1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
33 use crate::blinded_path::BlindedPath;
34 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
36 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
37 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
38 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
39 use crate::chain::transaction::{OutPoint, TransactionData};
41 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
42 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
43 // construct one themselves.
44 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
45 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
46 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
47 #[cfg(any(feature = "_test_utils", test))]
48 use crate::ln::features::Bolt11InvoiceFeatures;
49 use crate::routing::gossip::NetworkGraph;
50 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
51 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
53 use crate::ln::onion_utils;
54 use crate::ln::onion_utils::HTLCFailReason;
55 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
57 use crate::ln::outbound_payment;
58 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
59 use crate::ln::wire::Encode;
60 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
61 use crate::offers::invoice_error::InvoiceError;
62 use crate::offers::merkle::SignError;
63 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
64 use crate::offers::parse::Bolt12SemanticError;
65 use crate::offers::refund::{Refund, RefundBuilder};
66 use crate::onion_message::{Destination, OffersMessage, OffersMessageHandler, PendingOnionMessage, new_pending_onion_message};
67 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, WriteableEcdsaChannelSigner};
68 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
69 use crate::util::wakers::{Future, Notifier};
70 use crate::util::scid_utils::fake_scid;
71 use crate::util::string::UntrustedString;
72 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
73 use crate::util::logger::{Level, Logger};
74 use crate::util::errors::APIError;
76 use alloc::collections::{btree_map, BTreeMap};
79 use crate::prelude::*;
81 use core::cell::RefCell;
83 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
84 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
85 use core::time::Duration;
88 // Re-export this for use in the public API.
89 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
90 use crate::ln::script::ShutdownScript;
92 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
94 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
95 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
96 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
98 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
99 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
100 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
101 // before we forward it.
103 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
104 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
105 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
106 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
107 // our payment, which we can use to decode errors or inform the user that the payment was sent.
109 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
110 pub(super) enum PendingHTLCRouting {
112 onion_packet: msgs::OnionPacket,
113 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
114 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
115 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
118 payment_data: msgs::FinalOnionHopData,
119 payment_metadata: Option<Vec<u8>>,
120 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
121 phantom_shared_secret: Option<[u8; 32]>,
122 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
123 custom_tlvs: Vec<(u64, Vec<u8>)>,
126 /// This was added in 0.0.116 and will break deserialization on downgrades.
127 payment_data: Option<msgs::FinalOnionHopData>,
128 payment_preimage: PaymentPreimage,
129 payment_metadata: Option<Vec<u8>>,
130 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
131 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
132 custom_tlvs: Vec<(u64, Vec<u8>)>,
136 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
137 pub(super) struct PendingHTLCInfo {
138 pub(super) routing: PendingHTLCRouting,
139 pub(super) incoming_shared_secret: [u8; 32],
140 payment_hash: PaymentHash,
142 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
143 /// Sender intended amount to forward or receive (actual amount received
144 /// may overshoot this in either case)
145 pub(super) outgoing_amt_msat: u64,
146 pub(super) outgoing_cltv_value: u32,
147 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
148 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
149 pub(super) skimmed_fee_msat: Option<u64>,
152 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
153 pub(super) enum HTLCFailureMsg {
154 Relay(msgs::UpdateFailHTLC),
155 Malformed(msgs::UpdateFailMalformedHTLC),
158 /// Stores whether we can't forward an HTLC or relevant forwarding info
159 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
160 pub(super) enum PendingHTLCStatus {
161 Forward(PendingHTLCInfo),
162 Fail(HTLCFailureMsg),
165 pub(super) struct PendingAddHTLCInfo {
166 pub(super) forward_info: PendingHTLCInfo,
168 // These fields are produced in `forward_htlcs()` and consumed in
169 // `process_pending_htlc_forwards()` for constructing the
170 // `HTLCSource::PreviousHopData` for failed and forwarded
173 // Note that this may be an outbound SCID alias for the associated channel.
174 prev_short_channel_id: u64,
176 prev_funding_outpoint: OutPoint,
177 prev_user_channel_id: u128,
180 pub(super) enum HTLCForwardInfo {
181 AddHTLC(PendingAddHTLCInfo),
184 err_packet: msgs::OnionErrorPacket,
188 /// Tracks the inbound corresponding to an outbound HTLC
189 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
190 pub(crate) struct HTLCPreviousHopData {
191 // Note that this may be an outbound SCID alias for the associated channel.
192 short_channel_id: u64,
193 user_channel_id: Option<u128>,
195 incoming_packet_shared_secret: [u8; 32],
196 phantom_shared_secret: Option<[u8; 32]>,
198 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
199 // channel with a preimage provided by the forward channel.
204 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
206 /// This is only here for backwards-compatibility in serialization, in the future it can be
207 /// removed, breaking clients running 0.0.106 and earlier.
208 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
210 /// Contains the payer-provided preimage.
211 Spontaneous(PaymentPreimage),
214 /// HTLCs that are to us and can be failed/claimed by the user
215 struct ClaimableHTLC {
216 prev_hop: HTLCPreviousHopData,
218 /// The amount (in msats) of this MPP part
220 /// The amount (in msats) that the sender intended to be sent in this MPP
221 /// part (used for validating total MPP amount)
222 sender_intended_value: u64,
223 onion_payload: OnionPayload,
225 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
226 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
227 total_value_received: Option<u64>,
228 /// The sender intended sum total of all MPP parts specified in the onion
230 /// The extra fee our counterparty skimmed off the top of this HTLC.
231 counterparty_skimmed_fee_msat: Option<u64>,
234 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
235 fn from(val: &ClaimableHTLC) -> Self {
236 events::ClaimedHTLC {
237 channel_id: val.prev_hop.outpoint.to_channel_id(),
238 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
239 cltv_expiry: val.cltv_expiry,
240 value_msat: val.value,
245 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
246 /// a payment and ensure idempotency in LDK.
248 /// This is not exported to bindings users as we just use [u8; 32] directly
249 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
250 pub struct PaymentId(pub [u8; Self::LENGTH]);
253 /// Number of bytes in the id.
254 pub const LENGTH: usize = 32;
257 impl Writeable for PaymentId {
258 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
263 impl Readable for PaymentId {
264 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
265 let buf: [u8; 32] = Readable::read(r)?;
270 impl core::fmt::Display for PaymentId {
271 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
272 crate::util::logger::DebugBytes(&self.0).fmt(f)
276 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
278 /// This is not exported to bindings users as we just use [u8; 32] directly
279 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
280 pub struct InterceptId(pub [u8; 32]);
282 impl Writeable for InterceptId {
283 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
288 impl Readable for InterceptId {
289 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
290 let buf: [u8; 32] = Readable::read(r)?;
295 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
296 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
297 pub(crate) enum SentHTLCId {
298 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
299 OutboundRoute { session_priv: SecretKey },
302 pub(crate) fn from_source(source: &HTLCSource) -> Self {
304 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
305 short_channel_id: hop_data.short_channel_id,
306 htlc_id: hop_data.htlc_id,
308 HTLCSource::OutboundRoute { session_priv, .. } =>
309 Self::OutboundRoute { session_priv: *session_priv },
313 impl_writeable_tlv_based_enum!(SentHTLCId,
314 (0, PreviousHopData) => {
315 (0, short_channel_id, required),
316 (2, htlc_id, required),
318 (2, OutboundRoute) => {
319 (0, session_priv, required),
324 /// Tracks the inbound corresponding to an outbound HTLC
325 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
326 #[derive(Clone, Debug, PartialEq, Eq)]
327 pub(crate) enum HTLCSource {
328 PreviousHopData(HTLCPreviousHopData),
331 session_priv: SecretKey,
332 /// Technically we can recalculate this from the route, but we cache it here to avoid
333 /// doing a double-pass on route when we get a failure back
334 first_hop_htlc_msat: u64,
335 payment_id: PaymentId,
338 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
339 impl core::hash::Hash for HTLCSource {
340 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
342 HTLCSource::PreviousHopData(prev_hop_data) => {
344 prev_hop_data.hash(hasher);
346 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
349 session_priv[..].hash(hasher);
350 payment_id.hash(hasher);
351 first_hop_htlc_msat.hash(hasher);
357 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
359 pub fn dummy() -> Self {
360 HTLCSource::OutboundRoute {
361 path: Path { hops: Vec::new(), blinded_tail: None },
362 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
363 first_hop_htlc_msat: 0,
364 payment_id: PaymentId([2; 32]),
368 #[cfg(debug_assertions)]
369 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
370 /// transaction. Useful to ensure different datastructures match up.
371 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
372 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
373 *first_hop_htlc_msat == htlc.amount_msat
375 // There's nothing we can check for forwarded HTLCs
381 struct InboundOnionErr {
387 /// This enum is used to specify which error data to send to peers when failing back an HTLC
388 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
390 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
391 #[derive(Clone, Copy)]
392 pub enum FailureCode {
393 /// We had a temporary error processing the payment. Useful if no other error codes fit
394 /// and you want to indicate that the payer may want to retry.
395 TemporaryNodeFailure,
396 /// We have a required feature which was not in this onion. For example, you may require
397 /// some additional metadata that was not provided with this payment.
398 RequiredNodeFeatureMissing,
399 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
400 /// the HTLC is too close to the current block height for safe handling.
401 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
402 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
403 IncorrectOrUnknownPaymentDetails,
404 /// We failed to process the payload after the onion was decrypted. You may wish to
405 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
407 /// If available, the tuple data may include the type number and byte offset in the
408 /// decrypted byte stream where the failure occurred.
409 InvalidOnionPayload(Option<(u64, u16)>),
412 impl Into<u16> for FailureCode {
413 fn into(self) -> u16 {
415 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
416 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
417 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
418 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
423 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
424 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
425 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
426 /// peer_state lock. We then return the set of things that need to be done outside the lock in
427 /// this struct and call handle_error!() on it.
429 struct MsgHandleErrInternal {
430 err: msgs::LightningError,
431 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
432 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
433 channel_capacity: Option<u64>,
435 impl MsgHandleErrInternal {
437 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
439 err: LightningError {
441 action: msgs::ErrorAction::SendErrorMessage {
442 msg: msgs::ErrorMessage {
449 shutdown_finish: None,
450 channel_capacity: None,
454 fn from_no_close(err: msgs::LightningError) -> Self {
455 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
458 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
459 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
460 let action = if shutdown_res.monitor_update.is_some() {
461 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
462 // should disconnect our peer such that we force them to broadcast their latest
463 // commitment upon reconnecting.
464 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
466 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
469 err: LightningError { err, action },
470 chan_id: Some((channel_id, user_channel_id)),
471 shutdown_finish: Some((shutdown_res, channel_update)),
472 channel_capacity: Some(channel_capacity)
476 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
479 ChannelError::Warn(msg) => LightningError {
481 action: msgs::ErrorAction::SendWarningMessage {
482 msg: msgs::WarningMessage {
486 log_level: Level::Warn,
489 ChannelError::Ignore(msg) => LightningError {
491 action: msgs::ErrorAction::IgnoreError,
493 ChannelError::Close(msg) => LightningError {
495 action: msgs::ErrorAction::SendErrorMessage {
496 msg: msgs::ErrorMessage {
504 shutdown_finish: None,
505 channel_capacity: None,
509 fn closes_channel(&self) -> bool {
510 self.chan_id.is_some()
514 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
515 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
516 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
517 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
518 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
520 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
521 /// be sent in the order they appear in the return value, however sometimes the order needs to be
522 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
523 /// they were originally sent). In those cases, this enum is also returned.
524 #[derive(Clone, PartialEq)]
525 pub(super) enum RAACommitmentOrder {
526 /// Send the CommitmentUpdate messages first
528 /// Send the RevokeAndACK message first
532 /// Information about a payment which is currently being claimed.
533 struct ClaimingPayment {
535 payment_purpose: events::PaymentPurpose,
536 receiver_node_id: PublicKey,
537 htlcs: Vec<events::ClaimedHTLC>,
538 sender_intended_value: Option<u64>,
540 impl_writeable_tlv_based!(ClaimingPayment, {
541 (0, amount_msat, required),
542 (2, payment_purpose, required),
543 (4, receiver_node_id, required),
544 (5, htlcs, optional_vec),
545 (7, sender_intended_value, option),
548 struct ClaimablePayment {
549 purpose: events::PaymentPurpose,
550 onion_fields: Option<RecipientOnionFields>,
551 htlcs: Vec<ClaimableHTLC>,
554 /// Information about claimable or being-claimed payments
555 struct ClaimablePayments {
556 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
557 /// failed/claimed by the user.
559 /// Note that, no consistency guarantees are made about the channels given here actually
560 /// existing anymore by the time you go to read them!
562 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
563 /// we don't get a duplicate payment.
564 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
566 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
567 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
568 /// as an [`events::Event::PaymentClaimed`].
569 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
572 /// Events which we process internally but cannot be processed immediately at the generation site
573 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
574 /// running normally, and specifically must be processed before any other non-background
575 /// [`ChannelMonitorUpdate`]s are applied.
577 enum BackgroundEvent {
578 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
579 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
580 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
581 /// channel has been force-closed we do not need the counterparty node_id.
583 /// Note that any such events are lost on shutdown, so in general they must be updates which
584 /// are regenerated on startup.
585 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
586 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
587 /// channel to continue normal operation.
589 /// In general this should be used rather than
590 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
591 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
592 /// error the other variant is acceptable.
594 /// Note that any such events are lost on shutdown, so in general they must be updates which
595 /// are regenerated on startup.
596 MonitorUpdateRegeneratedOnStartup {
597 counterparty_node_id: PublicKey,
598 funding_txo: OutPoint,
599 update: ChannelMonitorUpdate
601 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
602 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
604 MonitorUpdatesComplete {
605 counterparty_node_id: PublicKey,
606 channel_id: ChannelId,
611 pub(crate) enum MonitorUpdateCompletionAction {
612 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
613 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
614 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
615 /// event can be generated.
616 PaymentClaimed { payment_hash: PaymentHash },
617 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
618 /// operation of another channel.
620 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
621 /// from completing a monitor update which removes the payment preimage until the inbound edge
622 /// completes a monitor update containing the payment preimage. In that case, after the inbound
623 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
625 EmitEventAndFreeOtherChannel {
626 event: events::Event,
627 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
629 /// Indicates we should immediately resume the operation of another channel, unless there is
630 /// some other reason why the channel is blocked. In practice this simply means immediately
631 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
633 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
634 /// from completing a monitor update which removes the payment preimage until the inbound edge
635 /// completes a monitor update containing the payment preimage. However, we use this variant
636 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
637 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
639 /// This variant should thus never be written to disk, as it is processed inline rather than
640 /// stored for later processing.
641 FreeOtherChannelImmediately {
642 downstream_counterparty_node_id: PublicKey,
643 downstream_funding_outpoint: OutPoint,
644 blocking_action: RAAMonitorUpdateBlockingAction,
648 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
649 (0, PaymentClaimed) => { (0, payment_hash, required) },
650 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
651 // *immediately*. However, for simplicity we implement read/write here.
652 (1, FreeOtherChannelImmediately) => {
653 (0, downstream_counterparty_node_id, required),
654 (2, downstream_funding_outpoint, required),
655 (4, blocking_action, required),
657 (2, EmitEventAndFreeOtherChannel) => {
658 (0, event, upgradable_required),
659 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
660 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
661 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
662 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
663 // downgrades to prior versions.
664 (1, downstream_counterparty_and_funding_outpoint, option),
668 #[derive(Clone, Debug, PartialEq, Eq)]
669 pub(crate) enum EventCompletionAction {
670 ReleaseRAAChannelMonitorUpdate {
671 counterparty_node_id: PublicKey,
672 channel_funding_outpoint: OutPoint,
675 impl_writeable_tlv_based_enum!(EventCompletionAction,
676 (0, ReleaseRAAChannelMonitorUpdate) => {
677 (0, channel_funding_outpoint, required),
678 (2, counterparty_node_id, required),
682 #[derive(Clone, PartialEq, Eq, Debug)]
683 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
684 /// the blocked action here. See enum variants for more info.
685 pub(crate) enum RAAMonitorUpdateBlockingAction {
686 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
687 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
689 ForwardedPaymentInboundClaim {
690 /// The upstream channel ID (i.e. the inbound edge).
691 channel_id: ChannelId,
692 /// The HTLC ID on the inbound edge.
697 impl RAAMonitorUpdateBlockingAction {
698 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
699 Self::ForwardedPaymentInboundClaim {
700 channel_id: prev_hop.outpoint.to_channel_id(),
701 htlc_id: prev_hop.htlc_id,
706 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
707 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
711 /// State we hold per-peer.
712 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
713 /// `channel_id` -> `ChannelPhase`
715 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
716 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
717 /// `temporary_channel_id` -> `InboundChannelRequest`.
719 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
720 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
721 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
722 /// the channel is rejected, then the entry is simply removed.
723 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
724 /// The latest `InitFeatures` we heard from the peer.
725 latest_features: InitFeatures,
726 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
727 /// for broadcast messages, where ordering isn't as strict).
728 pub(super) pending_msg_events: Vec<MessageSendEvent>,
729 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
730 /// user but which have not yet completed.
732 /// Note that the channel may no longer exist. For example if the channel was closed but we
733 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
734 /// for a missing channel.
735 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
736 /// Map from a specific channel to some action(s) that should be taken when all pending
737 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
739 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
740 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
741 /// channels with a peer this will just be one allocation and will amount to a linear list of
742 /// channels to walk, avoiding the whole hashing rigmarole.
744 /// Note that the channel may no longer exist. For example, if a channel was closed but we
745 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
746 /// for a missing channel. While a malicious peer could construct a second channel with the
747 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
748 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
749 /// duplicates do not occur, so such channels should fail without a monitor update completing.
750 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
751 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
752 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
753 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
754 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
755 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
756 /// The peer is currently connected (i.e. we've seen a
757 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
758 /// [`ChannelMessageHandler::peer_disconnected`].
762 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
763 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
764 /// If true is passed for `require_disconnected`, the function will return false if we haven't
765 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
766 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
767 if require_disconnected && self.is_connected {
770 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
771 && self.monitor_update_blocked_actions.is_empty()
772 && self.in_flight_monitor_updates.is_empty()
775 // Returns a count of all channels we have with this peer, including unfunded channels.
776 fn total_channel_count(&self) -> usize {
777 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
780 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
781 fn has_channel(&self, channel_id: &ChannelId) -> bool {
782 self.channel_by_id.contains_key(channel_id) ||
783 self.inbound_channel_request_by_id.contains_key(channel_id)
787 /// A not-yet-accepted inbound (from counterparty) channel. Once
788 /// accepted, the parameters will be used to construct a channel.
789 pub(super) struct InboundChannelRequest {
790 /// The original OpenChannel message.
791 pub open_channel_msg: msgs::OpenChannel,
792 /// The number of ticks remaining before the request expires.
793 pub ticks_remaining: i32,
796 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
797 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
798 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
800 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
801 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
803 /// For users who don't want to bother doing their own payment preimage storage, we also store that
806 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
807 /// and instead encoding it in the payment secret.
808 struct PendingInboundPayment {
809 /// The payment secret that the sender must use for us to accept this payment
810 payment_secret: PaymentSecret,
811 /// Time at which this HTLC expires - blocks with a header time above this value will result in
812 /// this payment being removed.
814 /// Arbitrary identifier the user specifies (or not)
815 user_payment_id: u64,
816 // Other required attributes of the payment, optionally enforced:
817 payment_preimage: Option<PaymentPreimage>,
818 min_value_msat: Option<u64>,
821 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
822 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
823 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
824 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
825 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
826 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
827 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
828 /// of [`KeysManager`] and [`DefaultRouter`].
830 /// This is not exported to bindings users as type aliases aren't supported in most languages.
831 #[cfg(not(c_bindings))]
832 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
840 Arc<NetworkGraph<Arc<L>>>,
842 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
843 ProbabilisticScoringFeeParameters,
844 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
849 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
850 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
851 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
852 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
853 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
854 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
855 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
856 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
857 /// of [`KeysManager`] and [`DefaultRouter`].
859 /// This is not exported to bindings users as type aliases aren't supported in most languages.
860 #[cfg(not(c_bindings))]
861 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
870 &'f NetworkGraph<&'g L>,
872 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
873 ProbabilisticScoringFeeParameters,
874 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
879 /// A trivial trait which describes any [`ChannelManager`].
881 /// This is not exported to bindings users as general cover traits aren't useful in other
883 pub trait AChannelManager {
884 /// A type implementing [`chain::Watch`].
885 type Watch: chain::Watch<Self::Signer> + ?Sized;
886 /// A type that may be dereferenced to [`Self::Watch`].
887 type M: Deref<Target = Self::Watch>;
888 /// A type implementing [`BroadcasterInterface`].
889 type Broadcaster: BroadcasterInterface + ?Sized;
890 /// A type that may be dereferenced to [`Self::Broadcaster`].
891 type T: Deref<Target = Self::Broadcaster>;
892 /// A type implementing [`EntropySource`].
893 type EntropySource: EntropySource + ?Sized;
894 /// A type that may be dereferenced to [`Self::EntropySource`].
895 type ES: Deref<Target = Self::EntropySource>;
896 /// A type implementing [`NodeSigner`].
897 type NodeSigner: NodeSigner + ?Sized;
898 /// A type that may be dereferenced to [`Self::NodeSigner`].
899 type NS: Deref<Target = Self::NodeSigner>;
900 /// A type implementing [`WriteableEcdsaChannelSigner`].
901 type Signer: WriteableEcdsaChannelSigner + Sized;
902 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
903 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
904 /// A type that may be dereferenced to [`Self::SignerProvider`].
905 type SP: Deref<Target = Self::SignerProvider>;
906 /// A type implementing [`FeeEstimator`].
907 type FeeEstimator: FeeEstimator + ?Sized;
908 /// A type that may be dereferenced to [`Self::FeeEstimator`].
909 type F: Deref<Target = Self::FeeEstimator>;
910 /// A type implementing [`Router`].
911 type Router: Router + ?Sized;
912 /// A type that may be dereferenced to [`Self::Router`].
913 type R: Deref<Target = Self::Router>;
914 /// A type implementing [`Logger`].
915 type Logger: Logger + ?Sized;
916 /// A type that may be dereferenced to [`Self::Logger`].
917 type L: Deref<Target = Self::Logger>;
918 /// Returns a reference to the actual [`ChannelManager`] object.
919 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
922 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
923 for ChannelManager<M, T, ES, NS, SP, F, R, L>
925 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
926 T::Target: BroadcasterInterface,
927 ES::Target: EntropySource,
928 NS::Target: NodeSigner,
929 SP::Target: SignerProvider,
930 F::Target: FeeEstimator,
934 type Watch = M::Target;
936 type Broadcaster = T::Target;
938 type EntropySource = ES::Target;
940 type NodeSigner = NS::Target;
942 type Signer = <SP::Target as SignerProvider>::Signer;
943 type SignerProvider = SP::Target;
945 type FeeEstimator = F::Target;
947 type Router = R::Target;
949 type Logger = L::Target;
951 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
954 /// Manager which keeps track of a number of channels and sends messages to the appropriate
955 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
957 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
958 /// to individual Channels.
960 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
961 /// all peers during write/read (though does not modify this instance, only the instance being
962 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
963 /// called [`funding_transaction_generated`] for outbound channels) being closed.
965 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
966 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
967 /// [`ChannelMonitorUpdate`] before returning from
968 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
969 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
970 /// `ChannelManager` operations from occurring during the serialization process). If the
971 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
972 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
973 /// will be lost (modulo on-chain transaction fees).
975 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
976 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
977 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
979 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
980 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
981 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
982 /// offline for a full minute. In order to track this, you must call
983 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
985 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
986 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
987 /// not have a channel with being unable to connect to us or open new channels with us if we have
988 /// many peers with unfunded channels.
990 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
991 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
992 /// never limited. Please ensure you limit the count of such channels yourself.
994 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
995 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
996 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
997 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
998 /// you're using lightning-net-tokio.
1000 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1001 /// [`funding_created`]: msgs::FundingCreated
1002 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1003 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1004 /// [`update_channel`]: chain::Watch::update_channel
1005 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1006 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1007 /// [`read`]: ReadableArgs::read
1010 // The tree structure below illustrates the lock order requirements for the different locks of the
1011 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1012 // and should then be taken in the order of the lowest to the highest level in the tree.
1013 // Note that locks on different branches shall not be taken at the same time, as doing so will
1014 // create a new lock order for those specific locks in the order they were taken.
1018 // `pending_offers_messages`
1020 // `total_consistency_lock`
1022 // |__`forward_htlcs`
1024 // | |__`pending_intercepted_htlcs`
1026 // |__`per_peer_state`
1028 // |__`pending_inbound_payments`
1030 // |__`claimable_payments`
1032 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1038 // |__`short_to_chan_info`
1040 // |__`outbound_scid_aliases`
1044 // |__`pending_events`
1046 // |__`pending_background_events`
1048 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1050 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1051 T::Target: BroadcasterInterface,
1052 ES::Target: EntropySource,
1053 NS::Target: NodeSigner,
1054 SP::Target: SignerProvider,
1055 F::Target: FeeEstimator,
1059 default_configuration: UserConfig,
1060 chain_hash: ChainHash,
1061 fee_estimator: LowerBoundedFeeEstimator<F>,
1067 /// See `ChannelManager` struct-level documentation for lock order requirements.
1069 pub(super) best_block: RwLock<BestBlock>,
1071 best_block: RwLock<BestBlock>,
1072 secp_ctx: Secp256k1<secp256k1::All>,
1074 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1075 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1076 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1077 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1079 /// See `ChannelManager` struct-level documentation for lock order requirements.
1080 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1082 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1083 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1084 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1085 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1086 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1087 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1088 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1089 /// after reloading from disk while replaying blocks against ChannelMonitors.
1091 /// See `PendingOutboundPayment` documentation for more info.
1093 /// See `ChannelManager` struct-level documentation for lock order requirements.
1094 pending_outbound_payments: OutboundPayments,
1096 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1098 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1099 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1100 /// and via the classic SCID.
1102 /// Note that no consistency guarantees are made about the existence of a channel with the
1103 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1105 /// See `ChannelManager` struct-level documentation for lock order requirements.
1107 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1109 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1110 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1111 /// until the user tells us what we should do with them.
1113 /// See `ChannelManager` struct-level documentation for lock order requirements.
1114 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1116 /// The sets of payments which are claimable or currently being claimed. See
1117 /// [`ClaimablePayments`]' individual field docs for more info.
1119 /// See `ChannelManager` struct-level documentation for lock order requirements.
1120 claimable_payments: Mutex<ClaimablePayments>,
1122 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1123 /// and some closed channels which reached a usable state prior to being closed. This is used
1124 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1125 /// active channel list on load.
1127 /// See `ChannelManager` struct-level documentation for lock order requirements.
1128 outbound_scid_aliases: Mutex<HashSet<u64>>,
1130 /// `channel_id` -> `counterparty_node_id`.
1132 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1133 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1134 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1136 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1137 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1138 /// the handling of the events.
1140 /// Note that no consistency guarantees are made about the existence of a peer with the
1141 /// `counterparty_node_id` in our other maps.
1144 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1145 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1146 /// would break backwards compatability.
1147 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1148 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1149 /// required to access the channel with the `counterparty_node_id`.
1151 /// See `ChannelManager` struct-level documentation for lock order requirements.
1152 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1154 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1156 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1157 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1158 /// confirmation depth.
1160 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1161 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1162 /// channel with the `channel_id` in our other maps.
1164 /// See `ChannelManager` struct-level documentation for lock order requirements.
1166 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1168 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1170 our_network_pubkey: PublicKey,
1172 inbound_payment_key: inbound_payment::ExpandedKey,
1174 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1175 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1176 /// we encrypt the namespace identifier using these bytes.
1178 /// [fake scids]: crate::util::scid_utils::fake_scid
1179 fake_scid_rand_bytes: [u8; 32],
1181 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1182 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1183 /// keeping additional state.
1184 probing_cookie_secret: [u8; 32],
1186 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1187 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1188 /// very far in the past, and can only ever be up to two hours in the future.
1189 highest_seen_timestamp: AtomicUsize,
1191 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1192 /// basis, as well as the peer's latest features.
1194 /// If we are connected to a peer we always at least have an entry here, even if no channels
1195 /// are currently open with that peer.
1197 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1198 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1201 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1203 /// See `ChannelManager` struct-level documentation for lock order requirements.
1204 #[cfg(not(any(test, feature = "_test_utils")))]
1205 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1206 #[cfg(any(test, feature = "_test_utils"))]
1207 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1209 /// The set of events which we need to give to the user to handle. In some cases an event may
1210 /// require some further action after the user handles it (currently only blocking a monitor
1211 /// update from being handed to the user to ensure the included changes to the channel state
1212 /// are handled by the user before they're persisted durably to disk). In that case, the second
1213 /// element in the tuple is set to `Some` with further details of the action.
1215 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1216 /// could be in the middle of being processed without the direct mutex held.
1218 /// See `ChannelManager` struct-level documentation for lock order requirements.
1219 #[cfg(not(any(test, feature = "_test_utils")))]
1220 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1221 #[cfg(any(test, feature = "_test_utils"))]
1222 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1224 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1225 pending_events_processor: AtomicBool,
1227 /// If we are running during init (either directly during the deserialization method or in
1228 /// block connection methods which run after deserialization but before normal operation) we
1229 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1230 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1231 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1233 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1235 /// See `ChannelManager` struct-level documentation for lock order requirements.
1237 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1238 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1239 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1240 /// Essentially just when we're serializing ourselves out.
1241 /// Taken first everywhere where we are making changes before any other locks.
1242 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1243 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1244 /// Notifier the lock contains sends out a notification when the lock is released.
1245 total_consistency_lock: RwLock<()>,
1246 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1247 /// received and the monitor has been persisted.
1249 /// This information does not need to be persisted as funding nodes can forget
1250 /// unfunded channels upon disconnection.
1251 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1253 background_events_processed_since_startup: AtomicBool,
1255 event_persist_notifier: Notifier,
1256 needs_persist_flag: AtomicBool,
1258 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1262 signer_provider: SP,
1267 /// Chain-related parameters used to construct a new `ChannelManager`.
1269 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1270 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1271 /// are not needed when deserializing a previously constructed `ChannelManager`.
1272 #[derive(Clone, Copy, PartialEq)]
1273 pub struct ChainParameters {
1274 /// The network for determining the `chain_hash` in Lightning messages.
1275 pub network: Network,
1277 /// The hash and height of the latest block successfully connected.
1279 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1280 pub best_block: BestBlock,
1283 #[derive(Copy, Clone, PartialEq)]
1287 SkipPersistHandleEvents,
1288 SkipPersistNoEvents,
1291 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1292 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1293 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1294 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1295 /// sending the aforementioned notification (since the lock being released indicates that the
1296 /// updates are ready for persistence).
1298 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1299 /// notify or not based on whether relevant changes have been made, providing a closure to
1300 /// `optionally_notify` which returns a `NotifyOption`.
1301 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1302 event_persist_notifier: &'a Notifier,
1303 needs_persist_flag: &'a AtomicBool,
1305 // We hold onto this result so the lock doesn't get released immediately.
1306 _read_guard: RwLockReadGuard<'a, ()>,
1309 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1310 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1311 /// events to handle.
1313 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1314 /// other cases where losing the changes on restart may result in a force-close or otherwise
1316 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1317 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1320 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1321 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1322 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1323 let force_notify = cm.get_cm().process_background_events();
1325 PersistenceNotifierGuard {
1326 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1327 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1328 should_persist: move || {
1329 // Pick the "most" action between `persist_check` and the background events
1330 // processing and return that.
1331 let notify = persist_check();
1332 match (notify, force_notify) {
1333 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1334 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1335 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1336 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1337 _ => NotifyOption::SkipPersistNoEvents,
1340 _read_guard: read_guard,
1344 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1345 /// [`ChannelManager::process_background_events`] MUST be called first (or
1346 /// [`Self::optionally_notify`] used).
1347 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1348 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1349 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1351 PersistenceNotifierGuard {
1352 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1353 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1354 should_persist: persist_check,
1355 _read_guard: read_guard,
1360 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1361 fn drop(&mut self) {
1362 match (self.should_persist)() {
1363 NotifyOption::DoPersist => {
1364 self.needs_persist_flag.store(true, Ordering::Release);
1365 self.event_persist_notifier.notify()
1367 NotifyOption::SkipPersistHandleEvents =>
1368 self.event_persist_notifier.notify(),
1369 NotifyOption::SkipPersistNoEvents => {},
1374 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1375 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1377 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1379 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1380 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1381 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1382 /// the maximum required amount in lnd as of March 2021.
1383 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1385 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1386 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1388 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1390 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1391 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1392 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1393 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1394 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1395 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1396 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1397 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1398 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1399 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1400 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1401 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1402 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1404 /// Minimum CLTV difference between the current block height and received inbound payments.
1405 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1407 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1408 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1409 // a payment was being routed, so we add an extra block to be safe.
1410 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1412 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1413 // ie that if the next-hop peer fails the HTLC within
1414 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1415 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1416 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1417 // LATENCY_GRACE_PERIOD_BLOCKS.
1420 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1422 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1423 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1426 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1428 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1429 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1431 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1432 /// until we mark the channel disabled and gossip the update.
1433 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1435 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1436 /// we mark the channel enabled and gossip the update.
1437 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1439 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1440 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1441 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1442 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1444 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1445 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1446 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1448 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1449 /// many peers we reject new (inbound) connections.
1450 const MAX_NO_CHANNEL_PEERS: usize = 250;
1452 /// Information needed for constructing an invoice route hint for this channel.
1453 #[derive(Clone, Debug, PartialEq)]
1454 pub struct CounterpartyForwardingInfo {
1455 /// Base routing fee in millisatoshis.
1456 pub fee_base_msat: u32,
1457 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1458 pub fee_proportional_millionths: u32,
1459 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1460 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1461 /// `cltv_expiry_delta` for more details.
1462 pub cltv_expiry_delta: u16,
1465 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1466 /// to better separate parameters.
1467 #[derive(Clone, Debug, PartialEq)]
1468 pub struct ChannelCounterparty {
1469 /// The node_id of our counterparty
1470 pub node_id: PublicKey,
1471 /// The Features the channel counterparty provided upon last connection.
1472 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1473 /// many routing-relevant features are present in the init context.
1474 pub features: InitFeatures,
1475 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1476 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1477 /// claiming at least this value on chain.
1479 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1481 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1482 pub unspendable_punishment_reserve: u64,
1483 /// Information on the fees and requirements that the counterparty requires when forwarding
1484 /// payments to us through this channel.
1485 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1486 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1487 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1488 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1489 pub outbound_htlc_minimum_msat: Option<u64>,
1490 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1491 pub outbound_htlc_maximum_msat: Option<u64>,
1494 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1495 #[derive(Clone, Debug, PartialEq)]
1496 pub struct ChannelDetails {
1497 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1498 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1499 /// Note that this means this value is *not* persistent - it can change once during the
1500 /// lifetime of the channel.
1501 pub channel_id: ChannelId,
1502 /// Parameters which apply to our counterparty. See individual fields for more information.
1503 pub counterparty: ChannelCounterparty,
1504 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1505 /// our counterparty already.
1507 /// Note that, if this has been set, `channel_id` will be equivalent to
1508 /// `funding_txo.unwrap().to_channel_id()`.
1509 pub funding_txo: Option<OutPoint>,
1510 /// The features which this channel operates with. See individual features for more info.
1512 /// `None` until negotiation completes and the channel type is finalized.
1513 pub channel_type: Option<ChannelTypeFeatures>,
1514 /// The position of the funding transaction in the chain. None if the funding transaction has
1515 /// not yet been confirmed and the channel fully opened.
1517 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1518 /// payments instead of this. See [`get_inbound_payment_scid`].
1520 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1521 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1523 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1524 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1525 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1526 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1527 /// [`confirmations_required`]: Self::confirmations_required
1528 pub short_channel_id: Option<u64>,
1529 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1530 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1531 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1534 /// This will be `None` as long as the channel is not available for routing outbound payments.
1536 /// [`short_channel_id`]: Self::short_channel_id
1537 /// [`confirmations_required`]: Self::confirmations_required
1538 pub outbound_scid_alias: Option<u64>,
1539 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1540 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1541 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1542 /// when they see a payment to be routed to us.
1544 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1545 /// previous values for inbound payment forwarding.
1547 /// [`short_channel_id`]: Self::short_channel_id
1548 pub inbound_scid_alias: Option<u64>,
1549 /// The value, in satoshis, of this channel as appears in the funding output
1550 pub channel_value_satoshis: u64,
1551 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1552 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1553 /// this value on chain.
1555 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1557 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1559 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1560 pub unspendable_punishment_reserve: Option<u64>,
1561 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1562 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1563 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1564 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1565 /// serialized with LDK versions prior to 0.0.113.
1567 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1568 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1569 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1570 pub user_channel_id: u128,
1571 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1572 /// which is applied to commitment and HTLC transactions.
1574 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1575 pub feerate_sat_per_1000_weight: Option<u32>,
1576 /// Our total balance. This is the amount we would get if we close the channel.
1577 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1578 /// amount is not likely to be recoverable on close.
1580 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1581 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1582 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1583 /// This does not consider any on-chain fees.
1585 /// See also [`ChannelDetails::outbound_capacity_msat`]
1586 pub balance_msat: u64,
1587 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1588 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1589 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1590 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1592 /// See also [`ChannelDetails::balance_msat`]
1594 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1595 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1596 /// should be able to spend nearly this amount.
1597 pub outbound_capacity_msat: u64,
1598 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1599 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1600 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1601 /// to use a limit as close as possible to the HTLC limit we can currently send.
1603 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1604 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1605 pub next_outbound_htlc_limit_msat: u64,
1606 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1607 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1608 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1609 /// route which is valid.
1610 pub next_outbound_htlc_minimum_msat: u64,
1611 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1612 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1613 /// available for inclusion in new inbound HTLCs).
1614 /// Note that there are some corner cases not fully handled here, so the actual available
1615 /// inbound capacity may be slightly higher than this.
1617 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1618 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1619 /// However, our counterparty should be able to spend nearly this amount.
1620 pub inbound_capacity_msat: u64,
1621 /// The number of required confirmations on the funding transaction before the funding will be
1622 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1623 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1624 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1625 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1627 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1629 /// [`is_outbound`]: ChannelDetails::is_outbound
1630 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1631 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1632 pub confirmations_required: Option<u32>,
1633 /// The current number of confirmations on the funding transaction.
1635 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1636 pub confirmations: Option<u32>,
1637 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1638 /// until we can claim our funds after we force-close the channel. During this time our
1639 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1640 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1641 /// time to claim our non-HTLC-encumbered funds.
1643 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1644 pub force_close_spend_delay: Option<u16>,
1645 /// True if the channel was initiated (and thus funded) by us.
1646 pub is_outbound: bool,
1647 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1648 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1649 /// required confirmation count has been reached (and we were connected to the peer at some
1650 /// point after the funding transaction received enough confirmations). The required
1651 /// confirmation count is provided in [`confirmations_required`].
1653 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1654 pub is_channel_ready: bool,
1655 /// The stage of the channel's shutdown.
1656 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1657 pub channel_shutdown_state: Option<ChannelShutdownState>,
1658 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1659 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1661 /// This is a strict superset of `is_channel_ready`.
1662 pub is_usable: bool,
1663 /// True if this channel is (or will be) publicly-announced.
1664 pub is_public: bool,
1665 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1666 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1667 pub inbound_htlc_minimum_msat: Option<u64>,
1668 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1669 pub inbound_htlc_maximum_msat: Option<u64>,
1670 /// Set of configurable parameters that affect channel operation.
1672 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1673 pub config: Option<ChannelConfig>,
1676 impl ChannelDetails {
1677 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1678 /// This should be used for providing invoice hints or in any other context where our
1679 /// counterparty will forward a payment to us.
1681 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1682 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1683 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1684 self.inbound_scid_alias.or(self.short_channel_id)
1687 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1688 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1689 /// we're sending or forwarding a payment outbound over this channel.
1691 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1692 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1693 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1694 self.short_channel_id.or(self.outbound_scid_alias)
1697 fn from_channel_context<SP: Deref, F: Deref>(
1698 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1699 fee_estimator: &LowerBoundedFeeEstimator<F>
1702 SP::Target: SignerProvider,
1703 F::Target: FeeEstimator
1705 let balance = context.get_available_balances(fee_estimator);
1706 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1707 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1709 channel_id: context.channel_id(),
1710 counterparty: ChannelCounterparty {
1711 node_id: context.get_counterparty_node_id(),
1712 features: latest_features,
1713 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1714 forwarding_info: context.counterparty_forwarding_info(),
1715 // Ensures that we have actually received the `htlc_minimum_msat` value
1716 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1717 // message (as they are always the first message from the counterparty).
1718 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1719 // default `0` value set by `Channel::new_outbound`.
1720 outbound_htlc_minimum_msat: if context.have_received_message() {
1721 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1722 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1724 funding_txo: context.get_funding_txo(),
1725 // Note that accept_channel (or open_channel) is always the first message, so
1726 // `have_received_message` indicates that type negotiation has completed.
1727 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1728 short_channel_id: context.get_short_channel_id(),
1729 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1730 inbound_scid_alias: context.latest_inbound_scid_alias(),
1731 channel_value_satoshis: context.get_value_satoshis(),
1732 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1733 unspendable_punishment_reserve: to_self_reserve_satoshis,
1734 balance_msat: balance.balance_msat,
1735 inbound_capacity_msat: balance.inbound_capacity_msat,
1736 outbound_capacity_msat: balance.outbound_capacity_msat,
1737 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1738 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1739 user_channel_id: context.get_user_id(),
1740 confirmations_required: context.minimum_depth(),
1741 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1742 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1743 is_outbound: context.is_outbound(),
1744 is_channel_ready: context.is_usable(),
1745 is_usable: context.is_live(),
1746 is_public: context.should_announce(),
1747 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1748 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1749 config: Some(context.config()),
1750 channel_shutdown_state: Some(context.shutdown_state()),
1755 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1756 /// Further information on the details of the channel shutdown.
1757 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1758 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1759 /// the channel will be removed shortly.
1760 /// Also note, that in normal operation, peers could disconnect at any of these states
1761 /// and require peer re-connection before making progress onto other states
1762 pub enum ChannelShutdownState {
1763 /// Channel has not sent or received a shutdown message.
1765 /// Local node has sent a shutdown message for this channel.
1767 /// Shutdown message exchanges have concluded and the channels are in the midst of
1768 /// resolving all existing open HTLCs before closing can continue.
1770 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1771 NegotiatingClosingFee,
1772 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1773 /// to drop the channel.
1777 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1778 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1779 #[derive(Debug, PartialEq)]
1780 pub enum RecentPaymentDetails {
1781 /// When an invoice was requested and thus a payment has not yet been sent.
1783 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1784 /// a payment and ensure idempotency in LDK.
1785 payment_id: PaymentId,
1787 /// When a payment is still being sent and awaiting successful delivery.
1789 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1790 /// a payment and ensure idempotency in LDK.
1791 payment_id: PaymentId,
1792 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1794 payment_hash: PaymentHash,
1795 /// Total amount (in msat, excluding fees) across all paths for this payment,
1796 /// not just the amount currently inflight.
1799 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1800 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1801 /// payment is removed from tracking.
1803 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1804 /// a payment and ensure idempotency in LDK.
1805 payment_id: PaymentId,
1806 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1807 /// made before LDK version 0.0.104.
1808 payment_hash: Option<PaymentHash>,
1810 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1811 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1812 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1814 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1815 /// a payment and ensure idempotency in LDK.
1816 payment_id: PaymentId,
1817 /// Hash of the payment that we have given up trying to send.
1818 payment_hash: PaymentHash,
1822 /// Route hints used in constructing invoices for [phantom node payents].
1824 /// [phantom node payments]: crate::sign::PhantomKeysManager
1826 pub struct PhantomRouteHints {
1827 /// The list of channels to be included in the invoice route hints.
1828 pub channels: Vec<ChannelDetails>,
1829 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1831 pub phantom_scid: u64,
1832 /// The pubkey of the real backing node that would ultimately receive the payment.
1833 pub real_node_pubkey: PublicKey,
1836 macro_rules! handle_error {
1837 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1838 // In testing, ensure there are no deadlocks where the lock is already held upon
1839 // entering the macro.
1840 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1841 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1845 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1846 let mut msg_events = Vec::with_capacity(2);
1848 if let Some((shutdown_res, update_option)) = shutdown_finish {
1849 $self.finish_close_channel(shutdown_res);
1850 if let Some(update) = update_option {
1851 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1855 if let Some((channel_id, user_channel_id)) = chan_id {
1856 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1857 channel_id, user_channel_id,
1858 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1859 counterparty_node_id: Some($counterparty_node_id),
1860 channel_capacity_sats: channel_capacity,
1865 log_error!($self.logger, "{}", err.err);
1866 if let msgs::ErrorAction::IgnoreError = err.action {
1868 msg_events.push(events::MessageSendEvent::HandleError {
1869 node_id: $counterparty_node_id,
1870 action: err.action.clone()
1874 if !msg_events.is_empty() {
1875 let per_peer_state = $self.per_peer_state.read().unwrap();
1876 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1877 let mut peer_state = peer_state_mutex.lock().unwrap();
1878 peer_state.pending_msg_events.append(&mut msg_events);
1882 // Return error in case higher-API need one
1887 ($self: ident, $internal: expr) => {
1890 Err((chan, msg_handle_err)) => {
1891 let counterparty_node_id = chan.get_counterparty_node_id();
1892 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1898 macro_rules! update_maps_on_chan_removal {
1899 ($self: expr, $channel_context: expr) => {{
1900 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1901 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1902 if let Some(short_id) = $channel_context.get_short_channel_id() {
1903 short_to_chan_info.remove(&short_id);
1905 // If the channel was never confirmed on-chain prior to its closure, remove the
1906 // outbound SCID alias we used for it from the collision-prevention set. While we
1907 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1908 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1909 // opening a million channels with us which are closed before we ever reach the funding
1911 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1912 debug_assert!(alias_removed);
1914 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1918 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1919 macro_rules! convert_chan_phase_err {
1920 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1922 ChannelError::Warn(msg) => {
1923 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1925 ChannelError::Ignore(msg) => {
1926 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1928 ChannelError::Close(msg) => {
1929 log_error!($self.logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1930 update_maps_on_chan_removal!($self, $channel.context);
1931 let shutdown_res = $channel.context.force_shutdown(true);
1932 let user_id = $channel.context.get_user_id();
1933 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1935 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1936 shutdown_res, $channel_update, channel_capacity_satoshis))
1940 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1941 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1943 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1944 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1946 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1947 match $channel_phase {
1948 ChannelPhase::Funded(channel) => {
1949 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
1951 ChannelPhase::UnfundedOutboundV1(channel) => {
1952 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1954 ChannelPhase::UnfundedInboundV1(channel) => {
1955 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1961 macro_rules! break_chan_phase_entry {
1962 ($self: ident, $res: expr, $entry: expr) => {
1966 let key = *$entry.key();
1967 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1969 $entry.remove_entry();
1977 macro_rules! try_chan_phase_entry {
1978 ($self: ident, $res: expr, $entry: expr) => {
1982 let key = *$entry.key();
1983 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1985 $entry.remove_entry();
1993 macro_rules! remove_channel_phase {
1994 ($self: expr, $entry: expr) => {
1996 let channel = $entry.remove_entry().1;
1997 update_maps_on_chan_removal!($self, &channel.context());
2003 macro_rules! send_channel_ready {
2004 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2005 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2006 node_id: $channel.context.get_counterparty_node_id(),
2007 msg: $channel_ready_msg,
2009 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2010 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2011 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2012 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2013 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2014 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2015 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2016 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2017 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2018 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2023 macro_rules! emit_channel_pending_event {
2024 ($locked_events: expr, $channel: expr) => {
2025 if $channel.context.should_emit_channel_pending_event() {
2026 $locked_events.push_back((events::Event::ChannelPending {
2027 channel_id: $channel.context.channel_id(),
2028 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2029 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2030 user_channel_id: $channel.context.get_user_id(),
2031 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2033 $channel.context.set_channel_pending_event_emitted();
2038 macro_rules! emit_channel_ready_event {
2039 ($locked_events: expr, $channel: expr) => {
2040 if $channel.context.should_emit_channel_ready_event() {
2041 debug_assert!($channel.context.channel_pending_event_emitted());
2042 $locked_events.push_back((events::Event::ChannelReady {
2043 channel_id: $channel.context.channel_id(),
2044 user_channel_id: $channel.context.get_user_id(),
2045 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2046 channel_type: $channel.context.get_channel_type().clone(),
2048 $channel.context.set_channel_ready_event_emitted();
2053 macro_rules! handle_monitor_update_completion {
2054 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2055 let mut updates = $chan.monitor_updating_restored(&$self.logger,
2056 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2057 $self.best_block.read().unwrap().height());
2058 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2059 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2060 // We only send a channel_update in the case where we are just now sending a
2061 // channel_ready and the channel is in a usable state. We may re-send a
2062 // channel_update later through the announcement_signatures process for public
2063 // channels, but there's no reason not to just inform our counterparty of our fees
2065 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2066 Some(events::MessageSendEvent::SendChannelUpdate {
2067 node_id: counterparty_node_id,
2073 let update_actions = $peer_state.monitor_update_blocked_actions
2074 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2076 let htlc_forwards = $self.handle_channel_resumption(
2077 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2078 updates.commitment_update, updates.order, updates.accepted_htlcs,
2079 updates.funding_broadcastable, updates.channel_ready,
2080 updates.announcement_sigs);
2081 if let Some(upd) = channel_update {
2082 $peer_state.pending_msg_events.push(upd);
2085 let channel_id = $chan.context.channel_id();
2086 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2087 core::mem::drop($peer_state_lock);
2088 core::mem::drop($per_peer_state_lock);
2090 // If the channel belongs to a batch funding transaction, the progress of the batch
2091 // should be updated as we have received funding_signed and persisted the monitor.
2092 if let Some(txid) = unbroadcasted_batch_funding_txid {
2093 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2094 let mut batch_completed = false;
2095 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2096 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2097 *chan_id == channel_id &&
2098 *pubkey == counterparty_node_id
2100 if let Some(channel_state) = channel_state {
2101 channel_state.2 = true;
2103 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2105 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2107 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2110 // When all channels in a batched funding transaction have become ready, it is not necessary
2111 // to track the progress of the batch anymore and the state of the channels can be updated.
2112 if batch_completed {
2113 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2114 let per_peer_state = $self.per_peer_state.read().unwrap();
2115 let mut batch_funding_tx = None;
2116 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2117 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2118 let mut peer_state = peer_state_mutex.lock().unwrap();
2119 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2120 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2121 chan.set_batch_ready();
2122 let mut pending_events = $self.pending_events.lock().unwrap();
2123 emit_channel_pending_event!(pending_events, chan);
2127 if let Some(tx) = batch_funding_tx {
2128 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2129 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2134 $self.handle_monitor_update_completion_actions(update_actions);
2136 if let Some(forwards) = htlc_forwards {
2137 $self.forward_htlcs(&mut [forwards][..]);
2139 $self.finalize_claims(updates.finalized_claimed_htlcs);
2140 for failure in updates.failed_htlcs.drain(..) {
2141 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2142 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2147 macro_rules! handle_new_monitor_update {
2148 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2149 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2151 ChannelMonitorUpdateStatus::UnrecoverableError => {
2152 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2153 log_error!($self.logger, "{}", err_str);
2154 panic!("{}", err_str);
2156 ChannelMonitorUpdateStatus::InProgress => {
2157 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2158 &$chan.context.channel_id());
2161 ChannelMonitorUpdateStatus::Completed => {
2167 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2168 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2169 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2171 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2172 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2173 .or_insert_with(Vec::new);
2174 // During startup, we push monitor updates as background events through to here in
2175 // order to replay updates that were in-flight when we shut down. Thus, we have to
2176 // filter for uniqueness here.
2177 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2178 .unwrap_or_else(|| {
2179 in_flight_updates.push($update);
2180 in_flight_updates.len() - 1
2182 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2183 handle_new_monitor_update!($self, update_res, $chan, _internal,
2185 let _ = in_flight_updates.remove(idx);
2186 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2187 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2193 macro_rules! process_events_body {
2194 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2195 let mut processed_all_events = false;
2196 while !processed_all_events {
2197 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2204 // We'll acquire our total consistency lock so that we can be sure no other
2205 // persists happen while processing monitor events.
2206 let _read_guard = $self.total_consistency_lock.read().unwrap();
2208 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2209 // ensure any startup-generated background events are handled first.
2210 result = $self.process_background_events();
2212 // TODO: This behavior should be documented. It's unintuitive that we query
2213 // ChannelMonitors when clearing other events.
2214 if $self.process_pending_monitor_events() {
2215 result = NotifyOption::DoPersist;
2219 let pending_events = $self.pending_events.lock().unwrap().clone();
2220 let num_events = pending_events.len();
2221 if !pending_events.is_empty() {
2222 result = NotifyOption::DoPersist;
2225 let mut post_event_actions = Vec::new();
2227 for (event, action_opt) in pending_events {
2228 $event_to_handle = event;
2230 if let Some(action) = action_opt {
2231 post_event_actions.push(action);
2236 let mut pending_events = $self.pending_events.lock().unwrap();
2237 pending_events.drain(..num_events);
2238 processed_all_events = pending_events.is_empty();
2239 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2240 // updated here with the `pending_events` lock acquired.
2241 $self.pending_events_processor.store(false, Ordering::Release);
2244 if !post_event_actions.is_empty() {
2245 $self.handle_post_event_actions(post_event_actions);
2246 // If we had some actions, go around again as we may have more events now
2247 processed_all_events = false;
2251 NotifyOption::DoPersist => {
2252 $self.needs_persist_flag.store(true, Ordering::Release);
2253 $self.event_persist_notifier.notify();
2255 NotifyOption::SkipPersistHandleEvents =>
2256 $self.event_persist_notifier.notify(),
2257 NotifyOption::SkipPersistNoEvents => {},
2263 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2265 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2266 T::Target: BroadcasterInterface,
2267 ES::Target: EntropySource,
2268 NS::Target: NodeSigner,
2269 SP::Target: SignerProvider,
2270 F::Target: FeeEstimator,
2274 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2276 /// The current time or latest block header time can be provided as the `current_timestamp`.
2278 /// This is the main "logic hub" for all channel-related actions, and implements
2279 /// [`ChannelMessageHandler`].
2281 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2283 /// Users need to notify the new `ChannelManager` when a new block is connected or
2284 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2285 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2288 /// [`block_connected`]: chain::Listen::block_connected
2289 /// [`block_disconnected`]: chain::Listen::block_disconnected
2290 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2292 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2293 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2294 current_timestamp: u32,
2296 let mut secp_ctx = Secp256k1::new();
2297 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2298 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2299 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2301 default_configuration: config.clone(),
2302 chain_hash: ChainHash::using_genesis_block(params.network),
2303 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2308 best_block: RwLock::new(params.best_block),
2310 outbound_scid_aliases: Mutex::new(HashSet::new()),
2311 pending_inbound_payments: Mutex::new(HashMap::new()),
2312 pending_outbound_payments: OutboundPayments::new(),
2313 forward_htlcs: Mutex::new(HashMap::new()),
2314 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2315 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2316 id_to_peer: Mutex::new(HashMap::new()),
2317 short_to_chan_info: FairRwLock::new(HashMap::new()),
2319 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2322 inbound_payment_key: expanded_inbound_key,
2323 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2325 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2327 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2329 per_peer_state: FairRwLock::new(HashMap::new()),
2331 pending_events: Mutex::new(VecDeque::new()),
2332 pending_events_processor: AtomicBool::new(false),
2333 pending_background_events: Mutex::new(Vec::new()),
2334 total_consistency_lock: RwLock::new(()),
2335 background_events_processed_since_startup: AtomicBool::new(false),
2336 event_persist_notifier: Notifier::new(),
2337 needs_persist_flag: AtomicBool::new(false),
2338 funding_batch_states: Mutex::new(BTreeMap::new()),
2340 pending_offers_messages: Mutex::new(Vec::new()),
2350 /// Gets the current configuration applied to all new channels.
2351 pub fn get_current_default_configuration(&self) -> &UserConfig {
2352 &self.default_configuration
2355 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2356 let height = self.best_block.read().unwrap().height();
2357 let mut outbound_scid_alias = 0;
2360 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2361 outbound_scid_alias += 1;
2363 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2365 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2369 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2374 /// Creates a new outbound channel to the given remote node and with the given value.
2376 /// `user_channel_id` will be provided back as in
2377 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2378 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2379 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2380 /// is simply copied to events and otherwise ignored.
2382 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2383 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2385 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2386 /// generate a shutdown scriptpubkey or destination script set by
2387 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2389 /// Note that we do not check if you are currently connected to the given peer. If no
2390 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2391 /// the channel eventually being silently forgotten (dropped on reload).
2393 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2394 /// channel. Otherwise, a random one will be generated for you.
2396 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2397 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2398 /// [`ChannelDetails::channel_id`] until after
2399 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2400 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2401 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2403 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2404 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2405 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2406 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2407 if channel_value_satoshis < 1000 {
2408 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2411 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2412 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2413 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2415 let per_peer_state = self.per_peer_state.read().unwrap();
2417 let peer_state_mutex = per_peer_state.get(&their_network_key)
2418 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2420 let mut peer_state = peer_state_mutex.lock().unwrap();
2422 if let Some(temporary_channel_id) = temporary_channel_id {
2423 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2424 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2429 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2430 let their_features = &peer_state.latest_features;
2431 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2432 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2433 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2434 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2438 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2443 let res = channel.get_open_channel(self.chain_hash);
2445 let temporary_channel_id = channel.context.channel_id();
2446 match peer_state.channel_by_id.entry(temporary_channel_id) {
2447 hash_map::Entry::Occupied(_) => {
2449 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2451 panic!("RNG is bad???");
2454 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2457 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2458 node_id: their_network_key,
2461 Ok(temporary_channel_id)
2464 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2465 // Allocate our best estimate of the number of channels we have in the `res`
2466 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2467 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2468 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2469 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2470 // the same channel.
2471 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2473 let best_block_height = self.best_block.read().unwrap().height();
2474 let per_peer_state = self.per_peer_state.read().unwrap();
2475 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2476 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2477 let peer_state = &mut *peer_state_lock;
2478 res.extend(peer_state.channel_by_id.iter()
2479 .filter_map(|(chan_id, phase)| match phase {
2480 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2481 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2485 .map(|(_channel_id, channel)| {
2486 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2487 peer_state.latest_features.clone(), &self.fee_estimator)
2495 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2496 /// more information.
2497 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2498 // Allocate our best estimate of the number of channels we have in the `res`
2499 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2500 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2501 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2502 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2503 // the same channel.
2504 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2506 let best_block_height = self.best_block.read().unwrap().height();
2507 let per_peer_state = self.per_peer_state.read().unwrap();
2508 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2509 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2510 let peer_state = &mut *peer_state_lock;
2511 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2512 let details = ChannelDetails::from_channel_context(context, best_block_height,
2513 peer_state.latest_features.clone(), &self.fee_estimator);
2521 /// Gets the list of usable channels, in random order. Useful as an argument to
2522 /// [`Router::find_route`] to ensure non-announced channels are used.
2524 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2525 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2527 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2528 // Note we use is_live here instead of usable which leads to somewhat confused
2529 // internal/external nomenclature, but that's ok cause that's probably what the user
2530 // really wanted anyway.
2531 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2534 /// Gets the list of channels we have with a given counterparty, in random order.
2535 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2536 let best_block_height = self.best_block.read().unwrap().height();
2537 let per_peer_state = self.per_peer_state.read().unwrap();
2539 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2540 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2541 let peer_state = &mut *peer_state_lock;
2542 let features = &peer_state.latest_features;
2543 let context_to_details = |context| {
2544 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2546 return peer_state.channel_by_id
2548 .map(|(_, phase)| phase.context())
2549 .map(context_to_details)
2555 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2556 /// successful path, or have unresolved HTLCs.
2558 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2559 /// result of a crash. If such a payment exists, is not listed here, and an
2560 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2562 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2563 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2564 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2565 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2566 PendingOutboundPayment::AwaitingInvoice { .. } => {
2567 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2569 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2570 PendingOutboundPayment::InvoiceReceived { .. } => {
2571 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2573 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2574 Some(RecentPaymentDetails::Pending {
2575 payment_id: *payment_id,
2576 payment_hash: *payment_hash,
2577 total_msat: *total_msat,
2580 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2581 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2583 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2584 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2586 PendingOutboundPayment::Legacy { .. } => None
2591 /// Helper function that issues the channel close events
2592 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2593 let mut pending_events_lock = self.pending_events.lock().unwrap();
2594 match context.unbroadcasted_funding() {
2595 Some(transaction) => {
2596 pending_events_lock.push_back((events::Event::DiscardFunding {
2597 channel_id: context.channel_id(), transaction
2602 pending_events_lock.push_back((events::Event::ChannelClosed {
2603 channel_id: context.channel_id(),
2604 user_channel_id: context.get_user_id(),
2605 reason: closure_reason,
2606 counterparty_node_id: Some(context.get_counterparty_node_id()),
2607 channel_capacity_sats: Some(context.get_value_satoshis()),
2611 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2612 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2614 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2615 let shutdown_result;
2617 let per_peer_state = self.per_peer_state.read().unwrap();
2619 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2620 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2622 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2623 let peer_state = &mut *peer_state_lock;
2625 match peer_state.channel_by_id.entry(channel_id.clone()) {
2626 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2627 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2628 let funding_txo_opt = chan.context.get_funding_txo();
2629 let their_features = &peer_state.latest_features;
2630 let (shutdown_msg, mut monitor_update_opt, htlcs, local_shutdown_result) =
2631 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2632 failed_htlcs = htlcs;
2633 shutdown_result = local_shutdown_result;
2634 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
2636 // We can send the `shutdown` message before updating the `ChannelMonitor`
2637 // here as we don't need the monitor update to complete until we send a
2638 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2639 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2640 node_id: *counterparty_node_id,
2644 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2645 "We can't both complete shutdown and generate a monitor update");
2647 // Update the monitor with the shutdown script if necessary.
2648 if let Some(monitor_update) = monitor_update_opt.take() {
2649 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2650 peer_state_lock, peer_state, per_peer_state, chan);
2654 if chan.is_shutdown() {
2655 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2656 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2657 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2661 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2667 hash_map::Entry::Vacant(_) => {
2668 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2669 // it does not exist for this peer. Either way, we can attempt to force-close it.
2671 // An appropriate error will be returned for non-existence of the channel if that's the case.
2672 mem::drop(peer_state_lock);
2673 mem::drop(per_peer_state);
2674 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2679 for htlc_source in failed_htlcs.drain(..) {
2680 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2681 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2682 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2685 if let Some(shutdown_result) = shutdown_result {
2686 self.finish_close_channel(shutdown_result);
2692 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2693 /// will be accepted on the given channel, and after additional timeout/the closing of all
2694 /// pending HTLCs, the channel will be closed on chain.
2696 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2697 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2699 /// * If our counterparty is the channel initiator, we will require a channel closing
2700 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2701 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2702 /// counterparty to pay as much fee as they'd like, however.
2704 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2706 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2707 /// generate a shutdown scriptpubkey or destination script set by
2708 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2711 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2712 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2713 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2714 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2715 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2716 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2719 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2720 /// will be accepted on the given channel, and after additional timeout/the closing of all
2721 /// pending HTLCs, the channel will be closed on chain.
2723 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2724 /// the channel being closed or not:
2725 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2726 /// transaction. The upper-bound is set by
2727 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2728 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2729 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2730 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2731 /// will appear on a force-closure transaction, whichever is lower).
2733 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2734 /// Will fail if a shutdown script has already been set for this channel by
2735 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2736 /// also be compatible with our and the counterparty's features.
2738 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2740 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2741 /// generate a shutdown scriptpubkey or destination script set by
2742 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2745 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2746 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2747 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2748 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2749 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2752 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2753 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2754 #[cfg(debug_assertions)]
2755 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2756 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2759 log_debug!(self.logger, "Finishing closure of channel with {} HTLCs to fail", shutdown_res.dropped_outbound_htlcs.len());
2760 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2761 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2762 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2763 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2764 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2766 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2767 // There isn't anything we can do if we get an update failure - we're already
2768 // force-closing. The monitor update on the required in-memory copy should broadcast
2769 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2770 // ignore the result here.
2771 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2773 let mut shutdown_results = Vec::new();
2774 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2775 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2776 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2777 let per_peer_state = self.per_peer_state.read().unwrap();
2778 let mut has_uncompleted_channel = None;
2779 for (channel_id, counterparty_node_id, state) in affected_channels {
2780 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2781 let mut peer_state = peer_state_mutex.lock().unwrap();
2782 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2783 update_maps_on_chan_removal!(self, &chan.context());
2784 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2785 shutdown_results.push(chan.context_mut().force_shutdown(false));
2788 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2791 has_uncompleted_channel.unwrap_or(true),
2792 "Closing a batch where all channels have completed initial monitor update",
2795 for shutdown_result in shutdown_results.drain(..) {
2796 self.finish_close_channel(shutdown_result);
2800 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2801 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2802 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2803 -> Result<PublicKey, APIError> {
2804 let per_peer_state = self.per_peer_state.read().unwrap();
2805 let peer_state_mutex = per_peer_state.get(peer_node_id)
2806 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2807 let (update_opt, counterparty_node_id) = {
2808 let mut peer_state = peer_state_mutex.lock().unwrap();
2809 let closure_reason = if let Some(peer_msg) = peer_msg {
2810 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2812 ClosureReason::HolderForceClosed
2814 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2815 log_error!(self.logger, "Force-closing channel {}", channel_id);
2816 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2817 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2818 mem::drop(peer_state);
2819 mem::drop(per_peer_state);
2821 ChannelPhase::Funded(mut chan) => {
2822 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2823 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2825 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2826 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2827 // Unfunded channel has no update
2828 (None, chan_phase.context().get_counterparty_node_id())
2831 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2832 log_error!(self.logger, "Force-closing channel {}", &channel_id);
2833 // N.B. that we don't send any channel close event here: we
2834 // don't have a user_channel_id, and we never sent any opening
2836 (None, *peer_node_id)
2838 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2841 if let Some(update) = update_opt {
2842 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2843 // not try to broadcast it via whatever peer we have.
2844 let per_peer_state = self.per_peer_state.read().unwrap();
2845 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2846 .ok_or(per_peer_state.values().next());
2847 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2848 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2849 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2855 Ok(counterparty_node_id)
2858 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2859 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2860 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2861 Ok(counterparty_node_id) => {
2862 let per_peer_state = self.per_peer_state.read().unwrap();
2863 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2864 let mut peer_state = peer_state_mutex.lock().unwrap();
2865 peer_state.pending_msg_events.push(
2866 events::MessageSendEvent::HandleError {
2867 node_id: counterparty_node_id,
2868 action: msgs::ErrorAction::DisconnectPeer {
2869 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2880 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2881 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2882 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2884 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2885 -> Result<(), APIError> {
2886 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2889 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2890 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2891 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2893 /// You can always get the latest local transaction(s) to broadcast from
2894 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2895 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2896 -> Result<(), APIError> {
2897 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2900 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2901 /// for each to the chain and rejecting new HTLCs on each.
2902 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2903 for chan in self.list_channels() {
2904 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2908 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2909 /// local transaction(s).
2910 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2911 for chan in self.list_channels() {
2912 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2916 fn construct_fwd_pending_htlc_info(
2917 &self, msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
2918 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
2919 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
2920 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2921 debug_assert!(next_packet_pubkey_opt.is_some());
2922 let outgoing_packet = msgs::OnionPacket {
2924 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
2925 hop_data: new_packet_bytes,
2929 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
2930 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
2931 (short_channel_id, amt_to_forward, outgoing_cltv_value),
2932 msgs::InboundOnionPayload::Receive { .. } | msgs::InboundOnionPayload::BlindedReceive { .. } =>
2933 return Err(InboundOnionErr {
2934 msg: "Final Node OnionHopData provided for us as an intermediary node",
2935 err_code: 0x4000 | 22,
2936 err_data: Vec::new(),
2940 Ok(PendingHTLCInfo {
2941 routing: PendingHTLCRouting::Forward {
2942 onion_packet: outgoing_packet,
2945 payment_hash: msg.payment_hash,
2946 incoming_shared_secret: shared_secret,
2947 incoming_amt_msat: Some(msg.amount_msat),
2948 outgoing_amt_msat: amt_to_forward,
2949 outgoing_cltv_value,
2950 skimmed_fee_msat: None,
2954 fn construct_recv_pending_htlc_info(
2955 &self, hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
2956 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
2957 counterparty_skimmed_fee_msat: Option<u64>,
2958 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2959 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
2960 msgs::InboundOnionPayload::Receive {
2961 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
2963 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
2964 msgs::InboundOnionPayload::BlindedReceive {
2965 amt_msat, total_msat, outgoing_cltv_value, payment_secret, ..
2967 let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat };
2968 (Some(payment_data), None, Vec::new(), amt_msat, outgoing_cltv_value, None)
2970 msgs::InboundOnionPayload::Forward { .. } => {
2971 return Err(InboundOnionErr {
2972 err_code: 0x4000|22,
2973 err_data: Vec::new(),
2974 msg: "Got non final data with an HMAC of 0",
2978 // final_incorrect_cltv_expiry
2979 if outgoing_cltv_value > cltv_expiry {
2980 return Err(InboundOnionErr {
2981 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2983 err_data: cltv_expiry.to_be_bytes().to_vec()
2986 // final_expiry_too_soon
2987 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2988 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2990 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2991 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2992 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2993 let current_height: u32 = self.best_block.read().unwrap().height();
2994 if cltv_expiry <= current_height + HTLC_FAIL_BACK_BUFFER + 1 {
2995 let mut err_data = Vec::with_capacity(12);
2996 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2997 err_data.extend_from_slice(¤t_height.to_be_bytes());
2998 return Err(InboundOnionErr {
2999 err_code: 0x4000 | 15, err_data,
3000 msg: "The final CLTV expiry is too soon to handle",
3003 if (!allow_underpay && onion_amt_msat > amt_msat) ||
3004 (allow_underpay && onion_amt_msat >
3005 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
3007 return Err(InboundOnionErr {
3009 err_data: amt_msat.to_be_bytes().to_vec(),
3010 msg: "Upstream node sent less than we were supposed to receive in payment",
3014 let routing = if let Some(payment_preimage) = keysend_preimage {
3015 // We need to check that the sender knows the keysend preimage before processing this
3016 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
3017 // could discover the final destination of X, by probing the adjacent nodes on the route
3018 // with a keysend payment of identical payment hash to X and observing the processing
3019 // time discrepancies due to a hash collision with X.
3020 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3021 if hashed_preimage != payment_hash {
3022 return Err(InboundOnionErr {
3023 err_code: 0x4000|22,
3024 err_data: Vec::new(),
3025 msg: "Payment preimage didn't match payment hash",
3028 if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() {
3029 return Err(InboundOnionErr {
3030 err_code: 0x4000|22,
3031 err_data: Vec::new(),
3032 msg: "We don't support MPP keysend payments",
3035 PendingHTLCRouting::ReceiveKeysend {
3039 incoming_cltv_expiry: outgoing_cltv_value,
3042 } else if let Some(data) = payment_data {
3043 PendingHTLCRouting::Receive {
3046 incoming_cltv_expiry: outgoing_cltv_value,
3047 phantom_shared_secret,
3051 return Err(InboundOnionErr {
3052 err_code: 0x4000|0x2000|3,
3053 err_data: Vec::new(),
3054 msg: "We require payment_secrets",
3057 Ok(PendingHTLCInfo {
3060 incoming_shared_secret: shared_secret,
3061 incoming_amt_msat: Some(amt_msat),
3062 outgoing_amt_msat: onion_amt_msat,
3063 outgoing_cltv_value,
3064 skimmed_fee_msat: counterparty_skimmed_fee_msat,
3068 fn decode_update_add_htlc_onion(
3069 &self, msg: &msgs::UpdateAddHTLC
3070 ) -> Result<(onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg> {
3071 macro_rules! return_malformed_err {
3072 ($msg: expr, $err_code: expr) => {
3074 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3075 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3076 channel_id: msg.channel_id,
3077 htlc_id: msg.htlc_id,
3078 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
3079 failure_code: $err_code,
3085 if let Err(_) = msg.onion_routing_packet.public_key {
3086 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
3089 let shared_secret = self.node_signer.ecdh(
3090 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
3091 ).unwrap().secret_bytes();
3093 if msg.onion_routing_packet.version != 0 {
3094 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
3095 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
3096 //the hash doesn't really serve any purpose - in the case of hashing all data, the
3097 //receiving node would have to brute force to figure out which version was put in the
3098 //packet by the node that send us the message, in the case of hashing the hop_data, the
3099 //node knows the HMAC matched, so they already know what is there...
3100 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
3102 macro_rules! return_err {
3103 ($msg: expr, $err_code: expr, $data: expr) => {
3105 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3106 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3107 channel_id: msg.channel_id,
3108 htlc_id: msg.htlc_id,
3109 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3110 .get_encrypted_failure_packet(&shared_secret, &None),
3116 let next_hop = match onion_utils::decode_next_payment_hop(
3117 shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac,
3118 msg.payment_hash, &self.node_signer
3121 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3122 return_malformed_err!(err_msg, err_code);
3124 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3125 return_err!(err_msg, err_code, &[0; 0]);
3128 let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop {
3129 onion_utils::Hop::Forward {
3130 next_hop_data: msgs::InboundOnionPayload::Forward {
3131 short_channel_id, amt_to_forward, outgoing_cltv_value
3134 let next_packet_pk = onion_utils::next_hop_pubkey(&self.secp_ctx,
3135 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
3136 (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_packet_pk))
3138 // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the
3139 // inbound channel's state.
3140 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
3141 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } |
3142 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::BlindedReceive { .. }, .. } =>
3144 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
3148 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3149 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3150 if let Some((err, mut code, chan_update)) = loop {
3151 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3152 let forwarding_chan_info_opt = match id_option {
3153 None => { // unknown_next_peer
3154 // Note that this is likely a timing oracle for detecting whether an scid is a
3155 // phantom or an intercept.
3156 if (self.default_configuration.accept_intercept_htlcs &&
3157 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
3158 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
3162 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3165 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3167 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3168 let per_peer_state = self.per_peer_state.read().unwrap();
3169 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3170 if peer_state_mutex_opt.is_none() {
3171 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3173 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3174 let peer_state = &mut *peer_state_lock;
3175 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3176 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3179 // Channel was removed. The short_to_chan_info and channel_by_id maps
3180 // have no consistency guarantees.
3181 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3185 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3186 // Note that the behavior here should be identical to the above block - we
3187 // should NOT reveal the existence or non-existence of a private channel if
3188 // we don't allow forwards outbound over them.
3189 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3191 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3192 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3193 // "refuse to forward unless the SCID alias was used", so we pretend
3194 // we don't have the channel here.
3195 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3197 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3199 // Note that we could technically not return an error yet here and just hope
3200 // that the connection is reestablished or monitor updated by the time we get
3201 // around to doing the actual forward, but better to fail early if we can and
3202 // hopefully an attacker trying to path-trace payments cannot make this occur
3203 // on a small/per-node/per-channel scale.
3204 if !chan.context.is_live() { // channel_disabled
3205 // If the channel_update we're going to return is disabled (i.e. the
3206 // peer has been disabled for some time), return `channel_disabled`,
3207 // otherwise return `temporary_channel_failure`.
3208 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3209 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3211 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3214 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3215 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3217 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3218 break Some((err, code, chan_update_opt));
3222 if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
3223 // We really should set `incorrect_cltv_expiry` here but as we're not
3224 // forwarding over a real channel we can't generate a channel_update
3225 // for it. Instead we just return a generic temporary_node_failure.
3227 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
3234 let cur_height = self.best_block.read().unwrap().height() + 1;
3235 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
3236 // but we want to be robust wrt to counterparty packet sanitization (see
3237 // HTLC_FAIL_BACK_BUFFER rationale).
3238 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
3239 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
3241 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
3242 break Some(("CLTV expiry is too far in the future", 21, None));
3244 // If the HTLC expires ~now, don't bother trying to forward it to our
3245 // counterparty. They should fail it anyway, but we don't want to bother with
3246 // the round-trips or risk them deciding they definitely want the HTLC and
3247 // force-closing to ensure they get it if we're offline.
3248 // We previously had a much more aggressive check here which tried to ensure
3249 // our counterparty receives an HTLC which has *our* risk threshold met on it,
3250 // but there is no need to do that, and since we're a bit conservative with our
3251 // risk threshold it just results in failing to forward payments.
3252 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
3253 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
3259 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3260 if let Some(chan_update) = chan_update {
3261 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3262 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3264 else if code == 0x1000 | 13 {
3265 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3267 else if code == 0x1000 | 20 {
3268 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3269 0u16.write(&mut res).expect("Writes cannot fail");
3271 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3272 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3273 chan_update.write(&mut res).expect("Writes cannot fail");
3274 } else if code & 0x1000 == 0x1000 {
3275 // If we're trying to return an error that requires a `channel_update` but
3276 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3277 // generate an update), just use the generic "temporary_node_failure"
3281 return_err!(err, code, &res.0[..]);
3283 Ok((next_hop, shared_secret, next_packet_pk_opt))
3286 fn construct_pending_htlc_status<'a>(
3287 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3288 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3289 ) -> PendingHTLCStatus {
3290 macro_rules! return_err {
3291 ($msg: expr, $err_code: expr, $data: expr) => {
3293 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3294 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3295 channel_id: msg.channel_id,
3296 htlc_id: msg.htlc_id,
3297 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3298 .get_encrypted_failure_packet(&shared_secret, &None),
3304 onion_utils::Hop::Receive(next_hop_data) => {
3306 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3307 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat)
3310 // Note that we could obviously respond immediately with an update_fulfill_htlc
3311 // message, however that would leak that we are the recipient of this payment, so
3312 // instead we stay symmetric with the forwarding case, only responding (after a
3313 // delay) once they've send us a commitment_signed!
3314 PendingHTLCStatus::Forward(info)
3316 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3319 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3320 match self.construct_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3321 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3322 Ok(info) => PendingHTLCStatus::Forward(info),
3323 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3329 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3330 /// public, and thus should be called whenever the result is going to be passed out in a
3331 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3333 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3334 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3335 /// storage and the `peer_state` lock has been dropped.
3337 /// [`channel_update`]: msgs::ChannelUpdate
3338 /// [`internal_closing_signed`]: Self::internal_closing_signed
3339 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3340 if !chan.context.should_announce() {
3341 return Err(LightningError {
3342 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3343 action: msgs::ErrorAction::IgnoreError
3346 if chan.context.get_short_channel_id().is_none() {
3347 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3349 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3350 self.get_channel_update_for_unicast(chan)
3353 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3354 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3355 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3356 /// provided evidence that they know about the existence of the channel.
3358 /// Note that through [`internal_closing_signed`], this function is called without the
3359 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3360 /// removed from the storage and the `peer_state` lock has been dropped.
3362 /// [`channel_update`]: msgs::ChannelUpdate
3363 /// [`internal_closing_signed`]: Self::internal_closing_signed
3364 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3365 log_trace!(self.logger, "Attempting to generate channel update for channel {}", &chan.context.channel_id());
3366 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3367 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3371 self.get_channel_update_for_onion(short_channel_id, chan)
3374 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3375 log_trace!(self.logger, "Generating channel update for channel {}", &chan.context.channel_id());
3376 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3378 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3379 ChannelUpdateStatus::Enabled => true,
3380 ChannelUpdateStatus::DisabledStaged(_) => true,
3381 ChannelUpdateStatus::Disabled => false,
3382 ChannelUpdateStatus::EnabledStaged(_) => false,
3385 let unsigned = msgs::UnsignedChannelUpdate {
3386 chain_hash: self.chain_hash,
3388 timestamp: chan.context.get_update_time_counter(),
3389 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3390 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3391 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3392 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3393 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3394 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3395 excess_data: Vec::new(),
3397 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3398 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3399 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3401 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3403 Ok(msgs::ChannelUpdate {
3410 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3411 let _lck = self.total_consistency_lock.read().unwrap();
3412 self.send_payment_along_path(SendAlongPathArgs {
3413 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3418 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3419 let SendAlongPathArgs {
3420 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3423 // The top-level caller should hold the total_consistency_lock read lock.
3424 debug_assert!(self.total_consistency_lock.try_write().is_err());
3426 log_trace!(self.logger,
3427 "Attempting to send payment with payment hash {} along path with next hop {}",
3428 payment_hash, path.hops.first().unwrap().short_channel_id);
3429 let prng_seed = self.entropy_source.get_secure_random_bytes();
3430 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3432 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
3433 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
3434 payment_hash, keysend_preimage, prng_seed
3437 let err: Result<(), _> = loop {
3438 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3439 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3440 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3443 let per_peer_state = self.per_peer_state.read().unwrap();
3444 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3445 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3446 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3447 let peer_state = &mut *peer_state_lock;
3448 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3449 match chan_phase_entry.get_mut() {
3450 ChannelPhase::Funded(chan) => {
3451 if !chan.context.is_live() {
3452 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3454 let funding_txo = chan.context.get_funding_txo().unwrap();
3455 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3456 htlc_cltv, HTLCSource::OutboundRoute {
3458 session_priv: session_priv.clone(),
3459 first_hop_htlc_msat: htlc_msat,
3461 }, onion_packet, None, &self.fee_estimator, &self.logger);
3462 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3463 Some(monitor_update) => {
3464 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3466 // Note that MonitorUpdateInProgress here indicates (per function
3467 // docs) that we will resend the commitment update once monitor
3468 // updating completes. Therefore, we must return an error
3469 // indicating that it is unsafe to retry the payment wholesale,
3470 // which we do in the send_payment check for
3471 // MonitorUpdateInProgress, below.
3472 return Err(APIError::MonitorUpdateInProgress);
3480 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3483 // The channel was likely removed after we fetched the id from the
3484 // `short_to_chan_info` map, but before we successfully locked the
3485 // `channel_by_id` map.
3486 // This can occur as no consistency guarantees exists between the two maps.
3487 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3492 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3493 Ok(_) => unreachable!(),
3495 Err(APIError::ChannelUnavailable { err: e.err })
3500 /// Sends a payment along a given route.
3502 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3503 /// fields for more info.
3505 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3506 /// [`PeerManager::process_events`]).
3508 /// # Avoiding Duplicate Payments
3510 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3511 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3512 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3513 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3514 /// second payment with the same [`PaymentId`].
3516 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3517 /// tracking of payments, including state to indicate once a payment has completed. Because you
3518 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3519 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3520 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3522 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3523 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3524 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3525 /// [`ChannelManager::list_recent_payments`] for more information.
3527 /// # Possible Error States on [`PaymentSendFailure`]
3529 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3530 /// each entry matching the corresponding-index entry in the route paths, see
3531 /// [`PaymentSendFailure`] for more info.
3533 /// In general, a path may raise:
3534 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3535 /// node public key) is specified.
3536 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3537 /// closed, doesn't exist, or the peer is currently disconnected.
3538 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3539 /// relevant updates.
3541 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3542 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3543 /// different route unless you intend to pay twice!
3545 /// [`RouteHop`]: crate::routing::router::RouteHop
3546 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3547 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3548 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3549 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3550 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3551 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3552 let best_block_height = self.best_block.read().unwrap().height();
3553 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3554 self.pending_outbound_payments
3555 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3556 &self.entropy_source, &self.node_signer, best_block_height,
3557 |args| self.send_payment_along_path(args))
3560 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3561 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3562 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3563 let best_block_height = self.best_block.read().unwrap().height();
3564 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3565 self.pending_outbound_payments
3566 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3567 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3568 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3569 &self.pending_events, |args| self.send_payment_along_path(args))
3573 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3574 let best_block_height = self.best_block.read().unwrap().height();
3575 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3576 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3577 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3578 best_block_height, |args| self.send_payment_along_path(args))
3582 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3583 let best_block_height = self.best_block.read().unwrap().height();
3584 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3588 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3589 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3592 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3593 let best_block_height = self.best_block.read().unwrap().height();
3594 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3595 self.pending_outbound_payments
3596 .send_payment_for_bolt12_invoice(
3597 invoice, payment_id, &self.router, self.list_usable_channels(),
3598 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3599 best_block_height, &self.logger, &self.pending_events,
3600 |args| self.send_payment_along_path(args)
3604 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3605 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3606 /// retries are exhausted.
3608 /// # Event Generation
3610 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3611 /// as there are no remaining pending HTLCs for this payment.
3613 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3614 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3615 /// determine the ultimate status of a payment.
3617 /// # Requested Invoices
3619 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3620 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3621 /// and prevent any attempts at paying it once received. The other events may only be generated
3622 /// once the invoice has been received.
3624 /// # Restart Behavior
3626 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3627 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3628 /// [`Event::InvoiceRequestFailed`].
3630 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3631 pub fn abandon_payment(&self, payment_id: PaymentId) {
3632 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3633 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3636 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3637 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3638 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3639 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3640 /// never reach the recipient.
3642 /// See [`send_payment`] documentation for more details on the return value of this function
3643 /// and idempotency guarantees provided by the [`PaymentId`] key.
3645 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3646 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3648 /// [`send_payment`]: Self::send_payment
3649 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3650 let best_block_height = self.best_block.read().unwrap().height();
3651 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3652 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3653 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3654 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3657 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3658 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3660 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3663 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3664 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3665 let best_block_height = self.best_block.read().unwrap().height();
3666 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3667 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3668 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3669 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3670 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3673 /// Send a payment that is probing the given route for liquidity. We calculate the
3674 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3675 /// us to easily discern them from real payments.
3676 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3677 let best_block_height = self.best_block.read().unwrap().height();
3678 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3679 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3680 &self.entropy_source, &self.node_signer, best_block_height,
3681 |args| self.send_payment_along_path(args))
3684 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3687 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3688 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3691 /// Sends payment probes over all paths of a route that would be used to pay the given
3692 /// amount to the given `node_id`.
3694 /// See [`ChannelManager::send_preflight_probes`] for more information.
3695 pub fn send_spontaneous_preflight_probes(
3696 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3697 liquidity_limit_multiplier: Option<u64>,
3698 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3699 let payment_params =
3700 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3702 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3704 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3707 /// Sends payment probes over all paths of a route that would be used to pay a route found
3708 /// according to the given [`RouteParameters`].
3710 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3711 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3712 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3713 /// confirmation in a wallet UI.
3715 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3716 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3717 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3718 /// payment. To mitigate this issue, channels with available liquidity less than the required
3719 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3720 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3721 pub fn send_preflight_probes(
3722 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3723 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3724 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3726 let payer = self.get_our_node_id();
3727 let usable_channels = self.list_usable_channels();
3728 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3729 let inflight_htlcs = self.compute_inflight_htlcs();
3733 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3735 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3736 ProbeSendFailure::RouteNotFound
3739 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3741 let mut res = Vec::new();
3743 for mut path in route.paths {
3744 // If the last hop is probably an unannounced channel we refrain from probing all the
3745 // way through to the end and instead probe up to the second-to-last channel.
3746 while let Some(last_path_hop) = path.hops.last() {
3747 if last_path_hop.maybe_announced_channel {
3748 // We found a potentially announced last hop.
3751 // Drop the last hop, as it's likely unannounced.
3754 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3755 last_path_hop.short_channel_id
3757 let final_value_msat = path.final_value_msat();
3759 if let Some(new_last) = path.hops.last_mut() {
3760 new_last.fee_msat += final_value_msat;
3765 if path.hops.len() < 2 {
3768 "Skipped sending payment probe over path with less than two hops."
3773 if let Some(first_path_hop) = path.hops.first() {
3774 if let Some(first_hop) = first_hops.iter().find(|h| {
3775 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3777 let path_value = path.final_value_msat() + path.fee_msat();
3778 let used_liquidity =
3779 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3781 if first_hop.next_outbound_htlc_limit_msat
3782 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3784 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3787 *used_liquidity += path_value;
3792 res.push(self.send_probe(path).map_err(|e| {
3793 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3794 ProbeSendFailure::SendingFailed(e)
3801 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3802 /// which checks the correctness of the funding transaction given the associated channel.
3803 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3804 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3805 mut find_funding_output: FundingOutput,
3806 ) -> Result<(), APIError> {
3807 let per_peer_state = self.per_peer_state.read().unwrap();
3808 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3809 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3811 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3812 let peer_state = &mut *peer_state_lock;
3813 let (chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3814 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3815 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3817 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &self.logger)
3818 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3819 let channel_id = chan.context.channel_id();
3820 let user_id = chan.context.get_user_id();
3821 let shutdown_res = chan.context.force_shutdown(false);
3822 let channel_capacity = chan.context.get_value_satoshis();
3823 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3824 } else { unreachable!(); });
3826 Ok((chan, funding_msg)) => (chan, funding_msg),
3827 Err((chan, err)) => {
3828 mem::drop(peer_state_lock);
3829 mem::drop(per_peer_state);
3831 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3832 return Err(APIError::ChannelUnavailable {
3833 err: "Signer refused to sign the initial commitment transaction".to_owned()
3839 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3840 return Err(APIError::APIMisuseError {
3842 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3843 temporary_channel_id, counterparty_node_id),
3846 None => return Err(APIError::ChannelUnavailable {err: format!(
3847 "Channel with id {} not found for the passed counterparty node_id {}",
3848 temporary_channel_id, counterparty_node_id),
3852 if let Some(msg) = msg_opt {
3853 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3854 node_id: chan.context.get_counterparty_node_id(),
3858 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3859 hash_map::Entry::Occupied(_) => {
3860 panic!("Generated duplicate funding txid?");
3862 hash_map::Entry::Vacant(e) => {
3863 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3864 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3865 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3867 e.insert(ChannelPhase::Funded(chan));
3874 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3875 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3876 Ok(OutPoint { txid: tx.txid(), index: output_index })
3880 /// Call this upon creation of a funding transaction for the given channel.
3882 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3883 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3885 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3886 /// across the p2p network.
3888 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3889 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3891 /// May panic if the output found in the funding transaction is duplicative with some other
3892 /// channel (note that this should be trivially prevented by using unique funding transaction
3893 /// keys per-channel).
3895 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3896 /// counterparty's signature the funding transaction will automatically be broadcast via the
3897 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3899 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3900 /// not currently support replacing a funding transaction on an existing channel. Instead,
3901 /// create a new channel with a conflicting funding transaction.
3903 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3904 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3905 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3906 /// for more details.
3908 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3909 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3910 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3911 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3914 /// Call this upon creation of a batch funding transaction for the given channels.
3916 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3917 /// each individual channel and transaction output.
3919 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3920 /// will only be broadcast when we have safely received and persisted the counterparty's
3921 /// signature for each channel.
3923 /// If there is an error, all channels in the batch are to be considered closed.
3924 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3925 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3926 let mut result = Ok(());
3928 if !funding_transaction.is_coin_base() {
3929 for inp in funding_transaction.input.iter() {
3930 if inp.witness.is_empty() {
3931 result = result.and(Err(APIError::APIMisuseError {
3932 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3937 if funding_transaction.output.len() > u16::max_value() as usize {
3938 result = result.and(Err(APIError::APIMisuseError {
3939 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3943 let height = self.best_block.read().unwrap().height();
3944 // Transactions are evaluated as final by network mempools if their locktime is strictly
3945 // lower than the next block height. However, the modules constituting our Lightning
3946 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3947 // module is ahead of LDK, only allow one more block of headroom.
3948 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3949 result = result.and(Err(APIError::APIMisuseError {
3950 err: "Funding transaction absolute timelock is non-final".to_owned()
3955 let txid = funding_transaction.txid();
3956 let is_batch_funding = temporary_channels.len() > 1;
3957 let mut funding_batch_states = if is_batch_funding {
3958 Some(self.funding_batch_states.lock().unwrap())
3962 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3963 match states.entry(txid) {
3964 btree_map::Entry::Occupied(_) => {
3965 result = result.clone().and(Err(APIError::APIMisuseError {
3966 err: "Batch funding transaction with the same txid already exists".to_owned()
3970 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3973 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3974 result = result.and_then(|_| self.funding_transaction_generated_intern(
3975 temporary_channel_id,
3976 counterparty_node_id,
3977 funding_transaction.clone(),
3980 let mut output_index = None;
3981 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3982 for (idx, outp) in tx.output.iter().enumerate() {
3983 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3984 if output_index.is_some() {
3985 return Err(APIError::APIMisuseError {
3986 err: "Multiple outputs matched the expected script and value".to_owned()
3989 output_index = Some(idx as u16);
3992 if output_index.is_none() {
3993 return Err(APIError::APIMisuseError {
3994 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3997 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3998 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
3999 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
4005 if let Err(ref e) = result {
4006 // Remaining channels need to be removed on any error.
4007 let e = format!("Error in transaction funding: {:?}", e);
4008 let mut channels_to_remove = Vec::new();
4009 channels_to_remove.extend(funding_batch_states.as_mut()
4010 .and_then(|states| states.remove(&txid))
4011 .into_iter().flatten()
4012 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4014 channels_to_remove.extend(temporary_channels.iter()
4015 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4017 let mut shutdown_results = Vec::new();
4019 let per_peer_state = self.per_peer_state.read().unwrap();
4020 for (channel_id, counterparty_node_id) in channels_to_remove {
4021 per_peer_state.get(&counterparty_node_id)
4022 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4023 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
4025 update_maps_on_chan_removal!(self, &chan.context());
4026 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
4027 shutdown_results.push(chan.context_mut().force_shutdown(false));
4031 for shutdown_result in shutdown_results.drain(..) {
4032 self.finish_close_channel(shutdown_result);
4038 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4040 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4041 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4042 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4043 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4045 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4046 /// `counterparty_node_id` is provided.
4048 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4049 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4051 /// If an error is returned, none of the updates should be considered applied.
4053 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4054 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4055 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4056 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4057 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4058 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4059 /// [`APIMisuseError`]: APIError::APIMisuseError
4060 pub fn update_partial_channel_config(
4061 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4062 ) -> Result<(), APIError> {
4063 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4064 return Err(APIError::APIMisuseError {
4065 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4069 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4070 let per_peer_state = self.per_peer_state.read().unwrap();
4071 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4072 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4073 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4074 let peer_state = &mut *peer_state_lock;
4075 for channel_id in channel_ids {
4076 if !peer_state.has_channel(channel_id) {
4077 return Err(APIError::ChannelUnavailable {
4078 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4082 for channel_id in channel_ids {
4083 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4084 let mut config = channel_phase.context().config();
4085 config.apply(config_update);
4086 if !channel_phase.context_mut().update_config(&config) {
4089 if let ChannelPhase::Funded(channel) = channel_phase {
4090 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4091 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4092 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4093 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4094 node_id: channel.context.get_counterparty_node_id(),
4101 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4102 debug_assert!(false);
4103 return Err(APIError::ChannelUnavailable {
4105 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4106 channel_id, counterparty_node_id),
4113 /// Atomically updates the [`ChannelConfig`] for the given channels.
4115 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4116 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4117 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4118 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4120 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4121 /// `counterparty_node_id` is provided.
4123 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4124 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4126 /// If an error is returned, none of the updates should be considered applied.
4128 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4129 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4130 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4131 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4132 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4133 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4134 /// [`APIMisuseError`]: APIError::APIMisuseError
4135 pub fn update_channel_config(
4136 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4137 ) -> Result<(), APIError> {
4138 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4141 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4142 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4144 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4145 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4147 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4148 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4149 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4150 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4151 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4153 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4154 /// you from forwarding more than you received. See
4155 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4158 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4161 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4162 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4163 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4164 // TODO: when we move to deciding the best outbound channel at forward time, only take
4165 // `next_node_id` and not `next_hop_channel_id`
4166 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4167 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4169 let next_hop_scid = {
4170 let peer_state_lock = self.per_peer_state.read().unwrap();
4171 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4172 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4173 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4174 let peer_state = &mut *peer_state_lock;
4175 match peer_state.channel_by_id.get(next_hop_channel_id) {
4176 Some(ChannelPhase::Funded(chan)) => {
4177 if !chan.context.is_usable() {
4178 return Err(APIError::ChannelUnavailable {
4179 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4182 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4184 Some(_) => return Err(APIError::ChannelUnavailable {
4185 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4186 next_hop_channel_id, next_node_id)
4189 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4190 next_hop_channel_id, next_node_id);
4191 log_error!(self.logger, "{} when attempting to forward intercepted HTLC", error);
4192 return Err(APIError::ChannelUnavailable {
4199 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4200 .ok_or_else(|| APIError::APIMisuseError {
4201 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4204 let routing = match payment.forward_info.routing {
4205 PendingHTLCRouting::Forward { onion_packet, .. } => {
4206 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
4208 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4210 let skimmed_fee_msat =
4211 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4212 let pending_htlc_info = PendingHTLCInfo {
4213 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4214 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4217 let mut per_source_pending_forward = [(
4218 payment.prev_short_channel_id,
4219 payment.prev_funding_outpoint,
4220 payment.prev_user_channel_id,
4221 vec![(pending_htlc_info, payment.prev_htlc_id)]
4223 self.forward_htlcs(&mut per_source_pending_forward);
4227 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4228 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4230 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4233 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4234 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4235 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4237 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4238 .ok_or_else(|| APIError::APIMisuseError {
4239 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4242 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4243 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4244 short_channel_id: payment.prev_short_channel_id,
4245 user_channel_id: Some(payment.prev_user_channel_id),
4246 outpoint: payment.prev_funding_outpoint,
4247 htlc_id: payment.prev_htlc_id,
4248 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4249 phantom_shared_secret: None,
4252 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4253 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4254 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4255 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4260 /// Processes HTLCs which are pending waiting on random forward delay.
4262 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4263 /// Will likely generate further events.
4264 pub fn process_pending_htlc_forwards(&self) {
4265 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4267 let mut new_events = VecDeque::new();
4268 let mut failed_forwards = Vec::new();
4269 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4271 let mut forward_htlcs = HashMap::new();
4272 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4274 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4275 if short_chan_id != 0 {
4276 macro_rules! forwarding_channel_not_found {
4278 for forward_info in pending_forwards.drain(..) {
4279 match forward_info {
4280 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4281 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4282 forward_info: PendingHTLCInfo {
4283 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4284 outgoing_cltv_value, ..
4287 macro_rules! failure_handler {
4288 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4289 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4291 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4292 short_channel_id: prev_short_channel_id,
4293 user_channel_id: Some(prev_user_channel_id),
4294 outpoint: prev_funding_outpoint,
4295 htlc_id: prev_htlc_id,
4296 incoming_packet_shared_secret: incoming_shared_secret,
4297 phantom_shared_secret: $phantom_ss,
4300 let reason = if $next_hop_unknown {
4301 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4303 HTLCDestination::FailedPayment{ payment_hash }
4306 failed_forwards.push((htlc_source, payment_hash,
4307 HTLCFailReason::reason($err_code, $err_data),
4313 macro_rules! fail_forward {
4314 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4316 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4320 macro_rules! failed_payment {
4321 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4323 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4327 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
4328 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4329 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4330 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4331 let next_hop = match onion_utils::decode_next_payment_hop(
4332 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4333 payment_hash, &self.node_signer
4336 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4337 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
4338 // In this scenario, the phantom would have sent us an
4339 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4340 // if it came from us (the second-to-last hop) but contains the sha256
4342 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4344 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4345 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4349 onion_utils::Hop::Receive(hop_data) => {
4350 match self.construct_recv_pending_htlc_info(hop_data,
4351 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4352 outgoing_cltv_value, Some(phantom_shared_secret), false, None)
4354 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4355 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4361 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4364 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4367 HTLCForwardInfo::FailHTLC { .. } => {
4368 // Channel went away before we could fail it. This implies
4369 // the channel is now on chain and our counterparty is
4370 // trying to broadcast the HTLC-Timeout, but that's their
4371 // problem, not ours.
4377 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4378 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4379 Some((cp_id, chan_id)) => (cp_id, chan_id),
4381 forwarding_channel_not_found!();
4385 let per_peer_state = self.per_peer_state.read().unwrap();
4386 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4387 if peer_state_mutex_opt.is_none() {
4388 forwarding_channel_not_found!();
4391 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4392 let peer_state = &mut *peer_state_lock;
4393 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4394 for forward_info in pending_forwards.drain(..) {
4395 match forward_info {
4396 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4397 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4398 forward_info: PendingHTLCInfo {
4399 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4400 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
4403 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4404 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4405 short_channel_id: prev_short_channel_id,
4406 user_channel_id: Some(prev_user_channel_id),
4407 outpoint: prev_funding_outpoint,
4408 htlc_id: prev_htlc_id,
4409 incoming_packet_shared_secret: incoming_shared_secret,
4410 // Phantom payments are only PendingHTLCRouting::Receive.
4411 phantom_shared_secret: None,
4413 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4414 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4415 onion_packet, skimmed_fee_msat, &self.fee_estimator,
4418 if let ChannelError::Ignore(msg) = e {
4419 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4421 panic!("Stated return value requirements in send_htlc() were not met");
4423 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4424 failed_forwards.push((htlc_source, payment_hash,
4425 HTLCFailReason::reason(failure_code, data),
4426 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4431 HTLCForwardInfo::AddHTLC { .. } => {
4432 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4434 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4435 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4436 if let Err(e) = chan.queue_fail_htlc(
4437 htlc_id, err_packet, &self.logger
4439 if let ChannelError::Ignore(msg) = e {
4440 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4442 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4444 // fail-backs are best-effort, we probably already have one
4445 // pending, and if not that's OK, if not, the channel is on
4446 // the chain and sending the HTLC-Timeout is their problem.
4453 forwarding_channel_not_found!();
4457 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4458 match forward_info {
4459 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4460 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4461 forward_info: PendingHTLCInfo {
4462 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4463 skimmed_fee_msat, ..
4466 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4467 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4468 let _legacy_hop_data = Some(payment_data.clone());
4469 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4470 payment_metadata, custom_tlvs };
4471 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4472 Some(payment_data), phantom_shared_secret, onion_fields)
4474 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4475 let onion_fields = RecipientOnionFields {
4476 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4480 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4481 payment_data, None, onion_fields)
4484 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4487 let claimable_htlc = ClaimableHTLC {
4488 prev_hop: HTLCPreviousHopData {
4489 short_channel_id: prev_short_channel_id,
4490 user_channel_id: Some(prev_user_channel_id),
4491 outpoint: prev_funding_outpoint,
4492 htlc_id: prev_htlc_id,
4493 incoming_packet_shared_secret: incoming_shared_secret,
4494 phantom_shared_secret,
4496 // We differentiate the received value from the sender intended value
4497 // if possible so that we don't prematurely mark MPP payments complete
4498 // if routing nodes overpay
4499 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4500 sender_intended_value: outgoing_amt_msat,
4502 total_value_received: None,
4503 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4506 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4509 let mut committed_to_claimable = false;
4511 macro_rules! fail_htlc {
4512 ($htlc: expr, $payment_hash: expr) => {
4513 debug_assert!(!committed_to_claimable);
4514 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4515 htlc_msat_height_data.extend_from_slice(
4516 &self.best_block.read().unwrap().height().to_be_bytes(),
4518 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4519 short_channel_id: $htlc.prev_hop.short_channel_id,
4520 user_channel_id: $htlc.prev_hop.user_channel_id,
4521 outpoint: prev_funding_outpoint,
4522 htlc_id: $htlc.prev_hop.htlc_id,
4523 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4524 phantom_shared_secret,
4526 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4527 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4529 continue 'next_forwardable_htlc;
4532 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4533 let mut receiver_node_id = self.our_network_pubkey;
4534 if phantom_shared_secret.is_some() {
4535 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4536 .expect("Failed to get node_id for phantom node recipient");
4539 macro_rules! check_total_value {
4540 ($purpose: expr) => {{
4541 let mut payment_claimable_generated = false;
4542 let is_keysend = match $purpose {
4543 events::PaymentPurpose::SpontaneousPayment(_) => true,
4544 events::PaymentPurpose::InvoicePayment { .. } => false,
4546 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4547 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4548 fail_htlc!(claimable_htlc, payment_hash);
4550 let ref mut claimable_payment = claimable_payments.claimable_payments
4551 .entry(payment_hash)
4552 // Note that if we insert here we MUST NOT fail_htlc!()
4553 .or_insert_with(|| {
4554 committed_to_claimable = true;
4556 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4559 if $purpose != claimable_payment.purpose {
4560 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4561 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4562 fail_htlc!(claimable_htlc, payment_hash);
4564 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4565 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4566 fail_htlc!(claimable_htlc, payment_hash);
4568 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4569 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4570 fail_htlc!(claimable_htlc, payment_hash);
4573 claimable_payment.onion_fields = Some(onion_fields);
4575 let ref mut htlcs = &mut claimable_payment.htlcs;
4576 let mut total_value = claimable_htlc.sender_intended_value;
4577 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4578 for htlc in htlcs.iter() {
4579 total_value += htlc.sender_intended_value;
4580 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4581 if htlc.total_msat != claimable_htlc.total_msat {
4582 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4583 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4584 total_value = msgs::MAX_VALUE_MSAT;
4586 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4588 // The condition determining whether an MPP is complete must
4589 // match exactly the condition used in `timer_tick_occurred`
4590 if total_value >= msgs::MAX_VALUE_MSAT {
4591 fail_htlc!(claimable_htlc, payment_hash);
4592 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4593 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4595 fail_htlc!(claimable_htlc, payment_hash);
4596 } else if total_value >= claimable_htlc.total_msat {
4597 #[allow(unused_assignments)] {
4598 committed_to_claimable = true;
4600 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4601 htlcs.push(claimable_htlc);
4602 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4603 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4604 let counterparty_skimmed_fee_msat = htlcs.iter()
4605 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4606 debug_assert!(total_value.saturating_sub(amount_msat) <=
4607 counterparty_skimmed_fee_msat);
4608 new_events.push_back((events::Event::PaymentClaimable {
4609 receiver_node_id: Some(receiver_node_id),
4613 counterparty_skimmed_fee_msat,
4614 via_channel_id: Some(prev_channel_id),
4615 via_user_channel_id: Some(prev_user_channel_id),
4616 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4617 onion_fields: claimable_payment.onion_fields.clone(),
4619 payment_claimable_generated = true;
4621 // Nothing to do - we haven't reached the total
4622 // payment value yet, wait until we receive more
4624 htlcs.push(claimable_htlc);
4625 #[allow(unused_assignments)] {
4626 committed_to_claimable = true;
4629 payment_claimable_generated
4633 // Check that the payment hash and secret are known. Note that we
4634 // MUST take care to handle the "unknown payment hash" and
4635 // "incorrect payment secret" cases here identically or we'd expose
4636 // that we are the ultimate recipient of the given payment hash.
4637 // Further, we must not expose whether we have any other HTLCs
4638 // associated with the same payment_hash pending or not.
4639 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4640 match payment_secrets.entry(payment_hash) {
4641 hash_map::Entry::Vacant(_) => {
4642 match claimable_htlc.onion_payload {
4643 OnionPayload::Invoice { .. } => {
4644 let payment_data = payment_data.unwrap();
4645 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4646 Ok(result) => result,
4648 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4649 fail_htlc!(claimable_htlc, payment_hash);
4652 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4653 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4654 if (cltv_expiry as u64) < expected_min_expiry_height {
4655 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4656 &payment_hash, cltv_expiry, expected_min_expiry_height);
4657 fail_htlc!(claimable_htlc, payment_hash);
4660 let purpose = events::PaymentPurpose::InvoicePayment {
4661 payment_preimage: payment_preimage.clone(),
4662 payment_secret: payment_data.payment_secret,
4664 check_total_value!(purpose);
4666 OnionPayload::Spontaneous(preimage) => {
4667 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4668 check_total_value!(purpose);
4672 hash_map::Entry::Occupied(inbound_payment) => {
4673 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4674 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4675 fail_htlc!(claimable_htlc, payment_hash);
4677 let payment_data = payment_data.unwrap();
4678 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4679 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4680 fail_htlc!(claimable_htlc, payment_hash);
4681 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4682 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4683 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4684 fail_htlc!(claimable_htlc, payment_hash);
4686 let purpose = events::PaymentPurpose::InvoicePayment {
4687 payment_preimage: inbound_payment.get().payment_preimage,
4688 payment_secret: payment_data.payment_secret,
4690 let payment_claimable_generated = check_total_value!(purpose);
4691 if payment_claimable_generated {
4692 inbound_payment.remove_entry();
4698 HTLCForwardInfo::FailHTLC { .. } => {
4699 panic!("Got pending fail of our own HTLC");
4707 let best_block_height = self.best_block.read().unwrap().height();
4708 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4709 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4710 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4712 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4713 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4715 self.forward_htlcs(&mut phantom_receives);
4717 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4718 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4719 // nice to do the work now if we can rather than while we're trying to get messages in the
4721 self.check_free_holding_cells();
4723 if new_events.is_empty() { return }
4724 let mut events = self.pending_events.lock().unwrap();
4725 events.append(&mut new_events);
4728 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4730 /// Expects the caller to have a total_consistency_lock read lock.
4731 fn process_background_events(&self) -> NotifyOption {
4732 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4734 self.background_events_processed_since_startup.store(true, Ordering::Release);
4736 let mut background_events = Vec::new();
4737 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4738 if background_events.is_empty() {
4739 return NotifyOption::SkipPersistNoEvents;
4742 for event in background_events.drain(..) {
4744 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4745 // The channel has already been closed, so no use bothering to care about the
4746 // monitor updating completing.
4747 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4749 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4750 let mut updated_chan = false;
4752 let per_peer_state = self.per_peer_state.read().unwrap();
4753 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4754 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4755 let peer_state = &mut *peer_state_lock;
4756 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4757 hash_map::Entry::Occupied(mut chan_phase) => {
4758 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4759 updated_chan = true;
4760 handle_new_monitor_update!(self, funding_txo, update.clone(),
4761 peer_state_lock, peer_state, per_peer_state, chan);
4763 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4766 hash_map::Entry::Vacant(_) => {},
4771 // TODO: Track this as in-flight even though the channel is closed.
4772 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4775 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4776 let per_peer_state = self.per_peer_state.read().unwrap();
4777 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4778 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4779 let peer_state = &mut *peer_state_lock;
4780 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4781 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4783 let update_actions = peer_state.monitor_update_blocked_actions
4784 .remove(&channel_id).unwrap_or(Vec::new());
4785 mem::drop(peer_state_lock);
4786 mem::drop(per_peer_state);
4787 self.handle_monitor_update_completion_actions(update_actions);
4793 NotifyOption::DoPersist
4796 #[cfg(any(test, feature = "_test_utils"))]
4797 /// Process background events, for functional testing
4798 pub fn test_process_background_events(&self) {
4799 let _lck = self.total_consistency_lock.read().unwrap();
4800 let _ = self.process_background_events();
4803 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4804 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4805 // If the feerate has decreased by less than half, don't bother
4806 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4807 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4808 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4809 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4811 return NotifyOption::SkipPersistNoEvents;
4813 if !chan.context.is_live() {
4814 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4815 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4816 return NotifyOption::SkipPersistNoEvents;
4818 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4819 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4821 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4822 NotifyOption::DoPersist
4826 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4827 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4828 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4829 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4830 pub fn maybe_update_chan_fees(&self) {
4831 PersistenceNotifierGuard::optionally_notify(self, || {
4832 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4834 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4835 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4837 let per_peer_state = self.per_peer_state.read().unwrap();
4838 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4839 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4840 let peer_state = &mut *peer_state_lock;
4841 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4842 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4844 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4849 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4850 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4858 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4860 /// This currently includes:
4861 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4862 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4863 /// than a minute, informing the network that they should no longer attempt to route over
4865 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4866 /// with the current [`ChannelConfig`].
4867 /// * Removing peers which have disconnected but and no longer have any channels.
4868 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4869 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4870 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4871 /// The latter is determined using the system clock in `std` and the highest seen block time
4872 /// minus two hours in `no-std`.
4874 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4875 /// estimate fetches.
4877 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4878 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4879 pub fn timer_tick_occurred(&self) {
4880 PersistenceNotifierGuard::optionally_notify(self, || {
4881 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4883 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4884 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4886 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4887 let mut timed_out_mpp_htlcs = Vec::new();
4888 let mut pending_peers_awaiting_removal = Vec::new();
4889 let mut shutdown_channels = Vec::new();
4891 let mut process_unfunded_channel_tick = |
4892 chan_id: &ChannelId,
4893 context: &mut ChannelContext<SP>,
4894 unfunded_context: &mut UnfundedChannelContext,
4895 pending_msg_events: &mut Vec<MessageSendEvent>,
4896 counterparty_node_id: PublicKey,
4898 context.maybe_expire_prev_config();
4899 if unfunded_context.should_expire_unfunded_channel() {
4900 log_error!(self.logger,
4901 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4902 update_maps_on_chan_removal!(self, &context);
4903 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4904 shutdown_channels.push(context.force_shutdown(false));
4905 pending_msg_events.push(MessageSendEvent::HandleError {
4906 node_id: counterparty_node_id,
4907 action: msgs::ErrorAction::SendErrorMessage {
4908 msg: msgs::ErrorMessage {
4909 channel_id: *chan_id,
4910 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4921 let per_peer_state = self.per_peer_state.read().unwrap();
4922 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4923 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4924 let peer_state = &mut *peer_state_lock;
4925 let pending_msg_events = &mut peer_state.pending_msg_events;
4926 let counterparty_node_id = *counterparty_node_id;
4927 peer_state.channel_by_id.retain(|chan_id, phase| {
4929 ChannelPhase::Funded(chan) => {
4930 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4935 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4936 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4938 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4939 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4940 handle_errors.push((Err(err), counterparty_node_id));
4941 if needs_close { return false; }
4944 match chan.channel_update_status() {
4945 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4946 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4947 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4948 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4949 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4950 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4951 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4953 if n >= DISABLE_GOSSIP_TICKS {
4954 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4955 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4956 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4960 should_persist = NotifyOption::DoPersist;
4962 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4965 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4967 if n >= ENABLE_GOSSIP_TICKS {
4968 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4969 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4970 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4974 should_persist = NotifyOption::DoPersist;
4976 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4982 chan.context.maybe_expire_prev_config();
4984 if chan.should_disconnect_peer_awaiting_response() {
4985 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4986 counterparty_node_id, chan_id);
4987 pending_msg_events.push(MessageSendEvent::HandleError {
4988 node_id: counterparty_node_id,
4989 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4990 msg: msgs::WarningMessage {
4991 channel_id: *chan_id,
4992 data: "Disconnecting due to timeout awaiting response".to_owned(),
5000 ChannelPhase::UnfundedInboundV1(chan) => {
5001 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5002 pending_msg_events, counterparty_node_id)
5004 ChannelPhase::UnfundedOutboundV1(chan) => {
5005 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5006 pending_msg_events, counterparty_node_id)
5011 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5012 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5013 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5014 peer_state.pending_msg_events.push(
5015 events::MessageSendEvent::HandleError {
5016 node_id: counterparty_node_id,
5017 action: msgs::ErrorAction::SendErrorMessage {
5018 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5024 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5026 if peer_state.ok_to_remove(true) {
5027 pending_peers_awaiting_removal.push(counterparty_node_id);
5032 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5033 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5034 // of to that peer is later closed while still being disconnected (i.e. force closed),
5035 // we therefore need to remove the peer from `peer_state` separately.
5036 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5037 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5038 // negative effects on parallelism as much as possible.
5039 if pending_peers_awaiting_removal.len() > 0 {
5040 let mut per_peer_state = self.per_peer_state.write().unwrap();
5041 for counterparty_node_id in pending_peers_awaiting_removal {
5042 match per_peer_state.entry(counterparty_node_id) {
5043 hash_map::Entry::Occupied(entry) => {
5044 // Remove the entry if the peer is still disconnected and we still
5045 // have no channels to the peer.
5046 let remove_entry = {
5047 let peer_state = entry.get().lock().unwrap();
5048 peer_state.ok_to_remove(true)
5051 entry.remove_entry();
5054 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5059 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5060 if payment.htlcs.is_empty() {
5061 // This should be unreachable
5062 debug_assert!(false);
5065 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5066 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5067 // In this case we're not going to handle any timeouts of the parts here.
5068 // This condition determining whether the MPP is complete here must match
5069 // exactly the condition used in `process_pending_htlc_forwards`.
5070 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5071 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5074 } else if payment.htlcs.iter_mut().any(|htlc| {
5075 htlc.timer_ticks += 1;
5076 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5078 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5079 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5086 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5087 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5088 let reason = HTLCFailReason::from_failure_code(23);
5089 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5090 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5093 for (err, counterparty_node_id) in handle_errors.drain(..) {
5094 let _ = handle_error!(self, err, counterparty_node_id);
5097 for shutdown_res in shutdown_channels {
5098 self.finish_close_channel(shutdown_res);
5101 #[cfg(feature = "std")]
5102 let duration_since_epoch = std::time::SystemTime::now()
5103 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5104 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5105 #[cfg(not(feature = "std"))]
5106 let duration_since_epoch = Duration::from_secs(
5107 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5110 self.pending_outbound_payments.remove_stale_payments(
5111 duration_since_epoch, &self.pending_events
5114 // Technically we don't need to do this here, but if we have holding cell entries in a
5115 // channel that need freeing, it's better to do that here and block a background task
5116 // than block the message queueing pipeline.
5117 if self.check_free_holding_cells() {
5118 should_persist = NotifyOption::DoPersist;
5125 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5126 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5127 /// along the path (including in our own channel on which we received it).
5129 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5130 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5131 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5132 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5134 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5135 /// [`ChannelManager::claim_funds`]), you should still monitor for
5136 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5137 /// startup during which time claims that were in-progress at shutdown may be replayed.
5138 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5139 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5142 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5143 /// reason for the failure.
5145 /// See [`FailureCode`] for valid failure codes.
5146 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5147 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5149 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5150 if let Some(payment) = removed_source {
5151 for htlc in payment.htlcs {
5152 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5153 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5154 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5155 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5160 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5161 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5162 match failure_code {
5163 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5164 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5165 FailureCode::IncorrectOrUnknownPaymentDetails => {
5166 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5167 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5168 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5170 FailureCode::InvalidOnionPayload(data) => {
5171 let fail_data = match data {
5172 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5175 HTLCFailReason::reason(failure_code.into(), fail_data)
5180 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5181 /// that we want to return and a channel.
5183 /// This is for failures on the channel on which the HTLC was *received*, not failures
5185 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5186 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5187 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5188 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5189 // an inbound SCID alias before the real SCID.
5190 let scid_pref = if chan.context.should_announce() {
5191 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5193 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5195 if let Some(scid) = scid_pref {
5196 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5198 (0x4000|10, Vec::new())
5203 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5204 /// that we want to return and a channel.
5205 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5206 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5207 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5208 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5209 if desired_err_code == 0x1000 | 20 {
5210 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5211 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5212 0u16.write(&mut enc).expect("Writes cannot fail");
5214 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5215 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5216 upd.write(&mut enc).expect("Writes cannot fail");
5217 (desired_err_code, enc.0)
5219 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5220 // which means we really shouldn't have gotten a payment to be forwarded over this
5221 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5222 // PERM|no_such_channel should be fine.
5223 (0x4000|10, Vec::new())
5227 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5228 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5229 // be surfaced to the user.
5230 fn fail_holding_cell_htlcs(
5231 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5232 counterparty_node_id: &PublicKey
5234 let (failure_code, onion_failure_data) = {
5235 let per_peer_state = self.per_peer_state.read().unwrap();
5236 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5237 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5238 let peer_state = &mut *peer_state_lock;
5239 match peer_state.channel_by_id.entry(channel_id) {
5240 hash_map::Entry::Occupied(chan_phase_entry) => {
5241 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5242 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5244 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5245 debug_assert!(false);
5246 (0x4000|10, Vec::new())
5249 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5251 } else { (0x4000|10, Vec::new()) }
5254 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5255 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5256 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5257 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5261 /// Fails an HTLC backwards to the sender of it to us.
5262 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5263 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5264 // Ensure that no peer state channel storage lock is held when calling this function.
5265 // This ensures that future code doesn't introduce a lock-order requirement for
5266 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5267 // this function with any `per_peer_state` peer lock acquired would.
5268 #[cfg(debug_assertions)]
5269 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5270 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5273 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5274 //identify whether we sent it or not based on the (I presume) very different runtime
5275 //between the branches here. We should make this async and move it into the forward HTLCs
5278 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5279 // from block_connected which may run during initialization prior to the chain_monitor
5280 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5282 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5283 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5284 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5285 &self.pending_events, &self.logger)
5286 { self.push_pending_forwards_ev(); }
5288 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
5289 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
5290 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
5292 let mut push_forward_ev = false;
5293 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5294 if forward_htlcs.is_empty() {
5295 push_forward_ev = true;
5297 match forward_htlcs.entry(*short_channel_id) {
5298 hash_map::Entry::Occupied(mut entry) => {
5299 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5301 hash_map::Entry::Vacant(entry) => {
5302 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5305 mem::drop(forward_htlcs);
5306 if push_forward_ev { self.push_pending_forwards_ev(); }
5307 let mut pending_events = self.pending_events.lock().unwrap();
5308 pending_events.push_back((events::Event::HTLCHandlingFailed {
5309 prev_channel_id: outpoint.to_channel_id(),
5310 failed_next_destination: destination,
5316 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5317 /// [`MessageSendEvent`]s needed to claim the payment.
5319 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5320 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5321 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5322 /// successful. It will generally be available in the next [`process_pending_events`] call.
5324 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5325 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5326 /// event matches your expectation. If you fail to do so and call this method, you may provide
5327 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5329 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5330 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5331 /// [`claim_funds_with_known_custom_tlvs`].
5333 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5334 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5335 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5336 /// [`process_pending_events`]: EventsProvider::process_pending_events
5337 /// [`create_inbound_payment`]: Self::create_inbound_payment
5338 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5339 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5340 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5341 self.claim_payment_internal(payment_preimage, false);
5344 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5345 /// even type numbers.
5349 /// You MUST check you've understood all even TLVs before using this to
5350 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5352 /// [`claim_funds`]: Self::claim_funds
5353 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5354 self.claim_payment_internal(payment_preimage, true);
5357 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5358 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5360 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5363 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5364 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5365 let mut receiver_node_id = self.our_network_pubkey;
5366 for htlc in payment.htlcs.iter() {
5367 if htlc.prev_hop.phantom_shared_secret.is_some() {
5368 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5369 .expect("Failed to get node_id for phantom node recipient");
5370 receiver_node_id = phantom_pubkey;
5375 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5376 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5377 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5378 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5379 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5381 if dup_purpose.is_some() {
5382 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5383 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5387 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5388 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5389 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5390 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5391 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5392 mem::drop(claimable_payments);
5393 for htlc in payment.htlcs {
5394 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5395 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5396 let receiver = HTLCDestination::FailedPayment { payment_hash };
5397 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5406 debug_assert!(!sources.is_empty());
5408 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5409 // and when we got here we need to check that the amount we're about to claim matches the
5410 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5411 // the MPP parts all have the same `total_msat`.
5412 let mut claimable_amt_msat = 0;
5413 let mut prev_total_msat = None;
5414 let mut expected_amt_msat = None;
5415 let mut valid_mpp = true;
5416 let mut errs = Vec::new();
5417 let per_peer_state = self.per_peer_state.read().unwrap();
5418 for htlc in sources.iter() {
5419 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5420 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5421 debug_assert!(false);
5425 prev_total_msat = Some(htlc.total_msat);
5427 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5428 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5429 debug_assert!(false);
5433 expected_amt_msat = htlc.total_value_received;
5434 claimable_amt_msat += htlc.value;
5436 mem::drop(per_peer_state);
5437 if sources.is_empty() || expected_amt_msat.is_none() {
5438 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5439 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5442 if claimable_amt_msat != expected_amt_msat.unwrap() {
5443 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5444 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5445 expected_amt_msat.unwrap(), claimable_amt_msat);
5449 for htlc in sources.drain(..) {
5450 if let Err((pk, err)) = self.claim_funds_from_hop(
5451 htlc.prev_hop, payment_preimage,
5452 |_, definitely_duplicate| {
5453 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5454 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5457 if let msgs::ErrorAction::IgnoreError = err.err.action {
5458 // We got a temporary failure updating monitor, but will claim the
5459 // HTLC when the monitor updating is restored (or on chain).
5460 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5461 } else { errs.push((pk, err)); }
5466 for htlc in sources.drain(..) {
5467 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5468 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5469 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5470 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5471 let receiver = HTLCDestination::FailedPayment { payment_hash };
5472 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5474 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5477 // Now we can handle any errors which were generated.
5478 for (counterparty_node_id, err) in errs.drain(..) {
5479 let res: Result<(), _> = Err(err);
5480 let _ = handle_error!(self, res, counterparty_node_id);
5484 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5485 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5486 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5487 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5489 // If we haven't yet run background events assume we're still deserializing and shouldn't
5490 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5491 // `BackgroundEvent`s.
5492 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5494 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5495 // the required mutexes are not held before we start.
5496 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5497 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5500 let per_peer_state = self.per_peer_state.read().unwrap();
5501 let chan_id = prev_hop.outpoint.to_channel_id();
5502 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5503 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5507 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5508 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5509 .map(|peer_mutex| peer_mutex.lock().unwrap())
5512 if peer_state_opt.is_some() {
5513 let mut peer_state_lock = peer_state_opt.unwrap();
5514 let peer_state = &mut *peer_state_lock;
5515 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5516 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5517 let counterparty_node_id = chan.context.get_counterparty_node_id();
5518 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5521 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5522 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5523 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5525 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5528 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5529 peer_state, per_peer_state, chan);
5531 // If we're running during init we cannot update a monitor directly -
5532 // they probably haven't actually been loaded yet. Instead, push the
5533 // monitor update as a background event.
5534 self.pending_background_events.lock().unwrap().push(
5535 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5536 counterparty_node_id,
5537 funding_txo: prev_hop.outpoint,
5538 update: monitor_update.clone(),
5542 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5543 let action = if let Some(action) = completion_action(None, true) {
5548 mem::drop(peer_state_lock);
5550 log_trace!(self.logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5552 let (node_id, funding_outpoint, blocker) =
5553 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5554 downstream_counterparty_node_id: node_id,
5555 downstream_funding_outpoint: funding_outpoint,
5556 blocking_action: blocker,
5558 (node_id, funding_outpoint, blocker)
5560 debug_assert!(false,
5561 "Duplicate claims should always free another channel immediately");
5564 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5565 let mut peer_state = peer_state_mtx.lock().unwrap();
5566 if let Some(blockers) = peer_state
5567 .actions_blocking_raa_monitor_updates
5568 .get_mut(&funding_outpoint.to_channel_id())
5570 let mut found_blocker = false;
5571 blockers.retain(|iter| {
5572 // Note that we could actually be blocked, in
5573 // which case we need to only remove the one
5574 // blocker which was added duplicatively.
5575 let first_blocker = !found_blocker;
5576 if *iter == blocker { found_blocker = true; }
5577 *iter != blocker || !first_blocker
5579 debug_assert!(found_blocker);
5582 debug_assert!(false);
5591 let preimage_update = ChannelMonitorUpdate {
5592 update_id: CLOSED_CHANNEL_UPDATE_ID,
5593 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5599 // We update the ChannelMonitor on the backward link, after
5600 // receiving an `update_fulfill_htlc` from the forward link.
5601 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5602 if update_res != ChannelMonitorUpdateStatus::Completed {
5603 // TODO: This needs to be handled somehow - if we receive a monitor update
5604 // with a preimage we *must* somehow manage to propagate it to the upstream
5605 // channel, or we must have an ability to receive the same event and try
5606 // again on restart.
5607 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5608 payment_preimage, update_res);
5611 // If we're running during init we cannot update a monitor directly - they probably
5612 // haven't actually been loaded yet. Instead, push the monitor update as a background
5614 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5615 // channel is already closed) we need to ultimately handle the monitor update
5616 // completion action only after we've completed the monitor update. This is the only
5617 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5618 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5619 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5620 // complete the monitor update completion action from `completion_action`.
5621 self.pending_background_events.lock().unwrap().push(
5622 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5623 prev_hop.outpoint, preimage_update,
5626 // Note that we do process the completion action here. This totally could be a
5627 // duplicate claim, but we have no way of knowing without interrogating the
5628 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5629 // generally always allowed to be duplicative (and it's specifically noted in
5630 // `PaymentForwarded`).
5631 self.handle_monitor_update_completion_actions(completion_action(None, false));
5635 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5636 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5639 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5640 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5641 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5644 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5645 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5646 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5647 if let Some(pubkey) = next_channel_counterparty_node_id {
5648 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5650 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5651 channel_funding_outpoint: next_channel_outpoint,
5652 counterparty_node_id: path.hops[0].pubkey,
5654 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5655 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5658 HTLCSource::PreviousHopData(hop_data) => {
5659 let prev_outpoint = hop_data.outpoint;
5660 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5661 #[cfg(debug_assertions)]
5662 let claiming_chan_funding_outpoint = hop_data.outpoint;
5663 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5664 |htlc_claim_value_msat, definitely_duplicate| {
5665 let chan_to_release =
5666 if let Some(node_id) = next_channel_counterparty_node_id {
5667 Some((node_id, next_channel_outpoint, completed_blocker))
5669 // We can only get `None` here if we are processing a
5670 // `ChannelMonitor`-originated event, in which case we
5671 // don't care about ensuring we wake the downstream
5672 // channel's monitor updating - the channel is already
5677 if definitely_duplicate && startup_replay {
5678 // On startup we may get redundant claims which are related to
5679 // monitor updates still in flight. In that case, we shouldn't
5680 // immediately free, but instead let that monitor update complete
5681 // in the background.
5682 #[cfg(debug_assertions)] {
5683 let background_events = self.pending_background_events.lock().unwrap();
5684 // There should be a `BackgroundEvent` pending...
5685 assert!(background_events.iter().any(|ev| {
5687 // to apply a monitor update that blocked the claiming channel,
5688 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5689 funding_txo, update, ..
5691 if *funding_txo == claiming_chan_funding_outpoint {
5692 assert!(update.updates.iter().any(|upd|
5693 if let ChannelMonitorUpdateStep::PaymentPreimage {
5694 payment_preimage: update_preimage
5696 payment_preimage == *update_preimage
5702 // or the channel we'd unblock is already closed,
5703 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5704 (funding_txo, monitor_update)
5706 if *funding_txo == next_channel_outpoint {
5707 assert_eq!(monitor_update.updates.len(), 1);
5709 monitor_update.updates[0],
5710 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5715 // or the monitor update has completed and will unblock
5716 // immediately once we get going.
5717 BackgroundEvent::MonitorUpdatesComplete {
5720 *channel_id == claiming_chan_funding_outpoint.to_channel_id(),
5722 }), "{:?}", *background_events);
5725 } else if definitely_duplicate {
5726 if let Some(other_chan) = chan_to_release {
5727 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5728 downstream_counterparty_node_id: other_chan.0,
5729 downstream_funding_outpoint: other_chan.1,
5730 blocking_action: other_chan.2,
5734 let fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5735 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5736 Some(claimed_htlc_value - forwarded_htlc_value)
5739 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5740 event: events::Event::PaymentForwarded {
5742 claim_from_onchain_tx: from_onchain,
5743 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5744 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5745 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5747 downstream_counterparty_and_funding_outpoint: chan_to_release,
5751 if let Err((pk, err)) = res {
5752 let result: Result<(), _> = Err(err);
5753 let _ = handle_error!(self, result, pk);
5759 /// Gets the node_id held by this ChannelManager
5760 pub fn get_our_node_id(&self) -> PublicKey {
5761 self.our_network_pubkey.clone()
5764 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5765 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5766 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5767 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5769 for action in actions.into_iter() {
5771 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5772 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5773 if let Some(ClaimingPayment {
5775 payment_purpose: purpose,
5778 sender_intended_value: sender_intended_total_msat,
5780 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5784 receiver_node_id: Some(receiver_node_id),
5786 sender_intended_total_msat,
5790 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5791 event, downstream_counterparty_and_funding_outpoint
5793 self.pending_events.lock().unwrap().push_back((event, None));
5794 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5795 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5798 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5799 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5801 self.handle_monitor_update_release(
5802 downstream_counterparty_node_id,
5803 downstream_funding_outpoint,
5804 Some(blocking_action),
5811 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5812 /// update completion.
5813 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5814 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5815 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5816 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5817 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5818 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5819 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5820 &channel.context.channel_id(),
5821 if raa.is_some() { "an" } else { "no" },
5822 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5823 if funding_broadcastable.is_some() { "" } else { "not " },
5824 if channel_ready.is_some() { "sending" } else { "without" },
5825 if announcement_sigs.is_some() { "sending" } else { "without" });
5827 let mut htlc_forwards = None;
5829 let counterparty_node_id = channel.context.get_counterparty_node_id();
5830 if !pending_forwards.is_empty() {
5831 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5832 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5835 if let Some(msg) = channel_ready {
5836 send_channel_ready!(self, pending_msg_events, channel, msg);
5838 if let Some(msg) = announcement_sigs {
5839 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5840 node_id: counterparty_node_id,
5845 macro_rules! handle_cs { () => {
5846 if let Some(update) = commitment_update {
5847 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5848 node_id: counterparty_node_id,
5853 macro_rules! handle_raa { () => {
5854 if let Some(revoke_and_ack) = raa {
5855 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5856 node_id: counterparty_node_id,
5857 msg: revoke_and_ack,
5862 RAACommitmentOrder::CommitmentFirst => {
5866 RAACommitmentOrder::RevokeAndACKFirst => {
5872 if let Some(tx) = funding_broadcastable {
5873 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5874 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5878 let mut pending_events = self.pending_events.lock().unwrap();
5879 emit_channel_pending_event!(pending_events, channel);
5880 emit_channel_ready_event!(pending_events, channel);
5886 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5887 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5889 let counterparty_node_id = match counterparty_node_id {
5890 Some(cp_id) => cp_id.clone(),
5892 // TODO: Once we can rely on the counterparty_node_id from the
5893 // monitor event, this and the id_to_peer map should be removed.
5894 let id_to_peer = self.id_to_peer.lock().unwrap();
5895 match id_to_peer.get(&funding_txo.to_channel_id()) {
5896 Some(cp_id) => cp_id.clone(),
5901 let per_peer_state = self.per_peer_state.read().unwrap();
5902 let mut peer_state_lock;
5903 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5904 if peer_state_mutex_opt.is_none() { return }
5905 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5906 let peer_state = &mut *peer_state_lock;
5908 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5911 let update_actions = peer_state.monitor_update_blocked_actions
5912 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5913 mem::drop(peer_state_lock);
5914 mem::drop(per_peer_state);
5915 self.handle_monitor_update_completion_actions(update_actions);
5918 let remaining_in_flight =
5919 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5920 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5923 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5924 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5925 remaining_in_flight);
5926 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5929 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5932 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5934 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5935 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5938 /// The `user_channel_id` parameter will be provided back in
5939 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5940 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5942 /// Note that this method will return an error and reject the channel, if it requires support
5943 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5944 /// used to accept such channels.
5946 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5947 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5948 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5949 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5952 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5953 /// it as confirmed immediately.
5955 /// The `user_channel_id` parameter will be provided back in
5956 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5957 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5959 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5960 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5962 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5963 /// transaction and blindly assumes that it will eventually confirm.
5965 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5966 /// does not pay to the correct script the correct amount, *you will lose funds*.
5968 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5969 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5970 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5971 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5974 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5975 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5977 let peers_without_funded_channels =
5978 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5979 let per_peer_state = self.per_peer_state.read().unwrap();
5980 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5981 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5982 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5983 let peer_state = &mut *peer_state_lock;
5984 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5986 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5987 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5988 // that we can delay allocating the SCID until after we're sure that the checks below will
5990 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5991 Some(unaccepted_channel) => {
5992 let best_block_height = self.best_block.read().unwrap().height();
5993 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5994 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5995 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5996 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5998 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
6002 // This should have been correctly configured by the call to InboundV1Channel::new.
6003 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6004 } else if channel.context.get_channel_type().requires_zero_conf() {
6005 let send_msg_err_event = events::MessageSendEvent::HandleError {
6006 node_id: channel.context.get_counterparty_node_id(),
6007 action: msgs::ErrorAction::SendErrorMessage{
6008 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
6011 peer_state.pending_msg_events.push(send_msg_err_event);
6012 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
6014 // If this peer already has some channels, a new channel won't increase our number of peers
6015 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6016 // channels per-peer we can accept channels from a peer with existing ones.
6017 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
6018 let send_msg_err_event = events::MessageSendEvent::HandleError {
6019 node_id: channel.context.get_counterparty_node_id(),
6020 action: msgs::ErrorAction::SendErrorMessage{
6021 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
6024 peer_state.pending_msg_events.push(send_msg_err_event);
6025 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
6029 // Now that we know we have a channel, assign an outbound SCID alias.
6030 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6031 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6033 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6034 node_id: channel.context.get_counterparty_node_id(),
6035 msg: channel.accept_inbound_channel(),
6038 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
6043 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
6044 /// or 0-conf channels.
6046 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
6047 /// non-0-conf channels we have with the peer.
6048 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
6049 where Filter: Fn(&PeerState<SP>) -> bool {
6050 let mut peers_without_funded_channels = 0;
6051 let best_block_height = self.best_block.read().unwrap().height();
6053 let peer_state_lock = self.per_peer_state.read().unwrap();
6054 for (_, peer_mtx) in peer_state_lock.iter() {
6055 let peer = peer_mtx.lock().unwrap();
6056 if !maybe_count_peer(&*peer) { continue; }
6057 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
6058 if num_unfunded_channels == peer.total_channel_count() {
6059 peers_without_funded_channels += 1;
6063 return peers_without_funded_channels;
6066 fn unfunded_channel_count(
6067 peer: &PeerState<SP>, best_block_height: u32
6069 let mut num_unfunded_channels = 0;
6070 for (_, phase) in peer.channel_by_id.iter() {
6072 ChannelPhase::Funded(chan) => {
6073 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
6074 // which have not yet had any confirmations on-chain.
6075 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
6076 chan.context.get_funding_tx_confirmations(best_block_height) == 0
6078 num_unfunded_channels += 1;
6081 ChannelPhase::UnfundedInboundV1(chan) => {
6082 if chan.context.minimum_depth().unwrap_or(1) != 0 {
6083 num_unfunded_channels += 1;
6086 ChannelPhase::UnfundedOutboundV1(_) => {
6087 // Outbound channels don't contribute to the unfunded count in the DoS context.
6092 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
6095 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
6096 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6097 // likely to be lost on restart!
6098 if msg.chain_hash != self.chain_hash {
6099 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
6102 if !self.default_configuration.accept_inbound_channels {
6103 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6106 // Get the number of peers with channels, but without funded ones. We don't care too much
6107 // about peers that never open a channel, so we filter by peers that have at least one
6108 // channel, and then limit the number of those with unfunded channels.
6109 let channeled_peers_without_funding =
6110 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
6112 let per_peer_state = self.per_peer_state.read().unwrap();
6113 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6115 debug_assert!(false);
6116 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
6118 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6119 let peer_state = &mut *peer_state_lock;
6121 // If this peer already has some channels, a new channel won't increase our number of peers
6122 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6123 // channels per-peer we can accept channels from a peer with existing ones.
6124 if peer_state.total_channel_count() == 0 &&
6125 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
6126 !self.default_configuration.manually_accept_inbound_channels
6128 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6129 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
6130 msg.temporary_channel_id.clone()));
6133 let best_block_height = self.best_block.read().unwrap().height();
6134 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
6135 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6136 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
6137 msg.temporary_channel_id.clone()));
6140 let channel_id = msg.temporary_channel_id;
6141 let channel_exists = peer_state.has_channel(&channel_id);
6143 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
6146 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
6147 if self.default_configuration.manually_accept_inbound_channels {
6148 let mut pending_events = self.pending_events.lock().unwrap();
6149 pending_events.push_back((events::Event::OpenChannelRequest {
6150 temporary_channel_id: msg.temporary_channel_id.clone(),
6151 counterparty_node_id: counterparty_node_id.clone(),
6152 funding_satoshis: msg.funding_satoshis,
6153 push_msat: msg.push_msat,
6154 channel_type: msg.channel_type.clone().unwrap(),
6156 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
6157 open_channel_msg: msg.clone(),
6158 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
6163 // Otherwise create the channel right now.
6164 let mut random_bytes = [0u8; 16];
6165 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
6166 let user_channel_id = u128::from_be_bytes(random_bytes);
6167 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6168 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
6169 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
6172 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
6177 let channel_type = channel.context.get_channel_type();
6178 if channel_type.requires_zero_conf() {
6179 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6181 if channel_type.requires_anchors_zero_fee_htlc_tx() {
6182 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
6185 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6186 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6188 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6189 node_id: counterparty_node_id.clone(),
6190 msg: channel.accept_inbound_channel(),
6192 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6196 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6197 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6198 // likely to be lost on restart!
6199 let (value, output_script, user_id) = {
6200 let per_peer_state = self.per_peer_state.read().unwrap();
6201 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6203 debug_assert!(false);
6204 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6206 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6207 let peer_state = &mut *peer_state_lock;
6208 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6209 hash_map::Entry::Occupied(mut phase) => {
6210 match phase.get_mut() {
6211 ChannelPhase::UnfundedOutboundV1(chan) => {
6212 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6213 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6216 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6220 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6223 let mut pending_events = self.pending_events.lock().unwrap();
6224 pending_events.push_back((events::Event::FundingGenerationReady {
6225 temporary_channel_id: msg.temporary_channel_id,
6226 counterparty_node_id: *counterparty_node_id,
6227 channel_value_satoshis: value,
6229 user_channel_id: user_id,
6234 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6235 let best_block = *self.best_block.read().unwrap();
6237 let per_peer_state = self.per_peer_state.read().unwrap();
6238 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6240 debug_assert!(false);
6241 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6244 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6245 let peer_state = &mut *peer_state_lock;
6246 let (chan, funding_msg_opt, monitor) =
6247 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6248 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6249 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
6251 Err((mut inbound_chan, err)) => {
6252 // We've already removed this inbound channel from the map in `PeerState`
6253 // above so at this point we just need to clean up any lingering entries
6254 // concerning this channel as it is safe to do so.
6255 update_maps_on_chan_removal!(self, &inbound_chan.context);
6256 let user_id = inbound_chan.context.get_user_id();
6257 let shutdown_res = inbound_chan.context.force_shutdown(false);
6258 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6259 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6263 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6264 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6266 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6269 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
6270 hash_map::Entry::Occupied(_) => {
6271 Err(MsgHandleErrInternal::send_err_msg_no_close(
6272 "Already had channel with the new channel_id".to_owned(),
6273 chan.context.channel_id()
6276 hash_map::Entry::Vacant(e) => {
6277 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6278 match id_to_peer_lock.entry(chan.context.channel_id()) {
6279 hash_map::Entry::Occupied(_) => {
6280 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6281 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6282 chan.context.channel_id()))
6284 hash_map::Entry::Vacant(i_e) => {
6285 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6286 if let Ok(persist_state) = monitor_res {
6287 i_e.insert(chan.context.get_counterparty_node_id());
6288 mem::drop(id_to_peer_lock);
6290 // There's no problem signing a counterparty's funding transaction if our monitor
6291 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6292 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6293 // until we have persisted our monitor.
6294 if let Some(msg) = funding_msg_opt {
6295 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6296 node_id: counterparty_node_id.clone(),
6301 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6302 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6303 per_peer_state, chan, INITIAL_MONITOR);
6305 unreachable!("This must be a funded channel as we just inserted it.");
6309 log_error!(self.logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6310 let channel_id = match funding_msg_opt {
6311 Some(msg) => msg.channel_id,
6312 None => chan.context.channel_id(),
6314 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6315 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6324 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6325 let best_block = *self.best_block.read().unwrap();
6326 let per_peer_state = self.per_peer_state.read().unwrap();
6327 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6329 debug_assert!(false);
6330 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6333 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6334 let peer_state = &mut *peer_state_lock;
6335 match peer_state.channel_by_id.entry(msg.channel_id) {
6336 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6337 match chan_phase_entry.get_mut() {
6338 ChannelPhase::Funded(ref mut chan) => {
6339 let monitor = try_chan_phase_entry!(self,
6340 chan.funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan_phase_entry);
6341 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6342 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6345 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
6349 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6353 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6357 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6358 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6359 // closing a channel), so any changes are likely to be lost on restart!
6360 let per_peer_state = self.per_peer_state.read().unwrap();
6361 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6363 debug_assert!(false);
6364 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6366 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6367 let peer_state = &mut *peer_state_lock;
6368 match peer_state.channel_by_id.entry(msg.channel_id) {
6369 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6370 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6371 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6372 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan_phase_entry);
6373 if let Some(announcement_sigs) = announcement_sigs_opt {
6374 log_trace!(self.logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6375 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6376 node_id: counterparty_node_id.clone(),
6377 msg: announcement_sigs,
6379 } else if chan.context.is_usable() {
6380 // If we're sending an announcement_signatures, we'll send the (public)
6381 // channel_update after sending a channel_announcement when we receive our
6382 // counterparty's announcement_signatures. Thus, we only bother to send a
6383 // channel_update here if the channel is not public, i.e. we're not sending an
6384 // announcement_signatures.
6385 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6386 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6387 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6388 node_id: counterparty_node_id.clone(),
6395 let mut pending_events = self.pending_events.lock().unwrap();
6396 emit_channel_ready_event!(pending_events, chan);
6401 try_chan_phase_entry!(self, Err(ChannelError::Close(
6402 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6405 hash_map::Entry::Vacant(_) => {
6406 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6411 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6412 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6413 let mut finish_shutdown = None;
6415 let per_peer_state = self.per_peer_state.read().unwrap();
6416 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6418 debug_assert!(false);
6419 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6421 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6422 let peer_state = &mut *peer_state_lock;
6423 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6424 let phase = chan_phase_entry.get_mut();
6426 ChannelPhase::Funded(chan) => {
6427 if !chan.received_shutdown() {
6428 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
6430 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6433 let funding_txo_opt = chan.context.get_funding_txo();
6434 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6435 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6436 dropped_htlcs = htlcs;
6438 if let Some(msg) = shutdown {
6439 // We can send the `shutdown` message before updating the `ChannelMonitor`
6440 // here as we don't need the monitor update to complete until we send a
6441 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6442 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6443 node_id: *counterparty_node_id,
6447 // Update the monitor with the shutdown script if necessary.
6448 if let Some(monitor_update) = monitor_update_opt {
6449 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6450 peer_state_lock, peer_state, per_peer_state, chan);
6453 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6454 let context = phase.context_mut();
6455 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6456 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6457 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6458 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6462 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6465 for htlc_source in dropped_htlcs.drain(..) {
6466 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6467 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6468 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6470 if let Some(shutdown_res) = finish_shutdown {
6471 self.finish_close_channel(shutdown_res);
6477 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6478 let per_peer_state = self.per_peer_state.read().unwrap();
6479 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6481 debug_assert!(false);
6482 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6484 let (tx, chan_option, shutdown_result) = {
6485 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6486 let peer_state = &mut *peer_state_lock;
6487 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6488 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6489 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6490 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6491 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6492 if let Some(msg) = closing_signed {
6493 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6494 node_id: counterparty_node_id.clone(),
6499 // We're done with this channel, we've got a signed closing transaction and
6500 // will send the closing_signed back to the remote peer upon return. This
6501 // also implies there are no pending HTLCs left on the channel, so we can
6502 // fully delete it from tracking (the channel monitor is still around to
6503 // watch for old state broadcasts)!
6504 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6505 } else { (tx, None, shutdown_result) }
6507 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6508 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6511 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6514 if let Some(broadcast_tx) = tx {
6515 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
6516 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6518 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6519 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6520 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6521 let peer_state = &mut *peer_state_lock;
6522 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6526 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6528 mem::drop(per_peer_state);
6529 if let Some(shutdown_result) = shutdown_result {
6530 self.finish_close_channel(shutdown_result);
6535 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6536 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6537 //determine the state of the payment based on our response/if we forward anything/the time
6538 //we take to respond. We should take care to avoid allowing such an attack.
6540 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6541 //us repeatedly garbled in different ways, and compare our error messages, which are
6542 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6543 //but we should prevent it anyway.
6545 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6546 // closing a channel), so any changes are likely to be lost on restart!
6548 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
6549 let per_peer_state = self.per_peer_state.read().unwrap();
6550 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6552 debug_assert!(false);
6553 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6555 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6556 let peer_state = &mut *peer_state_lock;
6557 match peer_state.channel_by_id.entry(msg.channel_id) {
6558 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6559 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6560 let pending_forward_info = match decoded_hop_res {
6561 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6562 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
6563 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt),
6564 Err(e) => PendingHTLCStatus::Fail(e)
6566 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6567 // If the update_add is completely bogus, the call will Err and we will close,
6568 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6569 // want to reject the new HTLC and fail it backwards instead of forwarding.
6570 match pending_forward_info {
6571 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
6572 let reason = if (error_code & 0x1000) != 0 {
6573 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6574 HTLCFailReason::reason(real_code, error_data)
6576 HTLCFailReason::from_failure_code(error_code)
6577 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6578 let msg = msgs::UpdateFailHTLC {
6579 channel_id: msg.channel_id,
6580 htlc_id: msg.htlc_id,
6583 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6585 _ => pending_forward_info
6588 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan_phase_entry);
6590 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6591 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6594 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6599 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6601 let (htlc_source, forwarded_htlc_value) = {
6602 let per_peer_state = self.per_peer_state.read().unwrap();
6603 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6605 debug_assert!(false);
6606 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6608 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6609 let peer_state = &mut *peer_state_lock;
6610 match peer_state.channel_by_id.entry(msg.channel_id) {
6611 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6612 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6613 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6614 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6615 log_trace!(self.logger,
6616 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6618 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6619 .or_insert_with(Vec::new)
6620 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6622 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6623 // entry here, even though we *do* need to block the next RAA monitor update.
6624 // We do this instead in the `claim_funds_internal` by attaching a
6625 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6626 // outbound HTLC is claimed. This is guaranteed to all complete before we
6627 // process the RAA as messages are processed from single peers serially.
6628 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6631 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6632 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6635 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6638 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6642 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6643 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6644 // closing a channel), so any changes are likely to be lost on restart!
6645 let per_peer_state = self.per_peer_state.read().unwrap();
6646 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6648 debug_assert!(false);
6649 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6651 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6652 let peer_state = &mut *peer_state_lock;
6653 match peer_state.channel_by_id.entry(msg.channel_id) {
6654 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6655 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6656 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6658 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6659 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6662 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6667 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6668 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6669 // closing a channel), so any changes are likely to be lost on restart!
6670 let per_peer_state = self.per_peer_state.read().unwrap();
6671 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6673 debug_assert!(false);
6674 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6676 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6677 let peer_state = &mut *peer_state_lock;
6678 match peer_state.channel_by_id.entry(msg.channel_id) {
6679 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6680 if (msg.failure_code & 0x8000) == 0 {
6681 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6682 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6684 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6685 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6687 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6688 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6692 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6696 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6697 let per_peer_state = self.per_peer_state.read().unwrap();
6698 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6700 debug_assert!(false);
6701 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6703 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6704 let peer_state = &mut *peer_state_lock;
6705 match peer_state.channel_by_id.entry(msg.channel_id) {
6706 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6707 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6708 let funding_txo = chan.context.get_funding_txo();
6709 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &self.logger), chan_phase_entry);
6710 if let Some(monitor_update) = monitor_update_opt {
6711 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6712 peer_state, per_peer_state, chan);
6716 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6717 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6720 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6725 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6726 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6727 let mut push_forward_event = false;
6728 let mut new_intercept_events = VecDeque::new();
6729 let mut failed_intercept_forwards = Vec::new();
6730 if !pending_forwards.is_empty() {
6731 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6732 let scid = match forward_info.routing {
6733 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6734 PendingHTLCRouting::Receive { .. } => 0,
6735 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6737 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6738 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6740 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6741 let forward_htlcs_empty = forward_htlcs.is_empty();
6742 match forward_htlcs.entry(scid) {
6743 hash_map::Entry::Occupied(mut entry) => {
6744 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6745 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6747 hash_map::Entry::Vacant(entry) => {
6748 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6749 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6751 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
6752 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6753 match pending_intercepts.entry(intercept_id) {
6754 hash_map::Entry::Vacant(entry) => {
6755 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6756 requested_next_hop_scid: scid,
6757 payment_hash: forward_info.payment_hash,
6758 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6759 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6762 entry.insert(PendingAddHTLCInfo {
6763 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6765 hash_map::Entry::Occupied(_) => {
6766 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6767 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6768 short_channel_id: prev_short_channel_id,
6769 user_channel_id: Some(prev_user_channel_id),
6770 outpoint: prev_funding_outpoint,
6771 htlc_id: prev_htlc_id,
6772 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6773 phantom_shared_secret: None,
6776 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6777 HTLCFailReason::from_failure_code(0x4000 | 10),
6778 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6783 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6784 // payments are being processed.
6785 if forward_htlcs_empty {
6786 push_forward_event = true;
6788 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6789 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6796 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6797 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6800 if !new_intercept_events.is_empty() {
6801 let mut events = self.pending_events.lock().unwrap();
6802 events.append(&mut new_intercept_events);
6804 if push_forward_event { self.push_pending_forwards_ev() }
6808 fn push_pending_forwards_ev(&self) {
6809 let mut pending_events = self.pending_events.lock().unwrap();
6810 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6811 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6812 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6814 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6815 // events is done in batches and they are not removed until we're done processing each
6816 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6817 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6818 // payments will need an additional forwarding event before being claimed to make them look
6819 // real by taking more time.
6820 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6821 pending_events.push_back((Event::PendingHTLCsForwardable {
6822 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6827 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6828 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6829 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6830 /// the [`ChannelMonitorUpdate`] in question.
6831 fn raa_monitor_updates_held(&self,
6832 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6833 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6835 actions_blocking_raa_monitor_updates
6836 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6837 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6838 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6839 channel_funding_outpoint,
6840 counterparty_node_id,
6845 #[cfg(any(test, feature = "_test_utils"))]
6846 pub(crate) fn test_raa_monitor_updates_held(&self,
6847 counterparty_node_id: PublicKey, channel_id: ChannelId
6849 let per_peer_state = self.per_peer_state.read().unwrap();
6850 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6851 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6852 let peer_state = &mut *peer_state_lck;
6854 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6855 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6856 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6862 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6863 let htlcs_to_fail = {
6864 let per_peer_state = self.per_peer_state.read().unwrap();
6865 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6867 debug_assert!(false);
6868 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6869 }).map(|mtx| mtx.lock().unwrap())?;
6870 let peer_state = &mut *peer_state_lock;
6871 match peer_state.channel_by_id.entry(msg.channel_id) {
6872 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6873 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6874 let funding_txo_opt = chan.context.get_funding_txo();
6875 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6876 self.raa_monitor_updates_held(
6877 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6878 *counterparty_node_id)
6880 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6881 chan.revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan_phase_entry);
6882 if let Some(monitor_update) = monitor_update_opt {
6883 let funding_txo = funding_txo_opt
6884 .expect("Funding outpoint must have been set for RAA handling to succeed");
6885 handle_new_monitor_update!(self, funding_txo, monitor_update,
6886 peer_state_lock, peer_state, per_peer_state, chan);
6890 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6891 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6894 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6897 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6901 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6902 let per_peer_state = self.per_peer_state.read().unwrap();
6903 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6905 debug_assert!(false);
6906 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6908 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6909 let peer_state = &mut *peer_state_lock;
6910 match peer_state.channel_by_id.entry(msg.channel_id) {
6911 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6912 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6913 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &self.logger), chan_phase_entry);
6915 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6916 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6919 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6924 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6925 let per_peer_state = self.per_peer_state.read().unwrap();
6926 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6928 debug_assert!(false);
6929 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6931 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6932 let peer_state = &mut *peer_state_lock;
6933 match peer_state.channel_by_id.entry(msg.channel_id) {
6934 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6935 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6936 if !chan.context.is_usable() {
6937 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6940 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6941 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6942 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
6943 msg, &self.default_configuration
6944 ), chan_phase_entry),
6945 // Note that announcement_signatures fails if the channel cannot be announced,
6946 // so get_channel_update_for_broadcast will never fail by the time we get here.
6947 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6950 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6951 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6954 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6959 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6960 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6961 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6962 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6964 // It's not a local channel
6965 return Ok(NotifyOption::SkipPersistNoEvents)
6968 let per_peer_state = self.per_peer_state.read().unwrap();
6969 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6970 if peer_state_mutex_opt.is_none() {
6971 return Ok(NotifyOption::SkipPersistNoEvents)
6973 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6974 let peer_state = &mut *peer_state_lock;
6975 match peer_state.channel_by_id.entry(chan_id) {
6976 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6977 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6978 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6979 if chan.context.should_announce() {
6980 // If the announcement is about a channel of ours which is public, some
6981 // other peer may simply be forwarding all its gossip to us. Don't provide
6982 // a scary-looking error message and return Ok instead.
6983 return Ok(NotifyOption::SkipPersistNoEvents);
6985 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6987 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6988 let msg_from_node_one = msg.contents.flags & 1 == 0;
6989 if were_node_one == msg_from_node_one {
6990 return Ok(NotifyOption::SkipPersistNoEvents);
6992 log_debug!(self.logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
6993 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6994 // If nothing changed after applying their update, we don't need to bother
6997 return Ok(NotifyOption::SkipPersistNoEvents);
7001 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7002 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
7005 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
7007 Ok(NotifyOption::DoPersist)
7010 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
7012 let need_lnd_workaround = {
7013 let per_peer_state = self.per_peer_state.read().unwrap();
7015 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7017 debug_assert!(false);
7018 MsgHandleErrInternal::send_err_msg_no_close(
7019 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7023 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7024 let peer_state = &mut *peer_state_lock;
7025 match peer_state.channel_by_id.entry(msg.channel_id) {
7026 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7027 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7028 // Currently, we expect all holding cell update_adds to be dropped on peer
7029 // disconnect, so Channel's reestablish will never hand us any holding cell
7030 // freed HTLCs to fail backwards. If in the future we no longer drop pending
7031 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
7032 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
7033 msg, &self.logger, &self.node_signer, self.chain_hash,
7034 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
7035 let mut channel_update = None;
7036 if let Some(msg) = responses.shutdown_msg {
7037 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7038 node_id: counterparty_node_id.clone(),
7041 } else if chan.context.is_usable() {
7042 // If the channel is in a usable state (ie the channel is not being shut
7043 // down), send a unicast channel_update to our counterparty to make sure
7044 // they have the latest channel parameters.
7045 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7046 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
7047 node_id: chan.context.get_counterparty_node_id(),
7052 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
7053 htlc_forwards = self.handle_channel_resumption(
7054 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
7055 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
7056 if let Some(upd) = channel_update {
7057 peer_state.pending_msg_events.push(upd);
7061 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7062 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
7065 hash_map::Entry::Vacant(_) => {
7066 log_debug!(self.logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
7067 log_bytes!(msg.channel_id.0));
7068 // Unfortunately, lnd doesn't force close on errors
7069 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
7070 // One of the few ways to get an lnd counterparty to force close is by
7071 // replicating what they do when restoring static channel backups (SCBs). They
7072 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
7073 // invalid `your_last_per_commitment_secret`.
7075 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
7076 // can assume it's likely the channel closed from our point of view, but it
7077 // remains open on the counterparty's side. By sending this bogus
7078 // `ChannelReestablish` message now as a response to theirs, we trigger them to
7079 // force close broadcasting their latest state. If the closing transaction from
7080 // our point of view remains unconfirmed, it'll enter a race with the
7081 // counterparty's to-be-broadcast latest commitment transaction.
7082 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
7083 node_id: *counterparty_node_id,
7084 msg: msgs::ChannelReestablish {
7085 channel_id: msg.channel_id,
7086 next_local_commitment_number: 0,
7087 next_remote_commitment_number: 0,
7088 your_last_per_commitment_secret: [1u8; 32],
7089 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
7090 next_funding_txid: None,
7093 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7094 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
7095 counterparty_node_id), msg.channel_id)
7101 let mut persist = NotifyOption::SkipPersistHandleEvents;
7102 if let Some(forwards) = htlc_forwards {
7103 self.forward_htlcs(&mut [forwards][..]);
7104 persist = NotifyOption::DoPersist;
7107 if let Some(channel_ready_msg) = need_lnd_workaround {
7108 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
7113 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
7114 fn process_pending_monitor_events(&self) -> bool {
7115 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
7117 let mut failed_channels = Vec::new();
7118 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
7119 let has_pending_monitor_events = !pending_monitor_events.is_empty();
7120 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
7121 for monitor_event in monitor_events.drain(..) {
7122 match monitor_event {
7123 MonitorEvent::HTLCEvent(htlc_update) => {
7124 if let Some(preimage) = htlc_update.payment_preimage {
7125 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", preimage);
7126 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
7128 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
7129 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
7130 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7131 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
7134 MonitorEvent::HolderForceClosed(funding_outpoint) => {
7135 let counterparty_node_id_opt = match counterparty_node_id {
7136 Some(cp_id) => Some(cp_id),
7138 // TODO: Once we can rely on the counterparty_node_id from the
7139 // monitor event, this and the id_to_peer map should be removed.
7140 let id_to_peer = self.id_to_peer.lock().unwrap();
7141 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
7144 if let Some(counterparty_node_id) = counterparty_node_id_opt {
7145 let per_peer_state = self.per_peer_state.read().unwrap();
7146 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7147 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7148 let peer_state = &mut *peer_state_lock;
7149 let pending_msg_events = &mut peer_state.pending_msg_events;
7150 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
7151 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
7152 failed_channels.push(chan.context.force_shutdown(false));
7153 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7154 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7158 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
7159 pending_msg_events.push(events::MessageSendEvent::HandleError {
7160 node_id: chan.context.get_counterparty_node_id(),
7161 action: msgs::ErrorAction::DisconnectPeer {
7162 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
7170 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
7171 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
7177 for failure in failed_channels.drain(..) {
7178 self.finish_close_channel(failure);
7181 has_pending_monitor_events
7184 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
7185 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
7186 /// update events as a separate process method here.
7188 pub fn process_monitor_events(&self) {
7189 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7190 self.process_pending_monitor_events();
7193 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7194 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7195 /// update was applied.
7196 fn check_free_holding_cells(&self) -> bool {
7197 let mut has_monitor_update = false;
7198 let mut failed_htlcs = Vec::new();
7200 // Walk our list of channels and find any that need to update. Note that when we do find an
7201 // update, if it includes actions that must be taken afterwards, we have to drop the
7202 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7203 // manage to go through all our peers without finding a single channel to update.
7205 let per_peer_state = self.per_peer_state.read().unwrap();
7206 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7208 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7209 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7210 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7211 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7213 let counterparty_node_id = chan.context.get_counterparty_node_id();
7214 let funding_txo = chan.context.get_funding_txo();
7215 let (monitor_opt, holding_cell_failed_htlcs) =
7216 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
7217 if !holding_cell_failed_htlcs.is_empty() {
7218 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7220 if let Some(monitor_update) = monitor_opt {
7221 has_monitor_update = true;
7223 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7224 peer_state_lock, peer_state, per_peer_state, chan);
7225 continue 'peer_loop;
7234 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7235 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7236 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7242 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7243 /// is (temporarily) unavailable, and the operation should be retried later.
7245 /// This method allows for that retry - either checking for any signer-pending messages to be
7246 /// attempted in every channel, or in the specifically provided channel.
7248 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7249 #[cfg(test)] // This is only implemented for one signer method, and should be private until we
7250 // actually finish implementing it fully.
7251 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7252 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7254 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7255 let node_id = phase.context().get_counterparty_node_id();
7256 if let ChannelPhase::Funded(chan) = phase {
7257 let msgs = chan.signer_maybe_unblocked(&self.logger);
7258 if let Some(updates) = msgs.commitment_update {
7259 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7264 if let Some(msg) = msgs.funding_signed {
7265 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7270 if let Some(msg) = msgs.funding_created {
7271 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7276 if let Some(msg) = msgs.channel_ready {
7277 send_channel_ready!(self, pending_msg_events, chan, msg);
7282 let per_peer_state = self.per_peer_state.read().unwrap();
7283 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7284 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7285 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7286 let peer_state = &mut *peer_state_lock;
7287 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7288 unblock_chan(chan, &mut peer_state.pending_msg_events);
7292 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7293 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7294 let peer_state = &mut *peer_state_lock;
7295 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7296 unblock_chan(chan, &mut peer_state.pending_msg_events);
7302 /// Check whether any channels have finished removing all pending updates after a shutdown
7303 /// exchange and can now send a closing_signed.
7304 /// Returns whether any closing_signed messages were generated.
7305 fn maybe_generate_initial_closing_signed(&self) -> bool {
7306 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7307 let mut has_update = false;
7308 let mut shutdown_results = Vec::new();
7310 let per_peer_state = self.per_peer_state.read().unwrap();
7312 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7313 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7314 let peer_state = &mut *peer_state_lock;
7315 let pending_msg_events = &mut peer_state.pending_msg_events;
7316 peer_state.channel_by_id.retain(|channel_id, phase| {
7318 ChannelPhase::Funded(chan) => {
7319 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
7320 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7321 if let Some(msg) = msg_opt {
7323 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7324 node_id: chan.context.get_counterparty_node_id(), msg,
7327 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7328 if let Some(shutdown_result) = shutdown_result_opt {
7329 shutdown_results.push(shutdown_result);
7331 if let Some(tx) = tx_opt {
7332 // We're done with this channel. We got a closing_signed and sent back
7333 // a closing_signed with a closing transaction to broadcast.
7334 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7335 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7340 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7342 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
7343 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7344 update_maps_on_chan_removal!(self, &chan.context);
7350 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7351 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7356 _ => true, // Retain unfunded channels if present.
7362 for (counterparty_node_id, err) in handle_errors.drain(..) {
7363 let _ = handle_error!(self, err, counterparty_node_id);
7366 for shutdown_result in shutdown_results.drain(..) {
7367 self.finish_close_channel(shutdown_result);
7373 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7374 /// pushing the channel monitor update (if any) to the background events queue and removing the
7376 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7377 for mut failure in failed_channels.drain(..) {
7378 // Either a commitment transactions has been confirmed on-chain or
7379 // Channel::block_disconnected detected that the funding transaction has been
7380 // reorganized out of the main chain.
7381 // We cannot broadcast our latest local state via monitor update (as
7382 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7383 // so we track the update internally and handle it when the user next calls
7384 // timer_tick_occurred, guaranteeing we're running normally.
7385 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7386 assert_eq!(update.updates.len(), 1);
7387 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7388 assert!(should_broadcast);
7389 } else { unreachable!(); }
7390 self.pending_background_events.lock().unwrap().push(
7391 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7392 counterparty_node_id, funding_txo, update
7395 self.finish_close_channel(failure);
7399 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7400 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7401 /// not have an expiration unless otherwise set on the builder.
7405 /// Uses a one-hop [`BlindedPath`] for the offer with [`ChannelManager::get_our_node_id`] as the
7406 /// introduction node and a derived signing pubkey for recipient privacy. As such, currently,
7407 /// the node must be announced. Otherwise, there is no way to find a path to the introduction
7408 /// node in order to send the [`InvoiceRequest`].
7412 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7415 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7417 /// [`Offer`]: crate::offers::offer::Offer
7418 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7419 pub fn create_offer_builder(
7420 &self, description: String
7421 ) -> OfferBuilder<DerivedMetadata, secp256k1::All> {
7422 let node_id = self.get_our_node_id();
7423 let expanded_key = &self.inbound_payment_key;
7424 let entropy = &*self.entropy_source;
7425 let secp_ctx = &self.secp_ctx;
7426 let path = self.create_one_hop_blinded_path();
7428 OfferBuilder::deriving_signing_pubkey(description, node_id, expanded_key, entropy, secp_ctx)
7429 .chain_hash(self.chain_hash)
7433 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7434 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7438 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7439 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7441 /// The builder will have the provided expiration set. Any changes to the expiration on the
7442 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7443 /// block time minus two hours is used for the current time when determining if the refund has
7446 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7447 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7448 /// with an [`Event::InvoiceRequestFailed`].
7450 /// If `max_total_routing_fee_msat` is not specified, The default from
7451 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7455 /// Uses a one-hop [`BlindedPath`] for the refund with [`ChannelManager::get_our_node_id`] as
7456 /// the introduction node and a derived payer id for payer privacy. As such, currently, the
7457 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7458 /// in order to send the [`Bolt12Invoice`].
7462 /// Requires a direct connection to an introduction node in the responding
7463 /// [`Bolt12Invoice::payment_paths`].
7467 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7468 /// or if `amount_msats` is invalid.
7470 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7472 /// [`Refund`]: crate::offers::refund::Refund
7473 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7474 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7475 pub fn create_refund_builder(
7476 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7477 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7478 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7479 let node_id = self.get_our_node_id();
7480 let expanded_key = &self.inbound_payment_key;
7481 let entropy = &*self.entropy_source;
7482 let secp_ctx = &self.secp_ctx;
7483 let path = self.create_one_hop_blinded_path();
7485 let builder = RefundBuilder::deriving_payer_id(
7486 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7488 .chain_hash(self.chain_hash)
7489 .absolute_expiry(absolute_expiry)
7492 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7493 self.pending_outbound_payments
7494 .add_new_awaiting_invoice(
7495 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7497 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7502 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7503 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7504 /// [`Bolt12Invoice`] once it is received.
7506 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7507 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7508 /// The optional parameters are used in the builder, if `Some`:
7509 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7510 /// [`Offer::expects_quantity`] is `true`.
7511 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7512 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7514 /// If `max_total_routing_fee_msat` is not specified, The default from
7515 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7519 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7520 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7523 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7524 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7525 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7529 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7530 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7531 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7532 /// in order to send the [`Bolt12Invoice`].
7536 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7537 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7538 /// [`Bolt12Invoice::payment_paths`].
7542 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7543 /// or if the provided parameters are invalid for the offer.
7545 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7546 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7547 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7548 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7549 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7550 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7551 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7552 pub fn pay_for_offer(
7553 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7554 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7555 max_total_routing_fee_msat: Option<u64>
7556 ) -> Result<(), Bolt12SemanticError> {
7557 let expanded_key = &self.inbound_payment_key;
7558 let entropy = &*self.entropy_source;
7559 let secp_ctx = &self.secp_ctx;
7562 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7563 .chain_hash(self.chain_hash)?;
7564 let builder = match quantity {
7566 Some(quantity) => builder.quantity(quantity)?,
7568 let builder = match amount_msats {
7570 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7572 let builder = match payer_note {
7574 Some(payer_note) => builder.payer_note(payer_note),
7577 let invoice_request = builder.build_and_sign()?;
7578 let reply_path = self.create_one_hop_blinded_path();
7580 let expiration = StaleExpiration::TimerTicks(1);
7581 self.pending_outbound_payments
7582 .add_new_awaiting_invoice(
7583 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7585 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7587 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7588 if offer.paths().is_empty() {
7589 let message = new_pending_onion_message(
7590 OffersMessage::InvoiceRequest(invoice_request),
7591 Destination::Node(offer.signing_pubkey()),
7594 pending_offers_messages.push(message);
7596 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7597 // Using only one path could result in a failure if the path no longer exists. But only
7598 // one invoice for a given payment id will be paid, even if more than one is received.
7599 const REQUEST_LIMIT: usize = 10;
7600 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7601 let message = new_pending_onion_message(
7602 OffersMessage::InvoiceRequest(invoice_request.clone()),
7603 Destination::BlindedPath(path.clone()),
7604 Some(reply_path.clone()),
7606 pending_offers_messages.push(message);
7613 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7616 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7617 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7618 /// [`PaymentPreimage`].
7622 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7623 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7624 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7625 /// received and no retries will be made.
7627 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7628 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7629 let expanded_key = &self.inbound_payment_key;
7630 let entropy = &*self.entropy_source;
7631 let secp_ctx = &self.secp_ctx;
7633 let amount_msats = refund.amount_msats();
7634 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7636 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7637 Ok((payment_hash, payment_secret)) => {
7638 let payment_paths = vec![
7639 self.create_one_hop_blinded_payment_path(payment_secret),
7641 #[cfg(not(feature = "no-std"))]
7642 let builder = refund.respond_using_derived_keys(
7643 payment_paths, payment_hash, expanded_key, entropy
7645 #[cfg(feature = "no-std")]
7646 let created_at = Duration::from_secs(
7647 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7649 #[cfg(feature = "no-std")]
7650 let builder = refund.respond_using_derived_keys_no_std(
7651 payment_paths, payment_hash, created_at, expanded_key, entropy
7653 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7654 let reply_path = self.create_one_hop_blinded_path();
7656 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7657 if refund.paths().is_empty() {
7658 let message = new_pending_onion_message(
7659 OffersMessage::Invoice(invoice),
7660 Destination::Node(refund.payer_id()),
7663 pending_offers_messages.push(message);
7665 for path in refund.paths() {
7666 let message = new_pending_onion_message(
7667 OffersMessage::Invoice(invoice.clone()),
7668 Destination::BlindedPath(path.clone()),
7669 Some(reply_path.clone()),
7671 pending_offers_messages.push(message);
7677 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7681 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7684 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7685 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7687 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7688 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7689 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7690 /// passed directly to [`claim_funds`].
7692 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7694 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7695 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7699 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7700 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7702 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7704 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7705 /// on versions of LDK prior to 0.0.114.
7707 /// [`claim_funds`]: Self::claim_funds
7708 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7709 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7710 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7711 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7712 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7713 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7714 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7715 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7716 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7717 min_final_cltv_expiry_delta)
7720 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7721 /// stored external to LDK.
7723 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7724 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7725 /// the `min_value_msat` provided here, if one is provided.
7727 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7728 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7731 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7732 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7733 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7734 /// sender "proof-of-payment" unless they have paid the required amount.
7736 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7737 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7738 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7739 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7740 /// invoices when no timeout is set.
7742 /// Note that we use block header time to time-out pending inbound payments (with some margin
7743 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7744 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7745 /// If you need exact expiry semantics, you should enforce them upon receipt of
7746 /// [`PaymentClaimable`].
7748 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7749 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7751 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7752 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7756 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7757 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7759 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7761 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7762 /// on versions of LDK prior to 0.0.114.
7764 /// [`create_inbound_payment`]: Self::create_inbound_payment
7765 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7766 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7767 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7768 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7769 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7770 min_final_cltv_expiry)
7773 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7774 /// previously returned from [`create_inbound_payment`].
7776 /// [`create_inbound_payment`]: Self::create_inbound_payment
7777 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7778 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7781 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7783 fn create_one_hop_blinded_path(&self) -> BlindedPath {
7784 let entropy_source = self.entropy_source.deref();
7785 let secp_ctx = &self.secp_ctx;
7786 BlindedPath::one_hop_for_message(self.get_our_node_id(), entropy_source, secp_ctx).unwrap()
7789 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7791 fn create_one_hop_blinded_payment_path(
7792 &self, payment_secret: PaymentSecret
7793 ) -> (BlindedPayInfo, BlindedPath) {
7794 let entropy_source = self.entropy_source.deref();
7795 let secp_ctx = &self.secp_ctx;
7797 let payee_node_id = self.get_our_node_id();
7798 let max_cltv_expiry = self.best_block.read().unwrap().height() + LATENCY_GRACE_PERIOD_BLOCKS;
7799 let payee_tlvs = ReceiveTlvs {
7801 payment_constraints: PaymentConstraints {
7803 htlc_minimum_msat: 1,
7806 // TODO: Err for overflow?
7807 BlindedPath::one_hop_for_payment(
7808 payee_node_id, payee_tlvs, entropy_source, secp_ctx
7812 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7813 /// are used when constructing the phantom invoice's route hints.
7815 /// [phantom node payments]: crate::sign::PhantomKeysManager
7816 pub fn get_phantom_scid(&self) -> u64 {
7817 let best_block_height = self.best_block.read().unwrap().height();
7818 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7820 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7821 // Ensure the generated scid doesn't conflict with a real channel.
7822 match short_to_chan_info.get(&scid_candidate) {
7823 Some(_) => continue,
7824 None => return scid_candidate
7829 /// Gets route hints for use in receiving [phantom node payments].
7831 /// [phantom node payments]: crate::sign::PhantomKeysManager
7832 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7834 channels: self.list_usable_channels(),
7835 phantom_scid: self.get_phantom_scid(),
7836 real_node_pubkey: self.get_our_node_id(),
7840 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7841 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7842 /// [`ChannelManager::forward_intercepted_htlc`].
7844 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7845 /// times to get a unique scid.
7846 pub fn get_intercept_scid(&self) -> u64 {
7847 let best_block_height = self.best_block.read().unwrap().height();
7848 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7850 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7851 // Ensure the generated scid doesn't conflict with a real channel.
7852 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7853 return scid_candidate
7857 /// Gets inflight HTLC information by processing pending outbound payments that are in
7858 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7859 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7860 let mut inflight_htlcs = InFlightHtlcs::new();
7862 let per_peer_state = self.per_peer_state.read().unwrap();
7863 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7864 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7865 let peer_state = &mut *peer_state_lock;
7866 for chan in peer_state.channel_by_id.values().filter_map(
7867 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7869 for (htlc_source, _) in chan.inflight_htlc_sources() {
7870 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7871 inflight_htlcs.process_path(path, self.get_our_node_id());
7880 #[cfg(any(test, feature = "_test_utils"))]
7881 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7882 let events = core::cell::RefCell::new(Vec::new());
7883 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7884 self.process_pending_events(&event_handler);
7888 #[cfg(feature = "_test_utils")]
7889 pub fn push_pending_event(&self, event: events::Event) {
7890 let mut events = self.pending_events.lock().unwrap();
7891 events.push_back((event, None));
7895 pub fn pop_pending_event(&self) -> Option<events::Event> {
7896 let mut events = self.pending_events.lock().unwrap();
7897 events.pop_front().map(|(e, _)| e)
7901 pub fn has_pending_payments(&self) -> bool {
7902 self.pending_outbound_payments.has_pending_payments()
7906 pub fn clear_pending_payments(&self) {
7907 self.pending_outbound_payments.clear_pending_payments()
7910 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7911 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7912 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7913 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7914 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7916 let per_peer_state = self.per_peer_state.read().unwrap();
7917 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7918 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7919 let peer_state = &mut *peer_state_lck;
7921 if let Some(blocker) = completed_blocker.take() {
7922 // Only do this on the first iteration of the loop.
7923 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7924 .get_mut(&channel_funding_outpoint.to_channel_id())
7926 blockers.retain(|iter| iter != &blocker);
7930 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7931 channel_funding_outpoint, counterparty_node_id) {
7932 // Check that, while holding the peer lock, we don't have anything else
7933 // blocking monitor updates for this channel. If we do, release the monitor
7934 // update(s) when those blockers complete.
7935 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7936 &channel_funding_outpoint.to_channel_id());
7940 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7941 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7942 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7943 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7944 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
7945 channel_funding_outpoint.to_channel_id());
7946 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7947 peer_state_lck, peer_state, per_peer_state, chan);
7948 if further_update_exists {
7949 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7954 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
7955 channel_funding_outpoint.to_channel_id());
7960 log_debug!(self.logger,
7961 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7962 log_pubkey!(counterparty_node_id));
7968 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7969 for action in actions {
7971 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7972 channel_funding_outpoint, counterparty_node_id
7974 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7980 /// Processes any events asynchronously in the order they were generated since the last call
7981 /// using the given event handler.
7983 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7984 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7988 process_events_body!(self, ev, { handler(ev).await });
7992 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7994 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7995 T::Target: BroadcasterInterface,
7996 ES::Target: EntropySource,
7997 NS::Target: NodeSigner,
7998 SP::Target: SignerProvider,
7999 F::Target: FeeEstimator,
8003 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
8004 /// The returned array will contain `MessageSendEvent`s for different peers if
8005 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
8006 /// is always placed next to each other.
8008 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
8009 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
8010 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
8011 /// will randomly be placed first or last in the returned array.
8013 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
8014 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
8015 /// the `MessageSendEvent`s to the specific peer they were generated under.
8016 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
8017 let events = RefCell::new(Vec::new());
8018 PersistenceNotifierGuard::optionally_notify(self, || {
8019 let mut result = NotifyOption::SkipPersistNoEvents;
8021 // TODO: This behavior should be documented. It's unintuitive that we query
8022 // ChannelMonitors when clearing other events.
8023 if self.process_pending_monitor_events() {
8024 result = NotifyOption::DoPersist;
8027 if self.check_free_holding_cells() {
8028 result = NotifyOption::DoPersist;
8030 if self.maybe_generate_initial_closing_signed() {
8031 result = NotifyOption::DoPersist;
8034 let mut pending_events = Vec::new();
8035 let per_peer_state = self.per_peer_state.read().unwrap();
8036 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8037 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8038 let peer_state = &mut *peer_state_lock;
8039 if peer_state.pending_msg_events.len() > 0 {
8040 pending_events.append(&mut peer_state.pending_msg_events);
8044 if !pending_events.is_empty() {
8045 events.replace(pending_events);
8054 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8056 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8057 T::Target: BroadcasterInterface,
8058 ES::Target: EntropySource,
8059 NS::Target: NodeSigner,
8060 SP::Target: SignerProvider,
8061 F::Target: FeeEstimator,
8065 /// Processes events that must be periodically handled.
8067 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8068 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8069 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8071 process_events_body!(self, ev, handler.handle_event(ev));
8075 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8077 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8078 T::Target: BroadcasterInterface,
8079 ES::Target: EntropySource,
8080 NS::Target: NodeSigner,
8081 SP::Target: SignerProvider,
8082 F::Target: FeeEstimator,
8086 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
8088 let best_block = self.best_block.read().unwrap();
8089 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8090 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8091 assert_eq!(best_block.height(), height - 1,
8092 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8095 self.transactions_confirmed(header, txdata, height);
8096 self.best_block_updated(header, height);
8099 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
8100 let _persistence_guard =
8101 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8102 self, || -> NotifyOption { NotifyOption::DoPersist });
8103 let new_height = height - 1;
8105 let mut best_block = self.best_block.write().unwrap();
8106 assert_eq!(best_block.block_hash(), header.block_hash(),
8107 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8108 assert_eq!(best_block.height(), height,
8109 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8110 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8113 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8117 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8119 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8120 T::Target: BroadcasterInterface,
8121 ES::Target: EntropySource,
8122 NS::Target: NodeSigner,
8123 SP::Target: SignerProvider,
8124 F::Target: FeeEstimator,
8128 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
8129 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8130 // during initialization prior to the chain_monitor being fully configured in some cases.
8131 // See the docs for `ChannelManagerReadArgs` for more.
8133 let block_hash = header.block_hash();
8134 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8136 let _persistence_guard =
8137 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8138 self, || -> NotifyOption { NotifyOption::DoPersist });
8139 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger)
8140 .map(|(a, b)| (a, Vec::new(), b)));
8142 let last_best_block_height = self.best_block.read().unwrap().height();
8143 if height < last_best_block_height {
8144 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8145 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8149 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
8150 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8151 // during initialization prior to the chain_monitor being fully configured in some cases.
8152 // See the docs for `ChannelManagerReadArgs` for more.
8154 let block_hash = header.block_hash();
8155 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8157 let _persistence_guard =
8158 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8159 self, || -> NotifyOption { NotifyOption::DoPersist });
8160 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8162 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8164 macro_rules! max_time {
8165 ($timestamp: expr) => {
8167 // Update $timestamp to be the max of its current value and the block
8168 // timestamp. This should keep us close to the current time without relying on
8169 // having an explicit local time source.
8170 // Just in case we end up in a race, we loop until we either successfully
8171 // update $timestamp or decide we don't need to.
8172 let old_serial = $timestamp.load(Ordering::Acquire);
8173 if old_serial >= header.time as usize { break; }
8174 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8180 max_time!(self.highest_seen_timestamp);
8181 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8182 payment_secrets.retain(|_, inbound_payment| {
8183 inbound_payment.expiry_time > header.time as u64
8187 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
8188 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8189 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8190 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8191 let peer_state = &mut *peer_state_lock;
8192 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8193 if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) {
8194 res.push((funding_txo.txid, Some(block_hash)));
8201 fn transaction_unconfirmed(&self, txid: &Txid) {
8202 let _persistence_guard =
8203 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8204 self, || -> NotifyOption { NotifyOption::DoPersist });
8205 self.do_chain_event(None, |channel| {
8206 if let Some(funding_txo) = channel.context.get_funding_txo() {
8207 if funding_txo.txid == *txid {
8208 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
8209 } else { Ok((None, Vec::new(), None)) }
8210 } else { Ok((None, Vec::new(), None)) }
8215 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8217 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8218 T::Target: BroadcasterInterface,
8219 ES::Target: EntropySource,
8220 NS::Target: NodeSigner,
8221 SP::Target: SignerProvider,
8222 F::Target: FeeEstimator,
8226 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8227 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8229 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8230 (&self, height_opt: Option<u32>, f: FN) {
8231 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8232 // during initialization prior to the chain_monitor being fully configured in some cases.
8233 // See the docs for `ChannelManagerReadArgs` for more.
8235 let mut failed_channels = Vec::new();
8236 let mut timed_out_htlcs = Vec::new();
8238 let per_peer_state = self.per_peer_state.read().unwrap();
8239 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8240 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8241 let peer_state = &mut *peer_state_lock;
8242 let pending_msg_events = &mut peer_state.pending_msg_events;
8243 peer_state.channel_by_id.retain(|_, phase| {
8245 // Retain unfunded channels.
8246 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8247 ChannelPhase::Funded(channel) => {
8248 let res = f(channel);
8249 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8250 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8251 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8252 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8253 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8255 if let Some(channel_ready) = channel_ready_opt {
8256 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8257 if channel.context.is_usable() {
8258 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8259 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8260 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8261 node_id: channel.context.get_counterparty_node_id(),
8266 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8271 let mut pending_events = self.pending_events.lock().unwrap();
8272 emit_channel_ready_event!(pending_events, channel);
8275 if let Some(announcement_sigs) = announcement_sigs {
8276 log_trace!(self.logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8277 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8278 node_id: channel.context.get_counterparty_node_id(),
8279 msg: announcement_sigs,
8281 if let Some(height) = height_opt {
8282 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8283 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8285 // Note that announcement_signatures fails if the channel cannot be announced,
8286 // so get_channel_update_for_broadcast will never fail by the time we get here.
8287 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8292 if channel.is_our_channel_ready() {
8293 if let Some(real_scid) = channel.context.get_short_channel_id() {
8294 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8295 // to the short_to_chan_info map here. Note that we check whether we
8296 // can relay using the real SCID at relay-time (i.e.
8297 // enforce option_scid_alias then), and if the funding tx is ever
8298 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8299 // is always consistent.
8300 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8301 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8302 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8303 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8304 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8307 } else if let Err(reason) = res {
8308 update_maps_on_chan_removal!(self, &channel.context);
8309 // It looks like our counterparty went on-chain or funding transaction was
8310 // reorged out of the main chain. Close the channel.
8311 failed_channels.push(channel.context.force_shutdown(true));
8312 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8313 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8317 let reason_message = format!("{}", reason);
8318 self.issue_channel_close_events(&channel.context, reason);
8319 pending_msg_events.push(events::MessageSendEvent::HandleError {
8320 node_id: channel.context.get_counterparty_node_id(),
8321 action: msgs::ErrorAction::DisconnectPeer {
8322 msg: Some(msgs::ErrorMessage {
8323 channel_id: channel.context.channel_id(),
8324 data: reason_message,
8337 if let Some(height) = height_opt {
8338 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8339 payment.htlcs.retain(|htlc| {
8340 // If height is approaching the number of blocks we think it takes us to get
8341 // our commitment transaction confirmed before the HTLC expires, plus the
8342 // number of blocks we generally consider it to take to do a commitment update,
8343 // just give up on it and fail the HTLC.
8344 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8345 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8346 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8348 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8349 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8350 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8354 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8357 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8358 intercepted_htlcs.retain(|_, htlc| {
8359 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8360 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8361 short_channel_id: htlc.prev_short_channel_id,
8362 user_channel_id: Some(htlc.prev_user_channel_id),
8363 htlc_id: htlc.prev_htlc_id,
8364 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8365 phantom_shared_secret: None,
8366 outpoint: htlc.prev_funding_outpoint,
8369 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8370 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8371 _ => unreachable!(),
8373 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8374 HTLCFailReason::from_failure_code(0x2000 | 2),
8375 HTLCDestination::InvalidForward { requested_forward_scid }));
8376 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8382 self.handle_init_event_channel_failures(failed_channels);
8384 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8385 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8389 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8390 /// may have events that need processing.
8392 /// In order to check if this [`ChannelManager`] needs persisting, call
8393 /// [`Self::get_and_clear_needs_persistence`].
8395 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8396 /// [`ChannelManager`] and should instead register actions to be taken later.
8397 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8398 self.event_persist_notifier.get_future()
8401 /// Returns true if this [`ChannelManager`] needs to be persisted.
8402 pub fn get_and_clear_needs_persistence(&self) -> bool {
8403 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8406 #[cfg(any(test, feature = "_test_utils"))]
8407 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8408 self.event_persist_notifier.notify_pending()
8411 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8412 /// [`chain::Confirm`] interfaces.
8413 pub fn current_best_block(&self) -> BestBlock {
8414 self.best_block.read().unwrap().clone()
8417 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8418 /// [`ChannelManager`].
8419 pub fn node_features(&self) -> NodeFeatures {
8420 provided_node_features(&self.default_configuration)
8423 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8424 /// [`ChannelManager`].
8426 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8427 /// or not. Thus, this method is not public.
8428 #[cfg(any(feature = "_test_utils", test))]
8429 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8430 provided_bolt11_invoice_features(&self.default_configuration)
8433 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8434 /// [`ChannelManager`].
8435 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8436 provided_bolt12_invoice_features(&self.default_configuration)
8439 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8440 /// [`ChannelManager`].
8441 pub fn channel_features(&self) -> ChannelFeatures {
8442 provided_channel_features(&self.default_configuration)
8445 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8446 /// [`ChannelManager`].
8447 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8448 provided_channel_type_features(&self.default_configuration)
8451 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8452 /// [`ChannelManager`].
8453 pub fn init_features(&self) -> InitFeatures {
8454 provided_init_features(&self.default_configuration)
8458 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8459 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8461 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8462 T::Target: BroadcasterInterface,
8463 ES::Target: EntropySource,
8464 NS::Target: NodeSigner,
8465 SP::Target: SignerProvider,
8466 F::Target: FeeEstimator,
8470 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8471 // Note that we never need to persist the updated ChannelManager for an inbound
8472 // open_channel message - pre-funded channels are never written so there should be no
8473 // change to the contents.
8474 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8475 let res = self.internal_open_channel(counterparty_node_id, msg);
8476 let persist = match &res {
8477 Err(e) if e.closes_channel() => {
8478 debug_assert!(false, "We shouldn't close a new channel");
8479 NotifyOption::DoPersist
8481 _ => NotifyOption::SkipPersistHandleEvents,
8483 let _ = handle_error!(self, res, *counterparty_node_id);
8488 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8489 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8490 "Dual-funded channels not supported".to_owned(),
8491 msg.temporary_channel_id.clone())), *counterparty_node_id);
8494 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8495 // Note that we never need to persist the updated ChannelManager for an inbound
8496 // accept_channel message - pre-funded channels are never written so there should be no
8497 // change to the contents.
8498 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8499 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8500 NotifyOption::SkipPersistHandleEvents
8504 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8505 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8506 "Dual-funded channels not supported".to_owned(),
8507 msg.temporary_channel_id.clone())), *counterparty_node_id);
8510 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8511 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8512 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8515 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8516 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8517 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8520 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8521 // Note that we never need to persist the updated ChannelManager for an inbound
8522 // channel_ready message - while the channel's state will change, any channel_ready message
8523 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8524 // will not force-close the channel on startup.
8525 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8526 let res = self.internal_channel_ready(counterparty_node_id, msg);
8527 let persist = match &res {
8528 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8529 _ => NotifyOption::SkipPersistHandleEvents,
8531 let _ = handle_error!(self, res, *counterparty_node_id);
8536 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8537 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8538 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8541 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8542 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8543 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8546 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8547 // Note that we never need to persist the updated ChannelManager for an inbound
8548 // update_add_htlc message - the message itself doesn't change our channel state only the
8549 // `commitment_signed` message afterwards will.
8550 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8551 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8552 let persist = match &res {
8553 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8554 Err(_) => NotifyOption::SkipPersistHandleEvents,
8555 Ok(()) => NotifyOption::SkipPersistNoEvents,
8557 let _ = handle_error!(self, res, *counterparty_node_id);
8562 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8563 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8564 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8567 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8568 // Note that we never need to persist the updated ChannelManager for an inbound
8569 // update_fail_htlc message - the message itself doesn't change our channel state only the
8570 // `commitment_signed` message afterwards will.
8571 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8572 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8573 let persist = match &res {
8574 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8575 Err(_) => NotifyOption::SkipPersistHandleEvents,
8576 Ok(()) => NotifyOption::SkipPersistNoEvents,
8578 let _ = handle_error!(self, res, *counterparty_node_id);
8583 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8584 // Note that we never need to persist the updated ChannelManager for an inbound
8585 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8586 // only the `commitment_signed` message afterwards will.
8587 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8588 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8589 let persist = match &res {
8590 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8591 Err(_) => NotifyOption::SkipPersistHandleEvents,
8592 Ok(()) => NotifyOption::SkipPersistNoEvents,
8594 let _ = handle_error!(self, res, *counterparty_node_id);
8599 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8600 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8601 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8604 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8605 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8606 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8609 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8610 // Note that we never need to persist the updated ChannelManager for an inbound
8611 // update_fee message - the message itself doesn't change our channel state only the
8612 // `commitment_signed` message afterwards will.
8613 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8614 let res = self.internal_update_fee(counterparty_node_id, msg);
8615 let persist = match &res {
8616 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8617 Err(_) => NotifyOption::SkipPersistHandleEvents,
8618 Ok(()) => NotifyOption::SkipPersistNoEvents,
8620 let _ = handle_error!(self, res, *counterparty_node_id);
8625 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8626 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8627 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8630 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8631 PersistenceNotifierGuard::optionally_notify(self, || {
8632 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8635 NotifyOption::DoPersist
8640 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8641 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8642 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8643 let persist = match &res {
8644 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8645 Err(_) => NotifyOption::SkipPersistHandleEvents,
8646 Ok(persist) => *persist,
8648 let _ = handle_error!(self, res, *counterparty_node_id);
8653 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8654 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8655 self, || NotifyOption::SkipPersistHandleEvents);
8656 let mut failed_channels = Vec::new();
8657 let mut per_peer_state = self.per_peer_state.write().unwrap();
8659 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
8660 log_pubkey!(counterparty_node_id));
8661 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8662 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8663 let peer_state = &mut *peer_state_lock;
8664 let pending_msg_events = &mut peer_state.pending_msg_events;
8665 peer_state.channel_by_id.retain(|_, phase| {
8666 let context = match phase {
8667 ChannelPhase::Funded(chan) => {
8668 if chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger).is_ok() {
8669 // We only retain funded channels that are not shutdown.
8674 // Unfunded channels will always be removed.
8675 ChannelPhase::UnfundedOutboundV1(chan) => {
8678 ChannelPhase::UnfundedInboundV1(chan) => {
8682 // Clean up for removal.
8683 update_maps_on_chan_removal!(self, &context);
8684 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8685 failed_channels.push(context.force_shutdown(false));
8688 // Note that we don't bother generating any events for pre-accept channels -
8689 // they're not considered "channels" yet from the PoV of our events interface.
8690 peer_state.inbound_channel_request_by_id.clear();
8691 pending_msg_events.retain(|msg| {
8693 // V1 Channel Establishment
8694 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8695 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8696 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8697 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8698 // V2 Channel Establishment
8699 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8700 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8701 // Common Channel Establishment
8702 &events::MessageSendEvent::SendChannelReady { .. } => false,
8703 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8704 // Interactive Transaction Construction
8705 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8706 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8707 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8708 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8709 &events::MessageSendEvent::SendTxComplete { .. } => false,
8710 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8711 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8712 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8713 &events::MessageSendEvent::SendTxAbort { .. } => false,
8714 // Channel Operations
8715 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8716 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8717 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8718 &events::MessageSendEvent::SendShutdown { .. } => false,
8719 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8720 &events::MessageSendEvent::HandleError { .. } => false,
8722 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8723 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8724 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8725 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8726 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8727 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8728 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8729 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8730 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8733 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8734 peer_state.is_connected = false;
8735 peer_state.ok_to_remove(true)
8736 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8739 per_peer_state.remove(counterparty_node_id);
8741 mem::drop(per_peer_state);
8743 for failure in failed_channels.drain(..) {
8744 self.finish_close_channel(failure);
8748 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8749 if !init_msg.features.supports_static_remote_key() {
8750 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8754 let mut res = Ok(());
8756 PersistenceNotifierGuard::optionally_notify(self, || {
8757 // If we have too many peers connected which don't have funded channels, disconnect the
8758 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8759 // unfunded channels taking up space in memory for disconnected peers, we still let new
8760 // peers connect, but we'll reject new channels from them.
8761 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8762 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8765 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8766 match peer_state_lock.entry(counterparty_node_id.clone()) {
8767 hash_map::Entry::Vacant(e) => {
8768 if inbound_peer_limited {
8770 return NotifyOption::SkipPersistNoEvents;
8772 e.insert(Mutex::new(PeerState {
8773 channel_by_id: HashMap::new(),
8774 inbound_channel_request_by_id: HashMap::new(),
8775 latest_features: init_msg.features.clone(),
8776 pending_msg_events: Vec::new(),
8777 in_flight_monitor_updates: BTreeMap::new(),
8778 monitor_update_blocked_actions: BTreeMap::new(),
8779 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8783 hash_map::Entry::Occupied(e) => {
8784 let mut peer_state = e.get().lock().unwrap();
8785 peer_state.latest_features = init_msg.features.clone();
8787 let best_block_height = self.best_block.read().unwrap().height();
8788 if inbound_peer_limited &&
8789 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8790 peer_state.channel_by_id.len()
8793 return NotifyOption::SkipPersistNoEvents;
8796 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8797 peer_state.is_connected = true;
8802 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8804 let per_peer_state = self.per_peer_state.read().unwrap();
8805 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8806 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8807 let peer_state = &mut *peer_state_lock;
8808 let pending_msg_events = &mut peer_state.pending_msg_events;
8810 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8811 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8812 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8813 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8814 // worry about closing and removing them.
8815 debug_assert!(false);
8819 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
8820 node_id: chan.context.get_counterparty_node_id(),
8821 msg: chan.get_channel_reestablish(&self.logger),
8826 return NotifyOption::SkipPersistHandleEvents;
8827 //TODO: Also re-broadcast announcement_signatures
8832 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8833 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8835 match &msg.data as &str {
8836 "cannot co-op close channel w/ active htlcs"|
8837 "link failed to shutdown" =>
8839 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8840 // send one while HTLCs are still present. The issue is tracked at
8841 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8842 // to fix it but none so far have managed to land upstream. The issue appears to be
8843 // very low priority for the LND team despite being marked "P1".
8844 // We're not going to bother handling this in a sensible way, instead simply
8845 // repeating the Shutdown message on repeat until morale improves.
8846 if !msg.channel_id.is_zero() {
8847 let per_peer_state = self.per_peer_state.read().unwrap();
8848 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8849 if peer_state_mutex_opt.is_none() { return; }
8850 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8851 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8852 if let Some(msg) = chan.get_outbound_shutdown() {
8853 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8854 node_id: *counterparty_node_id,
8858 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8859 node_id: *counterparty_node_id,
8860 action: msgs::ErrorAction::SendWarningMessage {
8861 msg: msgs::WarningMessage {
8862 channel_id: msg.channel_id,
8863 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8865 log_level: Level::Trace,
8875 if msg.channel_id.is_zero() {
8876 let channel_ids: Vec<ChannelId> = {
8877 let per_peer_state = self.per_peer_state.read().unwrap();
8878 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8879 if peer_state_mutex_opt.is_none() { return; }
8880 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8881 let peer_state = &mut *peer_state_lock;
8882 // Note that we don't bother generating any events for pre-accept channels -
8883 // they're not considered "channels" yet from the PoV of our events interface.
8884 peer_state.inbound_channel_request_by_id.clear();
8885 peer_state.channel_by_id.keys().cloned().collect()
8887 for channel_id in channel_ids {
8888 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8889 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8893 // First check if we can advance the channel type and try again.
8894 let per_peer_state = self.per_peer_state.read().unwrap();
8895 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8896 if peer_state_mutex_opt.is_none() { return; }
8897 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8898 let peer_state = &mut *peer_state_lock;
8899 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8900 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
8901 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8902 node_id: *counterparty_node_id,
8910 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8911 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8915 fn provided_node_features(&self) -> NodeFeatures {
8916 provided_node_features(&self.default_configuration)
8919 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8920 provided_init_features(&self.default_configuration)
8923 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
8924 Some(vec![self.chain_hash])
8927 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8928 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8929 "Dual-funded channels not supported".to_owned(),
8930 msg.channel_id.clone())), *counterparty_node_id);
8933 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
8934 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8935 "Dual-funded channels not supported".to_owned(),
8936 msg.channel_id.clone())), *counterparty_node_id);
8939 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
8940 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8941 "Dual-funded channels not supported".to_owned(),
8942 msg.channel_id.clone())), *counterparty_node_id);
8945 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
8946 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8947 "Dual-funded channels not supported".to_owned(),
8948 msg.channel_id.clone())), *counterparty_node_id);
8951 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
8952 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8953 "Dual-funded channels not supported".to_owned(),
8954 msg.channel_id.clone())), *counterparty_node_id);
8957 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
8958 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8959 "Dual-funded channels not supported".to_owned(),
8960 msg.channel_id.clone())), *counterparty_node_id);
8963 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
8964 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8965 "Dual-funded channels not supported".to_owned(),
8966 msg.channel_id.clone())), *counterparty_node_id);
8969 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
8970 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8971 "Dual-funded channels not supported".to_owned(),
8972 msg.channel_id.clone())), *counterparty_node_id);
8975 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
8976 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8977 "Dual-funded channels not supported".to_owned(),
8978 msg.channel_id.clone())), *counterparty_node_id);
8982 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8983 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8985 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8986 T::Target: BroadcasterInterface,
8987 ES::Target: EntropySource,
8988 NS::Target: NodeSigner,
8989 SP::Target: SignerProvider,
8990 F::Target: FeeEstimator,
8994 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
8995 let secp_ctx = &self.secp_ctx;
8996 let expanded_key = &self.inbound_payment_key;
8999 OffersMessage::InvoiceRequest(invoice_request) => {
9000 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
9003 Ok(amount_msats) => Some(amount_msats),
9004 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9006 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9007 Ok(invoice_request) => invoice_request,
9009 let error = Bolt12SemanticError::InvalidMetadata;
9010 return Some(OffersMessage::InvoiceError(error.into()));
9013 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9015 match self.create_inbound_payment(amount_msats, relative_expiry, None) {
9016 Ok((payment_hash, payment_secret)) if invoice_request.keys.is_some() => {
9017 let payment_paths = vec![
9018 self.create_one_hop_blinded_payment_path(payment_secret),
9020 #[cfg(not(feature = "no-std"))]
9021 let builder = invoice_request.respond_using_derived_keys(
9022 payment_paths, payment_hash
9024 #[cfg(feature = "no-std")]
9025 let created_at = Duration::from_secs(
9026 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9028 #[cfg(feature = "no-std")]
9029 let builder = invoice_request.respond_using_derived_keys_no_std(
9030 payment_paths, payment_hash, created_at
9032 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9033 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9034 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9037 Ok((payment_hash, payment_secret)) => {
9038 let payment_paths = vec![
9039 self.create_one_hop_blinded_payment_path(payment_secret),
9041 #[cfg(not(feature = "no-std"))]
9042 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9043 #[cfg(feature = "no-std")]
9044 let created_at = Duration::from_secs(
9045 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9047 #[cfg(feature = "no-std")]
9048 let builder = invoice_request.respond_with_no_std(
9049 payment_paths, payment_hash, created_at
9051 let response = builder.and_then(|builder| builder.allow_mpp().build())
9052 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9054 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9055 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9056 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9057 InvoiceError::from_string("Failed signing invoice".to_string())
9059 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9060 InvoiceError::from_string("Failed invoice signature verification".to_string())
9064 Ok(invoice) => Some(invoice),
9065 Err(error) => Some(error),
9069 Some(OffersMessage::InvoiceError(Bolt12SemanticError::InvalidAmount.into()))
9073 OffersMessage::Invoice(invoice) => {
9074 match invoice.verify(expanded_key, secp_ctx) {
9076 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9078 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9079 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9082 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9083 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9084 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9091 OffersMessage::InvoiceError(invoice_error) => {
9092 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9098 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9099 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9103 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9104 /// [`ChannelManager`].
9105 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9106 let mut node_features = provided_init_features(config).to_context();
9107 node_features.set_keysend_optional();
9111 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9112 /// [`ChannelManager`].
9114 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9115 /// or not. Thus, this method is not public.
9116 #[cfg(any(feature = "_test_utils", test))]
9117 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9118 provided_init_features(config).to_context()
9121 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9122 /// [`ChannelManager`].
9123 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9124 provided_init_features(config).to_context()
9127 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9128 /// [`ChannelManager`].
9129 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9130 provided_init_features(config).to_context()
9133 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9134 /// [`ChannelManager`].
9135 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9136 ChannelTypeFeatures::from_init(&provided_init_features(config))
9139 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9140 /// [`ChannelManager`].
9141 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9142 // Note that if new features are added here which other peers may (eventually) require, we
9143 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9144 // [`ErroringMessageHandler`].
9145 let mut features = InitFeatures::empty();
9146 features.set_data_loss_protect_required();
9147 features.set_upfront_shutdown_script_optional();
9148 features.set_variable_length_onion_required();
9149 features.set_static_remote_key_required();
9150 features.set_payment_secret_required();
9151 features.set_basic_mpp_optional();
9152 features.set_wumbo_optional();
9153 features.set_shutdown_any_segwit_optional();
9154 features.set_channel_type_optional();
9155 features.set_scid_privacy_optional();
9156 features.set_zero_conf_optional();
9157 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9158 features.set_anchors_zero_fee_htlc_tx_optional();
9163 const SERIALIZATION_VERSION: u8 = 1;
9164 const MIN_SERIALIZATION_VERSION: u8 = 1;
9166 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9167 (2, fee_base_msat, required),
9168 (4, fee_proportional_millionths, required),
9169 (6, cltv_expiry_delta, required),
9172 impl_writeable_tlv_based!(ChannelCounterparty, {
9173 (2, node_id, required),
9174 (4, features, required),
9175 (6, unspendable_punishment_reserve, required),
9176 (8, forwarding_info, option),
9177 (9, outbound_htlc_minimum_msat, option),
9178 (11, outbound_htlc_maximum_msat, option),
9181 impl Writeable for ChannelDetails {
9182 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9183 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9184 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9185 let user_channel_id_low = self.user_channel_id as u64;
9186 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9187 write_tlv_fields!(writer, {
9188 (1, self.inbound_scid_alias, option),
9189 (2, self.channel_id, required),
9190 (3, self.channel_type, option),
9191 (4, self.counterparty, required),
9192 (5, self.outbound_scid_alias, option),
9193 (6, self.funding_txo, option),
9194 (7, self.config, option),
9195 (8, self.short_channel_id, option),
9196 (9, self.confirmations, option),
9197 (10, self.channel_value_satoshis, required),
9198 (12, self.unspendable_punishment_reserve, option),
9199 (14, user_channel_id_low, required),
9200 (16, self.balance_msat, required),
9201 (18, self.outbound_capacity_msat, required),
9202 (19, self.next_outbound_htlc_limit_msat, required),
9203 (20, self.inbound_capacity_msat, required),
9204 (21, self.next_outbound_htlc_minimum_msat, required),
9205 (22, self.confirmations_required, option),
9206 (24, self.force_close_spend_delay, option),
9207 (26, self.is_outbound, required),
9208 (28, self.is_channel_ready, required),
9209 (30, self.is_usable, required),
9210 (32, self.is_public, required),
9211 (33, self.inbound_htlc_minimum_msat, option),
9212 (35, self.inbound_htlc_maximum_msat, option),
9213 (37, user_channel_id_high_opt, option),
9214 (39, self.feerate_sat_per_1000_weight, option),
9215 (41, self.channel_shutdown_state, option),
9221 impl Readable for ChannelDetails {
9222 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9223 _init_and_read_len_prefixed_tlv_fields!(reader, {
9224 (1, inbound_scid_alias, option),
9225 (2, channel_id, required),
9226 (3, channel_type, option),
9227 (4, counterparty, required),
9228 (5, outbound_scid_alias, option),
9229 (6, funding_txo, option),
9230 (7, config, option),
9231 (8, short_channel_id, option),
9232 (9, confirmations, option),
9233 (10, channel_value_satoshis, required),
9234 (12, unspendable_punishment_reserve, option),
9235 (14, user_channel_id_low, required),
9236 (16, balance_msat, required),
9237 (18, outbound_capacity_msat, required),
9238 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9239 // filled in, so we can safely unwrap it here.
9240 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9241 (20, inbound_capacity_msat, required),
9242 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9243 (22, confirmations_required, option),
9244 (24, force_close_spend_delay, option),
9245 (26, is_outbound, required),
9246 (28, is_channel_ready, required),
9247 (30, is_usable, required),
9248 (32, is_public, required),
9249 (33, inbound_htlc_minimum_msat, option),
9250 (35, inbound_htlc_maximum_msat, option),
9251 (37, user_channel_id_high_opt, option),
9252 (39, feerate_sat_per_1000_weight, option),
9253 (41, channel_shutdown_state, option),
9256 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9257 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9258 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9259 let user_channel_id = user_channel_id_low as u128 +
9260 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9264 channel_id: channel_id.0.unwrap(),
9266 counterparty: counterparty.0.unwrap(),
9267 outbound_scid_alias,
9271 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9272 unspendable_punishment_reserve,
9274 balance_msat: balance_msat.0.unwrap(),
9275 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9276 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9277 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9278 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9279 confirmations_required,
9281 force_close_spend_delay,
9282 is_outbound: is_outbound.0.unwrap(),
9283 is_channel_ready: is_channel_ready.0.unwrap(),
9284 is_usable: is_usable.0.unwrap(),
9285 is_public: is_public.0.unwrap(),
9286 inbound_htlc_minimum_msat,
9287 inbound_htlc_maximum_msat,
9288 feerate_sat_per_1000_weight,
9289 channel_shutdown_state,
9294 impl_writeable_tlv_based!(PhantomRouteHints, {
9295 (2, channels, required_vec),
9296 (4, phantom_scid, required),
9297 (6, real_node_pubkey, required),
9300 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9302 (0, onion_packet, required),
9303 (2, short_channel_id, required),
9306 (0, payment_data, required),
9307 (1, phantom_shared_secret, option),
9308 (2, incoming_cltv_expiry, required),
9309 (3, payment_metadata, option),
9310 (5, custom_tlvs, optional_vec),
9312 (2, ReceiveKeysend) => {
9313 (0, payment_preimage, required),
9314 (2, incoming_cltv_expiry, required),
9315 (3, payment_metadata, option),
9316 (4, payment_data, option), // Added in 0.0.116
9317 (5, custom_tlvs, optional_vec),
9321 impl_writeable_tlv_based!(PendingHTLCInfo, {
9322 (0, routing, required),
9323 (2, incoming_shared_secret, required),
9324 (4, payment_hash, required),
9325 (6, outgoing_amt_msat, required),
9326 (8, outgoing_cltv_value, required),
9327 (9, incoming_amt_msat, option),
9328 (10, skimmed_fee_msat, option),
9332 impl Writeable for HTLCFailureMsg {
9333 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9335 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9337 channel_id.write(writer)?;
9338 htlc_id.write(writer)?;
9339 reason.write(writer)?;
9341 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9342 channel_id, htlc_id, sha256_of_onion, failure_code
9345 channel_id.write(writer)?;
9346 htlc_id.write(writer)?;
9347 sha256_of_onion.write(writer)?;
9348 failure_code.write(writer)?;
9355 impl Readable for HTLCFailureMsg {
9356 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9357 let id: u8 = Readable::read(reader)?;
9360 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9361 channel_id: Readable::read(reader)?,
9362 htlc_id: Readable::read(reader)?,
9363 reason: Readable::read(reader)?,
9367 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9368 channel_id: Readable::read(reader)?,
9369 htlc_id: Readable::read(reader)?,
9370 sha256_of_onion: Readable::read(reader)?,
9371 failure_code: Readable::read(reader)?,
9374 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9375 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9376 // messages contained in the variants.
9377 // In version 0.0.101, support for reading the variants with these types was added, and
9378 // we should migrate to writing these variants when UpdateFailHTLC or
9379 // UpdateFailMalformedHTLC get TLV fields.
9381 let length: BigSize = Readable::read(reader)?;
9382 let mut s = FixedLengthReader::new(reader, length.0);
9383 let res = Readable::read(&mut s)?;
9384 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9385 Ok(HTLCFailureMsg::Relay(res))
9388 let length: BigSize = Readable::read(reader)?;
9389 let mut s = FixedLengthReader::new(reader, length.0);
9390 let res = Readable::read(&mut s)?;
9391 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9392 Ok(HTLCFailureMsg::Malformed(res))
9394 _ => Err(DecodeError::UnknownRequiredFeature),
9399 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9404 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9405 (0, short_channel_id, required),
9406 (1, phantom_shared_secret, option),
9407 (2, outpoint, required),
9408 (4, htlc_id, required),
9409 (6, incoming_packet_shared_secret, required),
9410 (7, user_channel_id, option),
9413 impl Writeable for ClaimableHTLC {
9414 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9415 let (payment_data, keysend_preimage) = match &self.onion_payload {
9416 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9417 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9419 write_tlv_fields!(writer, {
9420 (0, self.prev_hop, required),
9421 (1, self.total_msat, required),
9422 (2, self.value, required),
9423 (3, self.sender_intended_value, required),
9424 (4, payment_data, option),
9425 (5, self.total_value_received, option),
9426 (6, self.cltv_expiry, required),
9427 (8, keysend_preimage, option),
9428 (10, self.counterparty_skimmed_fee_msat, option),
9434 impl Readable for ClaimableHTLC {
9435 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9436 _init_and_read_len_prefixed_tlv_fields!(reader, {
9437 (0, prev_hop, required),
9438 (1, total_msat, option),
9439 (2, value_ser, required),
9440 (3, sender_intended_value, option),
9441 (4, payment_data_opt, option),
9442 (5, total_value_received, option),
9443 (6, cltv_expiry, required),
9444 (8, keysend_preimage, option),
9445 (10, counterparty_skimmed_fee_msat, option),
9447 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9448 let value = value_ser.0.unwrap();
9449 let onion_payload = match keysend_preimage {
9451 if payment_data.is_some() {
9452 return Err(DecodeError::InvalidValue)
9454 if total_msat.is_none() {
9455 total_msat = Some(value);
9457 OnionPayload::Spontaneous(p)
9460 if total_msat.is_none() {
9461 if payment_data.is_none() {
9462 return Err(DecodeError::InvalidValue)
9464 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9466 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9470 prev_hop: prev_hop.0.unwrap(),
9473 sender_intended_value: sender_intended_value.unwrap_or(value),
9474 total_value_received,
9475 total_msat: total_msat.unwrap(),
9477 cltv_expiry: cltv_expiry.0.unwrap(),
9478 counterparty_skimmed_fee_msat,
9483 impl Readable for HTLCSource {
9484 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9485 let id: u8 = Readable::read(reader)?;
9488 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9489 let mut first_hop_htlc_msat: u64 = 0;
9490 let mut path_hops = Vec::new();
9491 let mut payment_id = None;
9492 let mut payment_params: Option<PaymentParameters> = None;
9493 let mut blinded_tail: Option<BlindedTail> = None;
9494 read_tlv_fields!(reader, {
9495 (0, session_priv, required),
9496 (1, payment_id, option),
9497 (2, first_hop_htlc_msat, required),
9498 (4, path_hops, required_vec),
9499 (5, payment_params, (option: ReadableArgs, 0)),
9500 (6, blinded_tail, option),
9502 if payment_id.is_none() {
9503 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9505 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9507 let path = Path { hops: path_hops, blinded_tail };
9508 if path.hops.len() == 0 {
9509 return Err(DecodeError::InvalidValue);
9511 if let Some(params) = payment_params.as_mut() {
9512 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9513 if final_cltv_expiry_delta == &0 {
9514 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9518 Ok(HTLCSource::OutboundRoute {
9519 session_priv: session_priv.0.unwrap(),
9520 first_hop_htlc_msat,
9522 payment_id: payment_id.unwrap(),
9525 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9526 _ => Err(DecodeError::UnknownRequiredFeature),
9531 impl Writeable for HTLCSource {
9532 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9534 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9536 let payment_id_opt = Some(payment_id);
9537 write_tlv_fields!(writer, {
9538 (0, session_priv, required),
9539 (1, payment_id_opt, option),
9540 (2, first_hop_htlc_msat, required),
9541 // 3 was previously used to write a PaymentSecret for the payment.
9542 (4, path.hops, required_vec),
9543 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9544 (6, path.blinded_tail, option),
9547 HTLCSource::PreviousHopData(ref field) => {
9549 field.write(writer)?;
9556 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9557 (0, forward_info, required),
9558 (1, prev_user_channel_id, (default_value, 0)),
9559 (2, prev_short_channel_id, required),
9560 (4, prev_htlc_id, required),
9561 (6, prev_funding_outpoint, required),
9564 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
9566 (0, htlc_id, required),
9567 (2, err_packet, required),
9572 impl_writeable_tlv_based!(PendingInboundPayment, {
9573 (0, payment_secret, required),
9574 (2, expiry_time, required),
9575 (4, user_payment_id, required),
9576 (6, payment_preimage, required),
9577 (8, min_value_msat, required),
9580 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
9582 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9583 T::Target: BroadcasterInterface,
9584 ES::Target: EntropySource,
9585 NS::Target: NodeSigner,
9586 SP::Target: SignerProvider,
9587 F::Target: FeeEstimator,
9591 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9592 let _consistency_lock = self.total_consistency_lock.write().unwrap();
9594 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
9596 self.chain_hash.write(writer)?;
9598 let best_block = self.best_block.read().unwrap();
9599 best_block.height().write(writer)?;
9600 best_block.block_hash().write(writer)?;
9603 let mut serializable_peer_count: u64 = 0;
9605 let per_peer_state = self.per_peer_state.read().unwrap();
9606 let mut number_of_funded_channels = 0;
9607 for (_, peer_state_mutex) in per_peer_state.iter() {
9608 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9609 let peer_state = &mut *peer_state_lock;
9610 if !peer_state.ok_to_remove(false) {
9611 serializable_peer_count += 1;
9614 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
9615 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
9619 (number_of_funded_channels as u64).write(writer)?;
9621 for (_, peer_state_mutex) in per_peer_state.iter() {
9622 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9623 let peer_state = &mut *peer_state_lock;
9624 for channel in peer_state.channel_by_id.iter().filter_map(
9625 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
9626 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
9629 channel.write(writer)?;
9635 let forward_htlcs = self.forward_htlcs.lock().unwrap();
9636 (forward_htlcs.len() as u64).write(writer)?;
9637 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
9638 short_channel_id.write(writer)?;
9639 (pending_forwards.len() as u64).write(writer)?;
9640 for forward in pending_forwards {
9641 forward.write(writer)?;
9646 let per_peer_state = self.per_peer_state.write().unwrap();
9648 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9649 let claimable_payments = self.claimable_payments.lock().unwrap();
9650 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9652 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9653 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9654 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9655 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9656 payment_hash.write(writer)?;
9657 (payment.htlcs.len() as u64).write(writer)?;
9658 for htlc in payment.htlcs.iter() {
9659 htlc.write(writer)?;
9661 htlc_purposes.push(&payment.purpose);
9662 htlc_onion_fields.push(&payment.onion_fields);
9665 let mut monitor_update_blocked_actions_per_peer = None;
9666 let mut peer_states = Vec::new();
9667 for (_, peer_state_mutex) in per_peer_state.iter() {
9668 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9669 // of a lockorder violation deadlock - no other thread can be holding any
9670 // per_peer_state lock at all.
9671 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9674 (serializable_peer_count).write(writer)?;
9675 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9676 // Peers which we have no channels to should be dropped once disconnected. As we
9677 // disconnect all peers when shutting down and serializing the ChannelManager, we
9678 // consider all peers as disconnected here. There's therefore no need write peers with
9680 if !peer_state.ok_to_remove(false) {
9681 peer_pubkey.write(writer)?;
9682 peer_state.latest_features.write(writer)?;
9683 if !peer_state.monitor_update_blocked_actions.is_empty() {
9684 monitor_update_blocked_actions_per_peer
9685 .get_or_insert_with(Vec::new)
9686 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9691 let events = self.pending_events.lock().unwrap();
9692 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9693 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9694 // refuse to read the new ChannelManager.
9695 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9696 if events_not_backwards_compatible {
9697 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9698 // well save the space and not write any events here.
9699 0u64.write(writer)?;
9701 (events.len() as u64).write(writer)?;
9702 for (event, _) in events.iter() {
9703 event.write(writer)?;
9707 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9708 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9709 // the closing monitor updates were always effectively replayed on startup (either directly
9710 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9711 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9712 0u64.write(writer)?;
9714 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9715 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9716 // likely to be identical.
9717 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9718 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9720 (pending_inbound_payments.len() as u64).write(writer)?;
9721 for (hash, pending_payment) in pending_inbound_payments.iter() {
9722 hash.write(writer)?;
9723 pending_payment.write(writer)?;
9726 // For backwards compat, write the session privs and their total length.
9727 let mut num_pending_outbounds_compat: u64 = 0;
9728 for (_, outbound) in pending_outbound_payments.iter() {
9729 if !outbound.is_fulfilled() && !outbound.abandoned() {
9730 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
9733 num_pending_outbounds_compat.write(writer)?;
9734 for (_, outbound) in pending_outbound_payments.iter() {
9736 PendingOutboundPayment::Legacy { session_privs } |
9737 PendingOutboundPayment::Retryable { session_privs, .. } => {
9738 for session_priv in session_privs.iter() {
9739 session_priv.write(writer)?;
9742 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9743 PendingOutboundPayment::InvoiceReceived { .. } => {},
9744 PendingOutboundPayment::Fulfilled { .. } => {},
9745 PendingOutboundPayment::Abandoned { .. } => {},
9749 // Encode without retry info for 0.0.101 compatibility.
9750 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9751 for (id, outbound) in pending_outbound_payments.iter() {
9753 PendingOutboundPayment::Legacy { session_privs } |
9754 PendingOutboundPayment::Retryable { session_privs, .. } => {
9755 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9761 let mut pending_intercepted_htlcs = None;
9762 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9763 if our_pending_intercepts.len() != 0 {
9764 pending_intercepted_htlcs = Some(our_pending_intercepts);
9767 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9768 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9769 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9770 // map. Thus, if there are no entries we skip writing a TLV for it.
9771 pending_claiming_payments = None;
9774 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9775 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9776 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9777 if !updates.is_empty() {
9778 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9779 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9784 write_tlv_fields!(writer, {
9785 (1, pending_outbound_payments_no_retry, required),
9786 (2, pending_intercepted_htlcs, option),
9787 (3, pending_outbound_payments, required),
9788 (4, pending_claiming_payments, option),
9789 (5, self.our_network_pubkey, required),
9790 (6, monitor_update_blocked_actions_per_peer, option),
9791 (7, self.fake_scid_rand_bytes, required),
9792 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9793 (9, htlc_purposes, required_vec),
9794 (10, in_flight_monitor_updates, option),
9795 (11, self.probing_cookie_secret, required),
9796 (13, htlc_onion_fields, optional_vec),
9803 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9804 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9805 (self.len() as u64).write(w)?;
9806 for (event, action) in self.iter() {
9809 #[cfg(debug_assertions)] {
9810 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9811 // be persisted and are regenerated on restart. However, if such an event has a
9812 // post-event-handling action we'll write nothing for the event and would have to
9813 // either forget the action or fail on deserialization (which we do below). Thus,
9814 // check that the event is sane here.
9815 let event_encoded = event.encode();
9816 let event_read: Option<Event> =
9817 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
9818 if action.is_some() { assert!(event_read.is_some()); }
9824 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
9825 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9826 let len: u64 = Readable::read(reader)?;
9827 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
9828 let mut events: Self = VecDeque::with_capacity(cmp::min(
9829 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
9832 let ev_opt = MaybeReadable::read(reader)?;
9833 let action = Readable::read(reader)?;
9834 if let Some(ev) = ev_opt {
9835 events.push_back((ev, action));
9836 } else if action.is_some() {
9837 return Err(DecodeError::InvalidValue);
9844 impl_writeable_tlv_based_enum!(ChannelShutdownState,
9845 (0, NotShuttingDown) => {},
9846 (2, ShutdownInitiated) => {},
9847 (4, ResolvingHTLCs) => {},
9848 (6, NegotiatingClosingFee) => {},
9849 (8, ShutdownComplete) => {}, ;
9852 /// Arguments for the creation of a ChannelManager that are not deserialized.
9854 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
9856 /// 1) Deserialize all stored [`ChannelMonitor`]s.
9857 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
9858 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
9859 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
9860 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
9861 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
9862 /// same way you would handle a [`chain::Filter`] call using
9863 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
9864 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
9865 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
9866 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
9867 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
9868 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
9870 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
9871 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
9873 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
9874 /// call any other methods on the newly-deserialized [`ChannelManager`].
9876 /// Note that because some channels may be closed during deserialization, it is critical that you
9877 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
9878 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
9879 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
9880 /// not force-close the same channels but consider them live), you may end up revoking a state for
9881 /// which you've already broadcasted the transaction.
9883 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
9884 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9886 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9887 T::Target: BroadcasterInterface,
9888 ES::Target: EntropySource,
9889 NS::Target: NodeSigner,
9890 SP::Target: SignerProvider,
9891 F::Target: FeeEstimator,
9895 /// A cryptographically secure source of entropy.
9896 pub entropy_source: ES,
9898 /// A signer that is able to perform node-scoped cryptographic operations.
9899 pub node_signer: NS,
9901 /// The keys provider which will give us relevant keys. Some keys will be loaded during
9902 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
9904 pub signer_provider: SP,
9906 /// The fee_estimator for use in the ChannelManager in the future.
9908 /// No calls to the FeeEstimator will be made during deserialization.
9909 pub fee_estimator: F,
9910 /// The chain::Watch for use in the ChannelManager in the future.
9912 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
9913 /// you have deserialized ChannelMonitors separately and will add them to your
9914 /// chain::Watch after deserializing this ChannelManager.
9915 pub chain_monitor: M,
9917 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
9918 /// used to broadcast the latest local commitment transactions of channels which must be
9919 /// force-closed during deserialization.
9920 pub tx_broadcaster: T,
9921 /// The router which will be used in the ChannelManager in the future for finding routes
9922 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
9924 /// No calls to the router will be made during deserialization.
9926 /// The Logger for use in the ChannelManager and which may be used to log information during
9927 /// deserialization.
9929 /// Default settings used for new channels. Any existing channels will continue to use the
9930 /// runtime settings which were stored when the ChannelManager was serialized.
9931 pub default_config: UserConfig,
9933 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
9934 /// value.context.get_funding_txo() should be the key).
9936 /// If a monitor is inconsistent with the channel state during deserialization the channel will
9937 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
9938 /// is true for missing channels as well. If there is a monitor missing for which we find
9939 /// channel data Err(DecodeError::InvalidValue) will be returned.
9941 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
9944 /// This is not exported to bindings users because we have no HashMap bindings
9945 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
9948 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9949 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
9951 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9952 T::Target: BroadcasterInterface,
9953 ES::Target: EntropySource,
9954 NS::Target: NodeSigner,
9955 SP::Target: SignerProvider,
9956 F::Target: FeeEstimator,
9960 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
9961 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
9962 /// populate a HashMap directly from C.
9963 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
9964 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
9966 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
9967 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
9972 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
9973 // SipmleArcChannelManager type:
9974 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9975 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
9977 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9978 T::Target: BroadcasterInterface,
9979 ES::Target: EntropySource,
9980 NS::Target: NodeSigner,
9981 SP::Target: SignerProvider,
9982 F::Target: FeeEstimator,
9986 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9987 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
9988 Ok((blockhash, Arc::new(chan_manager)))
9992 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9993 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
9995 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9996 T::Target: BroadcasterInterface,
9997 ES::Target: EntropySource,
9998 NS::Target: NodeSigner,
9999 SP::Target: SignerProvider,
10000 F::Target: FeeEstimator,
10004 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10005 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10007 let chain_hash: ChainHash = Readable::read(reader)?;
10008 let best_block_height: u32 = Readable::read(reader)?;
10009 let best_block_hash: BlockHash = Readable::read(reader)?;
10011 let mut failed_htlcs = Vec::new();
10013 let channel_count: u64 = Readable::read(reader)?;
10014 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
10015 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10016 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10017 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10018 let mut channel_closures = VecDeque::new();
10019 let mut close_background_events = Vec::new();
10020 for _ in 0..channel_count {
10021 let mut channel: Channel<SP> = Channel::read(reader, (
10022 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10024 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10025 funding_txo_set.insert(funding_txo.clone());
10026 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10027 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10028 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10029 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10030 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10031 // But if the channel is behind of the monitor, close the channel:
10032 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10033 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10034 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10035 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10036 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10038 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10039 log_error!(args.logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10040 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10042 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10043 log_error!(args.logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10044 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10046 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10047 log_error!(args.logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10048 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10050 let mut shutdown_result = channel.context.force_shutdown(true);
10051 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10052 return Err(DecodeError::InvalidValue);
10054 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
10055 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10056 counterparty_node_id, funding_txo, update
10059 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10060 channel_closures.push_back((events::Event::ChannelClosed {
10061 channel_id: channel.context.channel_id(),
10062 user_channel_id: channel.context.get_user_id(),
10063 reason: ClosureReason::OutdatedChannelManager,
10064 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10065 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10067 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10068 let mut found_htlc = false;
10069 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10070 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10073 // If we have some HTLCs in the channel which are not present in the newer
10074 // ChannelMonitor, they have been removed and should be failed back to
10075 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10076 // were actually claimed we'd have generated and ensured the previous-hop
10077 // claim update ChannelMonitor updates were persisted prior to persising
10078 // the ChannelMonitor update for the forward leg, so attempting to fail the
10079 // backwards leg of the HTLC will simply be rejected.
10080 log_info!(args.logger,
10081 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10082 &channel.context.channel_id(), &payment_hash);
10083 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10087 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10088 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10089 monitor.get_latest_update_id());
10090 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10091 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10093 if channel.context.is_funding_broadcast() {
10094 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
10096 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10097 hash_map::Entry::Occupied(mut entry) => {
10098 let by_id_map = entry.get_mut();
10099 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10101 hash_map::Entry::Vacant(entry) => {
10102 let mut by_id_map = HashMap::new();
10103 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10104 entry.insert(by_id_map);
10108 } else if channel.is_awaiting_initial_mon_persist() {
10109 // If we were persisted and shut down while the initial ChannelMonitor persistence
10110 // was in-progress, we never broadcasted the funding transaction and can still
10111 // safely discard the channel.
10112 let _ = channel.context.force_shutdown(false);
10113 channel_closures.push_back((events::Event::ChannelClosed {
10114 channel_id: channel.context.channel_id(),
10115 user_channel_id: channel.context.get_user_id(),
10116 reason: ClosureReason::DisconnectedPeer,
10117 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10118 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10121 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10122 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10123 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10124 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10125 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10126 return Err(DecodeError::InvalidValue);
10130 for (funding_txo, _) in args.channel_monitors.iter() {
10131 if !funding_txo_set.contains(funding_txo) {
10132 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
10133 &funding_txo.to_channel_id());
10134 let monitor_update = ChannelMonitorUpdate {
10135 update_id: CLOSED_CHANNEL_UPDATE_ID,
10136 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10138 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
10142 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10143 let forward_htlcs_count: u64 = Readable::read(reader)?;
10144 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10145 for _ in 0..forward_htlcs_count {
10146 let short_channel_id = Readable::read(reader)?;
10147 let pending_forwards_count: u64 = Readable::read(reader)?;
10148 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10149 for _ in 0..pending_forwards_count {
10150 pending_forwards.push(Readable::read(reader)?);
10152 forward_htlcs.insert(short_channel_id, pending_forwards);
10155 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10156 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10157 for _ in 0..claimable_htlcs_count {
10158 let payment_hash = Readable::read(reader)?;
10159 let previous_hops_len: u64 = Readable::read(reader)?;
10160 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10161 for _ in 0..previous_hops_len {
10162 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10164 claimable_htlcs_list.push((payment_hash, previous_hops));
10167 let peer_state_from_chans = |channel_by_id| {
10170 inbound_channel_request_by_id: HashMap::new(),
10171 latest_features: InitFeatures::empty(),
10172 pending_msg_events: Vec::new(),
10173 in_flight_monitor_updates: BTreeMap::new(),
10174 monitor_update_blocked_actions: BTreeMap::new(),
10175 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10176 is_connected: false,
10180 let peer_count: u64 = Readable::read(reader)?;
10181 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10182 for _ in 0..peer_count {
10183 let peer_pubkey = Readable::read(reader)?;
10184 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
10185 let mut peer_state = peer_state_from_chans(peer_chans);
10186 peer_state.latest_features = Readable::read(reader)?;
10187 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10190 let event_count: u64 = Readable::read(reader)?;
10191 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10192 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10193 for _ in 0..event_count {
10194 match MaybeReadable::read(reader)? {
10195 Some(event) => pending_events_read.push_back((event, None)),
10200 let background_event_count: u64 = Readable::read(reader)?;
10201 for _ in 0..background_event_count {
10202 match <u8 as Readable>::read(reader)? {
10204 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10205 // however we really don't (and never did) need them - we regenerate all
10206 // on-startup monitor updates.
10207 let _: OutPoint = Readable::read(reader)?;
10208 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10210 _ => return Err(DecodeError::InvalidValue),
10214 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10215 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10217 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10218 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10219 for _ in 0..pending_inbound_payment_count {
10220 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10221 return Err(DecodeError::InvalidValue);
10225 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10226 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10227 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10228 for _ in 0..pending_outbound_payments_count_compat {
10229 let session_priv = Readable::read(reader)?;
10230 let payment = PendingOutboundPayment::Legacy {
10231 session_privs: [session_priv].iter().cloned().collect()
10233 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10234 return Err(DecodeError::InvalidValue)
10238 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10239 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10240 let mut pending_outbound_payments = None;
10241 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
10242 let mut received_network_pubkey: Option<PublicKey> = None;
10243 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10244 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10245 let mut claimable_htlc_purposes = None;
10246 let mut claimable_htlc_onion_fields = None;
10247 let mut pending_claiming_payments = Some(HashMap::new());
10248 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10249 let mut events_override = None;
10250 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10251 read_tlv_fields!(reader, {
10252 (1, pending_outbound_payments_no_retry, option),
10253 (2, pending_intercepted_htlcs, option),
10254 (3, pending_outbound_payments, option),
10255 (4, pending_claiming_payments, option),
10256 (5, received_network_pubkey, option),
10257 (6, monitor_update_blocked_actions_per_peer, option),
10258 (7, fake_scid_rand_bytes, option),
10259 (8, events_override, option),
10260 (9, claimable_htlc_purposes, optional_vec),
10261 (10, in_flight_monitor_updates, option),
10262 (11, probing_cookie_secret, option),
10263 (13, claimable_htlc_onion_fields, optional_vec),
10265 if fake_scid_rand_bytes.is_none() {
10266 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10269 if probing_cookie_secret.is_none() {
10270 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10273 if let Some(events) = events_override {
10274 pending_events_read = events;
10277 if !channel_closures.is_empty() {
10278 pending_events_read.append(&mut channel_closures);
10281 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10282 pending_outbound_payments = Some(pending_outbound_payments_compat);
10283 } else if pending_outbound_payments.is_none() {
10284 let mut outbounds = HashMap::new();
10285 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10286 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10288 pending_outbound_payments = Some(outbounds);
10290 let pending_outbounds = OutboundPayments {
10291 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10292 retry_lock: Mutex::new(())
10295 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10296 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10297 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10298 // replayed, and for each monitor update we have to replay we have to ensure there's a
10299 // `ChannelMonitor` for it.
10301 // In order to do so we first walk all of our live channels (so that we can check their
10302 // state immediately after doing the update replays, when we have the `update_id`s
10303 // available) and then walk any remaining in-flight updates.
10305 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10306 let mut pending_background_events = Vec::new();
10307 macro_rules! handle_in_flight_updates {
10308 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10309 $monitor: expr, $peer_state: expr, $channel_info_log: expr
10311 let mut max_in_flight_update_id = 0;
10312 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10313 for update in $chan_in_flight_upds.iter() {
10314 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10315 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
10316 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10317 pending_background_events.push(
10318 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10319 counterparty_node_id: $counterparty_node_id,
10320 funding_txo: $funding_txo,
10321 update: update.clone(),
10324 if $chan_in_flight_upds.is_empty() {
10325 // We had some updates to apply, but it turns out they had completed before we
10326 // were serialized, we just weren't notified of that. Thus, we may have to run
10327 // the completion actions for any monitor updates, but otherwise are done.
10328 pending_background_events.push(
10329 BackgroundEvent::MonitorUpdatesComplete {
10330 counterparty_node_id: $counterparty_node_id,
10331 channel_id: $funding_txo.to_channel_id(),
10334 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10335 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
10336 return Err(DecodeError::InvalidValue);
10338 max_in_flight_update_id
10342 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10343 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10344 let peer_state = &mut *peer_state_lock;
10345 for phase in peer_state.channel_by_id.values() {
10346 if let ChannelPhase::Funded(chan) = phase {
10347 // Channels that were persisted have to be funded, otherwise they should have been
10349 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10350 let monitor = args.channel_monitors.get(&funding_txo)
10351 .expect("We already checked for monitor presence when loading channels");
10352 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10353 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10354 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10355 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10356 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10357 funding_txo, monitor, peer_state, ""));
10360 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10361 // If the channel is ahead of the monitor, return InvalidValue:
10362 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10363 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10364 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10365 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10366 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10367 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10368 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10369 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10370 return Err(DecodeError::InvalidValue);
10373 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10374 // created in this `channel_by_id` map.
10375 debug_assert!(false);
10376 return Err(DecodeError::InvalidValue);
10381 if let Some(in_flight_upds) = in_flight_monitor_updates {
10382 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10383 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10384 // Now that we've removed all the in-flight monitor updates for channels that are
10385 // still open, we need to replay any monitor updates that are for closed channels,
10386 // creating the neccessary peer_state entries as we go.
10387 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10388 Mutex::new(peer_state_from_chans(HashMap::new()))
10390 let mut peer_state = peer_state_mutex.lock().unwrap();
10391 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10392 funding_txo, monitor, peer_state, "closed ");
10394 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10395 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
10396 &funding_txo.to_channel_id());
10397 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10398 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10399 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10400 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10401 return Err(DecodeError::InvalidValue);
10406 // Note that we have to do the above replays before we push new monitor updates.
10407 pending_background_events.append(&mut close_background_events);
10409 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10410 // should ensure we try them again on the inbound edge. We put them here and do so after we
10411 // have a fully-constructed `ChannelManager` at the end.
10412 let mut pending_claims_to_replay = Vec::new();
10415 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10416 // ChannelMonitor data for any channels for which we do not have authorative state
10417 // (i.e. those for which we just force-closed above or we otherwise don't have a
10418 // corresponding `Channel` at all).
10419 // This avoids several edge-cases where we would otherwise "forget" about pending
10420 // payments which are still in-flight via their on-chain state.
10421 // We only rebuild the pending payments map if we were most recently serialized by
10423 for (_, monitor) in args.channel_monitors.iter() {
10424 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
10425 if counterparty_opt.is_none() {
10426 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10427 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10428 if path.hops.is_empty() {
10429 log_error!(args.logger, "Got an empty path for a pending payment");
10430 return Err(DecodeError::InvalidValue);
10433 let path_amt = path.final_value_msat();
10434 let mut session_priv_bytes = [0; 32];
10435 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10436 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10437 hash_map::Entry::Occupied(mut entry) => {
10438 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10439 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10440 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
10442 hash_map::Entry::Vacant(entry) => {
10443 let path_fee = path.fee_msat();
10444 entry.insert(PendingOutboundPayment::Retryable {
10445 retry_strategy: None,
10446 attempts: PaymentAttempts::new(),
10447 payment_params: None,
10448 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
10449 payment_hash: htlc.payment_hash,
10450 payment_secret: None, // only used for retries, and we'll never retry on startup
10451 payment_metadata: None, // only used for retries, and we'll never retry on startup
10452 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10453 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10454 pending_amt_msat: path_amt,
10455 pending_fee_msat: Some(path_fee),
10456 total_msat: path_amt,
10457 starting_block_height: best_block_height,
10458 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10460 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10461 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10466 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10467 match htlc_source {
10468 HTLCSource::PreviousHopData(prev_hop_data) => {
10469 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10470 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10471 info.prev_htlc_id == prev_hop_data.htlc_id
10473 // The ChannelMonitor is now responsible for this HTLC's
10474 // failure/success and will let us know what its outcome is. If we
10475 // still have an entry for this HTLC in `forward_htlcs` or
10476 // `pending_intercepted_htlcs`, we were apparently not persisted after
10477 // the monitor was when forwarding the payment.
10478 forward_htlcs.retain(|_, forwards| {
10479 forwards.retain(|forward| {
10480 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10481 if pending_forward_matches_htlc(&htlc_info) {
10482 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10483 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10488 !forwards.is_empty()
10490 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10491 if pending_forward_matches_htlc(&htlc_info) {
10492 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10493 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10494 pending_events_read.retain(|(event, _)| {
10495 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10496 intercepted_id != ev_id
10503 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10504 if let Some(preimage) = preimage_opt {
10505 let pending_events = Mutex::new(pending_events_read);
10506 // Note that we set `from_onchain` to "false" here,
10507 // deliberately keeping the pending payment around forever.
10508 // Given it should only occur when we have a channel we're
10509 // force-closing for being stale that's okay.
10510 // The alternative would be to wipe the state when claiming,
10511 // generating a `PaymentPathSuccessful` event but regenerating
10512 // it and the `PaymentSent` on every restart until the
10513 // `ChannelMonitor` is removed.
10515 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10516 channel_funding_outpoint: monitor.get_funding_txo().0,
10517 counterparty_node_id: path.hops[0].pubkey,
10519 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
10520 path, false, compl_action, &pending_events, &args.logger);
10521 pending_events_read = pending_events.into_inner().unwrap();
10528 // Whether the downstream channel was closed or not, try to re-apply any payment
10529 // preimages from it which may be needed in upstream channels for forwarded
10531 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
10533 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
10534 if let HTLCSource::PreviousHopData(_) = htlc_source {
10535 if let Some(payment_preimage) = preimage_opt {
10536 Some((htlc_source, payment_preimage, htlc.amount_msat,
10537 // Check if `counterparty_opt.is_none()` to see if the
10538 // downstream chan is closed (because we don't have a
10539 // channel_id -> peer map entry).
10540 counterparty_opt.is_none(),
10541 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
10542 monitor.get_funding_txo().0))
10545 // If it was an outbound payment, we've handled it above - if a preimage
10546 // came in and we persisted the `ChannelManager` we either handled it and
10547 // are good to go or the channel force-closed - we don't have to handle the
10548 // channel still live case here.
10552 for tuple in outbound_claimed_htlcs_iter {
10553 pending_claims_to_replay.push(tuple);
10558 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
10559 // If we have pending HTLCs to forward, assume we either dropped a
10560 // `PendingHTLCsForwardable` or the user received it but never processed it as they
10561 // shut down before the timer hit. Either way, set the time_forwardable to a small
10562 // constant as enough time has likely passed that we should simply handle the forwards
10563 // now, or at least after the user gets a chance to reconnect to our peers.
10564 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
10565 time_forwardable: Duration::from_secs(2),
10569 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
10570 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
10572 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
10573 if let Some(purposes) = claimable_htlc_purposes {
10574 if purposes.len() != claimable_htlcs_list.len() {
10575 return Err(DecodeError::InvalidValue);
10577 if let Some(onion_fields) = claimable_htlc_onion_fields {
10578 if onion_fields.len() != claimable_htlcs_list.len() {
10579 return Err(DecodeError::InvalidValue);
10581 for (purpose, (onion, (payment_hash, htlcs))) in
10582 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
10584 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10585 purpose, htlcs, onion_fields: onion,
10587 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10590 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
10591 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10592 purpose, htlcs, onion_fields: None,
10594 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10598 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
10599 // include a `_legacy_hop_data` in the `OnionPayload`.
10600 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
10601 if htlcs.is_empty() {
10602 return Err(DecodeError::InvalidValue);
10604 let purpose = match &htlcs[0].onion_payload {
10605 OnionPayload::Invoice { _legacy_hop_data } => {
10606 if let Some(hop_data) = _legacy_hop_data {
10607 events::PaymentPurpose::InvoicePayment {
10608 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
10609 Some(inbound_payment) => inbound_payment.payment_preimage,
10610 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
10611 Ok((payment_preimage, _)) => payment_preimage,
10613 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
10614 return Err(DecodeError::InvalidValue);
10618 payment_secret: hop_data.payment_secret,
10620 } else { return Err(DecodeError::InvalidValue); }
10622 OnionPayload::Spontaneous(payment_preimage) =>
10623 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
10625 claimable_payments.insert(payment_hash, ClaimablePayment {
10626 purpose, htlcs, onion_fields: None,
10631 let mut secp_ctx = Secp256k1::new();
10632 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
10634 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
10636 Err(()) => return Err(DecodeError::InvalidValue)
10638 if let Some(network_pubkey) = received_network_pubkey {
10639 if network_pubkey != our_network_pubkey {
10640 log_error!(args.logger, "Key that was generated does not match the existing key.");
10641 return Err(DecodeError::InvalidValue);
10645 let mut outbound_scid_aliases = HashSet::new();
10646 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10647 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10648 let peer_state = &mut *peer_state_lock;
10649 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10650 if let ChannelPhase::Funded(chan) = phase {
10651 if chan.context.outbound_scid_alias() == 0 {
10652 let mut outbound_scid_alias;
10654 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10655 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10656 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10658 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10659 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10660 // Note that in rare cases its possible to hit this while reading an older
10661 // channel if we just happened to pick a colliding outbound alias above.
10662 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10663 return Err(DecodeError::InvalidValue);
10665 if chan.context.is_usable() {
10666 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10667 // Note that in rare cases its possible to hit this while reading an older
10668 // channel if we just happened to pick a colliding outbound alias above.
10669 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10670 return Err(DecodeError::InvalidValue);
10674 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10675 // created in this `channel_by_id` map.
10676 debug_assert!(false);
10677 return Err(DecodeError::InvalidValue);
10682 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10684 for (_, monitor) in args.channel_monitors.iter() {
10685 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10686 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10687 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10688 let mut claimable_amt_msat = 0;
10689 let mut receiver_node_id = Some(our_network_pubkey);
10690 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10691 if phantom_shared_secret.is_some() {
10692 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10693 .expect("Failed to get node_id for phantom node recipient");
10694 receiver_node_id = Some(phantom_pubkey)
10696 for claimable_htlc in &payment.htlcs {
10697 claimable_amt_msat += claimable_htlc.value;
10699 // Add a holding-cell claim of the payment to the Channel, which should be
10700 // applied ~immediately on peer reconnection. Because it won't generate a
10701 // new commitment transaction we can just provide the payment preimage to
10702 // the corresponding ChannelMonitor and nothing else.
10704 // We do so directly instead of via the normal ChannelMonitor update
10705 // procedure as the ChainMonitor hasn't yet been initialized, implying
10706 // we're not allowed to call it directly yet. Further, we do the update
10707 // without incrementing the ChannelMonitor update ID as there isn't any
10709 // If we were to generate a new ChannelMonitor update ID here and then
10710 // crash before the user finishes block connect we'd end up force-closing
10711 // this channel as well. On the flip side, there's no harm in restarting
10712 // without the new monitor persisted - we'll end up right back here on
10714 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
10715 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
10716 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
10717 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10718 let peer_state = &mut *peer_state_lock;
10719 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
10720 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
10723 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
10724 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
10727 pending_events_read.push_back((events::Event::PaymentClaimed {
10730 purpose: payment.purpose,
10731 amount_msat: claimable_amt_msat,
10732 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
10733 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10739 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10740 if let Some(peer_state) = per_peer_state.get(&node_id) {
10741 for (_, actions) in monitor_update_blocked_actions.iter() {
10742 for action in actions.iter() {
10743 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10744 downstream_counterparty_and_funding_outpoint:
10745 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10747 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10748 log_trace!(args.logger,
10749 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
10750 blocked_channel_outpoint.to_channel_id());
10751 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10752 .entry(blocked_channel_outpoint.to_channel_id())
10753 .or_insert_with(Vec::new).push(blocking_action.clone());
10755 // If the channel we were blocking has closed, we don't need to
10756 // worry about it - the blocked monitor update should never have
10757 // been released from the `Channel` object so it can't have
10758 // completed, and if the channel closed there's no reason to bother
10762 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
10763 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
10767 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10769 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
10770 return Err(DecodeError::InvalidValue);
10774 let channel_manager = ChannelManager {
10776 fee_estimator: bounded_fee_estimator,
10777 chain_monitor: args.chain_monitor,
10778 tx_broadcaster: args.tx_broadcaster,
10779 router: args.router,
10781 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10783 inbound_payment_key: expanded_inbound_key,
10784 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10785 pending_outbound_payments: pending_outbounds,
10786 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10788 forward_htlcs: Mutex::new(forward_htlcs),
10789 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10790 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10791 id_to_peer: Mutex::new(id_to_peer),
10792 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10793 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10795 probing_cookie_secret: probing_cookie_secret.unwrap(),
10797 our_network_pubkey,
10800 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10802 per_peer_state: FairRwLock::new(per_peer_state),
10804 pending_events: Mutex::new(pending_events_read),
10805 pending_events_processor: AtomicBool::new(false),
10806 pending_background_events: Mutex::new(pending_background_events),
10807 total_consistency_lock: RwLock::new(()),
10808 background_events_processed_since_startup: AtomicBool::new(false),
10810 event_persist_notifier: Notifier::new(),
10811 needs_persist_flag: AtomicBool::new(false),
10813 funding_batch_states: Mutex::new(BTreeMap::new()),
10815 pending_offers_messages: Mutex::new(Vec::new()),
10817 entropy_source: args.entropy_source,
10818 node_signer: args.node_signer,
10819 signer_provider: args.signer_provider,
10821 logger: args.logger,
10822 default_configuration: args.default_config,
10825 for htlc_source in failed_htlcs.drain(..) {
10826 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
10827 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
10828 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
10829 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
10832 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
10833 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
10834 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
10835 // channel is closed we just assume that it probably came from an on-chain claim.
10836 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
10837 downstream_closed, true, downstream_node_id, downstream_funding);
10840 //TODO: Broadcast channel update for closed channels, but only after we've made a
10841 //connection or two.
10843 Ok((best_block_hash.clone(), channel_manager))
10849 use bitcoin::hashes::Hash;
10850 use bitcoin::hashes::sha256::Hash as Sha256;
10851 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
10852 use core::sync::atomic::Ordering;
10853 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
10854 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
10855 use crate::ln::ChannelId;
10856 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
10857 use crate::ln::functional_test_utils::*;
10858 use crate::ln::msgs::{self, ErrorAction};
10859 use crate::ln::msgs::ChannelMessageHandler;
10860 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
10861 use crate::util::errors::APIError;
10862 use crate::util::test_utils;
10863 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
10864 use crate::sign::EntropySource;
10867 fn test_notify_limits() {
10868 // Check that a few cases which don't require the persistence of a new ChannelManager,
10869 // indeed, do not cause the persistence of a new ChannelManager.
10870 let chanmon_cfgs = create_chanmon_cfgs(3);
10871 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10872 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
10873 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10875 // All nodes start with a persistable update pending as `create_network` connects each node
10876 // with all other nodes to make most tests simpler.
10877 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10878 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10879 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10881 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10883 // We check that the channel info nodes have doesn't change too early, even though we try
10884 // to connect messages with new values
10885 chan.0.contents.fee_base_msat *= 2;
10886 chan.1.contents.fee_base_msat *= 2;
10887 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
10888 &nodes[1].node.get_our_node_id()).pop().unwrap();
10889 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
10890 &nodes[0].node.get_our_node_id()).pop().unwrap();
10892 // The first two nodes (which opened a channel) should now require fresh persistence
10893 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10894 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10895 // ... but the last node should not.
10896 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10897 // After persisting the first two nodes they should no longer need fresh persistence.
10898 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10899 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10901 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
10902 // about the channel.
10903 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
10904 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
10905 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10907 // The nodes which are a party to the channel should also ignore messages from unrelated
10909 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10910 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10911 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10912 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10913 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10914 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10916 // At this point the channel info given by peers should still be the same.
10917 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10918 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10920 // An earlier version of handle_channel_update didn't check the directionality of the
10921 // update message and would always update the local fee info, even if our peer was
10922 // (spuriously) forwarding us our own channel_update.
10923 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
10924 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
10925 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
10927 // First deliver each peers' own message, checking that the node doesn't need to be
10928 // persisted and that its channel info remains the same.
10929 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
10930 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
10931 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10932 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10933 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10934 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10936 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
10937 // the channel info has updated.
10938 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
10939 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
10940 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10941 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10942 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
10943 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
10947 fn test_keysend_dup_hash_partial_mpp() {
10948 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
10950 let chanmon_cfgs = create_chanmon_cfgs(2);
10951 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10952 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10953 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10954 create_announced_chan_between_nodes(&nodes, 0, 1);
10956 // First, send a partial MPP payment.
10957 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
10958 let mut mpp_route = route.clone();
10959 mpp_route.paths.push(mpp_route.paths[0].clone());
10961 let payment_id = PaymentId([42; 32]);
10962 // Use the utility function send_payment_along_path to send the payment with MPP data which
10963 // indicates there are more HTLCs coming.
10964 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
10965 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
10966 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
10967 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
10968 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
10969 check_added_monitors!(nodes[0], 1);
10970 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10971 assert_eq!(events.len(), 1);
10972 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
10974 // Next, send a keysend payment with the same payment_hash and make sure it fails.
10975 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10976 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10977 check_added_monitors!(nodes[0], 1);
10978 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10979 assert_eq!(events.len(), 1);
10980 let ev = events.drain(..).next().unwrap();
10981 let payment_event = SendEvent::from_event(ev);
10982 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10983 check_added_monitors!(nodes[1], 0);
10984 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10985 expect_pending_htlcs_forwardable!(nodes[1]);
10986 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
10987 check_added_monitors!(nodes[1], 1);
10988 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10989 assert!(updates.update_add_htlcs.is_empty());
10990 assert!(updates.update_fulfill_htlcs.is_empty());
10991 assert_eq!(updates.update_fail_htlcs.len(), 1);
10992 assert!(updates.update_fail_malformed_htlcs.is_empty());
10993 assert!(updates.update_fee.is_none());
10994 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10995 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10996 expect_payment_failed!(nodes[0], our_payment_hash, true);
10998 // Send the second half of the original MPP payment.
10999 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
11000 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11001 check_added_monitors!(nodes[0], 1);
11002 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11003 assert_eq!(events.len(), 1);
11004 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11006 // Claim the full MPP payment. Note that we can't use a test utility like
11007 // claim_funds_along_route because the ordering of the messages causes the second half of the
11008 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11009 // lightning messages manually.
11010 nodes[1].node.claim_funds(payment_preimage);
11011 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11012 check_added_monitors!(nodes[1], 2);
11014 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11015 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11016 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11017 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11018 check_added_monitors!(nodes[0], 1);
11019 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11020 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11021 check_added_monitors!(nodes[1], 1);
11022 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11023 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11024 check_added_monitors!(nodes[1], 1);
11025 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11026 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11027 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11028 check_added_monitors!(nodes[0], 1);
11029 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11030 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11031 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11032 check_added_monitors!(nodes[0], 1);
11033 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11034 check_added_monitors!(nodes[1], 1);
11035 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11036 check_added_monitors!(nodes[1], 1);
11037 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11038 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11039 check_added_monitors!(nodes[0], 1);
11041 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11042 // path's success and a PaymentPathSuccessful event for each path's success.
11043 let events = nodes[0].node.get_and_clear_pending_events();
11044 assert_eq!(events.len(), 2);
11046 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11047 assert_eq!(payment_id, *actual_payment_id);
11048 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11049 assert_eq!(route.paths[0], *path);
11051 _ => panic!("Unexpected event"),
11054 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11055 assert_eq!(payment_id, *actual_payment_id);
11056 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11057 assert_eq!(route.paths[0], *path);
11059 _ => panic!("Unexpected event"),
11064 fn test_keysend_dup_payment_hash() {
11065 do_test_keysend_dup_payment_hash(false);
11066 do_test_keysend_dup_payment_hash(true);
11069 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11070 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11071 // outbound regular payment fails as expected.
11072 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11073 // fails as expected.
11074 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11075 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11076 // reject MPP keysend payments, since in this case where the payment has no payment
11077 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11078 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11079 // payment secrets and reject otherwise.
11080 let chanmon_cfgs = create_chanmon_cfgs(2);
11081 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11082 let mut mpp_keysend_cfg = test_default_channel_config();
11083 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11084 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11085 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11086 create_announced_chan_between_nodes(&nodes, 0, 1);
11087 let scorer = test_utils::TestScorer::new();
11088 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11090 // To start (1), send a regular payment but don't claim it.
11091 let expected_route = [&nodes[1]];
11092 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11094 // Next, attempt a keysend payment and make sure it fails.
11095 let route_params = RouteParameters::from_payment_params_and_value(
11096 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11097 TEST_FINAL_CLTV, false), 100_000);
11098 let route = find_route(
11099 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11100 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11102 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11103 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11104 check_added_monitors!(nodes[0], 1);
11105 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11106 assert_eq!(events.len(), 1);
11107 let ev = events.drain(..).next().unwrap();
11108 let payment_event = SendEvent::from_event(ev);
11109 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11110 check_added_monitors!(nodes[1], 0);
11111 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11112 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11113 // fails), the second will process the resulting failure and fail the HTLC backward
11114 expect_pending_htlcs_forwardable!(nodes[1]);
11115 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11116 check_added_monitors!(nodes[1], 1);
11117 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11118 assert!(updates.update_add_htlcs.is_empty());
11119 assert!(updates.update_fulfill_htlcs.is_empty());
11120 assert_eq!(updates.update_fail_htlcs.len(), 1);
11121 assert!(updates.update_fail_malformed_htlcs.is_empty());
11122 assert!(updates.update_fee.is_none());
11123 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11124 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11125 expect_payment_failed!(nodes[0], payment_hash, true);
11127 // Finally, claim the original payment.
11128 claim_payment(&nodes[0], &expected_route, payment_preimage);
11130 // To start (2), send a keysend payment but don't claim it.
11131 let payment_preimage = PaymentPreimage([42; 32]);
11132 let route = find_route(
11133 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11134 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11136 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11137 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11138 check_added_monitors!(nodes[0], 1);
11139 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11140 assert_eq!(events.len(), 1);
11141 let event = events.pop().unwrap();
11142 let path = vec![&nodes[1]];
11143 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11145 // Next, attempt a regular payment and make sure it fails.
11146 let payment_secret = PaymentSecret([43; 32]);
11147 nodes[0].node.send_payment_with_route(&route, payment_hash,
11148 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11149 check_added_monitors!(nodes[0], 1);
11150 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11151 assert_eq!(events.len(), 1);
11152 let ev = events.drain(..).next().unwrap();
11153 let payment_event = SendEvent::from_event(ev);
11154 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11155 check_added_monitors!(nodes[1], 0);
11156 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11157 expect_pending_htlcs_forwardable!(nodes[1]);
11158 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11159 check_added_monitors!(nodes[1], 1);
11160 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11161 assert!(updates.update_add_htlcs.is_empty());
11162 assert!(updates.update_fulfill_htlcs.is_empty());
11163 assert_eq!(updates.update_fail_htlcs.len(), 1);
11164 assert!(updates.update_fail_malformed_htlcs.is_empty());
11165 assert!(updates.update_fee.is_none());
11166 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11167 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11168 expect_payment_failed!(nodes[0], payment_hash, true);
11170 // Finally, succeed the keysend payment.
11171 claim_payment(&nodes[0], &expected_route, payment_preimage);
11173 // To start (3), send a keysend payment but don't claim it.
11174 let payment_id_1 = PaymentId([44; 32]);
11175 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11176 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11177 check_added_monitors!(nodes[0], 1);
11178 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11179 assert_eq!(events.len(), 1);
11180 let event = events.pop().unwrap();
11181 let path = vec![&nodes[1]];
11182 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11184 // Next, attempt a keysend payment and make sure it fails.
11185 let route_params = RouteParameters::from_payment_params_and_value(
11186 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11189 let route = find_route(
11190 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11191 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11193 let payment_id_2 = PaymentId([45; 32]);
11194 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11195 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11196 check_added_monitors!(nodes[0], 1);
11197 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11198 assert_eq!(events.len(), 1);
11199 let ev = events.drain(..).next().unwrap();
11200 let payment_event = SendEvent::from_event(ev);
11201 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11202 check_added_monitors!(nodes[1], 0);
11203 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11204 expect_pending_htlcs_forwardable!(nodes[1]);
11205 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11206 check_added_monitors!(nodes[1], 1);
11207 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11208 assert!(updates.update_add_htlcs.is_empty());
11209 assert!(updates.update_fulfill_htlcs.is_empty());
11210 assert_eq!(updates.update_fail_htlcs.len(), 1);
11211 assert!(updates.update_fail_malformed_htlcs.is_empty());
11212 assert!(updates.update_fee.is_none());
11213 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11214 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11215 expect_payment_failed!(nodes[0], payment_hash, true);
11217 // Finally, claim the original payment.
11218 claim_payment(&nodes[0], &expected_route, payment_preimage);
11222 fn test_keysend_hash_mismatch() {
11223 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11224 // preimage doesn't match the msg's payment hash.
11225 let chanmon_cfgs = create_chanmon_cfgs(2);
11226 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11227 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11228 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11230 let payer_pubkey = nodes[0].node.get_our_node_id();
11231 let payee_pubkey = nodes[1].node.get_our_node_id();
11233 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11234 let route_params = RouteParameters::from_payment_params_and_value(
11235 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11236 let network_graph = nodes[0].network_graph.clone();
11237 let first_hops = nodes[0].node.list_usable_channels();
11238 let scorer = test_utils::TestScorer::new();
11239 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11240 let route = find_route(
11241 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11242 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11245 let test_preimage = PaymentPreimage([42; 32]);
11246 let mismatch_payment_hash = PaymentHash([43; 32]);
11247 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11248 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11249 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11250 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11251 check_added_monitors!(nodes[0], 1);
11253 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11254 assert_eq!(updates.update_add_htlcs.len(), 1);
11255 assert!(updates.update_fulfill_htlcs.is_empty());
11256 assert!(updates.update_fail_htlcs.is_empty());
11257 assert!(updates.update_fail_malformed_htlcs.is_empty());
11258 assert!(updates.update_fee.is_none());
11259 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11261 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11265 fn test_keysend_msg_with_secret_err() {
11266 // Test that we error as expected if we receive a keysend payment that includes a payment
11267 // secret when we don't support MPP keysend.
11268 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11269 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11270 let chanmon_cfgs = create_chanmon_cfgs(2);
11271 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11272 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11273 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11275 let payer_pubkey = nodes[0].node.get_our_node_id();
11276 let payee_pubkey = nodes[1].node.get_our_node_id();
11278 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11279 let route_params = RouteParameters::from_payment_params_and_value(
11280 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11281 let network_graph = nodes[0].network_graph.clone();
11282 let first_hops = nodes[0].node.list_usable_channels();
11283 let scorer = test_utils::TestScorer::new();
11284 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11285 let route = find_route(
11286 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11287 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11290 let test_preimage = PaymentPreimage([42; 32]);
11291 let test_secret = PaymentSecret([43; 32]);
11292 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
11293 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11294 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11295 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11296 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11297 PaymentId(payment_hash.0), None, session_privs).unwrap();
11298 check_added_monitors!(nodes[0], 1);
11300 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11301 assert_eq!(updates.update_add_htlcs.len(), 1);
11302 assert!(updates.update_fulfill_htlcs.is_empty());
11303 assert!(updates.update_fail_htlcs.is_empty());
11304 assert!(updates.update_fail_malformed_htlcs.is_empty());
11305 assert!(updates.update_fee.is_none());
11306 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11308 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11312 fn test_multi_hop_missing_secret() {
11313 let chanmon_cfgs = create_chanmon_cfgs(4);
11314 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11315 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11316 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11318 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11319 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11320 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11321 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11323 // Marshall an MPP route.
11324 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11325 let path = route.paths[0].clone();
11326 route.paths.push(path);
11327 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11328 route.paths[0].hops[0].short_channel_id = chan_1_id;
11329 route.paths[0].hops[1].short_channel_id = chan_3_id;
11330 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11331 route.paths[1].hops[0].short_channel_id = chan_2_id;
11332 route.paths[1].hops[1].short_channel_id = chan_4_id;
11334 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11335 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11337 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11338 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11340 _ => panic!("unexpected error")
11345 fn test_drop_disconnected_peers_when_removing_channels() {
11346 let chanmon_cfgs = create_chanmon_cfgs(2);
11347 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11348 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11349 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11351 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11353 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11354 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11356 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11357 check_closed_broadcast!(nodes[0], true);
11358 check_added_monitors!(nodes[0], 1);
11359 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11362 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11363 // disconnected and the channel between has been force closed.
11364 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11365 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11366 assert_eq!(nodes_0_per_peer_state.len(), 1);
11367 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11370 nodes[0].node.timer_tick_occurred();
11373 // Assert that nodes[1] has now been removed.
11374 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11379 fn bad_inbound_payment_hash() {
11380 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11381 let chanmon_cfgs = create_chanmon_cfgs(2);
11382 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11383 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11384 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11386 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11387 let payment_data = msgs::FinalOnionHopData {
11389 total_msat: 100_000,
11392 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11393 // payment verification fails as expected.
11394 let mut bad_payment_hash = payment_hash.clone();
11395 bad_payment_hash.0[0] += 1;
11396 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11397 Ok(_) => panic!("Unexpected ok"),
11399 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11403 // Check that using the original payment hash succeeds.
11404 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11408 fn test_id_to_peer_coverage() {
11409 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
11410 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11411 // the channel is successfully closed.
11412 let chanmon_cfgs = create_chanmon_cfgs(2);
11413 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11414 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11415 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11417 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11418 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11419 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11420 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11421 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11423 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11424 let channel_id = ChannelId::from_bytes(tx.txid().into_inner());
11426 // Ensure that the `id_to_peer` map is empty until either party has received the
11427 // funding transaction, and have the real `channel_id`.
11428 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11429 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11432 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11434 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
11435 // as it has the funding transaction.
11436 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11437 assert_eq!(nodes_0_lock.len(), 1);
11438 assert!(nodes_0_lock.contains_key(&channel_id));
11441 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11443 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11445 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11447 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11448 assert_eq!(nodes_0_lock.len(), 1);
11449 assert!(nodes_0_lock.contains_key(&channel_id));
11451 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11454 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
11455 // as it has the funding transaction.
11456 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11457 assert_eq!(nodes_1_lock.len(), 1);
11458 assert!(nodes_1_lock.contains_key(&channel_id));
11460 check_added_monitors!(nodes[1], 1);
11461 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11462 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11463 check_added_monitors!(nodes[0], 1);
11464 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11465 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11466 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11467 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11469 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11470 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11471 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11472 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11474 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11475 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11477 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
11478 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11479 // fee for the closing transaction has been negotiated and the parties has the other
11480 // party's signature for the fee negotiated closing transaction.)
11481 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11482 assert_eq!(nodes_0_lock.len(), 1);
11483 assert!(nodes_0_lock.contains_key(&channel_id));
11487 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11488 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11489 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11490 // kept in the `nodes[1]`'s `id_to_peer` map.
11491 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11492 assert_eq!(nodes_1_lock.len(), 1);
11493 assert!(nodes_1_lock.contains_key(&channel_id));
11496 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11498 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11499 // therefore has all it needs to fully close the channel (both signatures for the
11500 // closing transaction).
11501 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
11502 // fully closed by `nodes[0]`.
11503 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11505 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
11506 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11507 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11508 assert_eq!(nodes_1_lock.len(), 1);
11509 assert!(nodes_1_lock.contains_key(&channel_id));
11512 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
11514 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
11516 // Assert that the channel has now been removed from both parties `id_to_peer` map once
11517 // they both have everything required to fully close the channel.
11518 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11520 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
11522 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
11523 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
11526 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11527 let expected_message = format!("Not connected to node: {}", expected_public_key);
11528 check_api_error_message(expected_message, res_err)
11531 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11532 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
11533 check_api_error_message(expected_message, res_err)
11536 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
11537 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
11538 check_api_error_message(expected_message, res_err)
11541 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
11542 let expected_message = "No such channel awaiting to be accepted.".to_string();
11543 check_api_error_message(expected_message, res_err)
11546 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
11548 Err(APIError::APIMisuseError { err }) => {
11549 assert_eq!(err, expected_err_message);
11551 Err(APIError::ChannelUnavailable { err }) => {
11552 assert_eq!(err, expected_err_message);
11554 Ok(_) => panic!("Unexpected Ok"),
11555 Err(_) => panic!("Unexpected Error"),
11560 fn test_api_calls_with_unkown_counterparty_node() {
11561 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
11562 // expected if the `counterparty_node_id` is an unkown peer in the
11563 // `ChannelManager::per_peer_state` map.
11564 let chanmon_cfg = create_chanmon_cfgs(2);
11565 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11566 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11567 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11570 let channel_id = ChannelId::from_bytes([4; 32]);
11571 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
11572 let intercept_id = InterceptId([0; 32]);
11574 // Test the API functions.
11575 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
11577 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
11579 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
11581 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
11583 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
11585 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
11587 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
11591 fn test_api_calls_with_unavailable_channel() {
11592 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
11593 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
11594 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
11595 // the given `channel_id`.
11596 let chanmon_cfg = create_chanmon_cfgs(2);
11597 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11598 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11599 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11601 let counterparty_node_id = nodes[1].node.get_our_node_id();
11604 let channel_id = ChannelId::from_bytes([4; 32]);
11606 // Test the API functions.
11607 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
11609 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11611 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11613 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11615 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
11617 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
11621 fn test_connection_limiting() {
11622 // Test that we limit un-channel'd peers and un-funded channels properly.
11623 let chanmon_cfgs = create_chanmon_cfgs(2);
11624 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11625 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11626 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11628 // Note that create_network connects the nodes together for us
11630 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11631 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11633 let mut funding_tx = None;
11634 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11635 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11636 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11639 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11640 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
11641 funding_tx = Some(tx.clone());
11642 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
11643 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11645 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11646 check_added_monitors!(nodes[1], 1);
11647 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11649 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11651 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11652 check_added_monitors!(nodes[0], 1);
11653 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11655 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11658 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11659 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11660 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11661 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11662 open_channel_msg.temporary_channel_id);
11664 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11665 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11667 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11668 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11669 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11670 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11671 peer_pks.push(random_pk);
11672 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11673 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11676 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11677 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11678 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11679 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11680 }, true).unwrap_err();
11682 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11683 // them if we have too many un-channel'd peers.
11684 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11685 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11686 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11687 for ev in chan_closed_events {
11688 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11690 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11691 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11693 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11694 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11695 }, true).unwrap_err();
11697 // but of course if the connection is outbound its allowed...
11698 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11699 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11700 }, false).unwrap();
11701 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11703 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11704 // Even though we accept one more connection from new peers, we won't actually let them
11706 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11707 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11708 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11709 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11710 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11712 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11713 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11714 open_channel_msg.temporary_channel_id);
11716 // Of course, however, outbound channels are always allowed
11717 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
11718 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
11720 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
11721 // "protected" and can connect again.
11722 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
11723 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11724 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11726 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
11728 // Further, because the first channel was funded, we can open another channel with
11730 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11731 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11735 fn test_outbound_chans_unlimited() {
11736 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
11737 let chanmon_cfgs = create_chanmon_cfgs(2);
11738 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11739 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11740 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11742 // Note that create_network connects the nodes together for us
11744 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11745 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11747 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11748 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11749 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11750 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11753 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11755 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11756 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11757 open_channel_msg.temporary_channel_id);
11759 // but we can still open an outbound channel.
11760 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11761 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11763 // but even with such an outbound channel, additional inbound channels will still fail.
11764 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11765 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11766 open_channel_msg.temporary_channel_id);
11770 fn test_0conf_limiting() {
11771 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11772 // flag set and (sometimes) accept channels as 0conf.
11773 let chanmon_cfgs = create_chanmon_cfgs(2);
11774 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11775 let mut settings = test_default_channel_config();
11776 settings.manually_accept_inbound_channels = true;
11777 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11778 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11780 // Note that create_network connects the nodes together for us
11782 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11783 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11785 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11786 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11787 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11788 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11789 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11790 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11793 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11794 let events = nodes[1].node.get_and_clear_pending_events();
11796 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11797 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11799 _ => panic!("Unexpected event"),
11801 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11802 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11805 // If we try to accept a channel from another peer non-0conf it will fail.
11806 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11807 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11808 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11809 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11811 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11812 let events = nodes[1].node.get_and_clear_pending_events();
11814 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11815 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
11816 Err(APIError::APIMisuseError { err }) =>
11817 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
11821 _ => panic!("Unexpected event"),
11823 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11824 open_channel_msg.temporary_channel_id);
11826 // ...however if we accept the same channel 0conf it should work just fine.
11827 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11828 let events = nodes[1].node.get_and_clear_pending_events();
11830 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11831 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
11833 _ => panic!("Unexpected event"),
11835 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11839 fn reject_excessively_underpaying_htlcs() {
11840 let chanmon_cfg = create_chanmon_cfgs(1);
11841 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11842 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11843 let node = create_network(1, &node_cfg, &node_chanmgr);
11844 let sender_intended_amt_msat = 100;
11845 let extra_fee_msat = 10;
11846 let hop_data = msgs::InboundOnionPayload::Receive {
11848 outgoing_cltv_value: 42,
11849 payment_metadata: None,
11850 keysend_preimage: None,
11851 payment_data: Some(msgs::FinalOnionHopData {
11852 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11854 custom_tlvs: Vec::new(),
11856 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
11857 // intended amount, we fail the payment.
11858 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
11859 node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11860 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat))
11862 assert_eq!(err_code, 19);
11863 } else { panic!(); }
11865 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
11866 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
11868 outgoing_cltv_value: 42,
11869 payment_metadata: None,
11870 keysend_preimage: None,
11871 payment_data: Some(msgs::FinalOnionHopData {
11872 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11874 custom_tlvs: Vec::new(),
11876 assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11877 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok());
11881 fn test_final_incorrect_cltv(){
11882 let chanmon_cfg = create_chanmon_cfgs(1);
11883 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11884 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11885 let node = create_network(1, &node_cfg, &node_chanmgr);
11887 let result = node[0].node.construct_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
11889 outgoing_cltv_value: 22,
11890 payment_metadata: None,
11891 keysend_preimage: None,
11892 payment_data: Some(msgs::FinalOnionHopData {
11893 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
11895 custom_tlvs: Vec::new(),
11896 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None);
11898 // Should not return an error as this condition:
11899 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
11900 // is not satisfied.
11901 assert!(result.is_ok());
11905 fn test_inbound_anchors_manual_acceptance() {
11906 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11907 // flag set and (sometimes) accept channels as 0conf.
11908 let mut anchors_cfg = test_default_channel_config();
11909 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11911 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
11912 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
11914 let chanmon_cfgs = create_chanmon_cfgs(3);
11915 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11916 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
11917 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
11918 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11920 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11921 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11923 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11924 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11925 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
11926 match &msg_events[0] {
11927 MessageSendEvent::HandleError { node_id, action } => {
11928 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
11930 ErrorAction::SendErrorMessage { msg } =>
11931 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
11932 _ => panic!("Unexpected error action"),
11935 _ => panic!("Unexpected event"),
11938 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11939 let events = nodes[2].node.get_and_clear_pending_events();
11941 Event::OpenChannelRequest { temporary_channel_id, .. } =>
11942 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
11943 _ => panic!("Unexpected event"),
11945 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11949 fn test_anchors_zero_fee_htlc_tx_fallback() {
11950 // Tests that if both nodes support anchors, but the remote node does not want to accept
11951 // anchor channels at the moment, an error it sent to the local node such that it can retry
11952 // the channel without the anchors feature.
11953 let chanmon_cfgs = create_chanmon_cfgs(2);
11954 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11955 let mut anchors_config = test_default_channel_config();
11956 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11957 anchors_config.manually_accept_inbound_channels = true;
11958 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
11959 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11961 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
11962 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11963 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
11965 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11966 let events = nodes[1].node.get_and_clear_pending_events();
11968 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11969 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
11971 _ => panic!("Unexpected event"),
11974 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
11975 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
11977 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11978 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
11980 // Since nodes[1] should not have accepted the channel, it should
11981 // not have generated any events.
11982 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11986 fn test_update_channel_config() {
11987 let chanmon_cfg = create_chanmon_cfgs(2);
11988 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11989 let mut user_config = test_default_channel_config();
11990 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
11991 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11992 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
11993 let channel = &nodes[0].node.list_channels()[0];
11995 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
11996 let events = nodes[0].node.get_and_clear_pending_msg_events();
11997 assert_eq!(events.len(), 0);
11999 user_config.channel_config.forwarding_fee_base_msat += 10;
12000 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12001 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12002 let events = nodes[0].node.get_and_clear_pending_msg_events();
12003 assert_eq!(events.len(), 1);
12005 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12006 _ => panic!("expected BroadcastChannelUpdate event"),
12009 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12010 let events = nodes[0].node.get_and_clear_pending_msg_events();
12011 assert_eq!(events.len(), 0);
12013 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12014 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12015 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12016 ..Default::default()
12018 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12019 let events = nodes[0].node.get_and_clear_pending_msg_events();
12020 assert_eq!(events.len(), 1);
12022 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12023 _ => panic!("expected BroadcastChannelUpdate event"),
12026 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12027 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12028 forwarding_fee_proportional_millionths: Some(new_fee),
12029 ..Default::default()
12031 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12032 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12033 let events = nodes[0].node.get_and_clear_pending_msg_events();
12034 assert_eq!(events.len(), 1);
12036 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12037 _ => panic!("expected BroadcastChannelUpdate event"),
12040 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12041 // should be applied to ensure update atomicity as specified in the API docs.
12042 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12043 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12044 let new_fee = current_fee + 100;
12047 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12048 forwarding_fee_proportional_millionths: Some(new_fee),
12049 ..Default::default()
12051 Err(APIError::ChannelUnavailable { err: _ }),
12054 // Check that the fee hasn't changed for the channel that exists.
12055 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12056 let events = nodes[0].node.get_and_clear_pending_msg_events();
12057 assert_eq!(events.len(), 0);
12061 fn test_payment_display() {
12062 let payment_id = PaymentId([42; 32]);
12063 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12064 let payment_hash = PaymentHash([42; 32]);
12065 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12066 let payment_preimage = PaymentPreimage([42; 32]);
12067 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12071 fn test_trigger_lnd_force_close() {
12072 let chanmon_cfg = create_chanmon_cfgs(2);
12073 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12074 let user_config = test_default_channel_config();
12075 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12076 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12078 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12079 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12080 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12081 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12082 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12083 check_closed_broadcast(&nodes[0], 1, true);
12084 check_added_monitors(&nodes[0], 1);
12085 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12087 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12088 assert_eq!(txn.len(), 1);
12089 check_spends!(txn[0], funding_tx);
12092 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12093 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12095 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12096 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12098 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12099 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12100 }, false).unwrap();
12101 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12102 let channel_reestablish = get_event_msg!(
12103 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12105 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12107 // Alice should respond with an error since the channel isn't known, but a bogus
12108 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12109 // close even if it was an lnd node.
12110 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12111 assert_eq!(msg_events.len(), 2);
12112 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12113 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12114 assert_eq!(msg.next_local_commitment_number, 0);
12115 assert_eq!(msg.next_remote_commitment_number, 0);
12116 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12117 } else { panic!() };
12118 check_closed_broadcast(&nodes[1], 1, true);
12119 check_added_monitors(&nodes[1], 1);
12120 let expected_close_reason = ClosureReason::ProcessingError {
12121 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12123 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12125 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12126 assert_eq!(txn.len(), 1);
12127 check_spends!(txn[0], funding_tx);
12134 use crate::chain::Listen;
12135 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12136 use crate::sign::{KeysManager, InMemorySigner};
12137 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12138 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12139 use crate::ln::functional_test_utils::*;
12140 use crate::ln::msgs::{ChannelMessageHandler, Init};
12141 use crate::routing::gossip::NetworkGraph;
12142 use crate::routing::router::{PaymentParameters, RouteParameters};
12143 use crate::util::test_utils;
12144 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12146 use bitcoin::hashes::Hash;
12147 use bitcoin::hashes::sha256::Hash as Sha256;
12148 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
12150 use crate::sync::{Arc, Mutex, RwLock};
12152 use criterion::Criterion;
12154 type Manager<'a, P> = ChannelManager<
12155 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12156 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12157 &'a test_utils::TestLogger, &'a P>,
12158 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12159 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12160 &'a test_utils::TestLogger>;
12162 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12163 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12165 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12166 type CM = Manager<'chan_mon_cfg, P>;
12168 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12170 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12173 pub fn bench_sends(bench: &mut Criterion) {
12174 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12177 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12178 // Do a simple benchmark of sending a payment back and forth between two nodes.
12179 // Note that this is unrealistic as each payment send will require at least two fsync
12181 let network = bitcoin::Network::Testnet;
12182 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12184 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12185 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12186 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12187 let scorer = RwLock::new(test_utils::TestScorer::new());
12188 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
12190 let mut config: UserConfig = Default::default();
12191 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12192 config.channel_handshake_config.minimum_depth = 1;
12194 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12195 let seed_a = [1u8; 32];
12196 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12197 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12199 best_block: BestBlock::from_network(network),
12200 }, genesis_block.header.time);
12201 let node_a_holder = ANodeHolder { node: &node_a };
12203 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12204 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12205 let seed_b = [2u8; 32];
12206 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12207 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12209 best_block: BestBlock::from_network(network),
12210 }, genesis_block.header.time);
12211 let node_b_holder = ANodeHolder { node: &node_b };
12213 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12214 features: node_b.init_features(), networks: None, remote_network_address: None
12216 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12217 features: node_a.init_features(), networks: None, remote_network_address: None
12218 }, false).unwrap();
12219 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12220 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12221 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12224 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12225 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12226 value: 8_000_000, script_pubkey: output_script,
12228 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12229 } else { panic!(); }
12231 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12232 let events_b = node_b.get_and_clear_pending_events();
12233 assert_eq!(events_b.len(), 1);
12234 match events_b[0] {
12235 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12236 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12238 _ => panic!("Unexpected event"),
12241 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12242 let events_a = node_a.get_and_clear_pending_events();
12243 assert_eq!(events_a.len(), 1);
12244 match events_a[0] {
12245 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12246 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12248 _ => panic!("Unexpected event"),
12251 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12253 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12254 Listen::block_connected(&node_a, &block, 1);
12255 Listen::block_connected(&node_b, &block, 1);
12257 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12258 let msg_events = node_a.get_and_clear_pending_msg_events();
12259 assert_eq!(msg_events.len(), 2);
12260 match msg_events[0] {
12261 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12262 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12263 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12267 match msg_events[1] {
12268 MessageSendEvent::SendChannelUpdate { .. } => {},
12272 let events_a = node_a.get_and_clear_pending_events();
12273 assert_eq!(events_a.len(), 1);
12274 match events_a[0] {
12275 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12276 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12278 _ => panic!("Unexpected event"),
12281 let events_b = node_b.get_and_clear_pending_events();
12282 assert_eq!(events_b.len(), 1);
12283 match events_b[0] {
12284 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12285 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12287 _ => panic!("Unexpected event"),
12290 let mut payment_count: u64 = 0;
12291 macro_rules! send_payment {
12292 ($node_a: expr, $node_b: expr) => {
12293 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12294 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12295 let mut payment_preimage = PaymentPreimage([0; 32]);
12296 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12297 payment_count += 1;
12298 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
12299 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12301 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12302 PaymentId(payment_hash.0),
12303 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12304 Retry::Attempts(0)).unwrap();
12305 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12306 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12307 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12308 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12309 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12310 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12311 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12313 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12314 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12315 $node_b.claim_funds(payment_preimage);
12316 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12318 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12319 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12320 assert_eq!(node_id, $node_a.get_our_node_id());
12321 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12322 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12324 _ => panic!("Failed to generate claim event"),
12327 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12328 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12329 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12330 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12332 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12336 bench.bench_function(bench_name, |b| b.iter(|| {
12337 send_payment!(node_a, node_b);
12338 send_payment!(node_b, node_a);