satoshis, of this channel as appears in the funding output
1509 pub channel_value_satoshis: u64,
1510 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1511 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1512 /// this value on chain.
1514 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1516 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1518 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1519 pub unspendable_punishment_reserve: Option<u64>,
1520 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1521 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1522 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1523 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1524 /// serialized with LDK versions prior to 0.0.113.
1526 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1527 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1528 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1529 pub user_channel_id: u128,
1530 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1531 /// which is applied to commitment and HTLC transactions.
1533 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1534 pub feerate_sat_per_1000_weight: Option<u32>,
1535 /// Our total balance. This is the amount we would get if we close the channel.
1536 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1537 /// amount is not likely to be recoverable on close.
1539 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1540 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1541 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1542 /// This does not consider any on-chain fees.
1544 /// See also [`ChannelDetails::outbound_capacity_msat`]
1545 pub balance_msat: u64,
1546 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1547 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1548 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1549 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1551 /// See also [`ChannelDetails::balance_msat`]
1553 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1554 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1555 /// should be able to spend nearly this amount.
1556 pub outbound_capacity_msat: u64,
1557 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1558 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1559 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1560 /// to use a limit as close as possible to the HTLC limit we can currently send.
1562 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1563 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1564 pub next_outbound_htlc_limit_msat: u64,
1565 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1566 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1567 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1568 /// route which is valid.
1569 pub next_outbound_htlc_minimum_msat: u64,
1570 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1571 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1572 /// available for inclusion in new inbound HTLCs).
1573 /// Note that there are some corner cases not fully handled here, so the actual available
1574 /// inbound capacity may be slightly higher than this.
1576 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1577 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1578 /// However, our counterparty should be able to spend nearly this amount.
1579 pub inbound_capacity_msat: u64,
1580 /// The number of required confirmations on the funding transaction before the funding will be
1581 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1582 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1583 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1584 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1586 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1588 /// [`is_outbound`]: ChannelDetails::is_outbound
1589 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1590 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1591 pub confirmations_required: Option<u32>,
1592 /// The current number of confirmations on the funding transaction.
1594 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1595 pub confirmations: Option<u32>,
1596 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1597 /// until we can claim our funds after we force-close the channel. During this time our
1598 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1599 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1600 /// time to claim our non-HTLC-encumbered funds.
1602 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1603 pub force_close_spend_delay: Option<u16>,
1604 /// True if the channel was initiated (and thus funded) by us.
1605 pub is_outbound: bool,
1606 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1607 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1608 /// required confirmation count has been reached (and we were connected to the peer at some
1609 /// point after the funding transaction received enough confirmations). The required
1610 /// confirmation count is provided in [`confirmations_required`].
1612 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1613 pub is_channel_ready: bool,
1614 /// The stage of the channel's shutdown.
1615 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1616 pub channel_shutdown_state: Option<ChannelShutdownState>,
1617 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1618 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1620 /// This is a strict superset of `is_channel_ready`.
1621 pub is_usable: bool,
1622 /// True if this channel is (or will be) publicly-announced.
1623 pub is_public: bool,
1624 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1625 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1626 pub inbound_htlc_minimum_msat: Option<u64>,
1627 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1628 pub inbound_htlc_maximum_msat: Option<u64>,
1629 /// Set of configurable parameters that affect channel operation.
1631 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1632 pub config: Option<ChannelConfig>,
1635 impl ChannelDetails {
1636 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1637 /// This should be used for providing invoice hints or in any other context where our
1638 /// counterparty will forward a payment to us.
1640 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1641 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1642 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1643 self.inbound_scid_alias.or(self.short_channel_id)
1646 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1647 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1648 /// we're sending or forwarding a payment outbound over this channel.
1650 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1651 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1652 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1653 self.short_channel_id.or(self.outbound_scid_alias)
1656 fn from_channel_context<SP: Deref, F: Deref>(
1657 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1658 fee_estimator: &LowerBoundedFeeEstimator<F>
1661 SP::Target: SignerProvider,
1662 F::Target: FeeEstimator
1664 let balance = context.get_available_balances(fee_estimator);
1665 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1666 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1668 channel_id: context.channel_id(),
1669 counterparty: ChannelCounterparty {
1670 node_id: context.get_counterparty_node_id(),
1671 features: latest_features,
1672 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1673 forwarding_info: context.counterparty_forwarding_info(),
1674 // Ensures that we have actually received the `htlc_minimum_msat` value
1675 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1676 // message (as they are always the first message from the counterparty).
1677 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1678 // default `0` value set by `Channel::new_outbound`.
1679 outbound_htlc_minimum_msat: if context.have_received_message() {
1680 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1681 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1683 funding_txo: context.get_funding_txo(),
1684 // Note that accept_channel (or open_channel) is always the first message, so
1685 // `have_received_message` indicates that type negotiation has completed.
1686 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1687 short_channel_id: context.get_short_channel_id(),
1688 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1689 inbound_scid_alias: context.latest_inbound_scid_alias(),
1690 channel_value_satoshis: context.get_value_satoshis(),
1691 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1692 unspendable_punishment_reserve: to_self_reserve_satoshis,
1693 balance_msat: balance.balance_msat,
1694 inbound_capacity_msat: balance.inbound_capacity_msat,
1695 outbound_capacity_msat: balance.outbound_capacity_msat,
1696 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1697 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1698 user_channel_id: context.get_user_id(),
1699 confirmations_required: context.minimum_depth(),
1700 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1701 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1702 is_outbound: context.is_outbound(),
1703 is_channel_ready: context.is_usable(),
1704 is_usable: context.is_live(),
1705 is_public: context.should_announce(),
1706 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1707 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1708 config: Some(context.config()),
1709 channel_shutdown_state: Some(context.shutdown_state()),
1714 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1715 /// Further information on the details of the channel shutdown.
1716 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1717 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1718 /// the channel will be removed shortly.
1719 /// Also note, that in normal operation, peers could disconnect at any of these states
1720 /// and require peer re-connection before making progress onto other states
1721 pub enum ChannelShutdownState {
1722 /// Channel has not sent or received a shutdown message.
1724 /// Local node has sent a shutdown message for this channel.
1726 /// Shutdown message exchanges have concluded and the channels are in the midst of
1727 /// resolving all existing open HTLCs before closing can continue.
1729 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1730 NegotiatingClosingFee,
1731 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1732 /// to drop the channel.
1736 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1737 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1738 #[derive(Debug, PartialEq)]
1739 pub enum RecentPaymentDetails {
1740 /// When an invoice was requested and thus a payment has not yet been sent.
1742 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1743 /// a payment and ensure idempotency in LDK.
1744 payment_id: PaymentId,
1746 /// When a payment is still being sent and awaiting successful delivery.
1748 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1749 /// a payment and ensure idempotency in LDK.
1750 payment_id: PaymentId,
1751 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1753 payment_hash: PaymentHash,
1754 /// Total amount (in msat, excluding fees) across all paths for this payment,
1755 /// not just the amount currently inflight.
1758 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1759 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1760 /// payment is removed from tracking.
1762 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1763 /// a payment and ensure idempotency in LDK.
1764 payment_id: PaymentId,
1765 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1766 /// made before LDK version 0.0.104.
1767 payment_hash: Option<PaymentHash>,
1769 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1770 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1771 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1773 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1774 /// a payment and ensure idempotency in LDK.
1775 payment_id: PaymentId,
1776 /// Hash of the payment that we have given up trying to send.
1777 payment_hash: PaymentHash,
1781 /// Route hints used in constructing invoices for [phantom node payents].
1783 /// [phantom node payments]: crate::sign::PhantomKeysManager
1785 pub struct PhantomRouteHints {
1786 /// The list of channels to be included in the invoice route hints.
1787 pub channels: Vec<ChannelDetails>,
1788 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1790 pub phantom_scid: u64,
1791 /// The pubkey of the real backing node that would ultimately receive the payment.
1792 pub real_node_pubkey: PublicKey,
1795 macro_rules! handle_error {
1796 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1797 // In testing, ensure there are no deadlocks where the lock is already held upon
1798 // entering the macro.
1799 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1800 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1804 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1805 let mut msg_events = Vec::with_capacity(2);
1807 if let Some((shutdown_res, update_option)) = shutdown_finish {
1808 $self.finish_close_channel(shutdown_res);
1809 if let Some(update) = update_option {
1810 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1814 if let Some((channel_id, user_channel_id)) = chan_id {
1815 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1816 channel_id, user_channel_id,
1817 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1818 counterparty_node_id: Some($counterparty_node_id),
1819 channel_capacity_sats: channel_capacity,
1824 log_error!($self.logger, "{}", err.err);
1825 if let msgs::ErrorAction::IgnoreError = err.action {
1827 msg_events.push(events::MessageSendEvent::HandleError {
1828 node_id: $counterparty_node_id,
1829 action: err.action.clone()
1833 if !msg_events.is_empty() {
1834 let per_peer_state = $self.per_peer_state.read().unwrap();
1835 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1836 let mut peer_state = peer_state_mutex.lock().unwrap();
1837 peer_state.pending_msg_events.append(&mut msg_events);
1841 // Return error in case higher-API need one
1846 ($self: ident, $internal: expr) => {
1849 Err((chan, msg_handle_err)) => {
1850 let counterparty_node_id = chan.get_counterparty_node_id();
1851 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1857 macro_rules! update_maps_on_chan_removal {
1858 ($self: expr, $channel_context: expr) => {{
1859 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1860 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1861 if let Some(short_id) = $channel_context.get_short_channel_id() {
1862 short_to_chan_info.remove(&short_id);
1864 // If the channel was never confirmed on-chain prior to its closure, remove the
1865 // outbound SCID alias we used for it from the collision-prevention set. While we
1866 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1867 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1868 // opening a million channels with us which are closed before we ever reach the funding
1870 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1871 debug_assert!(alias_removed);
1873 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1877 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1878 macro_rules! convert_chan_phase_err {
1879 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1881 ChannelError::Warn(msg) => {
1882 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1884 ChannelError::Ignore(msg) => {
1885 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1887 ChannelError::Close(msg) => {
1888 log_error!($self.logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1889 update_maps_on_chan_removal!($self, $channel.context);
1890 let shutdown_res = $channel.context.force_shutdown(true);
1891 let user_id = $channel.context.get_user_id();
1892 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1894 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1895 shutdown_res, $channel_update, channel_capacity_satoshis))
1899 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1900 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1902 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1903 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1905 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1906 match $channel_phase {
1907 ChannelPhase::Funded(channel) => {
1908 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
1910 ChannelPhase::UnfundedOutboundV1(channel) => {
1911 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1913 ChannelPhase::UnfundedInboundV1(channel) => {
1914 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1920 macro_rules! break_chan_phase_entry {
1921 ($self: ident, $res: expr, $entry: expr) => {
1925 let key = *$entry.key();
1926 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1928 $entry.remove_entry();
1936 macro_rules! try_chan_phase_entry {
1937 ($self: ident, $res: expr, $entry: expr) => {
1941 let key = *$entry.key();
1942 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1944 $entry.remove_entry();
1952 macro_rules! remove_channel_phase {
1953 ($self: expr, $entry: expr) => {
1955 let channel = $entry.remove_entry().1;
1956 update_maps_on_chan_removal!($self, &channel.context());
1962 macro_rules! send_channel_ready {
1963 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1964 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1965 node_id: $channel.context.get_counterparty_node_id(),
1966 msg: $channel_ready_msg,
1968 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1969 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1970 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1971 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1972 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1973 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1974 if let Some(real_scid) = $channel.context.get_short_channel_id() {
1975 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1976 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1977 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1982 macro_rules! emit_channel_pending_event {
1983 ($locked_events: expr, $channel: expr) => {
1984 if $channel.context.should_emit_channel_pending_event() {
1985 $locked_events.push_back((events::Event::ChannelPending {
1986 channel_id: $channel.context.channel_id(),
1987 former_temporary_channel_id: $channel.context.temporary_channel_id(),
1988 counterparty_node_id: $channel.context.get_counterparty_node_id(),
1989 user_channel_id: $channel.context.get_user_id(),
1990 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
1992 $channel.context.set_channel_pending_event_emitted();
1997 macro_rules! emit_channel_ready_event {
1998 ($locked_events: expr, $channel: expr) => {
1999 if $channel.context.should_emit_channel_ready_event() {
2000 debug_assert!($channel.context.channel_pending_event_emitted());
2001 $locked_events.push_back((events::Event::ChannelReady {
2002 channel_id: $channel.context.channel_id(),
2003 user_channel_id: $channel.context.get_user_id(),
2004 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2005 channel_type: $channel.context.get_channel_type().clone(),
2007 $channel.context.set_channel_ready_event_emitted();
2012 macro_rules! handle_monitor_update_completion {
2013 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2014 let mut updates = $chan.monitor_updating_restored(&$self.logger,
2015 &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
2016 $self.best_block.read().unwrap().height());
2017 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2018 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2019 // We only send a channel_update in the case where we are just now sending a
2020 // channel_ready and the channel is in a usable state. We may re-send a
2021 // channel_update later through the announcement_signatures process for public
2022 // channels, but there's no reason not to just inform our counterparty of our fees
2024 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2025 Some(events::MessageSendEvent::SendChannelUpdate {
2026 node_id: counterparty_node_id,
2032 let update_actions = $peer_state.monitor_update_blocked_actions
2033 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2035 let htlc_forwards = $self.handle_channel_resumption(
2036 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2037 updates.commitment_update, updates.order, updates.accepted_htlcs,
2038 updates.funding_broadcastable, updates.channel_ready,
2039 updates.announcement_sigs);
2040 if let Some(upd) = channel_update {
2041 $peer_state.pending_msg_events.push(upd);
2044 let channel_id = $chan.context.channel_id();
2045 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2046 core::mem::drop($peer_state_lock);
2047 core::mem::drop($per_peer_state_lock);
2049 // If the channel belongs to a batch funding transaction, the progress of the batch
2050 // should be updated as we have received funding_signed and persisted the monitor.
2051 if let Some(txid) = unbroadcasted_batch_funding_txid {
2052 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2053 let mut batch_completed = false;
2054 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2055 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2056 *chan_id == channel_id &&
2057 *pubkey == counterparty_node_id
2059 if let Some(channel_state) = channel_state {
2060 channel_state.2 = true;
2062 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2064 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2066 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2069 // When all channels in a batched funding transaction have become ready, it is not necessary
2070 // to track the progress of the batch anymore and the state of the channels can be updated.
2071 if batch_completed {
2072 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2073 let per_peer_state = $self.per_peer_state.read().unwrap();
2074 let mut batch_funding_tx = None;
2075 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2076 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2077 let mut peer_state = peer_state_mutex.lock().unwrap();
2078 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2079 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2080 chan.set_batch_ready();
2081 let mut pending_events = $self.pending_events.lock().unwrap();
2082 emit_channel_pending_event!(pending_events, chan);
2086 if let Some(tx) = batch_funding_tx {
2087 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2088 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2093 $self.handle_monitor_update_completion_actions(update_actions);
2095 if let Some(forwards) = htlc_forwards {
2096 $self.forward_htlcs(&mut [forwards][..]);
2098 $self.finalize_claims(updates.finalized_claimed_htlcs);
2099 for failure in updates.failed_htlcs.drain(..) {
2100 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2101 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2106 macro_rules! handle_new_monitor_update {
2107 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2108 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2110 ChannelMonitorUpdateStatus::UnrecoverableError => {
2111 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2112 log_error!($self.logger, "{}", err_str);
2113 panic!("{}", err_str);
2115 ChannelMonitorUpdateStatus::InProgress => {
2116 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2117 &$chan.context.channel_id());
2120 ChannelMonitorUpdateStatus::Completed => {
2126 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2127 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2128 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2130 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2131 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2132 .or_insert_with(Vec::new);
2133 // During startup, we push monitor updates as background events through to here in
2134 // order to replay updates that were in-flight when we shut down. Thus, we have to
2135 // filter for uniqueness here.
2136 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2137 .unwrap_or_else(|| {
2138 in_flight_updates.push($update);
2139 in_flight_updates.len() - 1
2141 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2142 handle_new_monitor_update!($self, update_res, $chan, _internal,
2144 let _ = in_flight_updates.remove(idx);
2145 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2146 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2152 macro_rules! process_events_body {
2153 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2154 let mut processed_all_events = false;
2155 while !processed_all_events {
2156 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2163 // We'll acquire our total consistency lock so that we can be sure no other
2164 // persists happen while processing monitor events.
2165 let _read_guard = $self.total_consistency_lock.read().unwrap();
2167 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2168 // ensure any startup-generated background events are handled first.
2169 result = $self.process_background_events();
2171 // TODO: This behavior should be documented. It's unintuitive that we query
2172 // ChannelMonitors when clearing other events.
2173 if $self.process_pending_monitor_events() {
2174 result = NotifyOption::DoPersist;
2178 let pending_events = $self.pending_events.lock().unwrap().clone();
2179 let num_events = pending_events.len();
2180 if !pending_events.is_empty() {
2181 result = NotifyOption::DoPersist;
2184 let mut post_event_actions = Vec::new();
2186 for (event, action_opt) in pending_events {
2187 $event_to_handle = event;
2189 if let Some(action) = action_opt {
2190 post_event_actions.push(action);
2195 let mut pending_events = $self.pending_events.lock().unwrap();
2196 pending_events.drain(..num_events);
2197 processed_all_events = pending_events.is_empty();
2198 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2199 // updated here with the `pending_events` lock acquired.
2200 $self.pending_events_processor.store(false, Ordering::Release);
2203 if !post_event_actions.is_empty() {
2204 $self.handle_post_event_actions(post_event_actions);
2205 // If we had some actions, go around again as we may have more events now
2206 processed_all_events = false;
2210 NotifyOption::DoPersist => {
2211 $self.needs_persist_flag.store(true, Ordering::Release);
2212 $self.event_persist_notifier.notify();
2214 NotifyOption::SkipPersistHandleEvents =>
2215 $self.event_persist_notifier.notify(),
2216 NotifyOption::SkipPersistNoEvents => {},
2222 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2224 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2225 T::Target: BroadcasterInterface,
2226 ES::Target: EntropySource,
2227 NS::Target: NodeSigner,
2228 SP::Target: SignerProvider,
2229 F::Target: FeeEstimator,
2233 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2235 /// The current time or latest block header time can be provided as the `current_timestamp`.
2237 /// This is the main "logic hub" for all channel-related actions, and implements
2238 /// [`ChannelMessageHandler`].
2240 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2242 /// Users need to notify the new `ChannelManager` when a new block is connected or
2243 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2244 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2247 /// [`block_connected`]: chain::Listen::block_connected
2248 /// [`block_disconnected`]: chain::Listen::block_disconnected
2249 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2251 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2252 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2253 current_timestamp: u32,
2255 let mut secp_ctx = Secp256k1::new();
2256 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2257 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2258 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2260 default_configuration: config.clone(),
2261 genesis_hash: genesis_block(params.network).header.block_hash(),
2262 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2267 best_block: RwLock::new(params.best_block),
2269 outbound_scid_aliases: Mutex::new(HashSet::new()),
2270 pending_inbound_payments: Mutex::new(HashMap::new()),
2271 pending_outbound_payments: OutboundPayments::new(),
2272 forward_htlcs: Mutex::new(HashMap::new()),
2273 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2274 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2275 id_to_peer: Mutex::new(HashMap::new()),
2276 short_to_chan_info: FairRwLock::new(HashMap::new()),
2278 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2281 inbound_payment_key: expanded_inbound_key,
2282 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2284 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2286 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2288 per_peer_state: FairRwLock::new(HashMap::new()),
2290 pending_events: Mutex::new(VecDeque::new()),
2291 pending_events_processor: AtomicBool::new(false),
2292 pending_background_events: Mutex::new(Vec::new()),
2293 total_consistency_lock: RwLock::new(()),
2294 background_events_processed_since_startup: AtomicBool::new(false),
2295 event_persist_notifier: Notifier::new(),
2296 needs_persist_flag: AtomicBool::new(false),
2297 funding_batch_states: Mutex::new(BTreeMap::new()),
2307 /// Gets the current configuration applied to all new channels.
2308 pub fn get_current_default_configuration(&self) -> &UserConfig {
2309 &self.default_configuration
2312 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2313 let height = self.best_block.read().unwrap().height();
2314 let mut outbound_scid_alias = 0;
2317 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2318 outbound_scid_alias += 1;
2320 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2322 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2326 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2331 /// Creates a new outbound channel to the given remote node and with the given value.
2333 /// `user_channel_id` will be provided back as in
2334 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2335 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2336 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2337 /// is simply copied to events and otherwise ignored.
2339 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2340 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2342 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2343 /// generate a shutdown scriptpubkey or destination script set by
2344 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2346 /// Note that we do not check if you are currently connected to the given peer. If no
2347 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2348 /// the channel eventually being silently forgotten (dropped on reload).
2350 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2351 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2352 /// [`ChannelDetails::channel_id`] until after
2353 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2354 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2355 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2357 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2358 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2359 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2360 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2361 if channel_value_satoshis < 1000 {
2362 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2365 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2366 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2367 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2369 let per_peer_state = self.per_peer_state.read().unwrap();
2371 let peer_state_mutex = per_peer_state.get(&their_network_key)
2372 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2374 let mut peer_state = peer_state_mutex.lock().unwrap();
2376 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2377 let their_features = &peer_state.latest_features;
2378 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2379 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2380 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2381 self.best_block.read().unwrap().height(), outbound_scid_alias)
2385 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2390 let res = channel.get_open_channel(self.genesis_hash.clone());
2392 let temporary_channel_id = channel.context.channel_id();
2393 match peer_state.channel_by_id.entry(temporary_channel_id) {
2394 hash_map::Entry::Occupied(_) => {
2396 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2398 panic!("RNG is bad???");
2401 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2404 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2405 node_id: their_network_key,
2408 Ok(temporary_channel_id)
2411 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2412 // Allocate our best estimate of the number of channels we have in the `res`
2413 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2414 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2415 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2416 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2417 // the same channel.
2418 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2420 let best_block_height = self.best_block.read().unwrap().height();
2421 let per_peer_state = self.per_peer_state.read().unwrap();
2422 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2423 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2424 let peer_state = &mut *peer_state_lock;
2425 res.extend(peer_state.channel_by_id.iter()
2426 .filter_map(|(chan_id, phase)| match phase {
2427 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2428 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2432 .map(|(_channel_id, channel)| {
2433 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2434 peer_state.latest_features.clone(), &self.fee_estimator)
2442 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2443 /// more information.
2444 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2445 // Allocate our best estimate of the number of channels we have in the `res`
2446 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2447 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2448 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2449 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2450 // the same channel.
2451 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2453 let best_block_height = self.best_block.read().unwrap().height();
2454 let per_peer_state = self.per_peer_state.read().unwrap();
2455 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2456 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2457 let peer_state = &mut *peer_state_lock;
2458 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2459 let details = ChannelDetails::from_channel_context(context, best_block_height,
2460 peer_state.latest_features.clone(), &self.fee_estimator);
2468 /// Gets the list of usable channels, in random order. Useful as an argument to
2469 /// [`Router::find_route`] to ensure non-announced channels are used.
2471 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2472 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2474 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2475 // Note we use is_live here instead of usable which leads to somewhat confused
2476 // internal/external nomenclature, but that's ok cause that's probably what the user
2477 // really wanted anyway.
2478 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2481 /// Gets the list of channels we have with a given counterparty, in random order.
2482 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2483 let best_block_height = self.best_block.read().unwrap().height();
2484 let per_peer_state = self.per_peer_state.read().unwrap();
2486 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2487 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2488 let peer_state = &mut *peer_state_lock;
2489 let features = &peer_state.latest_features;
2490 let context_to_details = |context| {
2491 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2493 return peer_state.channel_by_id
2495 .map(|(_, phase)| phase.context())
2496 .map(context_to_details)
2502 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2503 /// successful path, or have unresolved HTLCs.
2505 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2506 /// result of a crash. If such a payment exists, is not listed here, and an
2507 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2509 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2510 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2511 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2512 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2513 PendingOutboundPayment::AwaitingInvoice { .. } => {
2514 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2516 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2517 PendingOutboundPayment::InvoiceReceived { .. } => {
2518 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2520 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2521 Some(RecentPaymentDetails::Pending {
2522 payment_id: *payment_id,
2523 payment_hash: *payment_hash,
2524 total_msat: *total_msat,
2527 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2528 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2530 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2531 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2533 PendingOutboundPayment::Legacy { .. } => None
2538 /// Helper function that issues the channel close events
2539 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2540 let mut pending_events_lock = self.pending_events.lock().unwrap();
2541 match context.unbroadcasted_funding() {
2542 Some(transaction) => {
2543 pending_events_lock.push_back((events::Event::DiscardFunding {
2544 channel_id: context.channel_id(), transaction
2549 pending_events_lock.push_back((events::Event::ChannelClosed {
2550 channel_id: context.channel_id(),
2551 user_channel_id: context.get_user_id(),
2552 reason: closure_reason,
2553 counterparty_node_id: Some(context.get_counterparty_node_id()),
2554 channel_capacity_sats: Some(context.get_value_satoshis()),
2558 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2559 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2561 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2562 let mut shutdown_result = None;
2564 let per_peer_state = self.per_peer_state.read().unwrap();
2566 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2567 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2569 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2570 let peer_state = &mut *peer_state_lock;
2572 match peer_state.channel_by_id.entry(channel_id.clone()) {
2573 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2574 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2575 let funding_txo_opt = chan.context.get_funding_txo();
2576 let their_features = &peer_state.latest_features;
2577 let unbroadcasted_batch_funding_txid = chan.context.unbroadcasted_batch_funding_txid();
2578 let (shutdown_msg, mut monitor_update_opt, htlcs) =
2579 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2580 failed_htlcs = htlcs;
2582 // We can send the `shutdown` message before updating the `ChannelMonitor`
2583 // here as we don't need the monitor update to complete until we send a
2584 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2585 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2586 node_id: *counterparty_node_id,
2590 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2591 "We can't both complete shutdown and generate a monitor update");
2593 // Update the monitor with the shutdown script if necessary.
2594 if let Some(monitor_update) = monitor_update_opt.take() {
2595 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2596 peer_state_lock, peer_state, per_peer_state, chan);
2600 if chan.is_shutdown() {
2601 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2602 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2603 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2607 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2608 shutdown_result = Some((None, Vec::new(), unbroadcasted_batch_funding_txid));
2614 hash_map::Entry::Vacant(_) => {
2615 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2616 // it does not exist for this peer. Either way, we can attempt to force-close it.
2618 // An appropriate error will be returned for non-existence of the channel if that's the case.
2619 mem::drop(peer_state_lock);
2620 mem::drop(per_peer_state);
2621 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2626 for htlc_source in failed_htlcs.drain(..) {
2627 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2628 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2629 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2632 if let Some(shutdown_result) = shutdown_result {
2633 self.finish_close_channel(shutdown_result);
2639 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2640 /// will be accepted on the given channel, and after additional timeout/the closing of all
2641 /// pending HTLCs, the channel will be closed on chain.
2643 /// * If we are the channel initiator, we will pay between our [`Background`] and
2644 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2646 /// * If our counterparty is the channel initiator, we will require a channel closing
2647 /// transaction feerate of at least our [`Background`] feerate or the feerate which
2648 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2649 /// counterparty to pay as much fee as they'd like, however.
2651 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2653 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2654 /// generate a shutdown scriptpubkey or destination script set by
2655 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2658 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2659 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2660 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2661 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2662 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2663 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2666 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2667 /// will be accepted on the given channel, and after additional timeout/the closing of all
2668 /// pending HTLCs, the channel will be closed on chain.
2670 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2671 /// the channel being closed or not:
2672 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2673 /// transaction. The upper-bound is set by
2674 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2675 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2676 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2677 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2678 /// will appear on a force-closure transaction, whichever is lower).
2680 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2681 /// Will fail if a shutdown script has already been set for this channel by
2682 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2683 /// also be compatible with our and the counterparty's features.
2685 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2687 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2688 /// generate a shutdown scriptpubkey or destination script set by
2689 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2692 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2693 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2694 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2695 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2696 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2697 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2700 fn finish_close_channel(&self, shutdown_res: ShutdownResult) {
2701 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2702 #[cfg(debug_assertions)]
2703 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2704 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2707 let (monitor_update_option, mut failed_htlcs, unbroadcasted_batch_funding_txid) = shutdown_res;
2708 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
2709 for htlc_source in failed_htlcs.drain(..) {
2710 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2711 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2712 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2713 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2715 if let Some((_, funding_txo, monitor_update)) = monitor_update_option {
2716 // There isn't anything we can do if we get an update failure - we're already
2717 // force-closing. The monitor update on the required in-memory copy should broadcast
2718 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2719 // ignore the result here.
2720 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2722 let mut shutdown_results = Vec::new();
2723 if let Some(txid) = unbroadcasted_batch_funding_txid {
2724 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2725 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2726 let per_peer_state = self.per_peer_state.read().unwrap();
2727 let mut has_uncompleted_channel = None;
2728 for (channel_id, counterparty_node_id, state) in affected_channels {
2729 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2730 let mut peer_state = peer_state_mutex.lock().unwrap();
2731 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2732 update_maps_on_chan_removal!(self, &chan.context());
2733 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2734 shutdown_results.push(chan.context_mut().force_shutdown(false));
2737 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2740 has_uncompleted_channel.unwrap_or(true),
2741 "Closing a batch where all channels have completed initial monitor update",
2744 for shutdown_result in shutdown_results.drain(..) {
2745 self.finish_close_channel(shutdown_result);
2749 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2750 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2751 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2752 -> Result<PublicKey, APIError> {
2753 let per_peer_state = self.per_peer_state.read().unwrap();
2754 let peer_state_mutex = per_peer_state.get(peer_node_id)
2755 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2756 let (update_opt, counterparty_node_id) = {
2757 let mut peer_state = peer_state_mutex.lock().unwrap();
2758 let closure_reason = if let Some(peer_msg) = peer_msg {
2759 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2761 ClosureReason::HolderForceClosed
2763 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2764 log_error!(self.logger, "Force-closing channel {}", channel_id);
2765 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2766 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2767 mem::drop(peer_state);
2768 mem::drop(per_peer_state);
2770 ChannelPhase::Funded(mut chan) => {
2771 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2772 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2774 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2775 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2776 // Unfunded channel has no update
2777 (None, chan_phase.context().get_counterparty_node_id())
2780 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2781 log_error!(self.logger, "Force-closing channel {}", &channel_id);
2782 // N.B. that we don't send any channel close event here: we
2783 // don't have a user_channel_id, and we never sent any opening
2785 (None, *peer_node_id)
2787 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2790 if let Some(update) = update_opt {
2791 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2792 // not try to broadcast it via whatever peer we have.
2793 let per_peer_state = self.per_peer_state.read().unwrap();
2794 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2795 .ok_or(per_peer_state.values().next());
2796 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2797 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2798 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2804 Ok(counterparty_node_id)
2807 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2808 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2809 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2810 Ok(counterparty_node_id) => {
2811 let per_peer_state = self.per_peer_state.read().unwrap();
2812 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2813 let mut peer_state = peer_state_mutex.lock().unwrap();
2814 peer_state.pending_msg_events.push(
2815 events::MessageSendEvent::HandleError {
2816 node_id: counterparty_node_id,
2817 action: msgs::ErrorAction::SendErrorMessage {
2818 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2829 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2830 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2831 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2833 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2834 -> Result<(), APIError> {
2835 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2838 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2839 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2840 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2842 /// You can always get the latest local transaction(s) to broadcast from
2843 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2844 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2845 -> Result<(), APIError> {
2846 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2849 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2850 /// for each to the chain and rejecting new HTLCs on each.
2851 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2852 for chan in self.list_channels() {
2853 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2857 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2858 /// local transaction(s).
2859 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2860 for chan in self.list_channels() {
2861 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2865 fn construct_fwd_pending_htlc_info(
2866 &self, msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
2867 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
2868 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
2869 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2870 debug_assert!(next_packet_pubkey_opt.is_some());
2871 let outgoing_packet = msgs::OnionPacket {
2873 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
2874 hop_data: new_packet_bytes,
2878 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
2879 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
2880 (short_channel_id, amt_to_forward, outgoing_cltv_value),
2881 msgs::InboundOnionPayload::Receive { .. } | msgs::InboundOnionPayload::BlindedReceive { .. } =>
2882 return Err(InboundOnionErr {
2883 msg: "Final Node OnionHopData provided for us as an intermediary node",
2884 err_code: 0x4000 | 22,
2885 err_data: Vec::new(),
2889 Ok(PendingHTLCInfo {
2890 routing: PendingHTLCRouting::Forward {
2891 onion_packet: outgoing_packet,
2894 payment_hash: msg.payment_hash,
2895 incoming_shared_secret: shared_secret,
2896 incoming_amt_msat: Some(msg.amount_msat),
2897 outgoing_amt_msat: amt_to_forward,
2898 outgoing_cltv_value,
2899 skimmed_fee_msat: None,
2903 fn construct_recv_pending_htlc_info(
2904 &self, hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
2905 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
2906 counterparty_skimmed_fee_msat: Option<u64>,
2907 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2908 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
2909 msgs::InboundOnionPayload::Receive {
2910 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
2912 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
2913 msgs::InboundOnionPayload::BlindedReceive {
2914 amt_msat, total_msat, outgoing_cltv_value, payment_secret, ..
2916 let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat };
2917 (Some(payment_data), None, Vec::new(), amt_msat, outgoing_cltv_value, None)
2919 msgs::InboundOnionPayload::Forward { .. } => {
2920 return Err(InboundOnionErr {
2921 err_code: 0x4000|22,
2922 err_data: Vec::new(),
2923 msg: "Got non final data with an HMAC of 0",
2927 // final_incorrect_cltv_expiry
2928 if outgoing_cltv_value > cltv_expiry {
2929 return Err(InboundOnionErr {
2930 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2932 err_data: cltv_expiry.to_be_bytes().to_vec()
2935 // final_expiry_too_soon
2936 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2937 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2939 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2940 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2941 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2942 let current_height: u32 = self.best_block.read().unwrap().height();
2943 if (outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2944 let mut err_data = Vec::with_capacity(12);
2945 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2946 err_data.extend_from_slice(¤t_height.to_be_bytes());
2947 return Err(InboundOnionErr {
2948 err_code: 0x4000 | 15, err_data,
2949 msg: "The final CLTV expiry is too soon to handle",
2952 if (!allow_underpay && onion_amt_msat > amt_msat) ||
2953 (allow_underpay && onion_amt_msat >
2954 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
2956 return Err(InboundOnionErr {
2958 err_data: amt_msat.to_be_bytes().to_vec(),
2959 msg: "Upstream node sent less than we were supposed to receive in payment",
2963 let routing = if let Some(payment_preimage) = keysend_preimage {
2964 // We need to check that the sender knows the keysend preimage before processing this
2965 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2966 // could discover the final destination of X, by probing the adjacent nodes on the route
2967 // with a keysend payment of identical payment hash to X and observing the processing
2968 // time discrepancies due to a hash collision with X.
2969 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2970 if hashed_preimage != payment_hash {
2971 return Err(InboundOnionErr {
2972 err_code: 0x4000|22,
2973 err_data: Vec::new(),
2974 msg: "Payment preimage didn't match payment hash",
2977 if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() {
2978 return Err(InboundOnionErr {
2979 err_code: 0x4000|22,
2980 err_data: Vec::new(),
2981 msg: "We don't support MPP keysend payments",
2984 PendingHTLCRouting::ReceiveKeysend {
2988 incoming_cltv_expiry: outgoing_cltv_value,
2991 } else if let Some(data) = payment_data {
2992 PendingHTLCRouting::Receive {
2995 incoming_cltv_expiry: outgoing_cltv_value,
2996 phantom_shared_secret,
3000 return Err(InboundOnionErr {
3001 err_code: 0x4000|0x2000|3,
3002 err_data: Vec::new(),
3003 msg: "We require payment_secrets",
3006 Ok(PendingHTLCInfo {
3009 incoming_shared_secret: shared_secret,
3010 incoming_amt_msat: Some(amt_msat),
3011 outgoing_amt_msat: onion_amt_msat,
3012 outgoing_cltv_value,
3013 skimmed_fee_msat: counterparty_skimmed_fee_msat,
3017 fn decode_update_add_htlc_onion(
3018 &self, msg: &msgs::UpdateAddHTLC
3019 ) -> Result<(onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg> {
3020 macro_rules! return_malformed_err {
3021 ($msg: expr, $err_code: expr) => {
3023 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3024 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3025 channel_id: msg.channel_id,
3026 htlc_id: msg.htlc_id,
3027 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
3028 failure_code: $err_code,
3034 if let Err(_) = msg.onion_routing_packet.public_key {
3035 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
3038 let shared_secret = self.node_signer.ecdh(
3039 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
3040 ).unwrap().secret_bytes();
3042 if msg.onion_routing_packet.version != 0 {
3043 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
3044 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
3045 //the hash doesn't really serve any purpose - in the case of hashing all data, the
3046 //receiving node would have to brute force to figure out which version was put in the
3047 //packet by the node that send us the message, in the case of hashing the hop_data, the
3048 //node knows the HMAC matched, so they already know what is there...
3049 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
3051 macro_rules! return_err {
3052 ($msg: expr, $err_code: expr, $data: expr) => {
3054 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3055 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3056 channel_id: msg.channel_id,
3057 htlc_id: msg.htlc_id,
3058 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3059 .get_encrypted_failure_packet(&shared_secret, &None),
3065 let next_hop = match onion_utils::decode_next_payment_hop(
3066 shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac,
3067 msg.payment_hash, &self.node_signer
3070 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3071 return_malformed_err!(err_msg, err_code);
3073 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3074 return_err!(err_msg, err_code, &[0; 0]);
3077 let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop {
3078 onion_utils::Hop::Forward {
3079 next_hop_data: msgs::InboundOnionPayload::Forward {
3080 short_channel_id, amt_to_forward, outgoing_cltv_value
3083 let next_packet_pk = onion_utils::next_hop_pubkey(&self.secp_ctx,
3084 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
3085 (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_packet_pk))
3087 // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the
3088 // inbound channel's state.
3089 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
3090 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } |
3091 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::BlindedReceive { .. }, .. } =>
3093 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
3097 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3098 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3099 if let Some((err, mut code, chan_update)) = loop {
3100 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3101 let forwarding_chan_info_opt = match id_option {
3102 None => { // unknown_next_peer
3103 // Note that this is likely a timing oracle for detecting whether an scid is a
3104 // phantom or an intercept.
3105 if (self.default_configuration.accept_intercept_htlcs &&
3106 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)) ||
3107 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)
3111 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3114 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3116 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3117 let per_peer_state = self.per_peer_state.read().unwrap();
3118 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3119 if peer_state_mutex_opt.is_none() {
3120 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3122 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3123 let peer_state = &mut *peer_state_lock;
3124 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3125 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3128 // Channel was removed. The short_to_chan_info and channel_by_id maps
3129 // have no consistency guarantees.
3130 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3134 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3135 // Note that the behavior here should be identical to the above block - we
3136 // should NOT reveal the existence or non-existence of a private channel if
3137 // we don't allow forwards outbound over them.
3138 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3140 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3141 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3142 // "refuse to forward unless the SCID alias was used", so we pretend
3143 // we don't have the channel here.
3144 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3146 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3148 // Note that we could technically not return an error yet here and just hope
3149 // that the connection is reestablished or monitor updated by the time we get
3150 // around to doing the actual forward, but better to fail early if we can and
3151 // hopefully an attacker trying to path-trace payments cannot make this occur
3152 // on a small/per-node/per-channel scale.
3153 if !chan.context.is_live() { // channel_disabled
3154 // If the channel_update we're going to return is disabled (i.e. the
3155 // peer has been disabled for some time), return `channel_disabled`,
3156 // otherwise return `temporary_channel_failure`.
3157 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3158 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3160 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3163 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3164 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3166 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3167 break Some((err, code, chan_update_opt));
3171 if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
3172 // We really should set `incorrect_cltv_expiry` here but as we're not
3173 // forwarding over a real channel we can't generate a channel_update
3174 // for it. Instead we just return a generic temporary_node_failure.
3176 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
3183 let cur_height = self.best_block.read().unwrap().height() + 1;
3184 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
3185 // but we want to be robust wrt to counterparty packet sanitization (see
3186 // HTLC_FAIL_BACK_BUFFER rationale).
3187 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
3188 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
3190 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
3191 break Some(("CLTV expiry is too far in the future", 21, None));
3193 // If the HTLC expires ~now, don't bother trying to forward it to our
3194 // counterparty. They should fail it anyway, but we don't want to bother with
3195 // the round-trips or risk them deciding they definitely want the HTLC and
3196 // force-closing to ensure they get it if we're offline.
3197 // We previously had a much more aggressive check here which tried to ensure
3198 // our counterparty receives an HTLC which has *our* risk threshold met on it,
3199 // but there is no need to do that, and since we're a bit conservative with our
3200 // risk threshold it just results in failing to forward payments.
3201 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
3202 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
3208 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3209 if let Some(chan_update) = chan_update {
3210 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3211 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3213 else if code == 0x1000 | 13 {
3214 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3216 else if code == 0x1000 | 20 {
3217 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3218 0u16.write(&mut res).expect("Writes cannot fail");
3220 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3221 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3222 chan_update.write(&mut res).expect("Writes cannot fail");
3223 } else if code & 0x1000 == 0x1000 {
3224 // If we're trying to return an error that requires a `channel_update` but
3225 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3226 // generate an update), just use the generic "temporary_node_failure"
3230 return_err!(err, code, &res.0[..]);
3232 Ok((next_hop, shared_secret, next_packet_pk_opt))
3235 fn construct_pending_htlc_status<'a>(
3236 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3237 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3238 ) -> PendingHTLCStatus {
3239 macro_rules! return_err {
3240 ($msg: expr, $err_code: expr, $data: expr) => {
3242 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3243 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3244 channel_id: msg.channel_id,
3245 htlc_id: msg.htlc_id,
3246 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3247 .get_encrypted_failure_packet(&shared_secret, &None),
3253 onion_utils::Hop::Receive(next_hop_data) => {
3255 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3256 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat)
3259 // Note that we could obviously respond immediately with an update_fulfill_htlc
3260 // message, however that would leak that we are the recipient of this payment, so
3261 // instead we stay symmetric with the forwarding case, only responding (after a
3262 // delay) once they've send us a commitment_signed!
3263 PendingHTLCStatus::Forward(info)
3265 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3268 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3269 match self.construct_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3270 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3271 Ok(info) => PendingHTLCStatus::Forward(info),
3272 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3278 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3279 /// public, and thus should be called whenever the result is going to be passed out in a
3280 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3282 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3283 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3284 /// storage and the `peer_state` lock has been dropped.
3286 /// [`channel_update`]: msgs::ChannelUpdate
3287 /// [`internal_closing_signed`]: Self::internal_closing_signed
3288 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3289 if !chan.context.should_announce() {
3290 return Err(LightningError {
3291 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3292 action: msgs::ErrorAction::IgnoreError
3295 if chan.context.get_short_channel_id().is_none() {
3296 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3298 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3299 self.get_channel_update_for_unicast(chan)
3302 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3303 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3304 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3305 /// provided evidence that they know about the existence of the channel.
3307 /// Note that through [`internal_closing_signed`], this function is called without the
3308 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3309 /// removed from the storage and the `peer_state` lock has been dropped.
3311 /// [`channel_update`]: msgs::ChannelUpdate
3312 /// [`internal_closing_signed`]: Self::internal_closing_signed
3313 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3314 log_trace!(self.logger, "Attempting to generate channel update for channel {}", &chan.context.channel_id());
3315 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3316 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3320 self.get_channel_update_for_onion(short_channel_id, chan)
3323 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3324 log_trace!(self.logger, "Generating channel update for channel {}", &chan.context.channel_id());
3325 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3327 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3328 ChannelUpdateStatus::Enabled => true,
3329 ChannelUpdateStatus::DisabledStaged(_) => true,
3330 ChannelUpdateStatus::Disabled => false,
3331 ChannelUpdateStatus::EnabledStaged(_) => false,
3334 let unsigned = msgs::UnsignedChannelUpdate {
3335 chain_hash: self.genesis_hash,
3337 timestamp: chan.context.get_update_time_counter(),
3338 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3339 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3340 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3341 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3342 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3343 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3344 excess_data: Vec::new(),
3346 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3347 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3348 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3350 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3352 Ok(msgs::ChannelUpdate {
3359 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3360 let _lck = self.total_consistency_lock.read().unwrap();
3361 self.send_payment_along_path(SendAlongPathArgs {
3362 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3367 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3368 let SendAlongPathArgs {
3369 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3372 // The top-level caller should hold the total_consistency_lock read lock.
3373 debug_assert!(self.total_consistency_lock.try_write().is_err());
3375 log_trace!(self.logger,
3376 "Attempting to send payment with payment hash {} along path with next hop {}",
3377 payment_hash, path.hops.first().unwrap().short_channel_id);
3378 let prng_seed = self.entropy_source.get_secure_random_bytes();
3379 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3381 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
3382 .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
3383 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
3385 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash)
3386 .map_err(|_| APIError::InvalidRoute { err: "Route size too large considering onion data".to_owned()})?;
3388 let err: Result<(), _> = loop {
3389 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3390 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3391 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3394 let per_peer_state = self.per_peer_state.read().unwrap();
3395 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3396 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3397 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3398 let peer_state = &mut *peer_state_lock;
3399 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3400 match chan_phase_entry.get_mut() {
3401 ChannelPhase::Funded(chan) => {
3402 if !chan.context.is_live() {
3403 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3405 let funding_txo = chan.context.get_funding_txo().unwrap();
3406 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3407 htlc_cltv, HTLCSource::OutboundRoute {
3409 session_priv: session_priv.clone(),
3410 first_hop_htlc_msat: htlc_msat,
3412 }, onion_packet, None, &self.fee_estimator, &self.logger);
3413 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3414 Some(monitor_update) => {
3415 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3417 // Note that MonitorUpdateInProgress here indicates (per function
3418 // docs) that we will resend the commitment update once monitor
3419 // updating completes. Therefore, we must return an error
3420 // indicating that it is unsafe to retry the payment wholesale,
3421 // which we do in the send_payment check for
3422 // MonitorUpdateInProgress, below.
3423 return Err(APIError::MonitorUpdateInProgress);
3431 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3434 // The channel was likely removed after we fetched the id from the
3435 // `short_to_chan_info` map, but before we successfully locked the
3436 // `channel_by_id` map.
3437 // This can occur as no consistency guarantees exists between the two maps.
3438 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3443 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3444 Ok(_) => unreachable!(),
3446 Err(APIError::ChannelUnavailable { err: e.err })
3451 /// Sends a payment along a given route.
3453 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3454 /// fields for more info.
3456 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3457 /// [`PeerManager::process_events`]).
3459 /// # Avoiding Duplicate Payments
3461 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3462 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3463 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3464 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3465 /// second payment with the same [`PaymentId`].
3467 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3468 /// tracking of payments, including state to indicate once a payment has completed. Because you
3469 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3470 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3471 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3473 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3474 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3475 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3476 /// [`ChannelManager::list_recent_payments`] for more information.
3478 /// # Possible Error States on [`PaymentSendFailure`]
3480 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3481 /// each entry matching the corresponding-index entry in the route paths, see
3482 /// [`PaymentSendFailure`] for more info.
3484 /// In general, a path may raise:
3485 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3486 /// node public key) is specified.
3487 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3488 /// closed, doesn't exist, or the peer is currently disconnected.
3489 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3490 /// relevant updates.
3492 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3493 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3494 /// different route unless you intend to pay twice!
3496 /// [`RouteHop`]: crate::routing::router::RouteHop
3497 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3498 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3499 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3500 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3501 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3502 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3503 let best_block_height = self.best_block.read().unwrap().height();
3504 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3505 self.pending_outbound_payments
3506 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3507 &self.entropy_source, &self.node_signer, best_block_height,
3508 |args| self.send_payment_along_path(args))
3511 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3512 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3513 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3514 let best_block_height = self.best_block.read().unwrap().height();
3515 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3516 self.pending_outbound_payments
3517 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3518 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3519 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3520 &self.pending_events, |args| self.send_payment_along_path(args))
3524 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3525 let best_block_height = self.best_block.read().unwrap().height();
3526 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3527 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3528 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3529 best_block_height, |args| self.send_payment_along_path(args))
3533 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3534 let best_block_height = self.best_block.read().unwrap().height();
3535 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3539 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3540 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3544 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3545 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3546 /// retries are exhausted.
3548 /// # Event Generation
3550 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3551 /// as there are no remaining pending HTLCs for this payment.
3553 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3554 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3555 /// determine the ultimate status of a payment.
3557 /// # Restart Behavior
3559 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3560 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated.
3561 pub fn abandon_payment(&self, payment_id: PaymentId) {
3562 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3563 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3566 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3567 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3568 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3569 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3570 /// never reach the recipient.
3572 /// See [`send_payment`] documentation for more details on the return value of this function
3573 /// and idempotency guarantees provided by the [`PaymentId`] key.
3575 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3576 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3578 /// [`send_payment`]: Self::send_payment
3579 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3580 let best_block_height = self.best_block.read().unwrap().height();
3581 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3582 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3583 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3584 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3587 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3588 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3590 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3593 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3594 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3595 let best_block_height = self.best_block.read().unwrap().height();
3596 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3597 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3598 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3599 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3600 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3603 /// Send a payment that is probing the given route for liquidity. We calculate the
3604 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3605 /// us to easily discern them from real payments.
3606 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3607 let best_block_height = self.best_block.read().unwrap().height();
3608 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3609 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3610 &self.entropy_source, &self.node_signer, best_block_height,
3611 |args| self.send_payment_along_path(args))
3614 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3617 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3618 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3621 /// Sends payment probes over all paths of a route that would be used to pay the given
3622 /// amount to the given `node_id`.
3624 /// See [`ChannelManager::send_preflight_probes`] for more information.
3625 pub fn send_spontaneous_preflight_probes(
3626 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3627 liquidity_limit_multiplier: Option<u64>,
3628 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3629 let payment_params =
3630 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3632 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3634 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3637 /// Sends payment probes over all paths of a route that would be used to pay a route found
3638 /// according to the given [`RouteParameters`].
3640 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3641 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3642 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3643 /// confirmation in a wallet UI.
3645 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3646 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3647 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3648 /// payment. To mitigate this issue, channels with available liquidity less than the required
3649 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3650 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3651 pub fn send_preflight_probes(
3652 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3653 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3654 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3656 let payer = self.get_our_node_id();
3657 let usable_channels = self.list_usable_channels();
3658 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3659 let inflight_htlcs = self.compute_inflight_htlcs();
3663 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3665 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3666 ProbeSendFailure::RouteNotFound
3669 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3671 let mut res = Vec::new();
3673 for mut path in route.paths {
3674 // If the last hop is probably an unannounced channel we refrain from probing all the
3675 // way through to the end and instead probe up to the second-to-last channel.
3676 while let Some(last_path_hop) = path.hops.last() {
3677 if last_path_hop.maybe_announced_channel {
3678 // We found a potentially announced last hop.
3681 // Drop the last hop, as it's likely unannounced.
3684 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3685 last_path_hop.short_channel_id
3687 let final_value_msat = path.final_value_msat();
3689 if let Some(new_last) = path.hops.last_mut() {
3690 new_last.fee_msat += final_value_msat;
3695 if path.hops.len() < 2 {
3698 "Skipped sending payment probe over path with less than two hops."
3703 if let Some(first_path_hop) = path.hops.first() {
3704 if let Some(first_hop) = first_hops.iter().find(|h| {
3705 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3707 let path_value = path.final_value_msat() + path.fee_msat();
3708 let used_liquidity =
3709 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3711 if first_hop.next_outbound_htlc_limit_msat
3712 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3714 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3717 *used_liquidity += path_value;
3722 res.push(self.send_probe(path).map_err(|e| {
3723 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3724 ProbeSendFailure::SendingFailed(e)
3731 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3732 /// which checks the correctness of the funding transaction given the associated channel.
3733 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3734 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3735 mut find_funding_output: FundingOutput,
3736 ) -> Result<(), APIError> {
3737 let per_peer_state = self.per_peer_state.read().unwrap();
3738 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3739 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3741 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3742 let peer_state = &mut *peer_state_lock;
3743 let (chan, msg) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3744 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3745 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3747 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &self.logger)
3748 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3749 let channel_id = chan.context.channel_id();
3750 let user_id = chan.context.get_user_id();
3751 let shutdown_res = chan.context.force_shutdown(false);
3752 let channel_capacity = chan.context.get_value_satoshis();
3753 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3754 } else { unreachable!(); });
3756 Ok((chan, funding_msg)) => (chan, funding_msg),
3757 Err((chan, err)) => {
3758 mem::drop(peer_state_lock);
3759 mem::drop(per_peer_state);
3761 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3762 return Err(APIError::ChannelUnavailable {
3763 err: "Signer refused to sign the initial commitment transaction".to_owned()
3769 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3770 return Err(APIError::APIMisuseError {
3772 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3773 temporary_channel_id, counterparty_node_id),
3776 None => return Err(APIError::ChannelUnavailable {err: format!(
3777 "Channel with id {} not found for the passed counterparty node_id {}",
3778 temporary_channel_id, counterparty_node_id),
3782 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3783 node_id: chan.context.get_counterparty_node_id(),
3786 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3787 hash_map::Entry::Occupied(_) => {
3788 panic!("Generated duplicate funding txid?");
3790 hash_map::Entry::Vacant(e) => {
3791 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3792 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3793 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3795 e.insert(ChannelPhase::Funded(chan));
3802 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3803 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3804 Ok(OutPoint { txid: tx.txid(), index: output_index })
3808 /// Call this upon creation of a funding transaction for the given channel.
3810 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3811 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3813 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3814 /// across the p2p network.
3816 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3817 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3819 /// May panic if the output found in the funding transaction is duplicative with some other
3820 /// channel (note that this should be trivially prevented by using unique funding transaction
3821 /// keys per-channel).
3823 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3824 /// counterparty's signature the funding transaction will automatically be broadcast via the
3825 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3827 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3828 /// not currently support replacing a funding transaction on an existing channel. Instead,
3829 /// create a new channel with a conflicting funding transaction.
3831 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3832 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3833 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3834 /// for more details.
3836 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3837 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3838 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3839 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3842 /// Call this upon creation of a batch funding transaction for the given channels.
3844 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3845 /// each individual channel and transaction output.
3847 /// Do NOT broadcast the funding transaction yourself. This batch funding transcaction
3848 /// will only be broadcast when we have safely received and persisted the counterparty's
3849 /// signature for each channel.
3851 /// If there is an error, all channels in the batch are to be considered closed.
3852 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3853 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3854 let mut result = Ok(());
3856 if !funding_transaction.is_coin_base() {
3857 for inp in funding_transaction.input.iter() {
3858 if inp.witness.is_empty() {
3859 result = result.and(Err(APIError::APIMisuseError {
3860 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3865 if funding_transaction.output.len() > u16::max_value() as usize {
3866 result = result.and(Err(APIError::APIMisuseError {
3867 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3871 let height = self.best_block.read().unwrap().height();
3872 // Transactions are evaluated as final by network mempools if their locktime is strictly
3873 // lower than the next block height. However, the modules constituting our Lightning
3874 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3875 // module is ahead of LDK, only allow one more block of headroom.
3876 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3877 result = result.and(Err(APIError::APIMisuseError {
3878 err: "Funding transaction absolute timelock is non-final".to_owned()
3883 let txid = funding_transaction.txid();
3884 let is_batch_funding = temporary_channels.len() > 1;
3885 let mut funding_batch_states = if is_batch_funding {
3886 Some(self.funding_batch_states.lock().unwrap())
3890 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3891 match states.entry(txid) {
3892 btree_map::Entry::Occupied(_) => {
3893 result = result.clone().and(Err(APIError::APIMisuseError {
3894 err: "Batch funding transaction with the same txid already exists".to_owned()
3898 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3901 for &(temporary_channel_id, counterparty_node_id) in temporary_channels.iter() {
3902 result = result.and_then(|_| self.funding_transaction_generated_intern(
3903 temporary_channel_id,
3904 counterparty_node_id,
3905 funding_transaction.clone(),
3908 let mut output_index = None;
3909 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3910 for (idx, outp) in tx.output.iter().enumerate() {
3911 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3912 if output_index.is_some() {
3913 return Err(APIError::APIMisuseError {
3914 err: "Multiple outputs matched the expected script and value".to_owned()
3917 output_index = Some(idx as u16);
3920 if output_index.is_none() {
3921 return Err(APIError::APIMisuseError {
3922 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3925 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3926 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
3927 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
3933 if let Err(ref e) = result {
3934 // Remaining channels need to be removed on any error.
3935 let e = format!("Error in transaction funding: {:?}", e);
3936 let mut channels_to_remove = Vec::new();
3937 channels_to_remove.extend(funding_batch_states.as_mut()
3938 .and_then(|states| states.remove(&txid))
3939 .into_iter().flatten()
3940 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
3942 channels_to_remove.extend(temporary_channels.iter()
3943 .map(|(&chan_id, &node_id)| (chan_id, node_id))
3945 let mut shutdown_results = Vec::new();
3947 let per_peer_state = self.per_peer_state.read().unwrap();
3948 for (channel_id, counterparty_node_id) in channels_to_remove {
3949 per_peer_state.get(&counterparty_node_id)
3950 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
3951 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
3953 update_maps_on_chan_removal!(self, &chan.context());
3954 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
3955 shutdown_results.push(chan.context_mut().force_shutdown(false));
3959 for shutdown_result in shutdown_results.drain(..) {
3960 self.finish_close_channel(shutdown_result);
3966 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3968 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3969 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3970 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3971 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3973 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3974 /// `counterparty_node_id` is provided.
3976 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3977 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3979 /// If an error is returned, none of the updates should be considered applied.
3981 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3982 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3983 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3984 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3985 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3986 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3987 /// [`APIMisuseError`]: APIError::APIMisuseError
3988 pub fn update_partial_channel_config(
3989 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
3990 ) -> Result<(), APIError> {
3991 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3992 return Err(APIError::APIMisuseError {
3993 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3997 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3998 let per_peer_state = self.per_peer_state.read().unwrap();
3999 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4000 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4001 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4002 let peer_state = &mut *peer_state_lock;
4003 for channel_id in channel_ids {
4004 if !peer_state.has_channel(channel_id) {
4005 return Err(APIError::ChannelUnavailable {
4006 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4010 for channel_id in channel_ids {
4011 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4012 let mut config = channel_phase.context().config();
4013 config.apply(config_update);
4014 if !channel_phase.context_mut().update_config(&config) {
4017 if let ChannelPhase::Funded(channel) = channel_phase {
4018 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4019 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4020 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4021 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4022 node_id: channel.context.get_counterparty_node_id(),
4029 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4030 debug_assert!(false);
4031 return Err(APIError::ChannelUnavailable {
4033 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4034 channel_id, counterparty_node_id),
4041 /// Atomically updates the [`ChannelConfig`] for the given channels.
4043 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4044 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4045 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4046 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4048 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4049 /// `counterparty_node_id` is provided.
4051 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4052 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4054 /// If an error is returned, none of the updates should be considered applied.
4056 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4057 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4058 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4059 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4060 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4061 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4062 /// [`APIMisuseError`]: APIError::APIMisuseError
4063 pub fn update_channel_config(
4064 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4065 ) -> Result<(), APIError> {
4066 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4069 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4070 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4072 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4073 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4075 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4076 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4077 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4078 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4079 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4081 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4082 /// you from forwarding more than you received. See
4083 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4086 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4089 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4090 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4091 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4092 // TODO: when we move to deciding the best outbound channel at forward time, only take
4093 // `next_node_id` and not `next_hop_channel_id`
4094 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4095 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4097 let next_hop_scid = {
4098 let peer_state_lock = self.per_peer_state.read().unwrap();
4099 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4100 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4101 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4102 let peer_state = &mut *peer_state_lock;
4103 match peer_state.channel_by_id.get(next_hop_channel_id) {
4104 Some(ChannelPhase::Funded(chan)) => {
4105 if !chan.context.is_usable() {
4106 return Err(APIError::ChannelUnavailable {
4107 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4110 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4112 Some(_) => return Err(APIError::ChannelUnavailable {
4113 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4114 next_hop_channel_id, next_node_id)
4116 None => return Err(APIError::ChannelUnavailable {
4117 err: format!("Channel with id {} not found for the passed counterparty node_id {}",
4118 next_hop_channel_id, next_node_id)
4123 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4124 .ok_or_else(|| APIError::APIMisuseError {
4125 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4128 let routing = match payment.forward_info.routing {
4129 PendingHTLCRouting::Forward { onion_packet, .. } => {
4130 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
4132 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4134 let skimmed_fee_msat =
4135 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4136 let pending_htlc_info = PendingHTLCInfo {
4137 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4138 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4141 let mut per_source_pending_forward = [(
4142 payment.prev_short_channel_id,
4143 payment.prev_funding_outpoint,
4144 payment.prev_user_channel_id,
4145 vec![(pending_htlc_info, payment.prev_htlc_id)]
4147 self.forward_htlcs(&mut per_source_pending_forward);
4151 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4152 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4154 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4157 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4158 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4159 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4161 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4162 .ok_or_else(|| APIError::APIMisuseError {
4163 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4166 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4167 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4168 short_channel_id: payment.prev_short_channel_id,
4169 user_channel_id: Some(payment.prev_user_channel_id),
4170 outpoint: payment.prev_funding_outpoint,
4171 htlc_id: payment.prev_htlc_id,
4172 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4173 phantom_shared_secret: None,
4176 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4177 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4178 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4179 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4184 /// Processes HTLCs which are pending waiting on random forward delay.
4186 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4187 /// Will likely generate further events.
4188 pub fn process_pending_htlc_forwards(&self) {
4189 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4191 let mut new_events = VecDeque::new();
4192 let mut failed_forwards = Vec::new();
4193 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4195 let mut forward_htlcs = HashMap::new();
4196 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4198 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4199 if short_chan_id != 0 {
4200 macro_rules! forwarding_channel_not_found {
4202 for forward_info in pending_forwards.drain(..) {
4203 match forward_info {
4204 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4205 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4206 forward_info: PendingHTLCInfo {
4207 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4208 outgoing_cltv_value, ..
4211 macro_rules! failure_handler {
4212 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4213 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4215 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4216 short_channel_id: prev_short_channel_id,
4217 user_channel_id: Some(prev_user_channel_id),
4218 outpoint: prev_funding_outpoint,
4219 htlc_id: prev_htlc_id,
4220 incoming_packet_shared_secret: incoming_shared_secret,
4221 phantom_shared_secret: $phantom_ss,
4224 let reason = if $next_hop_unknown {
4225 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4227 HTLCDestination::FailedPayment{ payment_hash }
4230 failed_forwards.push((htlc_source, payment_hash,
4231 HTLCFailReason::reason($err_code, $err_data),
4237 macro_rules! fail_forward {
4238 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4240 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4244 macro_rules! failed_payment {
4245 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4247 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4251 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
4252 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4253 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
4254 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4255 let next_hop = match onion_utils::decode_next_payment_hop(
4256 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4257 payment_hash, &self.node_signer
4260 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4261 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
4262 // In this scenario, the phantom would have sent us an
4263 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4264 // if it came from us (the second-to-last hop) but contains the sha256
4266 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4268 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4269 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4273 onion_utils::Hop::Receive(hop_data) => {
4274 match self.construct_recv_pending_htlc_info(hop_data,
4275 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4276 outgoing_cltv_value, Some(phantom_shared_secret), false, None)
4278 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4279 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4285 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4288 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4291 HTLCForwardInfo::FailHTLC { .. } => {
4292 // Channel went away before we could fail it. This implies
4293 // the channel is now on chain and our counterparty is
4294 // trying to broadcast the HTLC-Timeout, but that's their
4295 // problem, not ours.
4301 let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
4302 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4304 forwarding_channel_not_found!();
4308 let per_peer_state = self.per_peer_state.read().unwrap();
4309 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4310 if peer_state_mutex_opt.is_none() {
4311 forwarding_channel_not_found!();
4314 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4315 let peer_state = &mut *peer_state_lock;
4316 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4317 for forward_info in pending_forwards.drain(..) {
4318 match forward_info {
4319 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4320 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4321 forward_info: PendingHTLCInfo {
4322 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4323 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
4326 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4327 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4328 short_channel_id: prev_short_channel_id,
4329 user_channel_id: Some(prev_user_channel_id),
4330 outpoint: prev_funding_outpoint,
4331 htlc_id: prev_htlc_id,
4332 incoming_packet_shared_secret: incoming_shared_secret,
4333 // Phantom payments are only PendingHTLCRouting::Receive.
4334 phantom_shared_secret: None,
4336 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4337 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4338 onion_packet, skimmed_fee_msat, &self.fee_estimator,
4341 if let ChannelError::Ignore(msg) = e {
4342 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4344 panic!("Stated return value requirements in send_htlc() were not met");
4346 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4347 failed_forwards.push((htlc_source, payment_hash,
4348 HTLCFailReason::reason(failure_code, data),
4349 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4354 HTLCForwardInfo::AddHTLC { .. } => {
4355 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4357 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4358 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4359 if let Err(e) = chan.queue_fail_htlc(
4360 htlc_id, err_packet, &self.logger
4362 if let ChannelError::Ignore(msg) = e {
4363 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4365 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4367 // fail-backs are best-effort, we probably already have one
4368 // pending, and if not that's OK, if not, the channel is on
4369 // the chain and sending the HTLC-Timeout is their problem.
4376 forwarding_channel_not_found!();
4380 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4381 match forward_info {
4382 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4383 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4384 forward_info: PendingHTLCInfo {
4385 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4386 skimmed_fee_msat, ..
4389 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4390 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4391 let _legacy_hop_data = Some(payment_data.clone());
4392 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4393 payment_metadata, custom_tlvs };
4394 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4395 Some(payment_data), phantom_shared_secret, onion_fields)
4397 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4398 let onion_fields = RecipientOnionFields {
4399 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4403 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4404 payment_data, None, onion_fields)
4407 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4410 let claimable_htlc = ClaimableHTLC {
4411 prev_hop: HTLCPreviousHopData {
4412 short_channel_id: prev_short_channel_id,
4413 user_channel_id: Some(prev_user_channel_id),
4414 outpoint: prev_funding_outpoint,
4415 htlc_id: prev_htlc_id,
4416 incoming_packet_shared_secret: incoming_shared_secret,
4417 phantom_shared_secret,
4419 // We differentiate the received value from the sender intended value
4420 // if possible so that we don't prematurely mark MPP payments complete
4421 // if routing nodes overpay
4422 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4423 sender_intended_value: outgoing_amt_msat,
4425 total_value_received: None,
4426 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4429 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4432 let mut committed_to_claimable = false;
4434 macro_rules! fail_htlc {
4435 ($htlc: expr, $payment_hash: expr) => {
4436 debug_assert!(!committed_to_claimable);
4437 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4438 htlc_msat_height_data.extend_from_slice(
4439 &self.best_block.read().unwrap().height().to_be_bytes(),
4441 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4442 short_channel_id: $htlc.prev_hop.short_channel_id,
4443 user_channel_id: $htlc.prev_hop.user_channel_id,
4444 outpoint: prev_funding_outpoint,
4445 htlc_id: $htlc.prev_hop.htlc_id,
4446 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4447 phantom_shared_secret,
4449 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4450 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4452 continue 'next_forwardable_htlc;
4455 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4456 let mut receiver_node_id = self.our_network_pubkey;
4457 if phantom_shared_secret.is_some() {
4458 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4459 .expect("Failed to get node_id for phantom node recipient");
4462 macro_rules! check_total_value {
4463 ($purpose: expr) => {{
4464 let mut payment_claimable_generated = false;
4465 let is_keysend = match $purpose {
4466 events::PaymentPurpose::SpontaneousPayment(_) => true,
4467 events::PaymentPurpose::InvoicePayment { .. } => false,
4469 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4470 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4471 fail_htlc!(claimable_htlc, payment_hash);
4473 let ref mut claimable_payment = claimable_payments.claimable_payments
4474 .entry(payment_hash)
4475 // Note that if we insert here we MUST NOT fail_htlc!()
4476 .or_insert_with(|| {
4477 committed_to_claimable = true;
4479 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4482 if $purpose != claimable_payment.purpose {
4483 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4484 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4485 fail_htlc!(claimable_htlc, payment_hash);
4487 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4488 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4489 fail_htlc!(claimable_htlc, payment_hash);
4491 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4492 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4493 fail_htlc!(claimable_htlc, payment_hash);
4496 claimable_payment.onion_fields = Some(onion_fields);
4498 let ref mut htlcs = &mut claimable_payment.htlcs;
4499 let mut total_value = claimable_htlc.sender_intended_value;
4500 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4501 for htlc in htlcs.iter() {
4502 total_value += htlc.sender_intended_value;
4503 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4504 if htlc.total_msat != claimable_htlc.total_msat {
4505 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4506 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4507 total_value = msgs::MAX_VALUE_MSAT;
4509 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4511 // The condition determining whether an MPP is complete must
4512 // match exactly the condition used in `timer_tick_occurred`
4513 if total_value >= msgs::MAX_VALUE_MSAT {
4514 fail_htlc!(claimable_htlc, payment_hash);
4515 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4516 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4518 fail_htlc!(claimable_htlc, payment_hash);
4519 } else if total_value >= claimable_htlc.total_msat {
4520 #[allow(unused_assignments)] {
4521 committed_to_claimable = true;
4523 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4524 htlcs.push(claimable_htlc);
4525 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4526 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4527 let counterparty_skimmed_fee_msat = htlcs.iter()
4528 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4529 debug_assert!(total_value.saturating_sub(amount_msat) <=
4530 counterparty_skimmed_fee_msat);
4531 new_events.push_back((events::Event::PaymentClaimable {
4532 receiver_node_id: Some(receiver_node_id),
4536 counterparty_skimmed_fee_msat,
4537 via_channel_id: Some(prev_channel_id),
4538 via_user_channel_id: Some(prev_user_channel_id),
4539 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4540 onion_fields: claimable_payment.onion_fields.clone(),
4542 payment_claimable_generated = true;
4544 // Nothing to do - we haven't reached the total
4545 // payment value yet, wait until we receive more
4547 htlcs.push(claimable_htlc);
4548 #[allow(unused_assignments)] {
4549 committed_to_claimable = true;
4552 payment_claimable_generated
4556 // Check that the payment hash and secret are known. Note that we
4557 // MUST take care to handle the "unknown payment hash" and
4558 // "incorrect payment secret" cases here identically or we'd expose
4559 // that we are the ultimate recipient of the given payment hash.
4560 // Further, we must not expose whether we have any other HTLCs
4561 // associated with the same payment_hash pending or not.
4562 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4563 match payment_secrets.entry(payment_hash) {
4564 hash_map::Entry::Vacant(_) => {
4565 match claimable_htlc.onion_payload {
4566 OnionPayload::Invoice { .. } => {
4567 let payment_data = payment_data.unwrap();
4568 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4569 Ok(result) => result,
4571 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4572 fail_htlc!(claimable_htlc, payment_hash);
4575 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4576 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4577 if (cltv_expiry as u64) < expected_min_expiry_height {
4578 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4579 &payment_hash, cltv_expiry, expected_min_expiry_height);
4580 fail_htlc!(claimable_htlc, payment_hash);
4583 let purpose = events::PaymentPurpose::InvoicePayment {
4584 payment_preimage: payment_preimage.clone(),
4585 payment_secret: payment_data.payment_secret,
4587 check_total_value!(purpose);
4589 OnionPayload::Spontaneous(preimage) => {
4590 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4591 check_total_value!(purpose);
4595 hash_map::Entry::Occupied(inbound_payment) => {
4596 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4597 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4598 fail_htlc!(claimable_htlc, payment_hash);
4600 let payment_data = payment_data.unwrap();
4601 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4602 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4603 fail_htlc!(claimable_htlc, payment_hash);
4604 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4605 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4606 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4607 fail_htlc!(claimable_htlc, payment_hash);
4609 let purpose = events::PaymentPurpose::InvoicePayment {
4610 payment_preimage: inbound_payment.get().payment_preimage,
4611 payment_secret: payment_data.payment_secret,
4613 let payment_claimable_generated = check_total_value!(purpose);
4614 if payment_claimable_generated {
4615 inbound_payment.remove_entry();
4621 HTLCForwardInfo::FailHTLC { .. } => {
4622 panic!("Got pending fail of our own HTLC");
4630 let best_block_height = self.best_block.read().unwrap().height();
4631 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4632 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4633 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4635 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4636 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4638 self.forward_htlcs(&mut phantom_receives);
4640 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4641 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4642 // nice to do the work now if we can rather than while we're trying to get messages in the
4644 self.check_free_holding_cells();
4646 if new_events.is_empty() { return }
4647 let mut events = self.pending_events.lock().unwrap();
4648 events.append(&mut new_events);
4651 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4653 /// Expects the caller to have a total_consistency_lock read lock.
4654 fn process_background_events(&self) -> NotifyOption {
4655 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4657 self.background_events_processed_since_startup.store(true, Ordering::Release);
4659 let mut background_events = Vec::new();
4660 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4661 if background_events.is_empty() {
4662 return NotifyOption::SkipPersistNoEvents;
4665 for event in background_events.drain(..) {
4667 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4668 // The channel has already been closed, so no use bothering to care about the
4669 // monitor updating completing.
4670 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4672 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4673 let mut updated_chan = false;
4675 let per_peer_state = self.per_peer_state.read().unwrap();
4676 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4677 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4678 let peer_state = &mut *peer_state_lock;
4679 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4680 hash_map::Entry::Occupied(mut chan_phase) => {
4681 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4682 updated_chan = true;
4683 handle_new_monitor_update!(self, funding_txo, update.clone(),
4684 peer_state_lock, peer_state, per_peer_state, chan);
4686 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4689 hash_map::Entry::Vacant(_) => {},
4694 // TODO: Track this as in-flight even though the channel is closed.
4695 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4698 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4699 let per_peer_state = self.per_peer_state.read().unwrap();
4700 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4701 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4702 let peer_state = &mut *peer_state_lock;
4703 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4704 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4706 let update_actions = peer_state.monitor_update_blocked_actions
4707 .remove(&channel_id).unwrap_or(Vec::new());
4708 mem::drop(peer_state_lock);
4709 mem::drop(per_peer_state);
4710 self.handle_monitor_update_completion_actions(update_actions);
4716 NotifyOption::DoPersist
4719 #[cfg(any(test, feature = "_test_utils"))]
4720 /// Process background events, for functional testing
4721 pub fn test_process_background_events(&self) {
4722 let _lck = self.total_consistency_lock.read().unwrap();
4723 let _ = self.process_background_events();
4726 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4727 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4728 // If the feerate has decreased by less than half, don't bother
4729 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4730 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4731 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4732 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4734 return NotifyOption::SkipPersistNoEvents;
4736 if !chan.context.is_live() {
4737 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4738 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4739 return NotifyOption::SkipPersistNoEvents;
4741 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4742 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4744 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4745 NotifyOption::DoPersist
4749 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4750 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4751 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4752 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4753 pub fn maybe_update_chan_fees(&self) {
4754 PersistenceNotifierGuard::optionally_notify(self, || {
4755 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4757 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4758 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4760 let per_peer_state = self.per_peer_state.read().unwrap();
4761 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4762 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4763 let peer_state = &mut *peer_state_lock;
4764 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4765 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4767 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4772 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4773 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4781 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4783 /// This currently includes:
4784 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4785 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4786 /// than a minute, informing the network that they should no longer attempt to route over
4788 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4789 /// with the current [`ChannelConfig`].
4790 /// * Removing peers which have disconnected but and no longer have any channels.
4791 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4793 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4794 /// estimate fetches.
4796 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4797 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4798 pub fn timer_tick_occurred(&self) {
4799 PersistenceNotifierGuard::optionally_notify(self, || {
4800 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4802 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4803 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4805 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4806 let mut timed_out_mpp_htlcs = Vec::new();
4807 let mut pending_peers_awaiting_removal = Vec::new();
4808 let mut shutdown_channels = Vec::new();
4810 let mut process_unfunded_channel_tick = |
4811 chan_id: &ChannelId,
4812 context: &mut ChannelContext<SP>,
4813 unfunded_context: &mut UnfundedChannelContext,
4814 pending_msg_events: &mut Vec<MessageSendEvent>,
4815 counterparty_node_id: PublicKey,
4817 context.maybe_expire_prev_config();
4818 if unfunded_context.should_expire_unfunded_channel() {
4819 log_error!(self.logger,
4820 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4821 update_maps_on_chan_removal!(self, &context);
4822 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4823 shutdown_channels.push(context.force_shutdown(false));
4824 pending_msg_events.push(MessageSendEvent::HandleError {
4825 node_id: counterparty_node_id,
4826 action: msgs::ErrorAction::SendErrorMessage {
4827 msg: msgs::ErrorMessage {
4828 channel_id: *chan_id,
4829 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4840 let per_peer_state = self.per_peer_state.read().unwrap();
4841 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4842 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4843 let peer_state = &mut *peer_state_lock;
4844 let pending_msg_events = &mut peer_state.pending_msg_events;
4845 let counterparty_node_id = *counterparty_node_id;
4846 peer_state.channel_by_id.retain(|chan_id, phase| {
4848 ChannelPhase::Funded(chan) => {
4849 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4854 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4855 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4857 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4858 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4859 handle_errors.push((Err(err), counterparty_node_id));
4860 if needs_close { return false; }
4863 match chan.channel_update_status() {
4864 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4865 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4866 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4867 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4868 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4869 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4870 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4872 if n >= DISABLE_GOSSIP_TICKS {
4873 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4874 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4875 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4879 should_persist = NotifyOption::DoPersist;
4881 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4884 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4886 if n >= ENABLE_GOSSIP_TICKS {
4887 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4888 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4889 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4893 should_persist = NotifyOption::DoPersist;
4895 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4901 chan.context.maybe_expire_prev_config();
4903 if chan.should_disconnect_peer_awaiting_response() {
4904 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4905 counterparty_node_id, chan_id);
4906 pending_msg_events.push(MessageSendEvent::HandleError {
4907 node_id: counterparty_node_id,
4908 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4909 msg: msgs::WarningMessage {
4910 channel_id: *chan_id,
4911 data: "Disconnecting due to timeout awaiting response".to_owned(),
4919 ChannelPhase::UnfundedInboundV1(chan) => {
4920 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4921 pending_msg_events, counterparty_node_id)
4923 ChannelPhase::UnfundedOutboundV1(chan) => {
4924 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4925 pending_msg_events, counterparty_node_id)
4930 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4931 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4932 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
4933 peer_state.pending_msg_events.push(
4934 events::MessageSendEvent::HandleError {
4935 node_id: counterparty_node_id,
4936 action: msgs::ErrorAction::SendErrorMessage {
4937 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4943 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4945 if peer_state.ok_to_remove(true) {
4946 pending_peers_awaiting_removal.push(counterparty_node_id);
4951 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4952 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4953 // of to that peer is later closed while still being disconnected (i.e. force closed),
4954 // we therefore need to remove the peer from `peer_state` separately.
4955 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4956 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4957 // negative effects on parallelism as much as possible.
4958 if pending_peers_awaiting_removal.len() > 0 {
4959 let mut per_peer_state = self.per_peer_state.write().unwrap();
4960 for counterparty_node_id in pending_peers_awaiting_removal {
4961 match per_peer_state.entry(counterparty_node_id) {
4962 hash_map::Entry::Occupied(entry) => {
4963 // Remove the entry if the peer is still disconnected and we still
4964 // have no channels to the peer.
4965 let remove_entry = {
4966 let peer_state = entry.get().lock().unwrap();
4967 peer_state.ok_to_remove(true)
4970 entry.remove_entry();
4973 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
4978 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
4979 if payment.htlcs.is_empty() {
4980 // This should be unreachable
4981 debug_assert!(false);
4984 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
4985 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
4986 // In this case we're not going to handle any timeouts of the parts here.
4987 // This condition determining whether the MPP is complete here must match
4988 // exactly the condition used in `process_pending_htlc_forwards`.
4989 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
4990 .fold(0, |total, htlc| total + htlc.sender_intended_value)
4993 } else if payment.htlcs.iter_mut().any(|htlc| {
4994 htlc.timer_ticks += 1;
4995 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
4997 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
4998 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5005 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5006 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5007 let reason = HTLCFailReason::from_failure_code(23);
5008 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5009 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5012 for (err, counterparty_node_id) in handle_errors.drain(..) {
5013 let _ = handle_error!(self, err, counterparty_node_id);
5016 for shutdown_res in shutdown_channels {
5017 self.finish_close_channel(shutdown_res);
5020 self.pending_outbound_payments.remove_stale_payments(&self.pending_events);
5022 // Technically we don't need to do this here, but if we have holding cell entries in a
5023 // channel that need freeing, it's better to do that here and block a background task
5024 // than block the message queueing pipeline.
5025 if self.check_free_holding_cells() {
5026 should_persist = NotifyOption::DoPersist;
5033 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5034 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5035 /// along the path (including in our own channel on which we received it).
5037 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5038 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5039 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5040 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5042 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5043 /// [`ChannelManager::claim_funds`]), you should still monitor for
5044 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5045 /// startup during which time claims that were in-progress at shutdown may be replayed.
5046 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5047 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5050 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5051 /// reason for the failure.
5053 /// See [`FailureCode`] for valid failure codes.
5054 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5055 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5057 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5058 if let Some(payment) = removed_source {
5059 for htlc in payment.htlcs {
5060 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5061 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5062 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5063 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5068 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5069 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5070 match failure_code {
5071 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5072 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5073 FailureCode::IncorrectOrUnknownPaymentDetails => {
5074 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5075 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5076 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5078 FailureCode::InvalidOnionPayload(data) => {
5079 let fail_data = match data {
5080 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5083 HTLCFailReason::reason(failure_code.into(), fail_data)
5088 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5089 /// that we want to return and a channel.
5091 /// This is for failures on the channel on which the HTLC was *received*, not failures
5093 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5094 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5095 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5096 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5097 // an inbound SCID alias before the real SCID.
5098 let scid_pref = if chan.context.should_announce() {
5099 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5101 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5103 if let Some(scid) = scid_pref {
5104 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5106 (0x4000|10, Vec::new())
5111 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5112 /// that we want to return and a channel.
5113 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5114 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5115 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5116 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5117 if desired_err_code == 0x1000 | 20 {
5118 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5119 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5120 0u16.write(&mut enc).expect("Writes cannot fail");
5122 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5123 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5124 upd.write(&mut enc).expect("Writes cannot fail");
5125 (desired_err_code, enc.0)
5127 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5128 // which means we really shouldn't have gotten a payment to be forwarded over this
5129 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5130 // PERM|no_such_channel should be fine.
5131 (0x4000|10, Vec::new())
5135 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5136 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5137 // be surfaced to the user.
5138 fn fail_holding_cell_htlcs(
5139 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5140 counterparty_node_id: &PublicKey
5142 let (failure_code, onion_failure_data) = {
5143 let per_peer_state = self.per_peer_state.read().unwrap();
5144 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5145 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5146 let peer_state = &mut *peer_state_lock;
5147 match peer_state.channel_by_id.entry(channel_id) {
5148 hash_map::Entry::Occupied(chan_phase_entry) => {
5149 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5150 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5152 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5153 debug_assert!(false);
5154 (0x4000|10, Vec::new())
5157 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5159 } else { (0x4000|10, Vec::new()) }
5162 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5163 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5164 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5165 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5169 /// Fails an HTLC backwards to the sender of it to us.
5170 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5171 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5172 // Ensure that no peer state channel storage lock is held when calling this function.
5173 // This ensures that future code doesn't introduce a lock-order requirement for
5174 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5175 // this function with any `per_peer_state` peer lock acquired would.
5176 #[cfg(debug_assertions)]
5177 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5178 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5181 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5182 //identify whether we sent it or not based on the (I presume) very different runtime
5183 //between the branches here. We should make this async and move it into the forward HTLCs
5186 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5187 // from block_connected which may run during initialization prior to the chain_monitor
5188 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5190 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5191 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5192 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5193 &self.pending_events, &self.logger)
5194 { self.push_pending_forwards_ev(); }
5196 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
5197 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
5198 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
5200 let mut push_forward_ev = false;
5201 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5202 if forward_htlcs.is_empty() {
5203 push_forward_ev = true;
5205 match forward_htlcs.entry(*short_channel_id) {
5206 hash_map::Entry::Occupied(mut entry) => {
5207 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5209 hash_map::Entry::Vacant(entry) => {
5210 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5213 mem::drop(forward_htlcs);
5214 if push_forward_ev { self.push_pending_forwards_ev(); }
5215 let mut pending_events = self.pending_events.lock().unwrap();
5216 pending_events.push_back((events::Event::HTLCHandlingFailed {
5217 prev_channel_id: outpoint.to_channel_id(),
5218 failed_next_destination: destination,
5224 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5225 /// [`MessageSendEvent`]s needed to claim the payment.
5227 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5228 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5229 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5230 /// successful. It will generally be available in the next [`process_pending_events`] call.
5232 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5233 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5234 /// event matches your expectation. If you fail to do so and call this method, you may provide
5235 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5237 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5238 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5239 /// [`claim_funds_with_known_custom_tlvs`].
5241 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5242 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5243 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5244 /// [`process_pending_events`]: EventsProvider::process_pending_events
5245 /// [`create_inbound_payment`]: Self::create_inbound_payment
5246 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5247 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5248 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5249 self.claim_payment_internal(payment_preimage, false);
5252 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5253 /// even type numbers.
5257 /// You MUST check you've understood all even TLVs before using this to
5258 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5260 /// [`claim_funds`]: Self::claim_funds
5261 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5262 self.claim_payment_internal(payment_preimage, true);
5265 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5266 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5268 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5271 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5272 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5273 let mut receiver_node_id = self.our_network_pubkey;
5274 for htlc in payment.htlcs.iter() {
5275 if htlc.prev_hop.phantom_shared_secret.is_some() {
5276 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5277 .expect("Failed to get node_id for phantom node recipient");
5278 receiver_node_id = phantom_pubkey;
5283 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5284 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5285 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5286 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5287 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5289 if dup_purpose.is_some() {
5290 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5291 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5295 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5296 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5297 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5298 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5299 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5300 mem::drop(claimable_payments);
5301 for htlc in payment.htlcs {
5302 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5303 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5304 let receiver = HTLCDestination::FailedPayment { payment_hash };
5305 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5314 debug_assert!(!sources.is_empty());
5316 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5317 // and when we got here we need to check that the amount we're about to claim matches the
5318 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5319 // the MPP parts all have the same `total_msat`.
5320 let mut claimable_amt_msat = 0;
5321 let mut prev_total_msat = None;
5322 let mut expected_amt_msat = None;
5323 let mut valid_mpp = true;
5324 let mut errs = Vec::new();
5325 let per_peer_state = self.per_peer_state.read().unwrap();
5326 for htlc in sources.iter() {
5327 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5328 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5329 debug_assert!(false);
5333 prev_total_msat = Some(htlc.total_msat);
5335 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5336 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5337 debug_assert!(false);
5341 expected_amt_msat = htlc.total_value_received;
5342 claimable_amt_msat += htlc.value;
5344 mem::drop(per_peer_state);
5345 if sources.is_empty() || expected_amt_msat.is_none() {
5346 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5347 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5350 if claimable_amt_msat != expected_amt_msat.unwrap() {
5351 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5352 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5353 expected_amt_msat.unwrap(), claimable_amt_msat);
5357 for htlc in sources.drain(..) {
5358 if let Err((pk, err)) = self.claim_funds_from_hop(
5359 htlc.prev_hop, payment_preimage,
5360 |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
5362 if let msgs::ErrorAction::IgnoreError = err.err.action {
5363 // We got a temporary failure updating monitor, but will claim the
5364 // HTLC when the monitor updating is restored (or on chain).
5365 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5366 } else { errs.push((pk, err)); }
5371 for htlc in sources.drain(..) {
5372 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5373 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5374 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5375 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5376 let receiver = HTLCDestination::FailedPayment { payment_hash };
5377 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5379 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5382 // Now we can handle any errors which were generated.
5383 for (counterparty_node_id, err) in errs.drain(..) {
5384 let res: Result<(), _> = Err(err);
5385 let _ = handle_error!(self, res, counterparty_node_id);
5389 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
5390 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5391 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5392 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5394 // If we haven't yet run background events assume we're still deserializing and shouldn't
5395 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5396 // `BackgroundEvent`s.
5397 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5400 let per_peer_state = self.per_peer_state.read().unwrap();
5401 let chan_id = prev_hop.outpoint.to_channel_id();
5402 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5403 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5407 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5408 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5409 .map(|peer_mutex| peer_mutex.lock().unwrap())
5412 if peer_state_opt.is_some() {
5413 let mut peer_state_lock = peer_state_opt.unwrap();
5414 let peer_state = &mut *peer_state_lock;
5415 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5416 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5417 let counterparty_node_id = chan.context.get_counterparty_node_id();
5418 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5420 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
5421 if let Some(action) = completion_action(Some(htlc_value_msat)) {
5422 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5424 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5427 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5428 peer_state, per_peer_state, chan);
5430 // If we're running during init we cannot update a monitor directly -
5431 // they probably haven't actually been loaded yet. Instead, push the
5432 // monitor update as a background event.
5433 self.pending_background_events.lock().unwrap().push(
5434 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5435 counterparty_node_id,
5436 funding_txo: prev_hop.outpoint,
5437 update: monitor_update.clone(),
5446 let preimage_update = ChannelMonitorUpdate {
5447 update_id: CLOSED_CHANNEL_UPDATE_ID,
5448 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5454 // We update the ChannelMonitor on the backward link, after
5455 // receiving an `update_fulfill_htlc` from the forward link.
5456 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5457 if update_res != ChannelMonitorUpdateStatus::Completed {
5458 // TODO: This needs to be handled somehow - if we receive a monitor update
5459 // with a preimage we *must* somehow manage to propagate it to the upstream
5460 // channel, or we must have an ability to receive the same event and try
5461 // again on restart.
5462 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5463 payment_preimage, update_res);
5466 // If we're running during init we cannot update a monitor directly - they probably
5467 // haven't actually been loaded yet. Instead, push the monitor update as a background
5469 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5470 // channel is already closed) we need to ultimately handle the monitor update
5471 // completion action only after we've completed the monitor update. This is the only
5472 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5473 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5474 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5475 // complete the monitor update completion action from `completion_action`.
5476 self.pending_background_events.lock().unwrap().push(
5477 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5478 prev_hop.outpoint, preimage_update,
5481 // Note that we do process the completion action here. This totally could be a
5482 // duplicate claim, but we have no way of knowing without interrogating the
5483 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5484 // generally always allowed to be duplicative (and it's specifically noted in
5485 // `PaymentForwarded`).
5486 self.handle_monitor_update_completion_actions(completion_action(None));
5490 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5491 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5494 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5495 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool,
5496 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5499 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5500 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5501 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5502 if let Some(pubkey) = next_channel_counterparty_node_id {
5503 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5505 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5506 channel_funding_outpoint: next_channel_outpoint,
5507 counterparty_node_id: path.hops[0].pubkey,
5509 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5510 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5513 HTLCSource::PreviousHopData(hop_data) => {
5514 let prev_outpoint = hop_data.outpoint;
5515 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5516 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5517 |htlc_claim_value_msat| {
5518 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5519 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5520 Some(claimed_htlc_value - forwarded_htlc_value)
5523 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5524 event: events::Event::PaymentForwarded {
5526 claim_from_onchain_tx: from_onchain,
5527 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5528 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5529 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5531 downstream_counterparty_and_funding_outpoint:
5532 if let Some(node_id) = next_channel_counterparty_node_id {
5533 Some((node_id, next_channel_outpoint, completed_blocker))
5535 // We can only get `None` here if we are processing a
5536 // `ChannelMonitor`-originated event, in which case we
5537 // don't care about ensuring we wake the downstream
5538 // channel's monitor updating - the channel is already
5545 if let Err((pk, err)) = res {
5546 let result: Result<(), _> = Err(err);
5547 let _ = handle_error!(self, result, pk);
5553 /// Gets the node_id held by this ChannelManager
5554 pub fn get_our_node_id(&self) -> PublicKey {
5555 self.our_network_pubkey.clone()
5558 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5559 for action in actions.into_iter() {
5561 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5562 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5563 if let Some(ClaimingPayment {
5565 payment_purpose: purpose,
5568 sender_intended_value: sender_intended_total_msat,
5570 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5574 receiver_node_id: Some(receiver_node_id),
5576 sender_intended_total_msat,
5580 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5581 event, downstream_counterparty_and_funding_outpoint
5583 self.pending_events.lock().unwrap().push_back((event, None));
5584 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5585 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5592 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5593 /// update completion.
5594 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5595 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5596 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5597 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5598 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5599 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5600 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5601 &channel.context.channel_id(),
5602 if raa.is_some() { "an" } else { "no" },
5603 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5604 if funding_broadcastable.is_some() { "" } else { "not " },
5605 if channel_ready.is_some() { "sending" } else { "without" },
5606 if announcement_sigs.is_some() { "sending" } else { "without" });
5608 let mut htlc_forwards = None;
5610 let counterparty_node_id = channel.context.get_counterparty_node_id();
5611 if !pending_forwards.is_empty() {
5612 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5613 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5616 if let Some(msg) = channel_ready {
5617 send_channel_ready!(self, pending_msg_events, channel, msg);
5619 if let Some(msg) = announcement_sigs {
5620 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5621 node_id: counterparty_node_id,
5626 macro_rules! handle_cs { () => {
5627 if let Some(update) = commitment_update {
5628 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5629 node_id: counterparty_node_id,
5634 macro_rules! handle_raa { () => {
5635 if let Some(revoke_and_ack) = raa {
5636 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5637 node_id: counterparty_node_id,
5638 msg: revoke_and_ack,
5643 RAACommitmentOrder::CommitmentFirst => {
5647 RAACommitmentOrder::RevokeAndACKFirst => {
5653 if let Some(tx) = funding_broadcastable {
5654 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5655 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5659 let mut pending_events = self.pending_events.lock().unwrap();
5660 emit_channel_pending_event!(pending_events, channel);
5661 emit_channel_ready_event!(pending_events, channel);
5667 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5668 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5670 let counterparty_node_id = match counterparty_node_id {
5671 Some(cp_id) => cp_id.clone(),
5673 // TODO: Once we can rely on the counterparty_node_id from the
5674 // monitor event, this and the id_to_peer map should be removed.
5675 let id_to_peer = self.id_to_peer.lock().unwrap();
5676 match id_to_peer.get(&funding_txo.to_channel_id()) {
5677 Some(cp_id) => cp_id.clone(),
5682 let per_peer_state = self.per_peer_state.read().unwrap();
5683 let mut peer_state_lock;
5684 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5685 if peer_state_mutex_opt.is_none() { return }
5686 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5687 let peer_state = &mut *peer_state_lock;
5689 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5692 let update_actions = peer_state.monitor_update_blocked_actions
5693 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5694 mem::drop(peer_state_lock);
5695 mem::drop(per_peer_state);
5696 self.handle_monitor_update_completion_actions(update_actions);
5699 let remaining_in_flight =
5700 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5701 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5704 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5705 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5706 remaining_in_flight);
5707 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5710 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5713 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5715 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5716 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5719 /// The `user_channel_id` parameter will be provided back in
5720 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5721 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5723 /// Note that this method will return an error and reject the channel, if it requires support
5724 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5725 /// used to accept such channels.
5727 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5728 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5729 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5730 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5733 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5734 /// it as confirmed immediately.
5736 /// The `user_channel_id` parameter will be provided back in
5737 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5738 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5740 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5741 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5743 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5744 /// transaction and blindly assumes that it will eventually confirm.
5746 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5747 /// does not pay to the correct script the correct amount, *you will lose funds*.
5749 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5750 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5751 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5752 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5755 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5756 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5758 let peers_without_funded_channels =
5759 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5760 let per_peer_state = self.per_peer_state.read().unwrap();
5761 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5762 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5763 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5764 let peer_state = &mut *peer_state_lock;
5765 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5767 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5768 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5769 // that we can delay allocating the SCID until after we're sure that the checks below will
5771 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5772 Some(unaccepted_channel) => {
5773 let best_block_height = self.best_block.read().unwrap().height();
5774 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5775 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5776 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5777 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5779 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5783 // This should have been correctly configured by the call to InboundV1Channel::new.
5784 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
5785 } else if channel.context.get_channel_type().requires_zero_conf() {
5786 let send_msg_err_event = events::MessageSendEvent::HandleError {
5787 node_id: channel.context.get_counterparty_node_id(),
5788 action: msgs::ErrorAction::SendErrorMessage{
5789 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5792 peer_state.pending_msg_events.push(send_msg_err_event);
5793 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5795 // If this peer already has some channels, a new channel won't increase our number of peers
5796 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5797 // channels per-peer we can accept channels from a peer with existing ones.
5798 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5799 let send_msg_err_event = events::MessageSendEvent::HandleError {
5800 node_id: channel.context.get_counterparty_node_id(),
5801 action: msgs::ErrorAction::SendErrorMessage{
5802 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5805 peer_state.pending_msg_events.push(send_msg_err_event);
5806 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5810 // Now that we know we have a channel, assign an outbound SCID alias.
5811 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5812 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5814 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5815 node_id: channel.context.get_counterparty_node_id(),
5816 msg: channel.accept_inbound_channel(),
5819 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
5824 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
5825 /// or 0-conf channels.
5827 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
5828 /// non-0-conf channels we have with the peer.
5829 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
5830 where Filter: Fn(&PeerState<SP>) -> bool {
5831 let mut peers_without_funded_channels = 0;
5832 let best_block_height = self.best_block.read().unwrap().height();
5834 let peer_state_lock = self.per_peer_state.read().unwrap();
5835 for (_, peer_mtx) in peer_state_lock.iter() {
5836 let peer = peer_mtx.lock().unwrap();
5837 if !maybe_count_peer(&*peer) { continue; }
5838 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
5839 if num_unfunded_channels == peer.total_channel_count() {
5840 peers_without_funded_channels += 1;
5844 return peers_without_funded_channels;
5847 fn unfunded_channel_count(
5848 peer: &PeerState<SP>, best_block_height: u32
5850 let mut num_unfunded_channels = 0;
5851 for (_, phase) in peer.channel_by_id.iter() {
5853 ChannelPhase::Funded(chan) => {
5854 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
5855 // which have not yet had any confirmations on-chain.
5856 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
5857 chan.context.get_funding_tx_confirmations(best_block_height) == 0
5859 num_unfunded_channels += 1;
5862 ChannelPhase::UnfundedInboundV1(chan) => {
5863 if chan.context.minimum_depth().unwrap_or(1) != 0 {
5864 num_unfunded_channels += 1;
5867 ChannelPhase::UnfundedOutboundV1(_) => {
5868 // Outbound channels don't contribute to the unfunded count in the DoS context.
5873 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
5876 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
5877 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
5878 // likely to be lost on restart!
5879 if msg.chain_hash != self.genesis_hash {
5880 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
5883 if !self.default_configuration.accept_inbound_channels {
5884 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5887 // Get the number of peers with channels, but without funded ones. We don't care too much
5888 // about peers that never open a channel, so we filter by peers that have at least one
5889 // channel, and then limit the number of those with unfunded channels.
5890 let channeled_peers_without_funding =
5891 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
5893 let per_peer_state = self.per_peer_state.read().unwrap();
5894 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5896 debug_assert!(false);
5897 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
5899 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5900 let peer_state = &mut *peer_state_lock;
5902 // If this peer already has some channels, a new channel won't increase our number of peers
5903 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5904 // channels per-peer we can accept channels from a peer with existing ones.
5905 if peer_state.total_channel_count() == 0 &&
5906 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
5907 !self.default_configuration.manually_accept_inbound_channels
5909 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5910 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
5911 msg.temporary_channel_id.clone()));
5914 let best_block_height = self.best_block.read().unwrap().height();
5915 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
5916 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5917 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
5918 msg.temporary_channel_id.clone()));
5921 let channel_id = msg.temporary_channel_id;
5922 let channel_exists = peer_state.has_channel(&channel_id);
5924 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
5927 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
5928 if self.default_configuration.manually_accept_inbound_channels {
5929 let mut pending_events = self.pending_events.lock().unwrap();
5930 pending_events.push_back((events::Event::OpenChannelRequest {
5931 temporary_channel_id: msg.temporary_channel_id.clone(),
5932 counterparty_node_id: counterparty_node_id.clone(),
5933 funding_satoshis: msg.funding_satoshis,
5934 push_msat: msg.push_msat,
5935 channel_type: msg.channel_type.clone().unwrap(),
5937 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
5938 open_channel_msg: msg.clone(),
5939 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
5944 // Otherwise create the channel right now.
5945 let mut random_bytes = [0u8; 16];
5946 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
5947 let user_channel_id = u128::from_be_bytes(random_bytes);
5948 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5949 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
5950 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
5953 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
5958 let channel_type = channel.context.get_channel_type();
5959 if channel_type.requires_zero_conf() {
5960 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5962 if channel_type.requires_anchors_zero_fee_htlc_tx() {
5963 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
5966 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5967 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5969 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5970 node_id: counterparty_node_id.clone(),
5971 msg: channel.accept_inbound_channel(),
5973 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
5977 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
5978 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
5979 // likely to be lost on restart!
5980 let (value, output_script, user_id) = {
5981 let per_peer_state = self.per_peer_state.read().unwrap();
5982 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5984 debug_assert!(false);
5985 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
5987 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5988 let peer_state = &mut *peer_state_lock;
5989 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
5990 hash_map::Entry::Occupied(mut phase) => {
5991 match phase.get_mut() {
5992 ChannelPhase::UnfundedOutboundV1(chan) => {
5993 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
5994 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
5997 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6001 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6004 let mut pending_events = self.pending_events.lock().unwrap();
6005 pending_events.push_back((events::Event::FundingGenerationReady {
6006 temporary_channel_id: msg.temporary_channel_id,
6007 counterparty_node_id: *counterparty_node_id,
6008 channel_value_satoshis: value,
6010 user_channel_id: user_id,
6015 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6016 let best_block = *self.best_block.read().unwrap();
6018 let per_peer_state = self.per_peer_state.read().unwrap();
6019 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6021 debug_assert!(false);
6022 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6025 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6026 let peer_state = &mut *peer_state_lock;
6027 let (chan, funding_msg, monitor) =
6028 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6029 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6030 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
6032 Err((mut inbound_chan, err)) => {
6033 // We've already removed this inbound channel from the map in `PeerState`
6034 // above so at this point we just need to clean up any lingering entries
6035 // concerning this channel as it is safe to do so.
6036 update_maps_on_chan_removal!(self, &inbound_chan.context);
6037 let user_id = inbound_chan.context.get_user_id();
6038 let shutdown_res = inbound_chan.context.force_shutdown(false);
6039 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6040 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6044 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6045 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6047 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6050 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
6051 hash_map::Entry::Occupied(_) => {
6052 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
6054 hash_map::Entry::Vacant(e) => {
6055 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6056 match id_to_peer_lock.entry(chan.context.channel_id()) {
6057 hash_map::Entry::Occupied(_) => {
6058 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6059 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6060 funding_msg.channel_id))
6062 hash_map::Entry::Vacant(i_e) => {
6063 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6064 if let Ok(persist_state) = monitor_res {
6065 i_e.insert(chan.context.get_counterparty_node_id());
6066 mem::drop(id_to_peer_lock);
6068 // There's no problem signing a counterparty's funding transaction if our monitor
6069 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6070 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6071 // until we have persisted our monitor.
6072 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6073 node_id: counterparty_node_id.clone(),
6077 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6078 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6079 per_peer_state, chan, INITIAL_MONITOR);
6081 unreachable!("This must be a funded channel as we just inserted it.");
6085 log_error!(self.logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6086 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6087 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6088 funding_msg.channel_id));
6096 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6097 let best_block = *self.best_block.read().unwrap();
6098 let per_peer_state = self.per_peer_state.read().unwrap();
6099 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6101 debug_assert!(false);
6102 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6105 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6106 let peer_state = &mut *peer_state_lock;
6107 match peer_state.channel_by_id.entry(msg.channel_id) {
6108 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6109 match chan_phase_entry.get_mut() {
6110 ChannelPhase::Funded(ref mut chan) => {
6111 let monitor = try_chan_phase_entry!(self,
6112 chan.funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan_phase_entry);
6113 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6114 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6117 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
6121 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6125 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6129 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6130 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6131 // closing a channel), so any changes are likely to be lost on restart!
6132 let per_peer_state = self.per_peer_state.read().unwrap();
6133 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6135 debug_assert!(false);
6136 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6138 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6139 let peer_state = &mut *peer_state_lock;
6140 match peer_state.channel_by_id.entry(msg.channel_id) {
6141 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6142 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6143 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6144 self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan_phase_entry);
6145 if let Some(announcement_sigs) = announcement_sigs_opt {
6146 log_trace!(self.logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6147 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6148 node_id: counterparty_node_id.clone(),
6149 msg: announcement_sigs,
6151 } else if chan.context.is_usable() {
6152 // If we're sending an announcement_signatures, we'll send the (public)
6153 // channel_update after sending a channel_announcement when we receive our
6154 // counterparty's announcement_signatures. Thus, we only bother to send a
6155 // channel_update here if the channel is not public, i.e. we're not sending an
6156 // announcement_signatures.
6157 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6158 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6159 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6160 node_id: counterparty_node_id.clone(),
6167 let mut pending_events = self.pending_events.lock().unwrap();
6168 emit_channel_ready_event!(pending_events, chan);
6173 try_chan_phase_entry!(self, Err(ChannelError::Close(
6174 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6177 hash_map::Entry::Vacant(_) => {
6178 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6183 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6184 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6185 let mut finish_shutdown = None;
6187 let per_peer_state = self.per_peer_state.read().unwrap();
6188 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6190 debug_assert!(false);
6191 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6193 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6194 let peer_state = &mut *peer_state_lock;
6195 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6196 let phase = chan_phase_entry.get_mut();
6198 ChannelPhase::Funded(chan) => {
6199 if !chan.received_shutdown() {
6200 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
6202 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6205 let funding_txo_opt = chan.context.get_funding_txo();
6206 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6207 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6208 dropped_htlcs = htlcs;
6210 if let Some(msg) = shutdown {
6211 // We can send the `shutdown` message before updating the `ChannelMonitor`
6212 // here as we don't need the monitor update to complete until we send a
6213 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6214 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6215 node_id: *counterparty_node_id,
6219 // Update the monitor with the shutdown script if necessary.
6220 if let Some(monitor_update) = monitor_update_opt {
6221 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6222 peer_state_lock, peer_state, per_peer_state, chan);
6225 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6226 let context = phase.context_mut();
6227 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6228 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6229 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6230 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6234 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6237 for htlc_source in dropped_htlcs.drain(..) {
6238 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6239 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6240 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6242 if let Some(shutdown_res) = finish_shutdown {
6243 self.finish_close_channel(shutdown_res);
6249 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6250 let mut shutdown_result = None;
6251 let unbroadcasted_batch_funding_txid;
6252 let per_peer_state = self.per_peer_state.read().unwrap();
6253 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6255 debug_assert!(false);
6256 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6258 let (tx, chan_option) = {
6259 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6260 let peer_state = &mut *peer_state_lock;
6261 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6262 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6263 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6264 unbroadcasted_batch_funding_txid = chan.context.unbroadcasted_batch_funding_txid();
6265 let (closing_signed, tx) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6266 if let Some(msg) = closing_signed {
6267 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6268 node_id: counterparty_node_id.clone(),
6273 // We're done with this channel, we've got a signed closing transaction and
6274 // will send the closing_signed back to the remote peer upon return. This
6275 // also implies there are no pending HTLCs left on the channel, so we can
6276 // fully delete it from tracking (the channel monitor is still around to
6277 // watch for old state broadcasts)!
6278 (tx, Some(remove_channel_phase!(self, chan_phase_entry)))
6279 } else { (tx, None) }
6281 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6282 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6285 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6288 if let Some(broadcast_tx) = tx {
6289 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
6290 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6292 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6293 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6294 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6295 let peer_state = &mut *peer_state_lock;
6296 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6300 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6301 shutdown_result = Some((None, Vec::new(), unbroadcasted_batch_funding_txid));
6303 mem::drop(per_peer_state);
6304 if let Some(shutdown_result) = shutdown_result {
6305 self.finish_close_channel(shutdown_result);
6310 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6311 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6312 //determine the state of the payment based on our response/if we forward anything/the time
6313 //we take to respond. We should take care to avoid allowing such an attack.
6315 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6316 //us repeatedly garbled in different ways, and compare our error messages, which are
6317 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6318 //but we should prevent it anyway.
6320 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6321 // closing a channel), so any changes are likely to be lost on restart!
6323 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
6324 let per_peer_state = self.per_peer_state.read().unwrap();
6325 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6327 debug_assert!(false);
6328 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6330 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6331 let peer_state = &mut *peer_state_lock;
6332 match peer_state.channel_by_id.entry(msg.channel_id) {
6333 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6334 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6335 let pending_forward_info = match decoded_hop_res {
6336 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6337 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
6338 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt),
6339 Err(e) => PendingHTLCStatus::Fail(e)
6341 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6342 // If the update_add is completely bogus, the call will Err and we will close,
6343 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6344 // want to reject the new HTLC and fail it backwards instead of forwarding.
6345 match pending_forward_info {
6346 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
6347 let reason = if (error_code & 0x1000) != 0 {
6348 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6349 HTLCFailReason::reason(real_code, error_data)
6351 HTLCFailReason::from_failure_code(error_code)
6352 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6353 let msg = msgs::UpdateFailHTLC {
6354 channel_id: msg.channel_id,
6355 htlc_id: msg.htlc_id,
6358 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6360 _ => pending_forward_info
6363 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan_phase_entry);
6365 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6366 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6369 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6374 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6376 let (htlc_source, forwarded_htlc_value) = {
6377 let per_peer_state = self.per_peer_state.read().unwrap();
6378 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6380 debug_assert!(false);
6381 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6383 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6384 let peer_state = &mut *peer_state_lock;
6385 match peer_state.channel_by_id.entry(msg.channel_id) {
6386 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6387 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6388 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6389 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6390 log_trace!(self.logger,
6391 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6393 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6394 .or_insert_with(Vec::new)
6395 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6397 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6398 // entry here, even though we *do* need to block the next RAA monitor update.
6399 // We do this instead in the `claim_funds_internal` by attaching a
6400 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6401 // outbound HTLC is claimed. This is guaranteed to all complete before we
6402 // process the RAA as messages are processed from single peers serially.
6403 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6406 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6407 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6410 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6413 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, Some(*counterparty_node_id), funding_txo);
6417 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6418 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6419 // closing a channel), so any changes are likely to be lost on restart!
6420 let per_peer_state = self.per_peer_state.read().unwrap();
6421 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6423 debug_assert!(false);
6424 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6426 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6427 let peer_state = &mut *peer_state_lock;
6428 match peer_state.channel_by_id.entry(msg.channel_id) {
6429 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6430 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6431 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6433 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6434 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6437 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6442 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6443 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6444 // closing a channel), so any changes are likely to be lost on restart!
6445 let per_peer_state = self.per_peer_state.read().unwrap();
6446 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6448 debug_assert!(false);
6449 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6451 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6452 let peer_state = &mut *peer_state_lock;
6453 match peer_state.channel_by_id.entry(msg.channel_id) {
6454 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6455 if (msg.failure_code & 0x8000) == 0 {
6456 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6457 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6459 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6460 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6462 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6463 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6467 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6471 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6472 let per_peer_state = self.per_peer_state.read().unwrap();
6473 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6475 debug_assert!(false);
6476 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6478 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6479 let peer_state = &mut *peer_state_lock;
6480 match peer_state.channel_by_id.entry(msg.channel_id) {
6481 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6482 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6483 let funding_txo = chan.context.get_funding_txo();
6484 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &self.logger), chan_phase_entry);
6485 if let Some(monitor_update) = monitor_update_opt {
6486 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6487 peer_state, per_peer_state, chan);
6491 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6492 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6495 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6500 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6501 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6502 let mut push_forward_event = false;
6503 let mut new_intercept_events = VecDeque::new();
6504 let mut failed_intercept_forwards = Vec::new();
6505 if !pending_forwards.is_empty() {
6506 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6507 let scid = match forward_info.routing {
6508 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6509 PendingHTLCRouting::Receive { .. } => 0,
6510 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6512 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6513 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6515 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6516 let forward_htlcs_empty = forward_htlcs.is_empty();
6517 match forward_htlcs.entry(scid) {
6518 hash_map::Entry::Occupied(mut entry) => {
6519 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6520 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6522 hash_map::Entry::Vacant(entry) => {
6523 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6524 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
6526 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
6527 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6528 match pending_intercepts.entry(intercept_id) {
6529 hash_map::Entry::Vacant(entry) => {
6530 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6531 requested_next_hop_scid: scid,
6532 payment_hash: forward_info.payment_hash,
6533 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6534 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6537 entry.insert(PendingAddHTLCInfo {
6538 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6540 hash_map::Entry::Occupied(_) => {
6541 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6542 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6543 short_channel_id: prev_short_channel_id,
6544 user_channel_id: Some(prev_user_channel_id),
6545 outpoint: prev_funding_outpoint,
6546 htlc_id: prev_htlc_id,
6547 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6548 phantom_shared_secret: None,
6551 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6552 HTLCFailReason::from_failure_code(0x4000 | 10),
6553 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6558 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6559 // payments are being processed.
6560 if forward_htlcs_empty {
6561 push_forward_event = true;
6563 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6564 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6571 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6572 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6575 if !new_intercept_events.is_empty() {
6576 let mut events = self.pending_events.lock().unwrap();
6577 events.append(&mut new_intercept_events);
6579 if push_forward_event { self.push_pending_forwards_ev() }
6583 fn push_pending_forwards_ev(&self) {
6584 let mut pending_events = self.pending_events.lock().unwrap();
6585 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6586 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6587 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6589 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6590 // events is done in batches and they are not removed until we're done processing each
6591 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6592 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6593 // payments will need an additional forwarding event before being claimed to make them look
6594 // real by taking more time.
6595 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6596 pending_events.push_back((Event::PendingHTLCsForwardable {
6597 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6602 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6603 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6604 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6605 /// the [`ChannelMonitorUpdate`] in question.
6606 fn raa_monitor_updates_held(&self,
6607 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6608 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6610 actions_blocking_raa_monitor_updates
6611 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6612 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6613 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6614 channel_funding_outpoint,
6615 counterparty_node_id,
6620 #[cfg(any(test, feature = "_test_utils"))]
6621 pub(crate) fn test_raa_monitor_updates_held(&self,
6622 counterparty_node_id: PublicKey, channel_id: ChannelId
6624 let per_peer_state = self.per_peer_state.read().unwrap();
6625 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6626 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6627 let peer_state = &mut *peer_state_lck;
6629 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6630 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6631 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6637 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6638 let htlcs_to_fail = {
6639 let per_peer_state = self.per_peer_state.read().unwrap();
6640 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6642 debug_assert!(false);
6643 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6644 }).map(|mtx| mtx.lock().unwrap())?;
6645 let peer_state = &mut *peer_state_lock;
6646 match peer_state.channel_by_id.entry(msg.channel_id) {
6647 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6648 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6649 let funding_txo_opt = chan.context.get_funding_txo();
6650 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6651 self.raa_monitor_updates_held(
6652 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6653 *counterparty_node_id)
6655 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6656 chan.revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan_phase_entry);
6657 if let Some(monitor_update) = monitor_update_opt {
6658 let funding_txo = funding_txo_opt
6659 .expect("Funding outpoint must have been set for RAA handling to succeed");
6660 handle_new_monitor_update!(self, funding_txo, monitor_update,
6661 peer_state_lock, peer_state, per_peer_state, chan);
6665 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6666 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6669 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6672 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6676 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6677 let per_peer_state = self.per_peer_state.read().unwrap();
6678 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6680 debug_assert!(false);
6681 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6683 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6684 let peer_state = &mut *peer_state_lock;
6685 match peer_state.channel_by_id.entry(msg.channel_id) {
6686 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6687 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6688 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &self.logger), chan_phase_entry);
6690 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6691 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6694 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6699 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6700 let per_peer_state = self.per_peer_state.read().unwrap();
6701 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6703 debug_assert!(false);
6704 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6706 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6707 let peer_state = &mut *peer_state_lock;
6708 match peer_state.channel_by_id.entry(msg.channel_id) {
6709 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6710 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6711 if !chan.context.is_usable() {
6712 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6715 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6716 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6717 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
6718 msg, &self.default_configuration
6719 ), chan_phase_entry),
6720 // Note that announcement_signatures fails if the channel cannot be announced,
6721 // so get_channel_update_for_broadcast will never fail by the time we get here.
6722 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6725 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6726 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6729 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6734 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6735 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6736 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6737 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6739 // It's not a local channel
6740 return Ok(NotifyOption::SkipPersistNoEvents)
6743 let per_peer_state = self.per_peer_state.read().unwrap();
6744 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6745 if peer_state_mutex_opt.is_none() {
6746 return Ok(NotifyOption::SkipPersistNoEvents)
6748 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6749 let peer_state = &mut *peer_state_lock;
6750 match peer_state.channel_by_id.entry(chan_id) {
6751 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6752 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6753 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6754 if chan.context.should_announce() {
6755 // If the announcement is about a channel of ours which is public, some
6756 // other peer may simply be forwarding all its gossip to us. Don't provide
6757 // a scary-looking error message and return Ok instead.
6758 return Ok(NotifyOption::SkipPersistNoEvents);
6760 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6762 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6763 let msg_from_node_one = msg.contents.flags & 1 == 0;
6764 if were_node_one == msg_from_node_one {
6765 return Ok(NotifyOption::SkipPersistNoEvents);
6767 log_debug!(self.logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
6768 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6769 // If nothing changed after applying their update, we don't need to bother
6772 return Ok(NotifyOption::SkipPersistNoEvents);
6776 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6777 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
6780 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
6782 Ok(NotifyOption::DoPersist)
6785 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
6787 let need_lnd_workaround = {
6788 let per_peer_state = self.per_peer_state.read().unwrap();
6790 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6792 debug_assert!(false);
6793 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6795 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6796 let peer_state = &mut *peer_state_lock;
6797 match peer_state.channel_by_id.entry(msg.channel_id) {
6798 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6799 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6800 // Currently, we expect all holding cell update_adds to be dropped on peer
6801 // disconnect, so Channel's reestablish will never hand us any holding cell
6802 // freed HTLCs to fail backwards. If in the future we no longer drop pending
6803 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
6804 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
6805 msg, &self.logger, &self.node_signer, self.genesis_hash,
6806 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
6807 let mut channel_update = None;
6808 if let Some(msg) = responses.shutdown_msg {
6809 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6810 node_id: counterparty_node_id.clone(),
6813 } else if chan.context.is_usable() {
6814 // If the channel is in a usable state (ie the channel is not being shut
6815 // down), send a unicast channel_update to our counterparty to make sure
6816 // they have the latest channel parameters.
6817 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6818 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
6819 node_id: chan.context.get_counterparty_node_id(),
6824 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
6825 htlc_forwards = self.handle_channel_resumption(
6826 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
6827 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
6828 if let Some(upd) = channel_update {
6829 peer_state.pending_msg_events.push(upd);
6833 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6834 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
6837 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6841 let mut persist = NotifyOption::SkipPersistHandleEvents;
6842 if let Some(forwards) = htlc_forwards {
6843 self.forward_htlcs(&mut [forwards][..]);
6844 persist = NotifyOption::DoPersist;
6847 if let Some(channel_ready_msg) = need_lnd_workaround {
6848 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
6853 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
6854 fn process_pending_monitor_events(&self) -> bool {
6855 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6857 let mut failed_channels = Vec::new();
6858 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
6859 let has_pending_monitor_events = !pending_monitor_events.is_empty();
6860 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
6861 for monitor_event in monitor_events.drain(..) {
6862 match monitor_event {
6863 MonitorEvent::HTLCEvent(htlc_update) => {
6864 if let Some(preimage) = htlc_update.payment_preimage {
6865 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", preimage);
6866 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, counterparty_node_id, funding_outpoint);
6868 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
6869 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
6870 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6871 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
6874 MonitorEvent::HolderForceClosed(funding_outpoint) => {
6875 let counterparty_node_id_opt = match counterparty_node_id {
6876 Some(cp_id) => Some(cp_id),
6878 // TODO: Once we can rely on the counterparty_node_id from the
6879 // monitor event, this and the id_to_peer map should be removed.
6880 let id_to_peer = self.id_to_peer.lock().unwrap();
6881 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
6884 if let Some(counterparty_node_id) = counterparty_node_id_opt {
6885 let per_peer_state = self.per_peer_state.read().unwrap();
6886 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
6887 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6888 let peer_state = &mut *peer_state_lock;
6889 let pending_msg_events = &mut peer_state.pending_msg_events;
6890 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
6891 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
6892 failed_channels.push(chan.context.force_shutdown(false));
6893 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6894 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6898 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
6899 pending_msg_events.push(events::MessageSendEvent::HandleError {
6900 node_id: chan.context.get_counterparty_node_id(),
6901 action: msgs::ErrorAction::SendErrorMessage {
6902 msg: msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() }
6910 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
6911 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
6917 for failure in failed_channels.drain(..) {
6918 self.finish_close_channel(failure);
6921 has_pending_monitor_events
6924 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
6925 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
6926 /// update events as a separate process method here.
6928 pub fn process_monitor_events(&self) {
6929 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6930 self.process_pending_monitor_events();
6933 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
6934 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
6935 /// update was applied.
6936 fn check_free_holding_cells(&self) -> bool {
6937 let mut has_monitor_update = false;
6938 let mut failed_htlcs = Vec::new();
6940 // Walk our list of channels and find any that need to update. Note that when we do find an
6941 // update, if it includes actions that must be taken afterwards, we have to drop the
6942 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
6943 // manage to go through all our peers without finding a single channel to update.
6945 let per_peer_state = self.per_peer_state.read().unwrap();
6946 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6948 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6949 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
6950 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
6951 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
6953 let counterparty_node_id = chan.context.get_counterparty_node_id();
6954 let funding_txo = chan.context.get_funding_txo();
6955 let (monitor_opt, holding_cell_failed_htlcs) =
6956 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
6957 if !holding_cell_failed_htlcs.is_empty() {
6958 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
6960 if let Some(monitor_update) = monitor_opt {
6961 has_monitor_update = true;
6963 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
6964 peer_state_lock, peer_state, per_peer_state, chan);
6965 continue 'peer_loop;
6974 let has_update = has_monitor_update || !failed_htlcs.is_empty();
6975 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
6976 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
6982 /// Check whether any channels have finished removing all pending updates after a shutdown
6983 /// exchange and can now send a closing_signed.
6984 /// Returns whether any closing_signed messages were generated.
6985 fn maybe_generate_initial_closing_signed(&self) -> bool {
6986 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
6987 let mut has_update = false;
6988 let mut shutdown_results = Vec::new();
6990 let per_peer_state = self.per_peer_state.read().unwrap();
6992 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6993 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6994 let peer_state = &mut *peer_state_lock;
6995 let pending_msg_events = &mut peer_state.pending_msg_events;
6996 peer_state.channel_by_id.retain(|channel_id, phase| {
6998 ChannelPhase::Funded(chan) => {
6999 let unbroadcasted_batch_funding_txid = chan.context.unbroadcasted_batch_funding_txid();
7000 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
7001 Ok((msg_opt, tx_opt)) => {
7002 if let Some(msg) = msg_opt {
7004 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7005 node_id: chan.context.get_counterparty_node_id(), msg,
7008 if let Some(tx) = tx_opt {
7009 // We're done with this channel. We got a closing_signed and sent back
7010 // a closing_signed with a closing transaction to broadcast.
7011 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7012 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7017 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7019 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
7020 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7021 update_maps_on_chan_removal!(self, &chan.context);
7022 shutdown_results.push((None, Vec::new(), unbroadcasted_batch_funding_txid));
7028 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7029 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7034 _ => true, // Retain unfunded channels if present.
7040 for (counterparty_node_id, err) in handle_errors.drain(..) {
7041 let _ = handle_error!(self, err, counterparty_node_id);
7044 for shutdown_result in shutdown_results.drain(..) {
7045 self.finish_close_channel(shutdown_result);
7051 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7052 /// pushing the channel monitor update (if any) to the background events queue and removing the
7054 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7055 for mut failure in failed_channels.drain(..) {
7056 // Either a commitment transactions has been confirmed on-chain or
7057 // Channel::block_disconnected detected that the funding transaction has been
7058 // reorganized out of the main chain.
7059 // We cannot broadcast our latest local state via monitor update (as
7060 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7061 // so we track the update internally and handle it when the user next calls
7062 // timer_tick_occurred, guaranteeing we're running normally.
7063 if let Some((counterparty_node_id, funding_txo, update)) = failure.0.take() {
7064 assert_eq!(update.updates.len(), 1);
7065 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7066 assert!(should_broadcast);
7067 } else { unreachable!(); }
7068 self.pending_background_events.lock().unwrap().push(
7069 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7070 counterparty_node_id, funding_txo, update
7073 self.finish_close_channel(failure);
7077 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7080 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7081 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7083 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7084 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7085 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7086 /// passed directly to [`claim_funds`].
7088 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7090 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7091 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7095 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7096 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7098 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7100 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7101 /// on versions of LDK prior to 0.0.114.
7103 /// [`claim_funds`]: Self::claim_funds
7104 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7105 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7106 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7107 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7108 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7109 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7110 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7111 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7112 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7113 min_final_cltv_expiry_delta)
7116 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7117 /// stored external to LDK.
7119 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7120 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7121 /// the `min_value_msat` provided here, if one is provided.
7123 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7124 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7127 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7128 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7129 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7130 /// sender "proof-of-payment" unless they have paid the required amount.
7132 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7133 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7134 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7135 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7136 /// invoices when no timeout is set.
7138 /// Note that we use block header time to time-out pending inbound payments (with some margin
7139 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7140 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7141 /// If you need exact expiry semantics, you should enforce them upon receipt of
7142 /// [`PaymentClaimable`].
7144 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7145 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7147 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7148 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7152 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7153 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7155 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7157 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7158 /// on versions of LDK prior to 0.0.114.
7160 /// [`create_inbound_payment`]: Self::create_inbound_payment
7161 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7162 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7163 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7164 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7165 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7166 min_final_cltv_expiry)
7169 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7170 /// previously returned from [`create_inbound_payment`].
7172 /// [`create_inbound_payment`]: Self::create_inbound_payment
7173 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7174 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7177 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7178 /// are used when constructing the phantom invoice's route hints.
7180 /// [phantom node payments]: crate::sign::PhantomKeysManager
7181 pub fn get_phantom_scid(&self) -> u64 {
7182 let best_block_height = self.best_block.read().unwrap().height();
7183 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7185 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7186 // Ensure the generated scid doesn't conflict with a real channel.
7187 match short_to_chan_info.get(&scid_candidate) {
7188 Some(_) => continue,
7189 None => return scid_candidate
7194 /// Gets route hints for use in receiving [phantom node payments].
7196 /// [phantom node payments]: crate::sign::PhantomKeysManager
7197 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7199 channels: self.list_usable_channels(),
7200 phantom_scid: self.get_phantom_scid(),
7201 real_node_pubkey: self.get_our_node_id(),
7205 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7206 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7207 /// [`ChannelManager::forward_intercepted_htlc`].
7209 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7210 /// times to get a unique scid.
7211 pub fn get_intercept_scid(&self) -> u64 {
7212 let best_block_height = self.best_block.read().unwrap().height();
7213 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7215 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7216 // Ensure the generated scid doesn't conflict with a real channel.
7217 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7218 return scid_candidate
7222 /// Gets inflight HTLC information by processing pending outbound payments that are in
7223 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7224 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7225 let mut inflight_htlcs = InFlightHtlcs::new();
7227 let per_peer_state = self.per_peer_state.read().unwrap();
7228 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7229 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7230 let peer_state = &mut *peer_state_lock;
7231 for chan in peer_state.channel_by_id.values().filter_map(
7232 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7234 for (htlc_source, _) in chan.inflight_htlc_sources() {
7235 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7236 inflight_htlcs.process_path(path, self.get_our_node_id());
7245 #[cfg(any(test, feature = "_test_utils"))]
7246 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7247 let events = core::cell::RefCell::new(Vec::new());
7248 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7249 self.process_pending_events(&event_handler);
7253 #[cfg(feature = "_test_utils")]
7254 pub fn push_pending_event(&self, event: events::Event) {
7255 let mut events = self.pending_events.lock().unwrap();
7256 events.push_back((event, None));
7260 pub fn pop_pending_event(&self) -> Option<events::Event> {
7261 let mut events = self.pending_events.lock().unwrap();
7262 events.pop_front().map(|(e, _)| e)
7266 pub fn has_pending_payments(&self) -> bool {
7267 self.pending_outbound_payments.has_pending_payments()
7271 pub fn clear_pending_payments(&self) {
7272 self.pending_outbound_payments.clear_pending_payments()
7275 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7276 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7277 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7278 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7279 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7281 let per_peer_state = self.per_peer_state.read().unwrap();
7282 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7283 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7284 let peer_state = &mut *peer_state_lck;
7286 if let Some(blocker) = completed_blocker.take() {
7287 // Only do this on the first iteration of the loop.
7288 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7289 .get_mut(&channel_funding_outpoint.to_channel_id())
7291 blockers.retain(|iter| iter != &blocker);
7295 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7296 channel_funding_outpoint, counterparty_node_id) {
7297 // Check that, while holding the peer lock, we don't have anything else
7298 // blocking monitor updates for this channel. If we do, release the monitor
7299 // update(s) when those blockers complete.
7300 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7301 &channel_funding_outpoint.to_channel_id());
7305 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7306 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7307 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7308 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7309 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
7310 channel_funding_outpoint.to_channel_id());
7311 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7312 peer_state_lck, peer_state, per_peer_state, chan);
7313 if further_update_exists {
7314 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7319 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
7320 channel_funding_outpoint.to_channel_id());
7325 log_debug!(self.logger,
7326 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7327 log_pubkey!(counterparty_node_id));
7333 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7334 for action in actions {
7336 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7337 channel_funding_outpoint, counterparty_node_id
7339 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7345 /// Processes any events asynchronously in the order they were generated since the last call
7346 /// using the given event handler.
7348 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7349 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7353 process_events_body!(self, ev, { handler(ev).await });
7357 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7359 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7360 T::Target: BroadcasterInterface,
7361 ES::Target: EntropySource,
7362 NS::Target: NodeSigner,
7363 SP::Target: SignerProvider,
7364 F::Target: FeeEstimator,
7368 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
7369 /// The returned array will contain `MessageSendEvent`s for different peers if
7370 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
7371 /// is always placed next to each other.
7373 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
7374 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
7375 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
7376 /// will randomly be placed first or last in the returned array.
7378 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
7379 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
7380 /// the `MessageSendEvent`s to the specific peer they were generated under.
7381 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
7382 let events = RefCell::new(Vec::new());
7383 PersistenceNotifierGuard::optionally_notify(self, || {
7384 let mut result = NotifyOption::SkipPersistNoEvents;
7386 // TODO: This behavior should be documented. It's unintuitive that we query
7387 // ChannelMonitors when clearing other events.
7388 if self.process_pending_monitor_events() {
7389 result = NotifyOption::DoPersist;
7392 if self.check_free_holding_cells() {
7393 result = NotifyOption::DoPersist;
7395 if self.maybe_generate_initial_closing_signed() {
7396 result = NotifyOption::DoPersist;
7399 let mut pending_events = Vec::new();
7400 let per_peer_state = self.per_peer_state.read().unwrap();
7401 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7402 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7403 let peer_state = &mut *peer_state_lock;
7404 if peer_state.pending_msg_events.len() > 0 {
7405 pending_events.append(&mut peer_state.pending_msg_events);
7409 if !pending_events.is_empty() {
7410 events.replace(pending_events);
7419 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7421 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7422 T::Target: BroadcasterInterface,
7423 ES::Target: EntropySource,
7424 NS::Target: NodeSigner,
7425 SP::Target: SignerProvider,
7426 F::Target: FeeEstimator,
7430 /// Processes events that must be periodically handled.
7432 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
7433 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
7434 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
7436 process_events_body!(self, ev, handler.handle_event(ev));
7440 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
7442 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7443 T::Target: BroadcasterInterface,
7444 ES::Target: EntropySource,
7445 NS::Target: NodeSigner,
7446 SP::Target: SignerProvider,
7447 F::Target: FeeEstimator,
7451 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
7453 let best_block = self.best_block.read().unwrap();
7454 assert_eq!(best_block.block_hash(), header.prev_blockhash,
7455 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
7456 assert_eq!(best_block.height(), height - 1,
7457 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
7460 self.transactions_confirmed(header, txdata, height);
7461 self.best_block_updated(header, height);
7464 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
7465 let _persistence_guard =
7466 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7467 self, || -> NotifyOption { NotifyOption::DoPersist });
7468 let new_height = height - 1;
7470 let mut best_block = self.best_block.write().unwrap();
7471 assert_eq!(best_block.block_hash(), header.block_hash(),
7472 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
7473 assert_eq!(best_block.height(), height,
7474 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
7475 *best_block = BestBlock::new(header.prev_blockhash, new_height)
7478 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7482 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
7484 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7485 T::Target: BroadcasterInterface,
7486 ES::Target: EntropySource,
7487 NS::Target: NodeSigner,
7488 SP::Target: SignerProvider,
7489 F::Target: FeeEstimator,
7493 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
7494 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7495 // during initialization prior to the chain_monitor being fully configured in some cases.
7496 // See the docs for `ChannelManagerReadArgs` for more.
7498 let block_hash = header.block_hash();
7499 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
7501 let _persistence_guard =
7502 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7503 self, || -> NotifyOption { NotifyOption::DoPersist });
7504 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
7505 .map(|(a, b)| (a, Vec::new(), b)));
7507 let last_best_block_height = self.best_block.read().unwrap().height();
7508 if height < last_best_block_height {
7509 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
7510 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7514 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
7515 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7516 // during initialization prior to the chain_monitor being fully configured in some cases.
7517 // See the docs for `ChannelManagerReadArgs` for more.
7519 let block_hash = header.block_hash();
7520 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
7522 let _persistence_guard =
7523 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7524 self, || -> NotifyOption { NotifyOption::DoPersist });
7525 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
7527 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7529 macro_rules! max_time {
7530 ($timestamp: expr) => {
7532 // Update $timestamp to be the max of its current value and the block
7533 // timestamp. This should keep us close to the current time without relying on
7534 // having an explicit local time source.
7535 // Just in case we end up in a race, we loop until we either successfully
7536 // update $timestamp or decide we don't need to.
7537 let old_serial = $timestamp.load(Ordering::Acquire);
7538 if old_serial >= header.time as usize { break; }
7539 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
7545 max_time!(self.highest_seen_timestamp);
7546 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
7547 payment_secrets.retain(|_, inbound_payment| {
7548 inbound_payment.expiry_time > header.time as u64
7552 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
7553 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
7554 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
7555 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7556 let peer_state = &mut *peer_state_lock;
7557 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
7558 if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) {
7559 res.push((funding_txo.txid, Some(block_hash)));
7566 fn transaction_unconfirmed(&self, txid: &Txid) {
7567 let _persistence_guard =
7568 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7569 self, || -> NotifyOption { NotifyOption::DoPersist });
7570 self.do_chain_event(None, |channel| {
7571 if let Some(funding_txo) = channel.context.get_funding_txo() {
7572 if funding_txo.txid == *txid {
7573 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
7574 } else { Ok((None, Vec::new(), None)) }
7575 } else { Ok((None, Vec::new(), None)) }
7580 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
7582 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7583 T::Target: BroadcasterInterface,
7584 ES::Target: EntropySource,
7585 NS::Target: NodeSigner,
7586 SP::Target: SignerProvider,
7587 F::Target: FeeEstimator,
7591 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
7592 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
7594 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
7595 (&self, height_opt: Option<u32>, f: FN) {
7596 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7597 // during initialization prior to the chain_monitor being fully configured in some cases.
7598 // See the docs for `ChannelManagerReadArgs` for more.
7600 let mut failed_channels = Vec::new();
7601 let mut timed_out_htlcs = Vec::new();
7603 let per_peer_state = self.per_peer_state.read().unwrap();
7604 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7605 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7606 let peer_state = &mut *peer_state_lock;
7607 let pending_msg_events = &mut peer_state.pending_msg_events;
7608 peer_state.channel_by_id.retain(|_, phase| {
7610 // Retain unfunded channels.
7611 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
7612 ChannelPhase::Funded(channel) => {
7613 let res = f(channel);
7614 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
7615 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
7616 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
7617 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
7618 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
7620 if let Some(channel_ready) = channel_ready_opt {
7621 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
7622 if channel.context.is_usable() {
7623 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
7624 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
7625 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7626 node_id: channel.context.get_counterparty_node_id(),
7631 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
7636 let mut pending_events = self.pending_events.lock().unwrap();
7637 emit_channel_ready_event!(pending_events, channel);
7640 if let Some(announcement_sigs) = announcement_sigs {
7641 log_trace!(self.logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
7642 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7643 node_id: channel.context.get_counterparty_node_id(),
7644 msg: announcement_sigs,
7646 if let Some(height) = height_opt {
7647 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
7648 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
7650 // Note that announcement_signatures fails if the channel cannot be announced,
7651 // so get_channel_update_for_broadcast will never fail by the time we get here.
7652 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
7657 if channel.is_our_channel_ready() {
7658 if let Some(real_scid) = channel.context.get_short_channel_id() {
7659 // If we sent a 0conf channel_ready, and now have an SCID, we add it
7660 // to the short_to_chan_info map here. Note that we check whether we
7661 // can relay using the real SCID at relay-time (i.e.
7662 // enforce option_scid_alias then), and if the funding tx is ever
7663 // un-confirmed we force-close the channel, ensuring short_to_chan_info
7664 // is always consistent.
7665 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
7666 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
7667 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
7668 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
7669 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
7672 } else if let Err(reason) = res {
7673 update_maps_on_chan_removal!(self, &channel.context);
7674 // It looks like our counterparty went on-chain or funding transaction was
7675 // reorged out of the main chain. Close the channel.
7676 failed_channels.push(channel.context.force_shutdown(true));
7677 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
7678 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7682 let reason_message = format!("{}", reason);
7683 self.issue_channel_close_events(&channel.context, reason);
7684 pending_msg_events.push(events::MessageSendEvent::HandleError {
7685 node_id: channel.context.get_counterparty_node_id(),
7686 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
7687 channel_id: channel.context.channel_id(),
7688 data: reason_message,
7700 if let Some(height) = height_opt {
7701 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
7702 payment.htlcs.retain(|htlc| {
7703 // If height is approaching the number of blocks we think it takes us to get
7704 // our commitment transaction confirmed before the HTLC expires, plus the
7705 // number of blocks we generally consider it to take to do a commitment update,
7706 // just give up on it and fail the HTLC.
7707 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
7708 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
7709 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
7711 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
7712 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
7713 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
7717 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
7720 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
7721 intercepted_htlcs.retain(|_, htlc| {
7722 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
7723 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7724 short_channel_id: htlc.prev_short_channel_id,
7725 user_channel_id: Some(htlc.prev_user_channel_id),
7726 htlc_id: htlc.prev_htlc_id,
7727 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
7728 phantom_shared_secret: None,
7729 outpoint: htlc.prev_funding_outpoint,
7732 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
7733 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7734 _ => unreachable!(),
7736 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
7737 HTLCFailReason::from_failure_code(0x2000 | 2),
7738 HTLCDestination::InvalidForward { requested_forward_scid }));
7739 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
7745 self.handle_init_event_channel_failures(failed_channels);
7747 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
7748 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
7752 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
7753 /// may have events that need processing.
7755 /// In order to check if this [`ChannelManager`] needs persisting, call
7756 /// [`Self::get_and_clear_needs_persistence`].
7758 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
7759 /// [`ChannelManager`] and should instead register actions to be taken later.
7760 pub fn get_event_or_persistence_needed_future(&self) -> Future {
7761 self.event_persist_notifier.get_future()
7764 /// Returns true if this [`ChannelManager`] needs to be persisted.
7765 pub fn get_and_clear_needs_persistence(&self) -> bool {
7766 self.needs_persist_flag.swap(false, Ordering::AcqRel)
7769 #[cfg(any(test, feature = "_test_utils"))]
7770 pub fn get_event_or_persist_condvar_value(&self) -> bool {
7771 self.event_persist_notifier.notify_pending()
7774 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
7775 /// [`chain::Confirm`] interfaces.
7776 pub fn current_best_block(&self) -> BestBlock {
7777 self.best_block.read().unwrap().clone()
7780 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
7781 /// [`ChannelManager`].
7782 pub fn node_features(&self) -> NodeFeatures {
7783 provided_node_features(&self.default_configuration)
7786 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
7787 /// [`ChannelManager`].
7789 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
7790 /// or not. Thus, this method is not public.
7791 #[cfg(any(feature = "_test_utils", test))]
7792 pub fn invoice_features(&self) -> Bolt11InvoiceFeatures {
7793 provided_invoice_features(&self.default_configuration)
7796 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
7797 /// [`ChannelManager`].
7798 pub fn channel_features(&self) -> ChannelFeatures {
7799 provided_channel_features(&self.default_configuration)
7802 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
7803 /// [`ChannelManager`].
7804 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
7805 provided_channel_type_features(&self.default_configuration)
7808 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
7809 /// [`ChannelManager`].
7810 pub fn init_features(&self) -> InitFeatures {
7811 provided_init_features(&self.default_configuration)
7815 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7816 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
7818 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7819 T::Target: BroadcasterInterface,
7820 ES::Target: EntropySource,
7821 NS::Target: NodeSigner,
7822 SP::Target: SignerProvider,
7823 F::Target: FeeEstimator,
7827 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
7828 // Note that we never need to persist the updated ChannelManager for an inbound
7829 // open_channel message - pre-funded channels are never written so there should be no
7830 // change to the contents.
7831 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7832 let res = self.internal_open_channel(counterparty_node_id, msg);
7833 let persist = match &res {
7834 Err(e) if e.closes_channel() => {
7835 debug_assert!(false, "We shouldn't close a new channel");
7836 NotifyOption::DoPersist
7838 _ => NotifyOption::SkipPersistHandleEvents,
7840 let _ = handle_error!(self, res, *counterparty_node_id);
7845 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
7846 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7847 "Dual-funded channels not supported".to_owned(),
7848 msg.temporary_channel_id.clone())), *counterparty_node_id);
7851 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
7852 // Note that we never need to persist the updated ChannelManager for an inbound
7853 // accept_channel message - pre-funded channels are never written so there should be no
7854 // change to the contents.
7855 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7856 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
7857 NotifyOption::SkipPersistHandleEvents
7861 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
7862 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7863 "Dual-funded channels not supported".to_owned(),
7864 msg.temporary_channel_id.clone())), *counterparty_node_id);
7867 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
7868 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7869 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
7872 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
7873 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7874 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
7877 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
7878 // Note that we never need to persist the updated ChannelManager for an inbound
7879 // channel_ready message - while the channel's state will change, any channel_ready message
7880 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
7881 // will not force-close the channel on startup.
7882 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7883 let res = self.internal_channel_ready(counterparty_node_id, msg);
7884 let persist = match &res {
7885 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7886 _ => NotifyOption::SkipPersistHandleEvents,
7888 let _ = handle_error!(self, res, *counterparty_node_id);
7893 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
7894 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7895 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
7898 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
7899 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7900 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
7903 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
7904 // Note that we never need to persist the updated ChannelManager for an inbound
7905 // update_add_htlc message - the message itself doesn't change our channel state only the
7906 // `commitment_signed` message afterwards will.
7907 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7908 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
7909 let persist = match &res {
7910 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7911 Err(_) => NotifyOption::SkipPersistHandleEvents,
7912 Ok(()) => NotifyOption::SkipPersistNoEvents,
7914 let _ = handle_error!(self, res, *counterparty_node_id);
7919 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
7920 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7921 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
7924 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
7925 // Note that we never need to persist the updated ChannelManager for an inbound
7926 // update_fail_htlc message - the message itself doesn't change our channel state only the
7927 // `commitment_signed` message afterwards will.
7928 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7929 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
7930 let persist = match &res {
7931 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7932 Err(_) => NotifyOption::SkipPersistHandleEvents,
7933 Ok(()) => NotifyOption::SkipPersistNoEvents,
7935 let _ = handle_error!(self, res, *counterparty_node_id);
7940 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
7941 // Note that we never need to persist the updated ChannelManager for an inbound
7942 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
7943 // only the `commitment_signed` message afterwards will.
7944 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7945 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
7946 let persist = match &res {
7947 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7948 Err(_) => NotifyOption::SkipPersistHandleEvents,
7949 Ok(()) => NotifyOption::SkipPersistNoEvents,
7951 let _ = handle_error!(self, res, *counterparty_node_id);
7956 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
7957 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7958 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
7961 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
7962 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7963 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
7966 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
7967 // Note that we never need to persist the updated ChannelManager for an inbound
7968 // update_fee message - the message itself doesn't change our channel state only the
7969 // `commitment_signed` message afterwards will.
7970 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7971 let res = self.internal_update_fee(counterparty_node_id, msg);
7972 let persist = match &res {
7973 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7974 Err(_) => NotifyOption::SkipPersistHandleEvents,
7975 Ok(()) => NotifyOption::SkipPersistNoEvents,
7977 let _ = handle_error!(self, res, *counterparty_node_id);
7982 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
7983 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7984 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
7987 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
7988 PersistenceNotifierGuard::optionally_notify(self, || {
7989 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
7992 NotifyOption::DoPersist
7997 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
7998 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7999 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8000 let persist = match &res {
8001 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8002 Err(_) => NotifyOption::SkipPersistHandleEvents,
8003 Ok(persist) => *persist,
8005 let _ = handle_error!(self, res, *counterparty_node_id);
8010 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8011 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8012 self, || NotifyOption::SkipPersistHandleEvents);
8013 let mut failed_channels = Vec::new();
8014 let mut per_peer_state = self.per_peer_state.write().unwrap();
8016 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
8017 log_pubkey!(counterparty_node_id));
8018 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8019 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8020 let peer_state = &mut *peer_state_lock;
8021 let pending_msg_events = &mut peer_state.pending_msg_events;
8022 peer_state.channel_by_id.retain(|_, phase| {
8023 let context = match phase {
8024 ChannelPhase::Funded(chan) => {
8025 if chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger).is_ok() {
8026 // We only retain funded channels that are not shutdown.
8031 // Unfunded channels will always be removed.
8032 ChannelPhase::UnfundedOutboundV1(chan) => {
8035 ChannelPhase::UnfundedInboundV1(chan) => {
8039 // Clean up for removal.
8040 update_maps_on_chan_removal!(self, &context);
8041 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8042 failed_channels.push(context.force_shutdown(false));
8045 // Note that we don't bother generating any events for pre-accept channels -
8046 // they're not considered "channels" yet from the PoV of our events interface.
8047 peer_state.inbound_channel_request_by_id.clear();
8048 pending_msg_events.retain(|msg| {
8050 // V1 Channel Establishment
8051 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8052 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8053 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8054 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8055 // V2 Channel Establishment
8056 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8057 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8058 // Common Channel Establishment
8059 &events::MessageSendEvent::SendChannelReady { .. } => false,
8060 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8061 // Interactive Transaction Construction
8062 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8063 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8064 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8065 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8066 &events::MessageSendEvent::SendTxComplete { .. } => false,
8067 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8068 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8069 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8070 &events::MessageSendEvent::SendTxAbort { .. } => false,
8071 // Channel Operations
8072 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8073 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8074 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8075 &events::MessageSendEvent::SendShutdown { .. } => false,
8076 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8077 &events::MessageSendEvent::HandleError { .. } => false,
8079 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8080 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8081 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8082 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8083 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8084 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8085 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8086 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8087 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8090 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8091 peer_state.is_connected = false;
8092 peer_state.ok_to_remove(true)
8093 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8096 per_peer_state.remove(counterparty_node_id);
8098 mem::drop(per_peer_state);
8100 for failure in failed_channels.drain(..) {
8101 self.finish_close_channel(failure);
8105 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8106 if !init_msg.features.supports_static_remote_key() {
8107 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8111 let mut res = Ok(());
8113 PersistenceNotifierGuard::optionally_notify(self, || {
8114 // If we have too many peers connected which don't have funded channels, disconnect the
8115 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8116 // unfunded channels taking up space in memory for disconnected peers, we still let new
8117 // peers connect, but we'll reject new channels from them.
8118 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8119 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8122 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8123 match peer_state_lock.entry(counterparty_node_id.clone()) {
8124 hash_map::Entry::Vacant(e) => {
8125 if inbound_peer_limited {
8127 return NotifyOption::SkipPersistNoEvents;
8129 e.insert(Mutex::new(PeerState {
8130 channel_by_id: HashMap::new(),
8131 inbound_channel_request_by_id: HashMap::new(),
8132 latest_features: init_msg.features.clone(),
8133 pending_msg_events: Vec::new(),
8134 in_flight_monitor_updates: BTreeMap::new(),
8135 monitor_update_blocked_actions: BTreeMap::new(),
8136 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8140 hash_map::Entry::Occupied(e) => {
8141 let mut peer_state = e.get().lock().unwrap();
8142 peer_state.latest_features = init_msg.features.clone();
8144 let best_block_height = self.best_block.read().unwrap().height();
8145 if inbound_peer_limited &&
8146 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8147 peer_state.channel_by_id.len()
8150 return NotifyOption::SkipPersistNoEvents;
8153 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8154 peer_state.is_connected = true;
8159 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8161 let per_peer_state = self.per_peer_state.read().unwrap();
8162 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8163 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8164 let peer_state = &mut *peer_state_lock;
8165 let pending_msg_events = &mut peer_state.pending_msg_events;
8167 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8168 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8169 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8170 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8171 // worry about closing and removing them.
8172 debug_assert!(false);
8176 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
8177 node_id: chan.context.get_counterparty_node_id(),
8178 msg: chan.get_channel_reestablish(&self.logger),
8183 return NotifyOption::SkipPersistHandleEvents;
8184 //TODO: Also re-broadcast announcement_signatures
8189 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8190 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8192 match &msg.data as &str {
8193 "cannot co-op close channel w/ active htlcs"|
8194 "link failed to shutdown" =>
8196 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8197 // send one while HTLCs are still present. The issue is tracked at
8198 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8199 // to fix it but none so far have managed to land upstream. The issue appears to be
8200 // very low priority for the LND team despite being marked "P1".
8201 // We're not going to bother handling this in a sensible way, instead simply
8202 // repeating the Shutdown message on repeat until morale improves.
8203 if !msg.channel_id.is_zero() {
8204 let per_peer_state = self.per_peer_state.read().unwrap();
8205 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8206 if peer_state_mutex_opt.is_none() { return; }
8207 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8208 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8209 if let Some(msg) = chan.get_outbound_shutdown() {
8210 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8211 node_id: *counterparty_node_id,
8215 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8216 node_id: *counterparty_node_id,
8217 action: msgs::ErrorAction::SendWarningMessage {
8218 msg: msgs::WarningMessage {
8219 channel_id: msg.channel_id,
8220 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8222 log_level: Level::Trace,
8232 if msg.channel_id.is_zero() {
8233 let channel_ids: Vec<ChannelId> = {
8234 let per_peer_state = self.per_peer_state.read().unwrap();
8235 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8236 if peer_state_mutex_opt.is_none() { return; }
8237 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8238 let peer_state = &mut *peer_state_lock;
8239 // Note that we don't bother generating any events for pre-accept channels -
8240 // they're not considered "channels" yet from the PoV of our events interface.
8241 peer_state.inbound_channel_request_by_id.clear();
8242 peer_state.channel_by_id.keys().cloned().collect()
8244 for channel_id in channel_ids {
8245 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8246 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8250 // First check if we can advance the channel type and try again.
8251 let per_peer_state = self.per_peer_state.read().unwrap();
8252 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8253 if peer_state_mutex_opt.is_none() { return; }
8254 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8255 let peer_state = &mut *peer_state_lock;
8256 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8257 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash, &self.fee_estimator) {
8258 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8259 node_id: *counterparty_node_id,
8267 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8268 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8272 fn provided_node_features(&self) -> NodeFeatures {
8273 provided_node_features(&self.default_configuration)
8276 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8277 provided_init_features(&self.default_configuration)
8280 fn get_genesis_hashes(&self) -> Option<Vec<ChainHash>> {
8281 Some(vec![ChainHash::from(&self.genesis_hash[..])])
8284 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8285 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8286 "Dual-funded channels not supported".to_owned(),
8287 msg.channel_id.clone())), *counterparty_node_id);
8290 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
8291 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8292 "Dual-funded channels not supported".to_owned(),
8293 msg.channel_id.clone())), *counterparty_node_id);
8296 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
8297 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8298 "Dual-funded channels not supported".to_owned(),
8299 msg.channel_id.clone())), *counterparty_node_id);
8302 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
8303 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8304 "Dual-funded channels not supported".to_owned(),
8305 msg.channel_id.clone())), *counterparty_node_id);
8308 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
8309 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8310 "Dual-funded channels not supported".to_owned(),
8311 msg.channel_id.clone())), *counterparty_node_id);
8314 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
8315 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8316 "Dual-funded channels not supported".to_owned(),
8317 msg.channel_id.clone())), *counterparty_node_id);
8320 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
8321 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8322 "Dual-funded channels not supported".to_owned(),
8323 msg.channel_id.clone())), *counterparty_node_id);
8326 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
8327 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8328 "Dual-funded channels not supported".to_owned(),
8329 msg.channel_id.clone())), *counterparty_node_id);
8332 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
8333 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8334 "Dual-funded channels not supported".to_owned(),
8335 msg.channel_id.clone())), *counterparty_node_id);
8339 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
8340 /// [`ChannelManager`].
8341 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
8342 let mut node_features = provided_init_features(config).to_context();
8343 node_features.set_keysend_optional();
8347 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
8348 /// [`ChannelManager`].
8350 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8351 /// or not. Thus, this method is not public.
8352 #[cfg(any(feature = "_test_utils", test))]
8353 pub(crate) fn provided_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
8354 provided_init_features(config).to_context()
8357 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
8358 /// [`ChannelManager`].
8359 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
8360 provided_init_features(config).to_context()
8363 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
8364 /// [`ChannelManager`].
8365 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
8366 ChannelTypeFeatures::from_init(&provided_init_features(config))
8369 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
8370 /// [`ChannelManager`].
8371 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
8372 // Note that if new features are added here which other peers may (eventually) require, we
8373 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
8374 // [`ErroringMessageHandler`].
8375 let mut features = InitFeatures::empty();
8376 features.set_data_loss_protect_required();
8377 features.set_upfront_shutdown_script_optional();
8378 features.set_variable_length_onion_required();
8379 features.set_static_remote_key_required();
8380 features.set_payment_secret_required();
8381 features.set_basic_mpp_optional();
8382 features.set_wumbo_optional();
8383 features.set_shutdown_any_segwit_optional();
8384 features.set_channel_type_optional();
8385 features.set_scid_privacy_optional();
8386 features.set_zero_conf_optional();
8387 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
8388 features.set_anchors_zero_fee_htlc_tx_optional();
8393 const SERIALIZATION_VERSION: u8 = 1;
8394 const MIN_SERIALIZATION_VERSION: u8 = 1;
8396 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
8397 (2, fee_base_msat, required),
8398 (4, fee_proportional_millionths, required),
8399 (6, cltv_expiry_delta, required),
8402 impl_writeable_tlv_based!(ChannelCounterparty, {
8403 (2, node_id, required),
8404 (4, features, required),
8405 (6, unspendable_punishment_reserve, required),
8406 (8, forwarding_info, option),
8407 (9, outbound_htlc_minimum_msat, option),
8408 (11, outbound_htlc_maximum_msat, option),
8411 impl Writeable for ChannelDetails {
8412 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8413 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
8414 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
8415 let user_channel_id_low = self.user_channel_id as u64;
8416 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
8417 write_tlv_fields!(writer, {
8418 (1, self.inbound_scid_alias, option),
8419 (2, self.channel_id, required),
8420 (3, self.channel_type, option),
8421 (4, self.counterparty, required),
8422 (5, self.outbound_scid_alias, option),
8423 (6, self.funding_txo, option),
8424 (7, self.config, option),
8425 (8, self.short_channel_id, option),
8426 (9, self.confirmations, option),
8427 (10, self.channel_value_satoshis, required),
8428 (12, self.unspendable_punishment_reserve, option),
8429 (14, user_channel_id_low, required),
8430 (16, self.balance_msat, required),
8431 (18, self.outbound_capacity_msat, required),
8432 (19, self.next_outbound_htlc_limit_msat, required),
8433 (20, self.inbound_capacity_msat, required),
8434 (21, self.next_outbound_htlc_minimum_msat, required),
8435 (22, self.confirmations_required, option),
8436 (24, self.force_close_spend_delay, option),
8437 (26, self.is_outbound, required),
8438 (28, self.is_channel_ready, required),
8439 (30, self.is_usable, required),
8440 (32, self.is_public, required),
8441 (33, self.inbound_htlc_minimum_msat, option),
8442 (35, self.inbound_htlc_maximum_msat, option),
8443 (37, user_channel_id_high_opt, option),
8444 (39, self.feerate_sat_per_1000_weight, option),
8445 (41, self.channel_shutdown_state, option),
8451 impl Readable for ChannelDetails {
8452 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8453 _init_and_read_len_prefixed_tlv_fields!(reader, {
8454 (1, inbound_scid_alias, option),
8455 (2, channel_id, required),
8456 (3, channel_type, option),
8457 (4, counterparty, required),
8458 (5, outbound_scid_alias, option),
8459 (6, funding_txo, option),
8460 (7, config, option),
8461 (8, short_channel_id, option),
8462 (9, confirmations, option),
8463 (10, channel_value_satoshis, required),
8464 (12, unspendable_punishment_reserve, option),
8465 (14, user_channel_id_low, required),
8466 (16, balance_msat, required),
8467 (18, outbound_capacity_msat, required),
8468 // Note that by the time we get past the required read above, outbound_capacity_msat will be
8469 // filled in, so we can safely unwrap it here.
8470 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
8471 (20, inbound_capacity_msat, required),
8472 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
8473 (22, confirmations_required, option),
8474 (24, force_close_spend_delay, option),
8475 (26, is_outbound, required),
8476 (28, is_channel_ready, required),
8477 (30, is_usable, required),
8478 (32, is_public, required),
8479 (33, inbound_htlc_minimum_msat, option),
8480 (35, inbound_htlc_maximum_msat, option),
8481 (37, user_channel_id_high_opt, option),
8482 (39, feerate_sat_per_1000_weight, option),
8483 (41, channel_shutdown_state, option),
8486 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
8487 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
8488 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
8489 let user_channel_id = user_channel_id_low as u128 +
8490 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
8494 channel_id: channel_id.0.unwrap(),
8496 counterparty: counterparty.0.unwrap(),
8497 outbound_scid_alias,
8501 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
8502 unspendable_punishment_reserve,
8504 balance_msat: balance_msat.0.unwrap(),
8505 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
8506 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
8507 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
8508 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
8509 confirmations_required,
8511 force_close_spend_delay,
8512 is_outbound: is_outbound.0.unwrap(),
8513 is_channel_ready: is_channel_ready.0.unwrap(),
8514 is_usable: is_usable.0.unwrap(),
8515 is_public: is_public.0.unwrap(),
8516 inbound_htlc_minimum_msat,
8517 inbound_htlc_maximum_msat,
8518 feerate_sat_per_1000_weight,
8519 channel_shutdown_state,
8524 impl_writeable_tlv_based!(PhantomRouteHints, {
8525 (2, channels, required_vec),
8526 (4, phantom_scid, required),
8527 (6, real_node_pubkey, required),
8530 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
8532 (0, onion_packet, required),
8533 (2, short_channel_id, required),
8536 (0, payment_data, required),
8537 (1, phantom_shared_secret, option),
8538 (2, incoming_cltv_expiry, required),
8539 (3, payment_metadata, option),
8540 (5, custom_tlvs, optional_vec),
8542 (2, ReceiveKeysend) => {
8543 (0, payment_preimage, required),
8544 (2, incoming_cltv_expiry, required),
8545 (3, payment_metadata, option),
8546 (4, payment_data, option), // Added in 0.0.116
8547 (5, custom_tlvs, optional_vec),
8551 impl_writeable_tlv_based!(PendingHTLCInfo, {
8552 (0, routing, required),
8553 (2, incoming_shared_secret, required),
8554 (4, payment_hash, required),
8555 (6, outgoing_amt_msat, required),
8556 (8, outgoing_cltv_value, required),
8557 (9, incoming_amt_msat, option),
8558 (10, skimmed_fee_msat, option),
8562 impl Writeable for HTLCFailureMsg {
8563 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8565 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
8567 channel_id.write(writer)?;
8568 htlc_id.write(writer)?;
8569 reason.write(writer)?;
8571 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8572 channel_id, htlc_id, sha256_of_onion, failure_code
8575 channel_id.write(writer)?;
8576 htlc_id.write(writer)?;
8577 sha256_of_onion.write(writer)?;
8578 failure_code.write(writer)?;
8585 impl Readable for HTLCFailureMsg {
8586 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8587 let id: u8 = Readable::read(reader)?;
8590 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
8591 channel_id: Readable::read(reader)?,
8592 htlc_id: Readable::read(reader)?,
8593 reason: Readable::read(reader)?,
8597 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8598 channel_id: Readable::read(reader)?,
8599 htlc_id: Readable::read(reader)?,
8600 sha256_of_onion: Readable::read(reader)?,
8601 failure_code: Readable::read(reader)?,
8604 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
8605 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
8606 // messages contained in the variants.
8607 // In version 0.0.101, support for reading the variants with these types was added, and
8608 // we should migrate to writing these variants when UpdateFailHTLC or
8609 // UpdateFailMalformedHTLC get TLV fields.
8611 let length: BigSize = Readable::read(reader)?;
8612 let mut s = FixedLengthReader::new(reader, length.0);
8613 let res = Readable::read(&mut s)?;
8614 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
8615 Ok(HTLCFailureMsg::Relay(res))
8618 let length: BigSize = Readable::read(reader)?;
8619 let mut s = FixedLengthReader::new(reader, length.0);
8620 let res = Readable::read(&mut s)?;
8621 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
8622 Ok(HTLCFailureMsg::Malformed(res))
8624 _ => Err(DecodeError::UnknownRequiredFeature),
8629 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
8634 impl_writeable_tlv_based!(HTLCPreviousHopData, {
8635 (0, short_channel_id, required),
8636 (1, phantom_shared_secret, option),
8637 (2, outpoint, required),
8638 (4, htlc_id, required),
8639 (6, incoming_packet_shared_secret, required),
8640 (7, user_channel_id, option),
8643 impl Writeable for ClaimableHTLC {
8644 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8645 let (payment_data, keysend_preimage) = match &self.onion_payload {
8646 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
8647 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
8649 write_tlv_fields!(writer, {
8650 (0, self.prev_hop, required),
8651 (1, self.total_msat, required),
8652 (2, self.value, required),
8653 (3, self.sender_intended_value, required),
8654 (4, payment_data, option),
8655 (5, self.total_value_received, option),
8656 (6, self.cltv_expiry, required),
8657 (8, keysend_preimage, option),
8658 (10, self.counterparty_skimmed_fee_msat, option),
8664 impl Readable for ClaimableHTLC {
8665 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8666 _init_and_read_len_prefixed_tlv_fields!(reader, {
8667 (0, prev_hop, required),
8668 (1, total_msat, option),
8669 (2, value_ser, required),
8670 (3, sender_intended_value, option),
8671 (4, payment_data_opt, option),
8672 (5, total_value_received, option),
8673 (6, cltv_expiry, required),
8674 (8, keysend_preimage, option),
8675 (10, counterparty_skimmed_fee_msat, option),
8677 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
8678 let value = value_ser.0.unwrap();
8679 let onion_payload = match keysend_preimage {
8681 if payment_data.is_some() {
8682 return Err(DecodeError::InvalidValue)
8684 if total_msat.is_none() {
8685 total_msat = Some(value);
8687 OnionPayload::Spontaneous(p)
8690 if total_msat.is_none() {
8691 if payment_data.is_none() {
8692 return Err(DecodeError::InvalidValue)
8694 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
8696 OnionPayload::Invoice { _legacy_hop_data: payment_data }
8700 prev_hop: prev_hop.0.unwrap(),
8703 sender_intended_value: sender_intended_value.unwrap_or(value),
8704 total_value_received,
8705 total_msat: total_msat.unwrap(),
8707 cltv_expiry: cltv_expiry.0.unwrap(),
8708 counterparty_skimmed_fee_msat,
8713 impl Readable for HTLCSource {
8714 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8715 let id: u8 = Readable::read(reader)?;
8718 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
8719 let mut first_hop_htlc_msat: u64 = 0;
8720 let mut path_hops = Vec::new();
8721 let mut payment_id = None;
8722 let mut payment_params: Option<PaymentParameters> = None;
8723 let mut blinded_tail: Option<BlindedTail> = None;
8724 read_tlv_fields!(reader, {
8725 (0, session_priv, required),
8726 (1, payment_id, option),
8727 (2, first_hop_htlc_msat, required),
8728 (4, path_hops, required_vec),
8729 (5, payment_params, (option: ReadableArgs, 0)),
8730 (6, blinded_tail, option),
8732 if payment_id.is_none() {
8733 // For backwards compat, if there was no payment_id written, use the session_priv bytes
8735 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
8737 let path = Path { hops: path_hops, blinded_tail };
8738 if path.hops.len() == 0 {
8739 return Err(DecodeError::InvalidValue);
8741 if let Some(params) = payment_params.as_mut() {
8742 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
8743 if final_cltv_expiry_delta == &0 {
8744 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
8748 Ok(HTLCSource::OutboundRoute {
8749 session_priv: session_priv.0.unwrap(),
8750 first_hop_htlc_msat,
8752 payment_id: payment_id.unwrap(),
8755 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
8756 _ => Err(DecodeError::UnknownRequiredFeature),
8761 impl Writeable for HTLCSource {
8762 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
8764 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
8766 let payment_id_opt = Some(payment_id);
8767 write_tlv_fields!(writer, {
8768 (0, session_priv, required),
8769 (1, payment_id_opt, option),
8770 (2, first_hop_htlc_msat, required),
8771 // 3 was previously used to write a PaymentSecret for the payment.
8772 (4, path.hops, required_vec),
8773 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
8774 (6, path.blinded_tail, option),
8777 HTLCSource::PreviousHopData(ref field) => {
8779 field.write(writer)?;
8786 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
8787 (0, forward_info, required),
8788 (1, prev_user_channel_id, (default_value, 0)),
8789 (2, prev_short_channel_id, required),
8790 (4, prev_htlc_id, required),
8791 (6, prev_funding_outpoint, required),
8794 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
8796 (0, htlc_id, required),
8797 (2, err_packet, required),
8802 impl_writeable_tlv_based!(PendingInboundPayment, {
8803 (0, payment_secret, required),
8804 (2, expiry_time, required),
8805 (4, user_payment_id, required),
8806 (6, payment_preimage, required),
8807 (8, min_value_msat, required),
8810 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
8812 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8813 T::Target: BroadcasterInterface,
8814 ES::Target: EntropySource,
8815 NS::Target: NodeSigner,
8816 SP::Target: SignerProvider,
8817 F::Target: FeeEstimator,
8821 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8822 let _consistency_lock = self.total_consistency_lock.write().unwrap();
8824 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
8826 self.genesis_hash.write(writer)?;
8828 let best_block = self.best_block.read().unwrap();
8829 best_block.height().write(writer)?;
8830 best_block.block_hash().write(writer)?;
8833 let mut serializable_peer_count: u64 = 0;
8835 let per_peer_state = self.per_peer_state.read().unwrap();
8836 let mut number_of_funded_channels = 0;
8837 for (_, peer_state_mutex) in per_peer_state.iter() {
8838 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8839 let peer_state = &mut *peer_state_lock;
8840 if !peer_state.ok_to_remove(false) {
8841 serializable_peer_count += 1;
8844 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
8845 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
8849 (number_of_funded_channels as u64).write(writer)?;
8851 for (_, peer_state_mutex) in per_peer_state.iter() {
8852 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8853 let peer_state = &mut *peer_state_lock;
8854 for channel in peer_state.channel_by_id.iter().filter_map(
8855 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
8856 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
8859 channel.write(writer)?;
8865 let forward_htlcs = self.forward_htlcs.lock().unwrap();
8866 (forward_htlcs.len() as u64).write(writer)?;
8867 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
8868 short_channel_id.write(writer)?;
8869 (pending_forwards.len() as u64).write(writer)?;
8870 for forward in pending_forwards {
8871 forward.write(writer)?;
8876 let per_peer_state = self.per_peer_state.write().unwrap();
8878 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
8879 let claimable_payments = self.claimable_payments.lock().unwrap();
8880 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
8882 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
8883 let mut htlc_onion_fields: Vec<&_> = Vec::new();
8884 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
8885 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
8886 payment_hash.write(writer)?;
8887 (payment.htlcs.len() as u64).write(writer)?;
8888 for htlc in payment.htlcs.iter() {
8889 htlc.write(writer)?;
8891 htlc_purposes.push(&payment.purpose);
8892 htlc_onion_fields.push(&payment.onion_fields);
8895 let mut monitor_update_blocked_actions_per_peer = None;
8896 let mut peer_states = Vec::new();
8897 for (_, peer_state_mutex) in per_peer_state.iter() {
8898 // Because we're holding the owning `per_peer_state` write lock here there's no chance
8899 // of a lockorder violation deadlock - no other thread can be holding any
8900 // per_peer_state lock at all.
8901 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
8904 (serializable_peer_count).write(writer)?;
8905 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
8906 // Peers which we have no channels to should be dropped once disconnected. As we
8907 // disconnect all peers when shutting down and serializing the ChannelManager, we
8908 // consider all peers as disconnected here. There's therefore no need write peers with
8910 if !peer_state.ok_to_remove(false) {
8911 peer_pubkey.write(writer)?;
8912 peer_state.latest_features.write(writer)?;
8913 if !peer_state.monitor_update_blocked_actions.is_empty() {
8914 monitor_update_blocked_actions_per_peer
8915 .get_or_insert_with(Vec::new)
8916 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
8921 let events = self.pending_events.lock().unwrap();
8922 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
8923 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
8924 // refuse to read the new ChannelManager.
8925 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
8926 if events_not_backwards_compatible {
8927 // If we're gonna write a even TLV that will overwrite our events anyway we might as
8928 // well save the space and not write any events here.
8929 0u64.write(writer)?;
8931 (events.len() as u64).write(writer)?;
8932 for (event, _) in events.iter() {
8933 event.write(writer)?;
8937 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
8938 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
8939 // the closing monitor updates were always effectively replayed on startup (either directly
8940 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
8941 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
8942 0u64.write(writer)?;
8944 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
8945 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
8946 // likely to be identical.
8947 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
8948 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
8950 (pending_inbound_payments.len() as u64).write(writer)?;
8951 for (hash, pending_payment) in pending_inbound_payments.iter() {
8952 hash.write(writer)?;
8953 pending_payment.write(writer)?;
8956 // For backwards compat, write the session privs and their total length.
8957 let mut num_pending_outbounds_compat: u64 = 0;
8958 for (_, outbound) in pending_outbound_payments.iter() {
8959 if !outbound.is_fulfilled() && !outbound.abandoned() {
8960 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
8963 num_pending_outbounds_compat.write(writer)?;
8964 for (_, outbound) in pending_outbound_payments.iter() {
8966 PendingOutboundPayment::Legacy { session_privs } |
8967 PendingOutboundPayment::Retryable { session_privs, .. } => {
8968 for session_priv in session_privs.iter() {
8969 session_priv.write(writer)?;
8972 PendingOutboundPayment::AwaitingInvoice { .. } => {},
8973 PendingOutboundPayment::InvoiceReceived { .. } => {},
8974 PendingOutboundPayment::Fulfilled { .. } => {},
8975 PendingOutboundPayment::Abandoned { .. } => {},
8979 // Encode without retry info for 0.0.101 compatibility.
8980 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
8981 for (id, outbound) in pending_outbound_payments.iter() {
8983 PendingOutboundPayment::Legacy { session_privs } |
8984 PendingOutboundPayment::Retryable { session_privs, .. } => {
8985 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
8991 let mut pending_intercepted_htlcs = None;
8992 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
8993 if our_pending_intercepts.len() != 0 {
8994 pending_intercepted_htlcs = Some(our_pending_intercepts);
8997 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
8998 if pending_claiming_payments.as_ref().unwrap().is_empty() {
8999 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9000 // map. Thus, if there are no entries we skip writing a TLV for it.
9001 pending_claiming_payments = None;
9004 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9005 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9006 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9007 if !updates.is_empty() {
9008 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9009 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9014 write_tlv_fields!(writer, {
9015 (1, pending_outbound_payments_no_retry, required),
9016 (2, pending_intercepted_htlcs, option),
9017 (3, pending_outbound_payments, required),
9018 (4, pending_claiming_payments, option),
9019 (5, self.our_network_pubkey, required),
9020 (6, monitor_update_blocked_actions_per_peer, option),
9021 (7, self.fake_scid_rand_bytes, required),
9022 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9023 (9, htlc_purposes, required_vec),
9024 (10, in_flight_monitor_updates, option),
9025 (11, self.probing_cookie_secret, required),
9026 (13, htlc_onion_fields, optional_vec),
9033 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9034 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9035 (self.len() as u64).write(w)?;
9036 for (event, action) in self.iter() {
9039 #[cfg(debug_assertions)] {
9040 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9041 // be persisted and are regenerated on restart. However, if such an event has a
9042 // post-event-handling action we'll write nothing for the event and would have to
9043 // either forget the action or fail on deserialization (which we do below). Thus,
9044 // check that the event is sane here.
9045 let event_encoded = event.encode();
9046 let event_read: Option<Event> =
9047 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
9048 if action.is_some() { assert!(event_read.is_some()); }
9054 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
9055 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9056 let len: u64 = Readable::read(reader)?;
9057 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
9058 let mut events: Self = VecDeque::with_capacity(cmp::min(
9059 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
9062 let ev_opt = MaybeReadable::read(reader)?;
9063 let action = Readable::read(reader)?;
9064 if let Some(ev) = ev_opt {
9065 events.push_back((ev, action));
9066 } else if action.is_some() {
9067 return Err(DecodeError::InvalidValue);
9074 impl_writeable_tlv_based_enum!(ChannelShutdownState,
9075 (0, NotShuttingDown) => {},
9076 (2, ShutdownInitiated) => {},
9077 (4, ResolvingHTLCs) => {},
9078 (6, NegotiatingClosingFee) => {},
9079 (8, ShutdownComplete) => {}, ;
9082 /// Arguments for the creation of a ChannelManager that are not deserialized.
9084 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
9086 /// 1) Deserialize all stored [`ChannelMonitor`]s.
9087 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
9088 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
9089 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
9090 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
9091 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
9092 /// same way you would handle a [`chain::Filter`] call using
9093 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
9094 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
9095 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
9096 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
9097 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
9098 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
9100 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
9101 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
9103 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
9104 /// call any other methods on the newly-deserialized [`ChannelManager`].
9106 /// Note that because some channels may be closed during deserialization, it is critical that you
9107 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
9108 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
9109 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
9110 /// not force-close the same channels but consider them live), you may end up revoking a state for
9111 /// which you've already broadcasted the transaction.
9113 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
9114 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9116 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9117 T::Target: BroadcasterInterface,
9118 ES::Target: EntropySource,
9119 NS::Target: NodeSigner,
9120 SP::Target: SignerProvider,
9121 F::Target: FeeEstimator,
9125 /// A cryptographically secure source of entropy.
9126 pub entropy_source: ES,
9128 /// A signer that is able to perform node-scoped cryptographic operations.
9129 pub node_signer: NS,
9131 /// The keys provider which will give us relevant keys. Some keys will be loaded during
9132 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
9134 pub signer_provider: SP,
9136 /// The fee_estimator for use in the ChannelManager in the future.
9138 /// No calls to the FeeEstimator will be made during deserialization.
9139 pub fee_estimator: F,
9140 /// The chain::Watch for use in the ChannelManager in the future.
9142 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
9143 /// you have deserialized ChannelMonitors separately and will add them to your
9144 /// chain::Watch after deserializing this ChannelManager.
9145 pub chain_monitor: M,
9147 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
9148 /// used to broadcast the latest local commitment transactions of channels which must be
9149 /// force-closed during deserialization.
9150 pub tx_broadcaster: T,
9151 /// The router which will be used in the ChannelManager in the future for finding routes
9152 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
9154 /// No calls to the router will be made during deserialization.
9156 /// The Logger for use in the ChannelManager and which may be used to log information during
9157 /// deserialization.
9159 /// Default settings used for new channels. Any existing channels will continue to use the
9160 /// runtime settings which were stored when the ChannelManager was serialized.
9161 pub default_config: UserConfig,
9163 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
9164 /// value.context.get_funding_txo() should be the key).
9166 /// If a monitor is inconsistent with the channel state during deserialization the channel will
9167 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
9168 /// is true for missing channels as well. If there is a monitor missing for which we find
9169 /// channel data Err(DecodeError::InvalidValue) will be returned.
9171 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
9174 /// This is not exported to bindings users because we have no HashMap bindings
9175 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
9178 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9179 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
9181 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9182 T::Target: BroadcasterInterface,
9183 ES::Target: EntropySource,
9184 NS::Target: NodeSigner,
9185 SP::Target: SignerProvider,
9186 F::Target: FeeEstimator,
9190 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
9191 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
9192 /// populate a HashMap directly from C.
9193 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
9194 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
9196 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
9197 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
9202 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
9203 // SipmleArcChannelManager type:
9204 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9205 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
9207 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9208 T::Target: BroadcasterInterface,
9209 ES::Target: EntropySource,
9210 NS::Target: NodeSigner,
9211 SP::Target: SignerProvider,
9212 F::Target: FeeEstimator,
9216 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9217 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
9218 Ok((blockhash, Arc::new(chan_manager)))
9222 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9223 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
9225 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9226 T::Target: BroadcasterInterface,
9227 ES::Target: EntropySource,
9228 NS::Target: NodeSigner,
9229 SP::Target: SignerProvider,
9230 F::Target: FeeEstimator,
9234 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9235 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
9237 let genesis_hash: BlockHash = Readable::read(reader)?;
9238 let best_block_height: u32 = Readable::read(reader)?;
9239 let best_block_hash: BlockHash = Readable::read(reader)?;
9241 let mut failed_htlcs = Vec::new();
9243 let channel_count: u64 = Readable::read(reader)?;
9244 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
9245 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9246 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9247 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9248 let mut channel_closures = VecDeque::new();
9249 let mut close_background_events = Vec::new();
9250 for _ in 0..channel_count {
9251 let mut channel: Channel<SP> = Channel::read(reader, (
9252 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
9254 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
9255 funding_txo_set.insert(funding_txo.clone());
9256 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
9257 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
9258 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
9259 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
9260 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
9261 // But if the channel is behind of the monitor, close the channel:
9262 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
9263 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
9264 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
9265 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
9266 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
9268 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
9269 log_error!(args.logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
9270 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
9272 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
9273 log_error!(args.logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
9274 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
9276 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
9277 log_error!(args.logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
9278 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
9280 let (monitor_update, mut new_failed_htlcs, batch_funding_txid) = channel.context.force_shutdown(true);
9281 if batch_funding_txid.is_some() {
9282 return Err(DecodeError::InvalidValue);
9284 if let Some((counterparty_node_id, funding_txo, update)) = monitor_update {
9285 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
9286 counterparty_node_id, funding_txo, update
9289 failed_htlcs.append(&mut new_failed_htlcs);
9290 channel_closures.push_back((events::Event::ChannelClosed {
9291 channel_id: channel.context.channel_id(),
9292 user_channel_id: channel.context.get_user_id(),
9293 reason: ClosureReason::OutdatedChannelManager,
9294 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
9295 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
9297 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
9298 let mut found_htlc = false;
9299 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
9300 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
9303 // If we have some HTLCs in the channel which are not present in the newer
9304 // ChannelMonitor, they have been removed and should be failed back to
9305 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
9306 // were actually claimed we'd have generated and ensured the previous-hop
9307 // claim update ChannelMonitor updates were persisted prior to persising
9308 // the ChannelMonitor update for the forward leg, so attempting to fail the
9309 // backwards leg of the HTLC will simply be rejected.
9310 log_info!(args.logger,
9311 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
9312 &channel.context.channel_id(), &payment_hash);
9313 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9317 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
9318 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
9319 monitor.get_latest_update_id());
9320 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
9321 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9323 if channel.context.is_funding_broadcast() {
9324 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
9326 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
9327 hash_map::Entry::Occupied(mut entry) => {
9328 let by_id_map = entry.get_mut();
9329 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
9331 hash_map::Entry::Vacant(entry) => {
9332 let mut by_id_map = HashMap::new();
9333 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
9334 entry.insert(by_id_map);
9338 } else if channel.is_awaiting_initial_mon_persist() {
9339 // If we were persisted and shut down while the initial ChannelMonitor persistence
9340 // was in-progress, we never broadcasted the funding transaction and can still
9341 // safely discard the channel.
9342 let _ = channel.context.force_shutdown(false);
9343 channel_closures.push_back((events::Event::ChannelClosed {
9344 channel_id: channel.context.channel_id(),
9345 user_channel_id: channel.context.get_user_id(),
9346 reason: ClosureReason::DisconnectedPeer,
9347 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
9348 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
9351 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
9352 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9353 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9354 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
9355 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9356 return Err(DecodeError::InvalidValue);
9360 for (funding_txo, _) in args.channel_monitors.iter() {
9361 if !funding_txo_set.contains(funding_txo) {
9362 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
9363 &funding_txo.to_channel_id());
9364 let monitor_update = ChannelMonitorUpdate {
9365 update_id: CLOSED_CHANNEL_UPDATE_ID,
9366 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
9368 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
9372 const MAX_ALLOC_SIZE: usize = 1024 * 64;
9373 let forward_htlcs_count: u64 = Readable::read(reader)?;
9374 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
9375 for _ in 0..forward_htlcs_count {
9376 let short_channel_id = Readable::read(reader)?;
9377 let pending_forwards_count: u64 = Readable::read(reader)?;
9378 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
9379 for _ in 0..pending_forwards_count {
9380 pending_forwards.push(Readable::read(reader)?);
9382 forward_htlcs.insert(short_channel_id, pending_forwards);
9385 let claimable_htlcs_count: u64 = Readable::read(reader)?;
9386 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
9387 for _ in 0..claimable_htlcs_count {
9388 let payment_hash = Readable::read(reader)?;
9389 let previous_hops_len: u64 = Readable::read(reader)?;
9390 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
9391 for _ in 0..previous_hops_len {
9392 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
9394 claimable_htlcs_list.push((payment_hash, previous_hops));
9397 let peer_state_from_chans = |channel_by_id| {
9400 inbound_channel_request_by_id: HashMap::new(),
9401 latest_features: InitFeatures::empty(),
9402 pending_msg_events: Vec::new(),
9403 in_flight_monitor_updates: BTreeMap::new(),
9404 monitor_update_blocked_actions: BTreeMap::new(),
9405 actions_blocking_raa_monitor_updates: BTreeMap::new(),
9406 is_connected: false,
9410 let peer_count: u64 = Readable::read(reader)?;
9411 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
9412 for _ in 0..peer_count {
9413 let peer_pubkey = Readable::read(reader)?;
9414 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
9415 let mut peer_state = peer_state_from_chans(peer_chans);
9416 peer_state.latest_features = Readable::read(reader)?;
9417 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
9420 let event_count: u64 = Readable::read(reader)?;
9421 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
9422 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
9423 for _ in 0..event_count {
9424 match MaybeReadable::read(reader)? {
9425 Some(event) => pending_events_read.push_back((event, None)),
9430 let background_event_count: u64 = Readable::read(reader)?;
9431 for _ in 0..background_event_count {
9432 match <u8 as Readable>::read(reader)? {
9434 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
9435 // however we really don't (and never did) need them - we regenerate all
9436 // on-startup monitor updates.
9437 let _: OutPoint = Readable::read(reader)?;
9438 let _: ChannelMonitorUpdate = Readable::read(reader)?;
9440 _ => return Err(DecodeError::InvalidValue),
9444 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
9445 let highest_seen_timestamp: u32 = Readable::read(reader)?;
9447 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
9448 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
9449 for _ in 0..pending_inbound_payment_count {
9450 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
9451 return Err(DecodeError::InvalidValue);
9455 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
9456 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
9457 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
9458 for _ in 0..pending_outbound_payments_count_compat {
9459 let session_priv = Readable::read(reader)?;
9460 let payment = PendingOutboundPayment::Legacy {
9461 session_privs: [session_priv].iter().cloned().collect()
9463 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
9464 return Err(DecodeError::InvalidValue)
9468 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
9469 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
9470 let mut pending_outbound_payments = None;
9471 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
9472 let mut received_network_pubkey: Option<PublicKey> = None;
9473 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
9474 let mut probing_cookie_secret: Option<[u8; 32]> = None;
9475 let mut claimable_htlc_purposes = None;
9476 let mut claimable_htlc_onion_fields = None;
9477 let mut pending_claiming_payments = Some(HashMap::new());
9478 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
9479 let mut events_override = None;
9480 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
9481 read_tlv_fields!(reader, {
9482 (1, pending_outbound_payments_no_retry, option),
9483 (2, pending_intercepted_htlcs, option),
9484 (3, pending_outbound_payments, option),
9485 (4, pending_claiming_payments, option),
9486 (5, received_network_pubkey, option),
9487 (6, monitor_update_blocked_actions_per_peer, option),
9488 (7, fake_scid_rand_bytes, option),
9489 (8, events_override, option),
9490 (9, claimable_htlc_purposes, optional_vec),
9491 (10, in_flight_monitor_updates, option),
9492 (11, probing_cookie_secret, option),
9493 (13, claimable_htlc_onion_fields, optional_vec),
9495 if fake_scid_rand_bytes.is_none() {
9496 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
9499 if probing_cookie_secret.is_none() {
9500 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
9503 if let Some(events) = events_override {
9504 pending_events_read = events;
9507 if !channel_closures.is_empty() {
9508 pending_events_read.append(&mut channel_closures);
9511 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
9512 pending_outbound_payments = Some(pending_outbound_payments_compat);
9513 } else if pending_outbound_payments.is_none() {
9514 let mut outbounds = HashMap::new();
9515 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
9516 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
9518 pending_outbound_payments = Some(outbounds);
9520 let pending_outbounds = OutboundPayments {
9521 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
9522 retry_lock: Mutex::new(())
9525 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
9526 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
9527 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
9528 // replayed, and for each monitor update we have to replay we have to ensure there's a
9529 // `ChannelMonitor` for it.
9531 // In order to do so we first walk all of our live channels (so that we can check their
9532 // state immediately after doing the update replays, when we have the `update_id`s
9533 // available) and then walk any remaining in-flight updates.
9535 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
9536 let mut pending_background_events = Vec::new();
9537 macro_rules! handle_in_flight_updates {
9538 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
9539 $monitor: expr, $peer_state: expr, $channel_info_log: expr
9541 let mut max_in_flight_update_id = 0;
9542 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
9543 for update in $chan_in_flight_upds.iter() {
9544 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
9545 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
9546 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
9547 pending_background_events.push(
9548 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
9549 counterparty_node_id: $counterparty_node_id,
9550 funding_txo: $funding_txo,
9551 update: update.clone(),
9554 if $chan_in_flight_upds.is_empty() {
9555 // We had some updates to apply, but it turns out they had completed before we
9556 // were serialized, we just weren't notified of that. Thus, we may have to run
9557 // the completion actions for any monitor updates, but otherwise are done.
9558 pending_background_events.push(
9559 BackgroundEvent::MonitorUpdatesComplete {
9560 counterparty_node_id: $counterparty_node_id,
9561 channel_id: $funding_txo.to_channel_id(),
9564 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
9565 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
9566 return Err(DecodeError::InvalidValue);
9568 max_in_flight_update_id
9572 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
9573 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
9574 let peer_state = &mut *peer_state_lock;
9575 for phase in peer_state.channel_by_id.values() {
9576 if let ChannelPhase::Funded(chan) = phase {
9577 // Channels that were persisted have to be funded, otherwise they should have been
9579 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
9580 let monitor = args.channel_monitors.get(&funding_txo)
9581 .expect("We already checked for monitor presence when loading channels");
9582 let mut max_in_flight_update_id = monitor.get_latest_update_id();
9583 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
9584 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
9585 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
9586 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
9587 funding_txo, monitor, peer_state, ""));
9590 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
9591 // If the channel is ahead of the monitor, return InvalidValue:
9592 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
9593 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
9594 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
9595 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
9596 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9597 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9598 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
9599 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9600 return Err(DecodeError::InvalidValue);
9603 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
9604 // created in this `channel_by_id` map.
9605 debug_assert!(false);
9606 return Err(DecodeError::InvalidValue);
9611 if let Some(in_flight_upds) = in_flight_monitor_updates {
9612 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
9613 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
9614 // Now that we've removed all the in-flight monitor updates for channels that are
9615 // still open, we need to replay any monitor updates that are for closed channels,
9616 // creating the neccessary peer_state entries as we go.
9617 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
9618 Mutex::new(peer_state_from_chans(HashMap::new()))
9620 let mut peer_state = peer_state_mutex.lock().unwrap();
9621 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
9622 funding_txo, monitor, peer_state, "closed ");
9624 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
9625 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
9626 &funding_txo.to_channel_id());
9627 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9628 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9629 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
9630 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9631 return Err(DecodeError::InvalidValue);
9636 // Note that we have to do the above replays before we push new monitor updates.
9637 pending_background_events.append(&mut close_background_events);
9639 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
9640 // should ensure we try them again on the inbound edge. We put them here and do so after we
9641 // have a fully-constructed `ChannelManager` at the end.
9642 let mut pending_claims_to_replay = Vec::new();
9645 // If we're tracking pending payments, ensure we haven't lost any by looking at the
9646 // ChannelMonitor data for any channels for which we do not have authorative state
9647 // (i.e. those for which we just force-closed above or we otherwise don't have a
9648 // corresponding `Channel` at all).
9649 // This avoids several edge-cases where we would otherwise "forget" about pending
9650 // payments which are still in-flight via their on-chain state.
9651 // We only rebuild the pending payments map if we were most recently serialized by
9653 for (_, monitor) in args.channel_monitors.iter() {
9654 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
9655 if counterparty_opt.is_none() {
9656 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
9657 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
9658 if path.hops.is_empty() {
9659 log_error!(args.logger, "Got an empty path for a pending payment");
9660 return Err(DecodeError::InvalidValue);
9663 let path_amt = path.final_value_msat();
9664 let mut session_priv_bytes = [0; 32];
9665 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
9666 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
9667 hash_map::Entry::Occupied(mut entry) => {
9668 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
9669 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
9670 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
9672 hash_map::Entry::Vacant(entry) => {
9673 let path_fee = path.fee_msat();
9674 entry.insert(PendingOutboundPayment::Retryable {
9675 retry_strategy: None,
9676 attempts: PaymentAttempts::new(),
9677 payment_params: None,
9678 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
9679 payment_hash: htlc.payment_hash,
9680 payment_secret: None, // only used for retries, and we'll never retry on startup
9681 payment_metadata: None, // only used for retries, and we'll never retry on startup
9682 keysend_preimage: None, // only used for retries, and we'll never retry on startup
9683 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
9684 pending_amt_msat: path_amt,
9685 pending_fee_msat: Some(path_fee),
9686 total_msat: path_amt,
9687 starting_block_height: best_block_height,
9688 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
9690 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
9691 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
9696 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
9698 HTLCSource::PreviousHopData(prev_hop_data) => {
9699 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
9700 info.prev_funding_outpoint == prev_hop_data.outpoint &&
9701 info.prev_htlc_id == prev_hop_data.htlc_id
9703 // The ChannelMonitor is now responsible for this HTLC's
9704 // failure/success and will let us know what its outcome is. If we
9705 // still have an entry for this HTLC in `forward_htlcs` or
9706 // `pending_intercepted_htlcs`, we were apparently not persisted after
9707 // the monitor was when forwarding the payment.
9708 forward_htlcs.retain(|_, forwards| {
9709 forwards.retain(|forward| {
9710 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
9711 if pending_forward_matches_htlc(&htlc_info) {
9712 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
9713 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
9718 !forwards.is_empty()
9720 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
9721 if pending_forward_matches_htlc(&htlc_info) {
9722 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
9723 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
9724 pending_events_read.retain(|(event, _)| {
9725 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
9726 intercepted_id != ev_id
9733 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
9734 if let Some(preimage) = preimage_opt {
9735 let pending_events = Mutex::new(pending_events_read);
9736 // Note that we set `from_onchain` to "false" here,
9737 // deliberately keeping the pending payment around forever.
9738 // Given it should only occur when we have a channel we're
9739 // force-closing for being stale that's okay.
9740 // The alternative would be to wipe the state when claiming,
9741 // generating a `PaymentPathSuccessful` event but regenerating
9742 // it and the `PaymentSent` on every restart until the
9743 // `ChannelMonitor` is removed.
9745 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9746 channel_funding_outpoint: monitor.get_funding_txo().0,
9747 counterparty_node_id: path.hops[0].pubkey,
9749 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
9750 path, false, compl_action, &pending_events, &args.logger);
9751 pending_events_read = pending_events.into_inner().unwrap();
9758 // Whether the downstream channel was closed or not, try to re-apply any payment
9759 // preimages from it which may be needed in upstream channels for forwarded
9761 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
9763 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
9764 if let HTLCSource::PreviousHopData(_) = htlc_source {
9765 if let Some(payment_preimage) = preimage_opt {
9766 Some((htlc_source, payment_preimage, htlc.amount_msat,
9767 // Check if `counterparty_opt.is_none()` to see if the
9768 // downstream chan is closed (because we don't have a
9769 // channel_id -> peer map entry).
9770 counterparty_opt.is_none(),
9771 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
9772 monitor.get_funding_txo().0))
9775 // If it was an outbound payment, we've handled it above - if a preimage
9776 // came in and we persisted the `ChannelManager` we either handled it and
9777 // are good to go or the channel force-closed - we don't have to handle the
9778 // channel still live case here.
9782 for tuple in outbound_claimed_htlcs_iter {
9783 pending_claims_to_replay.push(tuple);
9788 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
9789 // If we have pending HTLCs to forward, assume we either dropped a
9790 // `PendingHTLCsForwardable` or the user received it but never processed it as they
9791 // shut down before the timer hit. Either way, set the time_forwardable to a small
9792 // constant as enough time has likely passed that we should simply handle the forwards
9793 // now, or at least after the user gets a chance to reconnect to our peers.
9794 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
9795 time_forwardable: Duration::from_secs(2),
9799 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
9800 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
9802 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
9803 if let Some(purposes) = claimable_htlc_purposes {
9804 if purposes.len() != claimable_htlcs_list.len() {
9805 return Err(DecodeError::InvalidValue);
9807 if let Some(onion_fields) = claimable_htlc_onion_fields {
9808 if onion_fields.len() != claimable_htlcs_list.len() {
9809 return Err(DecodeError::InvalidValue);
9811 for (purpose, (onion, (payment_hash, htlcs))) in
9812 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
9814 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9815 purpose, htlcs, onion_fields: onion,
9817 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9820 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
9821 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9822 purpose, htlcs, onion_fields: None,
9824 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9828 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
9829 // include a `_legacy_hop_data` in the `OnionPayload`.
9830 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
9831 if htlcs.is_empty() {
9832 return Err(DecodeError::InvalidValue);
9834 let purpose = match &htlcs[0].onion_payload {
9835 OnionPayload::Invoice { _legacy_hop_data } => {
9836 if let Some(hop_data) = _legacy_hop_data {
9837 events::PaymentPurpose::InvoicePayment {
9838 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
9839 Some(inbound_payment) => inbound_payment.payment_preimage,
9840 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
9841 Ok((payment_preimage, _)) => payment_preimage,
9843 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
9844 return Err(DecodeError::InvalidValue);
9848 payment_secret: hop_data.payment_secret,
9850 } else { return Err(DecodeError::InvalidValue); }
9852 OnionPayload::Spontaneous(payment_preimage) =>
9853 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
9855 claimable_payments.insert(payment_hash, ClaimablePayment {
9856 purpose, htlcs, onion_fields: None,
9861 let mut secp_ctx = Secp256k1::new();
9862 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
9864 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
9866 Err(()) => return Err(DecodeError::InvalidValue)
9868 if let Some(network_pubkey) = received_network_pubkey {
9869 if network_pubkey != our_network_pubkey {
9870 log_error!(args.logger, "Key that was generated does not match the existing key.");
9871 return Err(DecodeError::InvalidValue);
9875 let mut outbound_scid_aliases = HashSet::new();
9876 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
9877 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9878 let peer_state = &mut *peer_state_lock;
9879 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
9880 if let ChannelPhase::Funded(chan) = phase {
9881 if chan.context.outbound_scid_alias() == 0 {
9882 let mut outbound_scid_alias;
9884 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
9885 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
9886 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
9888 chan.context.set_outbound_scid_alias(outbound_scid_alias);
9889 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
9890 // Note that in rare cases its possible to hit this while reading an older
9891 // channel if we just happened to pick a colliding outbound alias above.
9892 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
9893 return Err(DecodeError::InvalidValue);
9895 if chan.context.is_usable() {
9896 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
9897 // Note that in rare cases its possible to hit this while reading an older
9898 // channel if we just happened to pick a colliding outbound alias above.
9899 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
9900 return Err(DecodeError::InvalidValue);
9904 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
9905 // created in this `channel_by_id` map.
9906 debug_assert!(false);
9907 return Err(DecodeError::InvalidValue);
9912 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
9914 for (_, monitor) in args.channel_monitors.iter() {
9915 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
9916 if let Some(payment) = claimable_payments.remove(&payment_hash) {
9917 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
9918 let mut claimable_amt_msat = 0;
9919 let mut receiver_node_id = Some(our_network_pubkey);
9920 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
9921 if phantom_shared_secret.is_some() {
9922 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
9923 .expect("Failed to get node_id for phantom node recipient");
9924 receiver_node_id = Some(phantom_pubkey)
9926 for claimable_htlc in &payment.htlcs {
9927 claimable_amt_msat += claimable_htlc.value;
9929 // Add a holding-cell claim of the payment to the Channel, which should be
9930 // applied ~immediately on peer reconnection. Because it won't generate a
9931 // new commitment transaction we can just provide the payment preimage to
9932 // the corresponding ChannelMonitor and nothing else.
9934 // We do so directly instead of via the normal ChannelMonitor update
9935 // procedure as the ChainMonitor hasn't yet been initialized, implying
9936 // we're not allowed to call it directly yet. Further, we do the update
9937 // without incrementing the ChannelMonitor update ID as there isn't any
9939 // If we were to generate a new ChannelMonitor update ID here and then
9940 // crash before the user finishes block connect we'd end up force-closing
9941 // this channel as well. On the flip side, there's no harm in restarting
9942 // without the new monitor persisted - we'll end up right back here on
9944 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
9945 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
9946 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
9947 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9948 let peer_state = &mut *peer_state_lock;
9949 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
9950 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
9953 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
9954 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
9957 pending_events_read.push_back((events::Event::PaymentClaimed {
9960 purpose: payment.purpose,
9961 amount_msat: claimable_amt_msat,
9962 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
9963 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
9969 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
9970 if let Some(peer_state) = per_peer_state.get(&node_id) {
9971 for (_, actions) in monitor_update_blocked_actions.iter() {
9972 for action in actions.iter() {
9973 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
9974 downstream_counterparty_and_funding_outpoint:
9975 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
9977 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
9978 log_trace!(args.logger,
9979 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
9980 blocked_channel_outpoint.to_channel_id());
9981 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
9982 .entry(blocked_channel_outpoint.to_channel_id())
9983 .or_insert_with(Vec::new).push(blocking_action.clone());
9985 // If the channel we were blocking has closed, we don't need to
9986 // worry about it - the blocked monitor update should never have
9987 // been released from the `Channel` object so it can't have
9988 // completed, and if the channel closed there's no reason to bother
9994 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
9996 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
9997 return Err(DecodeError::InvalidValue);
10001 let channel_manager = ChannelManager {
10003 fee_estimator: bounded_fee_estimator,
10004 chain_monitor: args.chain_monitor,
10005 tx_broadcaster: args.tx_broadcaster,
10006 router: args.router,
10008 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10010 inbound_payment_key: expanded_inbound_key,
10011 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10012 pending_outbound_payments: pending_outbounds,
10013 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10015 forward_htlcs: Mutex::new(forward_htlcs),
10016 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10017 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10018 id_to_peer: Mutex::new(id_to_peer),
10019 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10020 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10022 probing_cookie_secret: probing_cookie_secret.unwrap(),
10024 our_network_pubkey,
10027 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10029 per_peer_state: FairRwLock::new(per_peer_state),
10031 pending_events: Mutex::new(pending_events_read),
10032 pending_events_processor: AtomicBool::new(false),
10033 pending_background_events: Mutex::new(pending_background_events),
10034 total_consistency_lock: RwLock::new(()),
10035 background_events_processed_since_startup: AtomicBool::new(false),
10037 event_persist_notifier: Notifier::new(),
10038 needs_persist_flag: AtomicBool::new(false),
10040 funding_batch_states: Mutex::new(BTreeMap::new()),
10042 entropy_source: args.entropy_source,
10043 node_signer: args.node_signer,
10044 signer_provider: args.signer_provider,
10046 logger: args.logger,
10047 default_configuration: args.default_config,
10050 for htlc_source in failed_htlcs.drain(..) {
10051 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
10052 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
10053 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
10054 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
10057 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
10058 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
10059 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
10060 // channel is closed we just assume that it probably came from an on-chain claim.
10061 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
10062 downstream_closed, downstream_node_id, downstream_funding);
10065 //TODO: Broadcast channel update for closed channels, but only after we've made a
10066 //connection or two.
10068 Ok((best_block_hash.clone(), channel_manager))
10074 use bitcoin::hashes::Hash;
10075 use bitcoin::hashes::sha256::Hash as Sha256;
10076 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
10077 use core::sync::atomic::Ordering;
10078 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
10079 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
10080 use crate::ln::ChannelId;
10081 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
10082 use crate::ln::functional_test_utils::*;
10083 use crate::ln::msgs::{self, ErrorAction};
10084 use crate::ln::msgs::ChannelMessageHandler;
10085 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
10086 use crate::util::errors::APIError;
10087 use crate::util::test_utils;
10088 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
10089 use crate::sign::EntropySource;
10092 fn test_notify_limits() {
10093 // Check that a few cases which don't require the persistence of a new ChannelManager,
10094 // indeed, do not cause the persistence of a new ChannelManager.
10095 let chanmon_cfgs = create_chanmon_cfgs(3);
10096 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10097 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
10098 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10100 // All nodes start with a persistable update pending as `create_network` connects each node
10101 // with all other nodes to make most tests simpler.
10102 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10103 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10104 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10106 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10108 // We check that the channel info nodes have doesn't change too early, even though we try
10109 // to connect messages with new values
10110 chan.0.contents.fee_base_msat *= 2;
10111 chan.1.contents.fee_base_msat *= 2;
10112 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
10113 &nodes[1].node.get_our_node_id()).pop().unwrap();
10114 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
10115 &nodes[0].node.get_our_node_id()).pop().unwrap();
10117 // The first two nodes (which opened a channel) should now require fresh persistence
10118 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10119 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10120 // ... but the last node should not.
10121 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10122 // After persisting the first two nodes they should no longer need fresh persistence.
10123 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10124 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10126 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
10127 // about the channel.
10128 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
10129 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
10130 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10132 // The nodes which are a party to the channel should also ignore messages from unrelated
10134 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10135 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10136 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10137 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10138 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10139 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10141 // At this point the channel info given by peers should still be the same.
10142 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10143 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10145 // An earlier version of handle_channel_update didn't check the directionality of the
10146 // update message and would always update the local fee info, even if our peer was
10147 // (spuriously) forwarding us our own channel_update.
10148 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
10149 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
10150 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
10152 // First deliver each peers' own message, checking that the node doesn't need to be
10153 // persisted and that its channel info remains the same.
10154 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
10155 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
10156 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10157 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10158 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10159 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10161 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
10162 // the channel info has updated.
10163 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
10164 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
10165 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10166 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10167 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
10168 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
10172 fn test_keysend_dup_hash_partial_mpp() {
10173 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
10175 let chanmon_cfgs = create_chanmon_cfgs(2);
10176 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10177 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10178 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10179 create_announced_chan_between_nodes(&nodes, 0, 1);
10181 // First, send a partial MPP payment.
10182 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
10183 let mut mpp_route = route.clone();
10184 mpp_route.paths.push(mpp_route.paths[0].clone());
10186 let payment_id = PaymentId([42; 32]);
10187 // Use the utility function send_payment_along_path to send the payment with MPP data which
10188 // indicates there are more HTLCs coming.
10189 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
10190 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
10191 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
10192 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
10193 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
10194 check_added_monitors!(nodes[0], 1);
10195 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10196 assert_eq!(events.len(), 1);
10197 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
10199 // Next, send a keysend payment with the same payment_hash and make sure it fails.
10200 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10201 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10202 check_added_monitors!(nodes[0], 1);
10203 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10204 assert_eq!(events.len(), 1);
10205 let ev = events.drain(..).next().unwrap();
10206 let payment_event = SendEvent::from_event(ev);
10207 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10208 check_added_monitors!(nodes[1], 0);
10209 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10210 expect_pending_htlcs_forwardable!(nodes[1]);
10211 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
10212 check_added_monitors!(nodes[1], 1);
10213 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10214 assert!(updates.update_add_htlcs.is_empty());
10215 assert!(updates.update_fulfill_htlcs.is_empty());
10216 assert_eq!(updates.update_fail_htlcs.len(), 1);
10217 assert!(updates.update_fail_malformed_htlcs.is_empty());
10218 assert!(updates.update_fee.is_none());
10219 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10220 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10221 expect_payment_failed!(nodes[0], our_payment_hash, true);
10223 // Send the second half of the original MPP payment.
10224 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
10225 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
10226 check_added_monitors!(nodes[0], 1);
10227 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10228 assert_eq!(events.len(), 1);
10229 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
10231 // Claim the full MPP payment. Note that we can't use a test utility like
10232 // claim_funds_along_route because the ordering of the messages causes the second half of the
10233 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
10234 // lightning messages manually.
10235 nodes[1].node.claim_funds(payment_preimage);
10236 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
10237 check_added_monitors!(nodes[1], 2);
10239 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10240 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
10241 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
10242 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
10243 check_added_monitors!(nodes[0], 1);
10244 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10245 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
10246 check_added_monitors!(nodes[1], 1);
10247 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10248 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
10249 check_added_monitors!(nodes[1], 1);
10250 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
10251 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
10252 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
10253 check_added_monitors!(nodes[0], 1);
10254 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
10255 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
10256 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10257 check_added_monitors!(nodes[0], 1);
10258 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
10259 check_added_monitors!(nodes[1], 1);
10260 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
10261 check_added_monitors!(nodes[1], 1);
10262 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
10263 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
10264 check_added_monitors!(nodes[0], 1);
10266 // Note that successful MPP payments will generate a single PaymentSent event upon the first
10267 // path's success and a PaymentPathSuccessful event for each path's success.
10268 let events = nodes[0].node.get_and_clear_pending_events();
10269 assert_eq!(events.len(), 2);
10271 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
10272 assert_eq!(payment_id, *actual_payment_id);
10273 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
10274 assert_eq!(route.paths[0], *path);
10276 _ => panic!("Unexpected event"),
10279 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
10280 assert_eq!(payment_id, *actual_payment_id);
10281 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
10282 assert_eq!(route.paths[0], *path);
10284 _ => panic!("Unexpected event"),
10289 fn test_keysend_dup_payment_hash() {
10290 do_test_keysend_dup_payment_hash(false);
10291 do_test_keysend_dup_payment_hash(true);
10294 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
10295 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
10296 // outbound regular payment fails as expected.
10297 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
10298 // fails as expected.
10299 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
10300 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
10301 // reject MPP keysend payments, since in this case where the payment has no payment
10302 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
10303 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
10304 // payment secrets and reject otherwise.
10305 let chanmon_cfgs = create_chanmon_cfgs(2);
10306 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10307 let mut mpp_keysend_cfg = test_default_channel_config();
10308 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
10309 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
10310 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10311 create_announced_chan_between_nodes(&nodes, 0, 1);
10312 let scorer = test_utils::TestScorer::new();
10313 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10315 // To start (1), send a regular payment but don't claim it.
10316 let expected_route = [&nodes[1]];
10317 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
10319 // Next, attempt a keysend payment and make sure it fails.
10320 let route_params = RouteParameters::from_payment_params_and_value(
10321 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
10322 TEST_FINAL_CLTV, false), 100_000);
10323 let route = find_route(
10324 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10325 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10327 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10328 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10329 check_added_monitors!(nodes[0], 1);
10330 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10331 assert_eq!(events.len(), 1);
10332 let ev = events.drain(..).next().unwrap();
10333 let payment_event = SendEvent::from_event(ev);
10334 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10335 check_added_monitors!(nodes[1], 0);
10336 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10337 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
10338 // fails), the second will process the resulting failure and fail the HTLC backward
10339 expect_pending_htlcs_forwardable!(nodes[1]);
10340 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10341 check_added_monitors!(nodes[1], 1);
10342 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10343 assert!(updates.update_add_htlcs.is_empty());
10344 assert!(updates.update_fulfill_htlcs.is_empty());
10345 assert_eq!(updates.update_fail_htlcs.len(), 1);
10346 assert!(updates.update_fail_malformed_htlcs.is_empty());
10347 assert!(updates.update_fee.is_none());
10348 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10349 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10350 expect_payment_failed!(nodes[0], payment_hash, true);
10352 // Finally, claim the original payment.
10353 claim_payment(&nodes[0], &expected_route, payment_preimage);
10355 // To start (2), send a keysend payment but don't claim it.
10356 let payment_preimage = PaymentPreimage([42; 32]);
10357 let route = find_route(
10358 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10359 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10361 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10362 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10363 check_added_monitors!(nodes[0], 1);
10364 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10365 assert_eq!(events.len(), 1);
10366 let event = events.pop().unwrap();
10367 let path = vec![&nodes[1]];
10368 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
10370 // Next, attempt a regular payment and make sure it fails.
10371 let payment_secret = PaymentSecret([43; 32]);
10372 nodes[0].node.send_payment_with_route(&route, payment_hash,
10373 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
10374 check_added_monitors!(nodes[0], 1);
10375 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10376 assert_eq!(events.len(), 1);
10377 let ev = events.drain(..).next().unwrap();
10378 let payment_event = SendEvent::from_event(ev);
10379 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10380 check_added_monitors!(nodes[1], 0);
10381 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10382 expect_pending_htlcs_forwardable!(nodes[1]);
10383 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10384 check_added_monitors!(nodes[1], 1);
10385 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10386 assert!(updates.update_add_htlcs.is_empty());
10387 assert!(updates.update_fulfill_htlcs.is_empty());
10388 assert_eq!(updates.update_fail_htlcs.len(), 1);
10389 assert!(updates.update_fail_malformed_htlcs.is_empty());
10390 assert!(updates.update_fee.is_none());
10391 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10392 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10393 expect_payment_failed!(nodes[0], payment_hash, true);
10395 // Finally, succeed the keysend payment.
10396 claim_payment(&nodes[0], &expected_route, payment_preimage);
10398 // To start (3), send a keysend payment but don't claim it.
10399 let payment_id_1 = PaymentId([44; 32]);
10400 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10401 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
10402 check_added_monitors!(nodes[0], 1);
10403 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10404 assert_eq!(events.len(), 1);
10405 let event = events.pop().unwrap();
10406 let path = vec![&nodes[1]];
10407 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
10409 // Next, attempt a keysend payment and make sure it fails.
10410 let route_params = RouteParameters::from_payment_params_and_value(
10411 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
10414 let route = find_route(
10415 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10416 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10418 let payment_id_2 = PaymentId([45; 32]);
10419 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10420 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
10421 check_added_monitors!(nodes[0], 1);
10422 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10423 assert_eq!(events.len(), 1);
10424 let ev = events.drain(..).next().unwrap();
10425 let payment_event = SendEvent::from_event(ev);
10426 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10427 check_added_monitors!(nodes[1], 0);
10428 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10429 expect_pending_htlcs_forwardable!(nodes[1]);
10430 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10431 check_added_monitors!(nodes[1], 1);
10432 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10433 assert!(updates.update_add_htlcs.is_empty());
10434 assert!(updates.update_fulfill_htlcs.is_empty());
10435 assert_eq!(updates.update_fail_htlcs.len(), 1);
10436 assert!(updates.update_fail_malformed_htlcs.is_empty());
10437 assert!(updates.update_fee.is_none());
10438 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10439 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10440 expect_payment_failed!(nodes[0], payment_hash, true);
10442 // Finally, claim the original payment.
10443 claim_payment(&nodes[0], &expected_route, payment_preimage);
10447 fn test_keysend_hash_mismatch() {
10448 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
10449 // preimage doesn't match the msg's payment hash.
10450 let chanmon_cfgs = create_chanmon_cfgs(2);
10451 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10452 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10453 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10455 let payer_pubkey = nodes[0].node.get_our_node_id();
10456 let payee_pubkey = nodes[1].node.get_our_node_id();
10458 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
10459 let route_params = RouteParameters::from_payment_params_and_value(
10460 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
10461 let network_graph = nodes[0].network_graph.clone();
10462 let first_hops = nodes[0].node.list_usable_channels();
10463 let scorer = test_utils::TestScorer::new();
10464 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10465 let route = find_route(
10466 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
10467 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10470 let test_preimage = PaymentPreimage([42; 32]);
10471 let mismatch_payment_hash = PaymentHash([43; 32]);
10472 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
10473 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
10474 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
10475 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
10476 check_added_monitors!(nodes[0], 1);
10478 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10479 assert_eq!(updates.update_add_htlcs.len(), 1);
10480 assert!(updates.update_fulfill_htlcs.is_empty());
10481 assert!(updates.update_fail_htlcs.is_empty());
10482 assert!(updates.update_fail_malformed_htlcs.is_empty());
10483 assert!(updates.update_fee.is_none());
10484 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
10486 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
10490 fn test_keysend_msg_with_secret_err() {
10491 // Test that we error as expected if we receive a keysend payment that includes a payment
10492 // secret when we don't support MPP keysend.
10493 let mut reject_mpp_keysend_cfg = test_default_channel_config();
10494 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
10495 let chanmon_cfgs = create_chanmon_cfgs(2);
10496 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10497 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
10498 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10500 let payer_pubkey = nodes[0].node.get_our_node_id();
10501 let payee_pubkey = nodes[1].node.get_our_node_id();
10503 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
10504 let route_params = RouteParameters::from_payment_params_and_value(
10505 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
10506 let network_graph = nodes[0].network_graph.clone();
10507 let first_hops = nodes[0].node.list_usable_channels();
10508 let scorer = test_utils::TestScorer::new();
10509 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10510 let route = find_route(
10511 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
10512 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10515 let test_preimage = PaymentPreimage([42; 32]);
10516 let test_secret = PaymentSecret([43; 32]);
10517 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
10518 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
10519 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
10520 nodes[0].node.test_send_payment_internal(&route, payment_hash,
10521 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
10522 PaymentId(payment_hash.0), None, session_privs).unwrap();
10523 check_added_monitors!(nodes[0], 1);
10525 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10526 assert_eq!(updates.update_add_htlcs.len(), 1);
10527 assert!(updates.update_fulfill_htlcs.is_empty());
10528 assert!(updates.update_fail_htlcs.is_empty());
10529 assert!(updates.update_fail_malformed_htlcs.is_empty());
10530 assert!(updates.update_fee.is_none());
10531 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
10533 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
10537 fn test_multi_hop_missing_secret() {
10538 let chanmon_cfgs = create_chanmon_cfgs(4);
10539 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
10540 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
10541 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
10543 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
10544 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
10545 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
10546 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
10548 // Marshall an MPP route.
10549 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
10550 let path = route.paths[0].clone();
10551 route.paths.push(path);
10552 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
10553 route.paths[0].hops[0].short_channel_id = chan_1_id;
10554 route.paths[0].hops[1].short_channel_id = chan_3_id;
10555 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
10556 route.paths[1].hops[0].short_channel_id = chan_2_id;
10557 route.paths[1].hops[1].short_channel_id = chan_4_id;
10559 match nodes[0].node.send_payment_with_route(&route, payment_hash,
10560 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
10562 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
10563 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
10565 _ => panic!("unexpected error")
10570 fn test_drop_disconnected_peers_when_removing_channels() {
10571 let chanmon_cfgs = create_chanmon_cfgs(2);
10572 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10573 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10574 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10576 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10578 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
10579 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10581 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
10582 check_closed_broadcast!(nodes[0], true);
10583 check_added_monitors!(nodes[0], 1);
10584 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
10587 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
10588 // disconnected and the channel between has been force closed.
10589 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
10590 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
10591 assert_eq!(nodes_0_per_peer_state.len(), 1);
10592 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
10595 nodes[0].node.timer_tick_occurred();
10598 // Assert that nodes[1] has now been removed.
10599 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
10604 fn bad_inbound_payment_hash() {
10605 // Add coverage for checking that a user-provided payment hash matches the payment secret.
10606 let chanmon_cfgs = create_chanmon_cfgs(2);
10607 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10608 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10609 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10611 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
10612 let payment_data = msgs::FinalOnionHopData {
10614 total_msat: 100_000,
10617 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
10618 // payment verification fails as expected.
10619 let mut bad_payment_hash = payment_hash.clone();
10620 bad_payment_hash.0[0] += 1;
10621 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
10622 Ok(_) => panic!("Unexpected ok"),
10624 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
10628 // Check that using the original payment hash succeeds.
10629 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
10633 fn test_id_to_peer_coverage() {
10634 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
10635 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
10636 // the channel is successfully closed.
10637 let chanmon_cfgs = create_chanmon_cfgs(2);
10638 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10639 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10640 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10642 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
10643 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10644 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
10645 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10646 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
10648 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
10649 let channel_id = ChannelId::from_bytes(tx.txid().into_inner());
10651 // Ensure that the `id_to_peer` map is empty until either party has received the
10652 // funding transaction, and have the real `channel_id`.
10653 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
10654 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10657 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
10659 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
10660 // as it has the funding transaction.
10661 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10662 assert_eq!(nodes_0_lock.len(), 1);
10663 assert!(nodes_0_lock.contains_key(&channel_id));
10666 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10668 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10670 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10672 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10673 assert_eq!(nodes_0_lock.len(), 1);
10674 assert!(nodes_0_lock.contains_key(&channel_id));
10676 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10679 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
10680 // as it has the funding transaction.
10681 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10682 assert_eq!(nodes_1_lock.len(), 1);
10683 assert!(nodes_1_lock.contains_key(&channel_id));
10685 check_added_monitors!(nodes[1], 1);
10686 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10687 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
10688 check_added_monitors!(nodes[0], 1);
10689 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
10690 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
10691 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
10692 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
10694 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
10695 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
10696 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
10697 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
10699 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
10700 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
10702 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
10703 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
10704 // fee for the closing transaction has been negotiated and the parties has the other
10705 // party's signature for the fee negotiated closing transaction.)
10706 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10707 assert_eq!(nodes_0_lock.len(), 1);
10708 assert!(nodes_0_lock.contains_key(&channel_id));
10712 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
10713 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
10714 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
10715 // kept in the `nodes[1]`'s `id_to_peer` map.
10716 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10717 assert_eq!(nodes_1_lock.len(), 1);
10718 assert!(nodes_1_lock.contains_key(&channel_id));
10721 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
10723 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
10724 // therefore has all it needs to fully close the channel (both signatures for the
10725 // closing transaction).
10726 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
10727 // fully closed by `nodes[0]`.
10728 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
10730 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
10731 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
10732 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10733 assert_eq!(nodes_1_lock.len(), 1);
10734 assert!(nodes_1_lock.contains_key(&channel_id));
10737 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
10739 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
10741 // Assert that the channel has now been removed from both parties `id_to_peer` map once
10742 // they both have everything required to fully close the channel.
10743 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10745 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
10747 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
10748 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
10751 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10752 let expected_message = format!("Not connected to node: {}", expected_public_key);
10753 check_api_error_message(expected_message, res_err)
10756 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10757 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
10758 check_api_error_message(expected_message, res_err)
10761 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
10762 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
10763 check_api_error_message(expected_message, res_err)
10766 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
10767 let expected_message = "No such channel awaiting to be accepted.".to_string();
10768 check_api_error_message(expected_message, res_err)
10771 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
10773 Err(APIError::APIMisuseError { err }) => {
10774 assert_eq!(err, expected_err_message);
10776 Err(APIError::ChannelUnavailable { err }) => {
10777 assert_eq!(err, expected_err_message);
10779 Ok(_) => panic!("Unexpected Ok"),
10780 Err(_) => panic!("Unexpected Error"),
10785 fn test_api_calls_with_unkown_counterparty_node() {
10786 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
10787 // expected if the `counterparty_node_id` is an unkown peer in the
10788 // `ChannelManager::per_peer_state` map.
10789 let chanmon_cfg = create_chanmon_cfgs(2);
10790 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10791 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
10792 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10795 let channel_id = ChannelId::from_bytes([4; 32]);
10796 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
10797 let intercept_id = InterceptId([0; 32]);
10799 // Test the API functions.
10800 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
10802 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
10804 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
10806 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
10808 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
10810 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
10812 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
10816 fn test_api_calls_with_unavailable_channel() {
10817 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
10818 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
10819 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
10820 // the given `channel_id`.
10821 let chanmon_cfg = create_chanmon_cfgs(2);
10822 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10823 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
10824 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10826 let counterparty_node_id = nodes[1].node.get_our_node_id();
10829 let channel_id = ChannelId::from_bytes([4; 32]);
10831 // Test the API functions.
10832 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
10834 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
10836 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
10838 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
10840 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
10842 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
10846 fn test_connection_limiting() {
10847 // Test that we limit un-channel'd peers and un-funded channels properly.
10848 let chanmon_cfgs = create_chanmon_cfgs(2);
10849 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10850 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10851 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10853 // Note that create_network connects the nodes together for us
10855 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10856 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10858 let mut funding_tx = None;
10859 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
10860 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10861 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10864 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
10865 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
10866 funding_tx = Some(tx.clone());
10867 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
10868 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10870 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10871 check_added_monitors!(nodes[1], 1);
10872 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10874 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10876 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
10877 check_added_monitors!(nodes[0], 1);
10878 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
10880 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10883 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
10884 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10885 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10886 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10887 open_channel_msg.temporary_channel_id);
10889 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
10890 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
10892 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
10893 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
10894 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10895 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10896 peer_pks.push(random_pk);
10897 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
10898 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10901 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10902 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10903 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10904 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10905 }, true).unwrap_err();
10907 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
10908 // them if we have too many un-channel'd peers.
10909 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10910 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
10911 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
10912 for ev in chan_closed_events {
10913 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
10915 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10916 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10918 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10919 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10920 }, true).unwrap_err();
10922 // but of course if the connection is outbound its allowed...
10923 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10924 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10925 }, false).unwrap();
10926 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10928 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
10929 // Even though we accept one more connection from new peers, we won't actually let them
10931 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
10932 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
10933 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
10934 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
10935 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10937 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10938 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
10939 open_channel_msg.temporary_channel_id);
10941 // Of course, however, outbound channels are always allowed
10942 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
10943 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
10945 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
10946 // "protected" and can connect again.
10947 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
10948 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10949 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10951 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
10953 // Further, because the first channel was funded, we can open another channel with
10955 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10956 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
10960 fn test_outbound_chans_unlimited() {
10961 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
10962 let chanmon_cfgs = create_chanmon_cfgs(2);
10963 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10964 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10965 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10967 // Note that create_network connects the nodes together for us
10969 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10970 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10972 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
10973 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10974 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10975 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10978 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
10980 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10981 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10982 open_channel_msg.temporary_channel_id);
10984 // but we can still open an outbound channel.
10985 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10986 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
10988 // but even with such an outbound channel, additional inbound channels will still fail.
10989 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10990 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10991 open_channel_msg.temporary_channel_id);
10995 fn test_0conf_limiting() {
10996 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
10997 // flag set and (sometimes) accept channels as 0conf.
10998 let chanmon_cfgs = create_chanmon_cfgs(2);
10999 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11000 let mut settings = test_default_channel_config();
11001 settings.manually_accept_inbound_channels = true;
11002 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11003 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11005 // Note that create_network connects the nodes together for us
11007 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
11008 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11010 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11011 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11012 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11013 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11014 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11015 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11018 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11019 let events = nodes[1].node.get_and_clear_pending_events();
11021 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11022 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11024 _ => panic!("Unexpected event"),
11026 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11027 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11030 // If we try to accept a channel from another peer non-0conf it will fail.
11031 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11032 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11033 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11034 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11036 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11037 let events = nodes[1].node.get_and_clear_pending_events();
11039 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11040 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
11041 Err(APIError::APIMisuseError { err }) =>
11042 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
11046 _ => panic!("Unexpected event"),
11048 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11049 open_channel_msg.temporary_channel_id);
11051 // ...however if we accept the same channel 0conf it should work just fine.
11052 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11053 let events = nodes[1].node.get_and_clear_pending_events();
11055 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11056 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
11058 _ => panic!("Unexpected event"),
11060 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11064 fn reject_excessively_underpaying_htlcs() {
11065 let chanmon_cfg = create_chanmon_cfgs(1);
11066 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11067 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11068 let node = create_network(1, &node_cfg, &node_chanmgr);
11069 let sender_intended_amt_msat = 100;
11070 let extra_fee_msat = 10;
11071 let hop_data = msgs::InboundOnionPayload::Receive {
11073 outgoing_cltv_value: 42,
11074 payment_metadata: None,
11075 keysend_preimage: None,
11076 payment_data: Some(msgs::FinalOnionHopData {
11077 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11079 custom_tlvs: Vec::new(),
11081 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
11082 // intended amount, we fail the payment.
11083 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
11084 node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11085 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat))
11087 assert_eq!(err_code, 19);
11088 } else { panic!(); }
11090 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
11091 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
11093 outgoing_cltv_value: 42,
11094 payment_metadata: None,
11095 keysend_preimage: None,
11096 payment_data: Some(msgs::FinalOnionHopData {
11097 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11099 custom_tlvs: Vec::new(),
11101 assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11102 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok());
11106 fn test_inbound_anchors_manual_acceptance() {
11107 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11108 // flag set and (sometimes) accept channels as 0conf.
11109 let mut anchors_cfg = test_default_channel_config();
11110 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11112 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
11113 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
11115 let chanmon_cfgs = create_chanmon_cfgs(3);
11116 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11117 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
11118 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
11119 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11121 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
11122 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11124 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11125 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11126 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
11127 match &msg_events[0] {
11128 MessageSendEvent::HandleError { node_id, action } => {
11129 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
11131 ErrorAction::SendErrorMessage { msg } =>
11132 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
11133 _ => panic!("Unexpected error action"),
11136 _ => panic!("Unexpected event"),
11139 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11140 let events = nodes[2].node.get_and_clear_pending_events();
11142 Event::OpenChannelRequest { temporary_channel_id, .. } =>
11143 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
11144 _ => panic!("Unexpected event"),
11146 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11150 fn test_anchors_zero_fee_htlc_tx_fallback() {
11151 // Tests that if both nodes support anchors, but the remote node does not want to accept
11152 // anchor channels at the moment, an error it sent to the local node such that it can retry
11153 // the channel without the anchors feature.
11154 let chanmon_cfgs = create_chanmon_cfgs(2);
11155 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11156 let mut anchors_config = test_default_channel_config();
11157 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11158 anchors_config.manually_accept_inbound_channels = true;
11159 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
11160 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11162 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
11163 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11164 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
11166 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11167 let events = nodes[1].node.get_and_clear_pending_events();
11169 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11170 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
11172 _ => panic!("Unexpected event"),
11175 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
11176 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
11178 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11179 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
11181 // Since nodes[1] should not have accepted the channel, it should
11182 // not have generated any events.
11183 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11187 fn test_update_channel_config() {
11188 let chanmon_cfg = create_chanmon_cfgs(2);
11189 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11190 let mut user_config = test_default_channel_config();
11191 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
11192 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11193 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
11194 let channel = &nodes[0].node.list_channels()[0];
11196 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
11197 let events = nodes[0].node.get_and_clear_pending_msg_events();
11198 assert_eq!(events.len(), 0);
11200 user_config.channel_config.forwarding_fee_base_msat += 10;
11201 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
11202 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
11203 let events = nodes[0].node.get_and_clear_pending_msg_events();
11204 assert_eq!(events.len(), 1);
11206 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
11207 _ => panic!("expected BroadcastChannelUpdate event"),
11210 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
11211 let events = nodes[0].node.get_and_clear_pending_msg_events();
11212 assert_eq!(events.len(), 0);
11214 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
11215 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
11216 cltv_expiry_delta: Some(new_cltv_expiry_delta),
11217 ..Default::default()
11219 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
11220 let events = nodes[0].node.get_and_clear_pending_msg_events();
11221 assert_eq!(events.len(), 1);
11223 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
11224 _ => panic!("expected BroadcastChannelUpdate event"),
11227 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
11228 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
11229 forwarding_fee_proportional_millionths: Some(new_fee),
11230 ..Default::default()
11232 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
11233 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
11234 let events = nodes[0].node.get_and_clear_pending_msg_events();
11235 assert_eq!(events.len(), 1);
11237 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
11238 _ => panic!("expected BroadcastChannelUpdate event"),
11241 // If we provide a channel_id not associated with the peer, we should get an error and no updates
11242 // should be applied to ensure update atomicity as specified in the API docs.
11243 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
11244 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
11245 let new_fee = current_fee + 100;
11248 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
11249 forwarding_fee_proportional_millionths: Some(new_fee),
11250 ..Default::default()
11252 Err(APIError::ChannelUnavailable { err: _ }),
11255 // Check that the fee hasn't changed for the channel that exists.
11256 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
11257 let events = nodes[0].node.get_and_clear_pending_msg_events();
11258 assert_eq!(events.len(), 0);
11262 fn test_payment_display() {
11263 let payment_id = PaymentId([42; 32]);
11264 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11265 let payment_hash = PaymentHash([42; 32]);
11266 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11267 let payment_preimage = PaymentPreimage([42; 32]);
11268 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11274 use crate::chain::Listen;
11275 use crate::chain::chainmonitor::{ChainMonitor, Persist};
11276 use crate::sign::{KeysManager, InMemorySigner};
11277 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
11278 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
11279 use crate::ln::functional_test_utils::*;
11280 use crate::ln::msgs::{ChannelMessageHandler, Init};
11281 use crate::routing::gossip::NetworkGraph;
11282 use crate::routing::router::{PaymentParameters, RouteParameters};
11283 use crate::util::test_utils;
11284 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
11286 use bitcoin::hashes::Hash;
11287 use bitcoin::hashes::sha256::Hash as Sha256;
11288 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
11290 use crate::sync::{Arc, Mutex, RwLock};
11292 use criterion::Criterion;
11294 type Manager<'a, P> = ChannelManager<
11295 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
11296 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
11297 &'a test_utils::TestLogger, &'a P>,
11298 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
11299 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
11300 &'a test_utils::TestLogger>;
11302 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
11303 node: &'node_cfg Manager<'chan_mon_cfg, P>,
11305 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
11306 type CM = Manager<'chan_mon_cfg, P>;
11308 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
11310 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
11313 pub fn bench_sends(bench: &mut Criterion) {
11314 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
11317 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
11318 // Do a simple benchmark of sending a payment back and forth between two nodes.
11319 // Note that this is unrealistic as each payment send will require at least two fsync
11321 let network = bitcoin::Network::Testnet;
11322 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
11324 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
11325 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
11326 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
11327 let scorer = RwLock::new(test_utils::TestScorer::new());
11328 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
11330 let mut config: UserConfig = Default::default();
11331 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
11332 config.channel_handshake_config.minimum_depth = 1;
11334 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
11335 let seed_a = [1u8; 32];
11336 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
11337 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
11339 best_block: BestBlock::from_network(network),
11340 }, genesis_block.header.time);
11341 let node_a_holder = ANodeHolder { node: &node_a };
11343 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
11344 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
11345 let seed_b = [2u8; 32];
11346 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
11347 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
11349 best_block: BestBlock::from_network(network),
11350 }, genesis_block.header.time);
11351 let node_b_holder = ANodeHolder { node: &node_b };
11353 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
11354 features: node_b.init_features(), networks: None, remote_network_address: None
11356 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
11357 features: node_a.init_features(), networks: None, remote_network_address: None
11358 }, false).unwrap();
11359 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
11360 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
11361 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
11364 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
11365 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
11366 value: 8_000_000, script_pubkey: output_script,
11368 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
11369 } else { panic!(); }
11371 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
11372 let events_b = node_b.get_and_clear_pending_events();
11373 assert_eq!(events_b.len(), 1);
11374 match events_b[0] {
11375 Event::ChannelPending{ ref counterparty_node_id, .. } => {
11376 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
11378 _ => panic!("Unexpected event"),
11381 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
11382 let events_a = node_a.get_and_clear_pending_events();
11383 assert_eq!(events_a.len(), 1);
11384 match events_a[0] {
11385 Event::ChannelPending{ ref counterparty_node_id, .. } => {
11386 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
11388 _ => panic!("Unexpected event"),
11391 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
11393 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
11394 Listen::block_connected(&node_a, &block, 1);
11395 Listen::block_connected(&node_b, &block, 1);
11397 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
11398 let msg_events = node_a.get_and_clear_pending_msg_events();
11399 assert_eq!(msg_events.len(), 2);
11400 match msg_events[0] {
11401 MessageSendEvent::SendChannelReady { ref msg, .. } => {
11402 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
11403 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
11407 match msg_events[1] {
11408 MessageSendEvent::SendChannelUpdate { .. } => {},
11412 let events_a = node_a.get_and_clear_pending_events();
11413 assert_eq!(events_a.len(), 1);
11414 match events_a[0] {
11415 Event::ChannelReady{ ref counterparty_node_id, .. } => {
11416 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
11418 _ => panic!("Unexpected event"),
11421 let events_b = node_b.get_and_clear_pending_events();
11422 assert_eq!(events_b.len(), 1);
11423 match events_b[0] {
11424 Event::ChannelReady{ ref counterparty_node_id, .. } => {
11425 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
11427 _ => panic!("Unexpected event"),
11430 let mut payment_count: u64 = 0;
11431 macro_rules! send_payment {
11432 ($node_a: expr, $node_b: expr) => {
11433 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
11434 .with_bolt11_features($node_b.invoice_features()).unwrap();
11435 let mut payment_preimage = PaymentPreimage([0; 32]);
11436 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
11437 payment_count += 1;
11438 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
11439 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
11441 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
11442 PaymentId(payment_hash.0),
11443 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
11444 Retry::Attempts(0)).unwrap();
11445 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
11446 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
11447 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
11448 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
11449 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
11450 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
11451 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
11453 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
11454 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
11455 $node_b.claim_funds(payment_preimage);
11456 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
11458 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
11459 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
11460 assert_eq!(node_id, $node_a.get_our_node_id());
11461 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
11462 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
11464 _ => panic!("Failed to generate claim event"),
11467 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
11468 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
11469 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
11470 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
11472 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
11476 bench.bench_function(bench_name, |b| b.iter(|| {
11477 send_payment!(node_a, node_b);
11478 send_payment!(node_b, node_a);